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Abstract

In the study of Quantum Field Theory and Feynman Periods, the operation of double
triangle expansion plays an important role. This is largely due to double triangle expansions
not affecting the maximum weight of the period. In this thesis, we take a look at the effects
of double triangle expansions on K5 graphs. More specifically, given any graph G that can
be obtained through a sequence of double triangle expansions on K5, we calculate the
minimum number of triangles of any graph that can be obtained through double triangle
expansions on G. While the minimum number of triangles of graphs that are obtained
through double triangle expansions on K5 is already known, this is a generalization of
that. This is done by understanding the structure of graphs that come from K5 and double
triangle expansions, and how double triangle expansions relate to this structure. Commonly
arising graphs are studied, and showed to be building blocks for more complicated graphs.
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Chapter 1

Introduction

In this thesis, we look into the minimum number of triangles of graphs that are obtained
from some number of operations, called double triangle expansions, on the graph K5. The
focus of chapter 2 will be defining and examining this operation. For now, let’s back up
and focus on why this is of interest.

This operation uses combinatorial techniques, as opposed to analytical ones, to predict
a property known as transcendental weights of Feynman Integrals. We will not define
transcendental weights directly, but those interested can see [2]. Feynman integrals arise
in perturbative quantum field theory. While the integrals are normally difficult to calculate,
they are closely related to Feynman periods [5]. Feynman periods are easier to calculate
integrals that arise from certain graphs. The edges of the graph represent particles and the
vertices represent their interactions. The focus of this thesis will be on graphs that come
from ϕ4-theory, for simplicity. These graphs are 4-regular, with potentially external edges,
which naively explains the relationship to K5. The operation which will be the focus of
this thesis, the double triangle expansion, has interesting properties regarding the weight
of the Feynman periods. Mainly, applying a double triangle expansion to a graph does not
change the maximum weight of the period [9]. So, we focus on studying this operation to
better understand the weight of these Feynman periods [8].

1.1 Graph Theory Background

A lot of the techniques and definitions used throughout this thesis do not stem from classic
graph theory. We will go through some of the definitions that stem from background as
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opposed to things that arise directly from double triangle expansions. For definitions that
arise in the paper but are not explicitly defined, see [3].

Definition 1.1 A subdivision of an edge, vivj is an operation that replaces the edge
vivj with the edges vivk and vkvj, where vk is the vertex created by the subvision.

Definition 1.2 (Double Triangle Expansion) A double triangle expansion, denoted as
DTE, is an operation performed on a triangle (v1v2v3) and an additional vertex not in the
triangle, v4, that is adjacent to v1. Then, the operation is defined as follows:
The edge (v1v4) is removed.
The edge (v2v3) is subdivided where the new vertex is denoted as v5.
The edge (v1v5) and (v4v5) are added.

v1

v2

v1

v2

v4

v3

v4

v3
v5

Figure 1.1: Double Triangle Expansion

A double triangle reduction (denoted DTR) is the inverse operation of a DTE. Given
two triangles that share an edge (v1v2v3) and (v2v3v4), we turn these into a single triangle
by removing edges v1v3, v2v3 and v3v4, adding the edge v1v4 and identifying the vertices
v2, v3. The majority of the thesis will focus on DTE as opposed to DTR.

Definition 1.3 (Parent, Child) A graph, G, is a parent of another graph, H, if there
is some DTE that transforms G into H. H is then a child of G.

Definition 1.4 (Ancestor, Descendant) A graph G is an ancestor of another graph
H if there is some sequence of DTE that transforms G into H. Similarly, H is then a
descendant of G.

Definition 1.5 (Circulant Graphs) Suppose we have a graph, G, on n vertices with
each vertex labelled as an element of Z/Zn and a set C, where C is a subset of Zn\0.
Then G is a circulant graph if and only if any two vertices, x, y are adjacent if and only if
x− y ∈C.[4]

Definition 1.6 (△(G)) △(G) of a graph, G, is the minimum number of triangles on
all graphs that can be obtained through some sequence of DTE on G.

Definition 1.7 (Spanning Tree) A subgraph T of a graph G is a spanning tree if T is
a tree and V (T ) = V (G). [3]

2



Definition 1.8 (Point Count) The point count of the variety of f over a field of K
is defined to be: [f ]K=|(x̄ ∈ Kn : f(x̄) = 0 in K)|. If K is the field with q elements we
abreviate to [f ]q.

Definition 1.9 (4-point graph) A 4-point graph is a graph that can be obtained by
removing a vertex from a 4-regular graph.

Definition 1.10 (Completion/Decompletion) A decompletion, H, of a 4-regular graph,
G, is formed by removing a vertex and all incident edges from G. G is then the completion
of H.

Example 1.11 K5 is a completion of K4. Similarly, K4 is the only decompletion of
K5, up to ismorphism. K5 and K4 are 4-regular and 4-point graphs respectively. See figure
1.2.

Definition 1.12 (Kirchhoff Polynomial) Let G be a graph. The Kirchhoff Polynomial
of G is defined as

ΨG =
∑
T

∏
e/∈E(T )

ae

where the sum is over the spanning trees of G and ae are the variables of the edges. [6] [7]

So, the Kirchoff Polynomial is a polynomial in the variables that are assigned to the
edges. Going through an example for the cycle of length 3, we get:

Example 1.13 Labelling the edges as a1, a2, a3, we can see that each spanning tree of
the 3−cycle misses exactly one edge. So,

ΨG = a1 + a2 + a3

Definition 1.14 (c2-invariant) Let G be a graph with at least 3 vertices. The c2-
invariant is the sequence over the primes, where the term at prime p is given by

c
(p)
2 (G) =

[ΨG]p
p2

mod p

[6, 7]

The mod p is the standard definition of mod p. That is, the cp2 invariant for any given
p is an element of Z/Zp .

The c2-invariant is interesting as it predicts properties of Feynman periods. Better
understanding c2 will result in a better understanding of Feynman periods. Furthermore,
c2 yields interesting sequences in p such as coefficient sequences of modular forms [6, 7].
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a2

a3

a1 a2

a1

a3

Figure 1.2: Kirchoff Polynomial For A 3-Cycle; The red edges represent the edges not in
the respective spanning trees. The Kirchoff Polynomial is a sum of the indices of the red
edges.

Theorem 1.15 cp2(G) = −1 for all K5 descendants and for all values of p

It can be shown that cp2(K5) = −1, for all p, and since c2-invariant doesn’t change by
double triangle expansions, we have that all graphs that are obtained through a sequence
of double triangle expansions on K5 have cp2(G) = −1. [6, 7]

Conjecture 1.16 (Brown/Schnetz, Conjecture 25, [1]) Suppose G is a 4-point graph.

Then c
(p)
2 (G) = −1 if and only if G is a decompletion of some K5 descendant.

This conjecture would hopefully be solved with a better understanding of structures of
K5 descendants and the graphs that can be obtained from a sequence of double triangle
expansions of K5. This would tell us that cp2(G) = −1 for all p is a result of some form
of structure on the graph. In this thesis, we focus on a specific type of graph that can be
obtained from K5 through double triangle expansions. That is, we focus on graphs that
minimize the number of triangles. While these graphs have a lot of additional structure
that other graphs don’t, the techniques talked about through the thesis can be applied to
any graph. The goal of this thesis is not to solve the conjecture. The goal of this thesis is
to provide a better understanding of K5 descendants and the effects DTEs have on these
descendants [7].
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1.2 Previous Results of Double Triangle Expansions

on K5 Graphs

In previous papers on this topic, there is generally a focus on one of two questions. The
first is calculating the minimum number of triangles of graphs that can be obtained from
performing double triangle expansions on K5 graphs. The minimum number of triangles
has been shown to be 4, and there are many known graphs with 4 triangles that come
from K5 by double triangle expansions. This is already a slightly surprising result, as a
DTE only guarantees 2 triangles in the local environment, so having a minimum number of
triangles of 4 tells us that the local operation of DTE is still related to the global structure
of the graph in some way. This thesis extends this question further by not looking at just
K5 descendants, but by looking at graphs that descendant from some fixed K5 descendant.
For example, let’s take the closed zig-zag on 100 triangles. See figure 2.4 for the structure
of closed zig-zags. Then, is there a graph with 4 triangles that can be obtained from
this graph through double triangle expansions? If so, what is special about 4 triangles
as opposed to a different number of triangles. If not, what is the minimum number of
triangles a graph can have if we start at this 100 triangle graph?

The second question that arises, is the enumeration of the number of different types of
graphs that can be obtained through double triangle expansions on K5. The enumeration
is generally done with respect to the number of vertices and the level.

Definition 1.18 The level of a graph is defined as the number of vertices minus the
number of triangles.

There are explicitly known generating functions for levels 0 to 4 [7]. That is, given
any number of vertices, we know how many graphs of a given level from 0 to 4, exist with
that number of vertices. As the level increases, and so, the number of triangles decreases,
there is an increasing number graphs that can be obtained. This thesis doesn’t focus on
this question, and the techniques involved are quite different. However, this thesis does
dive deeply into the structure of K5 descendants, and may be useful when dealing with
enumeration of unknown levels. See [7] for detailed proofs of these generating functions.

1.3 Roadmap

Chapter 2 focuses on the structure of graphs that are obtained from K5 through double
triangle expansions (page 14). The structure of these graphs will play a major role in
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determining the fewest number of triangles of graphs that can be obtained from K5. This
is the main focus of the thesis.

Chapter 3 focuses on the types of double triangle expansions we will need to pay close
attention to when trying to remove as many triangles as possible. This chapter highlights
how double triangle expansions interact with the structure of the graphs we are working
with. Although we are focusing on graphs with a minimal number of triangles, the effects
of double triangle expansions studied in this chapter give insight even to graphs that don’t
have a small number of triangles.

Chapter 4 focuses on finding the minimum number of triangles of types of graphs that
commonly arise when removing triangles through double triangle expansions. It introduces
the main theorem of the paper, which deals with the number of triangles that can be
removed from a zig-zag graph (page 14), which is the building block of the types of graphs
we are looking at. In this chapter, we start to prove three theorems simultaneously through
induction. More specifically, theorem 4.1 is shown to be true up until some natural number
N . Theorem 4.7 is shown to be true up until the same N , using theorem 4.1. Theorem 4.8
is shown to be true up until the same N , using theorem 4.1 and 4.7. The three theorems
all deal with the minimum number of triangles of commonly arising zig-zags.

Chapter 5 continues on with the proof of the theorem introduced in chapter 4. More
specifically, theorem 4.1, 4.7 and 4.8 are shown to be true for all n, using the fact that
the three theorems are true up for n ≤ N . We finish of the proof by proving a statement
about general zig-zag chains. So, while our theorems in chapter 4 dealt with the simplest
zig-zag structures, we actually need to be able to deal with any zig-zag structure for this
proof.

Chapter 6 takes the results from chapter 5 and generalizes them to a different form
of zig-zag but equally important type of graph that arises from K5. While the earlier
chapters were dealing with open zig-zags (page 13), we now extend our theorems to closed
zig-zags. Many of the techniques used in previous chapters are used here. The results in
this chapter, allow us to deal with any K5 descendant.

The conclusion recaps the main theorems of the thesis and briefly talks about future
directions.
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Chapter 2

Double Triangle Expansions

2.1 General Definitions

Having already defined the main operation, DTE, in the last chapter, we move onto the
class of graphs that will be the focus; K5 descendants. That is, we are focusing on all
graphs that can be obtained from some sequence of DTE performed on K5. This chapter
will deal with understanding the structure of this class of graphs. That is, we will look at
properties that are similar for all (or most) K5 descendants and then use these properties
in future chapters.

Perhaps the nicest property of K5 descendants is that they are all 4-regular. Often,
throughout this thesis, we will show images that aren’t 4-regular. The reason for this will
be due to the fact that the 4-regularity won’t be important at that specific moment and
so we don’t include all the edges to avoid clutter.

Definition 2.1 (O and Z5:) The unique graph obtained by performing one DTE on K5

will be denoted O. Z5: is the unique graph obtained from performing one DTE on O.

O is the octahedron; see figure 2.1. The structure of the octohedron is important to
this thesis but the graph appears as an exception to a lot of the following theorems. More
specifically, K5 descendants that are also Z5: descendants have very similar structure and
the octahedron and K5 are exceptions to this fact. The notation of Z5: is a special case of
Zn:, a type of graph that will be discussed shortly.

Both O and Z5: are unique K5 descendants with respect to the number of vertices. That
is, the choices of DTE on K5 and O result in the same graphs since K5 and O are vertex
transitive. The graphs obtained from performing any DTE on K5 or O are isomorphic
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Figure 2.1: Octahedron

Figure 2.2: Z5:
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to any other graph obtained from performing a different DTE on K5 or O, respectively.
Starting with Z5:, there will be multiple choices in DTE, in the sense that there are multiple
non-isomorphic graphs that can be obtained from a given graph.

Another nice property of K5 descendants is that they are all simple graphs.

Lemma 2.2 Let G be a K5 descendant. Then G is simple.

Proof of 2.2 Suppose towards a contradiction that G is a non-simple K5 descendant
with the lowest number of vertices among all non-simple K descendants. Then, G is a child
of some simple K5 descendant, H. Denote the triangle and additional vertex that the DTE
was performed on as (v1v2v3) and v4, respectively. Denote the new vertex as v5. Then, all
edges of G are in H with the exception of v1v5, v2v5, v3v5 and v4v5. So, there exists two
edges between v5 and one of at least one of v1, v2, v3 and v4. But the edges incident to v5
are only the four stated above, and v1, v2, v3, v4 are distinct. This is a contradiction, so all
K5 descendants are simple. ■

Going through some of the more obvious properties of DTE, we already showed it
preserves 4-regularity. The number of vertices increases by 1. It would seem that DTE
increases the number of triangles by 1. After all, we are splitting 1 triangle into 2. This,
however, is not the case. In fact, DTE can actually decrease the number of triangles.

Theorem 2.3 Let G be a K5 descendant that is not K5. If G
′ is a child of G, then the

number of triangles of G′ differs from the number of triangles of G by at most 1.

We will prove the theorem shortly, but first we need some understanding of excluded
subgraphs in K5 descendants.

2.2 Excluded Subgraphs and Structure of K5 Descen-

dants

Theorem 2.4 No K5 descendant other than K5 contains a K4 subgraph.

Proof of 2.4. We will show that if G′ is a graph that is obtained through a DTE on
some other graph G, and G contains no K4 subgraph, then G′ contains no K4 subgraph.
Let v5 ∈ G′ be the vertex created by the DTE on G. Furthermore, denote the vertices
that were incident to the edge that v5 subdivided as v2 and v3,the vertex that is not in
the triangle as v4 and the vertex in the triangle that is incident to the additional edge,
the edge not in the triangle, as v1. Furthermore, denote the remaining two vertices as v2
and v3. This can be seen in figure 2.4. All vertices of G′ that are not v5 are also in G.
Furthermore, all edges in G′ that are not incident to v5, are also in G.

9



v3v2

v1 v4

v5

Figure 2.3: DTE

G′ \v5 is a subgraph of G, so it has no K4 subgraph. Suppose then, that v5 is contained
in theK4 subgraph. Then, theK4 subgraph contains v5, and three of v1, v2, v3, v4. However,
v2 and v3 are not adjacent since the unique edge they were both incident to was subdivided.
Furthermore, v1 and v4 are not adjacent in G′ since the unqiue edge they were both incident
to was removed by the DTE. So, any set of size 3 of those vertices includes a pair of vertices
that are not adjacent to each other. So K4 isn’t a complete graph, which is a contradiction.
Therefore, G′ will not contain any K4 subgraphs if G doesn’t.

O doesn’t contain any K4 subgraphs. Furthermore, since all DTE descendants of K5

excluding K5 are also DTE descendants of O, we conclude that all K5 descendants other
than K5 and O don’t contain any K4 subgraphs. ■

Theorem 2.5 No K5 descendant other than K5 contains a K3,1,1 subgraph.

Proof of 2.5 Similar to the proof above, we will show that if G′ is a graph obtained
through a DTE on some other graph G and G contains noK3,1,1 subgraph, then G′ contains
no K3,1,1 subgraph. Denote the newly created vertex as v5 and the edges e1, e2, e3, e4 as
the edges incident to v5 (with no further distinction between the edges).

Suppose towards a contradiction that there exists a K3,1,1 subgraph in G′ but not in
G. Denote the edge in K3,1,1 that is contained in 3 triangles as e. Suppose e is not one
of e1, e2, e3, e4 and not incident to any of these edges. Then, e is an edge in G and is still
contained in 3 triangles since all edges in G′ are in G other than e1, e2, e3, e4. So, there
exists an edge contained in 3 triangles in G. So, G contains a K3,1,1 subgraph. This is a
contradiction.

So, suppose then that e is one of e1, e2, e3, e4. Then v5 and one of its neighbours share
3 neighbours. But this is a contradiction, as v5 only shares at most 2 neighbours with any
of its given neighbours. Therefore, G′ will not contain a K3,1,1 subgraph.

10



Finally, suppose e is not one of e1, e2, e3, e4 but is adjacent to at least one of them.
Then, v5 is in the K3,1,1 subgraph since all of e1, e2, e3, e4 are incident to v5 and all edges
incident to e are in the subgraph since the graph is 4-regular. Then, (v2v5v1) or (v3v5v1)
is one of the triangles in the K3,1,1 subgraph, along with two other triangles T1 and T2.
Then, (v2v3v1), T1 and T2 form a K3,1,1 in G. But this is a contradiction. Therefore, G′

will not contain any K3,1,1 subgraphs if G doesn’t.

O doesn’t contain a K3,1,1 subgraph. Furthermore, since all DTE descendants of K5 are
also DTE descendants of O, we conclude that all K5 descendants dont contain any K3,1,1

subgraphs. ■

Now, time to go back and prove theorem 2.4, dealing with minimum number of triangles.

Proof of 2.3. Suppose G is a K5 descendant that isn’t K5 or O and G′ can be obtained
by performing a double triangle expansion on triangle v1, v2, v3 and vertex v4 for vertices
v1, v2, v3, v4 ∈ G. Then, all edges in G are also in G′ with the exception of v1v4 and v2v3.
So, all triangles in G are also in G′ excluding the triangles that have v1v4 or v2v3 as an
edge. v2v3 is always in the triangle v1v2v3. It may also be in the triangle v2v3b1 for some
vertex b1. v2v3 can’t be in another triangle, v2v3b2? If such a triangle existed then v1, b1, b2,
v2, and v3 would form a K3,1,1 subgraph, which is excluded by a theorem 2.6. So, v2v3 is
in either 1 or 2 triangles in G. Similarly, v1 is adjacent to both v2 and v3, so v1v2v4 and
v1v3v4 are both potential triangles. However, there may also exist another vertex, b3, such
that v1v4b3 is a triangle in G. Similar to the case of v2v3, only two of these cases can occur
or else we have a K3,1,1 subgraph. So we have v1v4 in either 0, 1 or 2 triangles in G. So G
has either 1, 2, 3 or 4 triangles that aren’t in G′.

Now, how many triangles are in G′ that aren’t in G. v1a1v2 and v1a1v3 are two triangles
that are always in G′ and not in G′. If v4 is adjacent to v2 (or v3) then v4a1v2 (or v4a1v3)
are triangles in G′ that aren’t in G. These triangles’ existence directly corresponds to the
existence of v1v4v2 (or v1v4v3) in G. That is, v4a1v2 is a triangle in G′ if and only if v1v2v4
is a triangle in G. A similar argument can be made with v1v3v4 and v4a1v3. So, in some
sense, these triangles cancel each other out. So, G has 1, 2 or 3 triangles that aren’t in G′

and that don’t get replaced by a corresponding triangle in G′.

Back to G′, there aren’t any other triangles in G′ that aren’t in G. This is true since
v1a1 is in two triangles, and can’t be in any more due to K3,1,1 being forbidden. Similarly,
v4a1 can be in two triangles, but not a third since v4 is not adjacent to v1 (as that edge
was removed as part of the double triangle expansion) and a1 is adjacent to v1. What
about v2a1 and v3a1? Well, they are in the triangles v2a1v1 and v3a1v1 which we’ve already
mentioned above, and they are also potentially in the triangles v2a1v4 and v3a1v4. However,
v2a1v3 can’t be a triangle since v2v3 is not an edge as v2v3 was subdivided as part of the
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double triangle expansion.

So, we have exactly 2 triangles in G′ that aren’t in G and don’t correspond to a triangle
that was removed in G. Since G has 1, 2 or 3 triangles that aren’t in G′, we get the number
of triangles in G differs from the number of triangles in G′ by at most 1. ■

Lemma 2.6 Suppose G′ is obtained by performing a DTE on G. Further suppose e is
an edge in G′. If e is contained in no triangles in G, then e is contained in no triangles in
G′.

Proof of Lemma 2.6 We can see from the proof of theorem 2.4, that the only triangles
in G′ that aren’t in G are the triangles (v1v2a1), (v1v3a1) and possibly the triangles (v1v3b1)
and (v1v2b1). However, the edges, v1v2 and v1v3 are already in triangles in G and the edges
, v1b1, v2b1 and v3b1 are only in the triangles specified above in G′ if they are in triangles
in G. ■

From the theorem and lemma above, we can see that DTE only affect triangles that
directly contain an edge that the DTE is acting upon.

Back to theorem 2.4, we have shown that DTE can indeed decrease the number of
triangles in a graph. However, it is dependent on there being other triangles near the
double triangle expansion. With this in mind, we are able to introduce the main question
of this paper:

Question 2.7 Given a K5 descendant, G, what is the minimum number of triangles
that a descendant of G has?

The minimum number of triangles of any K5 descendant was already proven to be 4 by
Yeats, Mishna and Laradji. Of course then, it is true that any descendant of K5 [7]. There
are many examples of graphs with 4 triangles. Are we done then? Well, not quite. While
the minimum number of triangles that a K5 descendant contains is 4, that does not mean
that given any K5 descendant, G, that there exists a descendant of G with 4 triangles.
Perhaps, while performing DTE to get from K5 to G, one changes K5 in such a way that
now it is no longer possible to get to a descendant of G that has 4 triangles. Is it possible
for G to have a minimum number of triangles that is greater than 4?

To begin, one should consider the actual structure of K5 descendants. We will show
that the building blocks of K5 descendants are zig-zag graphs. There are two different
types of zig-zags, although they behave very similarly.

Defintion 2.8 (Closed Zig-Zag Graph) A zig-zag graph on n vertices is a circulant
graph where the connection set is −2,−1, 1, 2. This graph is denoted Zn−2:.

Generally, these graphs are drawn with the odd vertices in a lower row in increasing
order and the even vertices in an upper row in increasing order. The unique graph obtained
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from any DTE on O is a closed zig-zag; Z5:. These graphs are not the main focus of the
thesis but will be touched upon in chapter 6.

2

3 5 7

4
6

1

Figure 2.4: Closed Zig-Zag

Definition 2.9 (Open Zig-Zag Graph) An open zig-zag graph on n vertices is a zig-zag
graph on n vertices with the edges 1n, 1(n− 1), 2n removed. These graphs will be denoted
Zn−2 since n− 2 is the number of triangles in the zig-zag.

Visually, an open zig-zag graph is a zig-zag graph where the vertices don’t wrap around
the graph back to themselves. The majority of this thesis will focus on this type of graph
due to the importance these graphs have in the structure of K5 descendants.

1

2

3

4

5

6

7

Figure 2.5: Open Zig-Zag, Z5

Definition 2.10 (Disjoint Zig-Zags) Two zig-zags are said to be disjoint if there is no
vertex that is in both zig-zags.

Definition 2.11 (Zig-Zag Chain) A zig-zag chain of length m is a graph of m open
zig-zag subgraphs where each open zig-zag shares a vertex with the next zig-zag in the
sequence. A zig-zag chain is closed if every zig-zag piece shares an end vertex with exactly
2 zig-zags. That is, the zig-zag chain wraps back around to the start. A zig-zag chain is
open if it is not closed.

13



Zig-zag pieces that share a vertex will be joined by a , and if there is an edge between
two zig-zag pieces then it will be denoted by a ;. The latter case will arise in chapter 4 and
onward when we start destroying triangles in some zig-zags.

Figure 2.6: Zig-Zag Chain, Z3,1,2

The structure of zig-zags and zig-zag chains refers to the length of the zig-zags and zig-
zag chains and how they are joined. So, we will say a DTE doesn’t change the structure
of the zig-zags and zig-zag chains if the length of each of the zig-zags and zig-zag chains
doesn’t change. More specifically, if the labelled graph is different after a DTE but the
unlabelled graph is the same, then we say the DTE doesn’t change the structure of the
DTE.

Definition 2.12 (Completed Primitive) A graph is considered completed primitive if
it is internally 6-edge-connected. That is, a graph is completed primitive if the only way
to disconnect the graph by removing 5 or fewer edges is to disconnect a single vertex.

Theorem 2.13 All K5 descendant are completed primitive.

Proof 2.13 It follows from observation that K5 is completed primitive [9]. Schnetz
showed that DTE maintains completed primitiveness. So, allK5 descendants are completed
primitive. ■

2.3 Structure Of K5 Descendants

In this next section, we will discuss the structure of K5 descendants. We will show that
zig-zags and zig-zag chains are the building blocks ofK5 descendants. While understanding
zig-zags and zig-zag chains will not tell us everything about K5 descendants, they play a
crucial role when dealing with the minimum number of triangles of K5 descendants.

Theorem 2.14 All K5 descendants, with the exception of K5 and O, can be expressed
as a edge disjoint union of graphs where each graph is either an open or closed zig-zag,
zig-zag chain or an edge which is not in any triangle in the initial graph.

Before proving this theorem, let’s reiterate what it is saying. Theorem 2.14 is saying
that the structure of K5 descendants breaks down to zig-zags and zig-zag chains. While
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there are still further statements to make about the structure of zig-zags and zig-zag chains
in K5 descendants, this theorem is the backbone of techniques used in later chapters.

We will prove theorem 2.14 by showing that all K5 descendants, with the exceptions of
K5 and O, have no vertex that is in 4 or more triangles or is in a subgraph shown in figure
2.7. Initially, it may not be clear why showing the above statements proves that theorem
2.14 is true. If these two statements weren’t true, then there could exists subgraphs that
aren’t in a zig-zag or zig-zag chain structure. So, showing that these statements hold,
shows that the triangles in K5 descendants can be expressed as zig-zags or zig-zag chains.

Proof 2.14 An equivalent statement to the theorem is that all K5 descendants, other
than K5 and O descendants have no vertex that is in 4 or more triangles or is in a subgraph
shown in figure 2.8, or in a K4 or K3,1,1 subgraph. So, we need to show that given any
vertex v1 in some K5 descendant, G, v1 is in at most 3 triangles and the graph in figure 2.7
isn’t a subgraph of any K5 descendant. First, we will show figure 2.7 is indeed an excluded
subgraph. Performing a double triangle reduction on 2.7, that is, reversing a DTE, we can
see that this graph becomes a K4 subgraph. But this subgraph is excluded by theorem
2.5. So figure 2.7 is a forbidden subgraph.

Now, to show that all vertices of any K5 descendant that isn’t K5 or O is in at most
3 triangles. Recall that all K5 descendants are 4-regular so each vertex is in at most 6
potential triangles. Suppose v1v2v3 and v1v2v4 are both triangles in G. Then v1v3v4 is not
a triangle in G since its existence would create a K4 graph, which by Theorem 2.15, is
not possible. So, each triple of v2, v3, v4, v5 forms at most 2 triangles with v1. Excluding
duplicates, we are left 4 potential triangles. If there are 3 or fewer triangles, we are done. If
there are 4 triangles, then we have a 4 wheel and spoke. However, each of the vertices in the
wheel have degree 3, so they only connect to the rest of the graph by one edge. Removing
each of these edges results in disconnecting the graph by removing 4 edges. This would
imply G is not internally 6-edge-connected, so this case doesn’t occur. So, each vertex in
G is in at most 3 triangles, and we are done. ■

Lemma 2.15 Suppose G is a K5 descendant. Then there exists no vertex that is in
three edge disjoint triangles.

Lemma 2.15 follows from 4-regularity. ■

Theorem 2.16 Suppose G is a Z5: descendant. Then, no zig-zag piece of G is incident
to more than 2 other zig-zag pieces.

Theorem 2.16 is saying that the structure of K5 descendants, excluding K5 and O,
are not just graphs consisting of zig-zag pieces and zig-zag chains, but they are graphs
where the zig-zags only interact with at most 2 other zig-zags. Informally, this means for
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Figure 2.7: Forbidden Subgraph

any Z5: descendant, one draw the descendant by taking all the zig-zag and zig-zag chains
and putting them on the outside outer face of the graph and not have any zig-zags going
through the inner faces of the graph.

Proof of 2.16. If a zig-zag, Zm, is incident to another zig-zag, Zn, then there are 2
edges of Zn that are incident to a vertex of Zm. Since any Z5: descendant is 4-regular,
the number of zig-zags that can be incident to a given zig-zag is at most the number of
vertices in a zig-zag piece that have degree 2. However, only 2 vertices in a zig-zag piece
have degree 2, so there are at most 2 zig-zag pieces incident to any zig-zag piece. ■

Theorem 2.17 Suppose G is a K5 descendant. Then there exists no triangle in G,
where each vertex of the triangle is part of a triangle that shares no other vertices of the
initial triangle (figure 2.8).

Proof of 2.17 Suppose G is a K5 descendant, that isn’t K5, that has the excluded
structure listed above, and is minimal with respect to the number of vertices. Since G is a
K5 descendant, one can find a K5 descendant, G

∗, such that G is obtained by performing a
DTE on G∗. Then, by minimality, G∗ does not contain the excluded structure. But, DTEs
either break up structure or split a triangle in two (see ?? for proofs of these statements);
they do not cause two triangles that were not incident to each other, to become incident.
So, G∗ either had the excluded structure or contained a zig-zag piece which was incident to
3 zig-zags. The latter case is excluded by theorem 2.16, so we have reached a contradiction,
and no suchG exists. SinceK5 doesn’t contain the excluded structure, we conclude theorem
2.17 is true. ■
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Figure 2.8: Excluded Structure
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Chapter 3

Minimum Number Of Triangles

The focus of this thesis is trying to figure out the minimum number of triangles for any
K5 descendant. We will eventually show that this is indeed achievable, although there are
many steps to get there. One technique that will be discussed next chapter, is showing that
if we are looking for the minimum number of triangles of all descendants of some graph,
we only need to look at DTE that decrease the number of triangles or DTE that don’t
change the number of triangles but change the structure of the zig-zag chains. This will
allow us to approach descendants with a minimal of triangles with much more structured
techniques; which will be shown in chapter 4.

Definition 3.1 (Increasing DTE) An increasing DTE is any DTE that increases the
number of triangles of the graph by 1.

From theorem 2.3, see page 9, we know that the number of triangles changes by at
most 1. The theorem also tells us when this occurs. That is, a DTE is increasing if the
edge being subdivided is not part of an additional triangle and the edge being removed is
not part of a triangle where a vertex of the triangle is not one of the four vertices that
the DTE is initially acting upon. The reason for the condition to include a vertex not
in the initial DTE is that if the removed edge is in a triangle only with vertices of the
initial DTE then that triangle will be destroyed but a new one will be additionally created,
resulting in no change in the number of triangles. So, given any K5 descendant that isn’t
K5 or O, one can always find an increasing DTE, since the edges in the upper and lower
rows of a zig-zag are not in any triangle with vertices not in the DTE. This is also true
for isolated triangles. Performing an increasing DTE does not change the structure of the
zig-zag chain. It simply increases the size of whichever piece the DTE is being performed
on.
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Figure 3.1: Increasing DTE

Definition 3.2 (Decreasing DTE) A decreasing DTE is any DTE that decreases the
number of triangles in the graph by 1.

From theorem 2.3, we know that the number of triangles changes by at most 1. A DTE
is decreasing if both the edge that is being subdivided is part of an additional triangle and
the edge being removed is part of a triangle that contains a vertices that is not one of the
four vertices that the DTE is initially acting upon. It is not always possible to perform a
decreasing DTE on a given graph. A decreasing DTE requires other triangles to be close
to the triangle that is having the DTE performed upon it.

So, performing a decreasing DTE requires the existence of at least 3 triangles. The
triangle in which the DTE is being performed on, a triangle that contains the edge being
subdivided and a triangle that contains the edge being removed and some vertex that isn’t
part of the DTE. In terms of zig-zags, this means that a decreasing DTE is performed on a
Z2,1 subgraph. This is the only type of zig-zag that a decreasing DTE can be performed on.
Of course, either piece could contain more than 2 or 1 triangles, but the decreasing DTE
only effects 2 triangles from one piece and one 1 triangle from the other (or all triangles
could be part of one long zig-zag piece).

A decreasing DTE can not be performed on a Z3 zig-zag (but can be for Zn with n
greater than 3). The reason for this is that there is no triangle that contains a vertex not
in the initial DTE. So, even though 3 triangles are destroyed as a result of the DTE, 3
new triangles are created; the two of the split triangle, but also one where the destroyed
edge was. The edge was replaced with a new edge, and the triangle still exists just with
the new edge instead. As a result, we are still left with a Z3 zig-zag.

Suppose Zn is an open zig-zag of length greater than 3. Then, there are two choices of
DTE, increasing or decreasing. Staying the same is not possible due to the fact that the
decreasing and increasing DTE examples show all the cases possible. The increasing DTE
results in a Zn+1 zig-zag. The decreasing DTE results in a zig-zag of the form Zq,3,n−q−4.
The decreasing DTE destroys some of the structure of the open zig-zag around 3 triangles
that are still close together. The remaining structure on both sides remains unchanged.
What happens if we then perform another decreasing DTE on the right most triangle of
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Figure 3.2: Decreasing DTE

the piece of size 3 and remove the leftmost triangle of size the zig-zag of size n−q−4. This
will then result in the zig-zag chain being broken up completely and then being disjoint, at
least this part of the zig-zag. This is shown in figure 3.3. So, a decreasing DTE within an
open zig-zag results in a zig-zag chain. Furthermore, a decreasing DTE over a zig-zag chain
then results in disjoint zig-zags. As one performs more and more decreasing DTEs, the
structure of the zig-zags are continuously destroyed until triangles are left either isolated
or isolated in pairs.
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Figure 3.3: Further Decreasing DTE

Definition 3.3 (Trivial Neutral DTE) A trivial neutral DTE is a DTE that does not
change the number of triangles in the graph nor does it change the structure of the zig-zags.

A trivial neutral DTE occurs when the DTE occurs on an isolated zig-zag of size 2 or
size 3. The structure of the rest of the zig-zags aren’t affected since the triangles in this
zig-zag are too far away from other zig-zags for any DTE performed on these triangles to
matter.

Definition 3.4 (Non-Trivial Neutral DTE) A non-trivial is a DTE that changes the
structure of the zig-zags but doesn’t change the number of triangles in the graph.

Non-trivial neutral DTE occur when either the edge being subdivided is in another
triangle or the edge being removed is in a triangle that contains a vertex that isn’t part
of the initial DTE, but not both. This follows from the proof of theorem 2.4. There are
two possible triangles that could be destroyed by a DTE, so if only one is destroyed, the
result is a non-trivial neutral DTE. Non-trivial neutral DTE have fewer requirements than
a decreasing DTE to occur, but still require triangles to be close to each other. So, not
every graph can have a non-trivial neutral DTE performed on it.
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Lemma 3.5 Suppose Zn and Zm are two open zig-zags or zig-zag chains of a K5

descendant that are disjoint and separated by at least one edge. Then no DTE affects both
zig-zags.

Proof of 3.5. Since the zig-zags are edge disjoint, any triangle in either zig-zag will not
be in the other zig-zag. So, any DTE on Zn will change the structure of triangles in Zn

along with one additional edge. But, Zn and Zm are separated by at least one edge, so this
additional edge won’t affect triangles in Zm. So, any DTE will only affect the structure of
one of the zig-zags at most. ■

Now, back to our focus on the minimum number of triangles of a K5 descendant, we
will define DTE sequences.

Definition 3.6 (DTE Sequence) Suppose G is aK5 descendant. Then a DTE sequence,
denoted SG,..G∗ , is a sequence of graphs, starting with G and ending at G∗, where each
graph in the sequence can be obtained from the previous graph in the sequence by a DTE.
A sequence is minimal if the number of triangles in G∗ is equal to the minimum number
of triangles of any descendant of G.

As discussed earlier, the building blocks of K5 descendants are zig-zag graphs. So, it
makes sense to look at these graphs first when trying to figure out the minimum number
of triangles for any K5 descendant. At first glance, this isn’t much easier, as any zig-zag
graph has an infinite number of DTE descendants. Fortunately, we can restrict the types
of DTE operations that get us to graph with minimum number of triangles. After these
restrictions, the number of relevant DTE descendants is finite and they behave a lot nicer.

The restrictions on the DTE operations are quite natural. When trying to get to a
DTE descendant with a minimum number of triangles, one only needs to look at DTE
descendants that are obtained through decreasing DTE or neutral DTE that change the
structure of the zig-zag. In other words, we will never need to increase the number of
triangles to get to a minimum number of triangles. Similarly, we won’t need to perform
any DTE that don’t actually change the structure of the zig-zags. The next few theorems
will focus on proving these facts.

Theorem 3.7 Suppose G is a zig-zag chain and G′ is a zig-zag obtained from G
by applying a neutral DTE expansion that doesn’t changes the structure of the zig-zag.
Suppose H ′ is a minimal DTE descendant of G′ and DTE sequence from G′ to H ′ contains
only decreasing and non-trivial neutral DTE expansions. Then there exists a minimal
descendant of G, that is obtained through a non-trivial, decreasing DTE sequence, that has
the same number of triangles as H ′.

Proof of 3.7 Suppose G is a zig-zag chain and G′ is a zig-zag obtained from G by apply-
ing a neutral DTE expansion that doesn’t changes the structure of the zig-zag. Further,
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suppose a minimum DTE descendant ofG′ isH ′ and is obtained by applying decreasing and
non-trivial neutral DTEs on G′ and obtaining through a sequence of graphs, SG′,G′

1,G
′
2,...H

′ .
Then, each graph Gi, can be partitioned into zig-zags, zig-zag chains and edges which are
not in any zig-zag. Then, there exists a sequence of graphs, SG,G1,G2,...Gn where each Gi

differ from G′
i only in the additional edges not in any zig-zag. That is, the zig-zags and

zig-zag chains of the graphs are the same. One constructs each Gi by performing a DTE
on the zig-zag chain of Gi−1 that is the same as the DTE on the zig-zag chain of G′

i−1.
Then H has the same number of triangles as H ′ since they have the same zig-zag chains.

To show that this is the minimum number of triangles a descendant of G can have,
assume towards a contradiction that there exists a descendant of G with fewer triangles,
say J . Further suppose that J is reached through the sequence SG,J1,J2,...J . Then, applying
DTE to G′ in such a way that the zig-zags are affected in the same way as the sequence
SJ , we get a new sequence, G′, G′

1, G
′
2, ...G

′∗ where each G′
i has the same zig-zag chain

structure as Ji. Then, the number of triangles of G′∗ equals the number of triangles of J .
But the number of triangles of J is less than the number of triangles of G′, and so G′∗

has fewer triangles than the minimum number of triangles that a descendant of G′ can
have. Thus, we have reached a contradiction, and G has a descendant obtained through
non-trivial, decreasing DTE that has the same number of triangles as H ′. ■

The proof of this theorem depends on the fact that the minimum number of triangles
of any descendant only depends on the zig-zag structure. So, any DTE that doesn’t effect
the zig-zag structure doesn’t effect the minimum number of triangles.

Now, to generalizing the above statement, we get the following theorem.

Theorem 3.8 Suppose G is a zig-zag chain. Then the minimum number of triangles of
a descendant of G when performing non-increasing DTE is equal to the minimum number
of triangles of a descendant of G when performing only decreasing and non-trivial neutral
DTE.

Proof of 3.8 Suppose towards a contradiction, that there exists some zig-zag chain G,
such that every descendant obtained through non-increasing sequences of G has a mini-
mum descendant that must be obtained by at least one non-trivial neutral DTE. Suppose
G,G1, ...G

∗ is such a sequence. Then, one of those graphs, say Gi, was obtained through
the last non-trivial neutral DTE. By theorem 3.7, there exists a sequence without that
non-trivial neutral DTE expansion that also ends with a zig-zag chain with the minimum
number of triangles. Then, there is a new graph, say Gj, which was obtained through the
last non-trivial neutral DTE expansion. Applying theorem 3.7 repeatedly, we eventually
get a sequence of graphs from G to a graph with the same number of triangles as G∗, with
no non-trivial neutral DTE expansions. But this is a contradiction. So, for any zig-zag
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chain G, there will always exist a non-trivial, non-increasing sequence from G to some
graph G∗ such that G∗ has a minimum number of triangles amongst all descendants of G
obtained through non-increasing sequences. ■

So, what we have just shown is that when looking for what the minimum number
of triangles of a descendant of some graph, G, is, we don’t need to look at descendants
obtained from any trivial neutral DTE. Unfortunately, this is still leaves an infinite number
of graphs to deal with. However, if we can show that increasing DTE aren’t needed either,
then we will have a finite number of operations to deal with since we are then left with
just decreasing and non-trivial DTE.

Theorem 3.9 Suppose G is a zig-zag chain and G′ is obtained from G by applying
an increasing DTE. Suppose H ′ is a minimum DTE descendants of G′, if DTE operations
are restricted to non-increasing DTE expansions. Then the minimum number of triangles
of descendants of G are at most the number of triangles of H ′.

The proof for this theorem is quite detailed but the general idea is similar to the proof
for theorem 3.8. The difference is that instead of being able to mimic a minimal sequence
exactly, we need to be careful. The minimal sequence we will be starting with is being
applied to a graph with an additional triangle. So, as we are defining our new sequence
for the graph without the addition triangle, as long as we are working on a sequence of
graphs that either has the same number of triangles or one more than our given sequence,
there will not be a problem because there will be enough free choices.

Proof of 3.9 Suppose that there exists a non-increasing minimal DTE sequence from
G′ to H ′ through G′

1, G
′
2, ..., H

′. We will show there exists a non-increasing DTE sequence
from G to some graph J (not necessarily minimal) where the number of triangles in J is
the same as the number of triangles in H ′. Denote this sequence as G1, G2, ..., J . The
zig-zag chain of G is the same as the zig-zag chain of G′ with the exception that one of the
zig-zags has one addition triangle. We can see from definition 3.1 and figure 3.1, increasing
DTE will not change the structure of a zig-zag chain. Now, for each Gi, perform a DTE
that affects the zig-zags on Gi−1 as the way that the DTE affected zig-zags on G′

i−1, to get
G′

i. If the DTE is not being performed on the vertex with the additional triangle, then the
zig-zag of Gi−1 can be affected in the exact same way as the zig-zag of G′

i was affected.
If the zig-zag has the additional triangle and has more than 3 triangles, then we are still
able to apply the same DTE, but G′

i will have an additional triangle in one of the zig-zags
near the DTE when compared to Gi. This is possible as long as there are enough triangles
in the zig-zag that the DTE is being performed on. Since DTE affect at most 3 triangles,
problems only arise when we are working with zig-zags of size less than 3. However, these
problems don’t prevent a new sequence from being created as long as one is careful with
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how the new sequence is being defined.

Suppose that G′
i−1 has a zig-zag of size 3 where a DTE is being performed on and the

corresponding zig-zag of Gi−1 is only of size 2. Then, one will perform the DTE on Z2

in Gi−1 using an adjacent edge. The zig-zag in G′
i−1 will become an isolated zig-zag of

size 3, and since the sequence is minimal, this zig-zag will eventually become a zig-zag
of size 2. We will admit this proof for now, but see figure 4.1, for a visual of why this
is true. Similarly, the zig-zag in Gi will become a isolated zig-zag of size 2. If there is
an edge that is not part of triangle incident to the DTE, then the zig-zag chains of Gi

and Gi−1 will be the same and the rest of the sequence can mimic the original sequence.
Otherwise, the DTE performed on G′

i−1 would have removed a triangle from Gi−1. So, Gi

will have the same zig-zag chain as G′
i with the exception that one zig-zag will have one

less triangle. But this is our initial relation between the two sequences, so this does not
correct a problem.

Figure 3.4: DTE On Z3 and Z2

Suppose that G′
i−1 has a zig-zag of size 2 where a DTE is being performed on and the

corresponding zig-zag is only of size 1. Then one will perform no DTE on Z1 in Gi−1 as
the Z2 in G′

i−1. The zig-zag in G′
i−1 will remain a zig-zag of length 2 but be isolated from

both sides. The isolation is a result of performing a DTE over a vertex in 2 triangles, as
shown in figure 3.3. The zig-zag in Gi−1 will remain a Z1 zig-zag that may not be isolated.
So, Gi and G′

i will have the same zig-zag structure with the exception of Gi having one zig-
zag with an additional piece that is also potentially more connected to the other zig-zags.
The extra structure in Gi isn’t a problem, since at worse a DTE from G′

i may remove an
additional triangle. Regardless, this is our initial relation between the two sequences, so
this does not correct a problem.

The case for G′
i−1 having a zig-zag of size 1 where the DTE is being performed and

the corresponding zig-zag of Gi−1 doesn’t exist is not as straightforward. The issue in this
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case is one can’t even attempt to perform a DTE triangle expansion on Gi−1 because there
is no triangle to perform it on. So, we will make sure to define our sequence so this case
doesn’t arise. That is, we will make sure in previous steps, to not create a non-isolated
zig-zag of size 1 in G′

i that corresponds to a zig-zag of size 0 in Gi.

First off, notice that this case only arises when G′
i−1 has a non-isolated zig-zag of size

1. Since these sequences have no increasing DTE, no isolated zig-zag of size 1 will have a
DTE performed on it. The non-isolated zig-zag of size 1 case arises from a few different
subcases:

Suppose a DTE on G′
i−1 breaks a Zn chain into a Zn−4,3,1 chain, for n ≥ 7. To avoid

the case mentioned above, the corresponding DTE in Gi−1 will break the Zn−1 chain into
a Zn−5,3,1 chain as opposed to a Zn−4,3,0 chain. Then we have encountered no problems
with this step.

Suppose a DTE on G′
i−1 breaks a Z6 chain into a Z1,3,1 chain. Then, there will be no

corresponding DTE performed in Gi−1 and Gi−1 will be the exact same graph as Gi. Are
there any problems that arise from this lack of a DTE? No, since any DTE performed on a
Z1,3,1 chain can be performed on a Z5 chain. There is extra structure on the Z5 chain, but
this does not prevent any DTE from being performed on it. On the contrary, this could
mean that there are more decreasing DTE that could be performed on G than G′. This
shows why the increasing DTE could actually lead to an increase in the minimum number
of triangles of a graph. Regardless, it is not at this point that we discuss that possibility,
and this subcase doesn’t correct any problems.

Suppose there exists a Z2 chain in SG′ where one triangle of it is destroyed by a DTE
and the other triangle has a DTE performed on it to split it into 2 triangles. Further
suppose that the corresponding zig-zag in SG is of length 1. So, if we perform the DTE in
the same order as in SG, then we will remove the only triangle, then attempt to perform
a DTE when no such triangle exists. However, since the in SG affect different triangles,
they commute. So, one will simply perform the DTE on the single triangle in SG first, and
then destroy one of the additional triangles after. This will result in the zig-zag chains in
SG and SG′ being the same, with the exception that SG′ has an isolated pair of triangles
as opposed to an isolated triangle. From here, the sequence will follow naturally.

Suppose there exists a Z2 chain in SG′ where both triangles are destroyed. Further
suppose that the corresponding zig-zag in SG is of length 1. Then, the corresponding DTE
of SG′ will be performed that will first destroy the one triangle, and then have a neutral
DTE. Once again, this results in the same zig-zag chains in both sequences.

Therefore, given any minimum sequence of G′, we can find a corresponding sequence
from G to H where H has the same number of triangles as H ′. ■
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Figure 3.5: DTE on Z2 and Z1

Theorem 3.10 Suppose G is a zig-zag chain and SG = G1, G2, ...G
∗ is a minimal

sequence of G. Then, there exists a decreasing, non-trivial neutral minimal sequence of G,
S ′
G.

Proof of 3.10 Suppose Gi is the last increasing or trivial neutral DTE in SG. Then by
theorem 3.9, in the case of increasing DTE, or theorem 3.8, in the case of trivial neutral
DTE, there exists a sequence from Gi−1 to a graph with the same number of triangles as G∗

with no increasing or trivial neutral DTE. Using this logic repeatedly for all increasing or
trivial neutral DTE in SG we get a minimal sequence S ′

G that is not increasing or trivially
neutral. ■

The focus shouldn’t be what the new sequence looks like. The main takeaway from
these theorems is that when looking at the minimum number of triangles that a graph
has, one only needs to look at decreasing and non-trivial sequences. While there are
an infinite amount of sequences that are increasing or trivially neutral, there is a finite
number of sequences that are decreasing and non-trivially neutral. This is due to the fact
that decreasing and non-trival neutral DTE destroy the structure of the zig-zag chains.
They take a zig-zag chain and break the whole pieces into chains and break the chains
into disjoint chains. So as one performs more DTE the zig-zag chain will eventually break
down to zig-zags that are far apart that can’t have anymore DTE of this type performed
on them. This will allow techniques in the following chapters to be use-able.

3.1 Commutative Property

One of the problems that arises when dealing with zig-zag chains is that the DTE on
a triangle in one zig-zag can affect triangles in a different zig-zag. This is always true
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for decreasing DTE. This can be a good thing though, as after this decreasing DTE, the
zig-zags are disjoint. Upon first glance, it would be nice if when given a zig-zag chain, if
the first thing we do is perform DTE that causes all the zig-zag pieces to be disjoint so
we could just look at each zig-zag piece individually. Intuitively, an open zig-zag should
be the simpliest type of zig-zag to deal with. This last statement, however, isn’t true as
open zig-zags breakdown into zig-zag chains. The idea of breaking up zig-zag chains is
something useful though.

When looking at minimum sequences of zig-zags, some (likely the majority) of zig-zag
pieces will end up being disjoint from the zig-zags that they share a vertex with initially. It
would be ideal if one could do this splitting of the zig-zags at the beginning of the sequence.
This brings up the question about whether DTE have the commutative property.

In general, the answer is no. DTE don’t have the commutative property. Suppose we
have a Zn zig-zag. It is possible to perform a decreasing DTE and then a neutral DTE.
However, it is not possible to perform a neutral DTE and then a decreasing DTE. This
is true as the only DTE possible on a closed zig-zag are either a decreasing or increasing
DTE due to construction. This is perhaps the easiest counter example.

Are there more specific cases where the DTE has the commutative property. Frankly,
there are a lot of questions about the structure of K5 descendants and this question is
still unknown. However, one case where DTE has the commutative property is when two
DTE are being applied to a different set of vertices and edges. That is, if two DTE effect
completely different parts of a graph, then the order which the DTE are applied is arbitrary.
More specifically, if a DTE is being applied to a specific part of a zig-zag, as long as we can
guarantee that that part of the zig-zag will exist after some number of DTE, we can apply
our initial DTE after the rest of the DTE. Similarly, if we know the zig-zag structure exists
before applying some number of DTE, we can apply our initial DTE before some number
of DTE. This is useful as it allows us to look at the DTE that split up zig-zag piece and
cause them to be disjoint and do these DTE at the beginning.

Theorem 3.11 Suppose SG,G1,...Gn is a DTE sequence. Denote the DTEs of this se-
quence as s1, s2, ...sn. That is, G1 is obtained by performing s1 on G, G2 is obtained by
performing s2 on G1, etc. If the structure of the zig-zags that sn affects in Gn−1 exists in
G, then we can create a new DTE sequence from G to Gn, defined as SG,G′

1...Gn where the
DTEs of this sequence is sn, s1, ...sn−1.

The proof of the theorem above was explained in the paragraph above. If the DTEs
s1, s2, ...sn, affect different zig-zag structures, then the order of which they are performed
is trivial. ■
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Chapter 4

Minimum Number of Triangles Of
Common Zig-Zags

Our goal is, given a K5 descendant, to find the minimum number of triangles of all de-
scendants of that graph. As shown in the previous chapter, one doesn’t need to pay close
attention to edges that are not contained in any triangle; that is, one only needs to focus
on the zig-zag structure. Since open zig-zags are the building blocks for all zig-zags, and
also the simplest, finding the minimum number of triangles for these types of graphs is a
good place to start. The following theorem, which is the main theorem of the thesis, states
what the minimum number of triangles are for open zig-zags of any size.

Theorem 4.1 The minimum number of triangles for a Zn descendant is as follows:

n Minimum Number of triangles
5m 2m
5m+ 1 2m+ 1
5m+ 2 2m+ 2
5m+ 3 2m+ 2
5m+ 4 2m+ 2

The theorem above is stating that if the length of a zig-zag increases by 5, then the
minimum number of triangles increases by 2. The base cases for n = 1, ..., 5 are shown
in the table above. While the base cases are fairly straightforward, we do not yet have
the machinery to prove the inductive step. The issue with the inductive step is that the
open zig-zag pieces break down into zig-zag chains when having DTE performed on them.
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So, we actually need to figure out how to deal with zig-zag chains before dealing with this
inductive step.

As stated above, we need to understand zig-zag chains in order to better understand
individual open zig-zags. However, zig-zag chains are made of open zig-zags. So, we have
to tackle both of the problems at once. There are 3 main theorems of this chapter; each
theorem dealing with a different commonly used zig-zag. The first one, is the theorem just
introduced. This theorem needs an understanding of zig-zag chains before proving it. The
other two theorems, theorem 4.7 and 4.8, don’t need an understanding of zig-zag chains.
All they need is theorem 4.1. So, we will be performing a triple induction. That is, we will
show that theorem 4.1 holds up to some N . Then, we will show that theorems 4.7 and 4.8
hold true as long as theorem 4.1 is true. So, theorems 4.7 and 4.8 will also be true up to
that same N . Then, finally, we will use theorems 4.7 and 4.8 to show that theorem 4.1
(and theorems 4.7 and 4.8 by extension), are true for all n.

Proof of 4.1 Base Cases for Theorem 4.1

The case for Z1 is trivial as any DTE leaves us with at least 2 triangles, so the minimum
number of triangles of a descendant of Z1 is 1 by not performing any DTE on Z1.
Using similar logic as above, Z2 also has a minimum number of triangle among descendants
as 2 by performing any number of non-increasing DTE.

The first non-trivial case, a zig-zag of length 3 can be reduced to a zig-zag of length
2. As mentioned earlier, the zig-zags talked about throughout the paper are considered to
be K5 descendants. So, they are 4-regular and thus have edges that aren’t in the zig-zag
that are incident to the end vertices of it. The 4-regularity ensures that one always has
an adjacent edge to perform such a DTE on. Performing a DTE to remove such an edge
results in a Z2,1 chain. Then, the next DTE removes the single triangle giving us a Z2

zig-zag. As stated above, the minimum number of triangles among descendants of this
graph is 2. Furthermore, a zig-zag of length 3 can not be reduced to a single triangle as a
DTE results in at minimum 2 triangles. So the minimum number of triangles among Z3

descendants is 2.

Figure 4.1: Minimal Sequence for Z3
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A zig-zag of length 4 can be reduced to a zig-zag of length 2. The first DTE removes
one of the outer triangles resulting in a Z3. Then, using the same process and logic as
above, we have a minimum number of triangles as 2. As stated earlier, we can’t go lower
than 2, so the minimum number of triangles among Z4 descendants is 2.

Figure 4.2: Minimal Sequence for Z4

A zig-zag of length 5 can be reduced to a zig-zag of length 2. There are multiple choices
for the first DTE but we only need to show that there is some sequence that results in a
zig-zag of length 2 since we know that the minimum number of triangles can’t be less than
2. The first DTE results in a Z3,1 chain. The next DTE results in a Z1,2 chain, which as
explained in the explanation for Z3, results in a Z2 and thus a minimum of 2 triangles.

Figure 4.3: Minimal Sequence for Z5

Inductive Step Suppose that theorem 4.1 holds for true up to some natural number
N ≥ 5.

The issue with showing this inductive step is true is that we don’t have the machinery
to do it quite yet. Suppose we have a zig-zag of length N+1. After performing a decreasing
DTE, what zig-zag are we left with? Well, there are actually a lot of choices. We are left
with a Zq,3,N+1−q−4 zig-zag, with q ∈ [N − 3]. Not only is that a lot of zig-zags to deal
with, we don’t even know how to deal with any individual one yet either. Suppose q = 0,
then we are left with a Z3,N−3 zig-zag. What is the minimum number of triangles of this
zig-zag? This still isn’t obvious. Despite starting with the most simple zig-zag, just a
single zig-zag piece, one still ends up with long zig-zag chains. So, in order to prove the
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theorem above to know how simple zig-zags work to, we actually need to know how more
complex zig-zag chains work.

The following theorems that we are going to show regarding zig-zag chains will apply to
zig-zag chains where each chain is of length less than N . So, we will be able to use theorem
4.1 without having fully proved it. After developing more machinery, we will come back
to prove theorem 4.1.

Suppose we have 2-piece zig-zag chain, Za,b with a, b ≤ n. What is the minimum
number of triangles of this zig-zag chain. Since both pieces are of size less than n, we know
the minimum number of triangles of the individual pieces. But they share a vertex, so how
does this effect the minimum number of triangles? It means that a DTE can be performed
on one of the pieces and remove a triangle from the other piece. Doing so, we reduce the
length of one of the pieces in exchange for destroying a bit of the structure in the other
zig-zag. After this DTE operation, the zig-zag pieces are now completely disjoint.

Definition 4.2 (Left DTE) We will define a left DTE as a DTE expansion that is
performed on a Za,b zig-zag chain that results in a Za−1;2,b−2 chain. That is, it is the DTE
that removes a triangle from the left zig-zag piece at the expense of some of the structure
on the right zig-zag piece. A sequence that contains a left DTE will be defined as a left
DTE sequence.

Figure 4.4: Left DTE

Definition 4.3 (Right DTE) Similarly, we will define a right DTE as a DTE expansion
that is performed on a Za,b zig-zag chain that results in a Za−2,2;b−1 chain. So it is the DTE
expansion that removes a triangle from the right zig-zag piece at the expense at some of
the structure of the left. A sequence that contains a right DTE will be defined as a right
DTE sequence.

Definition 4.4 (Center DTE) It is also possible that a DTE sequence starting with
Za,b has no DTE expansions that affects triangles that started in both the zig-zag piece of
size a and size b. This means that DTE expansions in each zig-zag piece destroyed triangles
near the shared vertex, so no further DTE would effect both pieces. A DTE causes the
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Figure 4.5: Right DTE

zig-zag pieces to be disjoint but only effects on zig-zag piece is defined as a center DTE.
Sequences that contain a center DTE are called center DTE sequences.

Figure 4.6: Center DTE

Definition 4.5 (Splitting DTE) Left DTE, right DTE and center DTE are defined to
be the splitting DTE. That is, they are the DTE that split a zig-zag chain into disjoint
zig-zag pieces.

Since each of the splitting DTE requires a zig-zag chain and results in an addition
disjoint zig-zag piece, only one splitting DTE will be performed between any two zig-
zag pieces. Furthermore, given any sequence with a splitting DTE, we can create a new
sequence with the splitting DTE as the first DTE in the sequence. That is, we can im-
mediately split the zig-zag pieces from each other so they are disjoint, then continue with
the rest of the sequence. This is possible as the splitting DTE require triangles in both
zig-zags and so we know that there is no earlier DTE that destroyed the triangles near the
shared vertex.

It may not be clear how a minimal sequence is forced to have a splitting DTE. In fact,
it is not forced to contain one. However, we can then create such a sequence that contains
a splitting DTE. If a minimal sequence has no splitting DTE, then there is still at least a
Z1,1 at the vertex that is shared between both zig-zag pieces. But then, we can perform
a right DTE (or left DTE), not change the number of triangles, and have a new minimal
sequence that contains a splitting sequence. So, while we don’t need to perform a splitting
DTE to get to a minimal descendant, there is always some minimal sequence that contains
a splitting DTE.

Theorem 4.6 △(Za,b) = Min((△(Za) +△(Zb)), (△(Za−1) +△(Z2,b−2)), (△(Za−2,2) +
△(Zb−1)))
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Proof of 4.6 The theorem above states that the minimum number of triangles in a two
piece zig-zag chain is the minimum of the minimum number of triangles after performing
a left, right and center DTE. For a minimal DTE sequence starting with Za,b, it is either
a center, left or right DTE sequence. We can change the sequence so that the splitting
DTE is first in the sequence, due to commutativity (see page 27). Then, we have 2 disjoint
zig-zags and can calculate the minimum number of triangles separately. ■

So, our new question is which one of these 3 cases is the minimum number of triangles
for a given Za,b zig-zag chain. While it is easy to see, by the induction hypothesis, the
minimum number of triangles for Za−1 (or b− 1), what about the Za−2,2 chain. So, we can
see that zig-zag chains of the form Zn−2,2 appear frequently throughout DTE sequences
that may be minimal. So, a natural place to continue is studying the minimum number of
triangles on zig-zag chains of this type.

Theorem 4.7 The minimum number of triangles for a Zn−2,2 descendant is as follows:

n Minimum Number of triangles
5m 2m+ 1
5m+ 1 2m+ 2
5m+ 2 2m+ 2
5m+ 3 2m+ 2
5m+ 4 2m+ 3

Not surprisingly, theorem 4.7 has a similar theme behind it as theorem 4.1. Increasing
the length of the first zig-zag peice in Zn−2,2 by 5, increases the minimum number of
triangles by 2. The base cases are slightly different though. A Zn−2,2 zig-zag chain doesn’t
necessarily have the same minimum number of triangles as a Zn zig-zag. This is due to the
zig-zag containing less structure in the Zn−2,2 graphs. The additional vertex that is only
in one triangle potentially results in an additional triangle in a minimal descendant.

Before we prove this, there needs to be special attention payed to the ≤ N condition.
The N is the N that is used in theorem 4.1. So, for this proof, we are using theorem 4.1
and the fact that zig-zags of length Zn have a known minimum number of triangles for
n ≤ N . Eventually, we will use this theorem to show that this holds for N +1 as well, but
let’s not get ahead of ourselves.

Proof of 4.7 Base Cases for Theorem 4.7 For all of our base cases, we will apply
theorem 4.6. That is, we will simply take the minimum of the minimal number of triangles
after performing a left DTE, right DTE and center DTE.

Since n = 0, 1 gives us a zig-zag of negative length and n = 2 gives us a single zig-zag
piece, we will start with n = 3.
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Z1,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z1;2 3
Right DTE Z2;1 3
Left DTE Z0;2 2

From the table above, we can see that the minimum number of triangles of a Z1;2 is indeed
2.

Similarly, for n = 4, 5, 6, 7, we have the following 3 cases to show that the minimum is
indeed what the theorem states.

Z2,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2;2 4
Right DTE Z2;1 3
Left DTE Z1;2 3

Z3,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z3;2 4
Right DTE Z1,2;1 3
Left DTE Z2;2 4

Z4,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z4;2 4
Right DTE Z2;2;1 4
Left DTE Z3;2 4

Z5,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5;2 4
Right DTE Z2,3;1 4
Left DTE Z4;2 4
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One can see from the above tables, that the base cases hold. That is, each chart shows
that one of the splitting DTE leads to the desired minimum number of triangles.

Inductive Hypothesis Assume that theorem 4.7 holds true for all n < N .

The inductive step is proved using the same process as we used for the base cases. For
each value mod 5, we check the minimum number of triangles using the three splitting
DTE and conclude that the minimum among those 3 is the minimum number of triangles.

ZN+1 = Z5m+1,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5m+1;2 2m+ 3
Right DTE Z5m−1,2;1 2m+ 3
Left DTE Z5m;2 2m+ 2

ZN+1 = Z5m+2,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5m+2;2 2m+ 4
Right DTE Z5m,2;1 2m+ 3
Left DTE Z5m+1;2 2m+ 3

ZN+1 = Z5m+3,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5m+3;2 2m+ 4
Right DTE Z5m+1,2;1 2m+ 3
Left DTE Z5m+2;2 2m+ 4

ZN+1 = Z5m+4,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5m+4;2 2m+ 4
Right DTE Z5m+2,2;1 2m+ 4
Left DTE Z5m−3;2 2m+ 4

ZN+1 = Z5m+5,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z5m+5;2 2m+ 4
Right DTE Z5m+3,2;1 2m+ 4
Left DTE Z5m+4;2 2m+ 4
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Each of the charts has at least one of the splitting DTE result in the desired minimum
number of triangles and none of the other splitting DTE resulting in a lower number. So
our inductive hypothesis is true.

Using theorem 4.1, 4.6 and 4.7, we now know the minimum number of triangles of a
zig-zag of the form Za,b, for a, b ≤ N . Theorem 4.6 gives us the minimum in the form of
the sum of the minimum number of triangles of two zig-zags, while theoremS 4.1 and 4.7
ensures we actually know the minimum number of triangles of both of those graphs.

We have shown what the minimum number of triangles for a zig-zag chain of length 2,
with each piece being less than N, is. The next question is what is the minimum number
of triangles for zig-zag pieces of size greater than two. We saw from theorem 4.6, that
the number of splitting DTE one needs to consider is 3. However, we hope to use our
understanding of the structure to ignore completely brute force computations.

There is another issue that arises that can be answered in a similar manner to what
was done previously. A Za,b,c zig-zag piece has a left DTE performed on the shared ver-
tex of a, b and a right DTE performed on the shared vertex of b, c as a possible minimal
DTE. However, we are then left with a Za−1;2,b−4,2;c−1 zig-zag. The Za−1 and Zc−1 have
known minumum number of triangles. However, the Z2,b−4,2 is a graph with an unknown
minimum number of triangles. These types of graph occur frequently in the same way as
just described. So, we should figure out the minimum number of triangles of these graphs
before going any further.

Theorem 4.8 The minimum number of triangles for a Z2,n−4,2 descendant is as follows:

n Minimum Number of triangles
5m+ 0 2m+ 2
5m+ 1 2m+ 2
5m+ 2 2m+ 3
5m+ 3 2m+ 3
5m+ 4 2m+ 4

Following a similar pattern as the previous theorems, we have that increasing n by 5
results in an increased minimum number of triangles by 2. Once again the base cases are
slightly different, as a result of the extra loss of structure from the additional vertex in 2
triangles as opposed to 3. Regardless, the proof for theorem 4.8 is very similar to that of
4.7.

Proof of 4.8 Base Cases for Theorem 4.8 For all of the base cases, we once again will
apply theorem 4.6. So we are finding the minimum number of triangles after performing
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a left DTE, right DTE and center DTE. The minimum of those numbers is the minimum
number of triangles for the general zig-zag. The following chart shows the 5 base cases.

Z2,1,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2,1;2 4
Right DTE Z2,2;1 4
Left DTE Z2;2 4

Z2,2,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2,2;2 5
Right DTE Z2;2;1 5
Left DTE Z2,1;2 4

Z2,3,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2,3;2 5
Right DTE Z2,1,2;1 5
Left DTE Z2,2;2 5

Z2,4,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2,4;2 6
Right DTE Z2,2,2;1 5
Left DTE Z2,3;2 5

Z2,5,2

DTE Type Zig-zag Pieces Minimum Number of triangles
Center DTE Z2,5;2 6
Right DTE Z2,3,2;1 6
Left DTE Z2,4;2 6

One can see that the base cases hold from the tables above.

Inductive Step Assume that theorem holds true for all n < N . Once again, we are
still bounding the theorem above by our original N .

Going through the cases to show the inductive step, one gets the following tables:
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ZN+1 = Z2,5m+1,2

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2,5m+1;2 2m+ 4
Right DTE Z2,5m−1,2;1 2m+ 4
Left DTE Z2,5m;2 2m+ 4

ZN+1 = Z2,5m+2,2

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2,5m+2;2 2m+ 5
Right DTE Z2,5m,2;1 2m+ 4
Left DTE Z2,5m+1;2 2m+ 4

ZN+1 = Z2,5m+3,2

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2,5m+3;2 2m+ 5
Right DTE Z2,5m+1,2;1 2m+ 5
Left DTE Z2,5m+2;2 2m+ 5

ZN+1 = Z2,5m+4,2

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2,5m+4;2 2m+ 6
Right DTE Z2,5m+2,2;1 2m+ 5
Left DTE Z2,5m+3;2 2m+ 5

ZN+1 = Z2,5m+5,2

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2,5m+5;2 2m+ 6
Right DTE Z2,5m+3,2;1 2m+ 6
Left DTE Z2,5m+4;2 2m+ 6

So, we know now the minimum number of triangles of zig-zags of the form Zn, Zn,2 and
Z2,n,2, if n ≤ N . This means that when looking at some arbitrary zig-zag chain, one is able
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to determine the minimum number of triangles of the disjoint zig-zags after applying a left
DTE, a right DTE or a center DTE. The next question, is how can we find the minimum
number of triangles of a zig-zag chain using this new understanding of the structure of
these commonly occuring zig-zags.
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Chapter 5

Long Zig-Zags

Before continuing on to finding out the minimum number of triangles of any zig-zag chain,
we will take a moment to reflect on the differences between the different zig-zag and zig-
zag chains where we know the minimum number of triangles. The charts below show the
differences in the minimum number of triangles for each of the different zig-zag chain types.
These are found through theorems 4.1, 4.7 and 4.8. We haven’t fully proved the theorems
as we are still inside the triple induction, so they are still bounded from above by the
inductive hypothesis of theorem 4.1. So, n ≤ N .

n Zn Zn,2 Z2,n,2

5m+ 1 2m+ 1 2m+ 2 2m+ 4
5m+ 2 2m+ 2 2m+ 3 2m+ 4
5m+ 3 2m+ 2 2m+ 3 2m+ 5
5m+ 4 2m+ 2 2m+ 4 2m+ 5
5m+ 5 2m+ 2 2m+ 4 2m+ 6

n Zn Zn−2,2 Z2,n−4,2

5m+ 1 2m+ 1 2m+ 2 2m+ 2
5m+ 2 2m+ 2 2m+ 2 2m+ 3
5m+ 3 2m+ 2 2m+ 2 2m+ 3
5m+ 4 2m+ 2 2m+ 3 2m+ 4
5m+ 5 2m+ 2 2m+ 3 2m+ 4

The first chart is restating the information directly from the tables that appeared
earlier. The second chart, perhaps the more useful one, shows what happens as a zig-zag
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loses some of its structure. That is, we can see that splitting a complete zig-zag into a
zig-zag chain with a Z2 on the end sometimes results in an additional triangle in a minimal
descendant. However, this is not always the case. In some cases, losing a bit of structure
from the zig-zag doesn’t change the number of triangles in a minimal descendant. One
can also see that a complete zig-zag having a Z2 split off at both ends either results in an
increase in the number of triangles in a minimal descendant by 1 or 2.

For example, we can see that Z5 has 2 triangles in minimal descendants. Splitting off a
2 zig-zag, we get a Z3,2 zig-zag chain, with minimum triangles 3. Similarly, splitting off a
2 zig-zag from the other end, we get a Z2,1,2 zig-zag chain, with minimum triangles 4. So,
in both steps, we increase the minimum number of triangles by 1. These observations will
play an important role when dealing with longer zig-zag chains.

Definition 5.1 (Splitting Sequence) The splitting sequence of a zig-zag chain, G, is a
sequence of left, right and center DTE (not the specific DTE, but rather just the name of
the types) that when applied to the pairs of zig-zag pieces of G, result in a graph whose
minimal descendants have the same number of triangles as the minimal descendants of G.
There may be multiple different splitting sequences.

Definition 5.2 (GL, GR, GC) Suppose G = Za,b,...,s for some length s and where each
a, b, ..., s ≤ N . Denote GL = Za−1;2,b−2,...s, GR = Za−2,2;b−1,...s and GC = Za;b,...s. That is,
GL is the G after performing a left DTE on the first zig-zag pairs. Similarly, GR and GC are
G after performing a right DTE and a center DTE on the first zig-zag pairs, respectively.

Theorem 5.3 Suppose G = Za,b,...,s for some length s and where each a, b, ..., s ≤ N .
If there is a strict minimum amongst the splitting DTE applied to Za,b, then that same
splitting DTE minimizes GR, GL, GC.

This theorem is stating that if one of the splitting DTE of the first pair of zig-zags
results in a strict minimum compared to the other two, then there is a minimal DTE
sequence for the entire chain that contains the splitting DTE. So, one can look at the first
pair of zig-zags, determine if there is a strict minimum among the splitting DTE if so, can
conclude what some of a splitting sequence looks like.

The reason this works for the first pair of zig-zags and not further ones is because the
first zig-zag piece is not going to be changed by any other splitting DTE other than the first
one. If we try applying this to a pair of zig-zags not at the beginning or end of the chain,
then the splitting DTE applied to the other side of either zig-zag may cause problems. In
other words, since the first zig-zag piece only has one splitting DTE applied to it, we can
get it out of the way first with no worries that we will have to effect it later with a further
splitting DTE.
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Proof of 5.3 Suppose towards a contradiction that there exists some zig-zag chain G,
such that there is a strict minimum amongst the splitting DTE for the first two zig-zag
pieces, say the left DTE, for example, but △(GL) > △(GC) or △(GL) > △(GR). Without
loss of generality, suppose that △(GL) > △(GR). Suppose SGR

is a minimal sequence for
GR. We can say without loss of generality here, since this proof doesn’t depend on the
structure that is left after the first splitting DTE on the first and second DTE.

Let S ′
GR

be a minimal sequence for GR with the splitting DTE performed first, in the
order in which the pieces they effect appear in the zig-zag. That is, the splitting DTE
that effects the first two zig-zags is first in the sequence, followed by the splitting DTE
that effects the second and third zig-zag pieces, and so on. Then, we will show that
there exists a splitting sequence from GL to a graph with minimal triangles equal to the
number of triangles in S ′

GR
. Suppose S ′∗

GR
= R, s2, s3, ...sz is the splitting sequence of S ′

G.
Then, we claim that the minimum number of triangles of G with the splitting sequence
S∗
GL

= L, s2, s3, ...sz is at most the same as the number of triangles of G after applying
SGR

.

It is possible that some si is not a splitting DTE, but since the sequence is minimal,
the zig-zag chain around the vertex that didn’t have a splitting DTE applied to it is a Z1,1

zig-zag. This is true, since any larger zig-zag chain would not be minimal. Then, we can
apply a right DTE (or left DTE) and have a new minimal sequence with a splitting DTE
at the previous graph where there was none. So, we will assume that our initial sequence
already has all si as splitting DTE, since if any si wasn’t splitting, we can replace it with
a right DTE.

First, calculate the number of triangles after applying S ′
GR

to G. After applying the
splitting sequence S∗

GR
to G, we get z disjoint zig-zags. Denote the sum of all zig-zag

pieces excluding the first two as n. Denote the minimum number of triangles in the first
two zig-zag pieces as a after applying R but before applying s2 as a. Going through the 3
cases of what s2 could be, we have:

1) If s2 is a left DTE, then the minimum number of triangles between the first two
zig-zag pieces is least a−1. So, the whole zig-zag has n+a−1 minimum triangles at least.

2) If s2 is a center DTE, then the minimum number of triangles between the first two
zig-zag pieces is at least a. So, the whole zig-zag has n+ a minimum triangles at least.

3) If s2 is a right DTE, then the minimum number of triangles between the first two
zig-zag pieces is at least a. So, the whole zig-zag has n+ a minimum triangles at least.

Next, calculating the number of triangles after applying S∗
GL

to G. The sum of all the
zig-zags excluding the first two is equal to n since the same splitting were applied as in
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S ′∗
GR

. So, all that’s left is to figure out the minimum number of triangles of the first two
zig-zag pieces. Since the minimum number of triangles of the first two zig-zag pieces after
applying a left DTE is less than the minimum number of triangles after applying a right
DTE to the first two zig-zag pieces, we have that the first two zig-zag pieces have at most
a−1 triangles in a minimum descendant before applying s2. Going through the three cases
of what splitting DTE s2 is, we have:

1) If s2 is a left DTE, then the minimum number of triangles between the first zig-zag
pieces is at most a− 1. Recall that a− 1 is the minimum number of triangles in the first
two zig-zag pieces. After applying a left DTE, we either decrease the number of triangles,
or it stays the same. Taking the worst case, we end up with the number of triangles staying
the same, so we have a − 1 triangles. So, the whole zig-zag has n + a − 1 triangles in a
minimum descendant at most.

2) If s2 is a center DTE, then the minimum number of triangles between the first two
zig-zag pieces is at most a− 1 (since a center DTE will at worst not increase the minimum
number of triangles). So, the whole zig-zag has at most n+ a− 1 triangles in a minimum
descendant.

3) If s2 is a right DTE, then the minimum number of triangles between the first two
zig-zag pieces is at most a (since a right DTE will at worst increase the minimum number
of triangles by 1). So, the whole zig-zag is has at most n + a triangles in a minimum
descendant.

In all three cases, we have the minimum number of triangles of GR at least equal to
the minimum number of triangles of GL. So our theorem holds true. ■

So, with this theorem, we know that if there is a strict minimum between the first
two zig-zag pieces using a specific splitting DTE, then that splitting DTE will result in a
minimum number of triangles for the entire zig-zag chain. The reason this works for the
first two zig-zag pieces is because the first zig-zag piece is only being acted upon by one
splitting DTE. So, there is no further splitting DTE that could result in more triangles
than we want. This is not true for any of the other zig-zag pieces (other than the last
one in the chain) since there is a splitting DTE applied from both the zig-zag pieces to
the left and right. However, if we start at the beginning, find a strict minimum splitting
DTE between the first two pairs, then we can reapply the theorem again for the second
and third zig-zags. That is, we will then have the first zig-zag piece disjoint from the rest
of the chain and the second zig-zag piece will only have one more splitting DTE applied to
it. So, once again, we can apply the theorem. In fact, we can keep applying the theorem
as long as we have a strict minimum.

Keep in mind, what is important for finding the minimum number of triangle isn’t
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the order of applying the splitting DTEs; it’s just the types of splitting DTE themselves.
The order is only important as that is what allows us to apply the theorem several times.
If we were to know the splitting DTE that lead to a minimum number of triangles, we
could apply them in any order. The splitting DTE effect different triangles, so they always
commute.

Although this theorem is very helpful for finding the minimum of some zig-zag chains,
what happens when there isn’t a strict minimum amongst the splitting DTE. Suppose that
both a left and right DTE on the first two zig-zag pieces of a zig-zag chain result in the
minimum number of triangles of the first two zig-zag pieces. Which choice should we make
for the first splitting DTE? Perhaps intuitively, one would expect that the splitting DTE
that results in the smaller amount of triangles in the second zig-zag would be the better
choice. After all, the second zig-zag piece is the piece that is going to have another splitting
DTE applied to it. However, this is not the case. The splitting DTE that we would chose
is the one that puts the second zig-zag piece in the best position for the next splitting
DTE.

What do we mean by the best position. Well, we have 3 types of splitting DTE that
are all being applied to the right end of the second zig-zag piece. What would we want for
each splitting DTE? If the next splitting DTE is a left DTE, a triangle is getting destroyed
from this second zig-zag piece. Ideally, if we are destroying a triangle, we would like the
minimum number of triangles to decrease. If the next splitting DTE is a right DTE, the
structure is getting broken up on the end of the zig-zag. So, we would like the minimum
number of triangles to not increase. If the next splitting DTE is a center DTE, then the
decision doesn’t matter. More specifically, we have the following definition.

Definition 5.4 (Best Position, Better Position, Opposite Position) A zig-zag piece is
in the best position if it would not gain a triangle in its minimal descendants from having
Z2 chipped off at an end and if it would lose a triangle in its minimal descendants from
losing a triangle. A zig-zag piece is defined to be in a better position than another if it
has more of these two properties than the other piece. Two zig-zag pieces are defined to
be in opposite positions if each zig-zag meets exactly one of the previous conditions, but
opposite ones of each other. .

Theorem 5.5 Suppose G = Za,b,...,s for some length s and where each a, b, ..., s ≤ N .
Further suppose that G′ = Za,b. If there is are multiple minimums amongst△(G′

L),△(G′
R),△(G′

C),
say △(G′

L) and △(G′
R) but b after applying a left DTE to its left end triangle is in a better

position after b applying a right DTE to its left end triangle, then △(GL) ≤ △(GC),△(GR).

Proof 5.5 Suppose towards a contradiction that there exists some zig-zag chain G,
such that there is are multiple minimums amongst △(G′

L),△(G′
R),△(G′

C), say △(G′
L) and
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△(G′
R) but b after applying a left DTE to its left end triangle is in a better position than b

after applying a right DTE to its left end triangle and △(GL) > △(GR). Suppose SGR
is a

minimum sequence for GR. Let S
′
GR

be a minimal sequence for GR with the splitting DTE
performed first, in the order in which the pieces they effect appear in the zig-zag. That
is, the splitting DTE that effects the first two zig-zags is first in the sequence, followed by
the splitting DTE that effects the second and third zig-zag pieces, and so on. Then we
will show that there exists a splitting sequence from GL to a graph with minimal triangles
equal to the number of triangles in S ′

GR
. Suppose S ′∗

GR
= R, s2, s3, ...sz is the splitting

sequence of S ′
GR

. Then, we claim that the minimum number of triangles of G with the
sequence S ′∗

GL
= L, s2, s3...sz has at most the same minimum number of triangles as G with

S ′∗
GR

applied to it as a splitting sequence.

First, calculating the number of triangles after applying S ′
GR

to G. After applying the
splitting sequence S ′∗

GR
to G, we get z disjoint zig-zags. Denote the sum of all zig-zag

pieces excluding the first two as n. Denote the minimum number of triangles in the first
two pieces as a after applying R but before applying s2 as a. Similar for similar reason
as the previous proof, we can assume that each si is a splitting DTE since if some aren’t,
we can make a new sequence where they are splitting DTE. Going through the 3 cases of
what s2 could be, we have:

1) If s2 is a left DTE, then the minimum number of triangles between the first two
zig-zag pieces is at least a− 1 + c1, where c1 = 0 or 1. We have c1 here, as whatever value
c1 is here, will be used later. So, the whole zig-zag has n+ a− 1 + c1 triangles.

2) If s2 is a center DTE, then the minimum number of triangles between the first two
zig-zag pieces is at least a. So, the whole zig-zag has n+ a minimum triangles at least.

3) If s2 is a right DTE, then the minimum number of triangles between the first two
zig-zag pieces is at least a + c2, where c2 = 0 or 1. So, the whole zig-zag has n + a + c2
triangles.

Next, calculating the number of triangles after applying S ′∗
GL

to G. The sum of all
zig-zags excluding the first two is equal to n since the same splitting DTE were applied as
in S ′∗

GR
. The minimum number of triangles of the first two zig-zag pieces after applying a

left DTE but before applying s2 is a by hypothesis. Going through the three cases of what
splitting DTE s2 is, we have:

1) If s2 is a left DTE, then the minimum number of triangles between the first two zig-
zag pieces is at most a− 1 + c1. Since b (this zig-zag where these DTE are being applied
to) is in a better position after having a left DTE applied to it as opposed to a right DTE,
we know that if bR loses a triangle from a right DTE, then it also loses one from a right
DTE. So, the whole zig-zag has at most n+ a− 1+ c1 triangles of a minimum descendant.
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2) If s2 is a center DTE, then the minimum number of triangles between the first zig-zag
first two zig-zag pieces is at most a. So, the whole zig-zag has at most n+ a triangles in a
minimum descendant.

3) If s2 is a right DTE, then the minimum number of triangles between the first two
zig-zag pieces is at most a + c2. Once again, this bL only gains a triangle from this DTE
if bR did as well. So, the whole zig-zag has at most n + a + c2 triangles in a minimum
descendant.

In all three cases, we have the minimum number of triangles of GR is at least equal
to the minimum number of triangles of GL. This is a contradiction, so our theorem holds
true. ■

If we have a splitting DTE on the first two pieces of a zig-zag chain that results in the
strict minimum number of triangles with respect to the other splitting DTE, then theorem
5.4 tells us that this results in the minimum number of triangles for the entire chain. If we
don’t have a strict minimum amongst the splitting DTE, but have a splitting DTE that
results in the best position of the second zig-zag piece amongst those splitting DTE, then
theorem 5.5 tells us this results in the minimum number of triangles for the entire chain.
So, the problem arises when there is no strict minimum amongst splitting DTEs, and the
splitting DTEs that are minimal leave the second zig-zag piece in opposite positions of
each other. Going through each of the values of mod 5, we will check if this problem arises.

The chart below shows each of the potential changes that each of the graphs could go
through. That is, for each pair in the chart, the first value represents whether decreasing n
by 1 results in the minimum number of triangles of the graph decreasing by 1 (represented
by -) or whether it stays the same (represented by 0). The second value of each pair
represents whether breaking off a 2 zig-zag results in an increase in the minimum number
of triangles by 1 (represented by +) or whether it stays the same (represented by 0). The
chart is created by using theorems 4.1, 4.7 and 4.8.

n Zn CDTE +/- Zn−1 RDTE +/- Zn−2,2 LDTE +/-
2m 0/+ 0/0 0/+
2m+ 1 -/0 0/+ -/0
2m+ 2 -/0 -/0 0/+
2m+ 3 0/0 -/0 0/+
2m+ 4 0/0 0/0 -/+

For example, consider that we have a Za,2m,...n zig-zag. The value of a is purposely
ambiguous. Suppose that all splitting DTE applied to Za,2m result in the same number of
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minimal triangles. Then, we want to set up the second zig-zag piece in the best position.
Looking at the table, we see that both Z2m and Z2m−2,2 gain a triangle if we perform a right
DTE on the second and third zig-zag pieces. However, Z2m−1 goes not gain a triangle. All
3 zig-zags, don’t lose triangles if a left DTE is performed on them. So, we conclude that
Z2m−1 is the best position, and so the splitting DTE that will be applied to Za,2m will be
a right DTE so that Z2m becomes Z2m−1.

For n = 0 mod 5, we can see that Zn−1 is the best position to leave the graph in, and
there is no difference between Zn and Zn−2,2 .

For n = 1 mod 5, we can see that Zn and Zn−2,2 are the best positions to the leave the
graph in, and there is no difference between them.

For n = 2 mod 5, we can see that Zn and Zn−1 are the best positions to leave the graph
in, and there is no difference between them.

For n = 3 mod 5, we can see that Zn−1 is the best position, followed by Zn.

For n = 4 mod 5, we have problems arise. Zn and Zn−1 are the best choices if we want
to split off a 2 zig-zag since we won’t gain any triangles in minimum descendants, and that
Zn−2,2 is the best choice if we want to remove a triangle since we will lose a triangle in a
minimum descendant. If both choices are equally appealing, we will use a similar strategy
as before and try to set up the next zig-zag in the best position as possible. So now, looking
at the value of the third zig-zag piece mod 5, denoted as Zq, we get:

For q = 0 mod 5, we have the zig-zag both not losing a triangle in a minimal descendant
upon having a triangle removed and gaining a triangle upon having a 2 zig-zag split off.
So, we just want to set this zig-zag up for the next DTE. The best case is turning this
zig-zag into its Zq−1 form, so we want to remove a triangle from this. So we want our
initial zig-zag of length n = 4 mod 5 to have its structure destroyed. So, we chose to use
Zn or Zn−1 for our second zig-zag piece.

For q = 1 mod 5, we have the zig-zag will both lose a triangle in a minimal descendant
upon having a triangle removed and not gain a triangle upon having a 2 zig-zag split off.
Setting the zig-zag up for the next DTE, we see the best case is either Zq or Zq−2,2. So our
n = 4 mod 5 zig-zag will lose a triangle to minimize.

For q = 2 mod 5, the same case as above but this time we want a Zq or Zq−1 zig-zag.
So, we will have our n = 4 mod 5 zig-zag have a 2 zig-zag break off so this zig-zag can lose
a triangle.

For q = 3 and q = 4 mod 5, the cases are the same. The zig-zags will not lose a triangle
in a minimal descendant if they lose a triangle nor will they lose a triangle upon a 2 zig-zag
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splitting away. So, our n = 4 mod 5 zig-zag will lose a zig-zag, and each of these zig-zags
will have a 2 split away.

We will not go through the proofs of the cases of q mod 5, as it is the same proof as
theorem 5.3, except instead of minimizing the minimum triangles of a zig-zag chain with
2 pieces, we are doing it over a zig-zag chain with 3 pieces.

Theorem 5.6 Suppose we have a zig-zag chain. Then the splitting DTE that causes
the first zig-zag piece to be disjoint and that results in the minimum number of triangles
between the disjoint zig-zag and the remaining chain is determined as follows:

1) If one of the splitting DTE results in a strict minimum number of triangles between
the first two zig-zags, then this splitting DTE results in a minimum number of triangles
for the entire chain.

2) If there are multiple splitting DTE that result in a minimum number of triangles
between the first two zig-zags and there is a splitting DTE that results in a best position
for the second zig-zag, then this splitting DTE results in a minimum number of triangles
for the entire chain.

3) If there are multiple splitting DTE that result in a minimum number of triangles
between the first two zig-zags and there are multiple splitting DTE among these splitting
DTE with the same position for the second zig-zag, choose the position that results in the
minimum number of triangles among the second and third zig-zags.

4) If there are multiple splitting DTE that result in a minimum number of triangles
between the first two zig-zags, multiple splitting DTE among these splitting DTE with the
same position for the second zig-zag and multiple splitting DTE the minimize the number
of triangles between the second and third zig-zag pieces, choose the DTE that results in
the best position for the third zig-zag.

Proof 5.6 1) is true by theorem 5.4 2) is true by theorem 5.5. 3) and 4) are true from
the comments after theorem 5.5

So, given any zig-zag chain, we can use theorem 5.6 to find the splitting DTE that
causes the first zig-zag piece to be disjoint and that results in the minimum number of
triangles between the first zig-zag piece and the rest of the chain. We can keep applying
this until all the initial zig-zag pieces are disjoint. Then, since all these zig-zags are in a
form that has been studied in chapter 4, we can calculate the minimum number of triangles
of each piece individually, and conclude that their sum is the minimum number of triangles
of the whole chain. ■

We almost have enough machinery to prove the main theorem of the paper; the mini-
mum number of triangles of an open zig-zag.
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Theorem 5.7 △Zq,3,n−q−4 = △Zq+5k,3,n−q−4−5k for any k that allows all zig-zag pieces
to be of non-negative size.

Proof of 5.7 Given any zig-zag chains, G = Zq,3,n−q−4 and G′ = Zq+5k,3,n−q−4−5k, for
some k that allows all zig-zag pieces to be of non-negative size, we know that since all the
zig-zags are of sizes congruent mod 5, theorem 5.6 results in 3 disjoint zig-zags for each
graph where the first and last zig-zags differ by size of 5k. From theorems, 4.1, 4.6 and
4.7, we know that the minimum number of triangles for the first and last zig-zags differ by
2k (one being a +2k and the other being −2k). So, the minimum number of triangles for
both graphs are equal since the 2ks cancel each other out.

As we are now ready to complete the proof of the induction hypothesis of theorem 4.1,
let us recall that theorem:

Theorem 4.1 The minimum number of triangles for a Zn descendant is as follows:

n Minimum Number of triangles
5m+ 0 2m
5m+ 1 2m+ 1
5m+ 2 2m+ 2
5m+ 3 2m+ 2
5m+ 4 2m+ 2

The first DTE performed on Zn results in a Zq,3,n−q−4 for some q ∈ [n−4]. By theorem
5.7, we know that the minimum number of triangles depends only on the value of q mod
5 since increasing the length of the first zig-zag piece and decreasing the length of the last
zig-zag piece by 5 results in no change in the minimum number of triangles (or vice-versa).
So, the only cases that depend on q that we need to go through are each of the values of q
where q ∈ [5]. However, we also need to go through each value of n mod 5. For each value
of n, we need to go through the 5 values of q.

For each value of n mod 5, we have 5 cases to go through. That is, we need to go
through the three splitting DTEs on the zig-zags Z1,3,n−5, Z2,3,n−6, Z3,3,n−7, Z4,3,n−8 and
Z5,3,n−9. The first splitting DTE doesn’t depend on the value of n. So, before diving into
the cases for each n, we will decide which splitting DTE is optimal for each value of q. By
theorems 5.6, we need to find the DTE that results in the minimum number of triangles
amongst the first zig-zag pair. If there isn’t a strict minimum, we chose the DTE that also
results in the second zig-zag piece being left in the best position for future DTE. Going
through the cases we get:

49



5.1 First Splitting DTE for Zq,3,n−q−4 Zig-Zags

Z1,3

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z1;3 3
Right DTE Z2;2 4
Left DTE Z0;2,1 2

The zero in the zig-zag after the left DTE represents that a triangle was there but was
destroyed. Z0;2,1 is the same zig-zag as Z2,1. Regardless, we conclude that a left DTE is
used if q = 1 since the left DTE is a strict minimum amongst the splitting DTE.

Z2,3

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z2;3 4
Right DTE Z2;2 4
Left DTE Z1;2,1 3

So, we conclude that a left DTE is used if q = 2 since the left DTE is a strict minimum
amongst the splitting DTE.

Z3,3

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z3;3 4
Right DTE Z1,2;2 4
Left DTE Z2;2,1 4

So, we conclude that a right or center DTE is used if q = 3 since they both leave the
zig-zag in the best position for future DTE. Since both DTE are equivalent choices, we
will use right DTE going forward for future charts. The charts later in this chapter could
have been made with center DTE instead and have the same results.
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Z4,3

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z4;3 4
Right DTE Z2,2;2 5
Left DTE Z3;2,1 4

So, we conclude that a center DTE is used if q = 4 since both left and center DTE result in
a minimum number of triangles, but a center zig-zag results in a better position for future
DTE when compared to a left DTE.

Z5,3

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5;3 4
Right DTE Z3,2;2 5
Left DTE Z4;2,1 4

So, we conclude that DTE is used if q = 5 for similar reasoning as for q = 4.

For each value of q mod 5, we know know which splitting DTE expansion needs to be
done in order to find a minimal sequence. So there will be slightly different structures
depending on the value of q. Keep in mind that the first splitting DTE only depends
on the value of q, not n. So for each n, the first splitting DTE will be the one that is
shown by the charts above. The charts below are a bit different from the ones in previous
chapters as they are zig-zag chains of length 3 as opposed to 2. The charts already have
the splitting DTE applied to them so the first zig-zag piece will already be disjoint. So,
the third column of the chart will show the minimum number of triangles between the
last two zig-zag pieces only. The fourth column will then show the minimum number of
triangles for the entire zig-zag. So it will be the minimum number of triangles of the first
piece (which will be 0, 1 or 2 added to the minimum number of triangles on the last two
zig-zag pieces). Going through the different values of n and q we get the following charts:

5.2 n = 0 mod 5

N = 5m
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For N = 5M , we have 5 cases to go through. That is, we have to check each of the
splitting DTEs for the zig-zags Z1,3,m−5, Z2,3,m−6, Z3,3,m−7, Z4,3,m−8 and Z5,3,m−9. Since
these are zig-zag chains of length 3, we require two splitting DTE to fully split the zig-zags
up. We already showed what splitting DTE is optimal for the first pair of zig-zags in
section 5.1. So, the zig-zags in the charts below already have the optimal splitting DTE
applied to the first pair of zig-zag pieces; the charts are going through figuring out the
optimal DTE applied to the second pair of zig-zag pieces.

Z0;2,1,5m−5

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−5 2m 2m
Right DTE Z2,2;5m−6 2m+ 1 2m+ 1
Left DTE Z2;2,5m−7 2m+ 1 2m+ 1

Using the chart above as an example to the reader, we start with a Z1,3,5n−5 zig-zag.
From the charts in section 5.1, we can see that a left DTE minimizes a Z1,3. Performing
that splitting DTE on the Z1,3 subgraph of Z1,3,5n−5, we get a Z0;2,1,5m−5 zig-zag, as stated
in the chart. From this point, we are applying each of the possible splitting DTE on the
zig-zag Z2,1,5m−5, over the vertex shared by the zig-zag pieces of size 1 and 5m−5. The third
column above shows which splitting DTE minimizes this zig-zag, and the fourth column
then shows the minimum number of triangles of the entire zig-zag chain. In this chart,
the minimum number of triangles of the entire zig-zag chain is the same as the minimum
number of triangles of the last three zig-zag pieces since the first zig-zag piece in the chain
ends up being of size 0. In the next chart, the first zig-zag piece ends up being of size 1, so
we add 1 to our third column. The other charts result in us adding 2. All charts remaining
charts in chapter 5 follow this approach.

Z1;2,1,5m−6

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−6 2m 2m+ 1
Right DTE Z2,2;5m−7 2m+ 1 2m+ 2
Left DTE Z2;2,5m−8 2m 2m+ 1

Z1,2;2,5m−7

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2;5m−7 2m 2m+ 2
Right DTE Z2;5m−8 2m 2m+ 2
Left DTE Z1;2,5m−9 2m− 1 2m+ 1
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Z3;3,5m−8

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−8 2m 2m+ 2
Right DTE Z1,2;5m−9 2m− 1 2m+ 1
Left DTE Z2;2,5m−10 2m 2m+ 2

Z5;3,5m−9

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−9 2m− 1 2m+ 1
Right DTE Z1,2;5m−10 2m− 2 2m
Left DTE Z2;2,5m−11 2m 2m+ 2

So, we can see that there are two ways choices in q and splitting DTE that result in a
minimum of 2m triangles. There is no way to get lower than 2m, so our theorem holds.

5.3 n = 1 mod 5

N = 5m+ 1

Z0;2,1,5m−4

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−4 2m+ 1 2m+ 1
Right DTE Z2,2;5m−5 2m+ 1 2m+ 1
Left DTE Z2;2,5m−6 2m+ 2 2m+ 2

Z1;2,1,5m−5

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−5 2m 2m+ 1
Right DTE Z2,2;5m−6 2m+ 1 2m+ 2
Left DTE Z2;2,5m−7 2m+ 1 2m+ 2

Z1,2;2,5m−6

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2;5m−6 2m 2m+ 2
Right DTE Z2;5m−7 2m 2m+ 2
Left DTE Z1;2,5m−8 2m 2m+ 2
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Z4;3,5m−7

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−7 2m 2m+ 2
Right DTE Z1,2;5m−8 2m 2m+ 2
Left DTE Z2;2,5m−9 2m 2m+ 2

Z5;3,5m−8

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−8 2m 2m+ 2
Right DTE Z1,2;5m−9 2m− 1 2m+ 1
Left DTE Z1;2,5m−10 2m− 1 2m+ 1

There are several ways of getting 2m+1 minimum triangles, but no way of getting less.
So our theorem holds.

5.4 n = 2 mod 5

N = 5m+ 2

Z0;2,1,5m−3

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−3 2m+ 2 2m+ 2
Right DTE Z2,2;5m−4 2m+ 2 2m+ 2
Left DTE Z2;2,5m−5 2m+ 2 2m+ 2

Z1;2,1,5m−4

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−4 2m+ 1 2m+ 2
Right DTE Z2,2;5m−5 2m+ 1 2m+ 2
Left DTE Z2;2,5m−6 2m+ 2 2m+ 3

Z1,2;2,5m−5

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2;5m−5 2m 2m+ 2
Right DTE Z2;5m−6 2m 2m+ 2
Left DTE Z1;2,5m−7 2m 2m+ 2
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Z4;3,5m−6

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−6 2m 2m+ 2
Right DTE Z1,2;5m−7 2m 2m+ 2
Left DTE Z2;2,5m−8 2m+ 1 2m+ 3

Z5;3,5m−7

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−7 2m 2m+ 2
Right DTE Z1,2;5m−8 2m 2m+ 2
Left DTE Z2;2,5m−9 2m 2m+ 2

There are several ways of getting 2m+2 minimum triangles, but no way of getting less.
So our theorem holds.

5.5 n = 3 mod 5

N = 5m+ 3

Z0;2,1,5m−2

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−2 2m+ 2 2m+ 2
Right DTE Z2,2;5m−3 2m+ 3 2m+ 3
Left DTE Z2;2,5m−4 2m+ 2 2m+ 2

Z1;2,1,5m−3

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−3 2m+ 2 2m+ 3
Right DTE Z2,2;5m−4 2m+ 3 2m+ 4
Left DTE Z2;2,5m−5 2m+ 2 2m+ 3

Z1,2;2,5m−4

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2;5m−4 2m+ 1 2m+ 3
Right DTE Z2;5m−5 2m 2m+ 2
Left DTE Z1;2,5m−6 2m+ 1 2m+ 3
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Z4;3,5m−5

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−5 2m 2m+ 2
Right DTE Z1,2;5m−6 2m 2m+ 2
Left DTE Z2;2,5m−7 2m+ 1 2m+ 3

Z5;3,5m−6

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−6 2m 2m+ 2
Right DTE Z1,2;5m−7 2m 2m+ 2
Left DTE Z2;2,5m−8 2m+ 1 2m+ 3

There are several ways of getting 2m+2 minimum triangles, but no way of getting less.
So our theorem holds.

5.6 n = 4 mod 5

N = 5m+ 4

Z0;2,1,5m−1

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−1 2m+ 2 2m+ 2
Right DTE Z2,2;5m−2 2m+ 3 2m+ 3
Left DTE Z2;2,5m−3 2m+ 3 2m+ 3

Z1;2,1,5m−2

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2,1;5m−2 2m+ 2 2m+ 3
Right DTE Z2,2;5m−3 2m+ 3 2m+ 4
Left DTE Z2;2,5m−4 2m+ 2 2m+ 3

Z1,2;2,5m−3

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z2;5m−3 2m+ 2 2m+ 4
Right DTE Z2;5m−4 2m+ 1 2m+ 3
Left DTE Z1;2,5m−5 2m+ 1 2m+ 3
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Z4;3,5m−4

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−4 2m+ 1 2m+ 3
Right DTE Z1,2;5m−5 2m 2m+ 2
Left DTE Z2;2,5m−6 2m+ 1 2m+ 3

Z5;3,5m−5

DTE Type Zig-zag Pieces △ of last zig-zag pair △ of zig-zag chain
Center DTE Z3;5m−5 2m 2m+ 2
Right DTE Z1,2;5m−6 2m 2m+ 2
Left DTE Z2;2,5m−7 2m+ 1 2m+ 3

There are several ways of getting 2m+2 minimum triangles, but no way of getting less.
So our theorem holds.

So, the triple induction is completed and theorems 4.1, 4.6, and 4.7 hold true for all
values of N .
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Chapter 6

Closed Zig-Zags

So far our all of our theorems and proofs have been about open zig-zags and open zig-zag
chains. The final question we will be addressing in this thesis is what happens for closed
zig-zag and closed zig-zag chains. Closed zig-zags are only a few well chosen DTE away
from being an open zigzag. Similarly, closed zig-zag chains can be made into open zig-zag
chains. Explicitly defining closed zig-zag chains, we have:

Definition 6.1 (Closed Zig-Zag Chain) An closed zig-zag chain, denoted Za,b...n: is the
zig-zag chain Za,b,...n with the additional condition that the zig-zag of size a shares an end
vertex with the vertex of size n. That is, the zig-zag loops back around and connects to
itself.

Figure 6.1: Closed Zig-Zag Chain; Z3,3,3,3:
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Given a closed zig-zag chain Za,b,...n:, we have three splitting DTE able to be performed
over the vertex shared by the zig-zags of length a and n. Each splitting DTE results in a
(potentially different) open zig-zag chain.

Theorem 6.2 Of these three open zig-zag chains, the one with the lowest minimum
number of triangles, has the same minimum number of triangles as the initial closed zig-
zag chain. More specifically:

△(Za,b,...,n:) = min(△(Za,b...n), △(Za−1,b...n−2,2), (Z2,a−2,b...n−1))

Proof of 6.2 Suppose there exists some minimum sequence of Za,b,...n that doesn’t have
a splitting DTE performed on the zig-zag pieces of length a and n. Then, there exists
a Z1,1 zig-zag at their shared vertex in this minimum descendant since any larger graph
would result in the descendant not being minimum. Then, we can create a new minimum
sequence by performing a right (or left) DTE on this Z1,1 subgraph. So, any minimum
sequence of has a splitting DTE performed on the zig-zag pieces of size a and n or can
have an additional splitting DTE included in the sequence that doesn’t effect the number
of triangles. One can create a new sequence where this splitting DTE is performed first
in the sequence since the structure of the zig-zags being effect exists in the initial chain.
One has three choices in splitting DTE, so the minimum of these choices results in the
minimum of the original zig-zag. ■

This theorem results in turning any closed zig-zag chain into three open (potentially
different) zig-zag chains. All our theorems from earlier chapters will now be able to be
applied here. One will only ever need to do this once, so while closed zig-zags are slightly
more complicated, they quickly get down to a very manageable position. Using this logic,
we can calculate the minimum number of triangles of any closed zig-zag.

Theorem 6.3 The minimum number of triangles for a Zn: descendant is as follows:

n Minimum Number of triangles
5m+ 0 2m
5m+ 1 2m+ 1
5m+ 2 2m+ 2
5m+ 3 2m+ 2
5m+ 4 2m+ 2

Proof of 6.3 Given any closed zig-zag, Zn:, one knows that any minimal sequence
contains no increasing or non-neutral DTE by theorem 3.8 and 3.10. So, every minimal
sequence starts with the same DTE, that results in Zn−4,3:. From here, we use theorems
4.1, 4.6, 4.7 and 5.6 to get the minimum of this zig-zag chains as the minimum of△(Zn−4,3),

59



△(Zn−5,1,2) and △(Z2,n−6,2). We can now use the techniques used in previous chapters for
each case of n mod 5.

Figure 6.2: Z9:

6.1 Z5m:

Going through this section as an example to the reader, we start with our Z5m: zig-zag.
Any decreasing DTE results in a Z5m−4,3: zig-zag chain. There are three choices in splitting
DTE for the two pieces, which result in Z5m−4,3:, Z5m−5,1,2 and Z2,5m−6,2 zig-zag chains.
Two of these structures are already known from earlier chapters, so we don’t need a new
chart for them, as we can restate the results from earlier. The structure we don’t know,
the Z5m−4,3: chain, will have a full chart dedicated to it in order to see what its minimum
number of triangles are. The minimum of all the values in the chart, as well as the two
other zig-zag pieces, is the minimum for the entire chain.

Z5m−4,3:

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5m−4;3 2m+ 1
Right DTE Z5m−6,2;2 2m+ 2
Left DTE Z5m−5;2,1 2m

Minimum number of triangles for Z5m−5,1,2 = 2m.
Minimum number of triangles for Z2,5m−6,2 = 2m+ 1.
So, the minimum number of triangles is 2m.
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6.2 Z5m+1 :

Zn: = Z5m+1: = Z5m−3,3:

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5m−3;3 2m+ 2
Right DTE Z5m−5,2;2 2m+ 2
Left DTE Z5m−4;2,1 2m+ 1

Minimum number of triangles for Z2,5m−5,2 = 2m+ 2.
Minimum number of triangles for Z5m−4,1,2 = 2m+ 1.
So, the minimum number of triangles is 2m+ 1.

6.3 Z5m+2

Zn: = Z5m+2: = Z5m−2,3:

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5m−2;3 2m+ 2
Right DTE Z5m−4,2;2 2m+ 2
Left DTE Z5m−3;2,1 2m+ 2

Minimum number of triangles for Z2,5m−2,2 = 2m+ 2.
Minimum number of triangles for Z5m−3,1,2 = 2m+ 2.
So, the minimum number of triangles is 2m+ 2.

6.4 5m + 3
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Zn: = Z5m+3: = Z5m−1,3:

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5m−1;3 2m+ 2
Right DTE Z5m−3,2;2 2m+ 3
Left DTE Z5m−2;2,1 2m+ 2

Minimum number of triangles for Z2,5m−3,2 = 2m+ 2.
Minimum number of triangles for Z5m−2,1,2 = 2m+ 2.
So, the minimum number of triangles is 2m+ 2.

6.5 Z5m+4:

Zn: = Z5m+4: = Z5m,3:

DTE Type Zig-zag Pieces
Minimum Number of trian-
gles

Center DTE Z5m;3 2m+ 2
Right DTE Z5m−2,2;2 2m+ 3
Left DTE Z5m−1;2,1 2m+ 2

Minimum number of triangles for Z2,5m−2,2 = 2m+ 3.
Minimum number of triangles for Z5m−1,1,2 = 2m+ 2.
So, the minimum number of triangles is 2m+ 2.

We can see that the minimum number of triangles of Zn: is the equal to the minimum
number of triangles as Zn. So the extra structure of the closed zig-zag doesn’t actually
allow us to remove any additional triangles. Performing a center DTE then a left DTE
on Zn: results in a Zn−4,3 zig-zag chain then a Zn−5;2,1 zig-zag chain. From these zig-zags,
we can see that the minimum number of triangles is the same as the minimum number of
triangles of Zn since the minimum number of triangles of Zn−5 is 2 less than that of Zn

and then we have an additional 2 triangles from Z2,1. It turns out that there is no case
where we can save more triangles.
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Chapter 7

Conclusion

We have successful answered the question we presented in chapter 2. Given any zig-zag
chain, open or closed, we now have the tools to figure out the minimum number of triangles
of this chain. Since K5 descendants can be expressed as a edge disjoint union of zig-zag
and zig-zag chains, by theorem 2.14, this means we now know the minimum number of
triangles of any K5 descendant.

The first step we took was showing that we only need decreasing and non-trivial DTEs.
Being able to completely ignore increasing and trivial DTEs when looking at minimum
descendants, allowed us to use the techniques in chapter 4, 5 and 6. That is, we can use
that the fact that there is a finite number of decreasing and trivial DTEs that can be
applied to any K5 descendant, to systematically find out the minimum number of triangles
of these graphs. The finite number of decreasing and trivial DTEs is due to both of these
DTEs destroying the zig-zag structure of our graph.

Once we did, we were able to look solely at decreasing and non-trivial DTEs, we are
able to focus on the splitting DTEs of minimal sequences for zig-zag chains. That is, we
are able to take the DTEs that cause the zig-zag pieces of a zig-zag chain to split from each
other, and perform these DTEs first in our minimal sequence. Once we do this, we can
break down our zig-zag chain into more familar structures. These structures are zig-zags
of the form Zn, Zn,2 and Zn,4. Since these structures arise so commonly, we showed what
the minimum number of triangles for each of these graphs are, as shown below:
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n Zn Zn−2,2 Z2,n−4,2

5m+ 1 2m+ 1 2m+ 2 2m+ 2
5m+ 2 2m+ 2 2m+ 2 2m+ 3
5m+ 3 2m+ 2 2m+ 2 2m+ 3
5m+ 4 2m+ 2 2m+ 3 2m+ 4
5m+ 5 2m+ 2 2m+ 3 2m+ 4

This direction of looking at K5 descendants is basically complete from my eyes. Al-
though there may be other zig-zag chains of interest in the future that we have not explicitly
calculated the minimum number of triangles of, we now have the tools do so easily. Other
problems that arise with K5 descendants are largely different from what was talked about
in this paper. Understanding the structure of K5 descendants is another talked about
problem but quite different from this. This paper mostly ignored edges that were not in
triangles, but in practise, some K5 descendants may consist almost entirely of edges not in
triangles. Furthermore, the structure of the zig-zags in K5 with a small number of triangles
compared to the number of edges is also an interesting question. One can never turn an
isolated zig-zag of length 2 into an isolated triangle. So, understanding when a zig-zag of
length 2 occurs as opposed to an isolated triangle is another question yet to be answered.
Still, we now have a much better understand of a specific type of K5 descendant, those
being minimal K5.

The other problems mentioned in the introduction are the main directions going for-
ward. Conjecture 1.8, regarding all graphs with c2 = −1 being K5 descendants would be
a nice next conjecture to solve, but we are likely far away from that point.

Enumerating graphs with a specific level with respect to some number of vertices is a
more approachable next problem. The level of a graph is equal to the number of vertices
minus the number of triangles. Enumerating the number of K5 descendants for a given
number of vertices is known for levels 0 to 4. The case for the level equalling 5, although
somewhat complicated, is definitely approachable. We are much further away from a
general formula though.

This thesis has an interesting relationship to enumerating graphs with a specific level.
While it is easier to enumerate low leveled graphs, this paper spent a great deal of focus on
dealing with graphs with a low number of triangles, and hence a large level. The biggest
issue is the fact that we didn’t track edges not in triangles throughout this entire thesis,
while these edges naturally lead to different graphs. Regardless, one can hope that this
thesis reveals some structure of the large leveled graphs.

64



References

[1] Francis Brown and Oliver Schnetz. Modular forms in quantum field theory, 2013.

[2] Francis Brown and Karen Yeats. Spanning forest polynomials and the transcendental
weight of feynman graphs. Communications in Mathematical Physics, 301(2):357–382,
Oct 2010.

[3] Reinhard. Diestel. Graph Theory. Graduate Texts in Mathematics, 173. Springer Berlin
Heidelberg, Berlin, Heidelberg, 5th ed. 2017. edition, 2017.

[4] Chris. Godsil. Algebraic Graph Theory. Graduate Texts in Mathematics, 207. Springer
New York, New York, NY, 1st ed. 2001. edition, 2001.

[5] Yeats Karen. A special case of completion invariance for the c 2 invariant of a graph.
Canadian Journal of Mathematics, 70, 06 2017.

[6] Mohamed Laradji. Double Triangle Descendants of K5. PhD thesis, 12 2017.

[7] Mohamed Laradji, Marni Mishna, and Karen Yeats. Some results on double triangle
descendants of k 5. Annales de l’Institut Henri Poincaré D, 2021.
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