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A B S T R A C T

In this paper we consider a distribution planning problem in a transshipment network under stochastic customer
demand, to account for uncertainty faced in real-life applications when planning distribution activities. To date,
considerations of randomness in distribution planning networks with intermediate facilities have received very
little attention in the literature. We address this gap by modeling uncertainty in a distribution network with an
intermediate facility, and providing insight on the benefit of accounting for randomness at the distribution
planning phase. The problem is studied from the perspective of a third-party logistics provider (3PL) that is
outsourced to handle the logistics needs of its customers; the 3PL uses a consolidation center to achieve trans-
portation cost savings. We formulate a two-stage stochastic programming model with recourse that aims to
minimize the sum of transportation cost, expected inventory holding cost and expected outsourcing cost. The
recourse variables ensure that the problem is feasible regardless of the realization of demand, by allowing the
option of using a spot market carrier if demand exceeds capacity. We propose a flow-based formulation with a
nonlinear holding cost component in the objective function. We then develop an alternative linear path-based
formulation that models the movement of freight in the network as path variables. We apply Sample Average
Approximation (SAA) to solve the problem, and show that it results in reasonable optimality gaps for problem
instances of different sizes. We conduct extensive testing to evaluate the benefits of our proposed stochastic model
compared to its deterministic counterpart. Our computational experiments provide managerial insight into the
robustness and cost-efficiency of the distribution plans of our proposed stochastic model, and the conditions under
which our model achieves significant distribution cost savings.
1. Introduction

In many supply chain networks, third party logistics providers (3PLs)
are employed to handle the distribution needs within the supply chain.
The 3PL faces the challenging task of coordinating these distribution
activities between suppliers and customers, possibly through the use of
intermediate facilities, so as to create a lean cost-efficient supply chain,
while ensuring timely customer deliveries. Third party logistics is a fast
growing market; in 2016, it had an estimated worldwide market size of
802.2 billion US dollars, 38% of which is in the Asia Pacific region, 25%
in North America, 21.5% in Europe (Langley, 2017). With this growth
comes increased competition which further necessitates that the 3PL
create leaner logistics solutions, in order to survive in a growingly con-
tested market. In recent years, there has been an increasing trend in
businesses outsourcing their transportation needs to 3PL’s to focus on
their core business competencies. The various players within the supply
0
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chain expect the 3PL to accommodate shipping quantities that may
fluctuate depending on customer demand. This creates a compelling need
for a 3PL to operate more efficiently, with imperfect information, to
secure profitability, while providing competitive shipping rates for cli-
ents and building customer loyalty.

Many variations of freight distribution coordination with intermedi-
ate facilities have been investigated by researchers. However, very
limited work addresses such problems with stochastic customer demand.
In their literature surveys, both SteadieSeifi et al. (2014) and Guastaroba
et al. (2016) acknowledge the need for more research that considers
stochasticity in freight transportation planning. In addition, from an
industrially-practical point of view, when customer demand arrives in
real-time, accounting for demand variation at the distribution planning
phase will enable the creation of efficient distribution plans that more
accurately anticipate actual distribution costs.

We study the problem of a 3PL that is coordinating transportation
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

mailto:fgzara@uwaterloo.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2020.100007&domain=pdf
www.sciencedirect.com/science/journal/21924376
www.journals.elsevier.com/euro-journal-on-transportation-and-logistics
https://doi.org/10.1016/j.ejtl.2020.100007
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ejtl.2020.100007


A. Alnaggar et al. EURO Journal on Transportation and Logistics 9 (2020) 100007
needs between suppliers and customers when customer demand is sto-
chastic. That coordination considers the release time of shipments from
suppliers, the delivery due dates of customers, the different trans-
portation options that could be used, as well as the holding cost at the
consolidation center. In our problem setting, the 3PL does not operate its
own fleet, but rather chooses the best available multi-modal trans-
portation services for its clients. The 3PL determines a suitable shipping
schedule, arranging for the pickup at suppliers when shipments are
ready, i.e., after their release time.

For a given supplier, orders of multiple customers are consolidated in
fewer high-volume loads and sent to the consolidation center, operated
by the 3PL, through one or more transportation options. A transportation
option between a supplier and the consolidation center is referred to as
an inbound transportation option. We define an inbound transportation
option as a combination of a transportation mode (or multiple modes), a
capacity, an arrival time at the consolidation center, and a cost associated
with the service. At the consolidation center, the 3PL combines orders
from multiple suppliers to the same customer and delivers them through
one or more transportation options, such that customer delivery dead-
lines are satisfied. A transportation option from the consolidation center
to a customer is referred to as an outbound transportation option, and is
defined as a combination of transportation mode, capacity, dispatch time
from the consolidation center, and cost.

Most transportation service prices are not simply based on the weight
and volume of the shipment. Prices also depend on when the service is
taking place (e.g., peak seasons, holidays), the mode of transportation
used, as well as other factors such as the particular route taken. Thus,
inbound and outbound transportation cost may not be monotonically
increasing or decreasing with lead time. We adopt this general definition,
where inbound and outbound transportation options have nonlinear
discrete cost functions.

The distribution service provided by the 3PL is for a predefined
number of periods, rather than a one-time service. However, the choice
of transportation options, for inbound and outbound shipments, is
contractual, and is kept for the full length of the planning horizon. Once
customer demand is known, if the actual demand cannot be fulfilled with
the particular choice of inbound and outbound options made at the
beginning of the planning horizon, a spot market carrier may be used to
ship the additional demand at a higher cost. The goal of the 3PL is to
select transportation options that minimize the expected transportation
cost of the network plus the expected holding cost at the consolidation
center, while ensuring that customer demand is fulfilled by the due date.

One motivating example of the problem comes from a 3PL that
manages the distribution planning of an e-retailer. The latter operates
multiple distribution centers and orders its products from a number of
global suppliers. Each supplier provides different types of products that
the e-retailer sells. To manage their inventory, each distribution center
periodically places a replenishment order, which varies depending on
end-customer’s demand. In fulfilling those orders, the 3PL uses a
consolidation center to save on transportation cost between suppliers and
the e-retailer’s distribution centers. The 3PL needs to choose a minimal-
cost transportation plan with specific transportation modes, capacity and
arrival/dispatch times at the consolidation center, for inbound and
outbound shipments, respectively, to carry on the regular transportation
needs between suppliers and distribution centers. For simplicity and to
make our problem applicable to other application areas, we will refer to
the third-tier of the supply chain (which are the distribution centers in
this example) simply as customers.

The main contributions of this paper are threefold. Firstly, we address
the need for considering randomness in freight distribution planning
with intermediate facilities by proposing a two-stage stochastic pro-
gramming model that accounts for stochastic customer demand at the
planning phase. Our proposedmodel addresses tactical decisions, i.e., the
choice of transportation options, and minimizes the sum of
transportation-choice costs plus expected operational costs. Secondly,
modeling this problem from the perspective of a third party logistics
2

provider, even without demand uncertainty, has received very little
attention. This paper aims to fill that gap. Thirdly, we conduct a thorough
analysis on the benefits and limitations of our proposed model and pre-
sent managerial insights on the conditions under which our model ach-
ieves significant distribution cost savings.

The rest of this paper is arranged as follows. In Section 2 we provide a
review of relevant literature. In Section 3, we detail the problem setting
and assumptions, and formulate the proposed stochastic model. We
discuss the solution methodology used in solving the problem in Section
4. We then discuss our numerical testing and analysis, and compare the
performance of our stochastic model to its deterministic counterpart in
Section 5. Finally, we outline some concluding remarks and future di-
rections in Section 6.

2. Literature review

References on freight consolidation have considered distinct goals
and the viewpoints of different decision makers. Relevant literature is in
three main categories: freight/shipment consolidation, freight trans-
portation with intermediate facilities, and freight forwarder/3PL opera-
tions. We also discuss important publications that explicitly incorporate
stochasticity.

In the past three decades, considerable research has been done on
shipment consolidation (SCL). This classical problem mainly aims to find
the optimal dispatch policy, from the perspective of a shipper, that de-
termines for how long to consolidate shipments, and when to dispatch
the aggregate load. Early research laid the foundation of this topic
(Masters, 1980). Later, Higginson and Bookbinder (1994), Çetinkaya and
Bookbinder (2003), Mutlu et al. (2010), and Bookbinder et al. (2011)
used simulation and stochastic modeling to compare different dispatch
policies and determine optimal ones under various settings and consid-
ering additional costs, such as inventory cost.

The preceding references explicitly analyze SCL policies, but other
researchers have integrated those decisions within wider-scope supply
chain network decisions. Freight transportation problems with interme-
diate facilities were reviewed by Guastaroba et al. (2016). The authors
suggested three classes of such problems, the second of which: inter-
mediate facilities in transshipment problems, is the closest to our prob-
lem setting, since the consolidation center acts as a transshipment node.
Our problem extends the cited references in Guastaroba et al. (2016) by
considering a stochastic model rather than a deterministic one. Another
article by SteadieSeifi et al. (2014) surveys the literature on multi-modal
freight transportation planning. Our proposed model fits under their
category of tactical planning, i.e., choice of transport services, associated
modes and capacities, and allocating customer orders to the services
selected.

Croxton et al. (2003), Berman and Wang (2006) and Song et al.
(2008) each studied distribution coordination with consolidation cen-
ter(s) or merge-in-transit centers. Each paper developed different models
to determine the best distribution plan that minimizes transportation
plus inventory costs. Croxton et al. (2003) assume that suppliers provide
components, which are shipped to a merge-in-transit center, assembled,
and dispatched to the customer as a finished product. Song et al. (2008)
suppose that suppliers also furnish components, but the customer as-
sembles the product after receiving all parts as one consolidated load.
Berman and Wang (2006) assume that each supplier provides a number
of products, which are sent to customers via a cross-dock.

Both Croxton et al. (2003) and Berman and Wang (2006) assume that
freight is moved via a pre-determined transportation arrangement, so the
choice of carriers is not studied. Song et al. (2008), however, assume that
the decision maker (a 3PL) selects from a large number of possible car-
riers, each with a given dispatch time and cost. We adopt this latter
assumption: a typical 3PL chooses the modes and capacities from a
number of potential transportation service providers.

The three aforementioned papers had nonlinear cost functions.
Transportation costs follow a nonlinear discrete cost function in Song
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et al. (2008). Similar to those authors, we adopt a general cost function
that can capture the various factors affecting transportation cost.

In the context of freight forwarding, most publications assume the
relevant company operates its own fleet, proposing different models that
extend the classical vehicle routing problem, or the pickup and delivery
problem with time windows (Krajewska and Kopfer, 2009; Wang et al.,
2014; Bock, 2010). Models that study 3PL coordination issues are closely
related to freight forwarders problems; transportation in supply chains is
typically outsourced to both 3PLs and freight forwarders. However, 3PLs
may coordinate additional distribution activities, like warehousing and
managing inventory. Song et al. (2008) study the scheduling problem
faced by a 3PL who is arranging shipments between suppliers and cus-
tomers in an international distribution network through the use of a
consolidation center. Cai et al. (2013) analyze the outsourcing of fresh
products to a 3PL, where the products could deteriorate during the
transportation process, and derive the optimal decisions for supply chain
members. Qin et al. (2014) consider the freight consolidation and
containerization problem from the perspective of a 3PL that wants to
determine the optimal allocation of shipments to international shipping
containers and the routing of those containers.

Of some relevance to our work is the extensive family of problems on
service network design (SND), as surveyed by Crainic (2000) and Wie-
berneit (2008). SND decisions relate to the network structure, i.e., se-
lection of routes where service is conducted, and also the movement of
freight on the network. Our problem, however, assumes an
already-established network, where only the modal choice and sched-
uling of the freight movements, on predefined routes, is of interest.
Furthermore, SND problems often take the carrier’s perspective, whereas
our view is that of a 3PL that also manages a consolidation center, hence
inventory holding cost need be included. Guastaroba et al. (2016) argue
that most papers on SND with intermediate facilities concern applica-
tions at a national or regional level with a single transport mode.
Contrarily, our problem is applicable to global distribution networks,
with multiple transportation modes.

All previously reviewed papers assume deterministic customer de-
mand. Limited work addresses similar stochastic demand problems.
Guastaroba et al. (2016) recognize that intermediate facilities in sto-
chastic transshipment problems have received no attention, and high-
light this for future research. To the best of our knowledge, the only
related papers that consider randomness, but without transshipment, are
Kılıç and Tuzkaya (2015) and some stochastic service network design
papers, surveyed below.

Kılıç and Tuzkaya (2015) investigate a two-echelon distribution
network design problem between distribution centers and wholesalers
when demand is uncertain. The authors use two-stage stochastic mixed
integer programming, where the first stage selects location of distribu-
tion centers; the second stage addresses transportation and inventory
decisions, as well as unmet demand. In contrast to that article, our work
addresses transportation needs in an already-established network.

Several papers have examined the benefit of considering demand
randomness in designing service networks. Lium et al. (2009) study de-
mand stochasticity in SND by formulating a two-stage stochastic pro-
gramming model that chooses the routes and frequency of service in the
first stage, and decides on the allocation of commodities to established
routes or outsourcing a portion of demand in the second stage. Bai et al.
(2014) later extend this model to allow possible rerouting of vehicles, to
reduce the amount of outsourcing needed when demand is high. Both our
research and Bai et al. (2014) consider outsourcing demand when it
exceeds available first-stage capacity. However, since the 3PL in our case
does not operate its own vehicle fleet, rerouting is not an option. More-
over, we examine the trade-off between choice of first-stage trans-
portation options and inventory holding cost, a dimension not studied in
stochastic network design problems.
3

Other publications (Hoff et al., 2010; Crainic et al., 2014) focused on
creating efficient solution methodologies for solving realistic instances of
stochastic SND problems. Furthermore, more recent work by Wang et al.
(2016) examined the value of deterministic solutions, in terms of their
quality and upgradeability, in a stochastic environment. Another publi-
cation by Wang andWallace (2016) studied the effect of considering spot
markets at the design stage of creating a transportation plan under un-
certain demand. The article showed that in most situations, accounting
for spot markets when designing a service network reduces total cost.

In the following section, we describe our problem setting, assump-
tions and formulation.

3. Problem description and formulation

We propose a two-stage stochastic programming model with
recourse, to formulate the Stochastic Distribution Planning with
Consolidation (SDPC) problem faced by a 3PL that is coordinating
shipments between suppliers, i 2 I, and customers, j 2 J, whose de-
mands, dij, are uncertain. Given customers’ demand distributions, de-
livery due dates and supplier release times, the 3PL needs to select the
transportation options for shipments inbound to and outbound from the
consolidation center, at the beginning of the planning horizon. Similar to
Song et al. (2008), we adopt general, possibly nonlinear, cost functions
for inbound and outbound transportation options, f ðxiqÞ and gðyjlÞ,
respectively. Note that these cost functions may differ for distinct in-
bound and outbound transportation options, q 2 Qi and l 2 Lj, respec-
tively. Exploiting a general cost function enables consideration of
different transportation modes or multi-modal transportation options
with varying capacity levels, with those differences reflected in the cost
structure.

In our problem setting, the chosen transportation options and their
associated capacities are fixed for the whole planning horizon. Once
demand is realized, if total demand from a supplier (to a customer) ex-
ceeds the capacity of inbound (outbound) transportation option(s)
reserved for that supplier (customer), a spot market carrier is used. A spot
market may also be used if inventory cost savings outweigh the increased
spot market cost. We note that the preceding additional cost of utilizing a
spot market carrier is incurred by the 3PL. This cost is composed of two
parts, (a) the estimated spot market per unit price premium between the
origin and destination, and (b) a disutility factor that represents the 3PL’s
disutility to transport shipments through a spot market carrier. Such a
disutility factor can be set to zero, if shipping price is the only consid-
eration for the 3PL to make shipments through a spot market carrier.
However, the 3PL may not favor shipping through a spot market carrier,
e.g., due to unpredictable price fluctuations in that market, or limited
availability of spot market carriers in peak seasons. Thus, the disutility
factor is meant to adjust the level of favorability in using a spot market
carrier by the specific 3PL.

The first stage of the two-stage stochastic program tackles the selec-
tion of inbound and outbound transportation options to be reserved for
the duration of the planning period. The second stage allocates orders to
chosen first-stage options, or to spot market carriers. The two stages are
optimized simultaneously so as to minimize the sum of transportation
cost, expected inventory holding cost and expected spot market carrier
shipping cost.

Let xiq be a binary variable indicating whether inbound trans-
portation option q 2 Qi is reserved for supplier i 2 I. Similarly, the binary
variable yjl shows whether outbound transportation option l 2 Lj is
reserved for customer j 2 J. Let S be the set of possible scenarios or de-
mand realizations. usijq and ws

ijl are binary variables that express whether
shipment ði; jÞ is shipped through reserved inbound and outbound
transportation options q and l, respectively, in scenario s 2 S. Similarly,
μsij and λsij are binary variables that indicate whether shipment ði; jÞ is



Table 1
List of notations used in SDPC-FF.

Notation Meaning

Parameters
I The set of suppliers
J The set of customers
S The set of demand realizations or scenarios
IðjÞ The set of suppliers from which customer j orders
JðiÞ The set of customers that order from supplier i
Qi The set of inbound transportation options for supplier i
Lj The set of outbound transportation options for customer j
Ciq The capacity of inbound transportation option q of supplier i
Cjl The capacity of outbound transportation option l of customer j
τiq The arrival time of inbound transportation option q of supplier i at the CC
Xi The set of all arrival times of inbound transportation options of supplier

i 2 I
τjl The dispatch time of outbound transportation option l of customer j from

the CC
Yj The set of all dispatch times of outbound transportation options of

customer j 2 J
τiq The latest arrival time of all inbound transportation options q 2 Qi of a

given supplier i, i.e., maxq2Qi fτiqg
dsij The demand of customer j from supplier i in scenario s

hi The holding cost of supplier i’s shipment at the CC
πi Inbound spot market carrier cost per unit from supplier i to CC
πj Outbound spot market carrier cost per unit from CC to customer j
f ðxiqÞ Inbound transportation cost of transportation option q for supplier i
gðyjlÞ Outbound transportation cost of transportation option l for customer j
Decision Variables
xiq Binary variable, equals 1 if inbound transportation option q for supplier i

is reserved
yjl Binary variable, equals 1 if outbound transportation option l for customer

j is reserved
usijq Binary variable, equals 1 if shipment ði; jÞ is transported from supplier i to

CC through option q in scenario s
ws
ijl Binary variable, equals 1 if shipment ði; jÞ is transported from CC to

customer j through option l in scenario s
μsij Binary variable, equals 1 if shipment ði; jÞ is transported from supplier i to

CC by a spot market carrier, in scenario s
λsij Binary variable, equals 1 if shipment ði; jÞ is transported from CC to

customer j by a spot market carrier, in scenario s
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moved via an inbound and outbound spot market carrier, respectively, in
scenario s 2 S. Table 1 outlines the complete list of notation. We
formulate the problem as shown below and refer to the model as the
stochastic distribution planning with consolidation - flow based formulation
(SDPC-FF).

Note that we assume that if shipment ði; jÞ is transported by a spot
market carrier, no holding cost is incurred at the consolidation center,
since the shipping time will be chosen such that the interval the load is
held at the consolidation center is negligible. Therefore, the holding cost
is incurred only if a shipment ði; jÞ is shipped through reserved inbound
and outbound transportation options, i.e., for a specific shipment ði; jÞ, if
both variables usijq and ws

ijl have a value of 1. This requirement results in
the nonlinearity of the holding cost component of objective function (4).

½SDPC�FF� min
X
i2I

X
q2Q

f
�
xiq
�þX

j2J

X
l2L

g
�
yjl
�þ ζ

�
xiq; yjl

�
(1)

subject to xiq; yjl 2f0; 1g; i2 I; q2Q; j2 J; l 2 L (2)

where

ζ
�
xiq; yjl

�¼ Eξζs
�
xiq; yjl; ξ

�
(3)
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ζs
�
xiq; yjl; d

s� ¼ min
XX

dsijhi
X

τjlws
ijl

�
1� μsij

�
(
i2I j2JðiÞ

 
l2L

�
X
q2Q

τiqusijq
�
1� λsij

�!
þ
X
i2I

X
j2JðiÞ

dsij
�
πiμsij þ πjλ

s
ij

�) (4)

subject toX
q2Q

usijq þ μsij ¼ 1; i 2 I; j 2 JðiÞ (5)

X
l2L

ws
ijl þ λsij ¼ 1; 2 J; i 2 IðjÞ (6)

X
q2Q

τiqusijq �
X
l2L

τjlws
ijl þ τiqλ

s
ij; j 2 J; i 2 IðjÞ (7)

X
j2JðiÞ

ds
iju

s
ijq �Ciqxiq; i 2 I; q 2 Q (8)

X
i2IðjÞ

dsijw
s
ijl �Cjlyjl; j 2 J; l 2 L (9)

usijq; μ
s
ij 2 f0; 1g; i 2 I; q 2 Q; j 2 JðiÞ

ws
ijl; λ

s
ij 2 f0; 1g; j 2 J; i 2 IðjÞ; l 2 L

(10)

The objective function (1) minimizes the total inbound and outbound
transportation cost, f ðxiqÞ and gðyjlÞ, respectively, plus the recourse
function: the expected value of the second-stage problem. For a particular
demand realization ds of the random vector ξ, objective (4) minimizes the
sum of the holding cost and the cost of shipping through a spot market
carrier. Constraints (5) and (6) guarantee that the model allocates each
order to exactly one inbound shipment, and exactly one outbound ship-
ment, respectively, whether the shipment is through a reserved first-stage
transportation option or a spot market carrier. Constraints (7) make sure
that the outbound dispatch time of an order is greater than its inbound
arrival time. Constraints (8) and (9) ensure that the total demand allo-
cated to a transportation option, for a given supplier and customer,
respectively, does not exceed the capacity of that option. Finally, Con-
straints (10) impose the binary requirement on all variables.

In order to avoid the nonlinearity in objective function (4), we pro-
pose an equivalent linear path-based formulation that replaces the flow
variables with path variables. We refer to this formulation as the sto-
chastic distribution planning with consolidation - path based formulation
(SDPC - PF), and we detail it next.

Linear path formulation

We define a set of feasible paths for shipment ði; jÞ from supplier i to
customer j through the consolidation center as Pij, where a feasible path
pijql 2 Pij represents a pair of inbound and outbound transportation op-
tions ðq; lÞ that is feasible with regard to arrival/dispatch times for
shipment ði; jÞ. In other words, shipment ði; jÞ has a feasible path pijql if
inbound option q arrives at the consolidation center before outbound
option l is dispatched. Shipment (i;j) also has feasible paths through each
of its inbound options q and through an outbound spot market, and
similarly, there are feasible paths along each outbound option l and an
inbound spot market. For a shipment (i; j), inbound and outbound ship-
ping via a spot market carrier is also a feasible path. For brevity, we refer
to a feasible path as p 2 Pij. We define the following additional notation.
aiqp and bjlp are binary parameters indicating if options q and l are on path
p 2 Pij. csijp is the cost of sending shipment (i; j) on path p in scenario s,
where



csijp ¼

8>>>>>>>><>>>>>>>>:

ds
ijhi
�
τjl � τiq

�
; if no spot market carrier is used on path p 2 Pij

πidsij; if a spot market carrier is used only for inbound shipping on path p 2 Pij

πjdsij; if a spot market carrier is used only for outbound shipping on path p 2 Pij�
πi þ πj

�
dsij; if a spot market carrier is used for both inbound and outbound shipping on

path p 2 Pij
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We also define decision variables βsijp as binary variables that indicate
whether or not shipment (i;j) traverses path p 2 Pij in scenario s. The path
based formulation, SDPC-PF, can then be expressed as follows:

½SDPC�PF� min
X
i2I

X
q2Q

f
�
xiq
�þX

j2J

X
l2L

g
�
yjl
�þ ζ

�
xiq; yjl

�
(11)

subject to xiq; yjl 2f0; 1g; i2 I; q2Q; j2 J; l 2 L (12)

where

ζ
�
xiq; yjl

�¼ Eξζs
�
xiq; yjl; ξ

�
(13)

ζs
�
xiq; yjl; d

s�¼min
X
i2I

X
j2JðiÞ

X
p2Pij

csijpβ
s
ijp (14)

subject toX
p2Pij

βsijp ¼ 1 8i 2 I; j 2 JðiÞ (15)

X
p2Pij

aiqpβsijp � xiq 8i 2 I; j 2 JðiÞ; q 2 Q (16)

X
p2Pij

bjlpβsijp � yjl 8j 2 J; i 2 IðjÞ; l 2 L (17)

X
p2Pij

X
j2JðiÞ

aiqpds
ijβ

s
ijp �Ciq 8i 2 I; q 2 Q (18)

X
p2Pij

X
i2IðjÞ

bjlpdsijβ
s
ijp �Cjl 8j 2 J; l 2 L (19)

βsijp 2f0; 1g; i2 I; j2 JðiÞ; p 2 Pij (20)

The objective function (11) minimizes the total transportation cost
plus the expected value of the second-stage problem. For a specific
realization ds of the random vector ξ, objective (14) minimizes the total
allocation cost of shipments to feasible paths. Constraints (15) ensure
that exactly one path is chosen for each shipment ði; jÞ in the network.
Constraints (16) and (17) guarantee that shipment ði; jÞ traverses a path
only if both the inbound transportation option of supplier i (xiq) and the
outbound transportation option of customer j (yjl) have a value of 1.
Constraints (18) and (19) require that the total demand that traverses a
given path does not exceed the capacity of the inbound or outbound
transportation options of that path. Finally, Constraints (20) impose the
binary requirement on the variables.

Note that Constraints (18) and (19) may be modified by multiplying
their left-hand-side by xiq and yjl, respectively. However, empirical
testing showed that such modification caused a slight increase in
computational time for some instances. Therefore, we refrain from using
this adjustment in our computational testing.

We use Sample Average Approximation (SAA) to solve SDPC-PF. The
main advantage of this technique is that it provides a statistical estimate
5

of the optimality gap of the true stochastic optimization problem, which
is discretized by a very large scenario tree. In contrast, solving the
problem directly with a commercial solver with 50 or more scenarios is
computationally intensive for reasonable size problems, as it results in a
large number of path variables. Solving the problem directly also gives
little information on the quality of the solutions obtained, relative to the
true stochastic problem. We therefore use SAA to measure the quality of
the resulting distribution plans by utilizing the optimality gap estimate as
a quality metric, and also to keep the problem size manageable and
obtain good solutions in a reasonable amount of time.

4. Solution methodology: Sample Average Approximation

Sample Average Approximation is a Monte Carlo simulation-based
solution technique for solving two-stage or multi-stage stochastic opti-
mization problems (Mak et al., 1999; Kleywegt et al., 2002). In this
technique, the objective function of the stochastic model is approximated
by a sample average estimate obtained from a random finite set of
samples. The problem is then solved, with the approximate objective
function and a set of scenarios SN , as a deterministic optimization
problem either directly or using other solution techniques. The process is
repeated M times with different samples, and each time results in a
candidate solution. To assess the quality of the candidate solutions, sta-
tistical estimates of their optimality gaps can be obtained.

SAA solves the true problem with a reasonable level of accuracy
provided some conditions are met (Kleywegt et al., 2002; Shapiro and
Philpott, 2007). Those conditions, and justifications on how SDPC-PF
meets them, are as follows:

i. It is possible to generate a sample realization of the random vector
ζ. For our proposed problem, this can be done by sampling from
each ði; jÞ demand distribution.

ii. The SAA problem can be solved efficiently with a moderate
sample size. We will show in Section 5 that we can solve SDPC-PF
in a reasonable amount of time, for most test instances, with a
sample size of N ¼ 10.

iii. The function ζsðxiq; yjl; dsÞ can be easily computed for given xiq; yjl
and ds. That is, for a given first stage solution and a given reali-
zation of demand, the optimal objective function (14) can be
easily evaluated by solving the model in Equations (14)–(20).

iv. The true problem has relatively complete recourse, i.e., any so-
lution to the first stage problem is feasible to the second stage
because it can be corrected. In SDPC-PF, this is done through the
assumption that a spot market carrier is always available when
demand cannot be fulfilled with reserved first stage variables.
Thus, any choice of transportation plan would result in a feasible
second stage problem, because shipping via the spot market is a
feasible path for all shipments ði; jÞ.

We now detail how SAA is used to solve SDPC-PF. Applying SAA, the
objective function of the second stage problem of SDPC-PF is approxi-
mated as:
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ζ
�
xiq; yjl

�¼ 1
N

X
N

XXX
csijpβ

s
ijp (21)
Table 2
Sizes of the data sets used in the computational experiments.

Data Set No. No. of Suppliers No. of Customers No. of Shipments

Set 1 5 5 20
Set 2 5 10 20
Set 3 5 10 40
Set 4 10 10 50
Set 5 10 20 50
Set 6 10 20 100
Set 7 10 30 100
Set 8 10 30 200
Set 9 20 20 100
Set 10 20 20 200
s2S i2I j2JðiÞp2Pij

where SN is the set of scenarios of size N sampled in a given SAA problem.
The full SAA model is expressed as follows:

½SAAModel� min
X
i2I

X
q2Q

f
�
xiq
�þX

j2J

X
l2L

g
�
yjl
�þ ζ

�
xiq; yjl

�
(22)

subject to

constraints ð15Þ� ð20Þ; ð21Þ 8s 2 SN

To assess the quality of the SAA solution, statistical estimates of lower
and upper bounds on the objective function value of the original sto-
chastic problem may be obtained, as well as estimates of the variances of
these bounds. This is achieved by solving the SAA modelM times, where
each time a set of independent samples of size N is generated. This results
inM candidate solutions, x1;…;xM , where xm is the vector notation of the
solution of the first stage variables, xiq; yjl for candidate solution m 2 f1;
…;Mg, with objective function values η1;…;ηM .

To estimate the lower bound of the true objective function value, we
first compute the mean (η) and the variance (bσ2

N;M) of the objective

function values η1;…; ηM as:

η¼ 1
M

X
m¼1

ηm (23)

bσ2
N;M ¼ 1

MðM � 1Þ
X
m¼1

ðηm � ηÞ2 (24)

The lower bound is expressed as:

LB¼ η� tα;vbσN;M (25)

where tα;v is the α-critical value of the t-distribution with v degrees of
freedom, v ¼ M� 1.

Kleywegt et al. (2002) note there is a trade-off between SAA solution
quality and computational requirements as the size N changes. With a
larger N, the objective function value of the SAA problem gets closer to
the true objective value, but the computational requirement increases
significantly. Similarly, as the number of replications M increases, a
better lower bound can be obtained with a smaller standard deviationbσ2
N;M . However, the algorithm may become computationally inefficient.

The exact values of N and M used in our computational testing are
explained in Section 5.

The upper bound on the true objective function value of each
candidate solution is obtained by evaluating the solution with a very
large scenario tree of size N’ that is assumed to represent the true dis-
tribution of demand. Since each scenario s 2 f1;…;N’g is an i.i.d.
random sample, the problem of evaluating a candidate solution de-
composes into N’ subproblems. The size of the scenario tree N’ is much
larger than the size of the scenario tree maintained in each SAA run, N.
We denote the objective function value of a given subproblem s as φðxm;
sÞ, which is computed as shown in Equation (26). Note that because each
subproblem is solved separately, N’ can be very large without causing a
significant computational burden. The estimate of the true objective
value of the second stage problem, denoted as φðxmÞ, is computed as
shown in (27).

φsðxm; sÞ¼
X
i2I

X
j2JðiÞ

X
p2Pij

cijpβijp 8s 2 f1;…;N’g (26)

φðxmÞ¼ 1
N’

X
s¼1

φsðxm; sÞ (27)

The value of the true objective function, ηm, for candidate solution xm,
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and its variance, σ2N’
ðxmÞ, are computed as shown in Equations (28) and

(29), respectively,

ηm ¼
X
i2I

X
q2Q

f
�
xiq
�þX

j2J

X
l2L

g
�
yjl
�þ φðxmÞ; (28)

σ2
N’ðxmÞ¼

1
N’ðN’� 1Þ

X
s¼1

½φsðxm; sÞ � φðxmÞ�2: (29)

Finally, the upper bound of a candidate solution, zmU is computed as:

ηmU ¼ ηm þ zασN’ðxmÞ (30)

where zα is the α-critical value of the standard normal distribution. The
upper bound of the algorithm is the smallest ηmU ; 8m 2 f1; …; Mg, as
shown in Equation (31). The final solution of SAA, x*, is the candidate
solution that results in the smallest optimality gap (ηmU �ηLÞ for all
candidate solutions m 2 f1;…;Mg, which corresponds to the solution
with the smallest upper bound ηmU , as shown in (32).

UB¼ min
m2f1;…;Mg

ηmU (31)

x* ¼ argminm2f1;…;Mg
�
ηmU
�

(32)

5. Computational experiments and analysis

In this section, we conduct extensive computational testing to assess
the effectiveness of SAA in solving the SDPC-PF and to evaluate the
benefit of accounting for uncertainty in modeling SDPC. We solve
problem instances of various sizes and different experimental settings
using the SAA algorithm. We then compare the solution of SDPC to its
deterministic counterpart with average demand values. We refer to the
deterministic problem as the deterministic distribution planning with
consolidation (DDPC) and we describe its formulation in Appendix B. We
compare the stochastic and deterministic solutions and objective values
to evaluate the benefit of accounting for uncertainty, through computing
the value of stochastic solution.

We briefly describe the data generation method used and discuss the
different data sets used in testing and analysis, and how they compare
and contrast, in Section 5.1. Detailed explanation of data generation is
provided in Appendix A. We further elaborate on our computational
testing by detailing the setting used for the SAA algorithm as well as some
key performance measures in Section 5.2. Finally, we report and discuss
the results of our computational testing in Section 5.3. The SAA algo-
rithm was implemented in Python 2.7 on an Intel(R) Core(TM) i7 CPU,
2.90 GHz, 16.00 GB of RAM. The optimization problems were solved by
CPLEX 12.8.

5.1. Data generation and data sets

We generate the parameters of the test instances partly following the
method outlined by Song et al. (2008), since their proposed model also
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studies a distribution planning problem from the perspective of a 3PL.We
randomly generate the additional parameters used in our SDPC-PF. More
particularly, we use Song et al.’s method to generate the network of
suppliers and customers and the sets of arrival times and dispatch times
of inbound and outbound options, Xi; Yj, for suppliers and customers,
respectively. We modify their proposed cost function of inbound and
outbound options f ðxiqÞ; gðyjlÞ, by incorporating capacity. We also scale
down their holding cost hi to make it a cost per unit, rather than per
shipment. We then generate the following additional parameters: ca-
pacities Ciq and Cjl for inbound and outbound options, demand distri-
butions for each ði; jÞ shipment, and spot market inbound and outbound
transportation cost, πi and πj, respectively. The detailed data generation
method is outlined in Appendix A.

Based on this method, we generate 10 data sets of different sizes. Each
set is composed of 5 instances that share the same network data but differ
in the demand distributions and the transportation options available for
suppliers and customers. Table 2 outlines the problem size of each data
set in terms of the numbers of suppliers and customers, and number of
ði; jÞ shipments. The disutility factor of the spot market carrier is set to r
¼ 4. Recall that transportation cost through a spot market carrier is a
variable per unit cost. The 3PL thus pays for exactly the shipping amount
needed and has more flexibility in shipping time, as opposed to the
reserved transportation options, which justifies the cost difference. The
effect of the disutility factor on the expected outsourcing amount and the
benefit of using SDPC-PF are analyzed in Section 5.2.

We now better examine how inventory holding times at the consoli-
dation center and the number of inbound and outbound transportation
options may influence the benefit of using the SDPC-PF. For each set
outlined above, we develop four experimental settings. Each setting
considers three arrival/dispatch times for each supplier i and customer j.
We assume that each supplier and customer have a slow option, an
average-speed option and a fast option. The arrival times τiq 2 Xi of an
inbound fast option, average-speed option, and slow option for a given
supplier i are generated uniformly in the ranges U[100,235], U
[235,370], and U[370,500], respectively. Similarly, the dispatch times
τjl 2 Yj of outbound options that are fast, of average speed option, and
slow for a given customer j are generated uniformly in the respective
ranges U[370,500], U[235,370], and U[100,235].

The four experimental settings differ in the following way:

� (A) For each of the three arrival and dispatch times of inbound and
outbound options, two levels of capacity are considered, creating a
total of six transportation options per supplier and customer. The two
capacity levels are γ ¼ 1:00 and γ ¼ 1:15. In this experimental
setting, arrival/dispatch times of inbound and outbound options are
generated independently. For example, an average-speed option of
supplier i does not necessarily arrive before the dispatch time of the
average-speed option of customer j, given that i 2 IðjÞ. This results in
higher average wait times at the consolidation center, and therefore
greater inventory cost.

� (B) For each of the three arrival and dispatch times of inbound and
outbound options, the same two levels of capacity are considered γ ¼
1:00 and γ ¼ 1:15, creating six transportation options per supplier
and customer. However, under this setting, arrival times τiq 2 Xi of
suppliers i 2 I are synchronized with the dispatch times τjl 2 Yj of
customers j 2 JðiÞ for specific speed levels. That is, for a given supplier
i and customer j 2 JðiÞ, supplier i’s fast transportation option is
guaranteed to arrive before customer j’s slow option is dispatched.
The same synchronization is done for different speed levels, such that
average-speed and slow supplier options arrive before the dispatch
time of average-speed and fast customer options, respectively. This
creates instances of lower average holding times at the consolidation
center.

� (C) Arrival and dispatch times are generated independently, similar to
(A), but three capacity levels (γ ¼ 1:00; γ ¼ 1:15; and γ ¼ 1:3) are
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considered for each time, thus creating a total of nine options per
supplier and customer. We are interested to know how having an
additional capacity level may change the solution, and also how
increasing the number of transportation options may affect the effi-
ciency of the SAA algorithm, when average holding times at the
consolidation center are high.

� (D) Arrival and dispatch times are synchronized, similar to (B), and
three capacity levels are considered for each time, γ ¼ 1:00; γ ¼ 1:15;
and γ ¼ 1:3, creating a total of nine options per supplier and
customer. Similar to (C), we wish to understand the impact of an
additional capacity level on the solution of SDPC, and the efficiency of
SAA with the increased number of transportation options, when
average holding times are low.

5.2. Experiments

5.2.1. SAA settings
We use SAA to solve the SDPC-PF, as outlined in Section 4. We define

N ¼ 10 scenarios to estimate the expected second stage cost. This is then
repeated for M ¼ 10 SAA problems so as to estimate a lower bound on
the true expected cost.

Each scenario includes a realization of demand for each shipment ði;
jÞ. We sample these realizations from the demand distribution data
(Section A.2). Each SAA problem is solved using CPLEX 12.8, with a
maximum time limit of 1200 s (20 min). The lower bound is computed as
in Equation (25), with tα¼5;v¼9 ¼ 1:833, for 95% confidence interval and
9 (N-1) degrees of freedom.

Our choice of N andMwas based on empirical results so as to achieve
a reasonable trade-off between gap and computational time. Fig. 1 shows
the gap and the computational time of two instance sets, 6A and 8A.
Though the computational time when N ¼ 10 andM ¼ 10 is higher than
when both or either N andM take lower values, the benefit is apparent in
the reduced estimated optimality gap. Set 8A is more computationally
demanding; notice how increasing the value of N and M actually causes
an increase in the estimated gap since the optimality of each SAA run is
not achieved in the imposed time limit.

To obtain the upper bound on expected cost of the true problem, we
consider all individual solutions, M, of the M runs, and evaluate them
using a scenario tree ofN’ ¼ 1000 scenarios. For each of the xm solutions,
we calculate the expected second stage cost of the solution and compute
ηm as shown in Equation (28). We then compute the upper bound ηmU as in
Equation (30), with zα¼5 ¼ 1:64, for a 95% confidence interval. The
estimated upper bound of the algorithm is min

m¼f1;…;Mg
ηmU , as shown in

Equation (31).

5.2.2. Performance measures
To assess the advantage of taking demand uncertainty into account at

the modeling phase, we compare the SAA solution for each problem
instance to the solution of its deterministic counterpart DDPC-PF, shown
in Section B. Particularly, we solve the deterministic problem to obtain
the distribution plan when the mean demand is used for each shipment ði;
jÞ. We then evaluate the deterministic distribution plan using the same
1000 scenario tree used to obtain the upper bounds of the SAA solutions.
This shows the expected cost savings achieved when distribution plans
are constructed using SDPC as opposed to DDPC. This value is referred to
in the literature as the value of stochastic solution (Birge and Louveaux,

2011). We report this value as ðηdet�ηstochÞ
ηstoch

, where ηdet and ηstoch are the

objective values of the deterministic and the stochastic solutions,
respectively, when the second stage problem is assessed on the full N’ ¼
1000 scenario tree, computed as shown in Equation (28). Note that ηstoch
is the objective value of the best SAA run, with the lowest optimality gap.

To further highlight the potential benefits of our model, we report the
expected outsourcing that each distribution plan requires. That is, the ex-
pected shipment amount, as a percentage of total expected demand, that
travels via spot market carriers rather than a reserved first stage



Fig. 1. Trade-off between gap and computational time for different values of N and M.

Table 3
Results of computational experiments Sets A and B with r ¼ 4.

Set
No.

Gap
(%)

No. of
Paths

Value of
Stochastic
Solution(%)

Expected
Outsourcing
SDPC(%)

Expected
Outsourcing
DDPC(%)

Expected
Utilization
SDPC(%)

Expected
Utilization
DDPC(%)

LB std.
dev.(%)

UB std.
dev.(%)

Total
Time
(sec)

SAA
Time
(sec)

UB
Time
(sec)

Det.
Time
(sec)

1A 0.30 606 23.58 0.59 8.85 80.03 82.78 0.09 0.00 37 7 29 0.31
2A 0.25 622 39.11 0.78 13.46 69.47 65.90 0.08 0.01 46 7 38 0.36
3A 0.96 1227 11.79 0.44 7.31 87.38 91.25 0.18 0.04 220 90 125 0.58
4A 0.76 1512 13.38 1.02 7.30 82.57 87.11 0.18 0.03 323 138 177 0.73
5A 0.39 1502 27.54 0.15 11.85 81.89 78.14 0.13 0.03 191 44 141 0.82
6A 1.10 3009 9.25 1.19 5.82 85.45 89.59 0.19 0.05 1558 1312 231 1.38
7A 0.94 2984 18.42 1.79 7.94 79.67 80.68 0.20 0.05 987 710 261 1.52
8A 1.71 6077 4.45 1.63 3.75 87.65 93.55 0.08 0.05 11572 11198 344 2.96
9A 0.64 2995 16.57 0.99 7.24 78.14 83.88 0.11 0.02 998 574 408 1.47
10A 2.66 6003 3.00 2.46 3.74 87.63 90.83 0.10 0.07 12502 12019 453 2.71

Avg 0.97 2654 16.71 1.10 7.73 81.99 84.37 0.13 0.04 2843 2610 221 1.28

1B 0.46 740 24.41 0.00 9.27 86.39 88.68 0.13 0.00 56 8 46 0.33
2B 0.31 740 42.79 0.00 13.46 76.01 72.55 0.09 0.00 40 8 31 0.37
3B 1.28 1480 13.27 1.01 7.00 88.50 91.43 0.29 0.10 217 90 121 0.58
4B 0.54 1850 16.50 0.00 7.80 85.78 90.68 0.12 0.00 245 80 158 0.74
5B 0.88 1850 29.49 0.23 12.07 86.46 83.23 0.20 0.04 250 76 167 0.83
6B 1.06 3700 10.91 0.61 5.74 87.92 92.22 0.19 0.06 2691 2439 237 1.40
7B 0.69 3700 20.22 0.26 7.41 83.49 87.35 0.13 0.04 799 524 259 1.51
8B 2.38 7400 5.78 0.97 3.72 91.56 95.72 0.09 0.05 12392 12022 340 2.92
9B 0.68 3700 17.93 0.12 7.36 86.56 90.34 0.11 0.02 983 582 385 1.48
10B 3.12 7400 3.95 1.29 3.46 89.34 94.88 0.06 0.07 12508 12022 456 2.97

Avg 1.14 3256 18.52 0.45 7.73 86.20 88.71 0.14 0.04 3018 2785 220 1.31
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transportation option in the 1000-scenario tree demand distribution.
This provides a measure of risk associated with the transportation plan of
a given solution by emphasizing the extent to which first stage reserved
transportation options xiq; yjl are capable of satisfying demand. We also
report the expected utilization of reserved transportation options for each
instance, seeking a possible relationship between expected utilization of
options and expected outsourcing.
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5.3. Computational results

5.3.1. SAA results
The SAA algorithm was applied to the different data sets of Section

5.1 for experimental settings A, B, C and D. Results are shown in Tables 3
and 4. Note that each row reports the average over 5 instances of the
specified size and setting. For example, row 1A in Table 3 shows the



Table 4
Results of computational experiments Sets C and D with r ¼ 4.

Set
No.

Gap
(%)

No. of
Paths

Value of
Stochastic
Solution(%)

Expected
Outsourcing
SDPC(%)

Expected
Outsourcing
DDPC(%)

Expected
Utilization
SDPC(%)

Expected
Utilization
DDPC(%)

LB std.
dev.(%)

UB std.
dev.(%)

Total
Time
(sec)

SAA
Time
(sec)

UB
Time
(sec)

Det.
Time
(sec)

1C 0.41 1147 22.75 1.55 10.00 80.57 83.63 0.12 0.01 59 13 45 0.35
2C 0.15 1182 40.67 1.50 13.97 66.16 62.47 0.05 0.00 47 10 35 0.44
3C 1.06 2313 11.92 1.02 7.41 85.48 91.21 0.22 0.06 266 125 134 0.66
4C 0.94 2874 13.73 0.48 7.51 84.09 88.27 0.20 0.02 306 129 170 0.83
5C 1.01 2889 26.11 0.90 11.90 82.38 79.22 0.17 0.04 291 94 188 0.99
6C 0.94 5781 9.69 1.17 5.76 86.76 91.39 0.22 0.05 4428 4164 247 1.67
7C 0.65 5754 17.20 1.63 7.47 78.87 80.84 0.14 0.06 2647 2349 280 1.78
8C 2.29 11494 3.85 1.30 3.63 88.49 93.51 0.10 0.05 12441 12028 378 3.28
9C 0.81 5754 16.32 0.81 7.28 78.67 83.83 0.15 0.03 1779 1342 419 1.74
10C 3.52 11531 2.75 2.72 3.65 86.98 91.82 0.06 0.07 12559 12029 495 3.29

Avg 1.18 5072 16.50 1.31 7.86 81.85 84.62 0.14 0.04 3482 3228 239 1.50

1D 0.34 1320 27.19 0.00 9.54 85.24 88.14 0.11 0.00 49 13 34 0.36
2D 0.87 1350 40.59 0.00 12.91 77.34 72.77 0.26 0.00 58 12 44 0.42
3D 1.10 2771 12.39 0.64 6.76 87.20 91.30 0.26 0.07 301 149 145 0.68
4D 1.07 3394 14.64 0.07 7.79 85.70 90.28 0.21 0.01 376 169 198 0.87
5D 0.77 3447 28.57 0.22 11.79 85.55 83.14 0.17 0.03 241 63 170 1.00
6D 1.04 6812 10.27 0.88 5.19 87.91 92.00 0.18 0.07 3824 3565 241 1.68
7D 0.78 6706 19.20 1.04 6.89 84.89 86.55 0.19 0.07 1418 1139 262 1.90
8D 2.12 13498 5.89 1.16 3.50 90.78 95.18 0.07 0.06 12392 11974 382 3.50
9D 0.60 6854 18.30 0.15 7.38 85.81 89.98 0.09 0.02 786 377 391 1.77
10D 3.74 13590 3.07 1.87 3.50 89.17 94.73 0.08 0.07 12571 12031 504 3.41

Avg 1.24 5974 18.01 0.60 7.53 85.96 88.41 0.16 0.04 3202 2949 237 1.56
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average results of 5 instances of Set 1 (5 suppliers, 5 customers, 20
shipments), experimental setting A. For additional clarity, we also pro-
vide detailed results for one problem instance in Appendix C.

The first column of Tables 3 and 4 specifies the data set number. The
relative gap of the algorithm is reported in the second column and the
number of feasible paths used to form the model is shown in the third, to
demonstrate the problem size. Column 4 exhibits the value of stochastic
solution, a measure of the benefit of using our proposed stochastic model
over its deterministic counterpart. Columns 5 and 6 report the expected
outsourcing for solutions of the stochastic and the deterministic models,
respectively. Columns 7 and 8 show the expected utilization of reserved
inbound and outbound transportation options for the stochastic and
deterministic models. For insight on the fluctuation of cost over different
scenarios, we report the relative standard deviation of the lower and
upper bounds, as a percentage of their respective means, in columns 9
and 10. Finally, columns 11 to 14 respectively report the computational
time (in seconds) of the full algorithm, the time to solve the 10 SAA runs,
Fig. 2. Relationship between value of stochastic solution
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the time to compute upper bounds, and the time to solve the determin-
istic counterpart (DDPC).

5.3.2. SAA performance
The results clearly demonstrate that the optimal distribution plans of

the SDPC are more cost efficient than the plans of DDPC, once the actual
demand is realized. Instances across the different data sets and experi-
mental settings show that the SDPC yields significant expected cost
savings, as outlined by the value of stochastic solution. Observe, however,
that the advantage of the SDPC, compared to DDPC with nominal values,
is less notable for denser problem instances, when a greater number of
customer orders are consolidated in a single load. This can be observed in
the average value of stochastic solution of Sets 2 and 3, 5 and 6, 7 and 8, 9
and 10 across all experimental settings. For each of these pairs of sets, the
network size is the same, i.e., the same number of suppliers and cus-
tomers, but the number of shipments doubles. For example, the average
value of stochastic solution drops from 39.11% in Set 2A to 11.79% in Set
and number of shipments per supplier and customer.



A. Alnaggar et al. EURO Journal on Transportation and Logistics 9 (2020) 100007
3A. The same trend can be observed when comparing Sets 9A and 10A;
the value of stochastic solution drops from 16.57% to 3.00%. This implies
that the SDPC problem is more beneficial in sparse networks as opposed
to denser ones. This observation can be explained by the fact that as the
number of combined ði; jÞ shipments in an inbound or outbound trans-
portation option increases, the mean of the consolidated shipment ap-
proaches the true mean, and therefore the deterministic solution, with
mean demand, becomes comparable to the stochastic one.

To show the relationship between the value of stochastic solution and
the number of shipments in an instance, we calculate the average ratio of

number of shipments per supplier and per customer as
�

no:shipments
jIj þ

no:shipments
jJj

��
2. Then, for all instances shown in Tables 3 and 4, we graph

the ratio of the average number of shipments per supplier and customer
versus the value of stochastic solution in Fig. 2. The x-axis shows the ratio
in an ascending order and its corresponding set number. We see in the
figure that as the number of shipments per supplier and customer in-
creases, the value of stochastic solution decreases. We also observe that
the different experimental settings show very similar trends, with a
slightly higher value of stochastic solution for settings B and D, with the
lower average holding time.

Note from the tabular results that denser problem instances have
much higher computational burden than sparser ones. This is seen in the
SAA time reported in column 12 of Tables 3 and 4. Sets 7 and 8, for
example, both have 10 suppliers and 30 customers. However, Set 8 has
double the number of shipments of Set 7, i.e., 200 and 100 shipments,
respectively. The average computational time of Set 8B for solving the 10
SAA runs is 12022 s, while that of Set 7B is only 524 s. Nonetheless, the
average computational time of the upper bound calculation is slightly
higher for Set 8B, but somewhat comparable, respectively 340 and 259 s
for 8B and 7B.

Tables 3 and 4 also suggest that the difference in expected outsourcing
percentage between solutions of SDPC and DDPC is more significant for
sparser problems. This difference decreases for denser problem instances.
In other words, for denser instances, the expected outsourcing percentage
of DDPC is low (compared to sparser instances) and is closer in value to
that of SDPC. Fig. 3 plots the expected outsourcing for solutions of both
SDPC and DDPC versus the ratio of number of shipments to suppliers and
customers and highlights such an observation; the difference between the
expected outsourcing percentage of SDPC and DDPC decreases for denser
problem instances. For the expected utilization of reserved options, we
observe that denser problem instances have slightly higher expected uti-
lization than sparser instances in the solutions of both SDPC and DDPC.
Fig. 3. Expected outsourcing vs. number of shipment
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The average optimality gap is at most 1.28% for instances of all data
sets except Sets 8 and 10, with 200 shipments. For those two sets, the
average optimality gap is at most 3.74%. We note, however, that in those
sets, the maximum time limit of each SAA run (1200 s) is reached, which
implies that some or all of the SAA runs may have not been solved to
optimality, negatively affecting the quality of the candidate solutions
and, in turn, the optimality gap estimate. Because of the low optimality
gap across different instances under the current SAA setting outlined in
Section 5.2.1, there is no motive to increase the number of scenarios N
maintained in the SAA problem.

We notice that the results of Set B, with the lower holding time at the
consolidation center, are comparable to those of Set A, implying that
holding time does not have a major impact on the benefit of SDPC.
Nonetheless, the value of stochastic solution is slightly higher for Set B
compared to Set A, and the expected outsourcing of Set B is a bit lower
than that of Set A. This indicates that the reduced wait time in Set B
marginally decreases the need for outsourcing done to reduce holding
cost, thus improving the value of stochastic solution.

Sets C and D, with the greater number of options, show similar trends
to Sets A and B, in terms of the value of stochastic solution, the per-
centage of outsourcing and utilization for both SDPC and DDPC. How-
ever, Sets C and D have higher average computational time of SAA runs,
for most instances, compared to Sets A and B. This increase in compu-
tational time is at most double for most instances, with a few exceptions,
e.g., the SAA time of 6C is about 3 times that of 6A.

5.3.3. Effect of the spot market disutility factor and the holding cost on the
benefit of SDPC

We conduct analysis on experimental settings A and B, for all datasets,
when the disutility factor changes from r ¼ 4 to r ¼ 2 and the holding
cost decreases by 50%. Since experimental settings C and D show similar
trends to A and B in the computational results in Tables 3 and 4 but have
higher computational time, we focus on settings A and B only. We
compare the optimality gap estimate, the value of stochastic solution, the
expected outsourcing and expected utilization for different combinations
of r and h. Results are shown in Table 5, where each row displays the
average of 5 instances of the specified size and setting.

We observe that the change in optimality gap as the disutility factor
and holding cost decrease is very slight for both experimental settings.
We also note that for a given disutility level, reducing the holding cost
provides minor improvements in the value of stochastic solution. In other
words, reduction in holding cost only provides a very small amount of
additional cost savings for the solutions of SDPC compared to DDPC, even
for instances with higher average holding time. The value of stochastic
s per supplier and customer for SPDC and DDPC.



Table 5
Analysis on the effect of changing r and h for experimental settings A and B.

Set
No.

Gap Value of Stochastic Solution Expected Outsourcing (%) Expected Utilization (%)

r ¼ 4 r ¼ 2 r ¼ 4 r ¼ 2 r ¼ 4 r ¼ 2 r ¼ 4 r ¼ 2

h ¼
100%

50% h ¼
100%

50% h ¼
100%

50% h ¼
100%

50% h ¼
100%

50% h ¼
100%

50% h ¼
100%

50% h ¼
100%

50%

1A 0.30 0.58 1.43 1.31 23.58 24.38 9.29 11.18 0.59 0.00 9.15 7.36 80.03 82.51 82.71 83.33
2A 0.25 0.29 0.62 0.88 39.11 41.18 21.42 22.30 0.78 0.00 10.77 5.13 69.47 73.25 66.58 70.36
3A 0.96 0.75 0.96 0.85 11.79 12.28 3.39 3.40 0.44 0.36 6.23 5.92 87.38 87.23 88.51 88.66
4A 0.76 0.85 1.01 1.16 13.38 13.80 2.88 3.44 1.02 0.77 5.70 5.95 82.57 84.56 84.32 85.92
5A 0.39 0.51 0.80 0.89 27.54 28.61 12.84 13.68 0.15 0.15 5.25 4.47 81.89 83.25 83.14 84.10
6A 1.10 1.23 0.75 0.85 9.25 9.72 2.79 2.81 1.19 1.06 5.95 4.92 85.45 86.96 86.93 89.24
7A 0.94 0.93 0.59 0.60 18.42 19.24 7.19 8.13 1.79 1.35 8.02 6.41 79.67 80.74 78.42 79.98
8A 1.71 1.71 0.54 0.47 4.45 4.64 1.06 1.08 1.63 1.45 5.31 4.68 87.65 89.52 90.17 92.04
9A 0.64 0.79 0.84 0.88 16.57 17.45 4.79 6.11 0.99 0.97 10.24 8.98 78.14 80.41 76.84 81.09
10A 2.66 2.99 0.38 0.47 3.00 3.02 1.04 0.84 2.46 2.52 6.11 5.97 87.63 90.08 87.43 88.37

Avg 0.97 1.06 0.79 0.84 16.71 17.43 6.67 7.30 1.10 0.86 7.27 5.98 81.99 83.85 82.51 84.31

1B 0.46 0.76 1.40 1.78 24.41 25.00 8.93 9.32 0.00 0.00 3.53 1.76 86.39 86.39 86.92 86.95
2B 0.31 0.14 0.96 0.96 42.79 43.50 23.48 24.23 0.00 0.00 6.75 3.30 76.01 77.44 73.78 76.63
3B 1.28 1.10 1.10 1.05 13.27 13.48 4.11 4.20 1.01 0.83 2.35 2.26 88.50 88.15 90.00 89.87
4B 0.54 0.93 1.04 1.28 16.50 16.83 5.00 5.05 0.00 0.00 4.55 3.57 85.78 85.78 85.54 86.37
5B 0.88 0.65 0.86 0.87 29.49 30.05 14.02 14.42 0.23 0.23 1.92 1.76 86.46 86.46 86.96 87.55
6B 1.06 1.15 1.16 1.26 10.91 11.13 2.60 2.58 0.61 0.53 3.89 3.53 87.92 87.79 90.05 89.44
7B 0.69 0.82 0.72 0.77 20.22 20.62 7.96 8.26 0.26 0.38 2.65 2.45 83.49 83.77 85.12 84.93
8B 2.38 2.63 0.80 0.57 5.78 5.75 0.83 0.91 0.97 0.97 2.41 2.34 91.56 91.19 93.91 93.70
9B 0.68 0.81 1.28 1.27 17.93 18.37 5.65 5.84 0.12 0.38 5.29 3.99 86.56 86.83 85.38 86.60
10B 3.12 3.33 0.61 0.73 3.95 3.97 0.77 0.80 1.29 1.38 2.33 2.25 89.34 89.95 92.44 92.36

Avg 1.14 1.23 0.99 1.05 18.53 18.87 7.33 7.56 0.45 0.47 3.57 2.72 86.20 86.37 87.01 87.44
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solutions improves an average of 0.67% and 0.29% for settings A and B,
respectively, with the reduction in holding cost. This result is explained
by the fact that the lower holding cost is reflected in both SDPC and
DDPC, and the cost savings between the two problems are mainly ach-
ieved through reserving higher transportation option capacity to reduce
the need to outsource to the spot market when demand is high. Never-
theless, we note that the reduction in holding cost does slightly reduce
the amount of expected outsourcing, and this decrease is more notable
for setting A instances as compared to B. We also observe that the ex-
pected utilization is only marginally affected by the changes in holding
cost. Settings A and B have an average increase of utilization of 1.83%
and 0.30% as holding cost decreases.

Results also suggest that the disutility factor has the most impact on
both the value of stochastic solution and expected outsourcing percent-
age. This is anticipated, since the disutility cost is a variable per unit cost
and the model assumes that shipping through a spot market carrier re-
sults in no holding cost. Lowering the disutility factor to r ¼ 2 therefore
reduces the cost difference between first stage options and spot market.
Particularly, we notice that the benefit of incorporating randomness in
the model is positively correlated to the value of the disutility factor. That
is, as the spot market shipping gets closer to that of reserving a trans-
portation option ahead of time, and the 3PL is indifferent to spot market
shipping, considering customer demand stochasticity in the planning
Fig. 4. Breakdown of the transportation plan of the b

11
phase does not result in remarkable cost savings. Thus, any chosen first-
stage transportation plan can easily be adjusted when actual demand is
realized, at only a small cost.

5.3.4. Structural differences between solutions of the different configurations
of disutility factor and holding cost

The previous section examines the impact of changes in the disutility
factor and holding cost on the benefit of SDPC. Here we analyze how the
structure of the distribution plans obtained from solution of SDPC differs
as the configuration of disutility factor and holding cost changes. To do
so, we focus on instance 9A3, discussed in Appendix C, and see how the
transportation plan changes for distinct capacity and speed levels. Fig. 4
shows a breakdown of inbound and outbound transportation options for
each of the four combinations of disutility and holding cost considered in
Section 5.3.3. The x-axis refers to the instance name by the specific values
of r and h in the instance. For example, r4_h50% shows the results of the
instance 9A3 when we solve it with r ¼ 4 and 50% of the holding cost.
Each column in Figures Fig. 4a and Fig. 4b shows the breakdown of all
reserved inbound and outbound transportation options, respectively,
based on their capacity and speed levels, under each parameter setting.
The different parts of a given column show the number of options with a
given capacity and speed level, where HighCap and AvgCap refer to
options with γ ¼ 1:15 and γ ¼ 1:00, respectively, and Fast, Avg, Slow,
est SAA run of different configurations of r and h.
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refer to the three speed levels considered in the instance.
Fig. 4 suggests that both the holding cost and the disutility factor

impact the actual distribution plan of SDPC. A decrease of 50% in holding
cost, when r ¼ 4, reduces the number of inbound options by 5, but keeps
the number of outbound options unchanged. This implies that with a
high holding cost, and when average holding time is high, reserving
additional capacity may diminish the total network cost by cutting down
on holding cost. We note, however, that the reduction in holding cost has
a greater impact on the choice of speed levels of reserved options more
than their capacity levels. For example, for a given value of r, when h
decreases by 50%, approximately the same number of high capacity
options is reserved as when h is kept at 100%. However, the change in the
breakdown of the reserved options based on speed is more apparent. This
is intuitive since as holding cost decreases, the trade-off between trans-
portation and holding cost becomes less important. Therefore, the solu-
tion may choose plans that result in higher wait times in an effort to
reduce transportation cost and in turn, minimize total cost.

As opposed to reduction in holding cost, we note from Fig. 4 that the
reduction in the disutility factor affects both the choice of the reserved
transportation options’ capacity and speed levels. For example, when h is
at 100%, the number of high capacity inbound options decreases from 15
to 11, and the number of high capacity outbound options decreases from
19 to 16, when r changes from 4 to 2. We also notice an increase in the
number of average-capacity average-speed options, both inbound and
outbound. This reinforces the results of the analysis in Section 5.3.3; as
the value of the disutility factor decreases and the spot market cost de-
creases, there is less need to develop robust distribution plans, since
adjusting plans after demand is realized is not costly.

6. Conclusion and future research

In this paper, we studied the stochastic distribution planning with
consolidation problem from the viewpoint of a 3PL in a three-echelon
supply chain network. We proposed a two-stage stochastic program
with recourse to model the problem of selecting inbound and outbound
transportation options for 3PL distribution planning, subject to stochastic
customer demand. To date, the literature on distribution planning in
transshipment networks does not consider uncertainty faced in practical
applications. This study offers an extension of previous work by consid-
ering probabilistic demand in tactical decisions faced by a 3PL that is
handling the distribution needs of its clients.

Because of the nonlinearity in the objective function of our proposed
stochastic distribution planning with consolidation - flow based formulation
(SDPC-FF) model, we suggested an alternative linear formulation, the
stochastic distribution planning with consolidation - path based formulation
(SDPC-PF). The latter generates all feasible paths for shipments in the
network, and decides on the transportation options to reserve and the
allocation of shipments to paths. We applied Sample Average Approxi-
mation (SAA) to solve the SDPC-PF, and tested it extensively to evaluate
its benefits and limitations. We also compared the solutions obtained by
the SDPC-PF to its deterministic counterpart, the deterministic distribution
12
planning with consolidation (DDPC), with mean demand values, to assess
the advantage of incorporating stochasticity in the modeling phase.

Our computational testing suggests that significant cost savings can
be achieved when generating distribution plans using the SDPC rather
than DDPC. The results also demonstrate that the stochastic model
greatly reduces the amount of outsourcing needed in the second stage
problem, compared to the deterministic case. We notice, however, that
the benefit of SDPC is less notable for denser problem instances, where
large numbers of shipments are consolidated in a single load. We also
observe that changes in second-stage cost may affect the benefit of SDPC
or the structure of the choice of first-stage transportation options, or
both. For instance, reduction in holding cost does not affect the benefit of
SDPC, but changes the choice of transportation options. On the other
hand, the spot market cost plays a major role in how beneficial the SDPC
problem is, and in the choice of transportation options. This finding
suggests that if the cost of shipping through a spot market carrier is not
much greater than the cost of reserving transportation options, and the
3PL’s disutility of shipping through the spot market is low, there is less
need to establish a robust distribution plan ahead of time. That follows
since correcting the initial plan, once actual demand is realized, would
not result in remarkable additional costs.

Future research could extend SDPC to also incorporate stochasticity in
the arrival/dispatch times of transportation options and study how the
solution would change compared to the current model as well as the
deterministic case. Another possible extension is to consider the decision
variables of transportation options as integer rather than binary, with the
3PL having to choose how many vehicles, of a particular level of capacity
and a certain arrival/dispatch time, to reserve for inbound and outbound
shipping for the duration of the planning horizon.

Studying multiple consolidation centers, but choosing to send each
shipment through exactly one, is another interesting direction. A related
suggestion is a model with two consolidation centers, one closer to
suppliers and the other closer to customers. This is a more representative
model of global distribution planning; what is the benefit of accounting
for uncertainty under that setting? Other directions include considering
different cost functions for the spot market, and the possibility of
consolidating inbound and outbound spot market shipments, to achieve
economies of scale.
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Appendices.

A. Data generation

We explain below the specific procedure used to generate data for our computational experiments.

A.1. The network of suppliers and customers
Locations of suppliers and customers are randomly generated within a radius of 1000 miles from the consolidation center. We locate suppliers and

customers on opposite sides of the 1000-mile-radius circle, such that the consolidation center is a natural middle point. We do that since, from a practical
point of view, suppliers in some long-haul freight transportation applications are clustered in a different geographical area, which may be overseas. We
conducted some experiments with suppliers and customers randomly located throughout the 1000-mile-radius circle; we observed very similar results
to when they are located on opposite sides. This is attributed to the fact that our network is a pure transshipment network where direct deliveries
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between suppliers and customers are not possible. In order to justify the need for consolidation, supplier-customer shipments (i; j) are selected on the
network such that the distance between supplier i and the consolidation center plus the distance from the consolidation center to customer j is at most
1.25 times the direct distance from i to j.

A.2. Distribution of demand, holding cost, and transportation option capacity
Each shipment ði; jÞ has a uniform demand distribution; the lower bound of the distribution is generated in the range U[300,450] and the width of

the distribution is set at 30%. For example, if shipment ði; jÞ has a lower bound of 350, with a 30% width the demand follows a uniform distribution U
[350,455]. The holding cost of shipments from a given supplier i is a variable cost per volumetric unit, per time unit, generated uniformly as hi ¼ U
[0.005,0.01].

The capacity of inbound and outbound transportation options is determined as follows. For a given inbound transportation option q, the average
demand of all customer orders for which option q is feasible, denoted as diq, is calculated. Option q 2 Qi is feasible for customer j if at least one outbound

option l 2 Lj for customer j leaves the consolidation center after inbound option q arrives there. Capacity Ciq of option q is then generated as Ciq ¼ γdiq,
where γ is in between ½1:0;1:3�; the exact value of γ is specified when generating data sets in Section 5.1. This capacity is then rounded up to be in
multiples of 10 units. The capacity of an outbound option is generated in a similar manner, Cjl ¼ γdjl.

A.3. Supplier and Customer Data
For supplier i 2 I, a release time υi is generated in the range [0,100]. A supplier has a number of inbound transportation options q 2 Qi with arrival

times τiq 2 Xi between [100,500]. The number of options and their arrival times are specified in the data sets in Section 5.1.

For option qwith arrival time τiq, the transportation cost is expressed as fiðτiqÞ ¼ θiρiðτiqÞ Ciq
ξ , where θi is the scale factor of supplier i and is randomly

generated in U[0.5,1.5]. ρiðτiqÞ is the transportation rate corresponding to arrival time τiq, Ciq is the capacity of option q, and ξ is the baseline capacity
that is assumed to be 4000 units. This capacity level corresponds to approximately an average consolidated demand of 8 customers, following the
demand distributions outlined above.

We generate ρiðτiqÞ as follows. First, a baseline transportation rate ρi is generated as ρi ¼ δi � ρ, where δi is the distance and ρ is the average unit rate
that is uniformly distributed in the range U[30,50]. A baseline transportation time ιi is then generated as ιi ¼ δi=v, where v is the average speed per time
unit, generated in the range U[2,3]. If the transportation time is shorter than the baseline, i.e., τiq � υi � ιi, the transportation rate is higher than the
baseline rate; ρiðτiqÞ ¼ ρi þ 2 � ρi �½1 � ððτiq � υiÞ =ιiÞ� þ ρi � ε, where the first term denotes the baseline rate, the second represents the extra cost to make
the transportation time shorter than the baseline time, and the third term is some random perturbation in which ε is generated in the range U[-0.1,0.1].
On the other hand, if the transportation time is longer than the baseline, i.e., τiq � υi > ιi, we set ρiðτiqÞ ¼ ρi � 0:1 � ρi �½1 � ðιi =ðτiq � υiÞÞ� þ ρi � ε. So,
transportation options that need less time to reach the consolidation center, once the consolidated shipment is released, are faster options, and therefore
have higher rates. The supplier cost function for the baseline capacity ξ is plotted in Fig. 5a.

Finally, we generate the cost of shipping through a spot-market carrier πi, for each supplier i 2 I. As mentioned earlier, this is a per unit cost
composed of two elements: (a) the expected inbound spot market rate per unit and (b) the 3PL’s disutility to ship through a spot market carrier. For each

supplier i the cost is generated as πi ¼ fið0:5ιiÞ
ξ r, where a spot market carrier is assumed to be a fast option with 0.5 the baseline speed, and r is the 3PL’s

disutility factor of using a spot market carrier. The exact value of r is specified when generating data sets in Section 5.1.
Random customer data is obtained in a similar manner as supplier data. For customer j 2 J, we generate due date κj uniformly in range [500,600].

Each customer has a number of outbound transportation options l 2 Lj, with dispatch times τjl 2 Yj between [100,500]. The number of options and their
dispatch times are specified in Section 5.1.

Outbound transportation cost is expressed as gjðτjlÞ ¼ θjρjðτjlÞ Cjl
ξ , where θj and ξ are generated in the same ranges as in supplier data. For ρjðτjlÞ, a

baseline transportation rate ρj and a baseline transportation time ιj are generated. The expressions are ρj ¼ δj � ρ, and ιj ¼ δj=v, where ρ and v are
generated in the same uniform ranges as in supplier data. If the transportation time is shorter than the baseline, i.e., κj � τjl < ιj, the transportation price
ρjðτjlÞ is calculated as ρjðτjlÞ ¼ ρj þ 2 � ρj �½1 � ððκj � τjlÞ =ιiÞ�þ ρi � ε. However, if transportation time is longer than the baseline, i.e., κj � τjl � ιj, the price
equals ρjðτjlÞ ¼ ρj � 0:1 � ρj �½1 � ðιj =ðκj � τjlÞÞ�þ ρj � ε. Likewise, faster transportation options, i.e., ones that require less time to reach the customer from
the time they depart the consolidation center, cost more than slower ones. The customer cost function for the baseline capacity ξ is plotted in Fig. 5b.
Fig. 5. Transportation options cost function for suppliers and customers.
The cost of spot-market carrier shipping πj, for each customer j 2 J, is generated as πj ¼ fjð0:5ιjÞ
ξ r, where a spot market carrier is assumed to be a fast

option with 0.5 the baseline speed.
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B. Deterministic distribution planning with consolidation (DDPC)

The deterministic distribution planning with consolidation - path based formulation (DDPC-PF) is modeled below, using the same notation and decision
variables defined in Section 3. We use the path formulation as opposed to the flow formulation, to avoid the nonlinearity in the objective function and
since the number of paths is small when there is only a single scenario. In this model, the mean demand of each shipment ði;jÞ, which we denote as dij, is
used instead of samples from the demand distribution.

½DDPC�PF� min
X
i2I

X
q2Q

f
�
xiq
�þX

j2J

X
l2L

g
�
yjl
�þX

i2I

X
j2JðiÞ

X
p2Pij

cpβijp (33)

subject to
X
p2Pij

βijp ¼ 1 8i 2 I; j 2 JðiÞ (34)

X
p2Pij

aiqpβijp � xiq 8i 2 I; j 2 JðiÞ; q 2 Q (35)

X
p2Pij

bjlpβijp � yjl 8j 2 J; i 2 IðjÞ; l 2 L (36)

X
p2Pij

X
j2JðiÞ

aiqpdijβijp �Ciq 8i 2 I; q 2 Q (37)

X
p2Pij

X
i2IðjÞ

bjlpdijβijp �Cjl 8j 2 J; l 2 L (38)

xiq; yjl 2 f0; 1g; i 2 I; q 2 Q; j 2 J; l 2 L
βijp 2 f0; 1g; i 2 I; j 2 JðiÞ; p 2 Pij

(39)

Similar to SDPC-PF, the objective function (33) minimizes the total transportation cost and the cost of allocating shipments to paths. Constraints (34)
ensure that exactly one path is chosen for each shipment ði; jÞ in the network. Constraints (35) and (36) guarantee that shipment ði; jÞ traverses a path
only if both the inbound transportation option q of supplier i and the outbound transportation option l of customer j are open. Constraints (37) and (38)
ensure that the total demand that traverses a given path does not exceed the capacity of the inbound and outbound transportation options of that path.
Finally, Constraints (39) impose the binary requirement on the variables.

C. Detailed SAA results example

In this section we provide and analyze the detailed result of one problem instance; instance 3 from set 9A, with 20 suppliers, 20 customers and 100
shipments. We exhibit the results of the 10 SAA runs in Table 6. The first column shows the run number and the second shows the objective value of the
run, which is the expected transportation and holding cost based on the 10 scenarios within the run as defined by objective function (22). This objective
value is the sum of the first stage and the second stage costs, shown in columns 3 and 4, respectively. We evaluate each of those runs on a 1000-scenario
tree and report the upper bound estimate and standard deviation in columns 5 and 6. We also report the expected outsourcing and expected utilization for
each run in columns 7 and 8, respectively.

In Table 7, we show statistics of the instance. The upper bound is the minimum of the upper bound estimates reported in column 5 of Table 6, which
is the upper bound of run 5 in this instance. We also report the lower bound and its standard deviation; the lower bound is the mean of the objectives in
column 2 of Table 6, minus tα¼5;v¼9bσN;M , as shown in Equation (25). The absolute gap of the SAA algorithm, i.e., the difference between upper and lower
bounds, as well as the relative gap are also shown. We compute the relative gap as UB�LB

UB , since our goal is to evaluate the quality of the UB; the expected
cost of the true problem. The cost values reported in columns 2 to 6 are all in units of 1000s of dollars.

We note that the SAA run with the optimal transportation plan, which is run 5 in this instance, resulted in relatively low expected outsourcing and
expected utilization values, compared to other runs. This suggests that this plan reserved a higher level of capacity compared to plans of other SAA runs.

To further analyze the results, we provide a summary of the distribution plan of each SAA run in Table 8. That table summarizes, for each run, the
total number of inbound and outbound reserved options with different speed and capacity levels. The breakdown of the optimal transportation plan, run
5, is also plotted in Fig. 6. We note that the different runs result in somewhat similar transportation plans. This low variability in the solutions of the SAA
runs indicates the stability of sampling among the different runs. We also notice that for some suppliers and customers, more than one transportation
option is reserved. Run 5, for instance, has a total of 28 inbound reserved options for 20 suppliers, and 22 outbound options for 20 customers. Since this
instance is from experimental setting A, with the high expected wait time at the consolidation center, the results suggest that in some cases, overbooking
capacity is justifiable to reduce expected holding cost.

Table 8 also shows that average-speed options are the most reserved, especially with higher capacity level. This is explained by the fact that the
arrival and dispatch times for inbound and outbound options in this instance are independent, meaning that slow inbound options do not necessarily
create feasible paths with fast outbound options, making reserving fast options with higher costs less justifiable.
14



Table 6
Detailed SAA solution of Instance 3 - Set 9A.

SAA run Objective First stage cost Second stage cost Upper bound (UB) UB standard deviation Expected outsourcing (%) Expected utilization (%)

1 515.087 463.319 51.767 525.381 0.344 1.51 72.30
2 520.095 470.902 49.193 523.708 0.233 1.22 70.38
3 517.050 467.325 49.725 525.101 0.283 1.41 71.52
4 518.735 469.991 48.744 521.468 0.171 1.21 71.95
5 519.759 473.242 46.516 520.006 0.039 1.03 71.85
6 518.214 471.784 46.430 522.902 0.171 1.25 70.24
7 516.361 461.241 55.119 531.877 0.444 1.85 72.21
8 519.626 472.740 46.886 522.398 0.102 1.10 72.94
9 516.499 470.524 45.975 522.383 0.216 1.58 76.76
10 521.323 473.636 47.687 520.549 0.041 0.92 72.79

Table 7
SAA solution statistics of Instance 3 - Set 9A.

Upper bound 520.006
Std. dev. upper bound 0.039
Lower bound 517.126
Std. dev. lower bound 0.626
Absolute Gap 2.880
Relative Gap 0.55%
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Fig. 6. Breakdown of the transportation plan of the best SAA run (run 5).

Fig. 6. Breakdown of the transportation plan of the best SAA run (run 5).
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Table 8
Transportation plans for each SAA run, Instance 3 - Set 9A.

SAA run Inbound Options Outbound Options

fast average slow fast average slow

γ ¼ γ ¼ γ ¼ γ ¼ γ ¼ γ ¼
1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15

1 6 3 5 11 2 1 3 3 3 10 0 3
2 6 3 6 10 2 1 1 5 2 11 1 3
3 6 3 5 11 1 1 1 5 3 10 1 3
4 7 2 5 11 2 1 1 5 2 11 0 3
5 6 3 5 11 2 1 1 5 2 11 0 3
6 7 2 5 11 2 1 1 5 2 11 1 3
7 7 2 6 10 2 1 2 4 3 10 0 3
8 5 1 6 13 1 1 1 6 2 11 0 2
9 7 4 3 9 1 0 0 3 2 12 1 4
10 5 1 5 14 1 1 1 6 2 11 0 2
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