
LiDAR-MIMO: Efficient Uncertainty
Estimation for LiDAR-based 3D

Object Detection

by

Matthew A. Pitropov

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Matthew A. Pitropov 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis involves joint work with several additional members within the lab. Chengjie
Huang helped with the implementation of the softmax focal loss. Our co-op students
Charles Zhang and Martin Ma contributed to the creation and testing of the CADC dat-
aloader for OpenPCDet as well as the calibration error calculations. Spencer Delcore
contributed to the uncertainty evaluation pipeline and validated many of the calculations
that we use for the various metrics within the paper. Furthermore, Chengjie Huang, Dr.
Vahdat Abdelzad, Professor Krzysztof Czarnecki and Professor Steven Waslander reviewed
and edited the material for this thesis which is based off our publication that is being re-
viewed.

iii

Abstract

The estimation of uncertainty in robotic vision, such as 3D object detection, is an
essential component in developing safe autonomous systems aware of their own perfor-
mance. However, the deployment of current uncertainty estimation methods in 3D object
detection remains challenging due to timing and computational constraints. To tackle this
issue, we propose LiDAR-MIMO, an adaptation of the multi-input multi-output (MIMO)
uncertainty estimation method to the LiDAR-based 3D object detection task. Our method
modifies the original MIMO by performing multi-input at the feature level to ensure the
detection, uncertainty estimation, and runtime performance benefits are retained despite
the limited capacity of the underlying detector and the large computational costs of point
cloud processing. We compare LiDAR-MIMO with MC dropout and ensembles as baselines
and show comparable uncertainty estimation results with only a small number of output
heads. Further, LiDAR-MIMO can be configured to be twice as fast as MC dropout and
ensembles, while achieving higher mAP than MC dropout and approaching that of ensem-
bles.

iv

Acknowledgements

I would like to thank my advisors Professor Krzysztof Czarnecki and Professor Steven
Waslander for their indispensable guidance, support and feedback during my time explor-
ing this research direction. I would also like to thank Dr. Vahdat Abdelzad, Chengjie
Huang, Dr. Rick Salay, Dr. Sean Sedwards, Sun Sheng Gu, Harry Nguyen and Prarthana
Bhattacharyya that have provided additional feedback throughout our many discussions.

v

Dedication

This thesis is dedicated to my family and friends for their support throughout my life.

vi

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Overview . 3

2 Background 5

2.1 3D object detection for LiDAR point clouds 5

2.2 Uncertainty estimation for classification . 6

2.3 Uncertainty estimation for object detection 7

3 LiDAR-MIMO 3D object detection 9

3.1 Input combination . 9

3.2 Loss functions . 11

3.3 Output clustering and merging . 12

4 Experiments 14

4.1 Datasets . 14

4.2 Models . 15

vii

4.3 Evaluation metrics . 16

4.4 Results . 20

4.4.1 The inference time . 20

4.4.2 Average precision and detection partitions 21

4.4.3 Uncertainty evaluation metrics . 22

4.4.4 The ablation study on batch size and input repetition for MIMO-BEV 26

4.4.5 The ablation study on detection heads and network capacity for
MIMO-BEV . 28

5 Conclusion 30

References 31

viii

List of Figures

1.1 The detection performance (mAP) compared to the inference time (execu-
tion time) for the PointPillars models trained on the KITTI dataset 3

2.1 The network architecture of a voxel based 3D object detector. 6

3.1 The network architecture of a LiDAR-MIMO 3D object detector with addi-
tions highlighted in red . 9

3.2 Pseudo image stacking during training for MIMO-BEV with two inputs . . 10

3.3 Pseudo image stacking during testing for MIMO-BEV with two inputs . . 10

3.4 Voxel merging during training for MIMO-ID with two inputs 11

3.5 Point cloud merging during training for MIMO-ID with two inputs 11

4.1 An exemplary PR curve of the baseline PointPillars model trained on the
KITTI dataset. 17

4.2 An exemplary reliability diagram for a PointPillars ensemble model trained
on the KITTI dataset. 18

4.3 Top: Ground truth objects are displayed for this KITTI frame on the cam-
era image as well as the BEV projection along with the difficulty number.
Bottom: Each row is a multi-output model with two TP predictions. The
left one is the truncated car in the camera view and the right one is the
occluded yellow car in the distance. The blue box is the mean cluster pre-
diction while the grey box is the 95% confidence interval for the width and
height of the prediction. Details on cluster size, softmax score, Shannon
entropy, mutual information, epistemic total variance and aleatoric total
variance are included at the bottom. 25

ix

List of Tables

4.1 Number of forward passes, outputs and minimum cluster size used for models
in our evaluation . 16

4.2 The inference time (in ms) for the PointPillars model trained on the KITTI
dataset . 21

4.3 The mAP and detection partitions for the PointPillars models trained over
the KITTI dataset . 21

4.4 The mAP and detect partitions for the SECOND models trained over the
KITTI dataset . 22

4.5 The mAP and detection partitions for the SECOND models trained over
the CADC dataset . 22

4.6 The mAP and detection partitions for the MIMO models trained over the
KITTI dataset . 23

4.7 Uncertainty evaluation for the PointPillars models trained over the KITTI
dataset . 23

4.8 Uncertainty evaluation for the SECOND models trained over the KITTI
dataset . 23

4.9 Uncertainty evaluation for the SECOND models trained over the CADC
dataset . 23

4.10 Uncertainty evaluation for the MIMO models trained over the KITTI dataset 24

4.11 Disagreement evaluation for the PointPillars models trained over the KITTI
dataset . 26

4.12 The mAP and detection partitions for the PointPillars MIMO-BEV models
trained over the KITTI dataset with increasing batch size (BS) and input
repetition (IR) of 0. 26

x

4.13 Uncertainty evaluation for the PointPillars MIMO-BEV models trained on
the KITTI dataset with increasing batch size (BS). 27

4.14 The mAP and detect partitions for the PointPillars MIMO-BEV models
trained over the KITTI dataset with a batch size of 12 and input repetition
(IR). The bold indicates the best performing model for the associated metric. 27

4.15 Uncertainty evaluation for the PointPillars MIMO-BEV models trained on
the KITTI dataset with a batch size of 12 and increasing input repetition
(IR). 27

4.16 The mAP and detect partitions for the PointPillars MIMO-BEV models
trained over the KITTI dataset with increased detection heads as well as
network capacity. The model type is specified by the number of heads along
with a W for the WIDE models that have extra network capacity. 28

4.17 Uncertainty evaluation for the PointPillars MIMO-BEV models trained on
the KITTI dataset with increased detection heads as well as network capac-
ity. The model type is specified by the number of heads along with a W for
the WIDE models that have extra network capacity. 29

xi

Chapter 1

Introduction

1.1 Motivation

Deep neural networks (DNNs) are used to create state of the art models for perception
on autonomous vehicles (AV). One major issue at the moment is the lack of real-time
and accurate information on perception uncertainty that would enable the AV to make
correct decisions when faced with an uncertain scenario. For 3D object detection, the
DNN produces the confidence score (max softmax) along with the position, dimensions
and yaw of the prediction. Hendrycks and Gimpel [19] have shown that the mean softmax
probability for incorrect predictions was shown to be very high on several datasets including
86% the MNIST dataset [27], thus these scores are not accurate estimates of the actual
predictive uncertainty [19].

Bayesian Neural Networks (BNNs) [32] are a method for calculating reliable uncer-
tainty estimates. Instead of a standard DNN where point estimates are used as network
parameters, for BNNs a prior probability distributions is places on the network parameters.
Bayesian inference is then used to calculate the posterior. For large network sizes used for
AV perception tasks, Bayesian inference is computationally costly and intractable. As a
result, most of the current research has concentrated on approximations that yield uncer-
tainty estimates at a lower cost of computation. Deep ensembles [25] and Monte Carlo
(MC) dropout [11] are well known approximation methods and have also been applied to
object detection [9, 30]. These approximates follow the same concept which involves sam-
pling the output from multiple models, each with their own approximation of the posterior
distribution in order to calculate uncertainty as a statistic across outputs (e.g., variance
of the outputs). Performing multiple network passes for each model is computationally

1

expensive and therefore difficult to deploy on AVs where decisions must be made in real-
time.

To overcome this issue, LiDAR-MIMO has been developed, an adaptation of the multi-
input multi-output (MIMO) uncertainty estimation method [18] to the task of 3D object
detection in LiDAR point clouds. MIMO is a method that has demonstrated state-of-the-
art uncertainty estimates in image classification, but at a fraction of the computational
cost of the existing methods. MIMO works by training a single network with multiple
inputs and additional outputs (one per input). During testing the test image is fed in
multiple times (one per input), the resulting outputs proved the distribution to estimate
the predictive uncertainty.

Within the original MIMO method, the images are easily stacked as tensors increasing
the number of channels of the input. Attempting to adapt this method to 3D LiDAR object
detection is not as obvious. Combining multiple point clouds for input is computationally
expensive and could negate any performance advantage of MIMO. We propose to instead
combine the inputs at the feature level. This eliminates the bottleneck of combining point
clouds or voxels and transfers it towards the middle of the network. Rather than combine
raw inputs as in the original MIMO, we perform multi-input on the bird’s-eye-view (BEV)
feature maps which we found key for efficient uncertainty estimation for LiDAR-based 3D
object detection. We credit this extension’s effectiveness to the fact that the voxel feature
network lacks the capacity to contribute significantly to uncertainty estimates.

The resulting LiDAR-MIMO design is trained with two different 3D object detector
network architectures as well as two AV datasets and compared with MC dropout and
ensemble models. Our results show that LiDAR-MIMO has comparable accuracy to the
existing methods in terms of uncertainty estimation quality, as measured by scoring rules
and calibration errors. However, t does so while being twice as fast as MC dropout and
ensemble and having a greater detection performance (mAP) than both vanilla DNN (base-
line) and MC dropout, as shown in Fig. 1.1.

1.2 Contributions

The main contributions of this thesis are as follows:

1. We are the first to adapt and show the effectiveness of the MIMO architecure in the
task of LiDAR-based 3D object detection.

2

Execution time (ms)

P
er

fo
rm

an
ce

 (m
A

P
)

61

62

63

64

65

66

67

68

30 40 50 60 70 80 90 100 110 120

Figure 1.1: The detection performance (mAP) compared to the inference time (execution
time) for the PointPillars models trained on the KITTI dataset

2. We modify the MIMO architecture to reduce the data processing time by combining
inputs at the feature level instead of the raw inputs. This is key for real-time deploy-
ment on an AV. This approach also takes better advantage of the limited capacity of
the network compared to the original MIMO.

3. We perform an in-depth evaluation of LiDAR-MIMO with multiple 3D object de-
tectors and AV datasets showing results for scoring rules, calibration errors, mAP
and execution time. LiDAR-MIMO is shown to have comparable uncertainty per-
formance, higher mAP than MC dropout and only slightly slower than the original
baseline detector. As a result, LiDAR-MIMO can be configured to be twice as fast
as MC dropout or ensemble.

1.3 Overview

This thesis is structured as follows:

• Chapter 2 provide background knowledge on LiDAR-based 3D object detection and
uncertainty for image classification as well as object detection.

• Chapter 3 introduces the LiDAR-MIMO object detector as well as the network mod-
ifications, clustering and merging methods used for all models.

3

• Chapter 4 discusses the experiments. This includes the datasets used, models trained,
evaluation metrics and the results.

• Chapter 5 presents a conclusion along with potential future directions.

4

Chapter 2

Background

2.1 3D object detection for LiDAR point clouds

LiDAR-based 3D object detection has emerged as a pivotal component of autonomous driv-
ing systems, with point-based [36, 39], voxel-based [22, 44, 47, 26], and hybrid approaches
showing steadily improvement [40]. Voxel-based approaches that exploit the bird’s-eye
view (BEV) projection, such as PointPillars (PP) [26] and SECOND (SC) [44], achieve
competitive detection performance at low computational cost, which makes them attrac-
tive for deployment on AVs. Although hybrid approaches, like PV-RCNN [40], have higher
mean average precision (mAP), they also add substantial computational cost. For exam-
ple, PV-RCNN [40] achieves 82.97% mAP on the KITTI benchmark, compared to 80.29%
mAP for SC, but SC runs 2x faster than PV-RCNN [37].

Fig. 2.1 highlights the main components of a voxel-based detector using PP and SC as
examples. The input point cloud is first voxelized into pillar (PP) or cuboid (SC) voxels.
These are fed into a voxel feature extraction (VFE) network, which is PointNet [35] for
PP and sparse 3D convolutions for SC. The BEV projection of the resulting features, or
BEV feature maps, are then passed to a backbone, which applies 2D convolutions. Finally,
the backbone features are passed to a detection head, which outputs classes and bounding
boxes of the detected objects. The BEV feature maps are sometimes referred to as a “2D
pseudo image” [35].

5

Backbone

(2D CNN)

Voxel Feature
Network

Detection Head
(SSD)

PredictionsBEV

Features

Voxels

Voxelize
Point

Clouds

Figure 2.1: The network architecture of a voxel based 3D object detector.

2.2 Uncertainty estimation for classification

The predictive uncertainty of a classification network has two components [21]: epistemic
uncertainty, which is due to the uncertainty over the model parameters caused by the lim-
ited availability of data; and aleatoric uncertainty, which is due to the inherent noise in
the data itself. The predictive distribution output by a network should adequately reflect
both sources of uncertainty, which is the case for Bayesian inference for NNs. However,
since exact such inference is computationally intractable, practical realizations of BNNs
that place a distribution on their weights are necessarily approximations, relying on mak-
ing prior assumptions about the class of distributions for the weights and using different
approximate inference methods, including variational Bayes [1] and Markov Chain Monte
Carlo methods [32]. These methods are highly sensitive to hyper-parameters and difficult
to scale to large datasets and network architectures [29].

A more practical class of approximate BNNs, which we discuss in the remainder of this
section, rely on some form of model ensembling that samples models from the approximate
posterior and combines their outputs to compute the resulting predictive distribution. For
classification, the predictive distribution is simply the mean of the categorical distribu-
tions from each ensemble member [10]. For regression, each member is usually designed
as a variance network [33], which is trained with two outputs, the mean and variance,
using the so-called aleatoric regression loss [21]. The overall predictive distribution is then
characterized by the mean and variance of the resulting mixture distribution [25]. We
now briefly introduce ensembles and MC dropout, which are the two main practical meth-
ods for approximating BNNs found in literature, and MIMO, which aims at reducing the
computational cost of these methods.

Deep ensembles [25]: A state of the art baseline in uncertainty estimation is to train
multiple models with the same architecture and ensure their diversity by random initializa-
tion of weights and training data shuffling. In contrast to traditional ensembling methods
like bootstrapping, each ensemble member is trained on the complete training dataset for
maximum accuracy. Ensembling is shown to outperform MC dropout on uncertainty pre-
diction metrics [25]. In particular, it shows much stronger diversity of outputs than MC

6

dropout, since each model is trained independently [18]. Although easily parallelized, deep
ensembles remain very costly in terms of both processing and memory use.

MC dropout [11]: MC dropout employs dropout both during training and inference and
obtains multiple predictions by performing multiple forward passes with different dropout
network realizations for the same input. Normally dropout layers are added throughout the
network as a regularization method to reduce over-fitting [42]. Interestingly, MC dropout
has been shown to be equivalent to approximate Bayesian inference in deep Gaussian
processes [11]. MC dropout can be thought as a form of implicit ensembling with a single
network, but it still requires multiple passes, which can be computationally prohibitive for
robotic vision applications.

MIMO [18]: Similar to MC dropout, a multi-input multi-output (MIMO) network rep-
resents an ensemble as a single network, but unlike MC dropout, it requires only a single
forward pass during inference. The main idea is to stack multiple inputs as a combined
input into a single network with multiple copies of its classification head, one per input.
The network is trained by stacking different inputs and then giving each classification
head the ground truth label of the corresponding input for its loss function. During in-
ference, instead of stacking different inputs, the same input is stacked to satisfy the input
tensor size requirement. Each head makes its own prediction for the same input, which
results in the desired sample set of outputs. MIMO relies on the fact that modern DNNs
are overparameterized and uses the available network capacity to fit multiple independent
subnetworks. Because each output head is trained by independently sampled inputs, given
sufficient capacity, the MIMO predictions can match the diversity of a deep ensemble [18].

When compared with MC dropout and ensembles, the MIMO method was demon-
strated to provide a prediction time similar to a vanilla deterministic network. MIMO
achieved this while outperforming the classification accuracy of MC dropout, and approach-
ing that of an ensemble [18]. It also had Negative Log-Likelihood (NLL) and Expected
Calibration Error (ECE) [31] scores comparable to deep ensembles, indicating uncertainty
estimation of similarly high quality. Recently, MIMO has been adapted for the task of 2D
object detection showing similar performance results [5].

2.3 Uncertainty estimation for object detection

Uncertainty estimation has recently also attracted interest in the context of object detec-
tion. For this task, uncertainty estimation methods are used both for object classification
and bounding box-regression, which results in bounding boxes being represented by prob-
ability distributions. In contrast to classification, object detection also needs to deal with

7

multiple object hypotheses, and thus steps such as non-maximum suppression (NMS) need
to be refined or extended to deal with bounding boxes as probability distributions.

Most closely related to our work, Feng et al. [7] propose a probabilistic LiDAR-based
3D vehicle detector with dropout layers and a variance regression output for predicted
variances. They find that adding the variance regression output improves vehicle detection
accuracy. The authors did not evaluate uncertainty estimation, but the results show that
the occlusion level and vehicle distance correlate with the aleatoric uncertainty, and the
vehicle detection accuracy correlates with the epistemic uncertainty.

Similarly, Zhong et al. [46] modify the SECOND architecture with a variance regression
output and capture aleatoric uncertainty via an adapted aleatoric loss function. The
loss improves the uncertainty prediction for angular parameters by using the von Mises
distribution.

Harakeh and Waslander [17] conduct an in-depth survey and evaluation of predictive
uncertainty for deep 2D object detection architectures using different aleatoric regression
losses, MC dropout, and ensemble methods. To evaluate the methods, they use mAP,
calibration error, and scoring rules. The results highlight i) the importance of scoring
rules for capturing the reliability of output distributions, ii) issues with NMS while seeking
output sample sets, and iii) computational and performance limitations of ensemble and
MC dropout methods. Our work follows in this vein of rigorous evaluation of predictive
uncertainty, and addresses the high computational cost of MC dropout and ensembles.

We are unaware of any work adapting MIMO for uncertainty estimation for 3D object
detection or LiDAR inputs.

8

Chapter 3

LiDAR-MIMO 3D object detection

Fig. 3.1 depicts our proposed adaptation of the MIMO method to LiDAR-based 3D object
detection, with the components of the underlying 3D object detector (e.g, PointPillars or
SECOND) in black and the extensions required by LiDAR-MIMO in red. We propose a
design variant for combining multiple inputs named MIMO-BEV. In MIMO-BEV, we stack
BEV feature maps of point cloud inputs as multiple inputs. In the following sections, we
describe the input combination, the loss functions, and the clustering of the predictions
from the multiple heads.

Backbone

(2D CNN)

Voxel Feature
Network

Detection Head
(SSD)

Predictions

Detection Head
(SSD) Predictions

Ensemble Predictions
Cluster

BEV

Features

MIMO-BEV

Voxels

Voxelize
Point

Clouds

Figure 3.1: The network architecture of a LiDAR-MIMO 3D object detector with additions
highlighted in red

3.1 Input combination

For the MIMO-BEV variant, the main idea is that the equivalent of stacking images for
MIMO in image classification is stacking the BEV pseudo image in 3D object detection.
Fig. 3.2 depicts the MIMO-BEV architecture for training. In step 1, one point cloud for
each detection head is individually voxelized, followed by step 2 where those voxels are sent

9

into the VFE network. Note that the voxelization and VFE functions take one input point
cloud and are called separately for each input. The input point clouds can be from different
frames or the same frame, with the likelihood depending on the chosen MIMO parameters.
These parameters are the number of heads, input repetition, and batch repetition and are
discussed in Sec. 4. At this point each point cloud has been converted into separate BEV
pseudo images (feature maps), which are then stacked together in step 3 as input for the
Backbone. During testing, we instead follow the steps in Fig. 3.3. A single point cloud is
voxelized in step 1 and sent through the VFE network for step 2. The output, which is
the pseudo image, is duplicated multiple times depending on the number of heads in step
3. Then, these the pseudo images are stacked in step 4 and used as input to the backbone.

Voxel Feature
NetworkVoxelizePoint Cloud 1

Point Cloud 2

BEV Pseudo Image 1

BEV Pseudo Image 2

Stack

Backbone Input

1 2 3

Figure 3.2: Pseudo image stacking during training for MIMO-BEV with two inputs

Voxel Feature
NetworkVoxelize

Point Cloud 1

BEV Pseudo Image 1

BEV Pseudo Image 1

(Duplicated)

Stack

Backbone Input

Duplicate

1 2 3 4

Figure 3.3: Pseudo image stacking during testing for MIMO-BEV with two inputs

We also experimented with an additional variant that combines point clouds before the
VFE. This variant, called MIMO-ID, adds an additional head ID feature to each point to
allow the network to differentiate among the inputs. In contrast to MIMO-BEV, MIMO-ID
can also fit subnetworks into the VFN, rather than just the Backbone. For the MIMO-
ID variant, we combine the point clouds before the VFE network and add an additional
feature to each point in the point cloud to separate the point clouds from one another.
Fig. 3.4 depicts the MIMO-ID architecture for training. In step 1, one point cloud for each
detection head is individually voxelized. In step 2, a head ID feature is added to each point

10

in the voxels. The final step is to merge the voxels as the input to the VFE network. This
combination method of adding head IDs allows the detection heads to focus on features
from their corresponding point cloud. It also ensures that the voxels are filled evenly by
all inputs. During testing, we found that the voxel merging strategy was slow and took a
different approach to slightly increase the data processing speed. We follow the steps in
fig. 3.5. A single point cloud is duplicated for each detection head in step 1, followed by the
additional head ID features being added to the points. In step 2 we merge the point clouds
into a single cloud by simply concatenating their arrays. In step 3 the point cloud must
be shuffled. This is to resolve the problem of voxels being filled from only the first point
cloud in the point array. In the final step, the point cloud is voxelized and send to the VFE
network. During training and testing, the maximum number of points per voxel must be
multiplied by the number of detection heads, compared to the original implementation.

VoxelizePoint Cloud 1

Point Cloud 2
1

Point Cloud 1 Pillar Voxels

Point Cloud 2 Pillar Voxels

Merge

Point Cloud 1 & 2 Pillar Voxels

VFE Network

Input

3

Add head ID

2

Figure 3.4: Voxel merging during training for MIMO-ID with two inputs

Voxelize

Point Cloud 1

VFE Network

Input

1

Duplicate

Add head ID
Point Cloud 1

with head ID 0

Point Cloud 1

with head ID 1

Merge

Merged Point Cloud

with head IDs

Shuffle

2 3 4

Figure 3.5: Point cloud merging during training for MIMO-ID with two inputs

3.2 Loss functions

Classification loss: We use a softmax version of the original focal loss [28], which allows
us to use uncertainty evaluation metrics such as the Brier Score that require a probability

11

distribution over all classes. This is different from the default choice in PointPillars and
SECOND implementations, which use one sigmoid per class.

Regression on linear parameters: To obtain variances for the bounding box regres-
sion values, we add an extra convolution layer as output to the detection head(s) for
heteroscedastic regression [21]. For such a regression, the noise is data-dependent and
must be learned as part of the loss function, see Equation (3.1) [7, 21]. The ground-truth
bounding box ygt and predicted bounding box ux parameters include seven regression vari-
ables: centroid position, x, y, z, length, width, height and orientation. The log variance,
λ = log σ2, for each parameter is regressed for numerical stability, to avoid the possibility
of dividing by zero [21]. When data has high uncertainty, the first term becomes 0 and
the model’s loss only contains the second term. This causes the loss to be less affected by
data with higher uncertainty.

Lvar =
1

2
exp (−λ) (ygt − ux)2 +

1

2
λ (3.1)

Regression on angular parameters: For regression on linear parameters, the loss func-
tion is derived from the Negative Log-Likelihood (NLL) of the Gaussian density function.
In contrast, for regression on angular parameters, which are periodic, a periodic approx-
imation of the Gaussian distribution should be used [46]. Thus, we use Equation (3.2),
derived from the NLL of the von Mises PDF (see [46] for details).

Lvarθ = log I0(exp(−λ))− exp(−λ) cos (θ − θt)
+ELU (λ− λ0)

(3.2)

3.3 Output clustering and merging

In the MIMO architecture, it is necessary to merge outputs to obtain the final predictions
(see Fig. 3.1). This is straightforward for image classification, because of the single object
per input to be classified. In contrast, for object detection, we may have multiple objects
per input and thus need to cluster and merge the detections of the same object from
multiple heads. To group predictions we cluster the objects that have a minimum of 0.5
IoU. We then use the consensus clustering method, shown to perform best compared to the
affirmative (at least one) and unanimous (all members must agree) methods [4]. Consensus
clustering requires more than the number of outputs divided by 2 in order for the cluster
to be valid. To merge predictions, we used the mean method. Roza et al. [38] implemented

12

several different box merging strategies, and showed significant variations on sample-based
uncertainty estimates resulting from different strategies. Based on their results, we used
the mean method, which had the best performance overall. Orientation angles need a
special consideration, however, since they could differ by 180° in the outputs. To handle
this case, we instead take the angle from the box with the highest confidence to remove
the negative effect of mean methods on bimodal distributions. For example, two clustered
predictions with 0° and 180° would result in worse prediction with a mean angle of 90°.

13

Chapter 4

Experiments

In this section, we evaluate our proposed LiDAR-MIMO architecture against other un-
certainty estimation methods on publicly available AV datasets. We demonstrate that
LiDAR-MIMO produces on par uncertainty estimates while having lower inference latency,
which is paramount for safety-critical and resource-constrained applications such as AVs.

4.1 Datasets

We experiment on two different datasets: KITTI [12] and CADC [34]. The KITTI dataset is
a widely-used multimodal dataset for autonomous driving in clear weather. In contrast, the
recently released CADC dataset focuses on snowy weather conditions. It makes detection
challenging due to snowfall, leading to higher uncertainty results.

The full training set of each dataset is used to train each model. For mAP and partition
counts, we report the results the on the full validation (val) set. For uncertainty evaluation,
we follow Feng et al. [8] and split the val set equally into the recalibration (recal) set and
the evaluation (eval) set. The exact data split was not given by Feng et al. [8] so we split
the data by using the first and second half of the randomly shuffled frames. Due to the
large number of samples in the dataset we do not perform cross-validation and use the
same split of data for our experiments [15, Chapter 5.3]. The recal set is used to determine
score thresholds and calibrate the models. The eval set is then used to test the calibrated
model by calculating the scoring rules and calibration errors.

14

4.2 Models

We evaluate LiDAR-MIMO against MC dropout and ensembles on two detectors, Point-
Pillars (PP) and SECOND (SC). We use the PP and SC implementations provided in
OpenPCDet [43], and extend them with MC dropout, ensembling, and MIMO-BEV. We
refer to the resulting detectors for MC dropout, ensemble and MIMO-BEV as multi-output.

Baseline: The baseline models for evaluating detection performance use the original PP
and SC implementations. For KITTI, we use the PP and SC models provided with Open-
PCDet. For CADC, we extend OpenPCDet with a data loader for CADC and train our
own baseline models, with a batch size of 6. All baseline models are trained with the
sigmoid focal loss for 80 epochs. We found CADC to be challenging for our MC dropout
and MIMO-BEV models resulting in 2-3% lower mAP compared to the baseline. We be-
lieve that this is due to the voxel parameters set for 360° detection for the CADC dataset.
Consequently, we limit our CADC results to the SC models and include only include mAP
results for PP models.

Multi-output: Each multi-input model shares the same voxel-feature network, back-
bone, and head from the original PP and SC, with some exceptions for MC dropout and
MIMO-BEV as described shortly. Further, all multi-output detectors use the softmax focal
classification loss, smooth L1 regression losses, and the previously described aleatoric re-
gression losses, and share the same clustering and merging stage. Each multi-input model
is trained for an extra 40 epochs compared to the baseline models in order to have the
models converge with the new loss functions.

MC dropout: We create a variant of the backbone by inserting a dropout layer, with 0.5
probability, after the ReLU of each deconvolution block. During inference, we keep the
dropout layers active for MC dropout. This model is trained with a batch size of 6 for 120
epochs.

Ensemble: We train four unique models to form our ensemble. Each model is trained
with a different random seed for frame order shuffling, for a batch size of 6 with 120 epochs.

MIMO-BEV: MIMO-BEV requires additional code for pseudo images combination and
adding multiple heads. There are three hyper parameters for MIMO: number of heads,
input repetition (IR) and batch repetition (BR). We selected the number of heads to be 2
as the base networks have low capacity. IR is used to select a percentage of frame groupings
in a batch to have matching frame, while BR duplicates each frame in a batch for smoother
training. Since we are using a low batch size we were able to train with an IR of 0% and a
BR of 0. This model is trained with a batch size of 3 with 120 epochs. We include results
for various batch sizes and input repetitions.

15

Tab. 4.1 specifies the runtime parameters for the evaluated models. The number of
forward passes is the number of times that a model is run for input to output(s). The
number of outputs is the number of NMS outputs after all forward passes are run. For
example, an MC dropout model is run 4 times to get 4 outputs, and a MIMO model is
run once for 2 outputs, since it is set for 2 heads. We use two heads since our experiments
have shown that PointPillars and SECOND do not have sufficient capacity to accommo-
date three or more independent subnetworks, and adding more capacity would come with
increased runtime. This is consistent with the original MIMO work [18], where the optimal
number of subnetworks for the studied image classification networks is 2-3.

Table 4.1: Number of forward passes, outputs and minimum cluster size used for models
in our evaluation

Model
Forward

Outputs
Minimum

Passes Cluster Size
Baseline 1 1 -

MC dropout 4 4 3
Ensemble 4 4 3

MIMO-BEV 1 2 2

4.3 Evaluation metrics

We evaluate models based on the detection performance, inference time, and uncertainty
estimates for both classification and regression.

Detection: 3D object detection algorithms are generally evaluated using the average preci-
sion (AP) metric, first introduced in the PASCAL VOC 2007 object detection challenge [6].
The calculation of AP is based on the area under the precision-recall curve calculated for 40
recall points. Fig. 4.1 contains an example of a PR curve calculated with the output from
a baseline PointPillars model trained on the KITTI dataset. Precision is the percentage
of correct predictions and is calculated by the number of correct predictions divided by
the total number of predictions. Recall is the percentage of ground-truth objects correctly
predicted, it is calculated by the number of correct predictions divided by the number of
ground-truth objects.

Scoring rules: For evaluating uncertainty, we use scoring rules [13]. A scoring rule S(p, q)
compares the probability distribution p with the true distribution q. A scoring rule can
be proper or strictly proper as well as local or non-local. A proper scoring rule S(p, q)

16

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Figure 4.1: An exemplary PR curve of the baseline PointPillars model trained on the
KITTI dataset.

is maximised when p = q or other values such that S(q, q) ≥ S(p, q). A strictly proper
scoring rule S(p, q) is maximised only when p = q such that S(q, q) = S(p, q). A local
scoring rule evaluates the distribution only at the actual output (e.g. max softmax), while
a non-local rule evaluates other features.

Calibration error: A well-calibrated model for classification with 100 predictions that
have 0.8 confidence score should be correct 80% of the time. Any differences can be used
to calculate the calibration error (CE) in order to determine the uncertainty calibration
quality. To create a calibration plot [16] as displayed in Fig. 4.2, first probabilistic predic-
tions are run for all data samples followed by dividing these predictions into T intervals
within the horizontal axis and lastly calculating the empirical probability by comparing
these predictions to the ground-truth. The red bars display the error and the red colour’s
alpha value is set based on the number of predictions in each bin. Rather than take the
sum of all bins, CE variations include the maximum CE which is only the value of the bin
with the highest error as well as the Expected CE (ECE) which weights each bin by the
number of objects within.

Classification uncertainty: We evaluate this uncertainty based on the softmax distri-
bution extracted for each prediction using two metrics: negative log-likelihood (NLL) and
Brier score, which are both proper [13].

The NLL score is a local and proper scoring rule which only evaluates the softmax dis-
tribution at the ground truth label. A lower NLL score indicates a better fitting predictive
distribution for that specific ground truth label. In equation (4.1), there are N predictions
and C classes with ŝn,c being the predicted classification score for the cth class and yn,c as
the corresponding one hot encoded ground-truth label. The range of the NLL score is from

17

Figure 4.2: An exemplary reliability diagram for a PointPillars ensemble model trained on
the KITTI dataset.

−∞ to +∞.

NLL = − 1

N

N∑
n=1

C∑
c=1

yn,c log(ŝn,c) (4.1)

The Brier score [2] is a non-local and strictly proper scoring rule which evaluates the
entire softmax distribution by taking the squared error between a predictive probability
from the network and its one-hot encoded ground truth label. It is used to measure the
accuracy of probabilistic predictions specifically in classification. In equation (4.2), the
Brier Score is the squared error between a predictive probability from the network and its
one-hot encoded ground truth label. There are N predictions and C classes with ŝn,c being
the predicted classification score for the cth class and yn,c as the corresponding ground
truth label. The range of the Brier Score is from 0 to 2 for multiple classes with a lower
score representing more accurate uncertainty estimation.

BS =
1

N

N∑
n=1

C∑
c=1

(ŝn,c − yn,c)2 (4.2)

To evaluate the classification calibration, we use an extension of Average Calibration
Error (ACE) called Marginal Calibration Error (MCE) [24]. ACE calculates the absolute
error averaged over all score intervals equally and only considers the uncertainty calibration
quality on the object’s ground-truth class. In contrast, MCE measures the uncertainty of
a classifier’s predicted distribution over all classes of interest.

18

Regression uncertainty: For regression parameters, we evaluate uncertainty based on
the predicted means and variances for each prediction that can be matched to a ground-
truth object. We use NLL and energy scores [14] as scoring rules.

The NLL is a proper scoring rule that is also local. In (4.3), zn is defined as the ground-
truth regression target, Σ (xn,θ) and µ (xn,θ) are the mean and variance of the output
prediction. The first term will increase as the mean predicted regression values diverge
from the ground-truth target. The second term is a regularization term that is included to
prevent the network from predicting infinite uncertainty causing the loss to become 0 [21].

NLL =
1

2N

N∑
n=1

ẑ>n Σ (xn,θ)−1 ẑn + log det Σ (xn,θ) (4.3)

where ẑn = zn − µ (xn,θ)

The energy score is a strictly proper and non-local score, analogous to the Brier score
for classification. It is derived from energy distance. To calculate it, we use an efficient
Monte-Carlo approximation for multivariate Gaussians in (4.4) [14]. There are N objects
in the test set with M ensemble members. The zn is ground truth while zn,i is the ith i.i.d
sample from N(µ(xn, θ),Σ(xn, θ)). It minimizes similarly to NLL, however, unlike NLL it
will also penalize high entropy distributions. This results in better calibrated and lower
entropy predictive distributions compared to NLL [17].

ES =
1

N

N∑
n=1

(
1

M

M∑
i=1

‖zn,i − zn‖ −
1

2(M − 1)

M−1∑
i=1

‖zn,i − zn,i+1‖

)
(4.4)

For the calibration error, we use a method created by Kuleshov et al. [23], which is
an extension to calibration methods for classification. Instead of the confidence scores
being used to place predictions into bins based on thresholds, the CDF is used to place
predictions. The calibration error is then calculated as the difference between the empirical
frequency of how many predictions are in each bin and the actual number of objects in
each confidence interval.

Disagreement: Two distance metrics are used by Havasi et al. [18] in order to measure
the diversity of the multi-output models. The first is disagreement, which is calculated
by counting the percentage of how many models disagree on the top class. The second
is the Kullback–Leibler divergence which compares each class of the model outputs. We
adapted these versions for object detection as well as introduced new distance calculations
for regression values. For disagreement we calculate the percentage of predictions where the

19

foreground class is different (ignoring background class), if the cluster is missing predictions
then that is counted as a disagreement. For the Kullback–Leibler divergence, if a cluster
is missing a prediction we create a softmax distribution to use with the foreground classes
to 0.1 and the background class set to 0.7. This softmax distribution of [0.1, 0.1, 0.1, 0.7] is
a non-confident prediction at the threshold for removal. Lastly for regression we compare
the position difference, difference in diagonal length of the dimensions as well as angle
difference.

Detection partitions: We focus on three partitions in order to see clear differences in
the uncertainty metrics [20, 17]. True Positives (TP) are predictions that match a ground-
truth (GT) box with an IoU over the TP IoU threshold. Mislocalized false positives (FPML)
are predictions that match with a GT box, but their IoU is below the TP IoU threshold
and higher than 0.1. The last partition is background false positives (FPBG), where the
prediction has a lower than 0.1 IoU with all GT boxes and thus it is highly likely that the
prediction should be background.

4.4 Results

4.4.1 The inference time

Tab. 4.2 shows the inference time of each uncertainty estimation method for PointPillars
and the KITTI dataset. All timings were calculated using a computer with an i7-8700K
CPU and Titan Xp GPU. Data processing time is the time to load the point cloud and
perform voxelization. For each model except MC dropout, the calculation for total time is
data processing time added to the number of forward passes multiplied by the time for data
to pass through the network. For the MC dropout model an efficient implementation can
have the VFE network output cached and reused for each forward pass that encounters the
dropout layers. Due to this caching, the calculation adds the data processing time to the
VFE time, which is then added to the number of forward passes multiplied by the backbone
and heads time. As seen in Tab. 4.2, MIMO-BEV is 60% faster than ensemble and 55%
faster than the MC dropout. Despite our attempts to decrease the data processing time
during testing, MIMO-ID requires an additional 30 ms. The larger voxels also cause an
increase in time for the VFE network, although it is only a 1 ms increase.

20

Table 4.2: The inference time (in ms) for the PointPillars model trained on the KITTI
dataset

Model
Fwd
Passes

Data
Processing

VFE
Backbone +

Heads
Total

Time ↓
1 Fwd Pass

Baseline 1 16 4 16 36
MC dropout 4 16 4 20 100

Ensemble 4 16 4 20 112
MIMO-BEV 1 16 4 25 45
MIMO-ID 1 46 5 25 76

4.4.2 Average precision and detection partitions

For each network architecture and dataset, we show separate tables with mAP and counts
for individual detection partitions.

Tab. 4.3 and Tab. 4.4 contain the results for their respective models trained on the
KITTI dataset. In both cases, the MIMO-BEV model exceeds the mAP score of the MC
dropout model, and the baseline model, while approaching the Ensemble model. The
MIMO models have higher FPBG than the baseline model; however, their FPML is lower
than all others except ensemble. The ensemble models have the largest increase in mAP
after clustering; for example, the individual member outputs scored 62-63% mAP for
PointPillars on KITTI. The ensemble also has the lowest FPBG count. Fig. 1.1 plots mAP
and execution time for the PointPillars models trained on KITTI. The smaller improvement
of MIMO over the SECOND baseline may indicate that the latter makes better use of its
available capacity than PointPillars.

Table 4.3: The mAP and detection partitions for the PointPillars models trained over the
KITTI dataset

Model
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

Baseline 62.42 8128 4204 47028
MC dropout 61.63 7998 4348 44631

Ensemble 66.97 8421 3465 32006
MIMO-BEV 64.24 8287 3909 56858

Tab. 4.5 shows the results for the SECOND models trained on the CADC dataset. The
MIMO-BEV model outperforms the MC dropout model in mAP score, but under-performs

21

Table 4.4: The mAP and detect partitions for the SECOND models trained over the KITTI
dataset

Model
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

Baseline 65.37 8397 3837 36713
MC dropout 65.64 8385 3813 33786

Ensemble 68.94 8642 3198 24295
MIMO-BEV 66.00 8529 3555 42148

compared to the baseline model. Despite a lower mAP, the MIMO models has more TP
and fewer FP predictions. The different effect on FP counts between KITTI and CADC
datasets for SECOND could be due to differences in the parameters for voxel sizes and
maximum points per voxel in order to accommodate 360° predictions in CADC.

Table 4.5: The mAP and detection partitions for the SECOND models trained over the
CADC dataset

Model
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

Baseline 55.72 17645 7809 29204
MC dropout 52.06 17154 8132 24904

Ensemble 58.38 18486 6435 17182
MIMO-BEV 53.04 18051 7326 25977

In Tab. 4.6 we show the mAP and detection partition counts for the MIMO-ID mod-
els trained on the KITTI dataset. The MIMO-ID PointPillars model trained on KITTI
performs only 0.32% worse than the MIMO-BEV model. The MIMO-ID SECOND model
performs better than the MIMO-BEV version by 0.72%. In both MIMO-ID models, the
FPBG is lower showing that point cloud combination may be better at removing FPBG

detections. The number of FPBG detections is equivalent to or lower than the baseline
models.

4.4.3 Uncertainty evaluation metrics

The uncertainty results are laid out in Tab. 4.7, Tab. 4.8, and Tab. 4.9. Scores are averaged
over IoU thresholds from 0.5 to 0.95, with a 0.05 increment. For each threshold we follow
Harakeh and Waslander [17] by calculating a score threshold that maximizes the F1 score

22

Table 4.6: The mAP and detection partitions for the MIMO models trained over the KITTI
dataset

Model
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

MIMO-BEV (PP) 64.61 8332 3857 56988
MIMO-ID (PP) 64.29 8250 3905 53593

MIMO-BEV (SC) 65.45 8534 3581 44113
MIMO-ID (SC) 66.17 8586 3497 36509

in order to remove low scoring predictions. Temperature scaling [16] is also performed per
class at each score threshold to calibrate the predictions. The results are averaged over
three models.

Table 4.7: Uncertainty evaluation for the PointPillars models trained over the KITTI
dataset

Model
NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE

TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓
MC dropout 0.347 0.414 1.050 0.190 0.238 0.803 -4.858 -1.953 0.449 0.686 0.223 0.065
Ensemble 0.351 0.428 1.003 0.194 0.246 0.765 -4.957 -2.256 0.434 0.664 0.200 0.067

MIMO-BEV 0.363 0.439 0.980 0.199 0.256 0.758 -4.940 -2.178 0.451 0.684 0.202 0.064

Table 4.8: Uncertainty evaluation for the SECOND models trained over the KITTI dataset
Model

NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE
TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓

MC dropout 0.326 0.383 1.116 0.171 0.214 0.861 -5.681 -1.927 0.284 0.570 0.227 0.058
Ensemble 0.349 0.399 1.075 0.190 0.225 0.821 -5.632 -2.286 0.301 0.573 0.209 0.064

MIMO-BEV 0.346 0.400 1.051 0.187 0.227 0.812 -5.472 -2.224 0.328 0.568 0.205 0.067

Table 4.9: Uncertainty evaluation for the SECOND models trained over the CADC dataset
Model

NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE
TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓

MC dropout 0.413 0.586 0.743 0.253 0.378 0.554 -3.885 1.534 0.420 0.930 0.190 0.070
Ensemble 0.475 0.623 0.688 0.300 0.410 0.504 -4.090 -0.426 0.429 0.797 0.196 0.077

MIMO-BEV 0.414 0.564 0.736 0.254 0.364 0.545 -4.170 -0.110 0.379 0.838 0.190 0.072

MC dropout often outperforms the other models for classification NLL and Brier Score
in the TP and FPML, while MIMO-BEV performs well for FPBGs. The MC dropout has
predictions with higher confidence leading to lower scores. The MIMO-BEV model outputs
lower confidence predictions, causing a better score for FPBGs.

For the regression scores, the ensemble model performs well on the KITTI dataset, with
some best scores being taken by MC dropout and MIMO-BEV. Once again the scores are

23

low and are similar. For CADC the MIMO-BEV model performs best for TPs, while the
lowest FPMLs scores are for the ensemble model.

The calibration errors are similar among all the models. The MCE values tend to be
lowest for MIMO-BEV and ensemble, while the CE is lowest for MC dropout and MIMO-
BEV.

The uncertainty results for the MIMO-ID PointPillars and SECOND models trained on
the KITTI dataset are shown in Tab. 4.10. While the MIMO-ID variant produces similar
uncertainty estimation results as MIMO-BEV for PointPillars, it does not for SECOND,
possibly because of capacity issues in the VFE of the latter. The TP and FPML scores
for classification are much higher for MIMO-ID (SC) and are outliers compared to the
other models. The MIMO-ID (SC) model outputs predictions with much lower confidence
compared to the other models. For the regression scores, the MIMO-ID (SC) model out-
performs the PP model as expected based on lower regression uncertainty scores for SC
models by comparing in Tab. 4.7 and Tab. 4.8. It also performs similarly to the other
results for SECOND models.

Table 4.10: Uncertainty evaluation for the MIMO models trained over the KITTI dataset
Model

NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE
TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓

MIMO-BEV(PP) 0.365 0.445 0.987 0.201 0.261 0.763 -5.002 -2.340 0.433 0.670 0.207 0.064
MIMO-ID(PP) 0.376 0.439 1.004 0.212 0.257 0.772 -5.056 -2.363 0.454 0.719 0.199 0.063

MIMO-BEV(SC) 0.419 0.569 0.729 0.257 0.369 0.540 -4.311 -0.117 0.369 0.867 0.185 0.065
MIMO-ID(SC) 0.805 1.048 0.472 0.602 0.715 0.302 -5.541 -2.065 0.299 0.599 0.188 0.063

Fig. 4.3 visualizes qualitative results for the PointPillars models trained on the KITTI
dataset. The close TP prediction has a high softmax score, lower Shannon entropy, and
total variances. The further TP prediction has a lower softmax score, and increased Shan-
non entropy as well as aleatoric total variance. The mutual information is zero or close to
zero for each prediction, while the epistemic total variance is also low but increases with
distance. Epistemic total variance is the lowest for the MIMO-BEV model. Our results
agree with previous work in this area displaying a large increase in aleatoric variance with
distance away from the LiDAR sensor.

In Tab. 4.11 we compare different disagreement metrics for the multi-output models
with 2 outputs and minimum cluster sizes of 2 and 1. Across all metrics, the MIMO-BEV
model has lower disagreement signifying that the network capacity is too low to support
fully independent subnetworks. The values are much lower than the original MIMO paper
which had a disagreement of 3.2% for ensemble and MIMO compared to our results showing
0.06% disagreement. With a mimimum cluster size of 1, the disagreement is much larger
due to clusters of size 1. These clusters shown in the % Cluster Size 1 column contribute

24

Figure 4.3: Top: Ground truth objects are displayed for this KITTI frame on the camera
image as well as the BEV projection along with the difficulty number. Bottom: Each row
is a multi-output model with two TP predictions. The left one is the truncated car in the
camera view and the right one is the occluded yellow car in the distance. The blue box
is the mean cluster prediction while the grey box is the 95% confidence interval for the
width and height of the prediction. Details on cluster size, softmax score, Shannon entropy,
mutual information, epistemic total variance and aleatoric total variance are included at
the bottom.

25

almost all the disagreement. The DKL is also increased significantly compared to minimum
cluster size 2 due to the softmax distribution that we created for the calculation.

Table 4.11: Disagreement evaluation for the PointPillars models trained over the KITTI
dataset

Model
Min Cluster 2 Min cluster 1

D DKL Dpos Ddiag Dangle D DKL % CS 1
MC dropout 0.0001 0.0157 0.1647 0.0697 0.6235 0.5672 1.2888 0.5672

Ensemble 0.0006 0.0403 0.1212 0.0855 0.7533 0.6198 1.4340 0.6196
MIMO-BEV 0.0000 0.0005 0.0121 0.0073 0.0519 0.0820 0.1814 0.0820

4.4.4 The ablation study on batch size and input repetition for
MIMO-BEV

Tab. 4.12 and Tab. 4.13 contain the results for MIMO-BEV models trained for different
batch sizes and an input repetition of 0.0 With increasing the batch size (BS) the mAP
decreases due to the increase of frame groupings (pairings) without matching frames. Note
that frame pairings during training are produced by sampling a batch, then duplicating
it and shuffling. Using this procedure with a batch size of 3 creates a higher probability
of matching frames than for batch size of 12. Due to the limited network capacity, fewer
matching groupings result in a lower mAP. There are also fewer FPBG detections with a
BS of 3 although the models with higher BSs have similar counts of FPBG. The scoring
rules are best for the batch size of 9, although the scores are comparable.

Table 4.12: The mAP and detection partitions for the PointPillars MIMO-BEV models
trained over the KITTI dataset with increasing batch size (BS) and input repetition (IR)
of 0.

BS
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

3 64.61 8332 3857 56988
6 64.01 8296 3904 61573
9 62.96 8243 3921 61571
12 61.86 8203 3928 59225

Tab. 4.14 and Tab. 4.15 contain the results for MIMO-BEV models trained with a
batch size of 12 and increasing input repetitions of 0.0, 0.05, 0.1 and 0.2. A higher input

26

Table 4.13: Uncertainty evaluation for the PointPillars MIMO-BEV models trained on the
KITTI dataset with increasing batch size (BS).

BS
NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE

TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓
3 0.365 0.445 0.987 0.201 0.261 0.763 -5.002 -2.340 0.433 0.670 0.207 0.064
6 0.343 0.419 0.983 0.186 0.240 0.763 -4.884 -2.397 0.445 0.664 0.190 0.073
9 0.343 0.418 0.994 0.186 0.237 0.765 -5.047 -1.868 0.460 0.695 0.198 0.074
12 0.371 0.438 1.015 0.207 0.255 0.780 -4.909 -1.986 0.446 0.710 0.199 0.075

repetition increases the percentage of frame groupings that contain the same frame. As
already explained, with the larger batch size, the mAP is lowered due to the increased
randomness of these frame groupings. This randomness is offset by having higher input
repetition, however. Do to the limited capacity of the detectors, matching frame groupings
need to be increased to improve mAP, but at the cost of subnetwork independence.

Table 4.14: The mAP and detect partitions for the PointPillars MIMO-BEV models trained
over the KITTI dataset with a batch size of 12 and input repetition (IR). The bold indicates
the best performing model for the associated metric.

IR
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

0.0 61.86 8203 3928 59225
0.05 63.2 8234 4000 57918
0.1 63.87 8250 3953 56968
0.2 64.63 8297 3898 56279

Table 4.15: Uncertainty evaluation for the PointPillars MIMO-BEV models trained on the
KITTI dataset with a batch size of 12 and increasing input repetition (IR).

IR
NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE

TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓
0.00 0.371 0.438 1.015 0.207 0.255 0.780 -4.909 -1.986 0.446 0.710 0.199 0.075
0.05 0.361 0.425 0.991 0.199 0.244 0.768 -4.815 -2.092 0.474 0.703 0.200 0.076
0.10 0.365 0.419 1.029 0.203 0.242 0.789 -4.804 -2.233 0.465 0.689 0.182 0.072
0.20 0.367 0.424 0.988 0.202 0.245 0.764 -4.697 -2.166 0.471 0.701 0.208 0.068

27

4.4.5 The ablation study on detection heads and network capac-
ity for MIMO-BEV

To determine the effect of an increased number of detection heads on the network, we
trained four MIMO-BEV models with a batch size of 3 and input repetition of 0. For each
model, we vary the number of detection heads being two or three as well as the regular
and wide versions of the backbone. We also train with our standard 120 epochs and an
increased 150 epochs for the wide models. The wide version is created by doubling the
number of filters for each VFE network and backbone component. By using the wide
backbone, the network should be able to overcome capacity constraints and train with
more detection heads [18].

Tab. 4.16 contains the average precision and detection results for the models. Our
results show that there is a decrease of 0.5% mAP when adding an extra head to the
network. This shows that the extra capacity of our network is not high enough to handle
more detection heads. It also shows that switching the network to have the wide backbone
causes a decrease in mAP of 1%. Surprisingly, the wide models are unable to achieve
better performance for mAP, although they have a lower amount of FPBG detections.

Table 4.16: The mAP and detect partitions for the PointPillars MIMO-BEV models trained
over the KITTI dataset with increased detection heads as well as network capacity. The
model type is specified by the number of heads along with a W for the WIDE models that
have extra network capacity.

Type Epochs
mAP TP FPML FPBG

(%) ↑ Counts Per Partition

2 120 64.61 8332 3857 56988
2-W 120 63.57 8303 3796 52159
2-W 150 64.15 8262 3931 51705

3 120 64.14 8300 3969 72885
3-W 120 63.07 8295 3866 58678
3-W 150 63.37 8269 3925 54392

Tab. 4.17 contains the results for the scoring rules and calibration errors for our models.
In these results we can see that the wide models perform better across all metrics compared
to the regular models. The 2 head models perform better for regression metrics, while the
wide models with extra epochs performed best for classification. Thus, adding either extra
capacity or an extra head to the regular variant slightly improved the uncertainty results,
i.e., lower scores.

28

Table 4.17: Uncertainty evaluation for the PointPillars MIMO-BEV models trained on the
KITTI dataset with increased detection heads as well as network capacity. The model type
is specified by the number of heads along with a W for the WIDE models that have extra
network capacity.

Type Epochs
NLL (Cls) ↓ Brier Score ↓ NLL (Reg) ↓ Energy Score ↓ MCE CE

TP FPML FPBG TP FPML FPBG TP FPML TP FPML (Cls) ↓ (Reg) ↓
2 120 0.365 0.445 0.987 0.201 0.261 0.763 -5.002 -2.340 0.433 0.670 0.207 0.064

2-W 120 0.359 0.417 1.015 0.195 0.240 0.781 -5.064 -2.551 0.451 0.656 0.204 0.058
2-W 150 0.359 0.414 1.037 0.196 0.236 0.797 -5.020 -0.925 0.403 0.722 0.210 0.061
3 120 0.359 0.460 0.944 0.200 0.271 0.728 -4.833 -1.952 0.472 0.704 0.186 0.073

3-W 120 0.373 0.434 0.983 0.207 0.251 0.760 -4.990 -2.184 0.406 0.667 0.201 0.059
3-W 150 0.350 0.452 0.943 0.193 0.267 0.724 -5.026 -2.131 0.411 0.702 0.185 0.058

29

Chapter 5

Conclusion

LiDAR-MIMO offers fast and high-quality detection and uncertainty estimation, which
is crucial for safety-critical and resource-constrained robotic vision, such as found in au-
tonomous driving. In our experiments, LiDAR-MIMO achieves consistently higher mAP
than MC dropout, while approaching ensembles. Further, similar to the other two methods,
LiDAR-MIMO produces high-quality uncertainty estimates as measured by calibration er-
rors and scoring rules, but without the large runtime overhead of the other methods. Our
design for adapting MIMO to LiDAR-based 3D object detection relies on the composition
of BEV feature maps, which is applicable to efficient 3D object detectors, such as Point-
Pillars and SECOND. The stacking approach is likely to work well for other LiDAR-based
3D object detectors that are based on LiDAR BEV projections, but also LiDAR range
images. Further, MIMO-ID can be used for any LiDAR-based detector, but it comes with
increased data processing time. In general, MIMO is limited by the capacity of the under-
lying detector, which in our experiments allowed us to fit only two sub-networks. In future
work, we plan to explore LiDAR-MIMO with larger capacity networks and more detection
heads, and adapting LiDAR-MIMO to other 3D detector designs, such as ones based on
LiDAR range images.

30

References

[1] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
Uncertainty in Neural Networks. In International Conference on Machine Learning,
pages 1613–1622. PMLR, 2015.

[2] Glenn W Brier. Verification of Forecasts Expressed in Terms of Probability. Monthly
weather review, 78(1):1–3, 1950.

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11621–11631, 2020.

[4] Ángela Casado-Garćıa and Jónathan Heras. Ensemble Methods for Object Detection.
In ECAI 2020, pages 2688–2695. IOS Press, 2020.

[5] Sebastian Cygert and Andrzej Czyzewski. Robust object detection with multi-input
multi-output faster r-cnn. arXiv preprint arXiv:2111.13065, 2021.

[6] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. International
journal of computer vision, 88(2):303–338, 2010.

[7] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards Safe Autonomous Driving:
Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection.
In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 3266–3273, 2018. doi: 10.1109/ITSC.2018.8569814.

[8] Di Feng, Lars Rosenbaum, Claudius Glaeser, Fabian Timm, and Klaus Dietmayer. Can
We Trust You? On Calibration of a Probabilistic Object Detector for Autonomous
Driving. arXiv preprint arXiv:1909.12358, 2019.

31

[9] Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. A Review and
Comparative Study on Probabilistic Object Detection in Autonomous Driving. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[10] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

[11] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. In international conference on machine
learning, pages 1050–1059, 2016.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous
Driving? The KITTI vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[13] Tilmann Gneiting and Adrian E Raftery. Strictly Proper Scoring Rules, Prediction,
and Estimation. Journal of the American statistical Association, 102(477):359–378,
2007.

[14] Tilmann Gneiting, Larissa I Stanberry, Eric P Grimit, Leonhard Held, and Nicholas A
Johnson. Assessing probabilistic forecasts of multivariate quantities, with an applica-
tion to ensemble predictions of surface winds. Test, 17(2):211, 2008.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[16] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern
Neural Networks. In International Conference on Machine Learning, pages 1321–1330.
PMLR, 2017.

[17] Ali Harakeh and Steven L. Waslander. Estimating and Evaluating Regression Predic-
tive Uncertainty in Deep Object Detectors. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YLewtnvKgR7.

[18] Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek,
Balaji Lakshminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training inde-
pendent subnetworks for robust prediction. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=OGg9XnKxFAH.

[19] Dan Hendrycks and Kevin Gimpel. A baseline for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks. Proceedings of International Conference
on Learning Representations, 2017.

32

http://www.deeplearningbook.org
https://openreview.net/forum?id=YLewtnvKgR7
https://openreview.net/forum?id=OGg9XnKxFAH

[20] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. Diagnosing Error in Ob-
ject Detectors. In European conference on computer vision, pages 340–353. Springer,
2012.

[21] Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5574–5584. Curran Associates, Inc., 2017. URL http:

//papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-

deep-learning-for-computer-vision.pdf.

[22] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander.
Joint 3D Proposal Generation and Object Detection from View Aggregation. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1–8. IEEE, 2018.

[23] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate Uncertainties for
Deep Learning Using Calibrated Regression. In International Conference on Machine
Learning, pages 2796–2804. PMLR, 2018.

[24] Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified Uncertainty Calibration.
Advances in Neural Information Processing Systems, 32:3792–3803, 2019.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scal-
able Predictive Uncertainty Estimation using Deep Ensembles. In Advances in neural
information processing systems, pages 6402–6413, 2017.

[26] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. PointPillars: Fast Encoders for Object Detection from Point Clouds. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 12697–12705, 2019.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss
for Dense Object Detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

33

http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf
http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf
http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

[29] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gor-
don Wilson. A Simple Baseline for Bayesian Uncertainty in Deep Learning. Advances
in Neural Information Processing Systems, 32:13153–13164, 2019.

[30] Dimity Miller, Niko Sünderhauf, Haoyang Zhang, David Hall, and Feras Dayoub.
Benchmarking Sampling-based Probabilistic Object Detectors. In CVPR Workshops,
volume 3, page 6, 2019.

[31] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining Well
Calibrated Probabilities Using Bayesian Binning. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[32] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science
& Business Media, 2012.

[33] David A Nix and Andreas S Weigend. Estimating the mean and variance of the target
probability distribution. In Proceedings of 1994 ieee international conference on neural
networks (ICNN’94), volume 1, pages 55–60. IEEE, 1994.

[34] Matthew Pitropov, Danson Evan Garcia, Jason Rebello, Michael Smart, Carlos Wang,
Krzysztof Czarnecki, and Steven Waslander. Canadian Adverse Driving Conditions
Dataset. The International Journal of Robotics Research, 40(4-5):681–690, 2021.

[35] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[36] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum
PointNets for 3D Object Detection from RGB-D Data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 918–927, 2018.

[37] Rui Qian, Xin Lai, and Xirong Li. 3D Object Detection for Autonomous Driving: A
Survey. arXiv preprint arXiv:2106.10823, 2021.

[38] Felippe Schmoeller Roza, Maximilian Henne, Karsten Roscher, and Stephan
Günnemann. Assessing Box Merging Strategies and Uncertainty Estimation Meth-
ods in Multimodel Object Detection. In European Conference on Computer Vision,
pages 3–10. Springer, 2020.

[39] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointRCNN: 3D Object Pro-
posal Generation and Detection from Point Cloud. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 770–779, 2019.

34

[40] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object
Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10529–10538, 2020.

[41] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From
points to parts: 3d object detection from point cloud with part-aware and part-
aggregation network. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2020.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[43] OpenPCDet Development Team. OpenPCDet: An Open-source Toolbox for 3D Ob-
ject Detection from Point Clouds. https://github.com/open-mmlab/OpenPCDet,
2020.

[44] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Embedded Convolutional
Detection. Sensors, 18(10):3337, 2018.

[45] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3D Object Detection from Point
Clouds. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7652–7660, 2018.

[46] Yuanxin Zhong, Minghan Zhu, and Huei Peng. Uncertainty-Aware Voxel based 3D
Object Detection and Tracking with von-Mises Loss, 2020.

[47] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based
3D Object Detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4490–4499, 2018.

35

https://github.com/open-mmlab/OpenPCDet

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Overview

	Background
	3D object detection for LiDAR point clouds
	Uncertainty estimation for classification
	Uncertainty estimation for object detection

	LiDAR-MIMO 3D object detection
	Input combination
	Loss functions
	Output clustering and merging

	Experiments
	Datasets
	Models
	Evaluation metrics
	Results
	The inference time
	Average precision and detection partitions
	Uncertainty evaluation metrics
	The ablation study on batch size and input repetition for MIMO-BEV
	The ablation study on detection heads and network capacity for MIMO-BEV

	Conclusion
	References

