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Abstract

Monte Carlo rendering allows for the production of high-quality photorealistic images
of 3D scenes. However, producing noise-free images can take a considerable amount of
compute resources. To lessen this burden and speed up the rendering process while main-
taining similar quality, a lower-sample count image can be rendered and then denoised
after rendering with image-space denoising methods. These methods are widely used in
industry, and have recently enabled advancements in areas such as real-time ray tracing.
While hand-tuned denoisers are available, the most successful denoising methods are based
on machine learning with deep convolutional neural networks (CNNs). These denoisers are
trained on large datasets of rendered images, consisting of pairs of low-sample count noisy
images and the corresponding high-sample count reference images. Unfortunately, generat-
ing these datasets can be prohibitively expensive because of the cost of rendering thousands
of high-sample count reference images.

A potential solution to this problem comes from the Noise2Noise method [29], where
denoisers can be learned solely from noisy training data. Lehtinen et al. applied their
technique to Monte Carlo denoising, and were able to achieve similar performance to using
clean reference images [29]. However, their model was a proof of concept, and it is unclear
whether the technique would work equally well with state-of-the-art Monte Carlo denoising
methods. The authors also do not test their hypothesis that better results could be achieved
by training on the additional noisy training data that could be generated with the same
compute budget that was previously allocated to generating clean training data. Finally,
it remains to be seen whether the authors’ suggested parameters are equally effective when
Noise2Noise is used with different denoising methods.

In this thesis, I answer the above questions by applying Noise2Noise to a state-of-the-art
Monte Carlo denoising algorithm called Sample-Based Monte-Carlo Denoising (SBMC) [19].
I adapt the SBMC scene generator to produce a dataset of noisy image pairs, use this
dataset to train an SBMC-like CNN, and conduct experiments to determine the impact
of various parameters on the performance of the denoiser. My results show that the
Noise2Noise technique can be effectively applied to a state-of-the-art Monte Carlo denoising
algorithm. I achieved comparable results to the original implementation at a significantly
lower cost. I find that using additional training data can further improve these results,
although more investigation is needed in this area. Finally, I detail the parameters that
were necessary to achieve these results.
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On turning back a man has more wisdom
than he had upon departing.

Wildly I sped on this empty errand,
treading the trail of the wind;

merrily I met the waves,

wandering on their wet trail.

I wanted to touch the wall

which stood behind heaven,

to search for the earth’s end

and poke it with my fingers.

Yet, dear brothers, no regret
can stem from this voyage.
Knowledge must be held
as higher than a silver treasure,
more precious than heaps of gold!
Thus, on our errant route,
on that delusive pasture path,
we found many truthful tidings:
that the wide world has no end;
that Taara, in his wisdom,
fixed no limit anywhere,
set no impassable barriers.

And whatever gainful grain
I might have plowed or planted
on those foreign fields
will furnish us with food for thought
until we reach our life’s end.

F. R. Kreutzwald and J. Kurman,
Kalevipoeg: An Ancient Estonian Tale,
Symposia Press, 1982, p. 212.
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Chapter 1

Introduction

Monte Carlo rendering is an important concept in the field of computer graphics. Like other
rendering methods, these algorithms take as input a description of a 3D scene, including
object geometries, material and lighting properties, and camera parameters. The output
is a 2D rendered image of the scene as viewed by the camera. Unlike many other rendering
methods, the image produced is photorealistic. This means that the image appears exactly
as it would if the same scenario were set up in the real world. This is achieved by Monte
Carlo rendering being a physically-based rendering algorithm. This class of algorithms
construct the image by simulating rays of light travelling around the scene while following
the rules of physics as closely as possible.

In particular, Monte Carlo rendering is a randomized algorithm that samples the space
of possible light paths through the scene to eventually converge on a solution. As more
and more light paths are sampled, this process produces an image that is gradually refined
towards the correct result. At the beginning, the resulting image appears noisy, and as the
process continues this noise is reduced and the image becomes more and more clear (see
Figure 1.1 for an example). Although this process converges in the limit to the correct
solution, achieving a result with an acceptably low level of noise can often require many
thousands of iterations. This computation can take many hours or even days for a single
image on a modern computer. These long run times are due to the convergence properties
of the algorithm, in which the remaining error is proportional to the reciprocal of the square
root of the number of samples computed (see Figure 1.2) [43]. Because of this property,
the majority of the error in an image will be removed early in the rendering process, while
reducing the remaining error will often take a huge number of samples.

In contrast to many other rendering methods that prioritize speed while delivering ac-



Figure 1.1: A Monte Carlo rendered image at 8 samples per pixel (left) and at 8192 samples
per pixel (right) [19]

ceptable visuals, Monte Carlo rendering prioritizes accuracy at the cost of speed. The
emphasis on speed primarily comes from the world of real-time graphics, where dozens of
new image frames must be produced and presented to the user each second to maintain
the illusion of on-screen motion. Even with the fastest modern computer hardware, the
physically-based rendering algorithms described above have traditionally been too slow to
be usable for real-time graphics applications. The standard applications for physically-
based rendering algorithms have been in offline rendering scenarios such as animated
movies, visual effects for film and television, and advertising. Physically-based rendering
algorithms are well suited for these tasks as they produce the most accurate and visually
impressive renderings, and studios are generally willing to spend the extra computing time
for these results.

This status quo has recently begun to change, however, as computers become ever faster
and as algorithms continue to be improved. While performing physically-based rendering
in real time has long been a dream of many in the computer graphics field, that dream has
recently started to become a reality. In fact, the major graphics processing unit (GPU)
producers have recently begun to incorporate computing units into their processors that are
specifically tailored to the needs of physically-based rendering algorithms. This has led to
the recent release of mainstream video games that make use of physically-based rendering
algorithms to achieve effects that were previously difficult or impossible to produce with
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Figure 1.2: Error in Monte Carlo rendering is proportional to TSamles

traditional real-time rendering methods.

A large part of the recent success in adapting physically-based rendering methods for
real-time applications has been due to the use of denoising. Denoising methods involve
stopping the Monte Carlo rendering process early, and then applying post-processing tech-
niques to reduce the remaining noise to an acceptable level without sampling more light
paths. This results in an acceptable-looking image that can be produced in much less time,
in some cases achieving real-time frame rates. Denoising methods are also useful in offline
settings, as they can save costs and shorten the long rendering times (see Figure 1.3 for
an example). Denoising does, however, often result in dropping one of the mathematical
guarantees of the Monte Carlo rendering process, namely the unbiased nature of its re-
sults. This is often acceptable as the goal is generally to produce a noise-free image with
the desired global illumination effects in a reasonable amount of time, not necessarily to
produce a mathematically unbiased image.

Denoising can be accomplished by many different techniques, but the most common
ones involve using either hand-tuned or learned filters to reduce the noise. A denoising
algorithm takes as input the noisy output from the Monte Carlo renderer, and usually
some additional features that the renderer provides such as geometry, material, and lighting
properties. The denoiser will take this information for each pixel in the image, and generally



Figure 1.3: A Monte Carlo rendered image at 8 samples per pixel (left) and denoised with
my denoising model (right) [19]

look at the neighbouring pixels as well, to determine a denoised value for the original
pixel. As there is often a limited amount of information available, especially in low sample
count renderings, performing this task successfully will generally require the use of prior
knowledge about the properties of rendered images.

There has been a good amount of success recently in using machine learning tech-
niques to learn Monte Carlo denoising programs rather than hand-tune their implemen-
tations. These methods have produced state-of-the-art denoisers that can surpass the
performance of their hand-tuned counterparts [19]. Learning-based denoisers are trained
on large datasets of rendered images and their associated feature data, traditionally con-
taining pairs of low-sample count noisy images along with their corresponding high-sample
count clean reference images. In this supervised learning arrangement, an adaptable de-
noising model is first constructed with parameters that can be adjusted to better fit the
data. In recent state-of-the-art approaches, these models are generally deep convolutional
neural networks (CNNs) [19]. The training data is then fed into the model one example
at a time, and the model will attempt to denoise the noisy input image using its current
parameter values. The result is compared against the clean reference image using a loss
function, and then the parameters of the model are updated using an optimization algo-
rithm to better fit the data (see Figure 1.4). The goal of this process is to produce a
denoising program that both performs well on the training dataset, and can also generalize
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Figure 1.4: Overview of the supervised learning configuration for training a Monte Carlo
denoising model

to perform well on new inputs that were not part of the training data.

This supervised learning process, while effective when all of the components above are
in place, has one major real-world hurdle. Generating the required training data can take
an immense amount of computing power, such that only the largest organizations with
correspondingly substantial computing budgets can afford to construct these datasets [19].
Training deep learning models can often require tens or hundreds of thousands of training
examples, and for each of those training examples a clean reference image is required. As
described above, rendering a single clean reference image for a moderately complex scene
can take many hours to days on a single computer, so generating tens to hundreds of
thousands of them is a massive undertaking.

As an illustration, assuming that 100,000 reference images are required and that each of
them takes one day to render on a single 32-core computer, then even with access to 1,000
computers in parallel, rendering these images would take over three months to complete.
With the cost to rent a 32-core server currently at around $1 per hour [2], this equates to
a cost of roughly $2.4 million. This amount is beyond the reach of most academic research
groups and all but the largest private companies. Other limiting factors include the storage
and transfer costs of these large datasets, which can reach several terabytes in size. Using
current pricing from a major cloud computing provider [1], storing a 5TB dataset would cost
around $100 per month, while transferring this dataset over the Internet would cost almost
$500. Some organizations are fortunate in having access to data that can be repurposed
for training Monte Carlo denoisers, such as animated films. These films can contain over
100,000 frames, which are often produced by Monte Carlo rendering. Training a denoising
model using this data would require access to the uncompressed reference frames, as well



as noisy versions of those frames and the associated feature data. Unfortunately, the few
organizations that have access to this data do not share it publicly.

There have been several publicly released denoising models that were trained with
these types of datasets, such as those from Intel and Nvidia [3, 13]. However, the datasets
themselves are themselves are rarely published. One exception is the dataset published by
Xu et al., which features 1000 renderings of indoor scenes that can be divided into smaller
patches for training [55]. The main issue with this dataset is that the images are generated
by a proprietary commercial renderer [55]. Since different rendering systems can have
different noise properties, models trained with this dataset could have trouble adapting to
other renderers, and would likely need to be fine-tuned with additional training data from
the target rendering system. Their dataset also includes a limited number of additional
features [55], which may not meet the needs of every denoising model. In general, the
difficulty of generating and distributing training data severely limits who can participate
in research on these denoising methods, and hinders the ability of researchers to reproduce
results in this field.

One potential solution to this problem comes from a method called Noise2Noise [29].
Noise2Noise is a technique where denoisers can be learned solely from noisy training data.
With this technique, instead of consisting of pairs of noisy and clean images, the training
set is made up of noisy pairs, where each member of the pair is a different noisy realization
of the same image. The authors present some mathematical intuition that, under certain
conditions, this process will still converge in the limit to the same solution as training with
clean reference images [29]. The main requirement for Noise2Noise training is that the
noise distribution must have zero mean, which is the case for Monte Carlo noise [29]. The
error that is introduced by using noisy reference images approaches zero as the number
of training examples increases [29]. This property is being used in the clean reference
paradigm as well, since in reality there is no such thing as a perfectly clean reference image
with Monte Carlo rendering. In practice there will always be some amount of noise left over
when the rendering process is finished. The intuition for Noise2Noise is that each training
step will, on average, direct the model output toward the mean of the underlying noise
distribution, which corresponds to the clean reference image (see Figure 1.5) [29]. This
method works well in practice, and the authors demonstrate several successful applications
of their technique [29].

Although their method is applicable to any type of denoising, the authors of Noise2Noise
demonstrate their technique on the particular case of Monte Carlo denoising [29]. However,
their implementation is primarily a proof of concept and does not achieve state-of-the-art
results or make use of some of the more advanced Monte Carlo denoising techniques. The
authors do make a comparison between using noisy versus clean reference images, and find
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Figure 1.5: Overview of Noise2Noise training [29]

that they are able to achieve the same denoising performance with the noisy references.
However, training with the noisy reference images took approximately twice as long to
converge to this result [29]. The main benefit of using noisy references is that they are
much faster to generate, with the authors noting a speedup of a factor of 2000 over the
clean references [29]. The authors hypothesize that one could therefore produce a much
larger quantity of noisy references than clean ones within the same compute budget, and
in this way potentially achieve even greater performance than with clean references [29].
This hypothesis is supported by an experiment that the authors performed on a different
denoising task [29].

Noise2Noise seems like a promising solution to the difficulties of training Monte Carlo
denoisers on a reasonable budget. However, significant questions remain to be answered.
First, it is important to establish whether Noise2Noise can be applied to state-of-the-art
denoising techniques to achieve similar results on a smaller budget. Second, it remains to be
seen whether using noisy references could allow for even better performance to be achieved
by generating and training on significantly more example pairs than would be possible in
the traditional supervised learning setting. Finally, the Noise2Noise paper makes a number
of recommendations about parameters such as tone mapping and loss functions that the
authors found to be helpful in improving the training process [29]. It is unclear whether
these suggestions apply more generally to the use of Noise2Noise with other denoisers, or
whether they are specific to the situation in that paper. The answers to these questions
could greatly reduce the costs of achieving state-of-the-art Monte Carlo denoising results,



and offer clues as to how to improve these results even further. Reducing costs would also
help to make research in this area accessible to more researchers, and make it easier to
reproduce results in this field.

In this thesis, I answer the above questions by applying Noise2Noise to a state-of-the-art
Monte Carlo denoising algorithm called Sample-Based Monte-Carlo Denoising (SBMC) [19].
This algorithm trains a CNN directly on the samples produced by the renderer to produce
an effective denoiser that is good at handling low-sample count images [19]. SBMC is also
notable for providing sample code as well as a set of test scenes that can be used for com-
parisons with other denoising algorithms. I adapt the SBMC scene generator to produce
a dataset of noisy image pairs and their associated features, use this dataset to train an
SBMC-like CNN, and conduct experiments to determine the impact of various parameters.
This dataset can be generated for a computing cost of around $900 rather than millions of
dollars.

My results show that the Noise2Noise technique can be effectively applied to a state-
of-the-art Monte Carlo denoising algorithm to achieve results comparable to the original
implementation at a significantly lower cost. I find that using additional training data
can further improve these results, although more investigation is needed in this area. And
finally, I detail the parameters that were necessary to achieve these results. Reducing the
cost of achieving state-of-the-art results in Monte Carlo denoising has the benefit of making
research in this field more accessible, and making it easier to reproduce results.



Chapter 2

Background

2.1 Monte Carlo Rendering

To introduce Monte Carlo rendering, it is first necessary to explain the basics of ray tracing.
Ray tracing is a simple algorithm that forms the basis of most photorealistic rendering
methods. The ray tracing process starts at the camera, which is a specification of how
and from where the scene will be viewed. During ray tracing, rays are generated at the
camera and sent into the scene. The next step is determining whether the ray will intersect
with any of the objects in the scene. This step is performed by computing intersection
tests between the ray and the various objects in the scene to find the closest hit. Once
the closest intersection point is located, the next step is to determine which light sources
are visible from that point. This question can be answered by constructing rays from the
intersection point to the various lights in the scene, and computing the closest intersections
in the same way as for the original ray. If the closest intersection along one of these shadow
rays is the light source, then that light is illuminating the original intersection point. With
this lighting information available, the ray tracer can now use the surface properties of the
object at the intersection point to compute its shaded appearance. A final optional step in
ray tracing is to trace additional rays from the original intersection point into the scene.
These rays can be used to simulate indirect light transport, where light arrives at a surface
after reflecting off or passing through other surfaces.

One of the simplest possible models of a camera is called a pinhole camera. This type
of camera consists of a box with a small hole in one wall and a piece of film attached to the
opposite wall, as shown in Figure 2.1. Light will enter the box through the hole and create
an image on the film. Drawing lines from the corners of the film, through the pinhole,
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Figure 2.1: A pinhole camera [43, Fig. 1.1 (CC BY-NC-ND 4.0)]
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Figure 2.2: A pinhole camera with the film placed in front of the eye [43, Fig. 1.2 (CC
BY-NC-ND 4.0)]

and into the scene shows that only objects within the viewing volume will appear on the
film. It is convenient in ray tracing to instead place the film in front of the pinhole at the
same distance away, as shown in Figure 2.2. Although this configuration is not physically
realistic, it is an equivalent model that defines the same viewing volume. In this revised
configuration, the pinhole is often referred to as the eye. The film can be logically divided
into pixels, and goal of the ray tracing process is then to determine the colour value for
each pixel in the film. This colour value is computed by generating rays that travel from
the eye, through the corresponding pixel, and into the scene as described above.

Once a ray is traced from the camera to a surface, it is necessary to compute the
amount of light energy that is scattered back along that ray towards the camera. As part
of the scene description, objects will generally be assigned a material, which describes the
scattering properties at every point on the surface. This surface description is called the
bidirectional reflectance distribution function (BRDF) [43]. The BRDF at a point p gives
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Figure 2.3: The geometry of surface scattering [43, Fig. 1.6 (CC BY-NC-ND 4.0)]

the amount of light energy reflected from an incoming direction w; to an outgoing direction
w, and can be written as f,.(p, w,,w;) (see Figure 2.3) [43]. The amount of scattered light
L is computed as L = ZLights fr(p, wo, w;) Li, where L; is the amount of incident light from
a particular light source [43]. L; is zero when the shadow ray computation determines that
the light source is not visible from the point p (see Figure 2.4). BRDFs can be generalized
to transmitted light, called a bidirectional transmittance distribution function (BTDF),
or to incorporate both transmitted and reflected light, called a bidirectional scattering
distribution function (BSDF) [43].

To handle effects like specular reflection and transmission, it is possible to go beyond
the single-bounce model and trace additional rays from the initial intersection point. For
example, if the initial camera ray were to hit a mirror, then the next ray would start
at the intersection point, and have the same direction as the original ray, but reflected
about the surface normal at the intersection point. The entire ray tracing routine can then
be recursively called with this new ray to find the light arriving along that path. The
contributions from all of these rays are then summed to compute the full amount of light
arriving at the camera. For a transmissive object, the subsequent ray would be refracted
through the surface. It is also possible for the ray tracer to consider multiple effects of
this nature, potentially spawning multiple rays at each intersection point. This recursive
splitting process results in a tree of rays for each location in the image, originating at the
camera and spreading throughout the scene to locate all of the light sources that contribute
to that portion of the image (see Figure 2.5).

More generally, the amount of light leaving a point on a surface in a particular direction

11
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Figure 2.4: Shadow rays can determine whether a light source is visible from a point p on
a surface [43, Fig. 1.5 (CC BY-NC-ND 4.0)]

Figure 2.5: A tree of rays produced by recursively ray tracing a scene [43, Fig. 1.8 (CC
BY-NC-ND 4.0)]

12


https://www.pbr-book.org/3ed-2018/Introduction/Photorealistic_Rendering_and_the_Ray-Tracing_Algorithm
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.pbr-book.org/3ed-2018/Introduction/Photorealistic_Rendering_and_the_Ray-Tracing_Algorithm
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

can be calculated by summing the light emitted by the object itself, along with the amount
of light reflected off the object in that direction. This concept, based on the principle of
conservation of energy, is formalized as the rendering equation [24]. In this equation, the
left hand side is the outgoing radiance L,(p,w,) leaving point p in the direction w, [43].
This value is computed as the sum of the emitted radiance at that point and in that
direction, Le(p,w,), and the incoming radiance from all directions on the sphere S* around
p, multiplied by the BSDF f,.(p, w,,w;) and a cosine term [43]:

Lo(p,wo) = Le(p, wo) +/ fr(Dy wo, wi) Li(p, w;)|cos 6;|dw;
SZ

Finding solutions to the rendering equation forms the basis for many photorealistic
rendering algorithms. This integral equation is impossible to solve analytically except for
simple scenes, so these rendering algorithms either make simplifying assumptions or use
numerical integration methods [43]. The algorithm described above simplifies the problem
by only evaluating the integral for directions to light sources and for perfect reflection
and refraction. To compute global illumination effects such as diffuse inter-reflection, it
is necessary to consider all of the possible directions that light can travel throughout the
scene. Performing these computations on the full integral requires the use of numerical
techniques such as Monte Carlo integration [36]. These algorithms evaluate the integral
by taking many random samples over the various directions and weighting the samples
according to the corresponding BRDF values [43]. Monte Carlo rendering methods of this
type can produce photorealistic images, since they simulate the full range of possibilities
for how light can travel through a scene.

2.2 Convolutional Neural Networks

The idea for neural networks was originally inspired by biological neurons in humans and
animals [26]. The basic unit of a neural network is therefore the neuron, roughly modeled
after its biological equivalent (see Figure 2.6). Biological neurons receive incoming signals
on their dendrites, perform some signal processing in the cell body, and transmit output
signals through the single axon. A simple approximation of the signal processing performed
by the neuron is that the input signals are summed, and if the resulting value is above
a certain threshold, then an output spike is sent along the axon [26]. The axon forms
branches, which connect to the dendrites of other neurons to form synapses.

In the mathematical model of the neuron, the inputs that arrive at the dendrites are
labeled z;. The number of inputs can vary for different neural network structures. Each
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Figure 2.6: A biological neuron (left) and its mathematical model (right) [26]

input has an associated weight w; stored in the neuron that represents the importance of
that connection. These weights are learnable parameters of the neuron, and control the
amount of influence that the connected neurons have on that neuron [26]. Input values
are first multiplied by the corresponding weights, and then summed in the cell body along
with a single learnable bias value b. The firing rate of the biological neuron is modeled by
a non-linear activation function f, which is applied to the resulting sum to produce the
neuron’s output value. The activation function represents the frequency of spikes travelling
along the axon [26].

Neural networks are formed from collections of individual neurons, where the neurons
are connected together in a graph structure (see Figure 2.7). In this structure, the outputs
of some of the neurons become inputs to other neurons. Cycles in the graph are not allowed,
as they would form infinite loops of dependencies [26]. Neural networks are often organized
into layers, where neurons in a particular layer are connected to those in the previous layer
and the following layer, but there are no connections within the same layer. The most
common type of layer is the fully-connected layer, where neurons in adjacent layers share
all of the possible connections between each other. The layers are often arranged into
a stack, with one or more hidden layers located between the input layer and the output
layer. These types of neural networks are referred to as artificial neural networks (ANNs)
or multilayer perceptrons (MLPs) [26].

The next question that naturally arises is how to train these neural networks to complete
a desired task. This training is done by a method called backpropagation, which is a
way of computing gradients by recursively applying the chain rule of differentiation [26].
During the training process, the neural network is first given an example input, and the
corresponding output is calculated via a forward pass through the network. This output
is then compared to the reference value using a loss function. Next, backpropagation
is used to compute the gradient of the loss function with respect to the weights of the
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(right) [26]

network. Finally, the network weights are updated to minimize the loss by using these
gradients along with an optimization algorithm such as stochastic gradient descent (SGD).
Backpropagation works by computing the gradients one layer at a time, moving backward
from the last layer of the network to the first layer.

CNNs are a specific type of neural network architecture designed for image processing.
The fully-connected networks described above do not scale well to images, as reasonably
sized images have a large number of pixels, which would result in huge numbers of con-
nections and weights for such a network [26]. CNNs differ from regular neural networks
in that their layers have neurons arranged in three dimensions: width, height, and depth
(see Figure 2.8). For an input image, this could correspond to the image’s width, height,
and number of colour channels, for example. Instead of being fully connected, the neurons
in a layer are only connected to a small region of the preceding layer [26]. In addition,
the layers in a CNN make use of parameter sharing, where the all of the neurons in a sin-
gle two-dimensional depth slice share the same weights and bias. This parameter sharing
scheme operates with the assumption that a feature that is useful at one point in an image
is likely to be useful at other points as well [26]. Together, these optimizations drastically
reduce the number of parameters in a CNN and allow them to be much more efficient
during training and inference.

CNNs are constructed out of several types of layers. Each layer transforms an input
3D volume to an output 3D volume of neuron activations [26]. Input layers are similar
to those used with regular neural networks, and in this case hold the pixel values of the
input image. Convolutional layers, the core building block of CNNs, compute the output
of neurons that are connected to local regions in the input. These layers can be viewed
as a set of filters with a specified receptive field that are passed over the input image [26].
Pooling layers perform a downsampling operation along the spatial dimensions to reduce
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the size of the volume. Finally, fully connected layers are available and operate similarly
to those described above, providing connections to all of the neurons in the previous layer.

CNNs consist of a stack of these layers, which transform the input image from the original
pixel values to the desired outputs.

16



Chapter 3

Related Work

3.1 Monte Carlo Denoising

Monte Carlo denoising methods can be separated into two main categories: traditional
algorithms, and machine learning-based methods. Traditional Monte Carlo denoising al-
gorithms generally rely on hand-tuned regression models that operate over local pixel
neighbourhoods. Machine learning-based methods, on the other hand, have models with
adjustable parameters that are learned from training data. These two types of denoising
methods are briefly reviewed below. For a more comprehensive review, see the survey
papers by Zwicker et al. [62] and Huo and Yoon [22].

One of the earliest works in traditional Monte Carlo denoising is the energy preserving
non-linear filter by Rushmeier et al [49]. McCool et al. followed this with a method based
on anisotropic diffusion that was the first to make use of auxiliary features such as depth
maps and normals to improve filtering performance [34]. These works led to later non-
linear image space filtering methods, including the cross-bilateral filter [18, 42, 56], the
non-local means filter [12], and the edge-avoiding filter [17]. A subsequent thread of work
involved combining these non-linear filters with auxiliary feature information to help guide
the filtering [41, 47, 38, 48]. The preceding methods were later classified as zero-order
regression models [10]. First-order regression methods are also popular [9, 37, 10], and
there are some methods that employ higher-order regressions as well [39].

The use of machine learning for Monte Carlo denoising was initiated by Kalantari
et al., who used a multi-layer perceptron to predict the parameters of a cross-bilateral
filter [25]. Bako et al. improved on this by using a deep CNN to predict filter kernels
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separately for each pixel rather than using the same filter weights for the entire image [7].
This kernel-prediction idea is used by many later works [52, 19, 40, 6, 30, 35, 31]. Other
recent works, however, take the simpler approach of predicting the pixel radiances di-
rectly [13, 55, 58, 57, 54, 20, 32]. Gharbi et al. propose another alternative with SBMC
where splatting kernels are used to allow individual pixels to determine their contributions
to their neighbourhoods [19]. SBMC also considers the individual Monte Carlo samples
separately, which results in improved performance at low sample counts [19]. This con-
cept is extended by Munkberg et al., who partition the samples into layers and filter them
separately to improve efficiency [40], and also by Lin et al., who add information about
individual Monte Carlo paths to improve denoising performance [31]. Other recent works
make use of different machine learning architectures, such as generative adversarial net-
works (GANs) [55], self-attention [59], and ensembles [61]. Many recent works also focus
on real-time denoising and denoising of video sequences [13, 21, 35, 40, 23].

3.2 Weakly-Supervised Image Denoising

In the field of machine learning, there are several different levels of supervision that are
commonly used. Fully-supervised learning is the most familiar case, where the machine
learning model is trained with high-fidelity reference data. On the other end of the spec-
trum is unsupervised learning, where the model is trained on example input data only,
without using any reference data at all. In the middle is semi- or weakly-supervised learn-
ing, where the model is trained with partial or lower-quality references. These approaches
are used when it is costly or difficult to acquire full reference data. Noise2Noise is an ex-
ample of weakly-supervised learning, as it uses noisy reference images for training, which
do not have the same quality as clean references [29].

Noise2Noise is not the first work to recognize that clean reference images are not neces-
sary for image denoising. Outside of machine learning methods, there are classic algorithms
such as NLM [12] and BM3D [16] that denoise a single noisy image without requiring
any additional information. These methods look at statistical information from the rest
of the image to determine how to denoise a particular pixel. Within machine learning,
Noise2Noise is the first denoising method that can learn from noisy images without re-
quiring prior knowledge of either the noise distribution or the distribution of the clean
images [29]. Other methods that can train on noisy images, such as AmbientGAN [11] and
GradNet [20], require either an explicit statistical model of the noise (AmbientGAN), or
additional regularization that makes assumptions about the clean results (GradNet). In the
case of Monte Carlo denoising, the noise distribution cannot be characterized analytically,
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so methods with the former requirement cannot be used [29].

Since the release of Noise2Noise, several works have extended the idea so that only
individual noisy images are required for training, rather than the noisy image pairs re-
quired by Noise2Noise [29]. These works include Noise2Void [27], Noise2Self [8], and Laine
et al. [28]. These extensions are useful in settings where noisy image pairs are difficult
to obtain, such as in biomedical imaging. However, these methods generally come with
reduced performance when compared to the original Noise2Noise method because they
have less information available during training [27]. It therefore makes sense to use the
Noise2Noise method with Monte Carlo denoising, since noisy image pairs are simple to
obtain in this scenario. To my knowledge, no other works besides Noise2Noise itself have
evaluated Noise2Noise-style training for Monte Carlo denoising.
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Chapter 4

Procedure

4.1 Scene Generation

To train a supervised machine learning model, several key ingredients are needed. The
first is a dataset of training examples, consisting of pairs of inputs and their corresponding
targets. Next is a model that will attempt to produce the appropriate target output for a
given input. This model will have parameters that can be adjusted to better fit the training
data, and ideally will allow the model to perform well on inputs that it has not previously
been exposed to. The final ingredient is a training algorithm that will feed the training
inputs to the model, compare the outputs to the corresponding targets, and update the
model parameters accordingly. This section and the following two sections will describe
the creation of a training dataset. The next section will discuss the model and its tunable
parameters. The final section of this chapter will discuss the procedure for training the
model.

In the case of Monte Carlo denoising, the training dataset will generally consist of
pairs of noisy low-sample count images and their corresponding clean reference images.
The noisy input images are often accompanied by additional feature data that is collected
during the rendering process for each image. However, in the Noise2Noise paradigm used
here, the input and target images are both noisy realizations of the same image [29]. In
other words, they are renderings with the exact same inputs and parameters, but with
different random seeds. These images are used to train a model that will take noisy
renderings and their corresponding feature data, and produce an approximation of the
corresponding clean reference image.
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Generating a dataset of rendered images requires a set of scenes to render. In computer
graphics, a scene is a digital description of an environment, specifying its geometry, mate-
rials, textures, and lighting information. The scene file can also include a description of a
camera used to capture an image of the environment, by defining its parameters and ori-
entation. This scene file is processed by a rendering program, which generates an image of
the scene as viewed by the camera. These scenes can be manually created in 3D modelling
software, and often incorporate assets that are available from various free or commercial
libraries. These assets represent the commonly used elements of a scene, such as object
geometries, materials, textures, and environmental lighting.

The scenes that make up the training set should include a wide variety of objects,
materials, and light transport scenarios. This will ensure that the resulting model can
perform well by generalizing to a diverse range of real-world scenes. Training deep CNNs
often requires tens to hundreds of thousands of training examples, so a similarly large
number of scenes will be needed. Manually creating the scenes with 3D modelling software
is therefore not practical in this situation. Possible solutions to this problem include
downloading scenes that others have created from the Internet, or automatically generating
the scene descriptions. The latter approach will be used here as it is more efficient and
ensures that the scenes are selected from a well-defined distribution.

In particular, I used the scene generating code from SBMC to generate the scenes for
my training dataset [19]. This scene generator is capable of producing both indoor and
outdoor scenes. For indoor scenes, it uses a dataset of room models called SunCG [51].
Unfortunately, this dataset is no longer available online due to legal issues [45]. I was
therefore unable to generate indoor scenes, so my dataset consists of only outdoor scenes.
This difference could affect the ability of my model to generalize to indoor scenes, and
should be taken into account when comparing the performance of my model to SBMC.

For an outdoor scene, the scene generator starts by creating a flat ground plane. Then
the generator adds up to 50 objects from the ShapeNetCore dataset [14]. This dataset
contains around 51,000 3D models of common objects in 55 different categories [14] (see
Figure 4.1 for some examples). These objects are placed in random positions on the ground
plane and given random transformations of scale, rotation, and translation [19]. Next,
random materials and textures are assigned to each object [19]. The materials are selected
from the set offered by the PBRT v2 renderer (e.g. metal, glass, mirror, plastic) [43], and
the textures are selected from the Describable Textures Dataset [15]. Describable Textures
Dataset is a set of 5640 texture images collected from the Internet and organized into 47
categories [15] (see Figure 4.2 for some examples).

Lighting for the scenes comes from randomly selected high dynamic range (HDR) images
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Figure 4.2: Texture images from the Describable Textures Dataset [15]
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Figure 4.3: HDR environment maps from Poly Haven [60]

which are used as environment maps [19]. The HDR images are treated as emissive spherical
light sources at infinite distance shining inwards toward the centre of the scene. The SBMC
authors used 111 HDR images downloaded from the HDRI Haven (now called Poly Haven)
website [60]. This website provides free-to-use HDR environment maps for the 3D rendering
community [60] (see Figure 4.3 for some examples). For my dataset, I downloaded all of
the 382 HDR images that were available on that website at the time. This larger set of
environment maps could in theory allow the trained model to generalize better to different
lighting scenarios. The scene generator also randomizes camera parameters including field
of view, depth-of-field, and shutter speed [19]. Motion blur and depth-of-field effects are
each enabled with 50% probability [19]. Finally, there is a rejection sampling process
whereby scenes that are too simple or where the camera receives no light are removed [19].
The remaining scenes are then saved in the PBRT v2 scene format for rendering.
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4.2 Rendering

For rendering the scenes I used the PBRT v2 renderer [43] with the patch provided by
SBMC [19] and a few additional modifications. Although the newest version of PBRT is
currently v3 [43], PBRT v2 is used to ensure compatibility with the other denoising methods
that were used for comparisons in the SBMC paper [19]. These works ([25], [47], [48], [50])
were also implemented using PBRT v2. In the future, it would be useful to have a universal
data format for sample and feature data so that denoisers would not be so closely tied to a
particular renderer. However, such standardization is complicated as the required data is
different for each denoising implementation. As with SBMC, I used the default perspective
camera and path tracing integrator in PBRT v2 [19]. The rest of the rendering parameters
were kept the same as well to allow for comparisons between my model and SBMC.

The SBMC patch to PBRT v2 adds several new features to the renderer. Most im-
portantly, it allows the renderer to save the individual Monte Carlo samples separately as
required by the SBMC implementation [19]. The patch also adds the ability to gather addi-
tional feature data during the rendering process and save that along with the samples [19].
These additional features are detailed in Appendix A of the SBMC paper [19]. Another
change included in the patch allows the renderer to generate both a low-sample count noisy
image and a high-sample count reference image of the same scene. For the noisy image the
individual samples are saved separately, while for the reference image they are averaged
together. All of this data is saved in a custom file format that allows for reading only the
particular samples that are needed at runtime. The goal of this optimization is to improve
read performance during the training process.

The most important of my changes to the rendering process is having the renderer
generate two different low-sample count noisy images for each scene instead of one noisy
image and one reference image. This change implements the Noise2Noise paradigm, where
only noisy image pairs are used for training the denoiser [29]. Not generating the reference
images also allows the rendering process to be significantly faster, as noisy images are
thousands of times faster to render than clean images [29]. The two noisy images are
rendered with different random seeds and the same number of samples. As with the original
SBMC implementation, one of the noisy images is stored as separate samples, while the
other is treated as the target and has its samples averaged together [19]. This treatment
of the images corresponds to the minimal amount of data required for the training process,
since the model requires the separate samples as inputs, but only needs the averaged
samples to calculate the loss on the target image. Storing the images in this way saves
space that would otherwise be used to store the samples of the second noisy image. This
storage space can become significant because of the large number of renderings that make
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up a training set.

Another minor change I made to the renderer is enabling PBRT v2 to read 32-bit
floating point OpenEXR images. I used this image format to store the HDR environment
maps instead of the PFM format used by SBMC as it has significantly smaller file sizes.
PBRT previously supported reading 16-bit OpenEXR files, but some of the environment
maps had values that were too large to fit in this format. Finally, I made some modifications
to the lossless L.Z4 compression that was used in the custom SBMC file format. Specifically,
I enabled the High Compression mode and checksumming to further reduce the file sizes
and to ensure data integrity between rendering and training [33]. Both of these changes
were made for convenience and should not result in any changes to the rendered images.

4.3 Dataset

The initial goal in generating a training dataset was to match the specifications of the
dataset used by SBMC [19]. Having a similar dataset allows for testing the Noise2Noise
technique [29] on SBMC by applying its principles without changing any other variables.
SBMC used a training dataset of around 300,000 example pairs at 128 x 128 resolution [19].
Only one example pair was rendered for each generated scene to maximize the diversity of
the resulting renderings [19]. Each low-sample count noisy image was rendered at 8 samples
per pixel, while the clean reference images were rendered at 4096 samples per pixel [19].
My goal was therefore to produce a similar training set, with the main difference being that
each example pair should have two noisy images rather than a noisy and a clean image.
Both of these noisy images should be rendered at 8 samples per pixel to match SBMC.

Even without having to render the clean reference images, generating such a dataset
still requires a significant amount of computing power. I therefore made use of the Graham
cluster at the University of Waterloo to complete this task. I used the standard compute
nodes with 32 cores and 128 GB of memory. Generating the training set required 75
compute tasks, each running for 12 hours on one of these nodes, and each instructed to
produce 4000 example pairs. The scene generation and rendering were both run as part of
these tasks, fully parallelized to take advantage of the 32 cores on each node. The object,
texture, and environment map datasets were downloaded to the node’s local disk at the
start of each job to avoid network latency. The resulting training set contains a total of
283,831 example pairs due to the rejection sampling, and takes up 3.6 TB of disk space.
This entire process was also repeated again with a different starting seed to create a second
training set. This second dataset contains 284,016 example pairs, and also takes up 3.6
TB of disk space. See Figure 4.4 for some example images from these datasets.
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To monitor progress during the training process, a validation set was also required.
Unlike the training set, the validation set must have clean references, so that it is apparent
whether the training process is converging to the correct result. SBMC uses a validation set
of around 1000 example pairs generated using the same process as their training set, with
the noisy images rendered at 8 samples per pixel and the reference images rendered at 4096
samples per pixel [19]. Despite only requiring around 1000 validation pairs, rendering the
validation set was an even greater computational undertaking than generating the training
sets because of how much longer it takes to render the clean references. For the validation
set I used 32 compute tasks, each running for three days, and each instructed to produce
32 example pairs. The starting seed for the validation set was different from any of the
training sets. The resulting validation set contains 937 example pairs and takes up 13 GB
of disk space. See Figure 4.5 for some example images from this dataset.

4.4 Model

The model used by SBMC is a deep CNN based on a U-net architecture [19, 46]. This model
is specifically designed to accept the separate sample buffers produced by the renderer, and
to consider their contributions to the final output individually [19]. The samples are treated
as unordered and arbitrary in number, which requires special handling in the context of
a CNN [19]. The model first makes use of a technique called embedding to construct
a higher-dimensional representation of each sample [19]. These sample embeddings then
undergo a repeated process of averaging together into context features, going through a
U-net for context propagation, and then being converted into new embeddings [19]. The
purpose of this process is for the embeddings, and therefore the samples, to learn about
their roles in their local neighbourhoods and their contributions toward the final image [19].
Finally, a splatting kernel is produced for each sample that allows for the output image to
be computed [19]. See Figure 3 in the SBMC paper for an overview of this architecture [19].

Although there are a large number of different hyper-parameters that can be tuned for
this model, I assumed that the SBMC authors have already optimized most of them for
their application. Therefore, I have focused on tuning the parameters that the Noise2Noise
authors suggested were helpful in making their technique work effectively [29]. Tuning
these parameters for the SBMC setting will determine whether the suggestions in the
Noise2Noise paper hold true when Noise2Noise is applied to a different denoiser. The main
hyper-parameters that the Noise2Noise authors discuss are the choice of tone mapping
function, tone mapping placement, and loss function [29].

Tone mapping is the process of mapping HDR image values, which can range over
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Figure 4.4: Example images from my training set at 8 samples per pixel

Figure 4.5: Example images from my validation set at 4096 samples per pixel
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Figure 4.6: Tone mapping functions under consideration

many orders of magnitude, to a smaller range, often from 0 to 1. This process is used,
for example, when displaying HDR images on a non-HDR monitor [44]. Tone mapping is
also an important consideration when using HDR images with neural networks. Neural
networks are generally configured to expect values in a small range, such as —1 to 1, and
much larger values can cause problems known as exploding or vanishing gradients that
can prevent the training process from converging [19]. Tone mapping can help with this
problem, but questions remain as to which tone mapping operator to apply and where
to apply it. SBMC uses Reinhard’s tone mapping operator, Tr(v) = v/(1 + v) [19],
while Noise2Noise uses a variant of this operator that adds gamma compression, Trg(v) =
(v/(1 4 v))Y22 [29]. Gamma compression by itself, T (v) = Av7, is also a common tone
mapping operator, so I have included it in my evaluations. I use the standard values of
A=1landy= % [44]. A plot of these tone mapping functions can be seen in Figure 4.6.

There are several different places where tone mapping can be applied, including the
model inputs, the model outputs, and the reference images. SBMC and Noise2Noise both
find that tone mapping the model inputs is beneficial [19, 29], so I follow that practice
for my evaluations. Tone mapping the model inputs helps avoid the scenario where the
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neural network is operating directly on HDR image values. SBMC uses a separate tone
1

mapping function for the model inputs, Tj(v) = 15 In(1 + v), which I keep in place for
all of my experiments. Tone mapping for the model outputs and the reference images
occurs immediately before they are compared by the loss function, which can help avoid
the influence of overly bright outliers in the training data [19]. SBMC applies tone mapping
to both the network outputs and to the reference images [19]. Noise2Noise tries several
options and recommends applying tone mapping to the network inputs only, and not to the
model outputs or to the reference images [29]. In my experiments I apply tone mapping
to the model inputs in all cases, and evaluate several options for tone mapping the model

outputs and the reference images (see Section 5.2).

Loss functions are used to compare the network output with the reference image to
produce a gradient that is used to update the network parameters through backpropa-
gation. The choice of loss function can have a large impact on how the training pro-
cess converges. The SBMC authors evaluate several different loss functions, including the
standard mean squared error (MSE) loss, Ly = (fy(2) — 9)?, and the relative MSE loss,
Louse = (fo(2) — 9)%/(9 +€)* [19]. The Noise2Noise authors consider the MSE loss as well
as a modified version of relative MSE, Lupr = (fo(2) — 9)?/(fo(2) + €)? [29]. The relative
MSE and Lypg losses are normalized to reduce the impact of outliers, and the Noise2Noise
authors claim that their Lypr loss is better suited for training with noisy references [29].
The evaluation of the different tone mapping and loss functions can be found in Section 5.2.

4.5 Training

Training was conducted in mostly the same way as SBMC, with some modifications for
performance and for ease of use. As with SBMC, the number of input samples per pixel was
selected randomly during the training process as a form of data augmentation [19]. The
objective is to train a network that can handle different numbers of samples per pixel [19].
The chosen number of samples is between 2 and 8, which is the number of samples in each
rendering in the training set. With SBMC this choice is made for each training example,
while in my implementation the choice is made for each training batch. This modification
allows for greater parallelism, and therefore improved training performance. SBMC has
a fixed batch size of one because of this limitation, whereas with my implementation the
batch size can be increased and split over multiple GPUs. Convergence should not be
meaningfully affected since the network is still exposed to a variety of sample counts and
the training data is shuffled before each epoch. In particular, I use a batch size of 16 split
over four Nvidia Tesla T4 GPUs with 16 GB of memory. These GPUs are part of the
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Graham cluster at the University of Waterloo.

The SBMC authors found that storage and I/O bandwidth was the bottleneck in train-
ing their models [19]. The data size is certainly an issue, with the large dataset and
individual record sizes (around 13 MB per training example) posing difficulties. How-
ever, I found that I was able to increase the batch sizes and parallelism until I reached
the limit of GPU memory without running into I/O limitations. The differences in per-
formance could be due to the storage systems that were used. My datasets were stored
on a Lustre-based distributed file system and read in by eight worker threads in parallel
over an InfiniBand network connection. I also experimented with storing the training data
on locally-attached solid-state drives (SSDs). This configuration resulted in similar per-
formance, except in rare instances of increased network congestion where the SSD would
out-perform the network-based storage system.

The SBMC authors trained their networks on a single Nvidia Titan X (Pascal) GPU
until the loss on the validation set stopped improving, which they reported as generally
taking around three to four days [19]. I found it somewhat difficult to follow this procedure,
since in my experiments the loss followed an exponential curve, falling relatively quickly
at first and then slowly afterwards. The exponential decay made it hard to determine
exactly when the validation loss had converged, as letting the training run longer would
continue to improve the loss at a progressively slower rate. Getting to the point where the
curve appeared nearly linear generally took around one to two days in my experiments.
Assuming that the SBMC authors used this same criteria as their stopping point, my results
represent an improvement on their reported training times. This improvement is especially
interesting because Noise2Noise training can be expected to take longer than training
with clean references, with the Noise2Noise authors reporting that their training took
about twice as long to converge [29]. This speedup can be attributed to my performance
enhancements, including parallelization, since the GPUs I used are individually slower than
the one used for SBMC (8.1 vs. 11 single-precision TFLOPS [4, 5]).
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Chapter 5

Results

5.1 Baseline Model

The goal of this project is to apply the Noise2Noise technique of training on noisy image
pairs to the SBMC denoising method [29, 19]. With this goal in mind, a natural first step
is to simply attempt to train an SBMC model with the default parameters on a dataset
of noisy image pairs. This configuration will be the baseline model. The SBMC model
has many tunable parameters, but the relevant ones have to do with the tone mapping
and loss functions. The default SBMC model uses Reinhard’s tone mapping operator,
Tr(v) = v/(1 + v), and applies it to both the network output and to the target image
before they are fed into the loss function [19]. For the loss function, the SBMC text
indicates that the MSE loss is used [19], while the code uses relative MSE by default. I
will be following the SBMC code in this instance and using relative MSE for the baseline
model.

To monitor the training process, I plotted the loss on the current training batch over
time as the training proceeded. I also plotted the loss averaged over the entire validation
set, which was computed at regular intervals during the training process. These plots can
be seen in Figure 5.1. Separately, I plotted the training and validation losses computed
using the relative MSE loss function on the linear network outputs and target images
without any tone mapping. These plots can be seen in Figure 5.2. This loss function will
be computed for every training session and will be used as a standard for comparisons
between different configurations of tone mapping and loss functions. As an additional way
of monitoring the training process, I stored the input, network output, and target images
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for sample training and validation batches at regular intervals. Examples of these images
can be seen in Figures 5.3 and 5.4.

There are several interesting observations that can be made of Figures 5.1 through 5.4.
The first and most important is that the network does seem to be successfully learning.
This can be determined in several ways. First, the validation losses are generally decreasing
over time. This means that the network is learning to denoise images that are not part
of the training set. Another way to see that the network is learning is by looking at the
images in Figures 5.3 and 5.4. For the training images in Figure 5.3, it appears that, despite
the input and target images both being noisy, the network is outputting something that
looks like a denoised version of the same scene. This is an indication that the Noise2Noise
training process is successfully directing the network toward the correct output, which is
the mean of the underlying noisy image distribution for each scene. For the validation
images in Figure 5.4, it appears that in most cases the network, when given a noisy input
image, is generating an image that looks similar to the corresponding reference image.
The learning process can be further observed by looking at how the network’s output on a
particular validation image changes over time, as shown in Figure 5.5 for the first image in
the validation set. The images in this figure show qualitatively that the network’s denoising
ability improves as the training progresses.

Another observation that can be made of the graphs in Figures 5.1 and 5.2 is that
both the training and validation losses are decreasing quickly at the start of the training
process, and then much more slowly or not at all after that. For the training loss, this
would normally indicate a problem with the learning in most cases, but it is the expected
behaviour in the Noise2Noise setting [29]. The model is effectively being asked to learn how
to convert from one noisy realization of a scene to another one. This task is impossible
in general since the two noisy images are independently drawn from the same distribu-
tion [29]. The training loss will therefore make some improvement, as the model starts by
outputting effectively random images and eventually learns to output images from within
the scene’s distribution. The model will then continue to converge towards the mean of
the distribution, but the training loss will no longer improve because the target images are
drawn from the distribution at random [29]. Another property of the training loss to note
is the amount of variation or noise over time. The noise appears to be relatively low, which
indicates that the batch size, 16 in this case, is large enough to ensure that the gradient
updates are not too noisy [26].

For the validation loss, the shape of the curve is not ideal. A quick drop followed
by slow or no improvement can indicate that the optimization process is being overly
aggressive and moving around chaotically without finding a local minimum [26]. The ideal
optimization process would cause the loss to decrease exponentially, which will generally
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Figure 5.3: From top to bottom: input, network output, and target images from a training
batch from the baseline model

Figure 5.4: From top to bottom: input, network output, and reference images from a
validation batch from the baseline model
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Figure 5.5: Baseline model outputs for a single validation image during the training process
(time increases from left to right, first then second row)

lead to the best results [26]. This situation can often be improved by lowering the learning
rate [26], however in my experiments this did not improve the relative MSE loss and led
to worse qualitative image quality. Because of this lack of improvement, I left the learning
rate at the default SBMC value of 10~* for all subsequent trials. Another point to note
about the validation loss is that it remains higher than the training loss throughout the
training process in both Figures 5.1 and 5.2. This means that the average loss on the
validation set is higher than the average loss on most of the training batches. For a highly
effective denoiser, the validation loss should eventually drop below the training loss, since
the validation targets have significantly lower noise than the training targets. This effect
is observed in later experiments with better performance.

5.2 Tone Mapping and Loss Functions

The next experiment will involve trying different combinations of tone mapping and loss
functions to see which configuration results in the best performance. I focus on these
parameters in particular because they are areas in which the SBMC and Noise2Noise papers
differ in their recommendations. The SBMC authors try several different loss functions
and state that they all give qualitatively similar results [19], while the Noise2Noise authors
indicate that the choice of tone mapping and loss function is essential to achieving the
best performance in their scenario [29]. As mentioned in Sections 4.4 and 5.1, SBMC
uses Reinhard’s tone mapping operator, Tg(v) = v/(1 + v), which is applied to both the
network output and to the target image before they are fed into the loss function [19].
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The loss functions considered by the SBMC authors include the standard MSE loss, Ly =
(fo(2)—19)?, and the relative MSE loss, Lase = (fo(2) —9)?/(9+¢€)? [19]. Noise2Noise uses
a modified version of Reinhard’s tone mapping operator that adds gamma compression:
Tra(v) = (v/(1+v))%2 [29]. The authors evaluate several configurations of how to apply
this operator, including not applying it at all, and applying it to the target images but not
to the network outputs [29]. They do not consider the option of applying tone mapping to
both the network outputs and to the target images. The Noise2Noise authors report that
the best configuration is to use their own loss function, Lypr = (fo(2) — 9)?/(fo(2) + €)?,
without any tone mapping of the network outputs or the targets [29].

There are many possible choices of tone mapping functions, loss functions, and how
to apply them. Previous works have not thoroughly explored the full range of possible
combinations of these parameters to determine which achieve the best performance. A
further question is whether the particular configuration recommended by the Noise2Noise
authors is always the best one to use when applying their method. To answer these ques-
tions, I evaluate the full range of combinations of the above loss functions, tone mapping
functions, and where to apply them, on the particular case of using Noise2Noise training
with the SBMC denoising method. I consider three tone mapping operators: Reinhard’s,
Reinhard’s with gamma compression, and plain gamma compression. [ also consider three
options of where to apply each tone mapping operator: on both the network output and
the target image, on just the target image and not on the network output, or on neither.
I do not consider the option of applying the tone mapping operator to only the network
output and not to the target image, as this is nonsensical. This scenario would require
the network to generate huge values that would then be tone mapped down to reach the
already large HDR values in the target images. In contrast, tone mapping just the target
images makes sense as this would be asking the network to generate values in the tone
mapped scale. Finally, I consider three loss functions: MSE, relative MSE, and Lypg.

Evaluating all of the possible combinations of three loss functions, three tone mapping
functions, and three options of where to apply them, will require a grid search with a
total of 27 entries. However, some of the entries are redundant: there is no need to try
the different tone mapping functions when tone mapping is not used at all. This reduces
the total number of required trials from 27 to 21. I trained a network using each of these
configurations, with all other parameters remaining the same as the baseline model from
Section 5.1. Each network was trained for 24 hours on four Nvidia Tesla T4 GPUs, and the
same data was recorded as for the baseline model. The baseline model corresponds to one
of these configurations, specifically the one with Reinhard’s tone mapping operator applied
to both the network outputs and the targets, and using the relative MSE loss function.
Since there are too many training runs to plot each one individually, I have plotted only
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the non-tone mapped relative MSE loss, which was calculated for each run regardless of
which tone mapping and loss function was used for training. These losses all have the same
scale, and can therefore be plotted on the same axes. I have shown only the validation
curves and omitted the training curves, for two reasons. The first is that the training
curves are too noisy to view all together, and the second is that training curves do not
convey much information in the case of Noise2Noise training. The resulting plot with all
of the validation curves can be seen in Figure 5.6. The output of each trained model on a
single validation image can be seen in Figure 5.7. Discussion of these results can be found
in Chapter 6.

5.3 Additional Training Data

This experiment will involve taking the best performing combination of parameters from
Section 5.2, and training another model using those same parameters on a larger dataset.
The goal of this experiment is to determine whether the performance of the model can
be improved by training on more data. The results will also contribute to testing the
Noise2Noise authors’ hypothesis that better performance can be achieved by spending
one’s compute budget on generating and training on noisy targets than by generating
and training on clean reference images [29]. However, even my larger dataset required a
much smaller compute budget than the one generated by the SBMC authors with clean
reference images. Therefore, obtaining better performance than SBMC with my larger
dataset would be a strong confirmation of the hypothesis, but obtaining similar or worse
performance would not disprove the idea. It could still be possible that spending the
same compute budget as the SBMC authors to generate and train on noisy image pairs
would result in better performance, although that is not tested here. Comparisons of the
denoising performance between my models and SBMC can be found in Section 5.4.

The model from Section 5.2 that achieved the lowest non-tone mapped relative MSE
on the validation set used the Lypgr loss with the TR tone mapping operator applied to
both the network output and to the target image. I therefore trained this model again on
a dataset composed of my original set of 283,831 training examples and my additional set
of 284,016 examples, for a total of 567,847 example pairs. The two datasets were shuffled
together so that the network was exposed to examples from both datasets at random. This
model was trained for seven days on four Nvidia Tesla T4 GPUs to allow for performance
improvements that may occur over longer training times. The same model was also trained
with the original dataset for seven days to act as a comparison. In both cases the same
data was recorded as for the baseline model. See Figure 5.8 for a plot of the training and
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only, and a loss function alone means that no tone mapping is applied)
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validation losses for both the model trained on the original dataset and the one trained on
the larger dataset. Discussion of these results can be found in Chapter 6.

5.4 Comparison to Previous Work

The next step will involve comparing the best model achieved through my experiments to
previous models from the literature. The model that achieved the lowest non-tone mapped
relative MSE in my tests used the Lypgr loss with the Trg tone mapping operator applied to
both the network output and to the target image. Both the model trained on the original
dataset and the one trained on the larger dataset will be included in the comparisons.
The models will be compared against SBMC and several other previous works that were
used for comparisons in the SBMC paper [19]. Comparisons are performed using a test
set provided by the SBMC authors, which consists of 55 scenes collected from publicly
available sources and converted to the PBRT v2 format (see Figure 5.9) [19]. The SBMC
authors provide reference images for each scene rendered at 1024 x 1024 resolution with
8192 samples per pixel [19]. They do not, however, provide the low-sample count input
images with the additional feature data, so I rendered these using the provided scene files.
One of the provided test scenes (“living-room-2") had an error during the rendering, so I
was unable to use it and my test set therefore consisted of the remaining 54 scenes.

An advantage of the SBMC test set being in the standard PBRT v2 format is that
it is compatible with a wide range of existing denoising implementations. This choice of
scene format enabled the SBMC authors to compare against five other denoisers, with
the results shown in Table 1 of their paper [19]. Another benefit of providing a publicly
available test set and error numbers is that future works can make comparisons without
having to recompute the error numbers for the existing denoisers. I make use of this
property by computing the error of my model on the SBMC test set, and then comparing
to the other denoisers using the numbers from the SBMC paper [19]. Two error metrics are
used for these comparisons: relative MSE, and the structural dissimilarity index DSSIM =
1 — SSIM. Structural similarity index (SSIM) is an error metric that takes into account
the local structure of the images being compared and attempts to produce error numbers
that correspond to how humans rate the image similarity [53]. Both of these metrics are
used without any tone mapping, and are computed so that lower numbers are better. The
results of running my model on the test set as compared to the other denoisers are shown
in Table 5.1 and Figure 5.10. Some examples of the outputs of my denoiser and those of
the SBMC denoiser on various test images are shown in Figure 5.11. Discussion of these
results can be found in Chapter 6.
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Figure 5.8: Training and validation losses for the Lypgr, Trg, OT model trained on the
original dataset and on the large dataset for seven days

41



Figure 5.9: The 55 scenes comprising the SBMC test set [19]
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Figure 5.11: Comparison between the output of my denoiser and that of the SBMC denoiser
on several test images
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Chapter 6

Discussion

Section 5.2 discusses an experiment where different combinations of tone mapping func-
tions, tone mapping placement, and loss functions are evaluated to see which is optimal.
The results of this experiment are shown in Figures 5.6 and 5.7. The first thing to note
about Figure 5.6 is that the validation curves cover different numbers of iterations. This is
mainly caused by fluctuations in the network bandwidth that was available for transferring
training data to the servers that were performing the training, causing the training to pro-
ceed at slightly different speeds during each run. Since each training run was limited to 24
hours, they were able to complete slightly differing numbers of iterations during that time.
However, it appears that each of the training runs has either successfully converged, or is
unlikely to converge if left to run for a larger number of iterations. Two of the training
runs also stopped early before reaching the allowed time limit. These runs, “Lysg, Tra,
T” and “Lyvsg, Tra, T7, were both stopped because the loss value became infinite during
the training process.

In Figure 5.6, there are several distinct groups of loss curves. The first are the curves
where the validation loss immediately rises to a high value in the range of 10! to 10, and
stays in that range for the rest of the training process. These losses are failing to converge,
and consist entirely of runs that use tone mapping only on the target images. The two runs
that were stopped early due to infinite losses are also both members of this group. The
next group of loss curves are those that bounce around between vastly different loss values
for the duration of the training process. This group also fails to converge, and consists of
the remaining three training runs that use tone mapping only on the target images and T
for the tone mapping function. With all of the training runs that use this strategy failing to
converge, it seems clear that this is not an effective tone mapping configuration. The lack
of effective denoising can be confirmed by looking at the validation images in Figure 5.7,
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where all of the models trained with this tone mapping configuration exhibit issues from
not removing the noise to over-blurring. One configuration, “Lysg, Ta, T”, does achieve a
relatively low loss value of around 1.6, but its output is qualitatively poor. The final group
of loss curves consists of the remaining curves that do successfully converge to a relative
MSE value below around 500. The performance of these configurations can be evaluated
further by examining the validation images in Figure 5.7.

Turning to Figure 5.7, the last column represents models that were trained without
tone mapping on either the network output or the target images. Although these models
do converge, they have widely differing performance. The “Lypr” and “Lysg” models
converge to higher relative MSE values on the validation set of 76 and 343, respectively,
and produce overly noisy validation images. The “L,ysg” model converges to a lower
relative MSE value around 0.3, and produces an overly blurry validation image that still
contains low frequency noise. These results indicate that not using tone mapping, while
an improvement over tone mapping only the target images, still does not produce images
of acceptable quality with any of the tested loss functions. The final group of models,
forming the first three columns in Figure 5.7, consists of models that were trained using
tone mapping on both the output and the target images. These models all performed
relatively well, converging to relative MSE loss values below around 1.5. The shape of the
loss curves is also interesting, with the losses for some configurations dropping quickly at
first and others falling more slowly. This distinction did not seem to have a large impact
on the learning success, however, as the most successful models come from both categories.

Within the group of configurations where tone mapping is applied to both the output
images and to the target images, one clear trend is that Ty is the least effective tone
mapping operator. The three training runs that use this operator have among the worst
loss values in this group, and the validation images are either over-blurred or still noisy,
and overly dark in the case of “L,ysg, Tq, OT”. The remaining configurations using the
Tr and Trg tone mapping operators all perform well, with the exception of “Lsg, Tra,
OT”, where the validation image is significantly more blurry and darker than the others,
and a worse relative MSE loss value is achieved. The other five configurations have the
best loss values of all of the trials. Their validation images are generally of passable quality,
with more subtle differences present in some of the details. The validation image for the
“Livse, Tr, OT” configuration appears to be overly dark, which seems to complete a
pattern of the L,\sg configurations in this group producing overly dark outputs. The
“Livse, Tr, OT” model also has the worst loss value of the remaining five models under
consideration. The other four models with the best loss values come in two groups with
similar loss values: “LHDRa TR, OT” and “LMSEa TR(;, OT”, followed by “LMSE7 TR, oT”
and “Lupr, Tra, OT”. These models all use the Lysg and Lypgr loss functions, and the
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Tr and Trg tone mapping functions. Interestingly, however, the loss functions and tone
mapping functions are both are swapped between the two groups. This means that one
loss function or tone mapping function is not necessarily better than the other, but specific
combinations do perform better than others. The configuration that achieved the best loss
value was “Lypr, Trg, OT”, with a relative MSE loss value on the validation set of 0.0397.
This configuration also presents the qualitatively best validation image, doing an especially
good job at preserving texture details without over-blurring. The second best performing
configuration was “Lysg, Tr, OT”, which achieved a relative MSE loss value of 0.0465.

Comparing to SBMC and Noise2Noise reveals several differences between my findings
and theirs. Starting with tone mapping placement, the Noise2Noise authors recommend
not tone mapping the network output or the target image [29]. They also consider tone
mapping the target images only, but find that this approach produces worse results [29].
My findings support the conclusion that tone mapping the target images only is ineffective,
although my results appear qualitatively to be significantly worse than theirs. However,
unlike the Noise2Noise authors, I obtained poor results when using no tone mapping, with
their recommended Lypr loss function producing worse results than L.\sg in this case.
This is surprising, since the Noise2Noise authors provide both a theoretical justification and
experimental results showing that their configuration is optimal [29]. Instead, I obtained
the best performance when tone mapping both the network outputs and the targets, as is
done by SBMC [19]. This result contradicts with the findings of the Noise2Noise authors,
who claim that non-linearly tone mapping the target images in the Noise2Noise setting
will skew the distribution of the noise and lead to incorrect results [29].

For the choice of tone mapping function, Noise2Noise uses Trg while SBMC uses
Tr [29, 19]. T found that these two tone mapping functions have similar performance
in some cases, but in other cases switching between the two can produce significantly dif-
ferent results in ways that are hard to predict. Tg was included for completeness and
performed the worst out of all of the tone mapping functions. As for the loss function,
Noise2Noise recommends Lypgr while SBMC uses Lysg and indicates that L.ysg has sim-
ilar performance [29, 19]. Lypgr did appear in the most effective configuration, but in
an unexpected setting where it was used with tone mapped network outputs and targets,
instead of without tone mapping as recommended by the Noise2Noise authors [29]. The
second most effective configuration used Lysg, and corresponded to the exact configuration
used by SBMC [19], while L,\sg did not appear in the top four configurations. This is
promising for the idea that Noise2Noise-style training could be used with existing denoisers
without having to adapt their parameters for the Noise2Noise setting.

The next experiment, described in Section 5.3, involves training the most effective
model found in the parameter search, “Lypr, Tra, OT”, with twice as much training data
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to see if that results in any improvement. The results of this experiment are shown in
Figure 5.8. As can be seen in this figure, training with the larger dataset did not result
in a significant improvement in relative MSE loss on the validation set compared with
training on the original dataset. In fact, the model trained on the original dataset reached
a slightly lower validation loss value. However, as described below, the model trained on
the larger dataset did achieve lower loss values on the test set in most cases. Extending the
training time from one day to seven days resulted in slightly lower validation loss values
for both models. Figure 5.8 also shows that, for these more effective models, the validation
loss will fall below the training loss during the training process. At this point, the average
loss on the validation set becomes lower than the average loss on the training batches. This
behaviour is expected because the validation targets have significantly lower noise than the
training targets, and the network outputs will eventually become closer to the validation
targets than they are to the training targets.

The last experiment, described in Section 5.4, involves evaluating the models from
the previous experiment on the SBMC test set and comparing the results to SBMC and
to the other models that were evaluated by the SBMC authors [19]. The results of this
comparison are shown in Table 5.1 and Figure 5.10. SBMC achieved the best results for
all of the different input sample counts with the relative MSE error metric. SBMC also
achieved the best results for the lower sample counts with the DSSIM error metric, with
some of the other denoising methods taking the lead at higher sample counts. Both of my
models produced results that are close to the SBMC results for all sample counts in terms
of DSSIM. The results are close for relative MSE as well at higher sample counts, and
about an order of magnitude larger at lower sample counts. My models had similar results
to each other in all cases, with the model trained on the larger dataset performing slightly
better in all cases but one. Compared to the other denoising methods, my models came
in second after SBMC in the majority of cases where SBMC had the best performance.
This performance was achieved despite my model being trained only on outdoor scenes
(see Section 4.1) while being evaluated on a test set that included many indoor scenes. If
my model were trained on an equivalent dataset to SBMC, only with noisy targets instead
of clean ones, I would expect it to achieve closer results.

Figure 5.11 shows some examples of the outputs of my model and the SBMC model
on several images from the SBMC test set. The first scene involves rotating spheres with
motion blur hovering over a mirror. The zoomed-in portion shows one of the spheres with
specular highlights and blurred textures, where the output from my model is similar to that
of SBMC and to the reference image. The second scene contains a complicated metallic
structure that is suspended over a reflective surface. The zoomed-in portion shows that
my model again produces output that is similar to that of SBMC, capturing all of the
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intricate details of the structure and only missing some small areas of shadow. Both my
model and SBMC over-blur some of the details of the reflection of the structure. The third
scene contains a Cornell box with matte, reflective, and refractive objects. The zoomed-in
portion shows that the reference image is still quite noisy. Both models produce outputs
that are visually better than the reference image, with my model producing a slightly
smaller caustic than SBMC. Both my model and SBMC also over-blur the reflection of the
purple sphere and miss a small highlight on the glass sphere. The final scene is a complete
model of a bathroom lit by a diffuse light source on the far wall. The zoomed-in portion
shows that my model produces a similar denoised result to SBMC, although my model
misses some detail in the wood texture in the background and in the reflection of the floor
in the trash can. Both my model and SBMC miss some details of the textured floor in the
portion of the image where it is in shadow.

Some of the images in the SBMC test set still have visible noise, which illustrates
the difficulty of producing clean reference images. This issue raises some concerns about
how evaluation is performed for Monte Carlo denoising. As with most computer graphics
applications, the goal is generally to produce images that look believable to a human
observer. If the images in a test (or validation) set contain visible noise, then denoising
models will be evaluated on how well they can reproduce this noise, which does not look
believable to a human. The goal should then be to render reference images that do not
contain visible noise. However, this objective is hard to define because noise can be more
or less apparent for different people and under different viewing conditions [53]. It is
therefore difficult to determine what constitutes an acceptable level of noise for reference
images. In practice, reference images produced by Monte Carlo rendering will always
have some amount of noise, and error metrics may be sensitive to this noise in ways
that differ from human perception. Overall, the evaluation of Monte Carlo denoisers is a
complicated problem without an easy solution. The best available approach is to use an
error metric such as SSIM that attempts to mimic human perception [53], and to spend as
much computer time as is available to make the references as clean as possible.

There are several other issues involving the test set that merit discussion. The first is
that, in this scenario, the validation and test sets come from different distributions. The
validation set is produced in the same way as the training data, with randomly generated
scenes. The test set, on the other hand, is curated from manually composed scenes that
are designed to test specific lighting effects. This experiment design was inherited from
SBMC [19], and is common among machine learning-based Monte Carlo denoisers. The
design is used in these settings because random scenes can be easily generated for training
and validation, whereas manually composed scenes are harder to obtain but represent the
desired target distribution, and so are used for the test set. In supervised machine learning
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more generally, however, the standard practice is for the training, validation, and test
sets to be drawn from the same distribution. With different distributions, the trained
model will have to learn to generalize not just from the training set to the validation
set, but also from the validation set to the test set. The later generalization cannot
be measured during the training process without an additional component. It would be
helpful to have a second validation set with images from the same distribution as the test
set, to monitor this generalization while tuning hyperparameter values. Unfortunately,
this second validation set was not provided by the SBMC authors. This leads to another
concern, namely overfitting the test set. It is important to use only the validation set for
hyperparameter tuning, and to evaluate the resulting model on the test set only once at
the end of the process, as was done here. This is hard to enforce, however, with a public
test set, and the field as a whole can eventually produce solutions that are specific to that
particular test set and do not generalize well. A potential solution to this issue is to run
regular competitions where submitted models are evaluated on a hidden test set that is
only revealed once the competition has ended.
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Chapter 7

Conclusion

The first goal of this thesis was to answer the question of whether Noise2Noise training
can be applied to a state-of-the-art denoising technique to achieve similar results on a
lower budget. To answer this question, I modified the SBMC scene generator to generate a
dataset of noisy image pairs. I then used this dataset to train a number of SBMC models
to determine which parameters yield the best results. I have concluded that it is possible to
achieve similar results to the original SBMC paper by using Noise2Noise training with an
SBMC model. The results using the best combination of parameters are qualitatively and
quantitatively similar to SBMC, often taking second place after SBMC and ahead of the
other denoising techniques. My training dataset of noisy image pairs can be generated for
a computing cost of around $900, rather than the millions of dollars required to generate
a traditional dataset with clean reference images.

The second goal of this thesis was to establish whether using Noise2Noise training
could allow for even better performance to be achieved by generating and training on more
example pairs. To answer this question, I used the SBMC scene generator to generate
a second dataset of around the same size as the initial one. Training an SBMC model
with the best parameters on the two datasets combined resulted in an improvement in
performance over training with the initial dataset. However, this improved performance,
while close in many cases, still did not match that of SBMC in the quantitative results.
This difference could be due to other factors besides the use of Noise2Noise training, such
as the lack of indoor scenes in my training dataset. It is also possible that the performance
could be further enhanced by using even more training data. These results support the
hypothesis that better performance can be achieved with additional training data, but
do not answer the question of whether this improved performance could exceed that of
training with clean references. Further work is needed to answer this question, perhaps by
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using even more training data and ensuring that its composition is identical apart from
using noisy instead of clean reference images. Future works could also examine whether
smaller datasets could be sufficient to obtain similar results, thereby saving even more
computation and storage costs.

The third and final goal of this thesis was to determine whether the tone mapping and
loss parameters recommended by the Noise2Noise authors apply more generally to the use
of Noise2Noise training with other denoisers. To answer this question, I trained different
SBMC models on my training set using every combination of tone mapping function, tone
mapping placement, and loss function from the SBMC and Noise2Noise papers. Surpris-
ingly, I found that the parameters recommended by Noise2Noise were not effective in this
situation, whereas the default SBMC parameters were quite effective. This suggests that
the optimal combination of parameters has more to do with the problem domain than
with the training method. I also discovered a combination of parameters that was slightly
more effective in this scenario than the default SBMC configuration, namely tone mapping
the network outputs and the target images using the Reinhard with Gamma tone map-
ping function along with the Lypgr loss function. In general, since the optimal parameters
appear to be problem-specific, conducting a search for the best parameters would be ad-
visable for new denoising models. Future works in this area could investigate how widely
these recommendations are applicable, and could evaluate additional tone mapping and
loss functions.

The ultimate goal of this project was to reduce the difficulty and cost of training
state-of-the-art Monte Carlo denoising models. The main cost in training these models
comes from generating datasets containing tens to hundreds of thousands of clean reference
images that must be rendered using huge amounts of computing power. I have shown that
generating these clean reference images is not strictly necessary, and that even state-of-
the-art denoising models can be trained using the Noise2Noise technique with noisy image
pairs. These datasets are still too large to be shared easily, but researchers can generate
their own without incurring much expense. This technique reduces the cost of generating
training datasets by thousands of times, putting them within reach of smaller research
groups and individual hobbyists. It is my hope that this work will make it easier to

reproduce results in Monte Carlo denoising, and will enable more researchers to contribute
to this field.
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