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Abstract 

With the energy transition underway, there is a consensus effort from both worldwide governments 

and industry, to facilitate the integration of more renewable energy into power grids. However, the 

main challenge with integrating renewables like wind and solar, is the intermittent nature of these 

sources that result in inefficiencies and a lack of reliability. One possible energy system that can 

allow for an effective integration with intermittent sources is a polygeneration energy system 

(PES). The concept of a PES has been proposed in academic literature in recent times, where a 

typical pathway is the use of excess power from a fossil power plant being directed towards the 

production of valuable liquid fuels, in addition to electricity to the grid. In this study, the concept 

of a polygeneration system has been modified and extended to include renewable energy 

generation from wind, and a chemical production pathway of methanol to act as a form of long 

duration storage for times when the wind generation is much higher for any load demand and 

therefore increasing the flexibility. The model takes advantage of both a deterministic and 

stochastic approach to better reflect the real-world phenomena of wind power that is intermittent.  

  

The approach taken in this model development departs from past polygeneration modelling 

studies, by using a network constrained Unit Commitment (UC) model that is well established in 

the domain of power systems engineering, to optimally schedule the power planning and power 

flow. First, the design and operation of a power generation planning model is developed to 

showcase how the power system responds to the intermittency of wind in the form of wind 

scenarios. This model was extended to show a storage mechanism in the form of a typical hydrogen 

electrolysis system and fuel cell. Mixed-Integer Linear Programming (MILP) models are then 

developed for the chemical production of methanol and integrated with the power planning model 
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as a multi-scale (design and operation) model of a renewable polygeneration energy system 

(RPES) with chemical storage. To showcase the design and operation of the proposed RPES, the 

model is first solved in a deterministic manner.  Following this, the uncertainty of wind generation 

is incorporated through the development of a stochastic programming approach with recourse, 

which would mimic the real world impact of having such an energy system in play. The total RPES 

system cost, based on real world wind power data and load demand data, was found to be USD 

2317.93 million. The chemical production block had a cost of USD 138.51 million when integrated 

as a part of the RPES and the power generation planning block had a cost of USD 2179.42 million. 

The integrated model resulted in costs for the chemical production block that were much lower 

than the stand-alone plant while the RPES model also showed how excess intermittent wind power 

could be used for driving the chemical production. A key contribution to this work is also the 

implementation of machine learning methods, like K-Means clustering to help with the model’s 

solution tractability and representation of a full year’s hourly wind data and load demand. The 

MILP models have been developed using the General Algebraic Modelling System (GAMS) 

software and solved using state of the art optimization solvers BARON and CPLEX.  
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Chapter 1  Introduction 

1.1 Background 

In this project, a systems engineering approach that is interdisciplinary in nature will be taken into 

consideration to work towards the design and operation of energy systems that are flexible and be 

able to also satisfy the key characteristics that have come to describe an energy system as advanced 

or future-driven. One solution that has the potential to address this, is the operational flexibility of 

these energy systems, which needs to be increased [1].  The present work has taken advantage of 

effective solution techniques using various modelling and optimization tools that fall within the 

domain of process systems engineering.  

Over the past decade or so, there has been industry-wide push to revamp and upgrade the existing 

power generation sector, which primary relies on conventional fossil fuel inputs to meet the 

world’s energy demands. This is especially true in developing economies with high populations 

such as India, China and nations in Africa and South-east Asia, where utilization of naturally 

occurring resources such as coal to generate power has supported the increased electrification, 

even in the most rural areas, thus improving the standards of living of these regions. In contrast, 

with increased knowledge of the negative effects of carbon emissions and other greenhouse gases 

(GHG), especially high levels of carbon emissions that arise from burning coal, have inspired 

developed countries to embrace increased penetration of renewable energy sources such as wind, 

solar and hydro [2].  Several countries would also rely on clean nuclear power for its generation, 

but the 2011 Fukushima Disaster has prompted nations to rethink if nuclear power would be the 

safest option to power their base-load demand. While some countries like Germany have made it 

clear that renewables are the future and nuclear power has to be gradually reduced down to zero, 
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other developed countries have looked into carbon capture (CC) technologies to be retrofitted into 

existing infrastructures to help curb emissions [3]. While CC technology has been proven to be 

effective, the costs associated with retrofitting and operating CC in tandem with conventional 

power plants have been high and are therefore roadblocks in the face of widespread adoption. 

Emerging literature surrounding conventional power generation plants has pointed towards the 

need for upgrading current plants, not only by installing CC capabilities but also hybrid input 

systems that would allow for greater power generation from renewable or cleaner energy sources. 

While many nations have increased the share of the power mix that comes from renewable energy 

sources, a number of challenges continue to exist with their utilization. Among the leading 

renewable energy sources currently being tapped into are solar and wind power due to their 

widespread abundance in large swaths of the geographical locations worldwide, along with the 

continual reduction in costs associated with their power generation. However, a key feature of 

solar and wind, is that these sources are intermittent, with a significant variation in their availability 

even during a 24-hour period, let alone the natural seasonal variation [1]. This intermittency from 

variable renewable energy (VRE) sources puts a significant amount of stress on the electrical grid, 

with the grid being unable to handle the excess power during increased generation periods from 

solar and wind. At the same time, when their availability is low, ramping up conventional 

generators to fulfil the demand, incurs higher operating costs [4]. With these challenges in mind, 

there is a need to design future energy systems that are both economically attractive for the operator 

as well as environmentally benign so as to not exacerbate the problems arising from greenhouse 

gas (GHG) emissions.  

Polygeneration energy systems (PES) have been proposed as a stepping-stone towards a future 

energy system since it can integrate electric power generation with value added product synthesis 



3 

[5]. This integrated approach has been proven to not only reduce operational costs in comparison 

to stand-alone plants, but also as a solution to curb GHG emissions as the world scrambles to 

prevent the catastrophic impact of climate change. However, as of this moment, significant 

deficiencies are present in the general polygeneration process operation which have impeded their 

widespread adoption. These include the intermittency of renewable energy sources, high costs 

associated with flexible operation between the power generation and product synthesis units as 

well as high operational costs due to uncertainties related to fuel and product prices and their 

corresponding supply. This project aims to address these challenges and develop a framework that 

allows for the design and the flexible operation of the polygeneration energy system which 

comprises of power generation planning, chemical product synthesis while also utilizing 

renewable energy sources like wind. Also included in the framework will be an investigation into 

energy storage as a solution to the intermittency problem of renewable fuel sources. The project 

will focus on modelling and optimization techniques to obtain design decision solutions as well as 

operational schedules that minimize costs and energy while ensuring that power load demand is 

always being met. Multiple case studies will be investigated to validate and observe the behaviour 

of the models developed. 

1.2 Research Objectives and Steps 

The main objective of this thesis, is to develop generic process systems engineering based models 

that represent polygeneration systems which are able to integrate renewable energy sources and 

produce chemicals and power. Another outcome of this study will be to show how the chemical 

production can act as an innovative energy storage pathway and maximise the use of renewables 

regardless of their intermittency.  
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In accordance with objectives above, the following are the steps that will be taken in this study: 

• Conduct a thorough literature review on the topics of polygeneration energy system design 

and operation to identify ways mathematical modelling methods can be used to integrate renewable 

energy into polygeneration. 

• Develop a general power planning model that incorporates unit commitment characteristics 

and linearized power flow constraints with the objective of minimizing the overall cost. A recourse 

real-time correction for day-ahead decisions are used to account for the realization of wind 

uncertainties. This model can be used as a base to be integrated with the chemical production 

planning model to form the polygeneration model. 

• Develop a first principles chemical production planning model (i.e., design and operation) 

that can act as a chemical production block integrated with the power generation block. A 

methanol-based production block that converts hydrocarbon based fuels to methanol is selected as 

the chemical production node. The process starts by gasifying the coal (any type of hydrocarbon 

fuel can be used), where syngas is produced followed, by subsequent conversion of syngas to 

methanol based on catalyst-driven chemical reactions.  

• Develop a deterministic polygeneration design and operation model that is based on the 

integration of the aforementioned power and chemical production planning models. This model 

can showcase the benefit of simultaneously planning both power generation that includes 

renewable resources and chemical production in which both power and chemical (e.g., methanol) 

demands can be effectively satisfied.  

• A polygeneration design and operation model under wind uncertainty is modelled using 

stochastic approach.  The impact of the wind power variability on the overall operation of the 
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polygeneration system can be investigated and the proposed polygeneration system flexibility can 

be evaluated.  

• Reduce the polygeneration model’s computational tractability by applying machine 

learning tools, specifically data clustering that reduces the number of yearly operational days to 

the representative typical days of the full year’s hourly wind power and load demand This aids the 

model in obtaining solutions in shorter computational times. 

1.3 Research Methodology 

For the power system planning block, the general model will be an extension of established unit 

commitment based models that are commonplace in electric power systems theory. The power 

planning models will not only provide results that describe the schedule of the various generators 

over a period of 24 hours’ operation but also provide a design decision values which let the 

stakeholders know how much wind and power capacity needs to be designed.  

Similarly, for the methanol production block, the model will be fairly detailed at the preliminary 

stages and will require non-linear mixed integer programming to account for equations 

representing the capital cost calculations which are non-linear. However, in chapter 5, the models 

will be converted to linearized forms using linear regression which allow for the model solution to 

be provided within shorter computation times without sacrificing a significant amount of accuracy 

in the results. Also to be showcased in this chapter is a novel shortcut method that extracts key 

variable results from a single hour’s operation, and proceeds to input them as parameters for 

subsequent runs until the full 24 hours of operation has been completed. This allows for the 

reduction in the computational tractability as well. Further explanations of this method will be 

illustrated in chapter 5. 
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The main outcome of this research work will be the development of general models that can be 

used for the optimal design and operation of a polygeneration energy system that can be integrated 

with renewable energy. The models developed can be simultaneously applied to the process and 

energy industry infrastructure to optimally integrate renewable energy with the aim of maximizing 

the use of renewables under infrastructure operational and policy constraints, for instance unit 

commitment constraints and renewable portfolio standards (RPS), respectively. By implementing 

the models developed there will be a component by component build-up of the renewable energy 

based polygeneration energy system beginning with power generation planning, and integrating it 

with methanol chemical production. Additional constraints, aside from the RPS and natural 

intermittent variation in the wind power, may also be defined, for instance on the dynamics 

associated with the chemical production block, capacity limits of the methanol reactor and gasifier 

units, as well as maximum and minimum operational limits on the power production generator 

units. In all the various cases that will be investigated, the underlying objective is to showcase the 

manner in which an integrated renewable-based polygeneration energy system can be designed 

and operated in a flexible manner, allowing for increased utilization of wind energy and 

maximizing the production of value added chemicals during periods of high intermittency, all 

while meeting the necessary load demand which is non-negotiable for an energy system’s 

functioning. 

1.4 Dissertation Outline 

Chapter 2 of this dissertation comprises of a comprehensive literature review of polygeneration 

energy systems, unit commitment, renewable energy driven production of alternate fuels and 

chemicals.  Chapter 3 shows the development of the power generation planning model which is 

built around the stochastic unit commitment model. Chapter 4 extends the power generation 
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planning model to showcase the impact of an energy storage system integrated with the power 

generation planning model. Chapter 5 details the model development of the methanol production 

from syngas, first as a nonlinear non-convex model and then modified for convenience for 

integration to a linearized and convex model. Chapter 6 outlines the integration of the power 

generation planning and methanol production in a deterministic manner and lays the foundation 

for the renewable polygeneration energy system. Chapter 7 shows how the integrated renewable 

polygeneration energy system can be made to design and operate in a stochastic manner. Finally, 

Chapter 8 draws conclusions from this research work, stating the significant findings from 

different studies presented in this work. Recommendations are presented for researchers with 

interest to conduct any further work in this area. 
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Chapter 2  Literature Review 

 

In this chapter, a literature review has been conducted on the broader topics of polygeneration 

energy systems, renewable energy sources and energy storage methodologies to understand the 

existing landscape of modern energy systems and how they may be incorporated for future 

implementations. In addition to the subjects mentioned, an overview has also been included on the 

mathematical modelling tools that will be utilized to develop the various models in this 

dissertation, in particular mixed-integer programming, stochastic programming and the machine 

learning method of data clustering.  

2.1 Features of Energy Systems of the Future: 

As energy systems are being investigated for the future, the following characteristics or 

requirements will have to be met for an energy system to be considered advanced. 

• The upgraded energy system should comprise of technology that is already in operation at 

present or is close to units that are in conventional power sectors to allow for greater ease 

in the up-gradation process. 

• Energy efficiency of future systems should be higher than conventional technologies so as    

to reduce the overall energy consumption levels.  

• Allow for effective utilization of renewable energy sources. Basically work as a transitional 

technology, which facilitates a decrease in dependency on fossil fuel, based energy to 

increasing use of renewable energy. Higher utilization of renewable energy is key to lower 

emissions, which as a future energy system, is an objective that needs to be achieved 

compared to existing conventional technologies.  
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• Future energy systems need to be able to operate with greater flexibility. Depending on 

market scenarios, fuel prices and demand variability, the energy system should be able to 

adapt in a low-cost and efficient manner to respond to changes while still providing the 

required amount of energy output. 

2.2 Challenges in the Way for Future Energy Systems Adoption 

In this section, the challenges faced as a result of increased renewable energy integration will be 

elaborated upon. Based on the challenges, the section goes on to lay out the key features that will 

need to be present in energy systems in order to distinguish them as future-driven energy systems.  

Renewable Energy Penetration 

Figure 2.1 shows the growth in global renewable energy consumption from 2004 to 2014, with 

modern renewables growing at more than twice the rate of demand. The average 10-year growth 

rate has been 4.7% for renewable energy sources. 
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Figure 2.1 Growth in Global Renewable Energy Compared to Total Final Energy Consumption, 2004-

2014 [9] 

 

Among renewable sources, like wind and solar, the variability, uncertainty, and a-synchronism of 

these resources present implications for reliable power system operation and utilities. 
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In most scenarios, variable generation is connected to the grid, benefitting from its electrical 

support, and reliability but not integrated with the operation of the grid. As a result, the full value 

of variable generation is not realized with respect to providing support for grid reliability.  

The following section will further explain the impact of intermittent renewable energy sources in 

more detail.  

2.3 Impact of Variable Renewable Energy 

The cost of harnessing solar power and wind has in recent years decreased substantially due to 

innovations in their associated technology (wind turbines, solar panels, etc.) and more broadly due 

to economies of scale, directly influenced by government policy in many western developed 

nations such as Germany and France [3,7]. The share of power supply in the global mix attributed 

to solar PV and wind is only expected to increase in the coming years. Despite these upward trends 

in utilization, there remain significant barriers to integrating high amounts of solar and wind. Both 

solar and wind can be described as renewable energy that is variable, a direct result of not being 

in constant supply for power utilization. These variable renewable energies (VRE) introduce into 

the power system an increased level of intermittency and uncertainty, which make operation of 

power systems more challenging. Some of the key challenges are listed below: 

• Disturbances in the system marginal prices of electricity that are brought about by 

expensive generation units coming online to balance the variability of demand. 

• An increase in the operating costs of conventional generating units arising from being 

forced to operate far from the optimal levels. Also expected is an increase in capital costs 

from additional ancillary services that will be needed to deal with the high level of 

uncertainty associated with VRE. 
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In response to these unprecedented challenges, a number of technical solutions have been proposed 

to mitigate the effects of increased VRE in the power system. These include establishing 

distributed sources for renewable power in terms of geographic location in an attempt to reduce 

the net load variability and uncertainty. Another approach is to take advantage of locations where 

both solar and wind power can be harnessed in a synergistic manner, this would lead to efficient 

implementation of Demand Side Management (DSM) technologies and methods [8]. Increasing 

the flexibility of the grid itself is one of the options to integrate large scale VRE into an energy 

system. An early idea of possibly achieving grid flexibility is by investing in more gas fired power 

plants which have greater flexible generation capacity, along with greater investments in 

transmission networks which would serve to interconnect different grid to allow for a larger 

balance zone. A more recent solution strategy has been the implementation of energy storage, 

which will be looked at closely in this project. The potential energy storage technology (such as 

compressed air energy storage, power-to-gas etc.) will depend on the nature of each power system 

along with the time scale of operation that will be considered for the energy system in question. 

2.4 Polygeneration Energy Systems 

A polygeneration process, as shown below as an example from [10] in Figure 2.2 is a multi-in in 

multi-out energy system that co-produces electricity and chemical fuels, where the chemical fuels 

can be used as substitutes of conventional oil based transportation fuels. Depending on the type of 

chemical synthesis, its chemical products could be methanol, ethanol, dimethyl ether (DME), 

Fischer-Tropsch (FT) oil, and hydrogen. It has a large range of available feedstock, typical 

instances of which are coal, petroleum coke, refinery tars, fuel oil, and biomass. 

 

 



13 

 

Figure 2.2 System Based Representation of a Generic Polygeneration Energy System. 

 

A coal or biomass based polygeneration process starts with the production of syngas via 

gasification of feedstock in a gasifier as shown in Figure 2.3. Besides syngas, the gasifier also 

produces slag and ash, which can be used as construction materials or as fertilizer. The gasifier is 

usually oxygen-blown and requires an air separation unit (ASU). Upon exiting the gasifier, the 

syngas goes through a series of clean-up procedures to remove fine particles and sulphur 

compounds. The syngas is then split into two streams, one going to a chemical synthesis block to 

produce fuel, whilst the other goes to a power generation block. The power generation block 

usually comprises a gas turbine, a steam turbine, and a heat recovery steam generator (HRSG). A 

detailed overview of the key blocks that comprise a standard polygeneration process has been 

provided in a later section 2.3.1.   

Polygeneration has many advantages over conventional power generation and chemical synthesis 

technologies. Firstly, polygeneration is of great interest to both the power and transportation 

sectors, which are the top two conventional sectors in terms of energy consumption and emissions, 

because of the ability of simultaneous production of electricity and transportation fuels and other 

chemicals. Secondly, the energy efficiency of a polygeneration process is higher than that of 
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traditional stand-alone power plants and chemical production plants due to the tight integration 

between the power generation and chemical synthesis blocks. Third, and perhaps most important 

in terms of requirement for future energy system application, is that polygeneration provides 

options for low to zero GHG emissions. 

A modified energy polygeneration process could potentially be the answer to the most plausible 

future energy system that can be deployed in the near future as a solution to the most pressing 

problems associated with the energy generation sector [11]. 

 

Figure 2.3 Layout of a Conventional Fossil-Fuel Driven Polygeneration Process [10]. 

 

Based on the layout shown in Figure 2.3, a systems representation of the polygeneration process 

is shown below in Figure 2.4. Later in this thesis, the manner in which this energy system is 
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modified and upgraded will be shown in a similar systems based diagram. The proposed energy 

system will have to be designed based on increasing operational flexibility for better economic 

attractiveness as well as for greater environmental benefits. 

 

Figure 2.4 Systems Based Representation of a Fossil-Fuel Driven Polygeneration Energy System. 

 

General description of traditional PES components: 

A number of functional blocks can comprise the general form of the polygeneration process as 

reported by the previous studies in the literature. Each of these functional blocks can have a single 

or multiple technologies that govern their operation. For a typical polygeneration process that co-

produces electricity and an additional chemical, the functional blocks are as follows [12]: 

 Air separation unit or ASU. This block is used for preparing the oxygen that is fed into an 

oxygen-blown gasifier unit.  

 Gasification block. Raw feedstock is gasified in this block to produce crude syngas. 

Sensible heat from the syngas could be recovered, depending on the equipment.  

 Syngas clean-up unit. Hazardous components such as particulates, sulphur and chloride 

compounds are removed from this block.  

 Water gas shift block. In this block, the composition of the syngas is altered via the water 

gas shift reaction to meet the necessary requirements for downstream chemical synthesis.  
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 Pre-combustion carbon capture/Post-combustion carbon capture. In this block, either the 

concentrated carbon dioxide in syngas after the WGS reaction can be separated out (pre-

combustion carbon capture), or the block will separate the carbon capture present in flue 

gas emanating from the power generation block (post combustion carbon capture).  

 Chemical synthesis. Either a split stream or a full stream of the syngas goes into this block 

for the purpose of producing methanol via a catalyzed reaction, for this specific system. 

The synthesis could either be gas phase or liquid phase.  

 Gas turbine block. Unconverted syngas from the methanol synthesis block, together with 

any bypassed fresh syngas, combusts in this block that produces high pressure and 

temperature gas that drives a turbine to produce power.  

 HRSG and steam turbine block. A HRSG recovers heat from the flue gas emerging from 

the gas turbine block, which produces steam, which in turn drives a set of steam turbines 

to produce more power.  

Using specific functional blocks, a polygeneration energy system design that will be used for this 

project has been described later in Chapter 4. The difference in this proposed polygeneration flow 

diagram is the addition of blocks representing energy storage, which is a key technology to increase 

the flexibility of the system.  
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Table 2.1 Summary of Previous Studies On Polygeneration 

 

Authors Inputs Outputs Study Objective 

Bose et al. [13] Coal Power, Urea, Heat Process simulation 

Buonomano et al. [14] Solar only Heat, Cooling, Electricity Design, simulation, optimization 

Chen et al. [15] Coal, Biomass Power, Liquid Fuels, Chemicals Design optimization 

De Kam et al. [16] Biomass Ethanol, Power, Heat Process simulation 

Farhat and Reichelstein [17] Coal Hydrogen, Power, Urea  Economic Modelling  

Gao et al. [18] Natural Gas  Power, Methanol System Design 

Guo et al. [19] Lignite  Electricity, Tar  Simulation, optimization 

Ilic et al. [20] Biomass Ethanol, Biogas, Electricity Process optimization 

Jana and De [21] Agriculture waste Power, Heat, Ethanol  Process simulation 

Kyriakarakos et al. [22] Wind and Solar Electricity, Water Simulation and optimization 

Li et al. [23] Coal, coke oven gas Methanol, DME, Electricity Simulation and optimization 

Liu et al. [24] Coal, Natural Gas, Biomass Methanol, DME, Electricity Optimal design, planning 

Lythcke-Jorgensen et al.[25]  Biomass Power, Heat, Ethanol Exergy Analysis 

Narvaez et al. [26] Syngas  Power, Methanol Process design 

Pellegrini and Oliveira Jr. [27] Sugarcane Electricity, Sugar, Ethanol  Exergy optimization 

Rubio-Maya et al. [28] Natural Gas , solar  Electricity, Heating Optimal design 

Salkuyeh and Adams II [29] Coal  Methanol, DME, Electricity Chemical looping 

Song et al. [30] Biomass Ethanol, Power, Heat Drying process  

Yu and Chien [31] Coal SNG, Ammonia, Electricity  Design, economic evaluation 

Zhu et al. [32] Coal Electricity, Hydrogen Modelling using chemical loop 

Adams II and Barton [33] Methanol, Electricity Pre-combustion NG reforming, methanol 

Bose et al. [13] Urea, Electricity  Pre-combustion Hydrogen production 

Fan and Zhu [34] Hydrogen, Electricity Pre-combustion Hydrogen production 

Farhat and Reichelstein [17] Hydrogen, Electricity, Ammonia Pre-combustion Hydrogen separation 

Guo et al. [19] Tar, Electricity Post-combustion CCS 

Hu et al. [35] Methanol, Electricity Pre-combustion CO2 recovery, methanol 

Jana and De [36] Ethanol, Electricity, Heat  Hydrogen and CO ratio 

Li et al. [37] Methanol, Electricity Pre-combustion CO2 recovery, methanol 

Li et al. [38] Methanol, Electricity Pre-combustion Methanol  

Li et al. [23] Synthetic NG, Electricity Post-combustion Life-cycle GHG emission 

Ng et al. [39] Methanol, Electricity Pre-combustion CCU for methanol synthesis 

Yu and Chien [31] Synthetic NG, Electricity Pre-combustion Hydrogen 

Zhu et al. [32] Hydrogen, Electricity Oxy-fuel combustion CCS 

 

In this work, the model will take advantage of the polygeneration system being multi-input and 

consider wind power and coal to demonstrate integration of renewable energy with conventional 

power production and generation planning 

2.5 Research Gaps in Polygeneration Modelling Studies 

From the literature review of previous polygeneration studies, the following research gaps can be 

identified and will be addressed in this project: 
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• While some studies have considered renewable energy inputs like solar power, the 

integration of feedstock with both conventional sources and renewable sources has not 

been taken into account. This integration will be a focal point in the present work. 

• Many polygeneration system models have included carbon capture as key functional block, 

but have not studied the role energy storage plays in the overall operation. This project will 

look at energy storage blocks and their impact on a polygeneration energy system. 

• Lastly, the concept of flexibility has not been explored to any significant extent by previous 

studies. In this project, mathematical optimization methods will be utilized to further 

analyze how a PES can have increased flexibility in its operation, in particular in response 

to situations with increased renewable energy availability and surges in load demand. 

2.6 Renewable Energy Sources and their penetration 

By the end of 2016, it was estimated that a total of 24.5% of the global electricity share came from 

renewable sources. Among the renewable sources, hydroelectric power had the maximum share 

with 16.6% followed by wind at 4.0% and solar at 1.5% [9].  

 

Wind Power 

Approximately 24 countries worldwide met 5% or more of their annual electricity demand by 

harnessing wind power of which 13 countries met more than 10% of their annual demand. In 2016 

alone, almost 55 GW of wind power capacity was added bringing the total global capacity to nearly 

487 GW.  Wind power accounted for roughly one-fourth of newly installed power generating 

capacity in the US, ranking third after solar PV and natural gas for gross capacity additions. By 

the start of 2017, an additional 10.4 GW of wind power capacity was under construction. In 

Canada, 0.7 GW of capacity was added in 2016. Wind energy represents Canada’s largest source 
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of new electricity generation for 11 years running. The province of Ontario has the highest wind 

power capacity among all Canadian provinces with a total capacity of 4.8 GW [6]. 

There are two methods of wind generation, which are broadly classified based on location – 

onshore wind and offshore wind. Onshore wind power has seen a steady increase in installed 

capacity in recent years. Offshore wind power in comparison has greater capital costs associated 

and thus has been adopted in a limited manner worldwide, with only European economies such as 

UK and Germany investing heavily on offshore wind.  

Wind energy, while considered to be environmentally friendly, is not free of emissions primarily 

due to the production of equipment, transportation, installation and construction of wind farms. 

These activities require a high amount of energy and the required energy is generally tapped into 

from conventional fossil fuels. 

 

Solar Power 

Solar photovoltaic power (PV) use semiconductor materials to convert sunlight into electricity. It 

has applications in a variety of areas, including lighting, communication and signals and consumer 

products. Solar PV has emerged in the last two decades as the renewable energy sector with the 

fastest growth worldwide [9]. 

The fast growth can be attributed to a rapid decline in production costs of PV cells and therefore a 

drop in the price of PV generated electricity. Concurrently, there have been significant 

improvements in the efficiency of solar PV thanks to increased focus in worldwide research and 

development. 
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2.7 Energy Storage Technologies 

Implementing energy storage can increase energy system efficiency both in terms of economic 

efficiency and energy utilization efficiency. In this section an overview of energy storage benefits 

as reported in the literature is discussed followed by brief descriptions of the existing storage 

technologies that have been studied as possible applications to further improve the overall 

flexibility of an energy system [80] 

When the energy demand during a time period is low, storing the energy allows the baseload power 

production to continue operating at high efficiency. When the energy demand is high, the stored 

energy can be tapped into without forcing the use of peak power generation with high marginal 

costs. 

Wind power and solar power are variable and non-dispatchable and cannot be considered for 

baseload power production. Additionally, if fossil fuel based power generation at higher amounts 

is needed to compensate for this variability then the effectiveness of utilizing renewable energy in 

the first place is rendered pointless. The negative effects of variability of renewables like wind and 

solar can be significantly reduced by using energy storage technologies. In this thesis, the extent 

to which energy storage can serve as a solution to the intermittency of renewable generation is 

studied [40]. 

In literature studies so far, two approaches to integrating energy storage systems with variable 

renewable energy generation have been studied [76-79]. The first method is to consider the 

location of the energy storage node as along the point of generation and link the generation 

operation to this individual facility. This method implies that the storage is associated with just 

one power plant. In order to maximize the operational flexibility, it would mean considering the 

second approach to incorporating storage, as a system-level flexibility resource. The following 
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sections outline different storage technologies with a description of their characteristics and prior 

studies done in integrating with renewable generation. The most widespread energy storage 

technologies in place are pumped hydro, compressed air and lead-acid batteries. In recent years, 

alternative technologies have also emerged to serve as energy storage methods including 

hydrogen-based storage. Pumped hydro energy storage (PHES) is by far the largest energy storage 

technology and accounts for roughly 99% of the world’s total storage capacity [41]. 

The following are the leading energy storage technologies that have been deployed worldwide in 

an attempt to increase the operational flexibility from power generation systems, either from 

renewable sources of conventional ones.  

Pumped-Hydroelectric Energy Storage 

In pumped hydro energy storage systems (PHES), electricity that has been produced by variable 

renewable generation is stored by pumping water to a higher gravitational potential for instance to 

the top of a hill. The pumped water is then released to a lower situated reservoir via a hydro turbine 

and this recovers the electricity that was originally stored. Worldwide there are more than 300 

PHES setups that are operational. PHES is a mature storage technology and has an energy storage 

efficiency of 65-85% [41]. However, as a potential storage technology application, it is severely 

limited by geography [72-75].  

 Compressed Air Energy Storage 

Compressed air energy storage (CAES) is the second largest form of energy storage currently in 

use worldwide. The principle behind it’s working is the compression of air to a higher pressure. 

When the energy needs to be recovered, the stored compressed air is mixed with fuel leading to a 

combustion that expands through a turbine or a series of turbines. CAES can be summed up as a 
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gas turbine with the compressor and the expander operating independently and at different times 

[42].  

Battery Storage 

A rechargeable electrochemical battery is a chemical energy storage mechanism based on two 

electrodes with different electron affinities. There is a range of available battery technologies, 

based on their chemical properties. Each battery type has its own advantages and disadvantages in 

terms of energy density, efficiency and cost. Across the board, batteries have self-discharge losses 

associated with operation and therefore can be considered only for relatively short-term storage. 

Another demerit of batteries is that their performance reduces with an increasing number of cycles. 

While maintenance and operation costs of batteries are low, the capital costs associated with 

replacing batteries frequently is high [43]. 

Hydrogen as Energy Storage 

Hydrogen can be used as a chemical storage form for electrical energy. A hydrogen-based 

electricity storage system comprises of three main components – an electrolyser that produces 

hydrogen from water with electricity, and electricity producing fuel cell that does the reverse, 

producing electricity from hydrogen, and a separate hydrogen container [42]. Hydrogen can also 

be stored as compressed gas, cryogenic liquid and in liquid carriers, though large-scale hydrogen 

storage is expensive as an option. The attractiveness of hydrogen as a storage solution is the lack 

of emissions surrounding its use, provided it is produced from renewable energy sources. The 

hydrogen to electricity conversion fuel cell only produces water vapour as a side product thereby 

making the technology clean and when used with clean energy sources, the entire storage cycle 

can be considered environmentally friendly [42]. Recently the concept of Power-to-Gas has been 

gaining traction and has emerged as an effective way of integrating renewables by converting 
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surplus power to hydrogen gas. The hydrogen produced can be injected into the natural gas system 

to displace natural gas and thus reducing GHG emissions. Power-to-Gas allows for the storage of 

significant amounts of energy and the provision of carbon neutral fuels [80-84]. 

2.8 Energy System Flexibility 

Within the domain of process systems engineering, Grossman and Pistikopoulos [45] have 

formulated the concept of flexibility as an index that can be increased by modifications to design 

parameters as a response to uncertainties that may arise in any process technology. The following 

section briefly describes the methodology proposed to increase the flexibility index of a process. 

A linear model of an existing flowsheet with fixed equipment sizes and fixed structure is given. 

Nominal values together with positive and negative expected deviations are also given for a set of 

uncertain parameters. The issue is to determine the minimum cost modifications for redesigning 

the flowsheet so as to increase the flexibility index. This index provides a scalar measure of the 

largest rectangle that can be inscribed within the feasible region of operation. This hyper-rectangle 

is centered at the nominal parameter point and its sides are proportional to the expected deviations. 

This index also accounts for the fact that the process can be adjusted during operation through 

control variables. 

Flexibility in Power Systems 

The power system operation is predicated on it being in balance, which means that the power 

supply and demand in the grid has to always match at any given instant. Electrical systems are 

designed in a manner that it has a limit up to which it can handle levels of uncertainty and 

variability on both demand and supply sides. An example of exhibiting flexibility on the supply 

side would be the operation of different power plants having different response times with some 
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having significantly shorter response times to make up for quick increases in demand at a given 

time. 

The introduction of renewable energy sources which are high in variability such as solar and wind, 

will increase the amount of flexibility within the energy system. This could be achieved be 

modifications to the supply/demand side. From the point of view of electricity systems, flexibility 

is seen as closely related to grid frequency and voltage control, power delivery uncertainty and 

ramping rates of power generation systems. Huber et al [46] used the above characterizations to 

define three metrics to describe system flexibility which are ramp magnitude, ramp frequency and 

response time, especially for the net load which results when the VRE generation has been 

removed from the total gross load. 

In contrast, Denholm et al. [44] defined flexibility in terms of the mix of power plants with each 

type of plant accounting for the base load, intermediate load and peak load. Their study of the state 

of Texas in USA concluded that reducing the share of rigid base-load power plants would increase 

the flexibility of the system to allow for increased penetration of variable power generation.   

Since there exist variations in the definition of flexibility, calls for a multidisciplinary approach to 

account for the benefits that it may bring to an energy system. Different aspects of the energy 

system have its own description of flexibility and therefore using a single indicator to measure it 

is not applicable. For a given system that is in consideration, its own custom defined flexibility 

will have to be explained and measured.  

Flexible Operation of a Polygeneration Energy System 

With respect to a polygeneration process, according to [15], a flexible polygeneration process is 

one which allows variable product output mixed during the lifetime of the project according to 

market prices and demands. In such a process, the plant can vary the production rates of individual 
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products as a direct response to changing market conditions by typically oversizing equipment. In 

the flexible polygeneration process assessed in [15] the flexible plant maintains power generation 

levels during peak times when the price of electricity as well as the demand is high, and switches 

to production of chemicals/liquids during off-peak times when the price of electricity and demand 

is significantly lower. Under this operating framework, the liquids produced can be stored for a 

short-term period and then sold to the market. 

2.9 Mathematical Modeling Methods 

Mixed-Integer Programming 

An optimization model with both integer and continuous variables is denoted as a mixed-integer 

programming problem (MIP). Integer variables in MIP problems usually refer to 0-1 variables, 

also known as binary variables. MIP is widely used in process systems engineering. Typical 

applications include superstructure modelling, allocation problems, scheduling problems, and so 

on. 

 

𝑚𝑖𝑛 𝐶 =  𝑓(𝑥, 𝑦)   

𝑠. 𝑡.    𝑔(𝑥, 𝑦) ≤ 0     

                𝑘(𝑥, 𝑦) = 0           

𝑦 ∈  {0,1}𝑚 

           (2.1) 

Where the objective function C = f (x, y) in general, represents a desired economic measure, for 

instance the net present value (NPV) of a plant, while the equality and inequality constraints k (x, 
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y) and g (x, y) can be made to represent the mass and energy balances, design equations, physical 

constraints, design specifications or logical conditions that will need to be satisfied.  

Continuous variables, x can be attributed to flow-rates, equipment sizes, pressures and 

temperatures, whereas 0-1 binary variables, y can be attributed to the existence of units based on 

whether they are operating or not.  

MIP problems can be classified into two categories: mixed-integer linear programming problems 

(MILP) where the objective function and all constraints are linear, and mixed integer nonlinear 

programming problems (MINLP), where either the objective function or some constraints are 

nonlinear. MINLP problems can be further classified as convex MINLP problems, where the 

objective function is a convex function and the feasible region is a convex region, and non-convex 

MINLP problems, where either the objective function is non-convex or the feasible region is a 

non-convex region [47]. 

Optimization under Uncertainty  

Uncertainty is inevitable in the planning and design of systems over a long time horizon. Due to 

the nature of uncertainty, many parameters obtained at the design phase are subject to considerable 

variability and therefore impossible to predict with a high level of accuracy. One clear instance of 

high variability present in this project is the availability of wind and solar power over a given time 

period, which due to its very natural occurrence has a high intermittency associated with it. The 

approach of optimization under uncertainty takes into consideration the uncertain parameters at 

the design stage thus improving the design of the system in question both in terms of operability 

and feasibility. 
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Optimization under uncertainty has been widely used in production planning and scheduling as 

well as in other sectors of modelling. In these types of problems, uncertainty usually arises from a 

wide variety of sources. According to their nature, sources of uncertainties have been classified by 

Pistikopoulos (1995) [48] in the following ways: 

 Model-inherent uncertainty: these are uncertainties related to the physical characteristics 

of the system such as heat transfer coefficients, which can be described as either ranges of 

possible values or as probability distribution functions that can be modelled from 

experimental data.  

 Process-inherent uncertainty: these are fluctuations in flowrates, temperatures etc. that can 

also be described as probability distribution functions derived from on-line measurements.  

 External uncertainty: these are uncertainties external and not related to the process in 

question; these include product demands, price fluctuations and environmental conditions. 

These can be generally input into the model as approximate ranges of uncertainty or even 

as probability distribution functions that can be obtained from forecasting techniques or 

historical data.  

 Discrete uncertainty: these are uncertainties arising from random discrete events that 

typically cannot be foreseen or predicted such as failure of equipment or even availability 

of certain nodes/equipment.  

One possible solution approach for optimization under uncertainty comprises the use of stochastic 

programming, stochastic dynamic programming and fuzzy programming. In most chemical 

engineering applications, stochastic programming has been considered as the preferred modelling 

framework [49]. Depending on the type of uncertainty that appears within the mathematical model 
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as described above, stochastic programming can range from probabilistic programming, recourse 

or corrective programming and dynamic programming [48]. 

In the general form, stochastic programming is presented as a two stage programming problem. At 

the first stage, certain decisions are required to be made in the presence of uncertainty, whilst 

corrective actions can be taken at the second stage when more information is available after 

uncertainties are revealed. The second-stage variables are treated as corrective measures to avoid 

infeasibility when random events have presented themselves. These variables can also be 

representing operational level decisions that need to be made when facing uncertainty realizations. 

𝑚𝑎𝑥𝑦 𝑓
(1)(𝑦) + ∑𝑂𝑐𝑐𝑢ℎ𝑀ℎ(𝑦)

𝑠

ℎ=1

   

𝑠. 𝑡.    𝑔(1)(𝑦) ≤ 0     

                𝑘(1)(𝑦) = 0           

∀ℎ

{
 
 

 
 
𝑀ℎ(𝑦) ≡ 𝑚𝑎𝑥𝑥ℎ  𝑓

(2)(𝑦, 𝑥ℎ)

𝑠. 𝑡.   𝑔(2)(𝑦, 𝑥ℎ) ≤ 0 

𝑘(2)(𝑦, 𝑥ℎ) = 0
𝑥ℎ ∈ 𝑋ℎ

 

𝑦 ∈ 𝑌 

                        (2.2) 

Where y are design decision variables, xh are operational decision variables in scenario h; Y are 

bounds on the design decision variables, Xh are bounds on the operational decision variables in 

scenario h; g(1) and k(1) are design inequality and equality constraints, respectively such as cost 

calculations for equipment sizes; g(2) and k(2) are operational inequality and equality constraints, 
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respectively, such as energy and mass balances, feedstock characteristics and emission regulations. 

f(1) is the part of the objective function that is only dependent on design decision variables, e.g., a 

function of capital costs; f(2) is the part of the objective function that is dependent on both design 

and operational variables such functions related to product revenues, cost of feedstock etc.; Occuh 

is the probability of occurrence of scenario h over the lifetime of the system. Mh is the optimal 

solution of the hth second stage (or operational stage) program. The problem size will depend on 

the number of scenarios to be considered s. When s is large, the problem can become a large-scale 

MINLP problem even if the Mh second stage problem is small.  

Based on the form of the objective function and constraints and the nature of variables in both 

stages of the stochastic problem, the two stage stochastic programming can be further classified as 

stochastic linear programming, stochastic integer programming, and stochastic nonlinear 

programming. 

General Algebraic Modeling System  

For this thesis, the models for the future energy systems will be developed using the General 

Algebraic Modeling System (GAMS). GAMS is one of the leading commercial modeling system 

for mathematical programming and optimization. It is comprised of a language compiler and a 

wide range of integrated solvers that can be called based on the nature of programming being 

performed. GAMS has a reputation for being tailored for complex, large scale modeling 

applications and allows users to build large models that can be adapted quickly to different 

situations [50]. 

In previous studies on the optimal design and operation of polygeneration energy systems, some 

of the models developed turned out to be nonconvex NLP models. The objective was to maximize 
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the net present value (NPV) of the system subject to design and operational constraints such as 

mass and energy balances, consumption rates of feedstock. The models were formulated in GAMS 

and solved to global optimality by the BARON solver with SNOPT as the NLP solver and CPLEX 

as the LP solver [15].  

The success of previous model formulations for complex energy system modeling in GAMS is 

persuasive in adopting the same modeling platform for the studies to be done in this project as 

well. 

Potential Approaches to Solve Models with High Complexity 

The evaluation of the expectation term in the objective function of the first stage problem is the 

key challenge in solving a two-stage stochastic programming problem. It requires integration over 

the entire uncertainty space where the integrand is the optimal solution of the second stage 

problem. In order to facilitate this, approximations via numerical approaches have been outlined 

in [48], which are: (i) multi-period approach, where the uncertain space is approximated via 

scenario analysis. (ii) probabilistic approach, where the probability distribution functions of the 

uncertain parameters are used directly and (iii) sensitivity analysis theory. These approached 

require generation of a large numbers of scenarios, or a large number of sampling points, thus 

increasing the problem size to an extent that obtaining a solution become computationally difficult. 

Stochastic programming problems thus require sampling and decomposition techniques in order 

to make them solvable within a reasonable time frame. Sampling techniques help to reduce the 

size of the problem by reducing the number of sample points while still maintaining a degree of 

accuracy. Decomposition techniques split a large-scale problem into several sub-problems of a 
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smaller size, which significantly improve the computational performance of the solution 

procedure, especially when applied together with parallel computational techniques [51].  

Two commonly used algorithms for solving MINLP problems are Generalized Benders 

Decomposition (GBD) and Outer Approximation (OA), both of which have a large number of 

varieties. Both algorithms solve an MINLP problem by creating a primal problem and a master 

problem, solving them to obtain lower and upper bounds of the original problem, and keeping an 

updating these bounds until they converge within an acceptable criterion in a finite number of 

iterations. The two algorithms differ primarily in the way to obtain lower bounds and updating 

constraints. GBD algorithms obtain lower bounds based on duality theory, whilst OA algorithms 

depend on solving a primal problem. However, both types of algorithms are local algorithms, i.e. 

they can only guarantee a global optimum for convex MINLP problems. These algorithms have 

also been widely implemented in commercial solvers.  

Algorithms for solving non-convex MINLP problems, however, are not yet fully developed as 

compared with those for convex MINLP problems. There are primarily two groups of approaches 

to obtain a global optimum of a non-convex MINLP problem so far. One group of approaches is 

to perform global optimization techniques to a non-convex MINLP problem via constructing a 

convex relaxation, solving the relaxed problem to obtain a lower bound, solving the original 

problem using a local solver to obtain an upper bound, and keeping on this procedure until it 

converges. One approach for convex relaxation is to use a commercial global solver, which solves 

a MINLP problem directly and gives the global optimum. A typical global solver is BARON, 

which applies a branch-and-reduce algorithm to a MINLP problem and finds the global optimum. 

Compared with local solvers, global solvers are computationally more expensive and may 

encounter computational difficulties in solving large-scale MINLP problems [52]. 
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2.10 Machine Learning – Clustering 

Renewable energy companies have benefited greatly from the power of machine learning over the 

years. ML can lower costs, make better predictions and increase the portfolio’s rate of return and 

this trend is expected to continue at a more rapid pace. 

Some of the ways ML is changing the energy landscape:  

Better grid management. AI and ML can help with better predictions of various VRE’s electricity 

production capacities, typically wind and solar. The challenge with the modern grid is that power 

generation and power demand must match at all times or the alternative is issues like blackouts 

and system failures.  

Another way is the demand response issues. By better forecasting how much wind and solar is 

expected at any given time, which allows operators to make up for excess electricity demand by 

using non-renewable energy whenever necessary.  One such method is the training of ML 

algorithms with the use of large historical data sets in order to accurately match the supply and 

demand.  

Another avenue where ML can help in the energy industry is by assuring the reliability and 

robustness of power grids. This can be done through predictive maintenance, where ML algorithms 

can predict from data collected from equipment and machinery, when that piece of equipment is 

expected to fail. So these algorithms efficiently predict machine failure, avoid blackouts and 

optimize maintenance activities and periodicity thus cutting down on maintenance costs and costs 

incurred from unexpected events.  
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K Means Clustering Algorithm 

This algorithm is an iterative clustering algorithm which attempts to assign data points to exactly 

one cluster of the K number of clusters that have been pre-defined.  

Typical with the concept of clustering, this algorithm works to make the items inside a cluster as 

similar as possible while also making the clusters vary from each other. It does this by making sure 

that the sum of the squared distance between the data points in a cluster and the centroid of that 

cluster is minimum. The centroid of the cluster is the mean value of all the values in the cluster. 

In a more technical term, the desired outcome is to have data in one cluster as homogeneous as 

possible while making the clusters as heterogeneous as possible. The number K which represents 

the number of clusters can be varied by the user until a satisfactory result is obtained. 

The algorithm -  

1. Initialize cluster centroids randomly 

2. Repeat until convergence 

The above can be further simplified to a few simple steps -  

1. Assign the K number of clusters 

2. Shuffle the data and randomly assign each data point to one of the K cluster and assign 

initial random centroids 

3. Calculate the squared sum between each data point and all the centroids 

4. Reassign each data point to the closest centroid based on the computation outlined in step 

3  
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5. Reassign the centroid by calculating the mean value for every cluster  

6. Repeat steps 3,4 and 5 until we no longer have to change anything in the clusters  

The duration needed to run the K-means clustering algorithm depends on the size of the dataset, 

the K-number defined and the patterns inherent within the data. The final outcome of clustering a 

dataset is that two items from the same group are similar to each other, while two items from 

different groups are as different as possible.  

Basic Idea of K-means -  

This is an algorithm that can help organize data without any labels. In machine learning, labels are 

an essential ingredient to a supervised algorithm like Support Vector Machines, which learns a 

hypothesis function to predict labels given features. In this work, the data being used is without 

any feature labels since they are load data and wind generation data. One of the most 

straightforward tasks that can be performed on a data set without labels is to find groups of data 

within the dataset which are similar to one another - which are called clusters. Among the many 

ways to cluster in the machine learning mathematical tools, is K-means. The K-means stored “k” 

centroids that it uses to define clusters. A point is considered to be in a particular cluster to that 

cluster’s centroid than any other centroid. K-means finds the best centroids by alternating between 

(1) assigning data points to clusters based on the current centroids (2) choosing centroids (points 

which are the center of a cluster) based on the current assignment of data points to clusters.  

Machine Learning 

Unsupervised machine learning is a type of machine learning algorithm that seeks to infer patterns 

in the data without any prior knowledge or labels within the data. The opposite of this is supervised 
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machine learning, where there is a training set and the algorithm works to find the patterns in the 

data by matching inputs to predefined outputs.  

Clustering by itself is a tool for unsupervised machine learning. When applying a clustering 

algorithm, it is not possible to know the categories beforehand. It is expected that the categories 

will emerge after the algorithm has finished analyzing the data and therefore clustering is referred 

to as an exploratory machine learning task.  

2.11 Summary of Literature Review 

In this chapter, the background literature surrounding energy systems and their relevant 

components has been presented. Previous research projects that have looked at polygeneration 

energy systems with and without carbon capture have also been summarized. The key concepts of 

future energy systems have also been described, in particular, potential energy storage 

technologies and how these can enhance the energy system flexibility. Also discussed in this 

chapter are modeling approaches that have been undertaken, including mixed integer programming 

and stochastic programming as well as the applicability of using GAMS as the main software for 

the development and solutions for the models. 
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Chapter 3  Power Generation Planning 

 

This chapter discusses the development of a unit commitment based model to represent the power 

systems component of the renewable-based polygeneration energy system. It describes the 

integration of wind power to a network constrained Direct Current Unit Commitment (DCUC) 

model using a stochastic DCUC model.   

3.1 The Unit Commitment Model to Represent Power Systems 

The unit commitment (UC) problem addresses a fundamental decision in the operation of a power 

system, namely determining the schedule of power production for each generating unit in the 

system so that that the demand for electricity is met at minimum cost. The schedule must also 

ensure that each unit operates within this technical limits; these typically include ramping 

constraints and also the minimum uptime/downtime constraints. Units that are scheduled to 

produce electricity during a given time period are said to be committed for that period. 

The UC problem can be formulated as a mixed-integer nonlinear optimization problem and it is 

generally large-scale and non-convex. It is NP-hard in general, but its practical importance has 

motivated a tremendous amount of research dedicated to techniques for computing global optimal 

solutions [63-65]. This is both because of the significance of the operational costs and because in 

competitive market environments, the non-convexity of the UC problem allows the existence of 

multiple local optimal solutions that may lead to considerably different pricing and market 

settlements outcomes [66]. Indeed, a mixed-integer linear (or nonlinear but convex) optimization 

model of the UC problem is among the few techniques that can provide provably global optimal 

solutions for the commitment decisions and corresponding financial settlements. At the same time, 
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the time available to solve the problem is a hard constraint in practice. Hence, UC is an 

optimization problem that is both important and challenging.  

With the increasing penetration of stochastic sources of electricity in modern power systems, most 

notably wind and solar generation, techniques for handling uncertainty are acquiring greater 

importance in UC modeling.  

3.2 Stochastic Unit Commitment with Uncertainty 

A stochastic optimization formulation is relevant if the UC is affected by important uncertainty in 

the data. Handling the stochastic behaviour is currently of great importance because of the 

uncertainty arising from the variability in generation from stochastic production facilities such as 

wind and solar-based generating units. These types of generating units often benefit from priority 

in dispatch by virtue of their low marginal cost or regulatory policies. They are therefore not 

scheduled per se but rather their production is subtracted from the demand, and other units are then 

scheduled to meet the resulting net demand which is the actual demand minus the stochastic 

production.  

When formulating a stochastic UC, two stages are generally considered:  

• The first stage pertains to the optimal scheduling of the generation capacity which is the 

decisions about which units to commit in advance of the actual operation. 

• The second stage constitutes a representation of a number of plausible operating conditions 

that may arise in the future as a result of the uncertainty realization. These possible 

operating conditions are called scenarios and for each scenario, and optimal dispatch can 

be computed based on the commitment decisions made in the first stage [67-69].  
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Reserves are scheduled in the first stage so that the system will be able to accommodate any 

uncertainty realization/scenario.  

The philosophy of this two-stage formulation is that in the first stage, scheduling decisions are 

made using only the information that is available hours or days in advance of real time operations. 

The uncertainty is then realized is the second stage, and the dispatch adjusts the amount scheduled 

in the first stage up or down, as required according to the scenario.  

The scenarios take into account the possible wind realizations over the planning period. Each 

scenario is assigned a probability, and the optimization objective is to minimize the sum of the 

deterministic cost of the first stage decisions and the expected cost of the second stage decisions. 

There are several limitations of the stochastic optimization approach, one of them is the quality of 

the solutions obtained critically depends on the choice of the scenarios, in the sense that having a 

broader range of scenarios usually leads to a more accurate model. However, increasing the 

number of scenarios increases the computational cost of the optimization. Another issue is that this 

approach assumes explicit knowledge of the probability distribution of the uncertain wind 

realization. In practice, this distribution is estimated empirically based on past data and experience 

and/or using simulation models and the limitations of the probability estimation may impact the 

quality of the results [70-71]. 

3.3 Model Formulation 

This section describes the power generation planning model and its various components followed 

by the main equations, variables and constraints that comprise the optimization model. 
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Figure 3.1 Topology of the 7-node power system with storage mechanism [72] 

 

In figure 3.1 above, the topology is the representation of the power system and an additional the 

storage mechanism, where every generator, power loads and a single wind farm are inter-

connected by a network of nodes. Power flows are made possible via networks adhering to the DC 

optimal power flow. Therefore, the unit commitment model considered is that of a stochastic 

DCUC model. There are a total of 6 nodes, 15 conventional generators, 4 load demand nodes and 

1 wind farm situated at node 3. 

The objective function of this stochastic DCUC model consists of the system cost in the day-ahead 

stage and the expected imbalance costs that are incurred in real-time operation. The objective 

function variable AnnualCost represents the summation of the operating and capital cost 
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components of the power planning model and the objective function equation is shown below in 

equation 3.1: 

                   𝐴𝑛𝑛𝑢𝑎𝑙𝐶𝑜𝑠𝑡 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 + ∑ 𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟 + 𝑂𝐹𝑅𝑇

𝑂𝑝𝑒𝑟
1 𝑦𝑒𝑎𝑟             (3.1) 

The variable z represents the constituent terms in the annual operating cost of the system as shown 

in equation (3.2) [72]. 

Operating Cost Components: 

       𝑧 =  ∑(𝑐𝑔,ℎ
𝑆𝑈 + 𝑐𝑔,ℎ 

𝑆𝐷 + 𝐶𝑔𝑝𝑔,ℎ
𝐷𝐴) + ∑𝜌𝑠 ∗ (

𝑠𝑔,ℎ

∑𝐶𝑔 ∗ 𝑟𝑔,ℎ,𝑠 + ∑𝑉𝑙
𝑆𝐻𝑝𝑙,ℎ,𝑠

𝑆𝐻 )

𝑙,ℎ𝑔,ℎ

 

                                                                                                                                                    (3.2) 

Where 𝑐𝑔,ℎ
𝑆𝑈  , 𝑐𝑔,ℎ 

𝑆𝐷 and 𝐶𝑔𝑝𝑔,ℎ
𝐷𝐴  are the terms making up the day-ahead stage costs, representing the 

cost of start-up and shutdown of each conventional generator g at every hour h while the third term 

is the product of the marginal cost of each generator g in USD/MWh and the power scheduled in 

the day ahead stage at every hour h by each generator g, respectively. 

The stochastic components are the remaining terms in the equation. The probability of occurrence 

of each scenarios is represented by 𝜌𝑠 . The power adjustment of each conventional generator unit 

in hour h under scenario s is given by 𝑟𝑔,ℎ,𝑠. The value of the lost load for each load l is a parameter 

input into the model and is denoted as 𝑉𝑙
𝑆𝐻 with a unit of USD/MWh and the 𝑝𝑙,ℎ,𝑠

𝑆𝐻  is the 

involuntary active load shedding of load l in hour h under scenario s in MW. 

Day-Ahead Constraints: 

The following equations in this section make up the day-ahead stage constraints. 
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The maximum and minimum power generation capacity constraints on the generator applies in the 

day-ahead stage: 

                              𝑝𝑔
𝑚𝑖𝑛 ∗  𝑢𝑔,ℎ ≤ 𝑝𝑔,ℎ

𝐷𝐴  ≤  𝑝𝑔
𝑚𝑎𝑥 ∗  𝑢𝑔,ℎ                ∀𝑔, ∀ℎ                                            (3.3) 

Where 𝑝𝑔
𝑚𝑖𝑛 and 𝑝𝑔

𝑚𝑎𝑥 is the minimum power output  and maximum capacity respectively, of the 

conventional generator, g and 𝑢𝑔,ℎ is the binary variable that is equal to 1 if the conventional 

generator unit is scheduled to be committed at any hour h. 𝑝𝑔,ℎ
𝐷𝐴  is the power scheduled in the day-

ahead stage by conventional generator g, at hour h. 

Maximum and minimum ramp up and ramp down limits in day-ahead: 

                                   −𝑅𝑔
−   ≤     (𝑝𝑔,(ℎ=1)

𝐷𝐴  −  𝑝𝑔
𝑖𝑛𝑖)     ≤   𝑅𝑔

+               ∀𝑔                                  (3.4) 

                          −𝑅𝑔
−   ≤     (𝑝𝑔,ℎ

𝐷𝐴  −  𝑝𝑔,(ℎ−1)
𝐷𝐴 )     ≤   𝑅𝑔

+               ∀𝑔, ∀ℎ > 1                                  (3.5) 

Equations (3.4). and (3.5) limit the ramp rates for conventional generator units which is to say the 

change in the hourly power production may not exceed the maximum ramp-up and ramp-down 

rate of each generator at every hour., 𝑅𝑔
− and 𝑅𝑔

+ is the ramp-down limit and ramp-up limit of the 

conventional generators g in MW/h while 𝑝𝑔
𝑖𝑛𝑖 is the initial active power output of conventional 

unit g.in MW. 

Transmission capacity in day-ahead stage: 

                               𝐵(𝑛.𝑚)(𝜃𝑛,ℎ
𝐷𝐴 − 𝜃𝑚,ℎ

𝐷𝐴 )   ≤     𝐹𝑛,𝑚                     ∀𝑛, ∀𝑚, ∀ℎ                                       (3.6) 

Equation (3.6) is the constraint that enforces the capacity limits between the transmission lines. 

𝐹𝑛,𝑚 is the capacity of the transmission line between nodes m and n in MW. 𝐵(𝑛.𝑚) is the inverse 



42 

of the reactance of the transmission line between nodes m and n and 𝜃𝑛,ℎ
𝐷𝐴 is the voltage angle at 

node n in hour h in radians. 

Start-up cost for generators in day-ahead: 

                    𝑐𝑔,(ℎ=1)
𝑆𝑈   ≥      𝜆𝑔

𝑆𝑈(𝑢𝑔,(ℎ=1) − 𝑈𝑔
𝑖𝑛𝑖)      ∀𝑔                                                             (3.7) 

                    𝑐𝑔,ℎ
𝑆𝑈    ≥     𝜆𝑔

𝑆𝑈(𝑢𝑔,ℎ − 𝑢𝑔,(ℎ−1))                     ∀𝑔, ∀ℎ > 1                                       (3.8) 

                                  𝑐𝑔,ℎ
𝑆𝑈    ≥     0       ∀𝑔, ∀ℎ                                                                              (3.9) 

Shut-down cost for generators in day-ahead: 

                           𝑐𝑔,(ℎ=1)
𝑆𝐷   ≥      𝜆𝑔

𝑆𝐷( 𝑈𝑔
𝑖𝑛𝑖 − 𝑢𝑔,(ℎ=1))      ∀𝑔                                                   (3.10) 

                      𝑐𝑔,ℎ
𝑆𝐷    ≥     𝜆𝑔

𝑆𝐷(𝑢𝑔,(ℎ−1) − 𝑢𝑔,ℎ)                     ∀𝑔, ∀ℎ > 1                                 (3.11) 

                          𝑐𝑔,ℎ
𝑆𝐷    ≥     0      ∀𝑔, ∀ℎ                                                                                   (3.12) 

Equations (3.7) – (3.12) represent the constraints that calculate the start up and shut down costs of 

the conventional generator units, respectively.  

Power balance of system in day-ahead: 

∑𝑝𝑔,ℎ
𝐷𝐴   +  ∑𝑤𝑘,ℎ

𝐷𝐴     −  ∑𝐷𝐿𝑙,ℎ   =   ∑𝐵(𝑛.𝑚)(𝜃𝑛,ℎ
𝐷𝐴 − 𝜃𝑚,ℎ

𝐷𝐴 )            ∀𝑛, ∀ℎ

𝑚𝑙𝑘𝑔

 

                                                                                                                                               (3.13) 

Equation (3.12) is the power balance equation for the day ahead stage at each node. The left hand 

side of the equation are the variables for the power scheduled by conventional generators, g at 

every hour, the wind power scheduled by wind farm k at every hour and the power consumption 
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of load l at every hour h, respectively. The right hand side of the equation is the transmission 

capacity constraint set earlier in equation (3.6). 

Real Time Constraints:  

The following equations in this section represent the real time or second stage constraints of the 

stochastic DCUC model: 

Power balance in real time stage:  

∑(𝑝𝑔,ℎ
𝐷𝐴 + 𝑟𝑔,ℎ,𝑠)   

𝑔

+ ∑(𝑊𝑘,ℎ,𝑠 − 𝑤𝑘,ℎ,𝑠
𝑆𝑃 )     

𝑘

− ∑(𝐷𝐿𝑙,ℎ − 𝑝𝑙,ℎ,𝑠
𝑆𝐻 )   =   ∑𝐵(𝑛.𝑚)(𝜃𝑛,ℎ,𝑠

𝑅𝑇 − 𝜃𝑚,ℎ,𝑠
𝑅𝑇 )            ∀𝑛, ∀ℎ, ∀𝑠

𝑚𝑙

 

                                                                                                                                                  (3.14) 

Constraint equation (3.14) enforces the power balance in the real-time operation at each node at 

every hour under each scenario s, by resolving the adjustments brought about by the actual wind 

production with regulating power provision by conventional units, and/or wind power curtailment, 

and/or load shedding. 𝑊𝑘,ℎ,𝑠 characterizes the wind power uncertainty.  

Maximum and minimum power generation capacity in real time: 

                  𝑝𝑔
𝑚𝑖𝑛 ∗  𝑢𝑔,ℎ ≤ (𝑝𝑔,ℎ

𝐷𝐴   +  𝑟𝑔,ℎ,𝑠)   ≤  𝑝𝑔
𝑚𝑎𝑥 ∗  𝑢𝑔,ℎ                ∀𝑔, ∀ℎ, ∀𝑠                   (3.15) 

Constraint (3.14) enforces the lower and upper bounds for the actual power production which 

represents the tentative production schedule at the first stage together with the adjustment brought 

about by the regulating power provided in the real time stage. 
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Maximum and minimum ramp-up and ramp-down limits in real time: 

                       −𝑅𝑔
−   ≤     [ (𝑝𝑔,(ℎ=1)

𝐷𝐴 + 𝑟𝑔,(ℎ=1),𝑠)  − 𝑝𝑔
𝑖𝑛𝑖]     ≤   𝑅𝑔

+               ∀𝑔, ∀𝑠              (3.16) 

−𝑅𝑔
−   ≤     [(𝑝𝑔,ℎ

𝐷𝐴 + 𝑟𝑔,ℎ,𝑠)  − (𝑝𝑔,(ℎ−1)
𝐷𝐴 + 𝑟𝑔,(ℎ−1),𝑠)]    ≤   𝑅𝑔

+               ∀𝑔, ∀ℎ > 1, ∀𝑠…. (3.17)  

Constraint equations (3.16) and (3.17) enforce the ramping limits for the actual power production 

of the conventional generator units g, at every hour h under scenario s. 

Power transmission capacity limit in real time: 

                      𝐵(𝑛.𝑚)(𝜃𝑛,ℎ,𝑠
𝑅𝑇 − 𝜃𝑚,ℎ,𝑠

𝑅𝑇 )   ≤     𝐹𝑛,𝑚          ∀𝑛, ∀𝑚, ∀ℎ, ∀𝑠                                     (3.18) 

Constraint equation (3.18) limits the capacity of each transmission line in the system in the real 

time stage under all scenarios s. 

Given that the network constrained stochastic DCUC model has two stages, day-ahead (first) and 

real-time (second), there is a requirement of ensuring that there are equations that act as linking 

constraints between the first and second stages. These linking constraints are equations (3.15) -

(3.17). 

3.4 Results and Discussion from the Stochastic DCUC Model 

In this section, the power generation planning model developed in the previous section will be 

subjected to certain case studies to further study the model’s validity and applicability to represent 

the power system that has been integrated with wind. 
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3.4.1 Base Case – DCUC Stochastic Power Generation Planning Model 

Model Inputs: 

For the base case model, the total number of wind probability scenarios considered is 50 with each 

scenario having its own unique probability of occurrence. The power generation planning model 

is subjected to a life time of 25 years with a discount rate of 7% which is used to calculate the 

capital return factor (CRF) of the power system. For this study, there is a need to use a hydrocarbon 

source for the greater polygeneration energy system, the reason being that the hydrocarbon to 

syngas pathway is crucial for the basis of chemical production. While coal is in the process of 

being phased out in many countries, including Canada, this study uses coal to act as the main fuel 

source for the conventional power generator as well as the source for the feed stream to the gasifier. 

As such, the model that will be developed in later chapters will be generic enough, for any other 

hydrocarbon fuel source to replace coal. In this study, the price of coal is assumed to be constant 

and not subject to variation at a price of USD 61 per ton [35]. The system according to the topology 

figure 3.1 has 4 loads and the value of load shed for each of the loads is set at USD 1000. The 

capital cost for each of the conventional generators is assumed to be USD 750,000 [72] and the 

higher heating value for the coal that is used for this system as feedstock for the conventional 

generators is assumed to be 8.39 kWh/kg [40]. 

The input data for the wind factors used to represent the actual wind realizations that are brought 

about by the uncertainty realization and their corresponding probability scenarios, is sourced from 

the open-source website managed by the Elia Group [91]. The data selected was the hourly wind 

factor for a full year’s operation for the aggregate wind farms in Belgium for the year 2018. The 

motivation behind using this source for the wind power generation, was to showcase the typical 

European power system behavior and their characteristics (as shown in the topology figure 3.1).  
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The input data for the load demand sourced from open-source load data from the PJM electricity 

markets website. The PJM is a regional transmission organization that coordinates the transactions 

of wholesale electricity in all or parts of 13 states in the US and the District of Columbia. The 

hourly load demand for a specific jurisdiction (reflecting the typical urban block within a standard 

EU nation) was chosen for the year 2018 [92]. 

To aid in the system modeling and calculation of associated costs, an assumption was made that 

the cost of operating the wind power farm is negligible compared to the capital cost, so it has been 

assumed to be zero.  

The model was solved using the typical linear programming solver CPLEX 11.1.1 and was 

modeled within the GAMS modeling software environment. The model consisted of 15,331 single 

equations, 6,168 single variables and 375 discrete variables. The total CPU time used to arrive at 

the optimal solution was 41.76 seconds. The main results of the model are presented below: 

 

Table 3.1 Design Decision Variable Results of Base Case Power Generation Planning Model 

 

 

 

 

 

 

 

 

 

 

 

Design 

Decisions 
 

Xcapk (MW) 2686.6 

Xgen (MW) 976 
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Table 3.2 Schedule of Conventional Generators in the Base Case Power Generation Planning Model 

Generator On/Off 

g1 1 

g2 0 

g3 1 

g4 0 

g5 1 

g6 0 

g7 0 

g8 1 

 

In table 3.1, the reported value of the total wind power that is installed Xcapk is shown, which is 

2686.6 MW and the total conventional power generation, Xgen, designed via generator scheduling 

is 976 MW. This implies that for a full year’s operation, a higher amount of wind power 

capabilities is installed than conventional power for the above system. In table 3.2, the schedule of 

which conventional generators are switched on during the operation of the base case model is 

shown. Only 4 generators (g1, g3, g5 and g8) out of possible 15 total generators are designed, 

indicating that the wind capabilities are high and the actual wind power profiles are providing a 

significant portion of the load demand.  

 

Table 3.3 Cost Results of the Base Case Power Generation Planning Model 

Costs USD (millions) 

Total Cost (per year) 521.82 

Operating Cost (per year) 90.15 

Annualized Capital Cost 431.68 

 

The main costs associated with the base case power generation planning model are shown in table 

3.3 above. The total system cost is USD 521.82 million per year, which is comprised of the capital 

costs of installing the conventional generators and the wind farm based on the total wind power 

installed, which comes to a total of 431.68 USD million. The operating cost per year is USD 90.15 

Generator On/Off 

g9 0 

g10 0 

g11 0 

g12 0 

g13 0 

g14 0 

g15 0 
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million/year, which is mainly the operating costs of running and maintaining the conventional 

generators, as the wind farm operating cost is assumed to be zero.  

A key impact of integrating wind into power systems is the reduction in the overall greenhouse 

gas emissions. While this has been mentioned in the background section of the present work, the 

emphasis is on showcasing the use of excess wind in the overall polygeneration system by helping 

to drive the production of value added chemicals. For this reason, the emissions and its variation 

from this chapter and subsequent chapters will not be considered as a focal point of the design and 

operation modeling studies. 

3.4.2 Impact of Clustering the Wind Probability Scenarios 

In accordance with the base case model results shown in section 3.4.1, the model has 50 probability 

scenarios of wind power. However, the solution time for arriving at the solution is considerably 

longer. The general consensus from the mathematical optimization community is that the higher 

the number of scenarios, the longer and more computationally intensive it is to arrive at the 

solution. 

For the purpose of reducing the solution time, the total number of probability scenarios for the 

wind is clustered based on the k-means clustering algorithm. As discussed in section 2.10, the k-

means algorithm works to identify centroids and group similarly distanced data points close 

together until the scenario size is significantly lower but still able to represent the full scale data.  

For the wind factors model inputs used in the previous section, the k-means clustering algorithm 

was able to reduce the number of scenarios from 50 to 6. The results of the clustering mechanism 

are shown in figure 3.2 below. 
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Figure 3.2 The results of the clustering algorithm on the expected wind power data, represented as the 

base case and 6 additional clusters. 

 

The newly formed 6 wind probability scenarios are input into the model to replace the original 50 

scenarios. The model is solved once again using CPLEX 11.1.1 using the GAMS 24.5 

environment. The number of equations and variables is the same, however the model solved in 

15.83 CPU time seconds. This solution time is significantly lower than the base case model with 

50 scenarios, which solved in 41.76 seconds.  

 

Table 3.4 Cost Results of the Power Generation Planning Model with Clustered Wind Scenarios 
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Total Cost (per year) 541.78 

Operating Cost (per year) 91.27 

Annualized Capital Cost 450.51 
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The main cost results from the model with 6 wind probability scenarios is shown in table 3.4. It 

can be seen that the total cost per year has increased to USD 541.78 million largely due to the 

increased amount of wind installed at the day ahead stage, which adds to the overall capital cost 

of the system. The total wind power installed increased from 2686 MW to 2823 MW, once the 

clustered wind data was used as an input. So while the cost results of the model are higher by a 

sizable percentage, the solution time decreases from 41.76 seconds to 15.83 seconds which aids in 

the overall computational tractability of the model, in particular, when the above model is extended 

to include other components like storage systems etc. Moving forward in this chapter and the next 

chapter 4, all power generation planning models will be using the 6 wind probability scenarios.  

3.4.3 Impact of a Surge in the Hourly Load Demand 

The main purpose of this section is to showcase the benefit of modeling the power generation 

planning model under the conditions of uncertainty. The hourly load demand data used in this 

chapter has been increased by a surging amount of 20% in a manner to replicate what an extreme 

case may require the power system to respond to in order to satisfy the load. 

The new load demand data is input into the model and solved under two different conditions.  

1) The first condition is that the model is allowed to solve as per normal with the 

solution determining the new installed amounts of the wind power and the 

conventional generation power. 

2) The second condition is that the model will be solved under the values of the fixed 

design decision variables of installed power for wind and conventional generators 

that were calculated in the base case model from the previous section. Which 

implies that in order to meet any load that the system falls short of providing, the 

operator can purchase from an external grid. 
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The following equations consider a new variable which is the amount of power purchased from 

the grid during the day ahead stage and real time stage. The price of electricity purchased from the 

grid is assumed to be USD 150 per MW. 

The equation (3.18) below calculates the total cost of the power that is purchased from the grid to 

meet the surging load demand based on a unit electricity price of USD 150/MW: 

𝑃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 = 150 ∗∑𝑃𝑔𝑟𝑖𝑑𝑛,ℎ
𝐷𝐴 − ∑𝜌𝑠

𝑠𝑛,ℎ

∗ (𝑃𝑔𝑟𝑖𝑑𝑛,ℎ
𝐷𝐴 − 𝑃𝑔𝑟𝑖𝑑𝑛,ℎ,𝑠

𝑅𝑇 )         ∀𝑛, ℎ, 𝑠 

                                                                                                                                                  (3.18) 

Where 𝑃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 is the total power purchased from the grid, 𝑃𝑔𝑟𝑖𝑑𝑛,ℎ
𝐷𝐴  is the power purchased 

from the grid in the day-ahead stage and 𝑃𝑔𝑟𝑖𝑑𝑛,ℎ,𝑠
𝑅𝑇  is the power purchased from the grid in real-

time stage.  

With this new cost variable calculated, the overall objective function of the power generation 

planning model needs to be updated: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝑡𝑜𝑡𝑎𝑙𝐶

= 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 + 365 ∗ (𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟 + 𝑂𝐹𝑅𝑇

𝑂𝑝𝑒𝑟 + 𝑃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 ) 

                                                                                                                                                (3.19) 

All other parameters and inputs and assumptions are the same as the previous iterations of the 

model. The models in both conditions are solved again using CPLEX in GAMS software 

environment, and the results are reported below. 
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Results of Condition 1 (Design variables not fixed): 

Table 3.5 Main Costs of Power Planning Model under Condition 1 

 

 

 

 

 

Table 3.6 Design Decision Variables of Power Planning Model under Condition 1 

 

 

 

 

From tables 3.5 and 3.6, it can be seen that with a surging load demand, both the design decision 

variable values and the main costs of the system increase across the board. The total cost increases 

from the base case of USD 541 million per year to USD 651.39 million per year, which correlates 

with the increase in the amount of wind power and conventional generator power installed.  

Results of Condition 2 (Design variables fixed): 

Under this condition, the system operator is permitted to purchase power from the grid and model 

incorporates equations (3.18) and (3.19). 

Table 3.7 Main Costs of Power Planning Model under Condition 2 

 

 

 

 

 

 

Cost Results 
USD 

(millions) 

Total Cost (per year) 651.39 

Operating Cost (per 

year) 

117.66 

Annualized Capital Cost 533.73 

Design 

Decisions 
 

Xcapk (MW) 3312.7 

Xgen (MW) 1226 

Cost Results USD 

(millions) 

Total Cost (per year) 659.07 

Operating Cost (per 

year) 

164.65 

Annualized Capital 

Cost 

450.51 

Cost of Power 

Purchased (per year) 

43.91 
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From table 3.7, it can be seen that the capital cost of 450.51 USD million per year is the same as 

that of the base case model, on account of the design decision variables are fixed prior to the model 

being solved. With the operator permitted to purchase power from the grid, the total cost of power 

that was purchased was 43.91 USD Million per year. Interestingly, the total cost of the system per 

year which is 659.07 USD Million per year is not that much greater than the total cost from the 

first condition which allowed the model to design the wind and conventional power capabilities 

from scratch. Additionally, it shows that the model from the base case design, is flexible in 

responding to any surges in power load by purchasing any additional power and still meeting the 

load demand. 

The above two models, showcase the benefit of stochastic formulation as opposed to allowing the 

model to design under worst case scenarios. An example of designing under worst case would be 

using load demand data that is several orders of magnitude higher than the base load used (as 

opposed to the surged data used) or under a situation where the wind power available is zero. In 

reality, these types of worst case scenarios are extremely rare and only result in the model deciding 

to over-design the power system. By performing the above analysis, it can be said that the 

stochastic formulation provides optimal results in response to a situation that has a higher 

probability of occurrence with respect to uncertainty in load demand. 

3.5 Concluding Remarks 

In this chapter, a power generation planning model was developed based on a network-constrained 

DCUC model. The model developed was stochastic in nature with wind probability scenarios 

being utilized to showcase the uncertainty associated with intermittent wind power. The model 

aided in providing design decision variables for the system, and proceeded to provide results for 
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the operation of the power system in the day-ahead stage and followed by the real time stage. One 

aspect that was investigated was the impact of clustering the number of wind probability scenarios. 

It was found that despite some increases in the total cost of the system, when the total number of 

scenarios was reduced from 50 to 6, the total time taken to arrive at the solution of the model was 

reduced from 41 seconds to 15 seconds, which aids greatly in maintaining computational 

tractability, especially when the model is extended to become larger in scale. Another case that 

was investigated was how the model would respond to a surge in load demand and proceed under 

two conditions, one where the model’s design is made from scratch to account for the higher loads, 

and the second where the system’s design was fixed based on the base case results and the system 

was able to purchase power from an external grid. In both conditions, the total cost was comparable 

and only reinforced that modelling this power system under uncertainty is the right approach as 

opposed to extreme worst case scenarios which would only lead to an over-designed power 

generation planning model. Under all cases, the model was able to meet the load demand while 

also utilizing the available wind power hence successfully being able to simulate a power 

generation planning model which is able to integrate renewable energy.  
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Chapter 4  Power Generation Planning Model with Energy 

Storage System 

 

This chapter discusses the extension of the previous stochastic DCUC model to include an energy 

storage mechanism.  In this model, the storage mechanism will be represented by an electrolyser 

driven conversion from electricity to hydrogen. The chapter showcases how excess power from 

hourly time periods with high wind power realizations can be stored in the form of hydrogen. 

Additionally, this chapter will highlight the benefit of clustering the scenarios in the stochastic 

model and its applicability in building large-scale energy system models. 

4.1 Energy Storage System with Stochastic DCUC Model  

A response to the intermittency challenge posed by renewable energy sources like wind, has been 

the use of various energy storage methods. Among these, the ones with the most traction in recent 

years (outside of long-duration storage methods) has been the use the battery technology and 

chemical storage in the form of hydrogen. The mechanism works by first converting the excess 

power from renewable wind profiles to hydrogen with the use of an electrolyser. This hydrogen 

that is produced is stored in a tank or in larger scale projects, can be stored in caverns that are 

natural rock formations under the ground. The storage mechanism is completed when during 

periods of high demand, the stored hydrogen is extracted and converted to power once again by a 

fuel cell.  

In the stochastic DCUC model developed in chapter 3, for hourly periods where the amount of 

wind available is not correlated with the load demand, the excess wind is spilled and there is a 

penalty that is paid by the operator as the wind power could have alternatively been used for storing 

to be used at a later time, or used in alternative means to extract value from that energy.  
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The level of wind spillage in the base case of the power system planning model from the previous 

chapter, was considerable in this chapter, the model will be extended to show the design and 

operation of a hydrogen electrolyser and fuel cell based energy storage system (ESS). The chapter 

will first focus on the model formulation of the ESS system, how it integrates with the original 

base case stochastic DCUC model and finally display and discuss the results and impact of having 

the ESS block.  

 

Figure 4.1 Topology of the 7-node power system with a storage mechanism node. 

 

Figure 4.1 shows the amended node-based power system mechanism, which now includes an 

additional node that has the storage set, st1 included. The st represents the ESS block comprising 

the hydrogen electrolyser and fuel cell components. The remainder of the figure is the same power 

system nodes set up earlier in chapter 3 of the thesis.  
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4.2 Model Formulation for the Energy Storage System 

In this section, the modified equations from chapter 3 as well as the additional constraints and 

equations representing the ESS block are presented.  

The approach taken in modelling the ESS block, is that the ESS and its associated variables and 

constraints will come into effect and respond only when the wind probability scenarios are 

realized, which is to say when the actual power is realized from the wind farm and the conventional 

generators. The capacities of the ESS components are first stage variables while the scheduled 

dispatched charging and discharging power (power to hydrogen and the hydrogen back to power) 

are second stage variables (function of uncertainty scenarios). 

Equation (4.1) is the objective function of the model with ESS, with the objective function variable 

being the total cost of the system that is comprised of the capital and operating costs (day ahead 

and real time): 

           𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑡𝑜𝑡𝑎𝑙𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 + ∑ (𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟 + 𝑂𝐹𝑅𝑇

𝑂𝑝𝑒𝑟)1𝑦𝑒𝑎𝑟         (4.1) 

Where totalC is the total cost of the power generation planning system, cap is the total capital cost 

of the power generation planning system and 𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟 𝑎𝑛𝑑 𝑂𝐹𝑅𝑇

𝑂𝑝𝑒𝑟
 is the total operational cost in 

day-ahead and real-time respectively. 

Equation (4.2) below represents the operating cost of the power generation system at the day ahead 

stage of the model. 

𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟 =∑(𝑐𝑔,ℎ

𝑆𝑈 + 𝑐𝑔,ℎ 
𝑆𝐷 + 𝐶𝑔𝑝𝑔,ℎ

𝐷𝐴) + 𝑓𝑢𝑒𝑙𝐷𝐴 ∗ 𝑝𝑟𝑐𝑜𝑎𝑙  +  ∑𝑤𝑘,ℎ
𝐷𝐴

𝑘𝑔,ℎ

∗  𝑂𝑝𝑒𝑟𝑊 

                                                                                                                                                    (4.2) 
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Where 𝑂𝐹𝐷𝐴
𝑂𝑝𝑒𝑟

 is the operating cost of the power generation planning system model in day-ahead, 

𝑓𝑢𝑒𝑙𝐷𝐴 is the amount of fuel (coal) used by the power system in day ahead, 𝑝𝑟𝑐𝑜𝑎𝑙 is the price of 

coal in USD and OperW is the operational cost of the wind farm. 

Equation (4.3) below represents the operating cost of the power generation system at real-time 

stage of the model. 

𝑂𝐹𝑅𝑇
𝑂𝑝𝑒𝑟 =  ∑∑𝜌𝑠 ∗ [ (𝑓𝑢𝑒𝑙𝑅𝑇

𝑠ℎ

∗ 𝑝𝑟𝑐𝑜𝑎𝑙) + ∑𝐶𝑔𝑟𝑔,ℎ,𝑠
𝑔

+ ∑(𝑉𝑙
𝑆𝐻𝑝𝑙,ℎ,𝑠

𝑆𝐻 )

𝑙

+ ∑(𝑋𝑐𝑎𝑝𝑘 ∗ 𝑊𝑘,ℎ,𝑠 ∗ 𝑂𝑝𝑒𝑟𝑊

𝑘

 − 𝑤𝑘,ℎ
𝐷𝐴 ∗ 𝑂𝑝𝑒𝑟𝑊) + ∑(𝐸𝑆𝑆𝑜𝑝𝑒𝑟 ∗  𝑟𝑠𝑡,ℎ,𝑠

𝐸𝐿

𝑠𝑡

+ 𝐸𝑆𝑆𝑜𝑝𝑒𝑟 ∗  𝑟𝑠𝑡,ℎ,𝑠
𝐹𝐶 ) ] 

                                                                                                                                                    (4.3) 

Where 𝑂𝐹𝑅𝑇
𝑂𝑝𝑒𝑟

 is the operating cost of the power generation planning system model in real-time, 

𝑓𝑢𝑒𝑙𝑅𝑇 is the amount of fuel used by the power system in the real-time stage. 𝐸𝑆𝑆𝑜𝑝𝑒𝑟 is the 

operating cost of the energy storage system block and 𝑟𝑠𝑡,ℎ,𝑠
𝐸𝐿  and 𝑟𝑠𝑡,ℎ,𝑠

𝐹𝐶  is the power converted to 

hydrogen in the electrolyser, and the power discharged from the fuel cell respectively, at every 

hour under each scenario s. 

The equation (4.4) below is used to calculate the capacity of the electrolyser within the energy 

storage block. 

𝑐𝑎𝑝𝐸𝐿 = ∑𝑟𝑠𝑡,ℎ,𝑠
𝐸𝐿

𝑠𝑡

          ∀𝑠𝑡, ℎ, 𝑠 

                                                                                                                                                    (4.4) 

Where 𝑐𝑎𝑝𝐸𝐿 is the capacity in MW of the electrolyser in the storage system and one of the design 

decision variables to describe the installed capacity of the electrolyser. 
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The equation (4.5) below is used to calculate the capacity of the fuel cell within the energy storage 

block. 

𝑐𝑎𝑝𝐹𝐶 = ∑𝑟𝑠𝑡,ℎ,𝑠
𝐹𝐶

𝑠𝑡

          ∀𝑠𝑡, ℎ, 𝑠 

                                                                                                                                                    (4.5) 

Where 𝑐𝑎𝑝𝐹𝐶 is the capacity in MW of the fuel cell within the storage system. 

The equation (4.6) is used to calculate the level of hydrogen in the hydrogen storage tank at every 

hour of the operation of the storage system but not inclusive of the first hour. 

𝐻𝑙𝑒𝑣𝑒𝑙ℎ
𝑅𝑇    =     𝐸𝐿𝐸𝑓𝑓 ∗  ∑(𝜌𝑠 ∗  𝑟𝑠𝑡,ℎ,𝑠

𝐸𝐿 )

𝑠

   +  𝐻𝑙𝑒𝑣𝑒𝑙ℎ−1
𝑅𝑇  −   

∑ (𝜌𝑠 ∗  𝑟𝑠𝑡,ℎ,𝑠
𝐹𝐶 )𝑠

𝐹𝐶𝐸𝑓𝑓
       ∀ℎ > 1 

                                                                                                                                                  (4.6) 

Where 𝐸𝐿𝐸𝑓𝑓 and 𝐹𝐶𝐸𝑓𝑓 are the efficiency ratings of the electrolyzer and the fuel cell respectively 

and 𝐻𝑙𝑒𝑣𝑒𝑙ℎ−1
𝑅𝑇  is the hydrogen level in the storage tank in the previous hour of operation. 

Following the previous equation, equation (4.7) below is for calculating the level of hydrogen in 

the storage tank for the first hour (h = 1) of operation of the storage system.  

𝐻𝑙𝑒𝑣𝑒𝑙ℎ
𝑅𝑇    =     𝐸𝐿𝐸𝑓𝑓 ∗  ∑(𝜌𝑠 ∗  𝑟𝑠𝑡,ℎ,𝑠

𝐸𝐿 )

𝑠

   +  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑙𝑒𝑣𝑒𝑙 − 
∑ (𝜌𝑠 ∗  𝑟𝑠𝑡,ℎ,𝑠

𝐹𝐶 )𝑠

𝐹𝐶𝐸𝑓𝑓
       ℎ = 1 

                                                                                                                                                  (4.7) 

Where 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑙𝑒𝑣𝑒𝑙 is the initial storage tank level prior to the start of the operation of the storage 

system. 

The equation (4.8) below is a charging constraint 

                              𝑟𝑠𝑡,ℎ,𝑠
𝐸𝐿      ≤       𝐶ℎ𝑠𝑡,ℎ ∗ 𝐵𝑖𝑔𝑀           ∀𝑠𝑡, ℎ                                                   (4.8) 



60 

Where 𝐶ℎ𝑠𝑡,ℎ is a binary variable that holds a value 1 when the electrolyser is operating and 0 

when it is off.  

The equation (4.9) below is constraint that ensures that the power produced  

                               𝑟𝑠𝑡,ℎ,𝑠
𝐹𝐶      ≤       𝐷𝑠𝑐ℎ𝑠𝑡,ℎ ∗ 𝐵𝑖𝑔𝑀           ∀𝑠𝑡, ℎ                                              (4.9) 

Where 𝐷𝑠𝑐ℎ𝑠𝑡,ℎ is a binary variable that holds a value 1 when the fuel cell is operating and 0 when 

it is off. 

Equation (4.10) is to ensure that only one operation is performed by the entire storage system block 

at any given hour, so it is either converting the excess power via the electrolyser to hydrogen to 

store or it is converting hydrogen to power to meet load demand. 

                                    𝐶ℎ𝑠𝑡,ℎ   +   𝐷𝑠𝑐ℎ𝑠𝑡,ℎ  ≤   1     ∀𝑠𝑡, ℎ                                                      (4.10) 

The following constraint is imposed to enforce a minimum amount of the total wind power 

available to storage and activate the energy storage system which comprises the operation of the 

electrolyser and the fuel cell. 

𝑐𝑎𝑝𝐹𝐶      ≥        𝑅𝑃𝑆𝐸𝑆𝑆   ∗    ∑𝑋𝑐𝑎𝑝𝑘         ∀𝑘

𝑘

 

                                                                                                                                                  (4.11) 

Where, 𝑅𝑃𝑆𝐸𝑆𝑆 is the storage portfolio standard that may be imposed at a policy level to ensure 

the renewable wind energy is stored for future regeneration. 

To incorporate the impact of the ESS block effectively, the power balance equation in the real time 

mode needs to be updated accordingly as well. This equation (4.12) shows the updated power 

balance equation: 



61 

∑(𝑝𝑔,ℎ
𝐷𝐴 + 𝑟𝑔,ℎ,𝑠)   

𝑔

+ ∑(𝑊𝑘,ℎ,𝑠 − 𝑤𝑘,ℎ,𝑠
𝑆𝑃 )     

𝑘

− ∑(𝐷𝐿𝑙,ℎ − 𝑝𝑙,ℎ,𝑠
𝑆𝐻 )   +  ∑𝑟𝑠𝑡,ℎ,𝑠

𝐸𝐿

𝑠𝑡

+   ∑𝑟𝑠𝑡,ℎ,𝑠
𝐹𝐶

𝑠𝑡

 

𝑙

=  ∑𝐵(𝑛.𝑚)(𝜃𝑛,ℎ,𝑠
𝑅𝑇 − 𝜃𝑚,ℎ,𝑠

𝑅𝑇 )                                              ∀𝑛, ∀ℎ, ∀𝑠

𝑚

 

 

                                                                                                                                                  (4.12) 

4.3 Results of the Power Planning Model with ESS 

In order to model the power planning model with energy storage system, the following 

assumptions and input parameters were utilized. The portfolio constraint on the energy storage 

system block (shown in Equation (4.11)) is to ensure that some percentage of the wind power 

delivered to the system is redirected to the energy storage block for conversion to hydrogen. For 

this model , the 𝑅𝑃𝑆𝐸𝑆𝑆 parameter has been set at 10%, implying at least 10% of the total wind 

power harnessed must be directed to the ESS block. The initial hydrogen tank level is assumed to 

be empty. The other input parameters are the same as the values input to the model in chapter 3. 

The power generation planning model is assumed to operate for 365 days to calculate the yearly 

cost of the entire system which includes the operational cost on a yearly basis as well. The 

operation cost of the wind farm is assumed to be zero and the capital costs of the electrolyser and 

the fuel cell are set as USD 500,000 and USD 1,500,000 which are approximate prices as 

mentioned in the following reference [72].  The model results are in accordance to the same wind 

power factor probability scenarios (based on 6 scenarios) 
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The model was solved using CPLEX 11.1.1 solver on GAMS 24.5 software environment. The 

model comprised of 15,956 equations, 6240 single variables and 423 discrete variables. The total 

CPU time in order to arrive at the solution was 36.26 seconds. The following section details the 

main results of the model accompanied by general discussions.  

 

Table 4.1 Design Decision Variable Results of Power Generation Planning Model with ESS. 

 

 

 

 

 

 

Table 4.2 Conventional Generator Design Decision of the ESS Power Generation Planning Model. 

Generator g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 

Design 

Yes/No 
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 

 

The main design decision variable results are displayed in table 4.1. The value of Xcapk is found 

to be 2697.31 MW installed wind power and the Xgen,value of 976 MW is the total power installed 

from convention power generators. Table 4.2 is the schedule of the available conventional 

generators in the system. From the table it can be seen that generators g1, g3, g5 and g8 are 

scheduled to be ON throughout the operation of the power planning model. For the ESS block, the 

capacities of the electrolyser and fuel cell are reported in Table 4.1 as well. The capacity of each 

of the equipment is the maximum power rating utilized for its operation, in the case of the 

electrolyser it is 20.84 MW and for the fuel cell it is 269.73 MW.  

  

Design Decisions  

Xcapk (MW) 2697.31 

Xgen (MW) 976 

Electrolyser Capacity (MW) 20.84 

Fuel Cell Capacity (MW) 269.73 
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Table 4.3 Hourly Schedule of the Electrolyser in the ESS Block 

Hour Average Power(MW) 

1 20.839 

2 20.839 

3 9.949 

4 7.532 

5 10.138 

6 7.309 

7 19.399 

8 20.839 

9 20.839 

10 14.587 

11 10.002 

12 11.670 

13 15.408 

14 15.837 

15 15.837 

16 0 

17 0 

18 0 

19 0 

20 0 

21 0 

22 0 

23 0 

24 0 

 

In table 4.3 above, the hourly schedule of the electrolyser operation is shown. The electrolyser is 

on and operational (converting excess power to hydrogen) from hours 1 to 15 and the 

corresponding power rating in MW is highlighted for each hour that it is on.  
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Table 4.4 Hourly Schedule of Fuel Cell in the ESS block 

Hour Average 

Power(MW) 

Load Demand (MW) 

1 0 1921.17 

2 0 1903.32 

3 0 1867.62 

4 0 1855.89 

5 0 1888.02 

6 0 2002.26 

7 0 2206.26 

8 0 2287.35 

9 0 2219.52 

10 0 2114.97 

11 0 2037.96 

12 0 1994.1 

13 0 1970.13 

14 0 1989 

15 0 2031.33 

16 19.481 2107.32 

17 21.578 2247.06 

18 9.928 2420.46 

19 8.671 2552.55 

20 7.562 2571.42 

21 9.363 2530.62 

22 0 2424.54 

23 0 2277.15 

24 0 2127.21 

 

In table 4.4 above, the hourly schedule of the fuel cell operation is shown. The fuel cell is on and 

operational (converting hydrogen stored in the tank back to power) from hours 16 to 21 and the 

corresponding power rating in MW is highlighted for each hour that it is on. The hours that the 

fuel cell is on corresponds to when the electrolyser is switched off which is in accordance with the 

constraint set up in equation (4.10).  

An additional column showing the load demand at each hour is also included in table 4.4 to 

highlight that during hours 16 to 21, the load demand is higher than average for that particular day. 
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Hence, it would make sense that when the load is higher, more power can be obtained from the 

ESS by converting stored hydrogen to power via the fuel cell.  

 

Table 4.5 Cost Results of the Power Planning Model with ESS 

Cost Results USD (millions) 

Total Cost (per year) 576.24 

Operating Cost (per 

year) 

107.48 

Annualized Capital 

Cost 

468.76 

 

Table 4.5 above reports the main costs of the power planning model with ESS block. The total cost 

of the system is found to be USD 576.24 million per year and this comprises the operating cost per 

year which is at USD 107.4 million and the total capital cost from installation at USD 468.76 

million. The total cost of USD 576.24 million is higher in contrast to the power planning model 

base case using 6 probability scenarios for wind, which was USD 541.78 million per year. This 

difference in cost is directly linked to the addition of the ESS block equipment and their associated 

capital and operating cost.  

4.3.1 ESS Impact on Wind Spill 

Wind spill as a phenomenon occurs due to the non-correlation between the load and the wind 

power profile, which is to say that when the load demand at any given hour is lower than the 

amount of wind available at that same hour, the wind power that is not utilized is spilled and no 

benefit is gained from it, unless the operator is able to sell it to nearby grids in short notice. The 

concept of energy storage is directly borne of the need to avoid or minimize the amount of wind 

that is spilled as a result of this mismatch between the load the wind power profile. Wind spill is 

also an outcome from poor error-laden forecasting that is significantly different from the actual 
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wind power on that day. This phenomenon directly shows the need to not only model with the 

presence of uncertainty (probability based wind realizations in real time) but also taking advantage 

of and ESS.  

The models presented in this chapter as well as the previous chapter have considered the amount 

of wind that is spilled by allowing the model to calculate the variable 𝑤𝑘,ℎ,𝑠
𝑠𝑝

 which is the wind 

power spilled at every hour h under scenario s. To further show the difference in the level of wind 

spill between the base case power planning model and the power planning model incorporated 

with ESS, the average 𝑤𝑘,ℎ,𝑠
𝑠𝑝

 over the 6 scenarios considered is calculated and their variation on an 

hourly basis is shown in figure below: 

 

Figure 4.2 Comparison in Wind Spill levels between base case power planning model and power planning 

model with ESS. 

 

In figure 4.2 above, it can be seen that the average wind spill levels in the case of the power 

planning model without ESS is higher than that of the case with ESS. Between hours 3 and 5 as 

well as between hours 10 and 17, the amount of wind spilled is consistently higher with a peak 

spillage of 128 MW at hour 5 in the base case model without ESS. In comparison, the peak wind 
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spilled in the model with ESS is 69.6 MW. The figure above further reinforces the benefit of using 

ESS as a potential solution to counter the intermittency of wind power and the mismatch that may 

arise from the load not aligning with the available wind power profile.  

So while the overall system cost with ESS is higher than the base case model, the economic benefit 

gained from applying ESS and using the stored power compensates adequately for the higher 

capital and operating costs. Not to mention the benefits that may also be gained by directly selling 

the converted hydrogen to the economy as a clean energy source by itself, a concept that has 

recently gained much popularity [80].  

4.3.2 ESS Model Results with 50 Wind Probability Scenarios 

In chapter 3, the benefit of using clustered wind probability scenarios (from 50 to 6) was discussed 

and found to bring about significant reduction in solution time and without impacting the accuracy 

of the model results by a wide margin. 

In this section, the model was solved using the initial 50 scenarios to compare the results with the 

ESS model with 6 scenarios. The model was solved in GAMS 24.5 using the CPLEX 11.1.1 solver. 

The model with 50 scenarios had 111,788 single equations, 38,976 single variables and 423 

discrete variables and the total solution time was 5941.97 seconds of CPU time which amounted 

to approximately 99.03 minutes. The other key results with regards to design decisions and main 

costs are presented in tabular form below. 

 

Table 4.6 Design Decision Variable Results of Power Generation Planning Model with ESS with 50 

Wind Probability Scenarios. 

Design Decisions  

Xcapk (MW) 2657.22 

Xgen (MW) 1076 

Electrolyser Capacity (MW) 35.18 

Fuel Cell Capacity (MW) 265.86 
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Table 4.7 Conventional Generator Schedule of the ESS Power Generation Planning Model with 50 Wind 

Probability Scenarios. 

Generator Design 

Yes/No 

g1 1 

g2 1 

g3 1 

g4 0 

g5 1 

g6 0 

g7 0 

g8 1 

g9 0 

g10 0 

g11 0 

g12 0 

g13 1 

g14 0 

g15 0 

 

 

Table 4.8 Cost Results of the Power Planning Model with ESS with 50 Wind Probability Scenarios. 

Cost Results USD (millions) 

Total Cost (per year) 581.86 

Operating Cost (per year) 112.07 

Annualized Capital Cost 469.79 

 

From the results obtained from the model with 50 probability scenarios, the total power installed 

from the conventional generators is higher at 1076 MW while a lower amount of wind power is 

designed in the wind farm at 2657.22 MW as shown in table 4.6. This increase in power installed 

is due to a higher number of conventional generators being switched on during the operation of 

the system. From table 4.7, it can be seen that generators g1, g2, g3, g5, g8 and g13 is scheduled 

to be on, which is an additional 2 generators designed when compared to the model with 6 

scenarios. The overall cost of the system increases from USD 576.24 million per year to USD 
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581.86 million which is also owing to the higher number of generators and their associated capital 

and operating costs.  

Seeing as how the difference in costs and design decision variable values do not vary by a 

significant amount, the main benefit of clustering the wind factors and reducing the size of the 

clusters from 50 to 6, is the time that is saved in obtaining the solutions. The difference in the CPU 

time for solving is large with the case of 50 scenarios, the model took over 99 minutes to solve 

while after clustering, the solution was arrived at in less than a minute at around 36 seconds. 

4.4 Concluding Remarks 

In this chapter, the power generation planning model from chapter 3 has been extended to include 

an energy storage system (ESS) block. The energy storage mechanism considered in this model is 

that of hydrogen that is produced by an electrolyser that converts excess wind power that is not 

used for meeting the load demand at any given hour. The hydrogen is stored in a tank and is 

converted back to power by a fuel cell during times of high load demand. The model was set up 

similar to the DCUC stochastic model that was used to model the power generation planning model 

in chapter 3. 

With the inclusion of the ESS block, the total system cost of the power generation planning model 

with 6 probability scenarios was calculated to be USD 576.24 million per year which reflects the 

inclusion of the ESS block’s capital and operating costs. The model was solved using the original 

50 scenarios for the wind probability and the costs and design decisions were found to be 

comparable and slightly higher. However, the solution time of using 50 scenarios was much longer 

with the model taking over 99 minutes to arrive at the solution. One of the key benefits of using 

an ESS block with renewable energy integrated power system is the minimization of the amount 

of wind spilled. Wind spillage comes about due to the mismatch between the load demand and the 
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available wind profile and it was shown in this model how the ESS was able to bring down the 

average hourly amount of the wind spilled. The objective of showcasing the working of an ESS 

mechanism and the benefit to the overall energy system has been met in this chapter. In subsequent 

chapters of this work, the power generation planning model will be integrated with alternative 

storage mechanisms which include chemical production of value added products to form the basis 

of a renewable polygeneration energy system. 
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Chapter 5  Chemical Production Block 

 

This chapter discusses the production pathway of methanol from syngas, in particular the 

development of a model that represents the production of methanol from coal that is not used 

directly to generate power from conventional generators. The model includes the gasification of 

coal to form syngas, following which the syngas reacts to form methanol via a conversion reaction 

and finally, a distillation step is involved in which the methanol is separated from the rest of the 

products mixture and the unreacted syngas is redirected back to the production system. 

5.1 Methodology for the Methanol Production 

In this study the methanol production model has been set up as a general framework so that any 

form of carbon intensive sources can be used as a potential feedstock, not just coal. The main 

underlying formulation of the model is comprised of mass and energy balances and other first 

principles models. 

The first step in the model development will be a snapshot model. A snapshot model is 

deterministic in nature and captures the solution to all the variables at a particular time and does 

not consider their deviation in results over a time frame (for example 24 hours). Following the 

snapshot model, the model is then extended to represent the design and operation for a period of 

24 hours, from which the annual cost of the methanol production system can be calculated. 

The purpose of modelling at a process design level is to provide a mathematical way for the 

methanol production system to be designed and operated. The design decision variables will 

provide answers to the maximum capacity of each of the constituent units in the whole system. 
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The methanol production unit is comprised of 4 key unit components that will considered in this 

study, these include the gasifier, syngas clean-up unit, main methanol reactor and the distillation 

column. 

The function of the gasifier and clean-up unit is to prepare clean synthesis gas for downstream 

utilization by the gasification of feedstock, typically coal, in a high temperature, high pressure and 

reductive atmosphere.  

The methanol reaction is highly exothermic and therefore a large amount of steam can be produced 

for power generation, but in this study, this heat from steam is not considered as a power generation 

vector, instead the main purpose of the methanol is to serve as a commodity feed stock to be sold 

to the methanol economy as well as explore the option of using the methanol as a long duration 

storage mechanism. The products of the methanol synthesis reactor are separated into several 

streams in the methanol separation and processing unit: unreacted syngas, methanol with purity of 

99.8% and higher alcohols that are by products of the methanol synthesis reaction. High purity 

methanol is one of the products of this RPES (renewable polygeneration energy system). The 

unreacted syngas is recycled to the methanol synthesis reactor.  

Once the syngas leaves the clean-up unit, the clean syngas is split into two streams. One goes 

through an optional water gas shift reactor, and the other is bypassed, both mixing together again 

after the WGS. Through the water gas shift reaction, the mole composition of the syngas stream 

going through the reactor: 

𝐶𝑂 + 𝐻2𝑂 →  𝐶𝑂2 + 𝐻2 

While the bypassed stream remains unchanged. This is a means of adjusting the mole composition 

of the syngas according to the requirements of the methanol synthesis reactor. The degree of 

adjustment depends on the design variable called splitpercent.   
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The syngas then proceeds to a carbon dioxide removal unit, where the fraction of carbon dioxide 

in the syngas is adjusted to an appropriate level for the best performance of the catalysts in the 

methanol synthesis reaction.  

After the carbon dioxide is removed, the syngas goes to the methanol synthesis reactor to produce 

methanol.  Crude methanol produced in the synthesis reactor goes through a series of distillation 

columns to produce methanol as a final product. Mathematically, this process is formulated as 

splitting the crude product into two streams. One stream contains mainly methanol and a minor 

content of water, depending on the product degree whilst the other stream includes all the other 

components in the crude methanol. The mass flowrate of the final product methanol, or its 

production rate, must meet its market demand given by constraint equations (5.15) and (5.16).  

5.2 Model Formulation 

Objective Function: 

𝑐𝑜𝑠𝑡𝑀𝑒
𝑡𝑜𝑡𝑎𝑙 = ∑𝑓𝑟𝑒𝑞𝑑

𝑑

∗  ∑𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ𝑠𝑡

ℎ

∗ 𝑃𝑟𝑀𝑒   + 𝐶𝑅𝐹 ∗ 𝑐𝑎𝑝𝑐𝑜𝑠𝑡 + 𝑜𝑚𝑐𝑜𝑠𝑡

+ 𝐶𝐹𝑢𝑒𝑙          ∀𝑑, ℎ 

                                                                                                                                                    (5.1) 

The feed flow rates of the components are governed by the following equation: 

 

        𝑚𝑎𝑑,ℎ
𝑖𝑛𝑜𝑥𝑖  = 𝑟𝑓𝑢𝑒𝑙𝑖𝑛𝑜𝑥𝑖 ∗  𝑚𝑎𝑑,ℎ

𝑓𝑒𝑒𝑑
         ∀𝑑, ℎ                                                                     (5.2) 

 

The following is a component mass balance equation: 

∑ 𝑚𝑎𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡

  =  ∑ 𝑚𝑎𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑜𝑢𝑡𝑙𝑒𝑡

      ∀𝑑, ℎ 
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                                                                                                                                                   (5.3) 

The following is an element balance equation: 

 

∑ 𝑚𝑜𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑜𝑢𝑡𝑙𝑒𝑡

∗  ∑𝑀𝑊𝑖𝑖𝑒 ∗ 𝑆𝑇𝑂𝐼𝐶𝑟𝑠
𝑖𝑒

𝑟𝑠

∗  𝑥𝑟𝑠
𝑠𝑚    =   ∑ 𝑧𝑠𝑚

𝑖𝑒

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡

∗  𝑚𝑎𝑑,ℎ
𝑠𝑚      ∀𝑠𝑚, 𝑟𝑠, 𝑑, ℎ 

                                                                                                                                                   (5.4) 

The following equations is a component-wise balance equation: 

 

∑ 𝑚𝑜𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑜𝑢𝑡𝑙𝑒𝑡

∗ 𝑥𝑟𝑠
𝑠𝑚   =  ∑ 𝑥𝑟𝑠

𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡

∗  𝑚𝑜𝑑,ℎ
𝑠𝑚       ∀𝑑, ℎ, 𝑟𝑠, 𝑠𝑚 

                                                                                                                                               (5.5) 

Overall mol balance in the methanol production: 

 

∑ 𝑚𝑜𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑜𝑢𝑡𝑙𝑒𝑡

= ∑ 𝑚𝑜𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡

          ∀𝑑, ℎ 

                                                                                                                                               (5.6) 

Constraints to govern the separation of waste products in syngas stream 

 

          𝑥𝑟𝑠_𝑤𝑎𝑠𝑡𝑒
𝑤𝑎𝑠𝑡𝑒𝑠𝑔

∗ 𝑚𝑜𝑑,ℎ
𝑤𝑎𝑠𝑡𝑒𝑠𝑔

    ≥      𝑠𝑓𝑟𝑎𝑐 ∗ 𝑥𝑟𝑠𝑤𝑎𝑠𝑡𝑒
𝑐𝑜𝑜𝑙𝑠𝑔

∗ 𝑚𝑜𝑑,ℎ
𝑐𝑜𝑜𝑙𝑠𝑔

     ∀𝑑, ℎ                           (5.7) 
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Calculation of mass flow rate from mol flow rate: 

 

𝑚𝑎𝑑,ℎ
𝑠𝑚 = ∑(𝑚𝑜𝑑ℎ

𝑠𝑚

𝑟𝑠

∗  𝑥𝑟𝑠
𝑠𝑚) ∗ 𝑀𝑊𝑟𝑠      ∀𝑑, ℎ, 𝑟𝑠 

                                                                                                                                               (5.8) 

 

The following equation calculates the enthalpy of the syngas stream 

 

𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦𝑠𝑔𝑑,ℎ
𝑠𝑚 = 𝑚𝑜𝑑,ℎ

𝑠𝑚 ∗  ∑𝑥𝑟𝑠
𝑠𝑚

𝑟𝑠

∗  𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦𝑟𝑠
𝑠𝑚 

                                                                                                                                                  (5.9) 

The following constraints represent the cleanup process of methanol following the methanol 

reaction in the reactor: 

 

𝑥𝑀𝑒
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗  𝑚𝑜𝑑,ℎ

𝑝𝑟𝑜𝑑𝑢𝑐𝑡      ≥      𝑠𝑓𝑟𝑎𝑐 ∗ 𝑥𝑀𝑒
𝑚𝑒𝑜ℎ ∗ 𝑚𝑜𝑑,ℎ

𝑚𝑒𝑜ℎ     ∀𝑑, ℎ                                       (5.10) 

 

𝑥𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑 ∗  𝑚𝑜𝑑,ℎ

𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑      ≥      𝑠𝑓𝑟𝑎𝑐 ∗ 𝑥𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑚𝑒𝑜ℎ ∗ 𝑚𝑜𝑑,ℎ

𝑚𝑒𝑜ℎ     ∀𝑑, ℎ               (5.11) 
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The equation below represents the mol balance around the methanol reactor:  

 

𝑚𝑜𝑑,ℎ
𝑚𝑒𝑜ℎ ∗ 𝑥𝑟𝑠

𝑚𝑒𝑜ℎ    

=   ∑ (𝑥𝑟𝑠
𝑠𝑚 ∗  𝑚𝑜𝑑,ℎ

𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡

)  +   (𝑆𝑇𝑂𝐼𝐶𝑟𝑠 ∗  𝑐𝑜𝑛𝑣𝑐𝑜 ∗  𝑥𝑐𝑜
𝑠𝑚 ∗  𝑚𝑜𝑑,ℎ

𝑠𝑚) + (𝑆𝑇𝑂𝐼𝐶𝑟𝑠

∗  𝑐𝑜𝑛𝑣𝑐𝑜 ∗  𝑥𝑐𝑜
𝑠𝑚 ∗  𝑚𝑜𝑑,ℎ

𝑠𝑚)       ∀𝑑, ℎ, 𝑟𝑠 

                                                                                                                                                (5.12) 

After the clean-up of methanol, the remaining unreacted components are split into two streams, 

one is purged as outlet, the other containing significant mol fractions of CO, CO2, and H2 are sent 

as a recycle stream to continue the reaction of methanol. The following two constraints describe 

this phenomenon: 

 

𝑚𝑜𝑑,ℎ
𝑝𝑢𝑟𝑔𝑒

= 𝑠𝑝𝑙𝑖𝑡𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗  𝑚𝑜𝑑,ℎ
𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑

    ∀𝑑, ℎ                                                                 (5.13) 

 

𝑥𝑑,ℎ
𝑝𝑢𝑟𝑔𝑒

∗   𝑚𝑜𝑑,ℎ
𝑝𝑢𝑟𝑔𝑒

  = 𝑠𝑝𝑙𝑖𝑡𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗  𝑚𝑜𝑑,ℎ
𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑 ∗  𝑥𝑟𝑠

𝑜𝑡ℎ𝑒𝑟𝑝𝑟𝑜𝑑    ∀𝑑, ℎ, 𝑟𝑠                    (5.14) 

 

The following constraints describe the upper and lower demands set as parameter for the methanol 

demanded by the market: 

 

                                                    𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ_𝑜𝑢𝑡 ≥ 𝑀𝑑𝑒𝑚𝑑,ℎ

𝑑𝑛     ∀𝑑, ℎ                                       (5.15) 

 

                                                  𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ_𝑜𝑢𝑡 ≤  𝑀𝑑𝑒𝑚𝑑,ℎ

𝑢𝑝      ∀𝑑, ℎ                                       (5.16) 
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The cost of fuel used for the production of methanol is described below: 

 

𝐶𝐹𝑢𝑒𝑙 =  ∑𝑓𝑟𝑒𝑞𝑑
𝑑

∗  ∑𝑚𝑎𝑑,ℎ
𝑓𝑒𝑒𝑑

ℎ

∗  𝑃𝑟𝑐𝑜𝑎𝑙  − 𝑃𝑟𝑀𝑒 ∗ 𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ𝑜𝑢𝑡     ∀𝑑, ℎ 

                                                                                                                                                  (5.17) 

 

For key units within the methanol production, the capacity variable is function of the highest mass 

flow rate of the component stream at hour h of day d over the course of the plant’s operation. The 

constraint determining the capacity variables (in terms of both mass and mol) is described below: 

 

𝑐𝑎𝑝𝑣𝑎𝑟𝑖𝑛𝑙𝑒𝑡𝑚𝑎𝑠𝑠   ≥    ∑ 𝑚𝑎𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡𝑚𝑎𝑠𝑠

       ∀𝑑, ℎ 

                                                                                                                                                (5.18) 

𝑐𝑎𝑝𝑣𝑎𝑟𝑖𝑛𝑙𝑒𝑡𝑚𝑜𝑙   ≥    ∑ 𝑚𝑜𝑑,ℎ
𝑠𝑚

𝑠𝑚∈𝑖𝑛𝑙𝑒𝑡𝑚𝑜𝑙

            ∀𝑑, ℎ 

                                                                                                                                                (5.19) 

The following equation describes the calculation of the capital cost of the plant: 

 

𝑚𝑐𝑎𝑝𝑐𝑜𝑠𝑡 =  ∑𝑐𝑎𝑝𝑣𝑎𝑟𝑛𝑑
𝑛𝑑

∗ 𝑚𝑠𝑙𝑜𝑝𝑒𝑛𝑑   + 𝐵𝐼𝑛𝑑      ∀𝑛𝑑 

                                                                                                                                                  (5.20) 

The following equation describes the calculation of the operating and maintenance cost of the 

plant, assumed to be a fractional component of the total capital cost:  
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                                                 𝑜𝑚𝑐𝑜𝑠𝑡 = 𝑐𝑎𝑝𝑐𝑜𝑠𝑡 ∗ 𝑜𝑚𝑓𝑎𝑐𝑡𝑜𝑟                                            (5.21) 

 

The initial methanol level in the storage tank is assumed to be zero prior to the start-up of the plant: 

 

                       𝑀𝑒𝑑,ℎ
𝑙𝑒𝑣𝑒𝑙 = 0   (ℎ = 1, 𝑑 = 1)                                                                            (5.22) 

 

The level of the methanol present in the tank at any hour h of day d is governed by the following 

two equations: 

 

𝑀𝑒𝑑,ℎ
𝑙𝑒𝑣𝑒𝑙 = 𝑀𝑒𝑑,ℎ−1

𝑙𝑒𝑣𝑒𝑙 + 𝑚𝑎𝑑,ℎ−1
𝑚𝑒𝑜ℎ_𝑠𝑡  −  𝑚𝑎𝑑,ℎ−1

𝑚𝑒𝑜ℎ𝑜𝑢𝑡 − ∑𝑚𝑎𝑑,𝑔𝑚,ℎ−1
𝑚𝑒𝑜ℎ𝑝

𝑔𝑚

    ∀𝑑, ℎ > 1, 𝑔𝑚 

                                                                                                                                                 (5.23) 

𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ_𝑜𝑢𝑡  ≤  𝑀𝑒𝑑,ℎ

𝑙𝑒𝑣𝑒𝑙  +  𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ𝑠𝑡 − ∑𝑚𝑎𝑑,𝑔𝑚,ℎ

𝑚𝑒𝑜ℎ𝑝

𝑔𝑚

        ∀𝑑, ℎ, 𝑔𝑚 

                                                                                                                                                (5.24) 

𝑀𝑒𝑑,ℎ
𝑙𝑒𝑣𝑒𝑙 = 𝑀𝑒𝑑−1,ℎ=24

𝑙𝑒𝑣𝑒𝑙 + 𝑚𝑎𝑑−1,ℎ=24
𝑚𝑒𝑜ℎ_𝑠𝑡  −  𝑚𝑎𝑑−1,ℎ=24

𝑚𝑒𝑜ℎ𝑜𝑢𝑡 − ∑𝑚𝑎𝑑−1,𝑔𝑚,ℎ=24
𝑚𝑒𝑜ℎ𝑝

𝑔𝑚

      ∀𝑑, ℎ > 1, 𝑔𝑚 

                                                                                                                                                 (5.25) 

The constraint below describes the mass flow of the methanol that is obtained from the production 

reactor and is directed towards the storage tank:  

 

𝑚𝑜𝑑,ℎ
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗  𝑥𝑀𝑒

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗  𝑀𝑊𝑀𝑒    ≥     𝑚𝑎𝑑,ℎ
𝑚𝑒𝑜ℎ𝑠𝑡        ∀𝑑, ℎ 

                                                                                                                                                 (5.26) 



79 

5.3 Results of Methanol Production Model 

5.3.1 Results of Snapshot Model 

The snapshot model was solved using the BARON solver version 15.9.22 in GAMS 24.5.6. In the 

snapshot model the capital cost equation is the non-linear version of the equation as was utilized 

in [15] and is shown below in equation (5.27): 

𝑚𝑐𝑎𝑝𝑐𝑜𝑠𝑡 =  ∑𝑟𝑒𝑓𝑐𝑜𝑠𝑡𝑛 ∗ (
𝑐𝑎𝑝𝑣𝑎𝑟𝑛
𝑟𝑒𝑓𝑓𝑙𝑜𝑤𝑛

)𝑠𝑐𝑎𝑙𝑒𝑛

𝑛

 

                                                                                                                                                  (5.27) 

Additionally, the snapshot model has equations containing bi-linear terms which represent the mol 

fraction based calculation equations which include equations (5.12), (5.14) and (5.26). 

The snapshot model characteristics include 274 single equations and 138 single variables. 

However, the model also indicates that it is highly nonlinear in nature and hence standard 

optimization solvers like CPLEX would not be applicable for this solution. The snapshot model 

solved in a total CPU time of 113.57 seconds. 

The other key results of the snapshot model are summarized below: 

Table 5.1 Mass and Flow Rates of Each Stream in the Snapshot Model 

Stream Mass Flow (kg/hr) 

feed 197.61 

air 296.415 

water 296.415 

rawsg 790.44 

coolsg 790.44 

cleangas1 770.034 

wastesg 20.406 

rxnoutput 5567.349 

product 149.755 

otherprod 5417.593 

purge 620.279 

recycle 4797.314 
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Table 5.2 Capacities of the Units Within the Snapshot Model 

Chemical Production 

Unit Capacity(kg/hr) 

Gasifier 197.61 

Cleanup 42.924 

Reactor 276.783 

Distillation 5567.349 

 

The mass and mol flow rates of each of the streams in the methanol production model are shown 

in table 5.1 and table 5.2 lists the capacities (capvar) of the units within the production model. The 

mass flow rate of all the components emerging after the reaction (in stream labelled rxnoutput) 

takes place is found to be 5567.349 kg/hr. Following the distillation process the methanol (in 

stream labelled product) has a mass flow rate of 149.75 kg/hr which is an amount within the limits 

of methanol production set by the constraints (5.15) and (5.16). The remaining products (labelled 

otherprod) are sent to further downstream processing where a specific amount of it is purged as 

an outlet out of the production system and the non-purged amount (consisting mostly of unreacted 

syngas) is sent back to the reaction inlet stream in the form of a recycle stream. The model 

determined the percentage of the amount in the otherprod stream that is purged as the splitpercent 

variable which was found to be 11.4%. 

The amounts listed as capacities of the units in table 5.2 are essentially the inlet mass flows for 

each of the units and are key design decision variables of the methanol production system.  

Table 5.3 Main Costs of the Snapshot Model 

Cost (USD 

Millions) 

Snapshot 

Model 

Annual Cost 385.690 

Fuel Cost per year 78.352 

 

As listed in table 5.3 the annual cost of the snapshot model was found to be 385.69 USD million 

while the total annual fuel costs (coal) was found to be 78.35 USD million. These costs are 

reflective of the amount of methanol that is produced based on the demand range provided in the 
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constraints and the corresponding capacity sizes that are designed for the units within the methanol 

production system.  

In the next section, the model will be modified to operate for a period of 24-hours and compared 

with the snapshot model. 

5.3.2 Methanol Production for 24-hour Period and Proposed Shortcut Approach 

In order to model the methanol production model for 24 hours, the set of time, h for h1 to h24 

needed to be introduced into the model as input. In order to shorten the solution time, the 

splitpercent variable (calculated to be 11.4%) from the snapshot model was instead input as a 

parameter. However, the nonlinear capital cost equation (5.27) along with the bilinear terms were 

included in the same manner as that from the snapshot model.  

Solution to the 24-hour period Operation: 

The model was solved using the same BARON solver in GAMS but this time the total number of 

single equations were 6,512 and the total number of single variables were 2,897. Once again, the 

model indicated high nonlinearity within it.  

The annual cost, fuel cost per year, mass flowrate hourly and mol flowrate hourly was determined 

to be the same as the previous snapshot model. As expected, with the model being much larger in 

size, the arrival of the solution would take much longer and for this 24-hour period model, the total 

CPU time taken to solve was 5502 seconds (91.7 minutes) While the solutions are accurate and 

compare favourably with the snapshot model, it would be computationally tedious to have the 

model solve for 92 minutes, when the subsequent objective of this model is for it to be integrated 

with the power system planning model and form the basis of the polygeneration system.  

Proposed Shortcut Method: 
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After observing the hourly results of the mol composition, mass flowrate of all the streams and 

production rates of methanol, an assumption can be made that some of the variable results at every 

hour can be kept constant as an inputs to the model. This would then reduce the computational size 

of the model with fewer equations and reduced bilinear terms, therefore also minimizing the level 

of nonlinearity of the overall model. The following variables from the earlier 24-hour period 

operation model was extracted into an excel data sheet: the mass flowrate (𝑚𝑎ℎ
𝑠𝑚), the mol flowrate 

(𝑚𝑜ℎ
𝑠𝑚), the mole compositions (𝑥ℎ

𝑠𝑚), the capacity limits (𝑐𝑎𝑝𝑣𝑎𝑟𝑛) of the units and the enthalpy 

of each stream. The model was then modified to switch the mol fractions x to a parameter and the 

remaining variable values extracted to act as upper limits in the model. Due to this modification, 

the total number of variables of the model will be reduced as well as the upper limit enforcement 

would provide bounds on the possible values that the variables may reach, hence tightening the 

area within which the optimal solution may be found.  

The resultant shortcut model was set up to utilize the non-linear capital cost equations (equation 

5.27), a split ratio of 11.4 % found from the snapshot model and time period of operation would 

be the same 24 hours. The model was solved using BARON solver in GAMS modelling system 

software.  

The main results of the shortcut model are presented below: 

Table 5.4 Main Costs of the Shortcut 24-hour Operation Model 

Cost (USD 

Millions) 

Snapshot 

Model 

Annual Cost 385.690 

Fuel Cost per year 78.352 
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Table 5.5 Capacity Limits on the Shortcut 24-hour Operation Model 

Chemical Production 

Unit Capacity(kg/hr) 

Gasifier 197.61 

Cleanup 42.924 

Reactor 276.783 

Distillation 5567.349 

 

From Table 5.4 it can be seen that the annual cost of the methanol production system in the shortcut 

model is the same as the long-form original model at 385.69 USD million. The annual fuel cost 

for both the models is the same as well. Table 5.5 shows that the capacity limits of each of the 

units from the shortcut model identical to the limits determined by the original model. Therefore, 

these results validate that the shortcut model is a viable method as there is no deviation in the main 

results of the model. The key difference that is of interest is in the time taken to arrive at the optimal 

solution, which in the case of the shortcut model is a CPU time of 12.8 seconds. This difference in 

solution time, when compared to the original long form model’s solution time of 5502 seconds, 

suggests that the shortcut model approach significantly reduces the computational effort needed 

without compromising on the accuracy and main results of the cost and design decision variables.  

5.3.3 Linearization of the Methanol Production Model 

While the shortcut model in the previous section drastically reduces the time needed to arrive at 

the solution, the model is still nonlinear on account of the capital cost equation being nonlinear. In 

this section, the equation 5.27 will be modified so that the capital cost is calculated using the 

following linear form: 

𝑚𝑐𝑎𝑝𝑐𝑜𝑠𝑡 =  ∑𝑐𝑎𝑝𝑣𝑎𝑟𝑛
𝑛

∗ 𝑚𝑠𝑙𝑜𝑝𝑒𝑛   + 𝐵𝐼𝑛      ∀𝑛 

                                                                                                                                                  (5.28) 
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Where 𝑚𝑠𝑙𝑜𝑝𝑒𝑛, is the slope of the linearized cost curve of each of the capacity variable 

(capvar(n)) of the units and 𝐵𝐼𝑛 is the y-intercept. The figure 5.1 below shows the graphical 

representations of these linearized capital cost curves. These curves were generated by first using 

equation 5.27 and calculating numerically the numerical value of capital cost by using the 

capvar(n) variable obtained from the snapshot model. By varying the capvar(n) across many values 

less than and higher than the value obtained from the solution, corresponding values of the capital 

cost are obtained and then plotted as capital cost vs capvar(n).  
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Figure 5.1 Capital Cost Curves for each unit in the Methanol Production System. 

 

In figure 5.1 for each unit within the methanol production system, the plots for capvar(n) vs capital 

cost showcase a linear relationship between the two components. By performing basic linear 

regression, an linear approximation function linking the capvar(n) and capital cost terms can be 

obtained for each unit. The R2 value in each of the linear approximation equations are very close 
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to 1 which underscore the linearity of the relationship. The respective slope and y-intercept values 

have been summarized in table 5.6 below: 

Table 5.6 Slope and y-intercept Terms used as Inputs for the Linearized Methanol Production Model 

Unit mslope(n) BI(n) 

Gasifier 0.964302 38.68 

Clean-Up Unit 0.693057 10.7 

Methanol Reactor 0.809536 101.54 

Distillation 0.129466 320.44 

 

With equation (5.28) and the data above shown in table 5.6, the shortcut model presented in section 

5.3.2 was updated and modified by replacing the original capital cost equation (5.27) which was 

nonlinear and table 5.6 above was input as a parameter table.  

The linearized shortcut model was solved in GAMS using the standard CPLEX 11.1.1 solver as 

the model now is without any bilinear terms (due to the shortcut model) and now without a 

nonlinear capital cost equation. The model had 2500 single equations and 800 single variables and 

0 nonlinear entries and the solution was arrived at in 1.28 seconds of CPU time, which is 

considerably faster than the shortcut model from the previous section. The annual cost which is 

the objective function and the fuel costs are displayed in table. 5.7 below: 

Table 5.7 Main costs of the Linearized Shortcut Methanol Production Model 

Cost (USD 

Millions) 
Linearized Shortcut Model 

Annual Cost 405.277 

Fuel Cost per year 101.200 

 

From table 5.7 above, it can be seen that the annual cost of the linearized shortcut methanol 

production is 405.277 Million USD which is higher than the cost reported by the nonlinear shortcut 

model in the previous section which was 385.693 Million USD, which is an increase in value by 

5.08%. Similarly, the annual cost of fuel (coal) of the linearized model is 101.2 Million USD which 
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is higher than the shortcut model which was 78.35 Million USD. This is a 29.16% increase in fuel 

cost.  The capacity limits on each of the units as well as the hourly production rate of methanol 

was found to be the same as the previous models for methanol production. 

Table 5.8 Summary of Main Costs and Solution Times for Methanol Production Models 

Cost (USD Millions) Snapshot 

Model 

24-Hour 

Operation 

24-Hour 

Shortcut 

24-Hour 

Shortcut 

Linear 

Annual Cost 385.690 385.690 385.690 405.277 

Fuel Cost 78.352 78.352 78.352 101.200      

Solution CPU Time 

(seconds) 

113.57 5502.54 12.8 1.2 

 

From comparing the various key costs and solution times for each iteration of the methanol 

production model, the impact of both the proposed shortcut model as well as the linearization of 

the overall model can be seen clearly, as the solution time dropped significantly for the models 

that covered the operation over a 24-hour period. While the annual system cost and fuel cost are 

higher in the linearized model, the difference in the solution is not as significant and as such the 

error associated with the deviation in the cost values is low. The reason for the higher cost values 

could be attributed to the objective function being overestimated as a result of the linear 

approximation equations used to represent the capital cost calculations.  

By considering the trade-off between the solution time and the deviation in the cost calculations, 

the shortcut linearized methanol production model is the one that is most suitable for the purpose 

of integrating with other model components to form the integrated polygeneration model. The 

integrated polygeneration model is expected to be larger in scale and having the chemical 

production model system that solves quickly without significant levels of error and very low 

inaccuracy is advantageous for the purposes of this study. 
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5.4 Concluding Remarks 

This chapter discussed the production pathway of methanol from syngas, in particular the 

development of a model that represents the production of methanol from coal that is not used 

directly to generate power from conventional generators. The model includes the gasification of 

coal to form syngas, following which the syngas reacts to form methanol via a conversion reaction 

and finally, a distillation step is involved in which the methanol is separated from the rest of the 

products mixture and the unreacted syngas is redirected back to the production system. 

In this study, the methanol production model was set up as a general framework so that any form 

of carbon intensive sources can be used as a potential feedstock. The main underlying formulation 

of the model is comprised of mass and energy balances and other first principles models. 

From a computational perspective, the first model that was developed was a snapshot model, the 

purpose of this model was to see the mass flowrate, mol flowrate and mole composition of each 

stream within the production system while also determining the split percentage of the unreacted 

product streams to know how much of it needed to be redirected back into the reactor as syngas. 

The main design decision variables in this model comprised of the maximum capacity limits of 

each of the units within the production system, namely the gasifier, clean up unit, methanol reactor 

and the distillation column. The next step was extending the model to one that operates over a 

period of 24 hours. Both the 24-hour operation and the snapshot models were nonlinear and 

nonconvex and therefore computationally intensive and would take a long time to solve (5502 

seconds). An attempt to address this was made by proposing an alternative shortcut model in which 

certain key variables were fixed with upper limits and as parameter inputs. To further simplify the 

model, modifications were made to remove bilinear terms and replace nonlinear constraints. This 

eventually led to a shortcut linearized version of the model that solved in 1.2 seconds while 
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maintaining a small level of inaccuracy in the model solutions. The shortcut linearized model will 

be the version used for subsequent model-building of the integrated renewable polygeneration 

energy system. 
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Chapter 6  Deterministic Renewable Polygeneration Energy 

System 

 

This chapter discusses the integration of the power planning and methanol production models to 

form the renewable based polygeneration energy systems. The chapter showcases the deterministic 

approach taken towards this model with a focus on linking the chemical production and power 

systems models through the driving of compressors in the air separation unit prior to the 

gasification of coal 

6.1 Motivation and Introduction 

The polygeneration model, as defined earlier in the thesis, is an energy system that is capable of 

co-producing electric power and additional value added products. In previous chapters, the models 

for the main components in the polygeneration system have been developed with the aim of 

designing and operating them over a set period of time. The components include the power 

generation planning model and the chemical production block which designs the units that aid the 

production of methanol from coal and syngas.  
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Figure 6.1 Process Flow Diagram of the Integrated Renewable Polygeneration Energy System. 

 

One way of combining the two blocks is to focus on the electric power needs of the methanol 

production block. For instance, in chapter 5, a significant portion of the operating cost relied upon 

the purchasing of electricity from the grid in order to power the units that drive production. In this 

polygeneration model, the premise that is being explored, is the fulfilment of this electricity need 

from within the integrated system itself and not purchase the electricity. The expectation is that 

this electricity redirection to methanol will occur during times of very high wind power 

availability. This will be a productive use of the excess wind power, as opposed to selling it to 

alternative grids and/or dumping which is a practice undertaken today by electricity system 

operators to deal with excess power that cannot be stored or utilized for meeting the load demand.  

For the purposes of this model development, the emphasis will be on the compressors that are 

situated in front of the air separation unit of the chemical production block and after the main 
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distillation unit, to drive the recycle stream with unreacted syngas back towards the methanol 

synthesis unit.  

6.2 Model Formulation 

6.2.1 Clustering of Full Year’s Data 

For the integrated RPES model, it is essential to assess the system’s behaviour across the full year 

of operation. On account of this, the power load demand and the wind power availability has to be 

input as parameters into the model. The data obtained for these parameters are values hourly for 

8760 hours which represent the whole year. The challenge that arises from using the data in its raw 

form, is that with 8760 hourly values, the model can become computationally intractable and take 

an inordinate amount of time to solve. This was observed in chapter 3 where by reducing the 

number of scenarios from 50 to 6, the solution time was considerably shortened from 41.76 

seconds to 15 seconds.  

To address the issue, the full year data of power load demand and wind power availability has been 

clustered using k-means clustering. What this helped achieve, is the reduction of 8760 hourly data 

points to representative days, d, where the load and wind power is grouped in accordance to their 

most likely occurrence on a particular day and then the reduced number of days represents the 

whole year of operation. Which reduces the overall number of hours from 8760 sequential hours 

from 365 total days to 696 hours that are non-sequential from day 1 to day 29. Therefore, the whole 

year’s data could be represented by 29 days, and thus considerably reducing the size of the model.  
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Clustering Methodology: 

As introduced in chapter 2, the main clustering algorithm used is the k-means clustering algorithm. 

Wind power and load demand clustering was done together The following figure 6.2 shows the 

methodology undertaken for the clustering. 
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Figure 6.2 Methodology of K-means clustering for wind and load demand data. 



96 

According to figure 6.2 above, which shows the clustering methodology, the initial steps of the 

mechanism include uploading the original full year data at every hour for 365 days, representing 

the wind power and load demand into the python programming language editor. The data 

processing steps are then undertaken, which include reshaping and/or rearranging the data.  

Each dataset is then normalized from a scale of 0 to 1. The K-means is a distance based machine 

learning algorithm having different scale for different attributes (in this case demand and wind). 

The computational effort will increase with varying distances between different attributes and 

features. And it might lead to inefficient clusters, if the normalizing step is ignored. The wind and 

load demand data sets also differ by order of 3 and 4 and hence it is a prudent step to bring them 

to the same scale. 

The normalized data is then merged together and is based on the assumption that the occurrences 

of both wind and load demand is happening at the same time at the same hour and day, hence 

merging them together is a necessity so that the reduced order representative day will show both 

the wind and load clustered data accurately as inputs for the optimization model  

Now that the data processing steps have been completed, the merged data is then input into the k-

means clustering algorithm which is found in the sci-kit learn machine learning library in Python3. 

After the k-means clustering algorithm has converged, the clustered representative days indicating 

the total reduction inertia is obtained. Upon investigating it was found that 29 clustered days 

(representative days) was the ideal reduced order clustered day for the merged wind and load 

demand data. Any additional cluster has a negligible impact/improvement on the overall clustering 

metric (inertia) which is the key performance metric for the clustering method. The lower the 

inertia value, the better is the performance of the clustering algorithm. This would extend to the 
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fact that any further representative days in the clustered data would have no tangible impact on the 

overall solution of the optimization model either.  

At the culmination of the clustering, the following table 6.1 shows the frequency of each of the 29 

representative days: 

Table 6.1 Frequency of Occurrence of Each Representative Day for the Full Year. 

Representative 

Day 

Frequency of 

Occurrence 

Representative 

Day 

 

Frequency of 

Occurrence 

1 22 14 3 

2 8 15 13 

3 13 16 45 

4 11 17 6 

5 14 18 8 

6 8 19 12 

7 6 20 4 

8 34 21 20 

9 12 22 7 

10 18 23 6 

11 8 24 8 

12 7 25 28 

13 11 26 4 

  27 7 

  28 18 

  29 4 

 

This means that representative day 1 occurs 22 times over the whole year and day 29 occurs 4 

times respectively.  



98 

6.2.2 Overall Optimization Model for the Integrated RPES 

The presence of compressor units that drive the air separation unit and the recycle stream of 

unreacted syngas can allow for the existence of an additional node. Through this node, there can 

be connections made between the two main modelling blocks that have been set up in previous 

chapters.  

In this chapter, the model is deterministic, which implies that the model will calculate key variable 

values for the system’s design and operation for a full year’s operation, but as a snapshot. It will 

not consider any stochastic behaviour of the wind power via probability scenarios, as was initially 

developed for the UC model in chapter 3.  

 

 



99 

 

Figure 6.3 Topology representation of the Deterministic RPES model. 

 

The figure 6.3 above is the topological representation of the deterministic RPES model. It has 7 

nodes in total with the addition of compressors and the methanol-powered fuel cell generators 

labelled as cm1, cm2 and gm1, gm2 respectively. These additional units are linked to the chemical 

production block developed in chapter 5 and such show the link between power flow from the 

power generation planning block to the methanol production block. The number of conventional 

generators in this system is 13 as opposed to 15 in the previous chapters of the power generation 

planning model.  
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Objective Function: 

The optimization criteria that is considered for this model is the total annual cost of the RPES 

system. The following equation represents the objective function of the integrated system which 

is set up for the minimization of the system’s total annual cost denoted by Intcosttotal : 

                                     𝐼𝑛𝑡𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑛𝑛𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑃𝑆𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙                                        (6.1) 

The total annual cost of the RPES system is the summation of the individual blocks’s annual cost, 

where Anncosttotal is the annualized cost for the methanol production block and PScosttotal is the 

annualized cost for the power generation planning block. 

To further explain what the component costs are in equation (6.1), the following equations 6.2 and 

6.3 list the components in the Anncosttotal and PScosttotal equations: 

 

   𝐴𝑛𝑛𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑅𝐹 (𝑀𝑐𝑎𝑝𝑐𝑜𝑠𝑡 + 𝑡𝑎𝑛𝑘𝑐𝑎𝑝 ∗ 𝑡𝑎𝑛𝑘𝑐𝑎𝑝𝑐𝑜𝑠𝑡) 

                                                                                                 + 𝑜𝑚𝑐𝑜𝑠𝑡 +  𝑀𝑐𝑜𝑠𝑡𝑓𝑢𝑒𝑙                     (6.2) 

 

𝑃𝑆𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑅𝐹(∑𝑃𝑆𝑐𝑎𝑝𝑐𝑜𝑠𝑡𝑔 ∗ 𝑥𝑢𝑔
𝑔

+ ∑𝑋𝑐𝑎𝑝𝑘 ∗ 1.3𝑒6)

𝑘

+ ∑𝐺𝑀𝑐𝑎𝑝𝑐𝑜𝑠𝑡𝑔𝑚 ∗ 𝑥𝑚𝑔𝑚 + 𝑧𝑓 + 𝑃𝑆𝑐𝑜𝑠𝑡𝑓𝑢𝑒𝑙 + (𝑐𝑡𝑎𝑥 ∗ 𝐶𝑂2𝑡𝑜𝑡𝑎𝑙)

𝑔𝑚

    

                                                                                                                                                    (6.3) 
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The individual term definitions within equations (6.2) and (6.3) are the same as the equations listed 

in previous chapters’ respective model formulations. The CRF value is the same as calculated in 

previous sections with a lifetime operation of 25 years and a discount rate of 7% 

Compressor Power Use Constraints: 

The following equations within (6.4) represent the total power that is consumed by each of the 

compressors in the integrated model, as denoted by cmpowercm,d,h: 

𝑐𝑚𝑝𝑜𝑤𝑒𝑟𝑐𝑚,𝑑,ℎ ∗ 𝑟𝑒𝑓𝑚𝑜𝑙𝑝𝑜𝑤𝑒𝑟𝑐𝑚     ≥     𝑟𝑒𝑓𝑝𝑜𝑤𝑒𝑟𝑐𝑚 ∗ 𝑚𝑜𝑠𝑚,𝑑,ℎ  

𝑐𝑚𝑝𝑜𝑤𝑒𝑟𝑐𝑚,𝑑,ℎ ∗ 𝑟𝑒𝑓𝑚𝑜𝑙𝑝𝑜𝑤𝑒𝑟𝑐𝑚 ∗ 𝑀𝑊𝑎𝑖𝑟     ≥     𝑟𝑒𝑓𝑝𝑜𝑤𝑒𝑟𝑐𝑚 ∗ 𝑚𝑎𝑠𝑚,𝑑,ℎ     ∀𝑠𝑚, 𝑑, ℎ 

                                                                                                                                                    (6.4) 

In equation (6.4), refmolpowercm represents the reference mol flow rate for the inlet of the 

compressors in Mmol per hour while refpowercm is the reference power ratings for compressors in 

MW. The numerical data used for these parameters is listed in table (6.2) which have been obtained 

from the following source [30]. 

Table 6.2 Reference Data to Assess the Performance of the Compressors 

 
refmolpowercm 

(Mmol/hr) 

 

refpowercm 

(MW) 

 

Compressor 1 (recycle stream) 5.8975 9.6435 

Compressor 2 (air separation) 19.5507 11.8344 

 

The MWair is the molecular weight of air (a value of 28.9647 kg/kmol is used in the model) and 

mosm,d,h and masm,d,h is the molar and mass flowrate of syngas and methanol flow streams 

respectively. 
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Power Balance of Integrated Model Constraints: 

Given that there is now power flowing between the power generation planning block and the 

methanol production block, it is crucial to make the necessary adjustments and updates to the 

overall power balance equation from chapters 3 and 4. Since the model is deterministic, only the 

initial day-ahead power balance equation (6.5) will be considered and included in the model.  

 

∑𝑝𝑔,𝑑,ℎ
𝐷𝐴

𝑔,𝑛

+ ∑𝑤𝑘,𝑑,ℎ
𝐷𝐴  −  ∑𝐷𝐿𝑙,𝑑,ℎ

𝑙,𝑛

 +  ∑ 𝑝𝑜𝑤𝑒𝑟𝑚𝑔𝑚,𝑑,ℎ
𝐷𝐴  −  ∑ 𝑐𝑚𝑝𝑜𝑤𝑒𝑟𝑐𝑚,𝑑,ℎ

𝑐𝑚,𝑛𝑔𝑚,𝑛𝑘,𝑛

= ∑𝐵(𝑛.𝑚)(𝜃𝑛,𝑑,ℎ
𝐷𝐴 − 𝜃𝑚,𝑑,ℎ

𝐷𝐴 )

𝑛,𝑚

 

                                                                                                                                                    (6.5) 

Where 𝑝𝑔,𝑑,ℎ
𝐷𝐴  is the power scheduled by conventional power generators for every hour in each 

representative day for the whole year, 𝑤𝑘,𝑑,ℎ
𝐷𝐴  is the power scheduled from the wind farm for each 

hour in each representative day, 𝐷𝐿𝑙,𝑑,ℎ is the load demand for each hour in each representative 

day, 𝑝𝑜𝑤𝑒𝑟𝑚𝑔𝑚,𝑑,ℎ
𝐷𝐴  is the power generated from methanol powered fuel cell generators for each 

hour in each representative day, 𝑐𝑚𝑝𝑜𝑤𝑒𝑟𝑐𝑚,𝑑,ℎ is the power consumed hourly in each 

representative day by the compressor units in the chemical production block. The right hand side 

of the power balance equation is 𝐵(𝑛.𝑚)(𝜃𝑛,𝑑,ℎ
𝐷𝐴 − 𝜃𝑚,𝑑,ℎ

𝐷𝐴 )is the product of the imaginary part of the 

power admittance constant and the difference in the voltage angles which account for the flow of 

power between each node in the overall system. 
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6.3 Results and Discussion 

6.3.1 Base Case Polygeneration Model 

In order to assess the integrated RPES model, it is applied to the following base case which have 

the following key input data. The base case comprises of a system with 13 conventional generators, 

one wind farm, 2 methanol powered fuel cell generators and 2 compressors that have been mapped 

and updated using the node-based figure from chapters 3 and 4. The compressors are installed on 

nodes 1 and 5 while the methanol generators are mapped on node 4 and 7. 

The components in the methanol production block are the same from chapter 5, and it is expected 

that the model will provide the necessary design decision values for the various units in that block.  

Key Input Parameters: 

Table 6.3 Conventional Generation Units Input Data. 

Generator  

(USD) 
 

 

(USD) 
 

 

(USD/MWh) 
 

 

(MW) 
 

 

(MW) 
 

 

(MW/hr) 
 

 

(MW/hr) 
 

 

(MWh) 
 

g1 175 10 11 950 0 90 90 90 

g2 175 10 11 350 0 90 90 90 

g3 132 10 17 100 0 20 20 0 

g4 175 10 11 76 0 20 20 0 

g5 107 10 23 200 0 200 200 200 

g6 132 10 17 350 0 70 70 130 

g7 132 10 17 350 0 70 70 130 

g8 223 10 19 197 0 70 70 150 

g9 283 10 19 155 0 33 33 155 

g10 215 10 14 100 0 65 65 100 

g11 150 10 15 100 0 70 20 0 

g12 150 10 15 100 0 70 20 0 

g13 200 10 17 100 0 60 20 0 
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Table 6.3 includes the generator units’ data that has been input into the model. Within the power 

planning block of the integrated RPES model, the following parameters are also defined as inputs. 

The price of coal is set at USD $61 per ton and the CRF is calculated for a 25-year operation at 

7% discount rate, which equals to 0.0858105. The levelized cost of the wind power from the wind 

farm is set at $34 per MW. The capital cost of each conventional generator is set at $3.5 million 

and the capital cost of each methanol powered fuel cell generator is set at $7.5 million. For the 

base case, the default renewable portfolio adjustment (RPS) amount is set at 20% which implies 

that 20% of the power generated by the RPES needs to be sourced from wind power. The RPS 

constraint is defined as:  

∑𝑋𝑐𝑎𝑝𝑘     ≥     𝑅𝑃𝑆 ∗ ( ∑𝑋𝑐𝑎𝑝𝑘 + 𝑋𝑔𝑒𝑛

𝑘𝑘

)    ∀ 𝑘 

                                                                                                                                                    (6.6) 

The upper and lower limits on the amount of methanol demand at each hour remained the same as 

in chapter 5 with 200 tons per hour and 100 tons per hour, respectively. 

The wind power data used in this deterministic RPES model was obtained from one of the well-

established wind farms, Summerhaven located in Ontario, Canada [90]. 

Base Case Results: 

The model was solved in the GAMS environment with the use of the CPLEX 11.1.1 solver. The 

base case model has 161,835 equations, 9,063 discrete variables and 79,376 single variables. The 

following sections presents the results generated from the base case and discusses them in further 

detail. 
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Table 6.4 Base Case Results of Installed Power and Unit Capacity Sizes 

Wind Power (MW) 

  

 
594 

Conventional Power 

(MW) 

  

 
2376 

Chemical Production 

Unit Capacity(ton) 

Gasifier 271.71 

Cleanup 59.02 

Reactor 380.58 

Distillation 7655.1 

Tank Capacity(ton) 
 

5400 

 

As can be seen from Table 6.4 above, the total wind power capacity installed is 594 MW and the 

total power capacity installed by the conventional generators is 2376 MW. The total capacities of 

each of the units within the chemical production unit are 271.71 tons for the gasification unit, 59.02 

for the clean-up unit, 380.58 for the methanol reactor and 7655.1 tons for the distillation column. 

The main costs of the base case RPES system are presented in Table 6.5 below: 

 

Table 6.5 Summary of Main Costs of the RPES 

 
Total Cost (USD 

Millions per Year) 

Total RPES System 2317.930 

Methanol Block 138.511 

Power Planning Block 2179.416 
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As per the definition of the total annual cost of the RPES system described in equation 6.1 the 

individual costs of each block add up to the total system cost of the RPES. For the base case of the 

deterministic RPES integrated model, the total annual cost is USD $2317.93 million per year, the 

methanol block annual cost is $138.511 million per year and the power generation planning block 

is $2179.416 million per year. 

The following figures in this section are graphical representations of the key operational 

behaviours of the overall RPES system for one year. Starting with the total power generated by 

the conventional power generators and the amount of wind power available hourly over the 29 

representative days, which is shown in figure 6.4 below. 

 

Figure 6.4 Hourly Power Scheduled for Conventional Generators and Wind Power Available in MW 

 

In the above figure 6.4, the hourly variation in the power scheduled by the RPES deterministic 

model is shown. The maximum levels of hourly installed capacity for power generation from 
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conventional generators and the wind farm matches that of the Xgen and Xcap values reported in 

Table 6.4 (2376 MW and 594 MW) respectively. Additionally, as is expected from the model, to 

ensure that the base load demand is always met, the amount of power scheduled from conventional 

generators remains much higher on average than the wind power. On closer observation of the 

peaks and troughs in the figure, it can be seen that at times when the wind power harnessed is 

highest (peak), the corresponding hour’s power scheduled from conventional generators is low, 

which asserts that the load is distributed by wind power providing the necessary majority power 

needed and at that time, the conventional generators do not need to produce electricity at higher 

levels and this lowers the cost of the overall RPES system.  

The next aspect of the model that will be looked at, is the level of production of methanol per hour 

and how it varies with the amount of wind power available for harnessing. The graphical 

representation of this is presented below in figure 6.5: 

 

Figure 6.5 Hourly wind power available in MW versus the rate of methanol production in ton/hr. 
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One of the key operational modes that is characteristic of the RPES model is that both power and 

methanol production can take place simultaneously. In figure 6.4 above, a closer look is taken at 

how the methanol production rate hourly varies with the amount of wind power available. From 

the figure it is can been that at periods when the wind power that can be harnessed is at very low 

levels for instance between hour 174 and hour 192 of the representative days, the methanol 

production system block is off and the production rate is zero. The RPES system also shows a 

level of flexibility that responds to not just very low wind levels, but also marginal declines in 

wind power levels. For example, between hours 224 and 242, the methanol production rate 

declines in response to lower levels of wind, but does not switch off, implying that there was 

enough power redirection possible from the power system block to drive the compressors in the 

methanol production. This can also be verified by referencing figure 6.3 where during this same 

time period, the amount of power generated by the conventional generators is very high. 

Throughout the operation of the RPES, the methanol production rate varies between a low level 

of 57 tons/hr and a maximum of 137.5 tons/hr when the overall production block is on and 

operating. This is directly in response to the constraints that have been set up in the base case for 

ensuring the minimum and maximum levels of methanol production are always satisfied as long 

as the block is on. 

Another useful aspect to visually explore is comparing the hourly load demand with the figure 6.4 

represented above. The additional curve representing the power load demand is included below in 

figure 6.6. 
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Figure 6.6 Load Demand Hourly and Available Hourly Wind Power in MW Versus the Rate of Methanol 

Production in ton/hr. 

 

Since the amount of wind power that can be harnessed for satisfying load demand is not 

controllable due to its non-dispatchable nature, the need for conventional power generators is 

essential in this RPES system to always be ready to be switched on and generate power in response 

to the load demand. From figure 6.5 above, it can be seen that the load as such has no relationship 

with the wind power available since they are independent in their occurrence. But the interesting 

observation is in the response of the methanol production rate which has been shown to be linked 

to periods of high wind power availability in the previous section. The load demand over each 24-

hour period of the 29 representative days considered has peak periods and low periods in response 

to the daily activities of the end use customers. Between the hours 383 and 575 on the figure, the 

wind power fluctuates as does the load demand according to the daily pattern, however the 

methanol production rate during this whole time period remains fixed at 137.5 tons/hr. What this 

means is that the conventional generators are able to meet the remaining load as needed whenever 
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the load reaches a peak but the wind power is able to be utilized for the purposes of chemical 

production and only switches off when the wind availability is significantly low and close to 

unavailable. Hence this accounts for a system that is always being able to utilize the power being 

generated/harnessed for dual purposes of meeting load demand and producing methanol. A reason 

for which the methanol production rates do not exceed the level of 137.5 tons/hr is that the model 

has decided on the optimal capacity for the units in the chemical production block which are 

reported in table 6.4 previously.  

Since the main drivers of the chemical production block have been set up in this model to be the 

compressor units ahead of the air separation unit and the recycle stream of the unreacted syngas 

following distillation, it would be useful to notice the hourly power usage of the compressors and 

how that compares with the wind power available. This graphical representation is presented in 

figure 6.7 below.  

 

Figure 6.7 Wind Power Available Hourly in Representative Days and the Hourly Compressor Power 

Usage. 
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In figure 6.7 above, it can be seen that the compressor power (red curve) variation is in direct 

relationship with the amount of wind power available to be harnessed. So during periods of low 

wind availability, for instance between hours 168 and 192, the amount of power consumed by in 

total by the compressors is close to zero, implying that the methanol production is zero. This 

observed trend is in agreement with the methanol production rates observed in figures 6.4 and 6.5. 

The compressors’ total power usage has an upper limit of about 232 MW/hr which also directly 

relates to how the methanol production rate does not exceed a level of 137.5 ton/hr as that is 

constrained by capacity limits that have been calculated by the model.  

6.4 Case Study Investigations of the Deterministic RPES Model 

With the base case model results obtained in the previous section, the following are case studies 

investigated to study the impact of varying input conditions on the overall deterministic 

polygeneration model.  

6.4.1 Inclusion of Ramping and Minimum Up and Down Time on Methanol Production 

In this study, the ramping constraints along with the minimum up and down time constraints have 

been included in the overall deterministic model. The purpose of these constraints is to allow for 

the methanol production block to behave under the similar commitment characteristics that were 

considered in chapters 3 and 4 of this thesis. In the real world behaviour of chemical process plants, 

the various reactor units are typically bound by minimum hour of operation once they are started 

up. Additionally, when the production units increase their production rates they are not permitted 

to increase their production rates by either extravagant or small amounts and have to step up by a 

fixed amount to maintain the proper operational conditions for the plant unit operations.  These 

factors were not considered in the base case model set up in section 6.3. As such the minimum up 
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and down time constraints may be applied to any of the unit operations within the methanol 

production block. 

The following equations represent the ramping constraints on the methanol production unit and 

the inclusion of the minimum up and down time on the compressor units.  

Equations 6.6 and 6.7 ramping constraints: 

                                      𝑚𝑎𝑠𝑚=𝑓𝑒𝑒𝑑,𝑑,ℎ    ≤      𝐵𝑖𝑔𝑀 ∗ 𝑥𝑡
𝑐𝑚   ∀𝑑, ℎ, 𝑡                                        (6.6) 

𝐵𝑖𝑔𝑀 represents an assumed number, as is customary in the Big M method in operations research 

modeling. In this case a value of  

                                      𝑚𝑎𝑠𝑚=𝑓𝑒𝑒𝑑,𝑑,ℎ    ≥      𝑆𝑚𝑎𝑙𝑙𝑀 ∗ 𝑥𝑡
𝑐𝑚 ∀𝑑, ℎ, 𝑡                                     (6.7) 

𝑆𝑚𝑎𝑙𝑙𝑀 represents an assumed number as is customary in the Big M method in operations 

research modelling. 

In this case, to illustrate the need for a minimum up and down time on the overall methanol 

production unit the minimum up and down time has been set at 12 hours. Big M and Small M 

method was applied in this model. 
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Figure 6.8 Methanol Production and Total Power from Wind Farm and Compressor Power used in the 29 

Representative Days with Ramping and Min up and Down time Constraints. 

 

Figure 6.9 Sub Figure Showing Methanol Production and Total Power from Wind Farm and Compressor 

Power used in the 29 Representative Days with Ramping and min up and down time Constraints. 

 

As can be seen from Fig. 6.8, the methanol production over the full year’s representative days the 

maximum production rate is 143.78 ton per hour and once it is started up and producing methanol, 

it has to continue to stay on for minimum of 12 hours. Similarly, during periods of low wind power, 
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the methanol production is shut down, the overall production block remains shut down over a 

period of 12 hours before it can be started up again. In keeping with the overall flexibility of the 

system, it can be seen clearly from figures 6.8 and 6.9 that when there is a steep decline in the 

available wind power, the methanol production switches off and the compressors are turned off, 

which directly imply the chemical production block is turned off.  

The commitment constraints like minimum up and down time and ramping for the methanol 

production block have a significant impact on the overall costs of the polygeneration system. The 

exact dynamic behaviour of the gasifier unit and the reactor unit within the methanol production 

block is beyond the scope of the present work, but the implementation of the constraints on the 

compressor min up and down time are sufficient in this study to illustrate that the inclusion of 

commitment like constraints is important to mimic the behaviour of real world process systems. 

Additionally, from a planning point of view, the model is able to integrate the key commitment 

features that have been demonstrated to have an effect on higher level planning of the 

polygeneration energy systems.  

Going beyond the resolution presented in this case would require extensive computational effort 

and a more complex mathematical formulation with the use of partial derivative equations which 

would need to be solved simultaneously, an aspect that can be studied in the future work. Still, 

enough modelling considerations have been implemented to show the impact of dynamic 

behaviour on the costs of the overall system. And this further reinforces that the model developed 

is general enough to include the main dynamic characteristics of the methanol plant.  

6.4.2 Effects of Wind Variation on the Deterministic RPES Model 

In this case study, different levels of wind power have been input into the model to study the 

behaviour of the RPES. In addition to the wind power data used for the base case, two additional 
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data sets have been utilized, one with average wind power levels considerably lower than the base 

case data, and the other with average wind power levels much higher than the base case. The 

impact of these varying wind power levels on the methanol production rates have been graphically 

represented in figure 6.10 below. 

 

Figure 6.10 Methanol Production Levels with Varying Wind Power Levels Compared to the Base Case 

Data. 

 

From figure 6.10, the methanol production rate can be seen to vary in level which is in accordance 

to the level of wind power that can be harnessed. Compared to the base case maximum production 

level of 137.5 ton/hr of methanol, when the wind levels are on average much higher than the base, 

the maximum production of the methanol rises to 151.25 ton/hr. While for the low average wind 

levels, the maximum methanol production level reduces to 123.75 ton/hr. These observations 

support the premise that when there is more wind available, the model, based on the size of the 

units and the wind farm capacity, will be inclined to produce more methanol as it can direct more 

excess wind to chemical production.  
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6.4.3 Effects of the Renewable Portfolio Standard on the Deterministic RPES Model. 

In this case study, the renewable portfolio standard (RPS) as a percentage has been modified to 

observe the impact it has on the amount of methanol that is produced and the amount of wind 

power that can be harnessed by the RPES. 

RPS portfolio is a portfolio constraint that forces the introduction of renewable energy into the 

system. The general definition of RPS is to set a minimum requirement for the share of electricity 

supply than comes from designated renewable energy resources with some future year target in 

mind. These resources typically include wind, solar and biomass. 

As of September 2020, 38 states out of 50 in the US, have established an RPS, also known as a 

renewable goal. Out of the 38, 12 states have set the requirement to be 100% clean electricity by 

2050 or earlier. The main driver behind why these RPS standards could be implemented in recent 

times, have been due to federal incentives as well as market conditions like the reduction in costs 

(levelized) of wind power and other technologies making use of renewable energy. 

RPS or renewable energy standards are one of many initiatives that have been proposed by 

government entities and can be applied using different terminologies like carbon-neutral/carbon-

free targets. An interesting observation from the RPS adoption in US, is that some states have been 

able to produce qualifying generation from renewables at levels much higher than the set RPS, 

some others have been producing enough to just meet the requirement set by the target while others 

may still need to import electricity from nearby regions to meet the target.  

Objective of the case studies is to see how more wind can be penetrated into the power system 

i) RPS of 20% will be the base level RPS for this system. 

ii) A variation in the RPS will be implemented in the model to study its impact on wind 

power generation.  
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Figure 6.11 Methanol Production Levels and Wind Power Levels with Varying RPS Percentages 

Compared to the Base Case Data. 

 

In the base case RPES model, the renewable portfolio standard (RPS) percentage was set at 20%. 

Two separate model solutions were generated for the RPES, one with a lower standard of 10% and 

one with a higher than base case standard at 30%. The resulting impact on the methanol production 

levels as well as the variation in the wind power availability at each hour is presented graphically 

in figure 6.10 above. At first glance, it is clear that levels of wind power that is available is a 

response to the percentage RPS set, with lower average wind power available with RPS of 10% 

and higher wind power available at RPS of 30%. Since the purpose of the RPS is to act as a policy 

to increase the use of renewable energy resources for electricity generation, the higher the RPS 

value the more the amount of electricity is generated by the system from wind.  

6.5 Concluding Remarks 

In this chapter, a deterministic model for the design and operation of the RPES was built and 

examined. The optimization models developed in chapters 3,4 and 5 were combined in a manner 
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that allowed for the power to flow from the generation planning model to the chemical production 

block via compressors that drive the start-up and production of methanol from coal via syngas 

gasification. The model was found to be effective in showcasing the flexible nature of the RPES 

energy system. The results of the base case model showed increased production levels of methanol 

during periods of high wind power generation availability, indicating that the model was able to 

redirect excess renewable power that was not required to satisfy the hourly load demand. Several 

graphical representations were generated to visually show that the variation in the wind power 

directly brought about a modification in the levels of methanol production via power transmission 

to the compressor units. A series of case studies were also investigated, by modifying the amount 

of wind power that is generated and harnessed by the RPES, first by using raw data that has a 

higher average expected value of wind power and a lower expected value of wind power. 

Following that, an external constraint was placed on the model by utilizing a RPS or renewable 

portfolio standard which enforces a minimum amount of power generation from renewable energy 

sources. For both these case studies, the impact the expected value of wind had on the production 

of methanol was studied. It was observed that the higher the amount of wind that can be harnessed, 

the greater is the maximum level of methanol that can be produced, which is attributed to the model 

choosing to design a greater capacity of methanol production units. Lastly, in one of the case study, 

the deterministic RPES model included ramping and minimum up and down time constraints on 

the overall chemical production block. This approach was undertaken to study the impact of having 

the methanol reactors and gasification units behave more like they do in the real world with 

commitment like constraints and therefore affected the times at which the methanol production 

units were switched on and off and impacted the system’s annual cost by increasing it from the 

base case which did not include these constraints. The impact of ramping and other commitment 
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like constraints on the RPES model needs to be further studied with a deeper look into the exact 

dynamic behaviour of the methanol production system, which is out of the scope of this present 

work. 
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Chapter 7  Stochastic Renewable Polygeneration Energy 

System 

 

This chapter discusses the implementation of the stochastic renewable polygeneration energy 

system model. This model is developed by introducing wind power realization scenarios to the 

deterministic model set up in the previous chapter. The purpose of this chapter is to show how 

allowing for uncertainties in wind to be realized, brings about a significant reduction in the total 

cost of the polygeneration system while also highlighting the importance of showing that the wind 

needs to be represented as high in intermittency.  

7.1 Introduction to Stochastic RPES 

A stochastic optimization formulation is relevant if the UC is affected by important uncertainty in 

the data. Handling stochastic behaviour is currently of great importance because of the uncertainty 

arising from the variability in generation from stochastic production facilities such as wind and 

solar based generating units. These types of generating units often benefit from priority in dispatch 

by virtue of their low marginal cost or regulatory policies. They are therefore not scheduled per se 

but rather their production is subtracted from the demand, and other units are then scheduled to 

meet the resulting net demand which is the actual demand minus the stochastic production.  

When formulating a stochastic UC, we consider two stages:  

 The first stage pertains to the optimal scheduling of the generation capacity which is the 

decisions about which units to commit in advance of the actual operation. 

 The second stage constitutes a representation of a number of plausible operating conditions 

that may arise in the future as a result of the uncertainty realization. These possible 

operating conditions are called scenarios and for each scenario, and optimal dispatch can 
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be computed based on the commitment decisions made in the first stage.  

 

Reserves are scheduled in the first stage so that the system will be able to accommodate any 

uncertainty realization/scenario.  

The philosophy of this two-stage formulation is that in the first stage, scheduling decisions are 

made using only the information that is available hours or days in advance of real time operations. 

The uncertainty is then realized is the second stage, and the dispatch adjusts the amount scheduled 

in the first stage up or down, as required according to the scenario.  

The scenarios take into account the possible wind realizations over the planning period. Each 

scenario is assigned a probability, and the optimization objective is to minimize the sum of the 

deterministic cost of the first stage decisions and the expected cost of the second stage decisions. 

There are several limitations of the stochastic optimization approach, one of them is the quality of 

the solutions obtained critically depends on the choice of the scenarios, in the sense that having a 

broader range of scenarios usually leads to a more accurate model. However, increasing the 

number of scenarios increases the computational cost of the optimization. Another issue is that this 

approach assumes explicit knowledge of the probability distribution of the uncertain wind 

realization. In practice, this distribution is estimated empirically based on past data and experience 

and/or using simulation models and the limitations of the probability estimation may impact the 

quality of the results. 

7.2 Approach and Methodology 

The model considered is an extension of the deterministic model developed in chapter 6. The main 

changes to the model to make the model stochastic include the introduction of another set of s 
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number of scenarios. In this model, 6 different scenarios will be considered, each with their own 

probability of occurrence. Since the stochastic behaviour of the power planning block was already 

demonstrated in chapters 3 and 4 in response to wind power realizations, the main stochastic nature 

of the integrated model will be showcased based on the methanol production block. On account of 

this, the equations, variables and constraints that represent the methanol production will be bound 

by the set s representing the scenarios.  

7.3 Model Formulation 

Since the majority of the model is an extension of the deterministic model, the following selected 

equations and constraints have been shown to highlight the stochastic model: 

Objective Function: 

The objective function as such is the same as that defined in chapter 6 which is the sum of the 

annual costs from the chemical production block and the power generation planning block. The 

sum is of these costs which make up the objective function variable, 𝑆𝑡𝑜𝑐ℎ_𝐼𝑛𝑡𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙, is shown 

in equation 7.1: 

                   𝑆𝑡𝑜𝑐ℎ_𝐼𝑛𝑡𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑡𝑜𝑐ℎ_𝐴𝑛𝑛𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑆𝑡𝑜𝑐ℎ_𝑃𝑆𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙                       (7.1) 

 

The annual cost (equation 7.2) of the methanol production block is the same as the one previously 

defined in past chapters, however the constituent terms within the equation have been updated to 

reflect the stochastic considerations and they are listed from equations (7.3) -(7.5): 

𝑆𝑡𝑜𝑐ℎ_𝐴𝑛𝑛𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑅𝐹 (𝑀𝑐𝑎𝑝𝑐𝑜𝑠𝑡 + 𝑡𝑎𝑛𝑘𝑐𝑎𝑝 ∗ 𝑡𝑎𝑛𝑘𝑐𝑎𝑝𝑐𝑜𝑠𝑡) 

                                                                                                 + 𝑜𝑚𝑐𝑜𝑠𝑡 +  𝑀𝑐𝑜𝑠𝑡𝑓𝑢𝑒𝑙                     (7.2) 
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𝑀𝑐𝑎𝑝𝑐𝑜𝑠𝑡 =  ∑𝑐𝑎𝑝𝑛𝑑
𝑣𝑎𝑟 ∗  𝑚𝑠𝑙𝑜𝑝𝑒𝑛𝑑

𝑛𝑑

+ 𝑏𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑛𝑑 

                                                                                                                                                   (7.3) 

Equation 7.3 is the linearized capital cost equation where 𝑐𝑎𝑝𝑛𝑑
𝑣𝑎𝑟 is the variable calculating the 

capacities of the constituent units within the chemical production block.  

𝑐𝑎𝑝𝑛𝑑
𝑣𝑎𝑟 = ∑𝑚𝑎𝑠𝑚,𝑑,ℎ,𝑠

𝑠𝑚

 

                                                                                                                                                (7.4) 

Where 𝑚𝑎𝑠𝑚,𝑑,ℎ,𝑠 is the mass flowrate of components within the chemical production block for 

every stream, in each hour of each representative day in each scenario, s. 

𝑀𝑐𝑜𝑠𝑡𝑓𝑢𝑒𝑙 = ∑𝑓𝑟𝑒𝑞𝑑 ∗  ∑𝜌𝑠(𝑚𝑎𝑑,ℎ,𝑠 
𝑓𝑒𝑒𝑑

𝑠𝑑

∗  𝑝𝑟𝑐𝑜𝑎𝑙 − 𝑝𝑟𝑚𝑒𝑜ℎ ∗  𝑚𝑒𝑜ℎ𝑑,ℎ,𝑠
𝑜𝑢𝑡 ) 

                                                                                                                                                    (7.5) 

Where 𝑚𝑎𝑑,ℎ,𝑠 
𝑓𝑒𝑒𝑑

 is the flowrate of the feed stream entering the chemical production block, 

𝑝𝑟𝑐𝑜𝑎𝑙 and 𝑝𝑟𝑚𝑒𝑜ℎ are the prices of coal feed and selling price of methanol, respectively and 

𝑚𝑒𝑜ℎ𝑑,ℎ,𝑠
𝑜𝑢𝑡  is the amount of methanol produced at the end of the distillation process of the chemical 

production block. 

The power balance equation from chapter 6 has been updated to allow for the adjustments that 

come about with the inclusion of probability scenarios, s, that are central to the stochastic model. 

This equation 7.6 is shown below: 
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∑𝑝𝑔,𝑑,ℎ
𝐷𝐴 + 𝑟𝑔,𝑑,ℎ,𝑠

𝑔,𝑛

+ ∑𝑤𝑘,𝑑,ℎ
𝐷𝐴 − 𝑤𝑘,𝑑,ℎ,𝑠

𝑆𝑃  −  ∑𝐷𝐿𝑙,𝑑,ℎ − 𝑝𝑙,𝑑,ℎ,𝑠
𝑆𝐻

𝑙,𝑛

 

𝑘,𝑛

+ ∑ 𝑝𝑜𝑤𝑒𝑟𝑚𝑔𝑚,𝑑,ℎ,𝑠
𝐷𝐴  − ∑ 𝑐𝑚𝑝𝑜𝑤𝑒𝑟𝑐𝑚,𝑑,ℎ,𝑠

𝑐𝑚,𝑛𝑔𝑚,𝑛

= ∑𝐵(𝑛.𝑚)(𝜃𝑛,𝑑,ℎ,𝑠
𝐷𝐴 − 𝜃𝑚,𝑑,ℎ,𝑠

𝐷𝐴 )

𝑛,𝑚

 

                                                                                                                                                    (7.6) 

These adjustments include power adjustments to the conventional generators, 𝑟𝑔,𝑑,ℎ,𝑠, the wind 

spillage associated with the wind turbine power 𝑤𝑘,𝑑,ℎ,𝑠
𝑆𝑃 , and the amount of power dissipated as 

load shedding 𝑝𝑙,𝑑,ℎ,𝑠
𝑆𝐻 . Additional terms in the power balance equation need to reflect that they are 

bound by the number of scenarios, s.  

7.4 Results and Discussion 

Stochastic programming based mixed-integer programming optimization was carried out using the 

CPLEX 11.1.1 solver in the GAMS 24.5.1 environment.  

Table 7.1 Cost Comparisons Between the Base Case Deterministic and Stochastic RPES Models. 

 
Total Cost (USD 

Million per 

Year) 

 

 Stochastic 

RPES 

Deterministic 

RPES 

Integrated RPES System 1944.992 2317.928 

Methanol Block 130.598 138.511 

Power Planning Block 1814.394 2179.416 
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The total cost of the RPES is 1944.992 USD million per year which is less than the deterministic 

polygeneration model, with the methanol production block being 130.598 USD million per year 

and the power planning block being 1814.394 USD million per year. One possible reason for this 

decline in the overall costs, is that that scenario based wind realizations results in a design of 

methanol production units that are smaller on account of having variability in the wind. The same 

number of thermal generators have been designed.  

 

Table 7.2 Comparison of Day-Ahead Capacities Between Stochastic and Deterministic RPES Models. 

 
Stochastic 

RPES 

Deterministic 

RPES 

Capacity of Wind Installed Day 

Ahead (MW) 

536 594 

Capacity of Conventional Power 

Installed Day Ahead (MW) 

2370 2376 

 

It appears from observing the Day-ahead capacity installed for the stochastic RPES model, the 

amount installed is less than that of the deterministic RPES. This accounts for the reduction in the 

overall annual cost of the stochastic RPES model. 

The operation cost of the power planning block is less in stochastic as the model is utilizing more 

wind which has zero operational cost with it. As a result, the overall costs of the stochastic RPES 

is lower than the deterministic RPES.  
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Figure 7.1 Methanol Production levels across 6 scenarios for 29 Representative Days’ Hours. 

 

As can be seen from the above figure 7.1, there is much variation in the hourly methanol 

production. The levels of production remain upper bound by 200 tons per hour and lower bound 

by 100 tons per hour as is the customary limits to maintain continuous operation of the methanol 

production units. The scenarios and their respective probabilities influence the amount of wind 

power realized in the real time stage of the model solution. Which is to say that after a design 

decision is made and the day-ahead wind power is scheduled in accordance to the data inputs, a 

scenario based actual wind power realization is either higher or lower than the day ahead levels 

predicted by the model. As is expected from methanol production variation observed in chapter 6, 

the amount of methanol produced depends on the amount of wind that is available as a surplus at 

every hour after it has contributed to fulfilling the load demand in tandem with the conventional 

generators. The higher the amount of excess wind realized, the larger is the hourly production of 
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methanol to drive as it is used to meet the power ratings of the compressor units among other unit 

operations of the methanol production unit.  

7.5 Conclusion and Future Perspectives 

From the development and execution of the stochastic RPES model, there are certain conclusions 

about the viability of this polygeneration energy system that can be gleaned from it. One stand-out 

feature is that the overall cost of the stochastic RPES model is less than the deterministic RPES. 

This indicates that there is a benefit to taking advantage of the uncertainty emerging from wind 

intermittency. The RPES system, regardless of what the hourly load demand might be, will always 

be in a position to take advantage of excess wind power to produce value added chemicals. If the 

system was designed in such a way that the wind power was only directed towards meeting the 

load or producing a greener pathway of a chemical, it would not prove to be profitable to have it 

behave in a stochastic manner taking the uncertainty into account. But, by having it operate in a 

flexible manner, it is useful in meeting load demand along with conventional power, while also 

using the excess wind for chemical production.  

Hence, such an RPES system highlights that the variability and intermittency of renewable energy 

sources is not a source of higher costs and penalties when the system is design and operated 

together for meeting load and producing chemicals simultaneously.  
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Chapter 8  Conclusion and Future Work 

 

All research objectives of the proposed work were successfully met. This thesis focused on the 

development of general models that represent the design and operation of a renewable energy 

based polygeneration energy system. The thesis addressed the objectives by first looking closely 

into the power generation design and operation model, by using a unit commitment based model 

to represent the power system comprising of conventional coal powered generators along with 

wind power scenarios. In chapter 3, a base case model is constructed as a DCUC network-

constrained model with 6 nodes with one node connected to a wind farm and the remaining 

connected to various conventional generators. The objective function was designed to minimize 

the total capital and operating cost of the system while deciding how much wind power is to be 

harnessed from a wind farm and which generators to construct first as design decisions. Following 

the design step, the operation results provide results for how much power is to be scheduled in the 

day-ahead stage and then the necessary adjustments in the real-time stage once the actual wind 

power was realized. The model behaved in a stochastic manner to account for the wind power by 

introducing it as a probability based scenarios that respond to various levels of wind power 

realizations. This chapter also introduced the concept of clustering and applied it to the reduction 

of probability scenarios for wind, from 50 scenarios to 6 which captured the original frequencies 

but resulted in the model solving much faster. The clustered model solved in 15.83 CPU time 

seconds which is significantly lower than the base case model with 50 scenarios, which solved in 

41.76 seconds.  

 

In chapter 4, the power planning model was extended to include an energy storage system that 

comprised of an electrolyser and fuel cell. The purpose of the ESS was to show how the model 
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behaved when the wind power was at an excess in terms of the load, and redirected towards 

hydrogen production. Later scenarios were run on this model that further highlighted the ESS’s 

flexibility by converting stored hydrogen back to power using the fuel cell. This was in response 

to a very high load demand that triggered the production of electricity back from hydrogen. With 

the inclusion of the ESS block, the total system cost of the power generation planning model with 

6 probability scenarios was calculated to be USD 576.24 million per year which reflects the 

inclusion of the ESS block’s capital and operating costs. 

While chapter 4’s ESS comprised of a black-box representation of an electrolyser and hydrogen 

system, the main value added chemical production this thesis focused on was that of coal to 

methanol production. In chapter 5, a first principles based model was developed for the process of 

converting coal to methanol, via gasification, methanol synthesis and finally a clean-up unit. This 

model was developed to be generic for all carbon based fuel feedstock as it was based on 

stoichiometric mass and energy balances for each of the unit operations. The chapter introduced 

the methanol production model first as a snapshot model, followed by making it multi-period to 

reflect the operation of the system for a period of 24 hours. The multi-period model proved to be 

time conducive for arriving at a solution, and therefore a shortcut model was proposed that 

significantly reduced the solution time. The methanol production block model was initially 

described as a mixed-integer nonlinear programming model due to the presence of bilinear terms 

in the stoichiometric balance equations as well as the capital cost calculation equations were non-

linear in nature. A regression based linear approximation was performed on the capital cost 

equations to convert the model into a mixed integer linear programming model, a variation that 

was found to provide a faster solution time. Various comparisons between the non-linear and linear 

versions of the models were performed as individual case studies to show that the linearized 
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shortcut model was not only the version that solved the quickest but also provided solutions to key 

variables that did not vary significantly from the long-form nonlinear representation of the 

methanol block. 

Chapter 6 introduced the renewable energy polygeneration model by combining the models 

developed in chapters 3,4 and 5 to form the integrated RPES model. In this chapter, the model was 

set up as deterministic to allow for investigating the viability of connecting the power production 

block and the methanol production block. The main manner in which they were integrated was by 

connecting the wind power from the wind farm to the compressors that drive two of the key unit 

operations in the methanol production system, which are the air separation unit and the unreacted 

syngas recycle streams. Several graphical representations were generated to visually show that the 

variation in the wind power directly brought about a modification in the levels of methanol 

production via power transmission to the compressor units. For the base case of the deterministic 

RPES integrated model, the total annual cost is USD $2317.93 million per year, the methanol 

block annual cost is $138.511 million per year and the power generation planning block is 

$2179.416 million per year. A series of case studies were also investigated, by modifying the 

amount of wind power that is generated and harnessed by the RPES, first by using raw data that 

has a higher average expected value of wind power and a lower expected value of wind power. 

Following that, an external constraint was placed on the model by utilizing a RPS or renewable 

portfolio standard which enforces a minimum amount of power generation from renewable energy 

sources. For both these case studies, the impact the expected value of wind had on the production 

of methanol was studied. It was observed that the higher the amount of wind that can be harnessed, 

the greater is the maximum level of methanol that can be produced, which is attributed to the model 

choosing to design a greater capacity of methanol production units. Lastly, in one of the case study, 
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the deterministic RPES model included ramping and minimum up and down time constraints on 

the overall chemical production block. This approach was undertaken to study the impact of having 

the methanol reactors and gasification units behave more like they do in the real world with 

commitment like constraints and therefore affected the times at which the methanol production 

units were switched on and off and impacted the system’s annual cost by increasing it from the 

base case which did not include these constraints.  

Chapter 7 showed how the integrated renewable polygeneration energy system can be made to 

design and operate in a stochastic manner. One interesting observation from the stochastic RPES 

model was that the overall cost of the stochastic RPES model was found to be less than the 

deterministic RPES. This indicated that there would be a benefit to taking advantage of the 

uncertainty emerging from wind intermittency. The results showed that if the system was designed 

so that the wind power was only directed towards meeting the load or producing a greener pathway 

of a chemical, it would not prove to be profitable to have it behave in a stochastic manner taking 

the uncertainty into account. But, since it was made to operate in a flexible manner, it was useful 

in meeting load demand along with conventional power, while also using the excess wind for 

chemical production.  

All the models developed, helped to elucidate how the intermittency of renewable energy sources 

like wind, can facilitate the use of alternative chemical production pathways to act as energy 

carriers, either as storage for a longer duration or produce chemicals for sale that increase the 

profitability of the entire energy system as opposed to stand-alone plants. 
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Future Work: 

As an extension to this work presented, other avenues may be explored when conducting future 

research on the topic of renewable polygeneration energy systems. One aspect that needs to be 

taken into consideration in future work is to investigate a wide array of renewable and fossil fuel 

inputs into the polygeneration energy system. For instance, in this work, the renewable energy 

source considered was wind, which is deemed the most intermittent to show how the energy system 

behaves in a flexible manner. However, future modelling studies using the above system could 

include solar power as a potential input to highlight that the system can handle multiple renewable 

energy sources within the portfolio requirements. Another manner to add complexity to the model 

would be to add additional energy storage mechanisms to the model, for instance, compressed air 

energy storage, alternative liquid fuels etc. It would then be the case that the model is too 

complicated and long to solve within a reasonable time, in particular for the stochastic model. In 

this case, it would be prudent to apply decomposition methods to shorten the solution time. The 

impact of ramping and other commitment like constraints on the RPES model needs to be further 

studied with a deeper look into the exact dynamic behaviour of the methanol production system, 

which is out of the scope of this present work. 
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Appendix –Python Code for Clustering  

#wind speed kmean clustering using ontario data 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import sys 
from sklearn import datasets, cluster 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
%matplotlib inline 
import datetime as dt 

data = pd.read_excel('summerhaven.xlsx' ) 
#data = data.dropna(axis=0).copy() 
demand_data = pd.read_excel('cluster results.xlsx',sheet_name='demand',index_
col=[0]) 
date = pd.DataFrame({'date': pd.date_range(start='2018-01-01 00:00:00', perio
ds=len(data), freq='H')}) 
data.index = date.date 

#data.SUMMERHAVEN.fillna(data.SUMMERHAVEN.rolling(72,min_periods=48).mean()) 
#wind  = data.SUMMERHAVEN.rolling(72,min_periods=48).mean() 

#wind_data = data.SUMMERHAVEN.interpolate(method='from_derivatives') 
wind_data  =  data.SUMMERHAVEN.fillna(data.SUMMERHAVEN.rolling(72,min_periods
=48).mean()) 
data.plot(y=['SUMMERHAVEN']) 
wind_data.plot() 

<matplotlib.axes._subplots.AxesSubplot at 0x1f8715e7160> 

png 

png 

pp = np.argwhere(np.isnan(data.SUMMERHAVEN.values)) 

wind_data.values[pp] 

array([[23.09859155], 
       [23.42857143], 
       [23.76811594], 
       [24.11764706], 
       [24.47761194], 
       [24.84848485], 
       [25.23076923], 
       [25.625     ], 
       [25.74603175], 
       [26.12903226], 
       [25.39344262], 
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       [25.7       ], 
       [26.13559322], 
       [26.5862069 ], 
       [26.40350877], 
       [25.82142857], 
       [25.05454545], 
       [24.46296296], 
       [24.09433962], 
       [23.82692308], 
       [23.50980392], 
       [23.44      ], 
       [23.91836735], 
       [24.41666667], 
       [ 1.3943662 ], 
       [ 1.41428571], 
       [ 1.43478261], 
       [ 1.45588235], 
       [ 1.47761194], 
       [ 1.5       ], 
       [ 1.52307692], 
       [ 1.546875  ], 
       [ 1.57142857], 
       [ 1.59677419], 
       [ 1.62295082], 
       [ 1.65      ], 
       [ 1.6440678 ], 
       [ 1.65517241], 
       [ 1.68421053], 
       [ 1.71428571], 
       [ 1.74545455], 
       [ 1.77777778], 
       [ 1.81132075], 
       [ 1.84615385], 
       [ 1.88235294], 
       [ 1.92      ], 
       [ 1.95918367], 
       [ 2.        ]]) 

wind_data_np = wind_data.values.reshape((int(len(wind_data)/24),24)) 
demand_data_np = demand_data.values[:,:-1] 
maxw = wind_data_np.max() 

plt.figure(2,figsize=(5,3.5),dpi=100) 
#centroid_min= dic_results['centriod_20'] 
#centroid_min = hourly_daily.inverse_transform(centroid_min) 
#day_clu = [] 
for i in range(0,len(wind_data_np)): 
        plt.plot(nphour, wind_data_np[i,:]/maxw,c='tab:blue',linewidth=0.2) 
        day_clu = day_clu+['Cluster'+str(i+1)] 
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#plt.legend(day_clu)     
plt.ylabel('Wind power factor (p.u.)') 
plt.xlabel('Hour') 
plt.xlim(1,24) 
 
plt.tight_layout() 
plt.xticks([2,4,6,8,10,12,14,16,18,20,22,24]) 
plt.savefig('wind_data.jpeg',dpi=200,tight_layout = True) 
 
plt.show() 

png 

png 

plt.figure(2,figsize=(5,3.5),dpi=100) 
#centroid_min= dic_results['centriod_20'] 
#centroid_min = hourly_daily.inverse_transform(centroid_min) 
#day_clu = [] 
for i in range(0,len(demand_data_np)): 
        plt.plot(nphour, 0.217010664*demand_data_np[i,:],c='tab:blue',linewid
th=0.2) 
        day_clu = day_clu+['Cluster'+str(i+1)] 
 
#plt.legend(day_clu)     
plt.ylabel('Power demand (KW)') 
plt.xlabel('Hour') 
plt.xlim(1,24) 
 
plt.tight_layout() 
plt.xticks([2,4,6,8,10,12,14,16,18,20,22,24]) 
plt.savefig('demand_data.jpeg',dpi=200,tight_layout = True) 
 
plt.show() 

png 

png 

demand_data_np 

array([[ 9232.,  9082.,  8919., ...,  9573.,  9398.,  9150.], 
       [ 8956.,  8794.,  8665., ...,  9889.,  9658.,  9380.], 
       [ 9157.,  8988.,  8877., ...,  9982.,  9599.,  9263.], 
       ..., 
       [ 9307.,  9167.,  9075., ..., 10240.,  9935.,  9626.], 
       [ 9386.,  9247.,  9149., ..., 10192.,  9876.,  9575.], 
       [ 9324.,  9195.,  9125., ..., 10059.,  9799.,  9533.]]) 

demand_yr = 0.217010664*demand_data_np.reshape((len(demand_data_np)*len(deman
d_data_np.T)),) 
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plt.figure(2,figsize=(7.5,3.5),dpi=100) 
plt.plot(range(1,len(demand_yr)+1), demand_yr,c='tab:blue',linewidth=0.5)   
plt.ylabel('Power demand (KW)') 
plt.xlabel('Hour') 
plt.tight_layout() 
plt.savefig('demand_yr.jpeg',dpi=200,tight_layout = True) 
plt.show() 

png 

png 

demand_yr = 0.217010664*demand_data_np.reshape((len(demand_data_np)*len(deman
d_data_np.T)),) 
plt.figure(2,figsize=(7.5,3.5),dpi=100) 
plt.plot(range(1,len(wind_data)+1), wind_data/wind_data.max(),c='tab:blue',li
newidth=0.5)   
plt.ylabel('Wind power factor (p.u.)') 
plt.xlabel('Hour') 
plt.tight_layout() 
plt.savefig('wind_yr.jpeg',dpi=200,tight_layout = True) 
plt.show() 

png 

png 

from sklearn.preprocessing import MinMaxScaler 
wind_scale = MinMaxScaler() 
demand_scale = MinMaxScaler() 
wind_scale.fit(wind_data_np) 
demand_scale.fit(demand_data_np) 
wind_s = wind_scale.transform(wind_data_np) 
demand_s= demand_scale.fit_transform(demand_data_np) 

plt.figure(2,figsize=(5,3.5),dpi=100) 
#centroid_min= dic_results['centriod_20'] 
#centroid_min = hourly_daily.inverse_transform(centroid_min) 
#day_clu = [] 
for i in range(0,len(demand_s)): 
        plt.plot(nphour, demand_s[i,:],c='tab:blue',linewidth=0.2) 
        day_clu = day_clu+['Cluster'+str(i+1)] 
 
#plt.legend(day_clu)     
plt.ylabel('Normalized power demand (KW)') 
plt.xlabel('Hour') 
plt.xlim(1,24) 
plt.tight_layout() 
plt.xticks([2,4,6,8,10,12,14,16,18,20,22,24]) 
plt.savefig('demand_scaled.jpeg',dpi=200,tight_layout = True) 
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plt.show() 

png 

png 

plt.figure(2,figsize=(5,3.5),dpi=100) 
#centroid_min= dic_results['centriod_20'] 
#centroid_min = hourly_daily.inverse_transform(centroid_min) 
#day_clu = [] 
for i in range(0,len(wind_s)): 
        plt.plot(nphour, wind_s[i,:],c='tab:blue',linewidth=0.2) 
        day_clu = day_clu+['Cluster'+str(i+1)] 
 
#plt.legend(day_clu)     
plt.ylabel('Normalized Wind factor (p.u.)') 
plt.xlabel('Hour') 
plt.xlim(1,24) 
plt.tight_layout() 
plt.xticks([2,4,6,8,10,12,14,16,18,20,22,24]) 
plt.savefig('Wind_scaled.jpeg',dpi=200,tight_layout = True) 
 
plt.show() 

png 

png 

x_train = np.concatenate((wind_s,demand_s),axis = 1) 
x_train.shape 

(365, 48) 

step = 1 
start = 2 
end = 50 
range_n_clusters = np.array(range(start,end,step)) 
ineria= np.empty_like((range_n_clusters),dtype=float) 
ineria.shape 
for i in range_n_clusters: 
    ineria[int(i/step)-start] = 5 
ineria 

array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 
       5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 
       5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5., 5.]) 

 
from sklearn import metrics 
from sklearn.metrics import pairwise_distances 
n_clusters = 0 
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start = 2 
end = 50 
step = 1 
range_n_clusters = np.array(range(start,end,step)) 
print(range_n_clusters) 
score = np.empty_like((range_n_clusters),dtype=float) 
final_error = np.empty_like((range_n_clusters),dtype=float) 
final_std= np.empty_like((range_n_clusters),dtype=float) 
ineria= np.empty_like((range_n_clusters),dtype=float) 
i = 0 
dic_results = {} 
for n_clusters in range_n_clusters:  
        np.random.seed(24) 
        print('Processing cluster'+str(n_clusters)) 
        k_means = cluster.KMeans(n_clusters, precompute_distances=True ,n_ini
t=1000, max_iter = 10000) 
        k_means.fit(x_train)  
        labels_1= k_means.labels_ 
        label = labels_1.astype(np.float)     
        centroid =  k_means.cluster_centers_   
        ineria[int(n_clusters/step)-start] = k_means.inertia_ 
        ss = metrics.silhouette_score(x_train, label) 
        score[int(n_clusters/step)-start] = ss 
        error= {} 
        error_per_clus = {} 
        single_clus={} 
        np_single_clus = {} 
        error_std_clus = 0.0 
        error_mean_clus =0.0 
        nn = label.reshape((len(label),1)) 
        print(np_data.shape)  
        np_result = np.concatenate((x_train, nn), axis=1) 
        df_result_f= pd.DataFrame(data = np_result) 
        dic_results['results_%d'%n_clusters] = df_result_f 
        j = 0 
        for j in range(n_clusters): 
                single_clus[j] = df_result_f.loc[df_result_f.iloc[:,-1]==i] 
                np_single_clus[j] = np.array(single_clus[j] ) 
                error[j] = abs(centroid[j,:] - np_single_clus[j][:,:-1])/np_s
ingle_clus[j][:,:-1] 
                input_val = error[i][:,:-1] 
                error_mean_clus = error_mean_clus + float(np.mean(error[i],dt
ype=np.float64)) 
                error_std_clus = error_std_clus + float(np.std(error[i],dtype
=np.float64)) 
        dic_results['centriod_%d'%n_clusters] = centroid 
        dic_results['error_%d'%n_clusters] = error 
        dic_results['mean_error_%d'%n_clusters] = error_mean_clus/n_clusters 
        dic_results['std_%d'%n_clusters] = error_std_clus/n_clusters 
        final_error[int(n_clusters/step)-start] =   error_mean_clus/n_cluster
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s 
        final_std[int(n_clusters/step)-start]   =   error_std_clus/n_clusters 
plt.scatter(range_n_clusters,score) 
plt.rcParams.update({'font.size':12}) 
plt.ylabel("silhouette_score") 
plt.xlabel('Number of clusters') 
#plt.savefig('plot2_kmean_ontario_score.png') 
plt.show() 
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