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Abstract

An ordering of a graph G is a bijection of V (G) to {1, . . . , |V (G)|}. In this thesis,
we consider the complexity of two types of ordering problems. The first type of problem
we consider aims at minimizing objective functions related to an ordering of the graph.
We consider the problems Cutwidth, Imbalance, and Optimal Linear Arrange-
ment. We also consider a problem of another type: S-End-Vertex, where S is one
of the following search algorithms: breadth-first search (BFS), lexicographic breadth-first
search (LBFS), depth-first search (DFS), and maximal neighbourhood search (MNS). This
problem asks if a specified vertex can be the last vertex in an ordering generated by S. We
show that, for each type of problem, orderings for one problem may be related to orderings
for another problem of that type.

We show that there is always a cutwidth-minimal ordering where equivalence classes
of true twins are grouped for any graph, where true twins are vertices with the same
closed neighbourhood. This enables a fixed-parameter tractable (FPT) algorithm for Cut-
width on graphs parameterized by the edge clique cover number of the graph and a new
parameter, the restricted twin cover number of the graph. The restricted twin cover number
of the graph generalizes the vertex cover number of a graph, and is the smallest value k ≥ 0
such that there is a twin cover of the graph T and k−|T | non-trivial components of G−T .

We show that there is also always an imbalance-minimal ordering where equivalence
classes of true twins are grouped for any graph. We show a polynomial time algorithm for
this problem on superfragile graphs and subsets of proper interval graphs, both subsets of
AT-free graphs. An asteroidal triple (AT) is a triple of independent vertices x, y, z such
that between every pair of vertices in the triple, there is a path that does not intersect
the closed neighbourhood of the third. A graph without an asteroidal triple is said to be
AT-free. We also provide closed formulas for Imbalance on some small graph classes.

In the FPT setting, we improve algorithms for Imbalance parameterized by the vertex
cover number of the input graph and show that the problem does not have a polynomially
sized kernel for the same parameter number unless NP ⊆ coNP/poly.

We show that Optimal Linear Arrangement also has a polynomial algorithm for
superfragile graphs and an FPT algorithm with respect to the restricted twin cover number.

Finally, we consider S-End-Vertex, for BFS, LBFS, DFS, and MNS. We perform
the first systematic study of the problem on bipartite permutation graphs, a subset of
AT-free graphs. We show that for BFS and MNS, the problem has a polynomial time
solution. We improve previous results for LBFS, obtaining a linear time algorithm. For
DFS, we establish a linear time algorithm. All the results follow from the linear structure
of bipartite permutation graphs.
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Chapter 1

Introduction

A graph is a collection of vertices along with a set of connections, called edges, between
pairs of vertices. Graphs are useful for representing any number of real-world situations
where there is some collection of points and connections between pairs of them; the points
become the vertices of a graph while the connections naturally form the edges of the graph.

A graph, like any other collection of objects, may be arranged in multiple ways. For
example, arranging a graph on a plane involves drawing the vertices of the graph as points
and drawing each edge as a curve between its endpoints. Such an arrangement may be par-
ticularly suited to a graph which represents a map, where the vertices represent cities and
the curves for the edges could be drawn to reflect the shape of the roads connecting cities.
Not all arrangements of a graph are equal: a poorly laid out graph may not accurately
scale the edges to the actual distances between cities in the above example.

Graphs can also be arranged on a line. Such an arrangement is called a linear ar-
rangement , linear layout , or an ordering of a graph. Formally, an ordering of a graph G
is a bijection σ : V (G) → {1, . . . , n}, where n = |V (G)|. As in the case of arrangements
on a plane, different orderings of a graph may have different properties. This kind of ar-
rangement has a number of uses, especially when the application benefits from minimizing
some property of the ordering. For example, a graph can represent a simplified model of
a Very Large-Scale Integration (VLSI) circuit. As we will see later in this section, the
cutwidth of an ordering is the maximum number of edges passing over a line between two
consecutive vertices in the ordering. Raspaud et al. [122] showed that the minimal area
required to layout the circuit modelled by the graph is at least the square of the cutwidth
for an ordering of the graph. Thus, finding an ordering of the graph which minimizes its
cutwidth may minimize the cost of the VLSI circuit. There are many more use cases for
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ordering graphs so that some objective function is minimized.

Finding an ordering which minimizes an objective function is often non-trivial. In
the example above, the problem is NP-complete. Without additional information or con-
straints, one must consider every permutation of a graph’s vertices for a given objective
function. Naturally, one wonders when there is an approach that is better than this naive
method. By restricting the structure of the graph provided, efficient algorithms are oc-
casionally possible. One then wonders which structure may provide the most benefit to
algorithm design. Given that ordering problems enforce a linear ordering of the vertices
for the solution, one wonders if graphs which somehow have a linear structure are more
likely to yield efficient algorithms for these problems. This motivates one main question of
the thesis: do “linear” graphs have efficient algorithms for ordering problems? It would be
nice if graphs that appear linear would have straightforward optimal orderings for these
problems.

Once motivated to look at “linear” graphs, one can ask other questions related to
their orderings. As we are concerned about generating orderings efficiently, we can also
investigate properties of orderings which are known to be efficiently generated. A search
algorithm systematically (and efficiently) traverses the vertices of a graph one at a time
until none are left. A search algorithm naturally produces an ordering of the graph, and
it is therefore natural to investigate the properties of such orderings generated by graph
search algorithms.

For a given graph search algorithm and graph, different orderings may be produced.
Starting the search at different vertices produces different orderings, and there may be
times when the search algorithm must non-deterministically choose which vertex to add to
the ordering next.

We will consider the problem of determining which vertices in a graph can be the
last vertex visited by a search algorithm. Such a vertex is called an end-vertex . By
understanding which vertices may be last, one can understand how to build the graph
in a left-to-right fashion, by starting with an initially empty graph and adding vertices
according to the ordering. This is particularly useful for inductive proofs where the search
algorithm is used to solve another problem. For common search algorithms, determining
if a vertex is an end-vertex is NP-complete in general, but has efficient algorithms on some
graphs that exhibit “linear” structure. This motivates the second main question of the
thesis: can “linear” graphs be traversed efficiently so that a particular vertex is last?

This thesis will attempt to understand the answers to both of the main questions asked
above. We shall call problems which are concerned with objective function minimization
Type I problems and call problems concerned with ending a search at a particular vertex

2



Type II problems.

Type I Problems

We focus on three Type I problems (Cutwidth, Imbalance, and Optimal Linear
Arrangement), which we now introduce. All of these problems ask if there is an ordering
of the input graph which minimizes some objective function.

We start by formally defining the Cutwidth problem. Let G = (V,E) be a graph and
σ an ordering of V. The following definition is required. We will use x <σ y for vertices
x, y ∈ V and an ordering σ of V if x is before (or to the left of) y, and x >σ y if x is after
(or to the right of) y in σ. Analogous definitions are used for ≤σ and ≥σ (where x may be
equal to y).

The cutwidth after v with respect to σ, denoted cσ(v), is cσ(v) = |{(x, y) ∈ E | x ≤σ

v and v <σ y}|. The cutwidth of σ is cw(σ) = maxv∈V {cσ(v)}. The cutwidth of G, denoted
cw(G), is the minimum of cw(σ) over all orderings of V .

Problem 1.0.1 (Cutwidth). Given a graph G and a positive integer k, determine if
cw(G) ≤ k.

Ideally, a solution to Cutwidth finds an ordering σ of G such that cw(σ) ≤ k. An
example of a Cutwidth ordering is shown in Figure 1.1.

Cutwidth was chosen for study due to its status on some interesting graph classes.
There are no known efficient algorithms on so-called interval graphs, and determining if
there are any has been an open question for at least ten years. Interval graphs are a subclass
of so-called asteroidal-triple-free (AT-free) graphs, which are considered to exhibit linear
structure. These graph classes are formally defined in Section 2.3, while a complete picture
of the complexity results along with applications for this problem can be found in Section
3.1. On other sub-classes of AT-free graphs, like the so-called threshold graphs, there are
efficient algorithms for this problem.

The existence of efficient algorithms for Cutwidth on threshold graphs motivated the
investigation of related ordering problems. Lokshtanov et al. [104] showed that another
ordering problem, Imbalance, has a solution that is at least twice the cutwidth of a graph.
As a result, one wonders if the algorithms for Cutwidth may help or inspire those for
Imbalance, which we now define.

Informally, Imbalance asks for an ordering which minimizes the sum of the imbalance
of vertices, where the imbalance of a vertex is the difference of sizes in its neighbourhood
to its left and to its right in the ordering.

3
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(a) A graph G.

σ 1 2 5 6 83 4 7 9 10

cσ(3) = 11

(b) An ordering σ of G such that cw(σ) = 11. The vertical
line crosses 11 edges, the most of any line between two ver-
tices in the ordering. By trying all possible permutations
of V (G), one can check that cw(G) = 11, and thus this
ordering is cutwidth-minimal.

Figure 1.1: An illustration of Cutwidth.

Formally, let G = (V,E) be a graph and σ an ordering of V. For v ∈ V , predσ(v)
and succσ(v) respectively denote the number of neighbours of v that precede (respectively
succeed) v in an ordering σ. The imbalance of v with respect to σ, denoted ϕσ(v), is
|succσ(v)− predσ(v)|. The imbalance of σ is im(σ) =

∑
v∈V ϕσ(v). The imbalance of G,

denoted im(G), is the minimum of im(σ) over all orderings σ of V.

Problem 1.0.2 (Imbalance). Given a graph G and a positive integer k, determine if
im(G) ≤ k.

As in the case of Cutwidth, a solution to Imbalance ideally also finds an ordering
σ of G such that im(σ) ≤ k. An example of an Imbalance ordering is shown in Figure
1.2.

In this work, we first investigate the connection between these two problems. We show
that the complexity of Imbalance matches that of Cutwidth on various restricted graph
classes, and that graphs have optimal orderings for both which are similar in structure.

We then consider another problem related to Cutwidth: Optimal Linear Ar-
rangement (OLA). Informally, the Optimal Linear Arrangement problem asks for
an ordering which minimizes the sum of weights of edges in an ordering, where the weight
of an edge is one more than the number of vertices between its endpoints in the ordering.
This is equivalent to minimizing the sum of edges passing across every two consecutive
vertices in the ordering. Thus, there is at least a superficial connection between Opti-
mal Linear Arrangement and Cutwidth: the former asks to minimize the sum of
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(a) A graph G.

σ 1 2 5 6 83 4 7 9 10

2 2 3 3 11 1 1 3 5ϕσ(v)

(b) An ordering σ of G such that im(σ) = 22. By trying all possible
permutations of V (G), one can check that im(G) = 22, and thus
this ordering is imbalance-minimal.

Figure 1.2: An illustration of Imbalance.

cuts, while the latter asks to minimize the maximum cut. That is, Optimal Linear
Arrangement asks to minimize W(σ) =

∑
v∈V cσ(v) instead of the maximum value of

cσ(v) over all v ∈ V (see, e.g., Dı́az et al. [44]).

Formally, given an ordering σ of the vertices of a graph G = (V,E), the weight of
an edge (u, v) ∈ E is |σ(u) − σ(v)| and is denoted wσ(e). The weight of an ordering σ is
W(σ) =

∑
(u,v)∈E wσ(e). An optimal linear arrangement of G is a layout with the minimum

weight, i.e., arg minσW(σ). The minimum weight of G is W(G) = minσW(σ).

Problem 1.0.3 (Optimal Linear Arrangement). Given a graph G and a positive
integer k, determine if W(G) ≤ k.

Ideally, a solution to Optimal Linear Arrangement finds an ordering σ of G such
that W(σ) ≤ k. An example of an Optimal Linear Arrangement ordering is shown
in Figure 1.3. The Optimal Linear Arrangement problem has also been called the
Minimum Linear Arrangement problem (Even [48]).

It turns out that Optimal Linear Arrangement solutions often look like those for
Cutwidth and Imbalance. We are able to show that for Cutwidth and Imbalance,
there are always orderings that group true twins, vertices with the same closed neigh-
bourhood, together in the ordering, matching a previously established result of Fellows
et al. [49] for Optimal Linear Arrangement. Many techniques for one problem also
inspire results for another.

However, we do not have a complete picture of how these problems relate to each other,
and the fact that these problems have solutions which are similar has not been previously
noted. We are hopeful that these theorems describing optimal orderings for these problems
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(a) A graph G.

σ 1 2 5 6 83 4 7 9 10

e wσ(e) e wσ(e) e wσ(e)
(1, 3) 4 (1, 4) 5 (2, 3) 3
(2, 4) 4 (3, 4) 1 (3, 5) 2
(3, 6) 1 (3, 7) 2 (3, 8) 3
(3, 9) 4 (3, 10) 5 (4, 5) 3
(4, 6) 2 (4, 7) 1 (4, 8) 2
(4, 9) 3 (4, 10) 4 (5, 7) 4
(6, 7) 3 (7, 8) 1 (7, 9) 2
(7, 10) 3 (8, 9) 1 (8, 10) 2
(9, 10) 1

(b) An ordering σ of G such that W(σ) = 66. By trying all possible
permutations of V (G), one can check that W(G) = 66, and thus
this ordering has minimum weight for G.

Figure 1.3: An illustration of Optimal Linear Arrangement.

are useful for understanding these problems and future results. This thesis takes a first
step towards considering all of these problems at once, taking results from one problem to
apply them to another. Specific contributions and results are summarized in later chapters,
when the relevant graph classes have been defined. A list of contributions of the thesis for
these problems is found in the conclusion (Chapter 7).

Type II Problems

A graph search visits every vertex in a (connected) graph and naturally produces an
ordering of the graph. In this work, we consider the question of whether a particular vertex
can be visited last for several search algorithms; this is the end-vertex problem, denoted
S-End-Vertex for a search algorithm S. In this thesis, we discuss S-End-Vertex for
various search algorithms S, as our family of Type II problems.

Formally, call the last visited vertex of a search S of a graph an end-vertex of S of the
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graph. We now formally define the S-End-Vertex for a search algorithm S:

Problem 1.0.4 (S-End-Vertex). Given a graph G = (V,E), a vertex t ∈ V , and
a search algorithm S, determine if there exists an ordering σ : V → {1, . . . , n} (where
n = |V |) generated by S of V such that σ(t) = n.

A related problem, the S-Beginning-End-Vertex problem asks if it is possible to end
a search S at a vertex t after starting at vertex s. Many results for S-End-Vertex carry
over to S-Beginning-End-Vertex by considering all possible starting vertices. The
property of being last in a search is particularly useful in inductive proofs for algorithms
which employ such searches. For these reasons, we focus only on the S-End-Vertex prob-
lem, and perform the first systematic study of the problem on a single graph class (so-called
bipartite permutation graphs, which are defined in Section 2.3.3).

1.1 Overview of Results and Thesis Layout

We obtain several results for problems of both types. Our focus is on the complexity of
these problems in the both the “classical” setting and “parameterized” setting. In the
“classical” setting, we study algorithms for these problems where we measure the run time
solely in terms of the size of the input graph (number of vertices and edges). In the
“parameterized” setting, we study algorithms for these problems where the run time is
measured in the size of the input graph and another input parameter. Along the way,
we prove some structural results for these problems which may be of general interest and
establish connections between related problems.

In the classical complexity setting for Type I problems, we obtain polynomial time
algorithms on some subsets of AT-free graphs. For Imbalance, we use the problem’s
similarities to Cutwidth to obtain an O(n2) (where n = |V (G)|) time algorithm on the
so-called superfragile graphs (defined in Section 2.3). In turn, we use the similarity of
Optimal Linear Arrangement to Imbalance to obtain an O(n2) time algorithm on
superfragile graphs for Optimal Linear Arrangement as well. We also show that for
some of the so-called proper interval graphs (also defined in Section 2.3), Imbalance has
an algorithm that runs in time O(n). Complexity results for general AT-free graphs remain
out of reach, as these problems remain unsolved for other subsets of AT-free graphs, as
explained in Section 4.8.

In order to obtain these algorithms, we study the equivalence classes of true twins,
vertices with the same closed neighbourhood, in graphs. From this investigation, we are
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able to show that for both Cutwidth and Imbalance, there are optimal orderings for
each of these problems where equivalence classes of true twins appear consecutively for
any graph. These results match an existing result for Optimal Linear Arrangement,
and establish additional similarities between these problems. Exploring those similarities
more, we are able to establish some conditions for when an cutwidth-minimal ordering is
also imbalance-minimal. In turn, we obtain formulas for the imbalance of several small
classes of graphs: complete (bipartite) graphs, Möbius ladders, and triangulated triangles.

In the parameterized complexity setting for Type I problems, we focus on exploring
the behaviour of true twins in these problems. Using the theorems which state that these
problems have optimal orderings where the classes of true twins are consecutive, we are
able to establish several fixed-parameter tractable (FPT) algorithms. First, we show that
Cutwidth has an FPT algorithm when the parameter is the so-called edge clique cover
number of the graph (defined in Section 2.5). Aiming to generalize FPT results of Fellows
et al. [52] and Lokshtanov [103] for Type I problems when the parameter is the so-called
vertex cover number of the graph (defined in Section 2.5), we considered the applicability
of these theorems to related parameters. We first attempted to use them for the so-called
twin cover number of the graph (defined in Section 2.5), but we were unsuccessful (see
Section 4.8.1 for an explanation). Instead we define a new parameter in Section 2.5.2, the
restricted twin cover number of a graph, which overcomes the problems with the general
twin cover case. As a result, we obtain FPT algorithms for Cutwidth and Optimal
Linear Arrangement when the parameter is the restricted twin cover number of the
graph. For Imbalance, such a result is not novel (it is implied by another algorithm, as
explained in Section 4.1), but we once again use the similarities between Cutwidth and
Imbalance to obtain some FPT results. We show an improved FPT algorithm for Imbal-
ance when the parameter is the vertex cover number of graph, and that Imbalance has
no polynomial sized kernel (defined in Section 2.4) with the same parameter.

We study the Type II problems only in the setting of classical complexity. We make
conjectures about the parameterized complexity of these problems in the conclusion (Sec-
tion 7.2), but focus on exploring how the linearity of AT-free graphs helps these problems
in the context of bipartite graphs. We establish S-End-Vertex results for Breadth-first
Search, Lexicographic Breadth-First Search, Depth-First Search, and Maximal Neighbour-
hood Search (all defined in Section 2.6). We show that for the search algorithms Lex-
icographic Breadth-First Search and Depth-First Search, the end-vertex problem has a
linear time solution on AT-free bipartite graphs. For Breadth-First Search and Maximal
Neighbourhood Search, the end-vertex problem has polynomial time algorithms on AT-free
bipartite graphs.
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Thesis Layout

The layout of this thesis is as follows. Chapter 2 provides the relevant definitions and
notions used throughout the thesis. Each problem is discussed in its own chapter which
includes background and previous results for the problem. Chapter 3 discusses results for
Cutwidth which closes some gaps in the literature, and includes a new structural theorem.
Chapter 4 demonstrates that some results for Cutwidth apply to Imbalance. Chapter
5 takes the first steps in showing that results for Imbalance may apply to Optimal
Linear Arrangement. The S-End-Vertex problem is discussed in Chapter 6. The
thesis concludes with Chapter 7, which summarizes key results and lists open problems
and directions for future research.
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Chapter 2

Preliminaries

2.1 Basic Definitions

All graphs in this work are finite, undirected, and without multiple edges or loops unless
otherwise specified. For a graph G = (V,E), we will denote n = |V | and m = |E|. The
following definitions are standard.

If X ⊆ V , then we define the subgraph induced by X to be G[X] = (X,EX) where
EX = {(u, v) ∈ E | u ∈ X and v ∈ X}. We say that G contains an induced subgraph
H if there is a set of vertices X ⊆ V (G) such that G[X] = H.

A complete graph (or clique) is a graph whose vertices are pairwise adjacent. We will
use Kn to denote a complete graph on n vertices. A complete graph or clique is
maximal if it cannot be extended by including one more vertex which is adjacent to
every vertex in the clique.

An independent set is a set I ⊆ V of vertices with no edges among them (i.e., (I× I) ∩
E = ∅). We will use In to denote an independent set on n vertices.

A cycle in a graph is a sequence of vertices {u0, . . . , ut−1} such that (ui, ui+1) is an
edge for all 0 ≤ i < t − 1, (u0, ut−1) is an edge, and all vertices are unique. A cycle
{u0, . . . , ut−t} has a chord if there is an edge (ui, uj) ∈ E \ {(u0, ut−1)} where j > i
and j − i > 1; a cycle is chordless if it has no chords. The length of a cycle on t
vertices is t.
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A path in a graph is a sequence of vertices {u0, . . . , ut−1} such that (ui, ui+1) is an edge
for all 0 ≤ i < t − 1 and all vertices are unique. A path {u0, . . . , ut−1} has a chord
if there is an edge (ui, uj) ∈ E and where j > i and j − i > 1; a path is chordless
if it has no chords. We will use Pt to denote a chordless path on t vertices. For any
path Pt, the vertices u0 and ut−1 are the endpoints of the path. A (u, v)-path is a
path between u and v where u and v are the endpoints. If t is odd, then u⌊t/2⌋ is
the midpoint of the path, while if t is even, then the vertices ut/2−1 and ut/2 are the
midpoints of the path. The length of a path on t vertices is t− 1.

A graph G is connected if there is a (u, v)-path for every u, v ∈ V (G).

A component of a graph is any of its maximal connected subgraphs. A component is
trivial if it contains no edges. A component is non-trivial if it contains at least one
edge (and therefore at least two vertices).

The open neighbourhood of a vertex v ∈ V (G), denotedNG(v), is the set {u ∈ V | (v, u) ∈ E }
of vertices adjacent to v. The closed neighbourhood of a vertex, denoted NG[v], is
the open neighbourhood of the vertex along with the vertex itself, i.e., NG[v] =
N(v) ∪ {v}. In both cases, we will drop the subscript when it is clear from context.

If X ⊆ V , then the open neighbourhood of a set X, denoted N(X), is
(
∪v∈XN(v)

)
\X.

The closed neighbourhood of a set X, denoted N [X], is ∪v∈XN [v].

The degree of a vertex v is the size of its open neighborhood, i.e., |N(v)|, and is denoted
dG(v), though we will drop the subscript when it is clear from context.

A vertex v is isolated if dG(v) = 0.

A vertex v is a pendant if dG(v) = 1.

The maximum degree of a graph G, denoted ∆(G), is maxv∈V (G) dG(v).

A vertex v is simplicial if N(v) induces a complete graph. For a simplicial vertex v,
N [v] also induces a complete graph.

For a connected graph G, a set of vertices X ⊆ V is a separator if G(V − X) is
disconnected. Such a set X is a clique separator if it also induces a complete graph.
A set of vertices X ⊆ V is an (A,B)-separator if G(V −X) is disconnected and the
disjoint sets A and B are in two separate components of G(V −X).

A vertex v ∈ V (G) is a cut vertex if G− v has more components than G.
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a

L2(a)

L1(a)

L0(a)

Figure 2.1: An illustration of the layers of a graph for the vertex
a. The rectangles show the layers Li(a) for 0 ≤ i ≤ eccG(a). Since
eccG(a) = 2, the set L2(a) is also the set of eccentric vertices of a.

For a subset S ⊆ V , a vertex v ∈ S is universal to S if S ⊆ N(v). We will use U(S) to
denote the set of universal vertices for S ⊆ V , i.e., U(S) = {v | v ∈ S and S ⊆ N [v]}.

An (x, y)-path P misses (or avoids) z if V (P )∩N [z] = ∅, that is, P contains neither z
nor a neighbour of z; otherwise the vertex z is said to intercept (or hit) the path P .

The distance between two vertices u and v in a graph G, denoted by dG(u, v), is the
length of a shortest path between u and v in G. We will drop the subscript when it
is clear from context.

The diameter of a graph G, denoted diam(G), is the maximum distance between any
two vertices in G, i.e., diam(G) = maxu,v∈V (G) dG(u, v). Two vertices u, v are said to
be diametrical if dG(u, v) = diam(G).

For a vertex w, we use Lℓ(w) to denote the set of all vertices u with dG(u,w) = ℓ.
The set Li(w) is called the ith layer of the graph with respect to w. The maximum
value ℓ for which Lℓ(w) ̸= ∅ is called the eccentricity of w and is denoted by eccG(w).
The subscript will be dropped when it is clear from context. When ℓ = ecc(w), the
vertices of Lℓ(w) are called eccentric vertices of w. These concepts are illustrated in
Figure 2.1.

For v ∈ V , we will occasionally use E(v) denote the edges of G that are incident with
v. Note that |E(v)| = dG(v) = |N(v)|.

For disjoint sets X, Y ⊆ V , we will use E(X, Y ) denote the edges of G that have one
endpoint in X and the other in Y , i.e., E(X, Y ) = {(x, y) ∈ E | x ∈ X and y ∈ Y }.

To subdivide an edge e = (u, v) is to delete e and add a new vertex x and join x to u
and v.
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N(u) \ {v} = N(v) \ {u}
u

v

w

(a) An example of two twins, u and v.
The edge (u, v) may or may not exist.
The vertex w is not a twin of either u
or v since it has a neighbour outside
the common neighbourhood of u and
v, which is in the oval.

N(u) \ {v} = N(v) \ {u}
u

v

(b) An example of two true twins, u
and v. The edge (u, v) must exist.

Figure 2.2: An example of twin vertices.

Two vertices u and v are twins if they have the same neighbours, except possibly for
each other; that is, N(u) \ {v} = N(v) \ {u}. Equivalently, u and v are twins if each
w ∈ V \ {u, v} satisfies (w, u) ∈ E if and only if (w, v) ∈ E. Two twins u and v are
true twins if they have an edge between them; i.e., N [u] = N [v]. An illustration of twins
is provided in Figure 2.2. Twins which are not true twins, i.e., twins u and v such that
(u, v) /∈ E, may be referred to as false twins . A set of vertices Y ⊆ V is a set of true twins
if for every pair of vertices u, v ∈ Y , u and v are true twins. Inclusion-wise maximal sets
of true twins in a graph form equivalence classes of the vertices of a graph (Ganian [58]).
An equivalence class for the relation of “being true twins” may consist of a single vertex.

We emphasize the following definition regarding twins:

A set X ⊂ V (G) is a set of twins if, either statement holds (i) for any u, v ∈ X, u
and v are false twins, or (ii) for any u, v ∈ X, u and v are true twins. That is, we will
only use the phrase “set of twins” if the set consists entirely of true twins or entirely
of false twins.

The next observation is also important for dealing with the set of universal vertices of
a graph.

Observation 2.1.1. For any graph G, the set U(G) is an equivalence class of true twins
and a clique.
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2.2 Definitions for Orderings

An ordering (or a (linear) layout or a linear arrangement) of (a subset of) the vertices of a
graph is a sequence ⟨v1, v2, . . . , vk⟩, with each vi distinct. We shall freely use set operations
and notation on orderings, and also the following.

σ(v) denotes the index of the vertex v in σ.

σ(i) denotes the ith vertex in σ, for 1 ≤ i ≤ |σ|.

σπ denotes the concatenation of (disjoint) orderings σ and π.

The relation <σ is defined by u <σ v if and only if u precedes v in σ. Relations >σ, ≤σ

and ≥σ are defined analogously. We extend these to sets of vertices: e.g., x <σ {y, z}
if and only if x <σ y and x <σ z. More generally, for two sets X and Y , we say that
X <σ Y if and only if x <σ Y for all x ∈ X.

For an element x of σ, σ<x denotes the ordering induced by σ on the set {y ∈ V | y <σ

x}. The orderings σ≤x, σ>x, and σ≥x are defined analogously. More generally, for a
set X ∈ V , σX denotes the ordering imposed by σ on X.

We may use σ<i for 1 ≤ i ≤ |σ| to refer to σ<σ(i). The symbols σ>i, σ≤i, and σ≥i are
defined analogously.

For an ordering σ, σR denotes the reverse ordering of σ.

A set X ⊆ V is consecutive in an ordering σ of V if there exists an index 1 ≤ i ≤ |σ|
and an index i < j ≤ |σ| such that j − i = |X| and for all i ≤ k ≤ j, σ(k) ∈ X.

The notation σ<X , where X is a consecutive set in σ, denotes the ordering of σ restricted
to the vertices prior to the consecutive set X. Similarly, the notation σ≤X , where X
is a consecutive set in σ, denotes the ordering of σ restricted to the vertices prior to
the consecutive set X and the vertices of X. We will use analogous for > and ≥.

The following definitions are related to the Type I problems that we study.

Recall that the cutwidth after v with respect to σ, denoted cσ(v), is cσ(v) = |{(x, y) ∈
E | x ≤σ v and v <σ y}|. For convenience, we may occasionally write cσ(i) instead
of cσ(σ(i)) to represent the cutwidth after the ith vertex of σ.
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σ 1 2 5 6 83 4 7 9 10

2 2 3 3 1 −1 −1 −1 −3 −5rankσ(v)

2 2 3 3 11 1 1 3 5ϕσ(v)

Figure 2.3: An illustration of the rank of a vertex.

Given a vertex v ∈ V , predσ(v) and succσ(v) respectively denote the number of
neighbours of v that precede (respectively succeed) v in an ordering σ. That is,
predσ(v) = |σ<v ∩N(v)| and succσ(v) = |σ>v ∩N(v)|. The imbalance of v with
respect to an ordering σ, denoted ϕσ(v), is |succσ(v)− predσ(v)|.

Given a set X ⊆ V and an ordering σ of V , define ϕσ(X) =
∑

v∈X ϕσ(v).

Given a set of twins Y ⊆ V and an ordering σ of Y where the vertices of Y appear
consecutively, define predσ(Y ) = predσ(y) where y ∈ Y is leftmost in σ. Similarly,
given a set of twins Y ⊆ V and an ordering σ of Y where the vertices of Y appear
consecutively, define succσ(Y ) = succσ(y) where y ∈ Y is rightmost in σ.

A vertex v is perfectly balanced in an ordering σ if d(v) is even and ϕσ(v) = 0 or if d(v)
is odd and ϕσ(v) = 1.

The rank 1 of a vertex vi with respect to an ordering σ is denoted by rankσ(vi) and is
equal to succσ(vi)− predσ(vi). Note that |rankσ(vi)| = ϕσ(vi). The rank of a vertex
is illustrated in Figure 2.3.

In many cases, we will need to rearrange vertices in an ordering σ. Suppose that σ is
written

σ = σ(1)σ(2) . . . σ(i− 1)σ(i)σ(i+ 1) . . . σ(n− 1)σ(n).

We say that we move v = σ(i) backward (or to the left) to a position j where 0 < j < i
when we replace σ by the ordering

σ′ = σ(1)σ(2) . . . σ(j − 1)σ(i)σ(j) . . . σ(i− 1)σ(i+ 1) . . . σ(n− 1)σ(n).

1Some authors call this the force of a vertex in the context of Optimal Linear Arrangement, e.g.,
Fellows et al. [49].
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Bipartite AT-Free Chordal

Bipartite
Permutation

Interval Split k-Tree

Proper
Interval

ThresholdSuperfragile Tree

Figure 2.4: The relationship between graph classes discussed in this
work. An arrow from class A to class B indicates that class A is
contained within class B.

Similarly, we say that we move v = σ(i) forward (or to the right) to a position j where
n ≥ j > i when we replace σ by the ordering

σ′ = σ(1)σ(2) . . . σ(i− 1)σ(i+ 1) . . . σ(j − 1)σ(i)σ(j)σ(n− 1)σ(n).

2.3 Graph Classes

We shall consider various classes of graphs in this work, which we now define. The rela-
tionship between these graph classes is shown in Figure 2.4.

A graph G is bipartite if V can be partitioned into two sets X and Y such that all edges
have one endpoint in X and the other in Y ; each set X and Y is called a partite set of G.
We will often write G = (X, Y,E) for a bipartite graph, where X and Y are the partite
sets of G. A bigraph is a bipartite graph. A complete bipartite graph, denoted Kr,s, is a
bipartite graph on r + s vertices such that there are r vertices in one partite set and s in
the other, and moreover, every vertex in one partite set is adjacent to every vertex in the
other partite set. The claw graph is K1,3 (shown in Figure 2.5) and will be used in some
definitions and proofs.

A chordal (or triangulated) graph is a graph with no induced cycle of size at least four.
We consider the following sub-classes of chordal graphs.

A tree is a connected acyclic graph, i.e., one which does not contain any cycles. A star
is a tree where all vertices except one have degree 1.
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A

B

Figure 2.5: A claw graph (K1,3) with each partite set indicated.

An interval graph is one in which each vertex v may be identified with an interval Iv
of the real line, such that (u, v) ∈ E if and only if Iu ∩ Iv ̸= ∅ (i.e., two vertices are
adjacent if and only if their respective intervals intersect). An example is shown in
Figure 2.6. All interval graphs are chordal. Lekkerkerker and Boland [96] showed that
a chordal graph is an interval graph if and only if it contains no so-called asteroidal
triple (defined in Section 2.3.2).

An interval graph is proper if the intervals can be chosen so that no interval contains
another; i.e., Iu ̸⊆ Iv for every u ̸= v. An interval graph is proper if and only if
it contains no claw (see Figure 2.5). Proper interval graphs are precisely the unit
interval graphs: interval graphs whose representations can be drawn with unit length
intervals. Golumbic [65] provides a proof for both of these facts.

A split graph is a graph whose vertex set can be partitioned into a clique and an
independent set. Such a partition is called a split partition. All split graphs are
chordal (Hammer and Földes [72]).

A split graph is a threshold graph if and only if it has a split partition (C, I) such that
vertices of I (and equivalently the vertices of C) can be ordered by neighbourhood
inclusion. Such a split partition is called a threshold partition, and is defined in
Section 4.8.3.

A k-tree is a graph that can be obtained by starting with a k+ 1 clique and repeatedly
adding vertices so that each new vertex added has precisely k neighbours which form
a clique. All k-trees are chordal and have no clique of size greater than k + 1 (see,
e.g., Brandstädt et al. [18] and Patil [118]).

A graph G is superfragile if G can be constructed with the following two operations O1
and O2:

O1 Adding a clique U to a union of disjoint cliques C1, . . . , Ck, and adding all edges
between vertices of U and Ci for every 1 ≤ i ≤ k.

O2 Taking the union of disjoint superfragile graphs.

17



1

2 3

4

5

6

7 8

9 10

(a) A superfragile graph G. Observe
that every vertex in U(G) = {1, 2, 3}
has an edge to every vertex of the dis-
joint cliques K2 = {4, 5}, K1 = {6},
and K4 = {7, 8, 9, 10}.

1
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10

The real number line

(b) An interval representation of G.
Each thick line represents an interval
on the real number line corresponding
to the vertex of the indicated label.
This representation is not unique.

Figure 2.6: A superfragile graph (left) with an interval representation
(right). Since the graph has an interval representation, it is also an
interval graph.

From this definition, it is clear that superfragile graphs contain no induced cycles
of length greater than 3 or so-called asteroidal triples (defined in Section 2.3.2).
Therefore, superfragile graphs are interval graphs and also chordal graphs.

An alternative definition provided by Preissmann et al. [119] is proved to be equivalent
in Section 2.3.1 below, which also remarks on the naming of this class of graphs.

2.3.1 Superfragile Graphs

Lilleeng [99] defines superfragile graphs as follows: a graph G is superfragile if G can be
constructed with operations O1 and O2.

The operation of taking two graphs G1 and G2 and adding edges between every vertex
of G1 and every vertex of G2 is called a complete join of two graphs. We may use this
terminology when constructing superfragile graphs throughout the thesis.

We make the following observation about superfragile graphs constructed using only
operation O1, i.e., superfragile graphs which are connected. The observation will be useful
in Sections 4.5 and 5.3.
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Observation 2.3.1. Let G be a connected superfragile graph which is not a complete graph.
Then, G was constructed using only operation O1 by a complete join of U and the graph
consisting of the disjoint cliques C1, . . . , Ck. The k+ 1 equivalence classes of true twins in
G are the sets C1, . . . , Ck along with the set U . Moreover, U(G) = U .

We now turn to another definition of superfragile graphs. After introducing it, we will
show the equivalence of the definitions. Preissmann et al. [119] define superfragile graphs
as follows. Consider the following two rules RA and RB which can be used to eliminate
vertices from a graph:

RA If there is no induced P3 having node x as an endpoint, then x and all incident edges
are removed.

RB If there is no induced P3 having node x as a midpoint, then x and all incident edges
are removed.

An elimination ordering of a graph G is an ordering describing the order to remove
vertices of a graph (usually to satisfy some special property). A graph is superfragile if
there is an elimination ordering using the rules RA and RB such that at every stage of
the elimination ordering, every remaining vertex is eligible to be removed.

We briefly remark on the naming of this class of graphs. Chvátal called graphs brittle
if rules similar to RA and RB, using P4 instead of P3, could be used to obtain an elim-
ination ordering (see Preissmann et al. [119]). Preissmann et al. [119] considered graphs
where every vertex was eligible for elimination during every stage, and called these graphs
superbrittle. The name “superfragile” arises from the similarity to superbrittle graphs.

The following proposition proves the equivalence of the two definitions above, which
was not explicitly shown by Lilleeng [99]. Figure 2.7 shows how the elimination rules above
may be used for a superfragile graph.

Proposition 2.3.2. Graphs which can be constructed using operations O1 and O2 are
exactly the graphs which have an elimination ordering using rules RA and RB, where
every vertex in the graph is eligible to be removed at every stage of the elimination ordering.

Proof. Suppose first that G was constructed according to operations O1 and O2. Consider
any vertex v and let component C be the component of G containing v. If C is a clique,
then C contains no induced P3, in which case no vertex of C is the endpoint of any P3 and
we can apply rule RA to any vertex in the component at any point during the elimination
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Figure 2.7: A superfragile graph G. Observe that U(G) = {1, 2, 3}.
Note that rule RA is always able to remove vertices of U(G), while
rule RB is always able to remove any vertex of V (G) \U(G). Either
rule is applicable once G is a clique.

ordering. If C is not a clique, then it must be that C was constructed by joining all vertices
of U(C), the universal vertices of the component, to some cliques C1, . . . , Ck. In this case,
we consider cases based on whether v ∈ U(C).

Case 1: v ∈ U(C). We claim that there is no induced P3 having v as an endpoint.
Suppose to the contrary that v is the endpoint of some induced P3 = {p0, p1, v}; by the
definition of an induced path, (p0, v) /∈ E. However, (p0, v) ∈ E as v ∈ U(C), so we have
reached a contradiction. Therefore, as there is no induced P3 having v as an endpoint, we
may use rule RA at any point during to remove v. Thus we can use a rule in the case
v ∈ U(C).

Case 2: v /∈ U(C). We claim that there is no induced P3 containing v as a midpoint.
Suppose to the contrary that v is the midpoint of some induced P3 = {p0, v, p2}; by the
definition of an induced path, (p0, p2) /∈ E. By construction, the only non-edges of any
component are between the vertices of Ci and Cj for i ̸= j. However, the only vertices
adjacent to vertices of both Ci and Cj for some i, j are those in U(C). Therefore, we must
have that v ∈ U(C), which is a contradiction. Therefore, there as there is no induced P3

with v as a midpoint, we may use rule RB to remove v at any point. Thus, we can use a
rule in the case v /∈ U(C).

Therefore, if a graph was constructed using operations O1 and O2, it has an elimination
ordering using rules RA and RB such that at every stage of the ordering, every remaining
vertex is eligible to be removed.

Conversely, suppose that G has an elimination ordering using rules RA and RB such
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that at every stage of the ordering, every remaining vertex is eligible to be removed. In
particular, this means that before the first vertex is eliminated, any vertex in the graph
can be eliminated. We will show how we can reconstruct each component using operation
O1, which implies that G can be constructed using operation O2 over all components. We
claim that we can partition the vertices of each component based on which rule can be
used to remove each vertex of the component. Fix a component C of G.

Claim 2.3.3. If vertex v ∈ C can be removed using rule RA, then v ∈ U(C).

Proof of claim: Suppose that a vertex v ∈ C can be removed using rule RA. Since rule
RA can be applied to v, v is not the endpoint of any induced P3. We claim that v ∈ U(C).
Suppose to the contrary that u /∈ U(C); then there is at least one vertex u ∈ C such that
u /∈ N(v). Let P be a shortest (u, v)-path, which must exist since u and v are in the same
component. By the assumption that rule RA is applicable to remove v, |P | ≠ 3. Therefore,
|P | ≥ 4. However, taking P = {v, p1, p2, . . . , pi = u} we see that v is the endpoint of the
induced P3 = {v, p1, p2} (where it must be that (p2, v) /∈ E as otherwise P was not a
shortest path). This contradicts the applicability of rule RA. Therefore, v ∈ U(C). ■

Therefore, all vertices which can be removed by rule RA are in U(C), and necessarily
U(C) is a clique. If C is a clique, we are done with this component, as all vertices can be
removed by rule RA. We may therefore assume that C is not a clique.

Suppose that a vertex v ∈ C can only be removed using rule RB. Since rule RB can
be applied to v, v is not the midpoint of any induced P3.

We claim that if v ∈ U(C), then C is a clique. Suppose to the contrary that (x, y) /∈ E
for some vertices x, y ∈ C. Since v ∈ U(C), (v, x) ∈ E and (v, y) ∈ E. However, now
{x, v, y} induce a P3, contradicting the fact that rule RB is applicable to v. Therefore, C
was a clique, contradicting our assumption, and it must be that v /∈ U(C).

We establish the following useful claim.

Claim 2.3.4. Let v ∈ C \ U(C) be such that v can be removed by rule RB. If u ∈
N(v) \ U(C), then u is not adjacent to any vertex w /∈ N(v).

Proof of claim: Suppose to the contrary that (u,w) ∈ E but (w, v) /∈ E. Then {w, u, v}
induce a P3, and therefore u cannot be removed by rule RB. By assumption, every vertex
can be removed at any stage; if u cannot be removed by rule RB, it must be possible
to remove it using rule RA. However, by Claim 2.3.3, this means that u ∈ U(C), a
contradiction to our choice of u. Therefore, no such vertex w exists where (u,w) ∈ E but
(w, v) /∈ E. ■

Using the previous claim, we now show that N(v) \ U(C) induces a complete graph.
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• Suppose that N(v) \ U(C) = ∅. Then v is a K1, and by definition of U(C), v is
adjacent to every vertex of U(C).

• Suppose that N(v) \ U(C) = {u} for some vertex u. Then (u, v) ∈ E, and by
definition of U(C), both u and v are adjacent to every vertex of U(C). By Claim
2.3.4, u is not adjacent to any vertex w /∈ N(v). Therefore, it must be that {u, v} is
a K2 with no neighbours except for U(C).

• Finally, suppose that |N(v) \ U(C)| ≥ 2, and consider any two distinct vertices
x, y in N(v) \ U(C). By definition of N(v), (x, v) ∈ E and (y, v) ∈ E. By Claim
2.3.4, neither x nor y is adjacent to any vertex w /∈ N(v). We claim that (x, y) ∈ E.
Suppose to the contrary that this is not the case, i.e., (x, y) /∈ E. Then since x ∈ N(v)
and y ∈ N(v), {x, v, y} induce a P3 with v as the center, contradicting the fact that
rule RB applied to v. Therefore, we must have that (x, y) ∈ E. Since x and y
were arbitrary, we must have that N [v] \U(C) is a complete graph on |N [v] \U(C)|
vertices where each vertex is additionally adjacent to every vertex in U(C).

Let k be the number of distinct sets of N [v] \ U(C) over all vertices v ∈ C that can
be removed by rule RB. For each v which can be removed by rule put v into a set Ci

1 ≤ i ≤ k based on N [v] \U(C) (so that all vertices v in Ci have the same neighbourhood
N [v] \ U(C)). Therefore, we can partition C into vertices which can be removed by rule
RA which are adjacent to all vertices in C, as well disjoint complete graphs C1, . . . , Ck for
some k ≥ 0. Since C was arbitrary, every component can be constructed using operation
O1. Therefore, the graph can be constructed from the components using operation O2,
as required.

2.3.2 Asteroidal-Triple-Free Graphs

We now define AT-free graphs. An asteroidal triple (AT) is a triple of independent vertices
x, y, z such that between every pair of vertices in the triple, there is a path that misses (i.e.,
does not intersect the closed neighbourhood of) the third. An example of an asteroidal
triple is shown in Figure 2.8. A graph is asteroidal-triple-free (AT-free) if it does not
contain any asteroidal triples.

AT-free graphs generalize interval graphs but are incomparable to chordal graphs. To
see that AT-free graphs are incomparable to chordal graphs, note that a chordless cycle
on five vertices is AT-free but not chordal, while a claw (K1,3) where each edge has been
subdivided is chordal but not AT-free. The fact that the chordless cycle on five vertices
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Figure 2.8: A graph with an asteroidal triple (1, 4, 6).

is AT-free also implies that the class of AT-free graphs is not contained in the class of
so-called perfect graphs (see, e.g., Golumbic [65] for more on perfect graphs).

We now define some terms which are related to AT-free graphs.

Two vertices y, z of G are said to be unrelated with respect to a vertex x if there
exists an (y, x)-path P that misses z (i.e., P ∩ N [z] = ∅) and a (z, x)-path Q that
misses y (i.e., Q ∩N [y] = ∅).

A vertex x is admissible if no pair of vertices is unrelated with respect to x.

2.3.3 Bipartite Permutation Graphs

A graph is a permutation graph if each vertex can be represented by a point on each of two
parallel lines and a straight line segment joining the points, and two vertices are adjacent if
and only if their corresponding line segments intersect. A graph is a bipartite permutation
graph if it is both a bipartite graph and a permutation graph.

A proper interval bigraph is a bipartite graph that is AT-free and contains no induced
cycle of size greater than four (see, e.g., Brandstädt et al. [18]). For this reason, proper
interval bigraphs are also known as AT-free bigraphs. Equivalently, a proper interval
bigraphs is a bigraph in which each vertex v may be identified with a interval Iv, coloured
with one of two colours, of the real line, such that (u, v) ∈ E if and only if Iv ∩ Iv ̸= ∅ and
the colour of Iu and Iv differs. Proper interval bipartite graphs are precisely the bipartite
permutation graphs (see, e.g., Hell and Huang [80]).

Let G = (A,B,E) be a bipartite graph, and let σA be an ordering of the partite set
A and σB be an ordering of the partite set B. Some orderings of bipartite graphs have
special properties:
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Figure 2.9: The property required of a strong ordering for a bipartite
permutation graph. The top vertices in each image (red vertices)
are in one partite set A, while the bottom vertices in each image
(gray vertices) are in the other partite set B of a bipartite graph
G = (A,B,E). A strong ordering requires that if the cross edges are
found for orderings σA and σB, then the parallel edges shown in the
right image must also exist.

A strong ordering consists of an ordering σA of A and an ordering σB of B such that
for all (a, b), (a′, b′) ∈ E, where a, a′ ∈ A and b, b′ ∈ B, if a <σA a′ and b′ <σB b, then
(a, b′) ∈ E and (a′, b) ∈ E (see Figure 2.9). We will use (σA, σB) to denote a strong
ordering of a bipartite graph.

An ordering σA of A has the adjacency property if, for every b ∈ B, N(b) consists of
vertices that are consecutive in σA.

The ordering σA has the enclosure property if, for every pair b, b′ of vertices of B with
N(b) ⊆ N(b′), the vertices of N(b′) \N(b) appear consecutively in σA, implying that
b is adjacent to the leftmost or rightmost neighbour of b′ in σA.

Spinrad et al. [129] showed that bipartite permutation graphs are exactly the bipartite
graphs which have a strong ordering.

Theorem 2.3.5 (Theorem 1, Spinrad et al. [129]). The following statements are equivalent
for any bipartite graph G = (A,B,E).

1. G is a bipartite permutation graph.

2. G has a strong ordering.

3. There exists an ordering of A which has the adjacency property and the enclosure
property.
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As observed by at least Chang et al. [22] and Heggernes et al. [79], the next lemma
follows from the proof of Theorem 2.3.5 when G is connected. The subsequent theorem
shows that a strong ordering where the ordering of each part of the graph has both the
adjacency and enclosure properties can be found in linear time.

Lemma 2.3.6 (Lemma 2.2, Heggernes et al. [79]). Let (σA, σB) be a strong ordering of
a connected bipartite permutation graph G = (A,B,E). Then both σA and σB have the
adjacency property and the enclosure property.

Theorem 2.3.7 (Theorem 3, Chang et al. [22]). A strong ordering (such that the orderings
of each part of the graph have the enclosure and the adjacency property) of a connected
bipartite permutation graph can be generated in linear time.

2.4 Complexity Classes

In this section we discuss some complexity classes which will appear in the thesis. We
will frequently use the classes P and NP, which are the usual classes of problems solv-
able in deterministic polynomial time and problems with “yes”-instances verifiable in non-
deterministic polynomial time, respectively.

In addition to P and NP, we will also use the related class coNP/poly, which we de-
fine2 below, along with the related class coNP. Informally, the class coNP/poly is the
class of problems which can be solved in coNP by a Turing machine which also has a
(polynomially-bounded) “advice” string. The Turing machine can use the “advice” string
to reach a conclusion for the instance it is solving. It is important to note that the “advice”
string depends only on the size of the input. For an introduction to Turing machines and
complexity classes, see, e.g., Sipser [128].

Definition 2.4.1 (Complexity class coNP). We say that a language L belongs to the com-
plexity class coNP if there is a Turing machine M such that

• Machine M , when given input x of length n has to decide whether x ∈ L. Machine
M works in co-nondeterministic polynomial time. That is, it makes a polynomial
number of steps that may be chosen co-nondeterministically: If x ∈ L, the algorithm
should derive this conclusion for every possible run, whereas if x /∈ L, then at least
one run needs to finish with this conclusion.

2We present the classes in the style of Cygan et al. [41].

25



In short, a problem is in the class coNP if “no”-instances have a polynomialy-sized
proof that the instance is a “no”-instance (such proof must also be verified in polynomial
time). The next definition adds the “advice” string to the class coNP.

Definition 2.4.2 (Complexity class coNP/poly). We say that a language L belongs to
the complexity class coNP/poly if there is a Turing machine M and a sequence of strings
(αn)n=0,1,2,..., called the advice, such that

• Machine M , when given input x of length n, has access to string αn and has to decide
whether x ∈ L. Machine M works in co-nondeterministic polynomial time.

• |αn| ≤ p(n) for some polynomial p(·).

We now make some remarks about these classes. First, it is unknown whether P = NP
and it is widely believed that P ̸= NP (see, e.g., Fortnow [54] for a brief overview of the
question). Second, observe that the advice for coNP/poly depends only on the size of the
input x, and in particular that for two inputs x and x′ of the same size, the machine M
must use the same advice string. It is also unknown if coNP = NP, and the assumption
that NP ̸⊆ coNP/poly is a stronger statement than coNP ̸= NP due to the availability of
the advice string. It is known that if NP ⊆ coNP, then the polynomial hierarchy collapses
to its third level (which does not imply that P = NP) (see, e.g., Cai et al. [20]). We will
use the assumption NP ̸⊆ coNP/poly in one new theorem (Theorem 4.7.5).

2.4.1 Parameterized Complexity Classes

An instance of a parameterized problem is a pair (I, k) where I is the input to the problem
and k ∈ N is the parameter. A parameterized problem is fixed-parameter tractable (FPT)
if there is an algorithm that solves instances (I, k) in time f(k)|I|c where c is a constant,
|I| indicates the size of the input, and f(k) is a computable function of k. The class
FPT denotes all fixed-parameter tractable problems. A parameterized problem L is FPT
reducible (through an FPT reduction) to a parameterized problem L′ if there is a mapping
R from instances of L to instances of L′ and (i) (I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈
L′; (ii) k′ ≤ g(k) for a computable function g(k); and (iii) R can be computed in time
O(f(k)|I|c) for a computable function f(k) and a constant c.

A parameterized problem can always be reduced to a kernel . A kernelization algorithm
takes an instance (I, k) of a parameterized problem L and transforms it in polynomial
time O(|I|c) into an instance, called the kernel, (n′, k′) such that (I, k) ∈ L if and only
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if (I ′, k′) ∈ L, but |I ′|, k′ ≤ g(k) for some computable function g(k). The function g(k)
is the size of the kernel. Downey and Fellows [47] showed that a decidable parameterized
problem has a kernel if and only if it is in FPT, but generally only polynomial-sized kernels
are of interest (see, e.g., Fellows et al. [50]).

An alternative notion of parameterized complexity is captured by the class XP, which
denotes the class of parameterized problems that can be decided in time O(ng(k)). However
it is known that FPT ⊊ XP (e.g., Downey and Fellows, Ch. 15 [45]), so showing that a
parameterized problem is in FPT is stronger than showing that it is in XP.

Not all pairs of problems and parameters are equal. For a given problem, the choice
of parameter may affect the problem’s complexity. The use of some parameters may lead
to FPT algorithms, while the use of other parameters may result in instances which are
provably hard, which we do not discuss here (see, e.g., Downey and Fellows [45] for more
on parameterized hardness).

2.5 Graph Parameters

As discussed in Section 2.4.1, parameterized problems take an input (I, k) where I is the
instance of the problem and k is the parameter. The choice of parameter can vary widely
and affect the existence of an FPT algorithm for the given pair (I, k). Often, the parameter
is natural, like the size of a solution desired for the problem on the supplied instance. For
problems on graphs, another choice is often some parameter which somehow describes the
structure of the graph in the supplied input I.

We define the following parameters that we will reference in this work. The parameters
are illustrated in Figures 2.10 and 2.11.

A vertex cover is a set C ⊆ V (G) such that for every (u, v) ∈ E(G), either u ∈ C or
v ∈ C (or both). The set C is said to cover the edges of the graph and is sometimes
referred to as a “cover.” The vertex cover number of G, denoted vc(G), is defined to
be the size of a smallest vertex cover of G. See Figure 2.10a for an illustration.

A graph has pathwidth at most k, denoted pw(G) if the vertices can be put into bags
with size at most k + 1 (so that every vertex is in at least one bag), every edge has
both endpoints in some bag, and the bags form a path P where, if Bi and Bj both
contain a vertex v, all bags on the (unique) path from Bi to Bj in P also contain
v. Thus the bags can be linearly ordered so that the bags containing each vertex
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(a) An illustration of a vertex cover of a graph G. The set {1, 4} is a vertex cover of G as every
edge has at least one endpoint as either 1 or 4. Note that vc(G) > 1 since no vertex is incident
with every edge. In this case, vc(G) = 2. This minimum vertex cover is not unique.
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(b) An illustration of a path decomposition of a graph G, with three bags Bi indicated (left).
Each bag has at most 4 vertices, every edge in the graph has both endpoints in at least one bag,
and the bags containing each vertex form a sub-path of P (right). Therefore, for this example,
pw(G) ≤ 3.
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(c) An illustration of a tree decomposition of a graph G, with six bags Bi indicated (left). Each
bag has at most 2 vertices, every edge in the graph has both endpoints in at least one bag, and the
bags containing each vertex form a subtree of T (right). Therefore, for this example, tw(G) ≤ 1.

1 2

3 4 5

(d) An illustration of a twin cover of a graph G. The set {4} is a minimum twin cover of G as
every edge has at least one endpoint as 4, except the edge (1, 3), which is between two true twins
({1, 3}). The minimum twin cover is unique in this example (this can be verified by checking
every other vertex). In this case, tc(G) = 1.

Figure 2.10: Illustrations of some graph parameters discussed in this
work.
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are consecutive. The bags constitute a path decomposition of the graph. See Figure
2.10b for an illustration.

A graph has treewidth at most k, denoted tw(G) if the vertices can be put into
bags Bi with size at most k + 1 (so that every vertex is in at least one bag), every
edge has both endpoints in some bag, and the bags form a tree T where, if Bi and
Bj both contain a vertex v, all bags on the (unique) path from Bi to Bj in T also
contain v. The bags constitute a tree decomposition of the graph. See Figure 2.10c
for an illustration. See, e.g., Bodlaender [10] or Downey and Fellows [45] for more on
treewidth.

A twin cover of G is a set T ⊆ V such that for every edge (u, v) ∈ E, either
{u, v} ∩ T ̸= ∅ or u and v are true twins (Ganian [57]). The minimum size of a twin
cover is denoted tc(G). A twin cover is similar to a vertex cover, except that edges
between true twins do not need to have an endpoint in the set T . Every vertex cover
is a twin cover, and therefore tc(G) ≤ vc(G). However, the difference vc(G)− tc(G)
may be arbitrarily large (Ganian [57]). See Figure 2.10d for an illustration.

A graph G = (V,E) has neighbourhood diversity at most k, if V can be partitioned
into at most k sets, such that all the vertices in each part is a set of twins (Lampis
[94])3. The smallest number of sets required to partition G is the neighbourhood
diversity of the graph and is denoted nd(G). Each set is therefore either an inde-
pendent set (if it is a set of false twins) or a clique (if it is a set of true twins). See
Figure 2.11a for an illustration.

We now define the modular width of a graph. A module is a set M ⊆ V (G) such
that for any x ∈ V (G) \M , x is either adjacent to all vertices of M or none of them;
a module is trivial if |M | = 1. A graph G has modular width at most k if: G has at
most one vertex; G is a disjoint union of graphs of modular width at most k; G is the
complete join of graphs of modular width at most k; or the vertex set of G can be
partitioned into p ≤ k modules M1, . . . ,Mp such that G[Mi] is of modular width at
most k for 1 ≤ i ≤ p. The modular width of a graph is denoted mw(G). An example
is shown in Figure 2.11b. For more on modular width, see, e.g., Fomin et al. [53] or
Gajarský [56].

The clique width of a graph G, denoted4 cwd(G), is the minimum number of labels
needed to construct G using the following four operations: (C1) create a new vertex

3Following Ganian [58], we do not consider coloured graphs, as the original definition does.
4We use cwd(G) instead of cw(G) to avoid confusion with the cutwidth of a graph.
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(a) An illustration of neighbourhood diversity. The enclosed areas partition the vertices of G into
sets of true twins {1, 3} and false twins {2, 5} and {4}. In this case, nd(G) = 3.
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(b) A graph G with non-trivial modules M1, M2, M3, M4, M5, M6, and M7. Since G can be
partitioned into modules M3, {4}, {6},M7 and each of the graphs G[M3] and G[M4] have modular
width at most 4, mw(G) = 4.

Figure 2.11: Illustrations of more graph parameters discussed in this
work.

v with label i; (C2) the disjoint union of two labelled graphs; (C3) join by an edge
every vertex labelled i to every vertex labelled j, where i ̸= j; and (C4) rename label
i to label j. An example is shown in Figure 2.12. For more on clique width, see, e.g.,
Corneil and Rotics [37].

Some of the above parameters are very well studied, like the vertex cover number,
pathwidth, or treewidth of a graph. Others, like the twin cover number or neighbourhood
diversity, are less studied. We include twin cover number and neighbourhood diversity
because we will describe special cases of them (in Sections 2.5.1 and 2.5.2). The remaining
two parameters, modular width and clique width, are presented in order to establish the
relationship between other parameters, which we now formally describe.

Graph parameters are often compared asymptotically. We say that a parameter x is at
least as general as parameter y if every graph class where y is bounded also has bounded
x value. For example, it is well-known that if a graph has a bounded vertex cover number,
then it also has a bounded pathwidth (see, e.g., Sasák [125]). Figure 2.13 shows the relation
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a b c d

1. Let A be the disjoint union of the following graphs:

(a) Create a new vertex with label 1 (vertex d)

(b) Create a new vertex with label 3 (vertex c)

2. Join all vertices in A with label 1 to those vertices in A with label 3 to get A′.

3. Let B be the disjoint union of the following graphs:

(a) Create a new vertex with label 1 (vertex a)

(b) Create a new vertex with label 2 (vertex b)

4. Join all vertices in B with label 1 to those vertices in B with label 2 to get B′.

5. Let C be the disjoint union of A′ and B′.

6. Join all vertices in C with label 2 to those vertices in A with label 3 to get G = P4.

Figure 2.12: A graph G = P4 constructed according to the operations
for clique width. Since we only used three labels, cwd(G) ≤ 3. In
this example, the graph was constructed without renaming a label.
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between the parameters listed above; the figure is drawn this way as we will update it with
more parameters throughout the thesis. The layout of the parameters in Figure 2.13 is
significant: a parameter x to the left of another parameter y is at least as general as y
(if there is a left-to-right path between the parameters, denoted by the arrows). From
the picture, it is clear that all parameters in this work are at least as general as clique
width. The parameters twin cover number and neighbourhood diversity are also both at
least as general as the modular width of a graph. If a parameter x is at least as general as
a parameter y, and there is an FPT algorithm for a problem using the parameter y, then
there is also an FPT algorithm for the parameter x.

The following lemma shows a relationship between the twin cover number of a graph
and its vertex cover number, and will be helpful.

Lemma 2.5.1 (Lemma 2, Ganian [58]). Given a graph G and a graph G′ obtained by
deleting all edges (u, v) such that u and v are true twins, the vertex cover number of G′

equals the twin cover number of G.

Lemma 2.5.2. Let G be a graph. If T is a twin cover of G, then the components of G−T
are sets of true twins.

Proof. Let C be a component of G − T . The result holds trivially if |C| = 1; suppose
instead that |C| > 1. Since C is a component, it is connected, i.e., there is an edge with
both endpoints (u, v) in C (and neither in T ). By definition of a twin cover, the only edges
which do not have an endpoint in T are between true twins. Therefore, {u, v} are true
twins; since the edge in C was arbitrary, the component consists of true twins.

2.5.1 Edge Clique Cover

The edge clique cover number of G, denoted5 cc(G), is defined to be the minimum number
of cliques required to cover all edges of G. Here, a clique C covers an edge (u, v) if u, v ∈ C.
See Figure 2.14 for an illustration.

In this section, we provide some results for the edge clique cover number which are not
clear from the existing literature. We start by showing that the edge clique cover number
is incomparable to the vertex cover number as a parameter.

Proposition 2.5.3. There exist graph classes with bounded edge clique cover number but
unbounded vertex cover number.
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1 2

3 4 5

Figure 2.14: An illustration of an edge clique cover of a graph G.
Each shaded region is a clique, and together they cover the graph as
every edge in the graph is entirely contained within one clique. In
this case, cc(G) = 3.

Proof. Consider the class of complete graphs. Each complete graph has one maximal
clique, so cc(G) = 1 for each graph G in the class. However, the vertex cover number of
the class of graphs is unbounded, since the cliques can be arbitrarily large.

We show that a graph with a bounded vertex cover number does not necessarily have a
bounded edge clique cover number, but if a graph has bounded edge clique cover number
it has bounded neighbourhood diversity.

Proposition 2.5.4. There exist graph classes with bounded vertex cover number but un-
bounded edge clique cover number.

Proof. Let G be a star with ℓ pendants (vertices of degree 1). We will show that the class
of stars for each integer ℓ ≥ 3 has bounded vertex cover number but unbounded edge clique
cover number.

Let G be a star with ℓ ≥ 3 pendants. Taking C = {v} where v ∈ V (G) is such that
∆(G) = dG(v) is a vertex cover of size 1, which is minimum, since if any other vertex is
taken, we also need v or at least another pendant vertex. However, every one of the ℓ edges
requires its own clique to be covered, so cc(G) ≥ ℓ. Since ℓ is not a function of vc(G), the
proposition is proved.

Proposition 2.5.5. For any graph G, nd(G) ≤ 2cc(G); i.e., if cc(G) is bounded, then nd(G)
is bounded.

5Other authors, e.g., Fellows et al. [49], denote this parameter using ecc(G). We change it to avoid
confusion with the eccentricity of a graph.
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Proof. Any vertex has a neighbourhood contained in a subset of the cliques used to cover
the graph. Therefore if the graph can be covered by k cliques, there are at most 2k distinct
neighbourhoods. To see this, observe that every vertex v is in a subset of the cliques
covering the graph. Moreover, the neighbourhood for each vertex v can be partitioned into
a subset of the cliques covering the graph. The result follows from the fact that there are
at most 2k subset of the covering cliques.

Figure 2.15 shows the relationship between cc(G) and the other parameters discussed
in this work.

Theorem 2.5.6 (Corollary 2 and discussion in section 3 in Gramm et al. [71]). There is
an FPT algorithm to determine if cc(G) ≤ k for any graph G where the parameter is k.
Moreover, there is also an FPT algorithm with parameter k for generating the clique cover.
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G

→

1

2 3

4 5
6

7
8

G′ 1

2 3

6

7
8

Figure 2.16: An illustration of the restricted twin cover parameter.
The graph G, left, has a twin cover T = {4, 5} of size 2. After deleting
T , there is one non-trivial component in G′ (right). Therefore in this
example, rtc(G) ≤ |T |+ 1 = 3. By trying all possible twin covers of
G, one can verify that rtc(G) ≥ 3.

2.5.2 Restricted Twin Cover

In this subsection, we define a new special case of the neighbourhood diversity parameter,
called the restricted twin cover number.

Let G = (V,E) be a graph, and let T be the set of twin covers of G. We define the
restricted twin cover number of G, denoted rtc(G), as the smallest integer k such that there
is a twin cover T ∈ T with k = |T | + q where q is the number of non-trivial components
of G− T . An example is shown in Figure 2.16.

The restricted twin cover is related to other parameters. We establish this relationship
by considering several parameters discussed in the previous sections.

By definition, we have that tc(G) ≤ rtc(G) for any graph G. The opposite direction is
not true, as we show next.

Proposition 2.5.7. There exist graph classes with bounded twin cover number but un-
bounded restricted twin cover number.

Proof. Consider a graph obtained by taking ℓ disjoint copies of K2 and adding all edges
from these 2ℓ vertices to a new vertex u. Note that each such graph has exactly one
universal vertex. We will show that the class of graphs obtained by this construction for
each integer ℓ ≥ 3 has bounded twin cover number but unbounded restricted twin cover
number.
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Observe that taking the set T = {u} is a twin cover of size 1, since all edges between u
and the vertices of a K2 are covered by u, while edges within a K2 are between true twins.
Thus any graph G in the class, tc(G) ≤ 1.

We now show that for any graph in the class, rtc(G) may be arbitrarily large. Let G
be a graph in the class, and let T be a twin cover of G such that rtc(G) = |T |+ q for some
q ≥ 0 such that there are q non-trivial components of G− T .

Claim 2.5.8. We may assume that u ∈ T for u ∈ U(G).

Proof of claim: Assume to the contrary that this is not the case, i.e., that u /∈ T .

For every vertex v ∈ G\U(G), u and v are not true twins: there are at least 3 copies of
K2 which are all adjacent to u, and so there is a vertex v′ in a K2 which does not contain
v such that (v′, v) /∈ E(G) (but (u, v′) ∈ E(G)). Since T is a twin cover of G, for every
vertex v ∈ G \ U(G), (u, v) must have at least one endpoint in T .

By the previous observation, the edge (u, v) is not between true twins. Therefore, each
such edge must have v ∈ T as u /∈ T . Moreover, G−T has only one vertex, u, and therefore
contains no non-trivial components. Thus we have that q = 0.

Since each edge of the 2ℓ edges (u, v) must be covered by T and u /∈ T , |T | ≥ 2ℓ.
Therefore rtc(G) = |T |+ 0 ≥ 2ℓ.

However, by taking the set T ′ = {u}, we obtain a twin cover of G such that |T ′| = 1.
Note that G − T ′ has ℓ non-trivial components (the ℓ copies of K2). Thus rtc(G) ≤
|T ′|+ ℓ = 1 + ℓ < 2ℓ ≤ rtc(G) as ℓ ≥ 3, a contradiction as T was chosen so that rtc(G) is
minimized. Thus the claim is proved. ■

Claim 2.5.9. We may assume that |T | = 1.

Proof of claim: Suppose that |T | ≥ 1. The set T must contain u and |T | − 1 vertices of
G \U(G) by the Claim 2.5.8. That is, |T | contains |T | − 1 vertices contained in the copies
of K2.

First, we show that no two vertices v, v′ of T \{u} are adjacent. Suppose to the contrary
that such a pair exists, and consider T ′ = T \ {v}. Then |T ′| = |T | − 1 and T ′ is a twin
cover: the edge (v, v′) is covered as its endpoints are true twins, and the edges (u, v) and
(u, v′) are covered as u ∈ T ′. Now G − T ′ has q non-trivial components: the vertex v is
present, but is a trivial component. Thus rtc(G) = |T |+ q > |T | − 1 + q = |T ′|+ q, which
is a contradiction as rtc(G) is the minimum over all twin covers of G. Thus no two vertices
v, v′ of T \ {u} are adjacent.
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Let v ∈ T \ {u}, and consider T ′′ = T \ {v}. Then, observe that G− T ′′ has one more
non-trivial component than G−T , as the K2 containing v now remains after removing T ′′.
Thus we have

rtc(G) = |T |+ q for some q ≥ 0

= |T |+ q − 1 + 1 = |T | − 1 + q + 1

= |T ′′|+ (q + 1).

Therefore, we could use T ′′ instead of T to achieve the restricted twin cover number of G.
■

Since we may assume that |T | = 1, G − T has ℓ non-trivial components (as T = {u}
by Claims 2.5.8 and 2.5.9), which may be arbitrarily large.

A bound on rtc(G) implies a bound on the neighbourhood diversity of a graph, as is
shown in the next proposition.

Proposition 2.5.10. For any graph G, nd(G) ≤ (1 + rtc(G))2rtcG + rtc(G); i.e., if rtc(G)
is bounded then nd(G) is bounded.

Proof. Suppose that G is a graph that has rtc(G) = k for some k ≥ 0. Let T be a twin
cover such that rtc(G) = |T |+ q for some q ≥ 0 where there are q non-trivial components
of G− T .

Every component of G−T has an open neighbourhood which is a subset of T . Moreover,
every vertex in a non-trivial component of G − T has the same neighbourhood and each
non-trivial component is a clique (Lemma 2.5.2). By definition, there are q non-trivial
components of G−T . The closed neighbourhood of each non-trivial component consists of
itself and a subset of the vertices of T . There are at most 2|T | possible subsets of T . Thus
we can partition the vertices in the non-trivial components of G − T into at most q · 2|T |

different cliques.

Similarly, each vertex in a trivial component of G− T also has a neighbourhood which
is a subset of T . Thus we can partition the vertices in the trivial components of G−T into
at most 2|T | distinct independent sets, based on the neighbourhoods of these components.

Lastly, we can partition the |T | vertices of T into |T | independent sets, each of size one.

Therefore we can partition G into at most 2|T | + q · 2|T | + |T | ≤ 2rtcG + rtc(G) · 2rtcG +
rtc(G) ≤ (1 + rtc(G))2rtc(G) + rtc(G) different sets, each of which is either an independent
set or a clique.
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On the other hand, a bound on nd(G) does not imply a bound on rtc(G), as shown
next.

Proposition 2.5.11. There exist graph classes with bounded neighbourhood diversity but
unbounded restricted twin cover number.

Proof. Consider the class of graphs obtained by adding all edges between an independent
set Ia and a complete graph Kb for a ≥ 2 and b ≥ 2.

Let G be a graph in this class, In this case, we can partition Ia into one set and Kb

into another to satisfy the definition of neighbourhood diversity, so nd(G) ≤ 2.

On the other hand, every twin cover of such a graph requires min{a, b} vertices, i.e.,
tc(G) = min{a, b}.

First, we establish that tc(G) ≤ min{a, b}. To see this, note that if a ≥ b, then by
taking Kb as a twin cover, every edge has an endpoint in Kb, so we can use the b vertices
of Kb. If instead b ≥ a, then Ia is a twin cover: every edge missing are those within Kb,
which are true twins, and we can use the a vertices of Ia.

Next, we establish that tc(G) ≥ min{a, b} in the following claim.

Claim 2.5.12. tc(G) ≥ min{a, b}

Proof of claim: We prove the claim by contradiction. Suppose to the contrary that there
is a twin cover T of G such that |T | < min{a, b}.

Since |T | < min{a, b}, T < min{a, b} ≤ a, and there is at least one vertex v ∈ Ia
which is not in the set T (since T can contain at most a − 1 vertices of Ia). Similarly,
T < min{a, b} ≤ b, and there is at least one vertex u ∈ Kb which is not in the set T (since
T can contain at most b−1 vertices of Ib). Since a ≥ 2, there is a vertex v′ ∈ Ia \{v}; since
Ia is an independent set, (v, v′) /∈ E(G). By construction every vertex in Ia is adjacent
to every vertex of Kb, so (u, v) ∈ E(G) and (u, v′) ∈ E(G). Thus NG[u] ̸= NG[v] since
v′ ∈ NG[u] but v′ /∈ NG[v]; i.e., u and v are not true twins. Moreover, the edge (u, v) does
not have either endpoint in T . This is a contradiction to T being a twin cover and thus
the claim is proved. ■

From the claim and the discussion prior to it, we have that rtc(G) = min{a, b}.
Since a and b can be arbitrarily large, and rtc(G) ≥ tc(G), the restricted twin cover

number of this class of graphs is unbounded.

A bound on the pathwidth does not imply a bound on the restricted twin cover number,
but a bound on the vertex cover number of a graph does.
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Proposition 2.5.13. There exist graph classes with bounded pathwidth but unbounded
restricted twin cover number.

Proof. Consider the class of paths on at least three vertices. Any path Pk for k ≥ 2 has
pathwidth 1 but has vertex cover number at least ⌊k/2⌋, and therefore twin cover number
at least ⌊k/2⌋. Therefore such a path has restricted twin cover number at least ⌊k/2⌋,
which may be arbitrarily large.

Proposition 2.5.14. For any graph G, rtc(G) ≤ vc(G); i.e., if vc(G) is bounded then
rtc(G) is bounded.

Proof. Let C be a minimum vertex cover of G, and let k = |C| (so that vc(G) = k). Since
G − C is an independent set (as otherwise some edge does not have an endpoint in C,
contradicting the definition of C), there are no non-trivial components of G − C. Since
every edge has an endpoint in C, C is also a twin cover.

Therefore, rtc(G) ≤ |C| = vc(G) = k as required.

Figure 2.17 shows the position of the restricted twin cover number relative to other
parameters.

Computing Restricted Twin Cover Number

In this section, we show how to compute rtc(G) for a graph G in time f(rtc(G)) ·nO(1). To
compute rtc(G), we will use techniques from logic; specifically, we will appeal to Courcelle’s
theorem, which is stated later in this section (Theorem 2.5.18). This requires us to intro-
duce Monadic Second-Order (MSO1) logic6. Our presentation follows that of Obdržálek
[116]. We start by defining MSO1 which we can use to express properties of a graph.

Definition 2.5.15 (MSO1 language). The language of MSO1 on graphs contains the
logical expressions that are built from the following elements:

• variables x, y, x1, . . . , xk for elements (vertices),

• variables X, Y,X1, . . . , Xk for sets of vertices,

• the predicates adj(x, y) (which is true if and only if (x, y) ∈ E(G)) and x ∈ X,

6We use MSO1 to avoid confusion with MSO2, another variant of the logic, which also allows quan-
tification of sets of edges.
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• equality of variables, the connectives ∧,∨,¬,→,

• vertex quantification ∀x,∃x, and vertex set quantification ∀X, ∃X.

Note that MSO1 extends first-order logic by allowing quantification over sets of vertices.

Once we express a graph’s properties in a logical formula, the next problem is to
algorithmically check whether a graph satisfies a given formula. That is, given a graph G
and a formula ψ, we would like to determine whether G |= ψ, that is, whether G “models”
ψ. This is the so-called model checking problem for the MSO1 logic on graphs:

Problem 2.5.16. (MSO1 Model Checking). Given an MSO1 formula ψ and a graph
G, decide whether G |= ψ.

Note that the problem can be generalized for other logics and structures, but this is not
relevant in this thesis. A more useful related problem is the following one, which encodes an
optimization version of the previous problem. Consider any MSO1 formula ψ(X1, . . . , Xp)
with free set variables, and state the following problem on an input graph G:

opt{flin(X1, . . . , Xp) : X1, . . . , Xp ⊆ V (G), G |= ψ(X1, . . . , Xp)},

where opt can be min or max, and flin is a linear evaluation function, which we define
shortly. In this case, we want to find an assignment to the free set variables X1, . . . , Xp

that optimizes (either maximizes or minimizes) the function flin while maintaining that
G ⊨ ψ(X1, . . . , Xp) (i.e., such that G models the solution). The function flin can be seen
as the combination of m functions fi which can be seen as weights on the vertices of the
graph. A linear evaluation function has the following form:

flin(X1, . . . , Xp) =

p∑
i=1

m∑
j=1

(
ai,j ·

∑
x∈Xi

fj(x)
)

(2.1)

where m and ai,j are (integer) constants and fj are (integer) weight functions on the vertices
of G. Often, flin is just the cardinality function. The optimization problem just defined is
the following:

Problem 2.5.17. (LinEMSO1) Given an MSO1 formula ψ, a linear evaluation function
flin, and a graph G, compute an assignment z of free variables such that

z(X1, . . . , Xp) = opt{flin(X1, . . . , Xp)|G ⊨ ψ(X1, . . . , Xp)},

i.e., one which is optimal.
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We provide two examples of expressing graph properties in MSO1. We will build upon
these examples to determine a formula that can be used to compute the restricted twin
cover number of the graph.

The Minimum Vertex Cover problem, which asks to compute the size of a smallest
vertex cover in a graph G, can be expressed as:

ψ(X) ≡ ∀u, v (adj(u, v)→ (v ∈ X ∨ u ∈ X))

with flin(X) = |X| so that the formula solves min(|X|) (for completeness, we can define this
function as above by setting m = p = a1,1 = 1 and f1(x) = 1 for all x ∈ V (G)). Similarly,
the Minimum Twin Cover problem, which asks to compute the size of a smallest twin
cover in a graph G, can be expressed as:

ψ(X) ≡ ∀u, v (adj(u, v)→ (v ∈ X ∨ u ∈ X ∨ twins(u, v)))

where “twins” means “true twins” in the formula and

twins(u, v) ≡adj(u, v)∧

∀w
((
adj(u,w) ∧ adj(v, w)

)
∨
(
¬adj(u,w) ∧ ¬adj(v, w)

))
,

along with flin(X) = |X| so that the the problem solves min(|X|).

Now we are ready to write a formulation for Minimum Restricted Twin Cover in
MSO1. The idea is to partition G into two sets: X1 which will be a twin cover for which
rtc(G) = |T | + q for some k ≥ 0, and X2 which will be the set of representative vertices
for the non-trivial components of G− T . We start with the following:

ψ(X1, X2) ≡ ∀u, v
(
adj(u, v)→ (2.2)(

v ∈ X1 ∨ u ∈ X1 ∨ connected(u, v,X1)
))
,

where connected(u, v) is true if and only if u and v are in some connected component C
of G− T and is defined as

connected(u, v,X1) ≡ ∃C
(

(u ∈ C ∧ v ∈ C)∧ (2.3)(
∀x, y ((x ∈ C ∧ y ∈ C)→ adj(x, y))

)
∧ (2.4)(

∃w, z (w ∈ C ∧ w ∈ X2 ∧ ¬(w ∈ X1) ∧ z ∈ X1 ∧ adj(w, z))
))

(2.5)
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along with flin(X1, X2) = |X1|+ |X2| so that the formula solves min(|X1|+ |X2|).

Line 2.3 enforces that there is a set containing both u and v, while Line 2.4 enforces
that this set is a complete graph. Line 2.5 enforces that there is a vertex w in the set which
is in X2 but not X1: these vertices will be used count the number of components, and this
vertex should be adjacent to a vertex in X1 = T . Since all vertices of a component of
G− T are true twins (as if they are not, there is an edge that is not covered by T which is
not between true twins), the adjacency requirement to a vertex z in T ensures the graph
is connected.

Finally, we note that one can define the linear evaluation function flin as in Equation
2.1 for the sum of the cardinalities of X1 and X2 as follows. We set p = 2 (necessarily, from
the number of sets Xi given to flin), m = 1, f1(x) = 1 for all x ∈ V (G), and a1,1 = a2,1 = 1.

We can now use Courcelle’s theorem, which we state next. In the statement, |ψ| denotes
the length of the formula ψ.

Theorem 2.5.18 (Theorem 4, Courcelle et al. [39]). For every integer t andMSO1 formula
ψ, every LinEMSO1 optimization formula is fixed-parameter tractable on graphs of clique-
width t, with the parameters t and |ψ|.

Theorem 2.5.19. If rtc(G) ≤ k, then we can find T ⊆ V (G) such that rtc(G) = |T | + q
for some q ≥ 0 in time f(k) · nO(1). Therefore, computing rtc(G) is fixed-pararameter
tractable in the output-size.

Proof. Suppose that rtc(G) ≤ k for some k ≥ 0. By definition of rtc(G), tc(G) ≤ rtc(G);
thus G has a finite twin cover number. Gajarský [56] showed that mw(G) ≤ 2tc(G) + tc(G);
thus G has a finite modular width. It is known that cwd(G) ≤ mw(G) + 2 (see, e.g.,
Courcelle and Olariu [40]); thus G has a bounded clique width.

We can therefore use Theorem 2.5.18 along with the formula ψ (which has constant
size) in Equation 2.2 to compute T = X1 in time f(k) · nO(1).

Computing T used Courcelle’s theorem (Theorem 2.5.18) which may not provide the
most efficient algorithm. Therefore, while we know that for a graph with bounded restricted
twin cover number a witness set T can be computed with an FPT algorithm, we do not
necessarily have the most efficient algorithm to do so.
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2.6 Search Algorithms

In this section, we define the graph search algorithms that we study for Type II problems
in this thesis. We use the definitions of Corneil and Krueger [34].

A graph search algorithm is a systematic method for visiting all vertices in a graph.
We now describe the algorithm Generic Search. Initially, all vertices of a graph are un-
numbered. A graph search may start at any vertex and assigns the lowest number from
{1, . . . , n} which has not been previously assigned to a vertex. We say that a search visits
an unnumbered vertex v when it assigns it a number. The search then adds all unnumbered
vertices of N(v) to the set S of vertices to visit next. The search will then choose a vertex
in S to visit next, and repeat the process above, adding unnumbered neighbours of the
newly visited vertex to S. This process repeats until there are no more vertices to visit.

Recording vertices according to their assigned numbers naturally produces an ordering
of the graph. The specific method by which unnumbered vertices are added to the set S,
and the data structure used to store S, will affect the resulting order in which vertices are
visited by the search.

Observe that since a search can only add vertices to S which are neighbours of visited
vertices, a search only visits the component of the graph containing the initial vertex. For
this reason, we only consider connected graphs for the S-End-Vertex problem: if the
graph is not connected, one could search every other component in the graph before the
component containing the target vertex.

Recall that Li(z) denotes the ith layer of a graph with respect to z and is equal to all
vertices at distance i from z, and that the eccentricity of a vertex, denoted ecc(v) is the
largest distance between v and any other vertex in the graph. A search algorithm is a layer
search, if, starting at an initial vertex u (which is assigned the number 1), the algorithm
will visit each vertex in Li(u) (0 ≤ i < ℓ) before any vertex of Lj(u) for ecc(u) ≥ j > i.
The following is true for a layer search.

Observation 2.6.1. Let σ be an ordering generated by a layer search. If d(σ(1), u) <
d(σ(1), v) for some vertices u, v ∈ V (G) \ {σ(1)}, then u <σ v.

We will show results for the following search algorithms. An example execution of each
search algorithm for an example graph is shown in Figure 2.18.

Breadth-First Search (BFS) is shown in Algorithm 2.6.1. BFS refines the description
of Generic Search algorithm presented above by changing the set S to a queue7. BFS is a

7Some authors may call any algorithm that visits vertices in the graph according to the layers defined
by the start vertex a breadth-first search.
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65 7

432

1
BFS Ordering σ = ⟨1, 2, 3, 4, 5, 6, 7⟩

DFS Ordering σ = ⟨1, 2, 5, 6, 7, 3, 4⟩

LBFS Ordering σ = ⟨1, 2, 3, 4, 6, 5, 7⟩

MNS Ordering σ = ⟨1, 2, 3, 4, 7, 6, 5⟩

Figure 2.18: A graph and various example search orderings of it.

Algorithm 2.6.1: Breadth-First Search (BFS).

Input: G = (V,E) and a start vertex u ∈ V .
Result: An ordering σ of the vertices of G.

1 initialize queue to {u};
2 for i← 1 to |V | do
3 pop v from top of queue;
4 σ(i)← v; //This assigns v to the number i
5 for each unnumbered vertex w adjacent to v do
6 if w not already in queue then
7 push w on queue;

Algorithm 2.6.2: Lexicographic Breadth-First Search (LBFS).

Input: G = (V,E) and a start vertex u ∈ V .
Result: An ordering σ of the vertices of G.

1 assign the label ⟨⟩ to all vertices;
2 label(u)← ⟨|V |+ 1⟩;
3 for i← 1 to |V | do
4 pick any unnumbered vertex v with the largest lexicographic label;
5 σ(i)← v; //This assigns v to the number i
6 for each unnumbered vertex w in N(v) do
7 append (|V | − i) to label(w);
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Algorithm 2.6.3: LBFS+.

Input: G = (V,E) and an ordering τ of V .
Result: An ordering σ of the vertices of G.

1 assign the label ⟨⟩ to all vertices;
2 for i← 1 to |V | do
3 pick the unnumbered vertex v with the largest lexicographic label that is

rightmost in τ ;
4 σ(i)← v; //This assigns v to the number i
5 for each unnumbered vertex w in N(v) do
6 append (|V | − i) to label(w);

layer search. BFS can be implemented to run in time O(n+m) using adjacency lists (see,
e.g., Bondy and Murty [14]).

Lexicographic Breadth-First Search (LBFS), Algorithm 2.6.2, is a refinement of BFS.
LBFS essentially introduces a tie-breaking rule to BFS so that vertices on the same layer
are chosen according the number and order of previously visited vertices in their neigh-
bourhoods. LBFS achieves this by assigning labels, which are sequences (ordered sets), to
unvisited vertices, and always choosing the lexicographically largest label when deciding
which vertex to visit next. LBFS can be implemented to run in time O(n+m) (see, e.g.,
Golumbic [65]). LBFS+, Algorithm 2.6.3, is a variant of LBFS that refines the tie-breaking
rule further. LBFS+ additionally requires as input an ordering τ of the input graph, which
it uses to break ties among lexicographically-largest labelled vertices, by taking the tied
vertex which is rightmost in τ .

Depth-First Search (DFS), Algorithm 2.6.4, is Generic Search but uses a stack to store
S. The result of changing the queue to a stack is that DFS is not a layer search. DFS can
also be implemented to run in time O(n+m), using adjacency lists (Tarjan [130]).

Maximal Neighbourhood Search (MNS), Algorithm 2.6.5, is a generalization of LBFS.
Instead of the sequences used by LBFS as labels, MNS uses a set for labels. MNS uses
an inclusion-wise maximal label as the next vertex to visit. As a result, MNS can “jump
around” the graph and is not a layer search; a newly visited vertex need not be adjacent
to the last vertex visited, nor be in the same layer. LBFS is a special case of MNS as the
lexicographically largest label is always an inclusion-wise maximal label, but it may not be
the only one. Li and Wu [98] show that MNS can be implemented to run in time O(n+m).

Finally, we summarize the relationship between several search algorithms. Recall that
LBFS refines BFS by adding a tie-breaking rule and that LBFS is also a refinement of MNS.
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Algorithm 2.6.4: Depth-First Search (DFS).

Input: G = (V,E), a start vertex u ∈ V .
Result: An ordering σ of the vertices of G.

1 initialize stack to {u} and set i← 1;
2 while stack is not empty do
3 pop v from top of stack;
4 if v already has a number then
5 continue;

6 σ(i)← v; //This assigns v to the number i
7 i++;
8 for each unnumbered vertex w adjacent to v do
9 push w on top of stack;

Algorithm 2.6.5: Maximal Neighborhood Search (MNS).

Input: G = (V,E), a start vertex u ∈ V .
Result: An ordering σ of the vertices of G.

1 assign the label ∅ to all vertices;
2 label(u)← {|V |+ 1};
3 for i← 1 to |V | do
4 pick any unnumbered vertex v with inclusion-wise maximal label;
5 σ(i)← v; //This assigns v to the number i
6 for each unnumbered vertex w in N(v) do
7 label(w) ← label(w) ∪ {i};
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Generic Search

BFS DFS

LBFS LDFS

MNS

MCS

Figure 2.19: The relationship between search algorithms, as described
in Corneil and Krueger [34]. An arrow A → B indicates that every
ordering generated by algorithm B is also a valid ordering of A. For
example, every LBFS-generated ordering is also a BFS-generated or-
dering as well as an MNS-generated ordering.

Figure 2.19 shows the relationship between the algorithms discussed in this section, as well
as Maximum Cardinality Search (MCS) and Lexicographic Depth-First Search (LDFS). It
is due to the relationship between these search algorithms that we obtain related orderings
on graphs.
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Part I

Type I Problems
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Chapter 3

Cutwidth

3.1 Introduction

We start by listing some applications of Cutwidth, which helps to motivate the problem
further and understand its importance. Among other applications, Cutwidth has use in

• circuit design and Very Large-Scale Integration (VLSI) (Breuer [19], Makedon and
Sudborough [108], Adolphson and Hu [1], Adolphson [2], Chung et al. [28], Lagergren
[97], Fellows and Langston [51], Raspaud et al. [122]),

• network reliability (Karger [88]),

• graph drawing (Mutzel [114], Shahrokhi et al. [126]),

• heuristics for SAT-solving (Wang et al. [136]),

• protein similarity detection (Blin et al. [9]),

• information retrieval (Botafogo [15]), and

• as a subroutine for the traveling salesman problem (Junger et al. [84]).

We now turn to the complexity of the problem. In general, Cutwidth is NP-complete
(Gavril [62]). Monien and Sudborough [113] showed that Cutwidth is NP-complete on
planar graphs with ∆(G) ≤ 3. Diaz et al. [43] showed that the problem remains NP-
complete on (partial) grids (and therefore bipartite graphs) and unit disk graphs. More
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recently, Heggernes et al. [77] showed that Cutwidth is NP-complete for split graphs
(even when all vertices v in the independent set have d(v) = 2); consequently for all graph
classes containing split graphs, e.g., chordal graphs, the problem is NP-complete.

On restricted graph classes, there are positive results. On very small graph classes,
closed formulas for the cutwidth of graphs are known (Harper [75], Lin et al. [100], Lin et
al. [101], Nakano [115]). Yannakakis [139] showed that Cutwidth is solvable in polynomial
time on trees (and that a version of Cutwidth which does not allow edge crossings has a
linear time solution on trees). Rolim et al. [123] showed O(n2) algorithms for some classes
of mesh graphs. Heggernes et al. [77] showed that Cutwidth has a linear time solution
on threshold graphs. Heggernes et al. [79] later showed that Cutwidth has a linear time
solution on bipartite permutation graphs. Yuan and Zhou [140] showed that left-endpoint
orderings of proper interval graphs are also cutwidth-minimal orderings, and since these
can be found in linear time, Cutwidth has a linear time solution on these graphs. Lilleeng
[99] showed that Cutwidth has a polynomial-time solution for superfragile graphs.

Some of the above complexity results for Cutwidth are shown in Figure 3.1a. Many
graph classes for which Cutwidth is tractable are subsets of AT-free graphs. Notably,
the complexity of Cutwidth on interval graphs, the intersection of AT-free and chordal
graphs, is an open problem. Even for cographs—graphs with no induced P4—the problem
remains open.

There are also some approximation results for Cutwidth. Cutwidth can be ap-
proximated to within O(log2 n) on general graphs in polynomial time (Leighton and Rao
[95]). Cutwidth can be approximated to within a constant factor on dense graphs in
polynomial time (Arora et al. [3]).

There are positive results for Cutwidth in the parameterized complexity setting.
Cutwidth is FPT when parameterized by the size of the solution (Thilikos et al. [133]),
and Giannopoulou et al. [63] provided a simpler algorithm for the same parameter. Fellows
et al. [52] showed that Cutwidth is FPT when parameterized by the size of the minimum

vertex cover of the graph vc(G), with an algorithm which runs in time O(22O(vc(G))
nO(1)).

Fellows et al. [52] were not concerned with optimizing the run time, and Cygan et al. [42]
later showed an improved algorithm running in time O(2vc(G)nO(1)). Cygan et al. [42]
also showed that Cutwidth parameterized by the vertex cover number does not admit
a polynomial kernel unless NP ⊆ coNP/poly. Bodlaender et al. [11] showed that Cut-
width parameterized by the solution size is unlikely to have a polynomial-sized kernel.
Cutwidth is NP-complete for treewidth 2 and pathwidth 3 graphs (Monien and Sudbor-
ough [113]), but Thilikos et al. [134] show that Cutwidth is FPT when parameterized
by the treewidth (or pathwidth) of the graph and the maximum degree. Some known
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Bipartite [43] AT-Free Chordal

Bipartite
Permutation [79] Interval Split [77] k-Tree

Proper
Interval [140]

Threshold [77]
Superfragile

[99]
Tree [139]

(a) Some known complexity results for Cutwidth on restricted graph classes. The problem is
NP-complete for classes with a solid gray background, has unknown complexity for classes with
a hatched background, and is in P otherwise.

vc(G) [52]

nd(G)

tc(G)

mw(G)

tw(G) and ∆(G) [134]

cwd(G)

pw(G) and ∆(G) [134]

rtc(G) [*]

cc(G) [*]

FPT Unknown

(b) Some known parameterized complexity results for Cutwidth for common graph parameters.
For each parameter to the left of the thick line, there is an FPT algorithm for Cutwidth with
that parameter. The complexity of Cutwidth is open for those parameters to the right of the
thick line. FPT algorithms for parameters marked with [*] are shown in this work.

Figure 3.1: Some known complexity results for Cutwidth.
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fixed-parameter complexity results for Cutwidth are shown in Figure 3.1b.

The lack of understanding of cutwidth-minimal orderings on cographs may be the rea-
son why these problems are not very well understood in the parameterized complexity
setting. For graphs of bounded clique width, fixed-parameter tractable algorithms for
these problems are not known. Since cographs have clique width at most 2 (Courcelle and
Olariu [40]), a hardness result on cographs will translate into a hardness result for graphs
of bounded clique width, while an FPT algorithm would mean a polynomial time solution
for these problems on cographs. In fact, in the parameterized setting, this problem has
no known hardness results. Cutwidth is fixed-parameter tractable for graphs with a
bounded vertex cover number, but its complexity on more general parameters is unknown,
except for small generalizations or with the aid of additional parameters.

Finally, Cutwidth is related to other graph parameters. For example, it is at least as
large as a graph’s so-called topological bandwidth (Chung and Seymour [27], Chung [25],
Makedon et al. [107]). The cutwidth of a graph is also related to a graph’s pathwidth and
treewidth (see, e.g., Korach and Solel [90]). Lokshtanov et al. [104] showed the following
lemma, which summarizes these relationships.

Lemma 3.1.1 (Lemma 2, Lokshtanov et al. [104]). Let G be a graph. Then:

tw(G) ≤ pw(G) ≤ cw(G) ≤ im(G)

2
.

Furthermore, ∆(G) ≤ im(G).

Moreover, Bodlaender et al. [12] showed that there is a common algorithm that can be
used as a starting point to compute the cutwidth or pathwidth of a graph, and explore
weighted and directed versions of these parameters.

Summary of Results

In this chapter, we first show some results on small graph classes (Section 3.3) and establish
some connections to Imbalance (Section 3.4). We then establish a new theorem which
shows that for any graph, there is a cutwidth-minimal ordering where the vertices of each
equivalence class of true twins appear consecutively (Section 3.5). Using this theorem,
we extend the result of Fellows et al. [52] to graphs with bounded restricted twin cover
number (Section 3.7) and show that Cutwidth is FPT when the parameter is the edge
clique cover number of a graph (Section 3.6).
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3.2 Preliminaries

In this section we present some useful facts related to Cutwidth. Recall that the rank of
a vertex with respect to an ordering σ is rankσ(v) = succσ(v)−predσ(v), where succσ(v) is
the number of v’s neighbours to its right in σ and predσ(v) is the number of v’s neighbours
to its left in σ.

First, we note some observations related to the exchange of two consecutive vertices in
an ordering σ.

Observation 3.2.1. Let G be a graph and σ be an ordering of G where x <σ y and {x, y}
is consecutive in σ. If (x, y) /∈ E(G) and τ is obtained by swapping the positions of x and
y, then rankτ (x) = rankσ(x) and rankτ (y) = rankσ(y).

Lemma 3.2.2. Let G be a graph and σ be an ordering of G where x <σ y and {x, y} is
consecutive in σ. If (x, y) ∈ E(G) and τ is obtained by swapping the positions of x and y,
then rankτ (x) = rankσ(x)− 2 and rankτ (y) = rankσ(y) + 2.

Proof. First, observe that succσ(x) = succτ (x)+1 as all the successors of x in σ other than
y are still successors of x in τ , but y is also a successor of x in σ. Similarly, succσ(y) =
succτ (y)− 1 as all the successors of y in τ are still successors of y in σ, except for x. Next,
predσ(x) = predτ (x) − 1 as all the predecessors of x in τ are still predecessors of x in σ,
except for y. Similarly, predσ(y) = predτ (y) + 1 as all the predecessors of y in τ are still
predecessors of y in σ, but x is also a predecessor of y in σ.

Putting the above facts to work, we can explicitly compute the changes to the ranks.
Observe the change to the rank of x:

rankσ(x) = succσ(x)− predσ(x)

= (succτ (x) + 1)− (predτ (x)− 1)

= succτ (x)− predτ (x) + 2

= rankτ (x) + 2.

Finally, we can compute the change to the rank of y:

rankσ(y) = succσ(y)− predσ(y)

= (succτ (y)− 1)− (predτ (y) + 1)

= succτ (y)− predτ (y)− 2

= rankτ (y)− 2,

as required.
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Recall that moving a vertex σ(i) forward to a position j (for some j ≥ i) in an ordering
σ results in an ordering where σ(i) has been moved right to be σ′(j) but leaves the relative
ordering of the other vertices unchanged. Moving a vertex backward is analogous, but the
vertex is moved left. Moving a vertex forward means that j ≥ i, while moving a vertex
backwards means that j ≤ i. These follow from the fact that moving a vertex forward
can only decrease the rank of the vertex by 2, and moving a vertex backwards can only
increase the rank of the vertex by 2 (Lemma 3.2.2).

Observation 3.2.3. Let σ be an ordering of a graph and σ(i) be a vertex of even de-
gree. If rankσ(σ(i)) < 0 and moving σ(i) to position j results in an ordering σ′ such that
rankσ′(σ(i)) > 0, then there is a position between i and j in σ where σ(i) would have rank
exactly zero.

Observation 3.2.4. Let σ be an ordering of a graph and σ(i) be a vertex of odd degree.
If rankσ(σ(i)) < −1 and moving σ(i) to position j results in an ordering σ′ such that
rankσ′(σ(i)) > 0, then there is a position between i and j in σ where σ(i) would have
rank exactly −1. Similarly, if rankσ(σ(i)) > 1 and moving σ(i) to position j results in an
ordering σ′ such that rankσ′(σ(i)) < −1, then there is a position between i and j in σ where
σ(i) would have rank exactly 1.

Next, we list some observations regarding the reversal of an ordering.

Observation 3.2.5. If σ is an ordering of a graph with its reverse ordering σR, then
cw(σ) = cw(σR).

Observation 3.2.6. If σ is an ordering of a graph with its reverse ordering σR, then
rankσ(v) = −rankσR(v) for all vertices v of σ.

Recall that cσ(v) is the size of the cut after vertex v with respect to σ. The following
was observed by Lokshtanov et al. [104].

Observation 3.2.7. For any ordering σ and 1 ≤ j ≤ n − 1, cσ(σ(j + 1)) = cσ(σ(j)) +
rankσ(σ(j + 1)). Therefore, cσ(σ(j + 1)) =

∑j+1
i=1 rankσ(σ(i)).

Observation 3.2.8. If an ordering of a graph is such that rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤
k, and rankσ(σ(j)) ≤ 0 for all k + 1 ≤ j ≤ n, then

cw(σ) = max
1≤k′≤n

k′∑
i=1

rankσ(σ(i)) = cw(σ(k)).
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As we now show, the next lemma establishes a relationship between the ranks of twins
in an ordering. Recall that false twins have the same open neighbourhood, and true twins
have the same closed neighbourhood.

Lemma 3.2.9. Let u and v be twins with u <σ v in an ordering σ. If u and v are false
twins, then rankσ(u) ≥ rankσ(v). If u and v are true twins, then rankσ(u) ≥ rankσ(v)+2.

Proof. First, suppose that u and v are false twins, i.e., N(u) = N(v). Therefore succσ(u) ≥
succσ(v) since every neighbour of v to the right of v in σ is also to the right of u and
any vertices of N(u) = N(v) between u and v are also to the right of u. Similarly,
predσ(u) ≤ predσ(v) since every neighbour of u to the left of u in σ is also to the left of v
and any vertices of N(u) = N(v) between u and v are also to the left of v. Moreover, for
any vertex x and any ordering σ, succσ(x) ≥ 0 and succσ(x) ≥ 0. Therefore we have

rankσ(u) = succσ(u)− predσ(u)

≥ succσ(u)− predσ(v) (since predσ(v) ≥ predσ(u) ≥ 0)

≥ succσ(v)− predσ(v) (since 0 ≤ succσ(v) ≤ succσ(u))

= rankσ(v),

as required.

Now suppose that u and v are true twins, i.e., N [u] = N [v]. Therefore succσ(u)− 1 ≥
succσ(v), or equivalently succσ(u) ≥ succσ(v) + 1 since every neighbour of v to the right
of v in σ is also a neighbour to the right of u, and vertex v is a neighbour of u to the
right by (u, v) ∈ E(G). Similarly, predσ(u) ≤ predσ(v) − 1 since every neighbour of u to
the left of u in σ is also a neighbour to the left of v, and u is a neighbour of v to the
left by (u, v) ∈ E(G). Moreover, for any vertex x and any ordering σ, succσ(x) ≥ 0 and
succσ(x) ≥ 0. Therefore we have

rankσ(u) = succσ(u)− predσ(u)

≥ succσ(u)− (predσ(v)− 1) (since predσ(v)− 1 ≥ predσ(u) ≥ 0)

≥ succσ(v) + 1− (predσ(v)− 1) (since 0 ≤ succσ(v) + 1 ≤ succσ(u))

= rankσ(v) + 2,

as required.

The above lemma leads to the following observation.

Observation 3.2.10. If X is a set of twins in some graph, then the ranks of the vertices
of X are non-increasing in any ordering of the graph containing X.
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The following lemma allows us to rearrange some vertices in an ordering without in-
creasing the cutwidth of the ordering.

Lemma 3.2.11 (Lemma 1, Cygan et al. [42]). If moving vp = σ(p) backward to a position
q results in an ordering σ′ such that rankσ′(vp) ≤ 0, then cw(σ′) ≤ cw(σ). If moving
vp = σ(p) forward to a position q results in an ordering σ′ such that rankσ′(vp) ≥ 0, then
cw(σ′) ≤ cw(σ).

The lemma above can be applied to move entire sets of twins in some scenarios. Recall
that σA denotes the ordering of A imposed by σ.

Lemma 3.2.12. Let G = (V,E) be a graph with an ordering σ, A ⊆ V be a set of twins,
and σA = ⟨a1, . . . , am⟩.

1. If rankσ(aj) ≥ 0 for some 1 ≤ j ≤ m, then for any 1 ≤ i ≤ j, there is an or-
dering σ′ of G such that aj has not been moved (i.e., σ(aj) = σ′(aj)), all vertices
{ai, ai+1, . . . , aj} are consecutive, σ′

A = σA, σ
′
V \A = σV \A, and cw(σ′) ≤ cw(σ).

2. If rankσ(aj) ≤ 0 for some 1 ≤ j ≤ m, then for any j ≤ i ≤ m, there is an
ordering σ′ of G such that aj has not been moved (i.e., σ(aj) = σ′(aj)), all vertices
{aj, aj+1, . . . , am} are consecutive, σ′

A = σA, σ
′
V \A = σV \A, and cw(σ′) ≤ cw(σ).

Proof. We prove statement (1) only, as statement (2) follows from Observations 3.2.6 and
3.2.7 and statement (1).

The proof is by induction on j− i. If i = j, then setting σ′ = σ gives the claim. Assume
the result holds for j − i = k for some k ≥ 0 and consider j − i = k + 1.

By the induction hypothesis, there is an ordering σ′ of G such that {ai+1, . . . , aj} are
consecutive, aj has not moved, σ′

A = σA, σ′
V \A = σV \A, and cw(σ′) ≤ cw(σ). Since aj

has not moved, and since σ′
A = σA and σ′

V \A = σV \A, the predecessors and successors of

aj cannot change. Therefore, rankσ′(aj) = rankσ(aj); since rankσ(aj) ≥ 0, rankσ′(aj) ≥ 0
too. Since A is a set of twins, by Observation 3.2.10, a1, . . . , aj must all have non-negative
ranks. Therefore, rankσ′(ai) ≥ 0.

Let σ′′ be the result of moving ai forward in σ′ so that it is immediately to the left of ai+1.
This operation does not affect the rank of ai+1, which was non-negative by Observation
3.2.10 and rankσ′(ai) ≥ 0. Since ai and ai+1 are twins, rankσ′′(ai) ≥ rankσ′′(ai+1). By
Lemma 3.2.11 and the fact that rankσ′′(ai) ≥ 0, we have that cw(σ′′) ≤ cw(σ′). By the
induction hypothesis, cw(σ′) ≤ cw(σ), and so cw(σ′′) ≤ cw(σ) as required.

Finally, note that σ′′
V \A = σV \A since no vertices of V \ A have been re-ordered. Since

no vertex of A has moved past another vertex of A, we also have that σ′′
A = σA.
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3.3 Small Graph Classes

In this section, we provide explicit formulas for the cutwidth of complete graphs and
complete bipartite graphs. These enable us to derived explicit formulas for the imbalance
of these graphs in Section 4.3. We provide an explicit formula for the cutwidth of a complete
graph first.

Lemma 3.3.1. If G is a complete graph on n vertices, then cw(G) =
⌈
n
2

⌉
·
⌊
n
2

⌋
. Moreover,

any ordering σ of Kn is optimal, cσ(σ(⌊n/2⌋)) is the (first) largest cut, rankσ(σ(i)) ≥ 0 for
all 1 ≤ i ≤ ⌊n/2⌋, and rankσ(σ(j)) ≤ 0 for all ⌊n/2⌋+ 1 ≤ j ≤ n.

Proof. Since all vertices of a complete graph are true twins, every ordering σ of Kn has
cw(σ) = cw(G). Observe that

rankσ(σ(i)) = succσ(σ(i))− predσ(σ(i))

= (n− i)− (i− 1)

= n− 2i+ 1,

which is positive if and only if i < (n+ 1)/2, i.e., i ≤ ⌊n/2⌋. By Observation 3.2.8,

cw(σ) = max
1≤k′≤n

k′∑
i=1

rankσ(σ(i)) =

⌊n/2⌋∑
i=1

rankσ(σ(i)) = cw(σ(⌊n/2⌋)).

Therefore the largest cut in such an ordering is immediately after
⌊
n
2

⌋
vertices, where each

of the first
⌊
n
2

⌋
vertices have an edge to the remaining

⌈
n
2

⌉
vertices; thus

⌈
n
2

⌉
·
⌊
n
2

⌋
edges

cross this cut, and cw(σ) =
⌈
n
2

⌉
·
⌊
n
2

⌋
.

The next lemma is a closed formula for the cutwidth of a complete bipartite graph. An
illustration of the orderings provided by Lemma 3.3.2 are shown in Figure 3.2.

Lemma 3.3.2. Consider a complete bipartite graph Km,n. Then

cw(Km,n) =

{
mn
2

if mn is even
mn+1

2
if mn is odd

Moreover, there is a cutwidth-minimal ordering σ of Km,n such that there is a number
1 ≤ k ≤ m+n where k is the index of a largest cut, rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤ k, and
rankσ(σ(j)) ≤ 0 for all k + 1 ≤ j ≤ m+ n.
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n
2

⌊
m
2

⌋ ⌈
m
2

⌉
n
2

cσ(n/2 + ⌊m/2⌋)

rankσ(b) ≥ 0 rankσ(a) ≥ 0 rankσ(a) ≤ 0 rankσ(b) ≤ 0

(a) The ordering constructed by Lemma 3.3.2 when mn is even. We assume without
loss of generality that |B| is even.

⌊
n
2

⌋ ⌊
m
2

⌋
1

⌈
m
2

⌉ ⌊
n
2

⌋
cσ(⌊n/2⌋+ ⌊m/2⌋+ 1)

rankσ(b) ≥ 0
rankσ(a) ≥ 0

rankσ(b) ≥ 0 rankσ(a) ≤ 0 rankσ(b) ≤ 0

(b) The ordering constructed by Lemma 3.3.2 when mn is odd.

Figure 3.2: Structure of cutwidth-minimal orderings for Km,n con-
structed by Lemma 3.3.2. In each case, we consider a complete bi-
partite graph G = (A,B,E) where |A| = m and |B| = n. Each box
represents an arbitrary ordering of the specified size of vertices from
A if it is white or of vertices from B if it is gray. An edge between
boxes indicates that every vertex in one box is adjacent to every ver-
tex in the other box. The ordering within a box is not relevant since
all vertices in the same partite set are false twins. The vertical line
indicates the position of the first largest cut in each ordering.
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Proof. Let G = (A,B,E) be a complete bipartite graph Km,n where |A| = m and |B| = n.

We want to find a cutwidth-minimal ordering σ of G such that if σA = ⟨a1, . . . , am⟩,
then rankσ(ai) ≥ 0 for some ai ∈ A. To do so, start with an arbitrary cutwidth-minimal
ordering σ̂ of G, and observe that

• if rankσ̂(a1) ≥ 0, then using σ = σ̂ and i = 1 gives the desired ordering and index,

• else if rankσ̂(am) ≤ 0, by Observations 3.2.5 and 3.2.6, we can take σ = (σ̂)R and use
i = 1,

• otherwise rankσ̂(a1) < 0 and rankσ̂(am) > 0. However, since a1 <σ̂ am, this case is
impossible, as it would contradict Lemma 3.2.9.

Therefore, a cutwidth-minimal ordering σ always exists such that some vertex ai has non-
negative rank. Among all possible choices for σ, choose one which maximizes the index i
for ai. By Observation 3.2.10, for all aj ∈ A with 1 ≤ j < i, rankσ(aj) ≥ rankσ(aj+1).

Case 1: n is even. By Lemma 3.2.9 for 1 ≤ j < i, rankσ(aj) ≥ rankσ(aj+1).

Since d(ai) = n is even, we now claim that we can move ai forwards until rankσ(ai) = 0.
Since ai was chosen so that i was maximal, it must have been that rankσ(ai+1) < 0 as
otherwise we would have chosen ai+1, which is further right than ai. By Observation 3.2.3,
since N(ai) = N(ai+1) and rankσ(ai+1) < 0, moving ai to be immediately left of ai+1 would
result in the ranks of ai and ai+1 being equal, and there must be a spot to the right of
ai before this where ai would be perfectly balanced. By Lemma 3.2.11, we can move ai
forwards until the rank of ai is 0 in the resulting ordering.

By Lemma 3.2.12, there is a cutwidth-minimal ordering σ′ such that all vertices of
{a1, a2, . . . , ai} are consecutive, rankσ′(a1) ≥ rankσ′(a2) ≥ . . . ≥ rankσ′(ai) ≥ 0, σ′

B = σB,
and σ′

A = σA. Note that as A is a set of false twins, rankσ′(aj) = rankσ(aj) for all 1 ≤ j ≤ i.

We claim that for all aj, i < j ≤ m, 0 ≥ rankσ′(aj−1) ≥ rankσ′(aj). First, note
that since rankσ′(ai) = 0, by Lemma 3.2.9, 0 ≥ rankσ′(aj) for i < j ≤ m. The fact
that rankσ′(aj−1) ≥ rankσ′(aj) for all i < j ≤ m is also immediate from Lemma 3.2.9.
Therefore, we are able to apply Lemma 3.2.12 to σ′ using the index of ai get a cutwidth-
minimal ordering τ where all vertices of {ai, . . . , am} appear consecutively; call the resulting
ordering σ∗. Since {a1, . . . , ai} also appear consecutively, the set A is consecutive in σ∗.

So we have that σ∗ = ⟨B1 · A · B2⟩ for some sets B1, B2 which partition B. Since any
vertex of b only has neighbours in A, in σ∗, all vertices of B1 have positive rank equal to
|A| = m, while vertices of B2 have negative rank equal to −|A| = −m.
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Since all vertices of A were moved to a position where their rank is equal to that of the
rank of ai, and rankσ∗(ai) = 0, all vertices of A have rank 0. Since

0 = rankσ∗(ai) = succσ∗(ai)− predσ∗(ai)

= |B2| − |B1|,

we must have that |B2| = |B1|.

Call the first ⌈m/2⌉ vertices of A the set A1 and let A2 = A \ A1. The vertices of A1

have non-negative rank (equal to zero), while the vertices of A2 have non-positive rank
(also equal to zero). This ordering satisfies cw(σ∗) = cw(G), as well as the second part of
the lemma, as we can take k = n/2 + ⌊m/2⌋. It remains to be shown that cw(σ∗) = mn/2.

By Observation 3.2.8, the maximum cut of σ∗ is after the first ⌈m/2⌉ vertices of A
and the first |B1| = n/2 vertices of B. Recall that E(X, Y ) denotes the edges with one
endpoint in X and the other in Y . The value of this cut is therefore

cw(G) = cw(σ∗) = |E(B1, A2)|+ |E(B2, A1)|

=
n

2
·
⌊m

2

⌋
+
n

2
·
⌈m

2

⌉
=
n

2

(⌊m
2

⌋
+
⌈m

2

⌉)
=
mn

2
,

as required by the lemma, since mn is always even if n is even. Thus, the lemma holds in
the case that n is even.

Case 2: n is odd. If m is even, then nm is even, and we are done by the case above (since
we can relabel the partite sets). So we may assume that m is odd as well.

Let rankσ(ai) ≥ 0 for some ai ∈ A, and choose ai to be rightmost in σ among all vertices
that satisfies these constraints.

We claim that can move ai forward until rankσ(ai) = 1. First we show that rankσ(ai+1) ≤
−1 (note that rankσ(ai+1) ̸= 0 as dG(ai) is odd for any ordering). Since G is a complete
bipartite graph, N(ai) = N(ai+1), and by Lemma 3.2.9, rankσ(ai) ≥ rankσ(ai+1). There-
fore, rankσ(ai+1) < 0 by choice of i. By Observation 3.2.4, since N(ai) = N(ai+1) and
rankσ(ai+1) < 0, moving ai to be immediately left of ai+1 would result in the ranks of ai
and ai+1 being equal, and there must be a spot to the right of ai before this where ai would
be perfectly balanced. By Lemma 3.2.11, we can move ai forwards until the rank of ai is
1 in the resulting ordering.

By Lemma 3.2.12, there is a cutwidth-minimal ordering σ′ such that all vertices of
{a1, a2, . . . , ai} are consecutive, σ′

B = σB, and σ′
A = σA. Note that as A is a set of false

twins, rankσ′(aj) = rankσ(ai) for all 1 ≤ j ≤ i.
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By choice of ai and the fact that n is odd, by Lemma 3.2.9, we must in fact have
that −1 ≥ rankσ′(aj) for i < j ≤ m. By Observation 3.2.4, since N(ai) = N(ai+1) and
rankσ(ai+1) < 0, moving ai+1 to be immediately right of ai would result in the ranks of ai
and ai+1 being equal, and there must be a spot to the right of ai before this where ai+1

would be perfectly balanced, with rank equal to −1. By Lemma 3.2.11, we can move ai+1

backwards until the rank of ai+1 is −1 in the resulting ordering.

Since ai has rank 1 and ai+1 has rank −1, and they are false twins, there must be a
single vertex b ∈ B between ai and ai+1. To see this, note that since rankσ′(ai+1) = −1,
there is one more vertex of B to its left than its right; necessarily we must have ⌊n/2⌋
vertices of B on its right. Since rankσ′(ai) = 1, there is one more vertex of B to its right
than its left; necessarily we must have ⌊n/2⌋ vertices of B on its left. Therefore, only one
vertex remains in B to be placed between ai and ai+1.

Thus, we are able to apply Lemma 3.2.12 to σ′ using the index of ai+1 get a cutwidth-
minimal ordering where the vertices of A appear in two maximal consecutive groups split
by a single vertex from B. Call the resulting ordering σ†.

We have therefore established that σ† = ⟨B1 · A1 · B2 · A2 · B3⟩ for some sets A1, A2

which partition A and sets B1, B2, B3 which partition B. As established above, |B2| = 1
and |B1| = |B3| = ⌊n/2⌋. If |A1| ≥ ⌊m/2⌋, set σ∗ = σ†. Otherwise, we have that
|A1| < ⌊m/2⌋, and we can set σ∗ to the reverse of σ† (i.e., σ∗ = (σ†)R). Either way,
|A1| ≥ ⌊m/2⌋ in σ∗.

Let B2 = {b}. If |A1| > ⌊m/2⌋, then rankσ∗(b) < −1: b has strictly more than half of
its neighbourhood N(b) = A to its left, so it has strictly less than half of its neighbourhood
to its right, and therefore must have a negative rank by definition. By Observation 3.2.4,
since N(b) = A and rankσ∗(b) < −1, there must be a spot to the left of b where b would be
perfectly balanced, with rank equal to −1. Using Lemma 3.2.11, we can move b backwards
until it has rank exactly −1; call the resulting order π.

There are exactly ⌊m/2⌋ vertices of A after b in π. In particular, π = ⟨B1 ·A′
1 ·B2 ·A′

2 ·B3⟩
where |A′

2| = ⌊m/2⌋ (and therefore |A′
1| = ⌈m/2⌉). Let τ = πR. We can write τ =

⟨B′′
1 · A′′

1 · {b} · A′′
2 · B′′

3 ⟩ where |B′′
1 | = |B′′

3 | = ⌊n/2⌋, |B′′
2 | = 1, |A′′

1| = ⌊m/2⌋, and
|A′′

1| = ⌈m/2⌉.
In τ , all vertices of B′′

1 , A′′
1, along with b, have positive rank. All vertices of B′′

3 and A′′
2

have negative rank. This ordering satisfies cw(τ) = cw(G), since all operations can only
decrease the cutwidth. Hence, cw(τ) = cw(G) since σ was a cutwidth-minimal ordering of
G.

By Observation 3.2.8, the maximum cut of τ is after ⌊n/2⌋+ ⌊m/2⌋+ 1 vertices. Thus,
this ordering satisfies second part of the lemma. The value of the cut after ⌊n/2⌋+⌊m/2⌋+1
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vertices is therefore

cw(G) = cw(τ) = |E(A′′
1, B

′′
3 )|+ |E({b}, A′′

2)|+ |E(A′′
2, B

′′
1 )|

=
⌈m

2

⌉
·
⌊n

2

⌋
+
⌈m

2

⌉
+
⌊m

2

⌋
·
⌊n

2

⌋
=

⌊n
2

⌋(⌈m
2

⌉
+
⌊m

2

⌋)
+
⌈m

2

⌉
=

⌊n
2

⌋
(m) +

m+ 1

2
=

(n− 1

2

)
(m) +

m+ 1

2

=
nm+ 1

2
,

as required by the lemma, since mn is odd. Thus, the lemma holds in the case that n is
odd.

3.4 Connections to Imbalance

In this section, we collect some results that connect Cutwidth and Imbalance. The
first two results we prove are adapted from the proof of Lemma 3.1.1 from Lokshtanov
et al. [104], who proved that the imbalance of any graph is at least twice its cutwidth.
Following these results, we show how to re-order two sets of true twins in a cutwidth-
minimal ordering using an imbalance argument.

First, we show that we can consider an arbitrary ordering, rather than optimal order-
ings, to show that any ordering has imbalance at least twice its cutwidth.

Lemma 3.4.1. If σ is an ordering of a graph, then im(σ)
2
≥ cw(σ).

Proof. This proof is an adaptation of the proof of Lemma 3.1.1. If j is an index at which
cσ(σ(j)) is as large as possible with respect to σ, then n−j is an index at which cσR(σ(n−j))
is the maximum with respect to the reverse ordering σR. By Observation 3.2.7,

cw(σ) = cσ(σ(j)) =

j∑
i=1

rankσ(σ(i)),

and

cw(σR) = cσR(σR(n− j)) =

n−j∑
i=1

rankσR(σR(i)).

65



Now observe that

im(σ) =

j∑
i=1

ϕσ(σ(i)) +
n∑

i=j+1

ϕσ(σ(i))

=

j∑
i=1

ϕσ(σ(i)) +

n−j∑
i=1

ϕσR(σR(i))

≥
j∑

i=1

rankσ(σ(i)) +

n−j∑
i=1

rankσR(σR(i))

= cw(σ) + cw(σR)

= 2cw(σ),

where the last equality holds by Observation 3.2.5.

The next result enables some results from Cutwidth to immediately carry over to
Imbalance, as we will see in the next section. The result can be seen to strengthen
Lemma 3.1.1 in some special cases. For the proof, recall that cσ(v) is the size of the cut
after vertex v with respect to σ.

Lemma 3.4.2. Let G be a graph with an ordering σ and let j be an index of a largest cut
in σ. If rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤ j and rankσ(σ(i)) ≤ 0 for all j < i ≤ n, then
im(σ) = 2cw(σ). Moreover, if cw(σ) = cw(G), then im(G) = 2cw(G).

Proof. This proof is an adaptation of the proof of Lemma 3.1.1. Since j is an index at which
cσ(σ(j)) is as large as possible with respect to σ, n− j is an index at which cσR(σ(n− j))
is the maximum with respect to the reverse ordering σR. By Observation 3.2.7,

cw(σ) = cσ(σ(j)) =

j∑
i=1

rankσ(σ(i)),

and

cw(σR) = cσR(σR(n− j)) =

n−j∑
i=1

rankσR(σR(i)).

Since ϕσ(v) = |rankσ(v)| and rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤ j by assumption,
ϕσ(σ(i)) = rankσ(σ(i)) for all 1 ≤ i ≤ j. Similarly, rankσ(σ(i)) ≤ 0 implies rankσR(σ(i)) =
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ϕσ(σ(i)) for all j < i ≤ n, which in turn implies that ϕσR(σR(i)) = rankσR(σR(i)) for
1 ≤ i ≤ n− j.

Putting it all together,

im(σ) =

j∑
i=1

ϕσ(σ(i)) +
n∑

i=j+1

ϕσ(σ(i))

=

j∑
i=1

ϕσ(σ(i)) +

n−j∑
i=1

ϕσR(σR(i))

=

j∑
i=1

rankσ(σ(i)) +

n−j∑
i=1

rankσR(σR(i))

= cw(σ) + cw(σR)

= 2cw(σ), (3.1)

where the last equality holds by Observation 3.2.5. This proves the first claim of the
Lemma.

Now suppose additionally that cw(σ) = cw(G). For any ordering σ, im(G) ≤ im(σ).
By Lemma 3.1.1, 2cw(σ) = 2cw(G) ≤ im(G). Therefore,

im(G) ≤
def.

im(σ) =
by 3.1

2cw(σ) = 2cw(G) ≤
Lemma 3.1.1

im(G),

and we must have equality. Namely, im(G) = 2cw(G).

The remainder of the section shows that we can always “untangle” two sets of true
twins in either an optimal ordering for imbalance or cutwidth. We start by proving this
is the case for imbalance, and then show that this can be used to prove the corresponding
result for cutwidth. For this result, the proof idea for an imbalance result leads to a proof
for a cutwidth result.

Let Z be a clique in a graph G = (V,E) and let σ = ⟨A · Z · B⟩ for some sets A and
B. Let G′ = (V,E ′) where E ′ = E \ (Z × Z), that is, G′ is the graph where all edges
which have both endpoints in Z have been removed. By construction, Z is an independent
set in G′, NG(z) ∩ A = NG′(z) ∩ A, and NG(z) ∩ B = NG′(z) ∩ B. See Figure 3.3 for an
illustration.

Recall that σX denotes the ordering of the set X imposed by σ.
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1 2 3 4 5 6

2 0 0 0 −1 −1

v

rankσ(vi)

Z
A B

(a) An ordering of a graph G, where σ = ⟨A · Z ·B⟩ and Z is a clique.

1 2 3 4 5 6

−2 0 1

v

rankπ(vi)

Z
A B

(b) An illustration of the graph G′. The ranks of the vertices in A∪B are not relevant.

Figure 3.3: Illustrating the preference function for rearranging ver-
tices in a clique without increasing the imbalance of the ordering.
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Lemma 3.4.3. Let G = (V,E) be a graph with a clique Z and let G′ = (V,E ′) where
E ′ = E \ (Z × Z) (as above). Let σ be an ordering of G where σ = ⟨A · Z · B⟩ (for some
sets A,B ⊆ V ), and let π be an ordering of G′ which agrees with σ. Suppose that x <σ y
are consecutive in σ for some vertices x, y ∈ Z. If rankπ(x) ≥ rankπ(y) and τ is obtained
from σ by swapping the positions of x and y, then im(τ) ≤ im(σ).

Proof. We will show that ϕτ ({x, y}) ≤ ϕσ({x, y}), which implies that im(τ) ≤ im(σ) as
the imbalances of A, B and Z \ {x, y} are the same in τ and σ.

For the ordering σ let z be the q′th vertex of Z (1 ≤ q′ ≤ |Z|). Observe that succσ(z) =
|NG(z) ∩ B| + (|Z| − q′): the successors of z are all of its neighbours in B, along with
every vertex in the clique Z after z, of which there are |Z| − q′. Similarly, predσ(z) =
|NG(z)∩A|+ (q′− 1): the predecessors of z are all of its neighbours in A, along with every
vertex in the clique Z before z, of which there are q′ − 1.

Suppose that x ∈ Z and y ∈ Z occur at positions q and q + 1 of Z (i.e., 1 ≤ q < |Z|).
There are two cases based on whether the inequality of rankπ(x) ≥ rankπ(y) is strict.

Case 1: rankπ(x) = rankπ(y). We show that swapping x and y does not change the
imbalance of the ordering. Consider the ranks of x and y:

rankσ(x) = succσ(x)− predσ(x)

= (|NG(x) ∩B|+ (|Z| − q))− (|NG(x) ∩ A|+ (q − 1))

= |NG(x) ∩B|+ (|Z| − q)− |NG(x) ∩ A| − (q − 1)

= |NG(x) ∩B| − |NG(x) ∩ A|+ (|Z| − q)− (q − 1)

= |NG′(x) ∩B| − |NG′(x) ∩ A|+ (|Z| − q)− (q − 1)

= rankπ(x) + (|Z| − q)− (q − 1)

= rankπ(y) + (|Z| − q)− (q − 1) by case assumption

= |NG′(y) ∩B| − |NG′(y) ∩ A|+ (|Z| − q)− (q − 1)

= |NG(y) ∩B| − |NG(y) ∩ A|+ (|Z| − q)− (q − 1)

= |NG(y) ∩B|+ (|Z| − q)− |NG(y) ∩ A| − (q − 1)

= (|NG(y) ∩B|+ (|Z| − q))− (|NG(y) ∩ A|+ (q − 1)

= succτ (y)− predτ (y)

= rankτ (y),
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and

rankσ(y) = succσ(y)− predσ(y)

= (|NG(y) ∩B|+ (|Z| − (q + 1)))− (|NG(y) ∩ A|+ ((q + 1)− 1))

= (|NG(y) ∩B|+ (|Z| − (q + 1)))− (|NG(y) ∩ A|+ q)

= |NG(y) ∩B|+ (|Z| − (q + 1))− |NG(y) ∩ A| − q)
= |NG(y) ∩B| − |NG(y) ∩ A|+ (|Z| − (q + 1))− q)
= |NG′(y) ∩B| − |NG′(y) ∩ A|+ (|Z| − (q + 1))− q
= rankπ(y) + (|Z| − (q + 1))− q
= rankπ(x) + (|Z| − (q + 1))− q by case assumption

= |NG′(x) ∩B| − |NG′(x) ∩ A|+ (|Z| − (q + 1))− q
= |NG(x) ∩B| − |NG(x) ∩ A|+ (|Z| − (q + 1))− q
= |NG(x) ∩B|+ (|Z| − (q + 1))− |NG(x) ∩ A| − q
= (|NG(x) ∩B|+ (|Z| − (q + 1)))− (|NG(x) ∩ A|+ q)

= (|NG(x) ∩B|+ (|Z| − (q + 1)))− (|NG(x) ∩ A|+ ((q + 1)− 1))

= succτ (x)− predτ (x)

= rankτ (x).

Therefore, ϕτ (Z) = ϕσ(Z) if x and y are swapped.

Case 2: rankπ(x) > rankπ(y). We show that exchanging x and y does not increase the
imbalance in the resulting ordering τ . By Lemma 3.2.2, rankτ (x) = rankσ(x) − 2 and
rankτ (y) = rankσ(y) + 2.

Note that

(|Z| − (q + 1))− ((q + 1)− 1) = (|Z| − q − 1)− (q + 1− 1)

= |Z| − q − 1− q − 1 + 1

= (|Z| − q)− q + 1− 2

= (|Z| − q)− (q − 1)− 2. (3.2)

Using the case assumption and the equation above, we can now establish the following
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relationship between rankσ(x) and rankσ(y):

rankσ(x) = succσ(x)− predσ(x)

= (|NG(x) ∩B|+ (|Z| − q))− (|NG(x) ∩ A|+ (q − 1))

= |NG(x) ∩B|+ (|Z| − q)− |NG(x) ∩ A| − (q − 1)

= |NG(x) ∩B| − |NG(x) ∩ A|+ (|Z| − q)− (q − 1)

= |NG′(x) ∩B| − |NG′(x) ∩ A|+ (|Z| − q)− (q − 1)

= rankπ(x) + (|Z| − q)− (q − 1)

= rankπ(x) + (|Z| − (q + 1))− ((q + 1)− 1) + 2 by (3.2)

> rankπ(y) + (|Z| − (q + 1))− ((q + 1)− 1) + 2 by case assumption

= |NG′(y) ∩B| − |NG′(y) ∩ A|+ (|Z| − (q + 1))− ((q + 1)− 1) + 2

= |NG(y) ∩B| − |NG(y) ∩ A|+ (|Z| − (q + 1))− ((q + 1)− 1) + 2

= |NG(y) ∩B|+ (|Z| − (q + 1))− |NG(y) ∩ A| − ((q + 1)− 1) + 2

= (|NG(y) ∩B|+ (|Z| − (q + 1))− (|NG(y) ∩ A|+ ((q + 1)− 1) + 2

= succσ(y)− predσ(y) + 2

= rankσ(y) + 2,

which is to say that rankσ(x) > rankσ(y) + 2.

We now show that ϕτ (Z) ≤ ϕσ(Z), based on the value of rankσ(x); ϕτ (z) = ϕσ(z) for
all z ∈ Z \ {x, y}.

• If rankσ(x) > 1, then since rankτ (x) = rankσ(x) − 2 ≥ 0, ϕτ (x) = ϕσ(x) − 2. Since
the imbalance of y can get worse by at most two, ϕτ (Z) ≤ ϕσ(Z).

• If rankσ(x) = 1, then

1 = rankσ(x) > rankσ(y) + 2 =⇒ −1 > rankσ(y).

Combined with the fact that rankτ (y) = rankσ(y) + 2, ϕτ (y) = ϕσZ
(y)− 2. Since the

imbalance of x will stay the same, ϕτ (Z) < ϕσ(Z).

• If rankσ(x) < 1, then

1 > rankσ(x) > rankσ(y) + 2 =⇒ −1 > rankσ(y).

Combined with the fact that rankτ (y) = rankσ(y) + 2, ϕτ (y) = ϕσ(y)− 2. Since the
imbalance of x will get worse by two, ϕτ (Z) = ϕσ(Z).
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Therefore, ϕτ (Z) ≤ ϕσ(Z) in the case rankπ(x) > rankπ(y).

We have shown that ϕτ (Z) ≤ ϕσ(Z) in every case, and therefore im(τ) ≤ im(σ).

Theorem 3.4.4. Let G = (V,E) be a graph. Let Z = X ∪ Y where X ⊆ V and Y ⊆ V
are sets of true twins. If Z occurs consecutively in an ordering σ of G, then there is
an ordering of the same (or smaller) imbalance in which X appears consecutively and Y
appears consecutively (and only the vertices of Z may have been rearranged).

Proof. Since X and Y are sets of true twins, any vertex y ∈ Y is either adjacent to all
vertices of X or no vertices of X. Thus we have two cases: either X ∩ N(Y ) = ∅, or
X ⊆ N(Y ).

Case 1: X ∩N(Y ) = ∅. Since any x ∈ X is not adjacent to any y ∈ Y , we can swap any
x past any y without changing the imbalance of the ordering. In particular, if {x, y} is
consecutive and y <σ x, then swapping the positions of x and y does not change the rank
of either vertex since (x, y) /∈ E (Observation 3.2.1). Therefore, we can put all the vertices
of X before all vertices of Y in Z, and we are done.

Case 2: X ⊆ N(Y ). In this case, Z is a clique as each set X and Y is a clique, and every
vertex in Y is adjacent to every vertex in X. Let G′ = (V,E ′) where E ′ = E \ (Z × Z),
and let π be an ordering of G′ which agrees with σ. The function rankπ() takes on at most
two values as vertices in Z are in at least one of X or Y . By Lemma 3.4.3, the imbalance
is minimized by putting the twins with the lower value of rankπ() to the left. If rankπ()
takes only one value, then any ordering of Z has the same total imbalance.

We now show how this can be used to untangle two sets of true twins in a cutwidth
ordering. The proof is illustrated in Figure 3.4.

Lemma 3.4.5. Let X and Y be (not necessarily maximal) sets of true twins in an ordering
σ, where Y is partitioned into two sets Y1 and Y2. If σ = ⟨L · Y1 ·X · Y2 ·R⟩ for some sets
L and R, then there is an ordering σ′ where σ′ = ⟨L ·X · Y ·R⟩ or σ′ = ⟨L · Y ·X ·R⟩ and
cw(σ′) ≤ cw(σ).

Proof. First, we may assume that Y ⊆ N(X), as otherwise moving any vertex of Y2
backward to before X does not change its rank, and we may freely do so to get a desired
ordering.

Let ℓ = |L|.

Claim 3.4.6. Either
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1. there is an ordering ρ = ⟨L · X ∪ Y · R⟩ such that cw(ρ) ≤ cw(σ) and there is
index ℓ ≤ j ≤ ℓ + |X| + |Y | such that for ℓ ≤ i ≤ j, rankρ(vi) ≥ 0 and for
j < i ≤ ℓ+ |X|+ |Y |, rankρ(vi) ≤ 0, or,

2. we can find an ordering which is desired by the lemma.

Proof of claim: Let x1 ∈ X be the leftmost vertex of X in σ, and let x2 ∈ X be the
rightmost vertex of X in σ. We proceed with cases based on the signs of rankσ(x1) and
rankσ(x2).

Case 1: rankσ(x2) ≥ 0. By Observation 3.2.10, rankσ(x1) > 0. By Lemma 3.2.11, we can
move X forward to its rightmost position where x2 achieves a non-negative rank, to get an
ordering ρ = ⟨L·Y1 ·Y ′

2 ·X ·Y ′′
2 ·R⟩ where Y ′

2 and Y ′′
2 partition Y2. If Y ′′

2 is empty, then ρ is an
ordering desired by the lemma. So suppose that Y ′′

2 is non-empty. Let Y ′
2 = ⟨y′1, . . . , y′|Y ′

2 |
⟩

and Y ′′
2 = ⟨y′′1 , . . . , y′′|Y ′′

2 |⟩.

Case 1a: rankσ(y′|Y ′
2 |

) ≤ 0. By Observation 3.2.10, 0 ≥ rankρ(y
′
|Y ′

2 |
) ≥ rankρ(y

′′
1). In this

case, all vertices of Y ′′
2 have non-positive rank in ρ, and by Lemma 3.2.11, all of Y ′′

2 can
be moved backward to be immediately right of Y ′

2 , in which case the resulting order is one
desired by the lemma (it has the form ⟨L · Y1 · Y ′

2 · Y ′′
2 ·X ·R⟩).

Case 1b: rankσ(y′|Y ′
2 |

) > 0. If rankρ(y
′′
1) ≥ 0, then by Observation 3.2.10, all vertices of

Y1 ∪ Y ′
2 also have non-negative rank, and by Lemma 3.2.11, we can move Y1 ∪ Y ′

2 to be
immediately left of Y2. The resulting ordering is one desired by the lemma (it has the form
⟨L ·X ·Y1 ·Y ′

2 ·Y ′′
2 ·R⟩). Otherwise, rankρ(y

′′
1) < 0 and we can take j = ℓ+ |Y1|+ |Y ′

2 |+ |X|
along with ρ. Since the moving the vertices did not increase the cutwidth (by Lemma
3.2.11), cw(ρ) ≤ cw(σ).

Case 2: rankσ(x2) < 0 and rankσ(x1) ≤ 0. By Lemma 3.2.11, we can move X backward
to its leftmost position where x1 achieves a non-positive rank, to get an ordering ρ =
⟨L · Y ′

1 ·X · Y ′′
1 · Y2 ·R⟩ where Y ′

1 and Y ′′
1 partition Y1. If Y ′

1 is empty, then ρ is an ordering
desired by the lemma. So suppose that Y ′

1 is non-empty. Let Y ′
1 = ⟨y′1, . . . , y′|Y ′

1 |
⟩ and

Y ′′
1 = ⟨y′′1 , . . . , y′′|Y ′′

1 |⟩.

Case 2a: rankρ(y
′′
1) ≥ 0. In this case, all vertices of Y ′

1 have non-negative rank in ρ, and
by Lemma 3.2.11, all of Y ′

1 can be moved forward to be immediately left of Y ′′
1 , in which

case the resulting order is one desired by the lemma (it has the form ⟨L ·X ·Y ′
1 ·Y ′′

1 ·Y2 ·R⟩).
Case 2b: rankρ(y

′′
1) < 0. If rankρ(y

′
|Y ′

1 |
) ≤ 0, then by Observation 3.2.10 all vertices of

Y ′′
1 ∪ Y2 have non-positive rank, and by Lemma 3.2.11, Y ′′

1 ∪ Y2 can be moved backward to
be immediately right of Y ′

1 . The resulting ordering is one desired by the lemma (it has the
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form ⟨L ·Y ′
1 ·Y ′′

1 ·Y2 ·X ·R⟩). Otherwise, rankρ(y
′
|Y ′

1 |
) > 0 and we can take j = ℓ+ |Y ′

1 | along

with ρ. Since the moving the vertices did not increase the cutwidth (by Lemma 3.2.11),
cw(ρ) ≤ cw(σ).

Case 3: rankσ(x2) < 0 and rankσ(x1) > 0. By Observation 3.2.10, the ranks of X are
non-increasing in σ. Let y1 ∈ Y1 be the rightmost vertex of Y1 in σ, and let y2 ∈ Y2 be the
leftmost vertex of Y2 in σ.

If rankσ(y1) ≤ 0, then by Observation 3.2.10, all vertices of Y2 also have non-positive
rank, and we can move Y2 to be immediately right of Y1 by Lemma 3.2.11. Similarly,
if rankσ(y2) ≥ 0, then by Observation 3.2.10, all vertices of Y1 also have non-negative
rank, and we can move Y1 to be immediately left of Y2 by Lemma 3.2.11. Therefore, we
may assume that the sign of rankσ(y1) and rankσ(y2) are different, and by Observation
3.2.10 the only option is that rankσ(y1) ≥ 0 ≥ rankσ(y2). Thus, there must be an index
ℓ+ |Y1| < j < ℓ+ |Y1|+ |X| that satisfies the requirement, since the signs of x1 and x2 are
different. Thus we can take ρ = σ along with j (and obviously cw(ρ) = cw(σ) ≤ cw(σ)),
proving the claim. ■

Now let ρ be an ordering provided by Claim 3.4.6.

Let Ly = N(y) ∩ L and Ry = N(y) ∩ R for any y ∈ Y . Let Lx = N(x) ∩ L and
Rx = N(x) ∩ R for any x ∈ X. Let O be the edges passing over X ∪ Y in ρ: namely,
edges (u, v) such that u ∈ L and v ∈ R. We can count the edges over a cut between two
consecutive vertices x, y of X ∪ Y using these sets.

We define a subgraph G′ = (V ′, E ′) of G = (V,E) by taking V ′ = V and E ′ =
E \ (EL ∪ ER) where EL = {(u, v) ∈ E | u, v ∈ L} and ER = {(u, v) ∈ E | u, v ∈ R}. Let
τ be the ordering of G′ that agrees with ρ; we can again write τ = ⟨L · Y τ

1 ·X · Y τ
2 ·R⟩ for

some sets Y τ
1 and Y τ

2 that partition Y (see Figure 3.4).

Claim 3.4.7. Either,

• the maximum cut of τ is after cτ (vi) for some ℓ ≤ i ≤ ℓ + |X| + |Y | and there
is an index j of τ such that all ranks are non-negative before j and all ranks are
non-positive after j, or,

• we can find an ordering which is desired by the lemma.

Proof of claim: First, observe that since there are no edges within L, for 1 ≤ i < ℓ,
cτ (vi) ≤ cτ (vi+1), as cτ (vi+1) has at least as many edges as cτ (vi) but may also have those
ends which end at vi+1. Second, since there are no edges within R, for ℓ+|Y |+|X| ≤ i < |τ |,
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τ L Y τ
1 X Y τ

2 R

Position of vertices in Ly and Lx. Position of vertices in Ry and Rx.

rankτ (v) ≤ 0rankτ (v) ≥ 0

(a) Initial ordering of G′ provided by τ as in the proof of Lemma 3.4.5. Note that it is not
necessarily the case that Lx = Ly or that Ry = Rx, however, both Ly and Lx are to the left of
Y τ
1 and both Rx and Ry are to the right of Y τ

2 . The boxes of Y = Y τ
1 ∪ Y τ

2 (vertical lines, blue)
are all vertices of Y are true twins, and X (horizontal lines, red), is another set of true twins.
The set L and R are independent sets. We will show that we can rearrange the vertices between
the two vertical lines without increasing the cutwidth of the ordering. Dashed lines indicate some
edges are present between vertices in one box and vertices in the other box.

... |O|

... |E(Lx, X)|

... |E(Ly, Y
τ
2 )|

... |E(Ry, Y
τ
1 )|

... |E(Y τ
1 , Y

τ
2 )|

... |E(Y τ
1 , X)|

(b) A close look at the cut cτ (y) where y is the rightmost vertex of Y τ
1 in τ . Each horizontal line

is part of an edge drawn over the cut, indicated by the vertical line. The edges crossing the cut
are grouped based on where their endpoints are in τ ; recall that E(A,B) indicates edges with
one endpoint in A and the other in B.

Figure 3.4: An illustration of G′ provided by τ as in the proof of
Lemma 3.4.5. (a) shows the overall structure of the ordering, grouped
into sets. (b) shows an example cut between two vertices in X ∪ Y .
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cτ (vi) ≥ cτ (vi+1), as cτ (vi) has at least as many edges as cτ (vi) but may also have those
ends which end at vi. Therefore,

max
1≤i≤|τ |

{cτ (vi)} = max
ℓ≤i≤ℓ+|Y |+|X|

{cτ (vi)},

as required.

We now prove the second part of the claim. Note that for v ∈ L, rankτ (v) ≥ 0: if v is
not isolated, its entire neighbourhood is in R ∪X ∪ Y and v <τ (R ∪X ∪ Y ). Similarly,
for v ∈ R, rankτ (v) ≤ 0: if v is not isolated, its entire neighbourhood is in L ∪X ∪ Y and
(L ∪X ∪ Y ) <τ v.

For all v ∈ X ∪ Y , rankτ (v) = rankρ(v) as the edges from v to its neighbours have not
been removed in G′. By Claim 3.4.6, the required j exists (or the desired ordering exists).

■

Consider the cut cτ (v) for any v ∈ V (G) = V (G′): cτ (v) = cρ(v)− α for some number
α, which represents the difference in the number of edges crossing cρ(v) but not cτ (v).
Since G′ did not add any new edges, α ≥ 0. Therefore, cτ (v) ≤ cρ(v) for all v ∈ V , and in
particular by Claim 3.4.6,

cw(τ) ≤ cw(ρ) ≤ cw(σ). (3.3)

Since X and Y are true twins, by Theorem 3.4.4, there is another ordering π of G′ such
that X <π Y or Y <π X, and im(π) ≤ im(τ). Furthermore, only vertices in X ∪ Y have
been rearranged.

Claim 3.4.8. cw(π) ≤ cw(σ).

Proof of claim: By Claim 3.4.7 and Lemma 3.4.2, im(τ) = 2cw(τ). By Lemma 3.4.1,

cw(π) ≤
Lemma 3.4.1

im(π)

2
≤

Theorem 3.4.4

im(τ)

2
=

Claim 3.4.7 and Lemma 3.4.2
cw(τ).

By (3.3), cw(π) ≤ cw(τ) ≤ cw(ρ) ≤ cw(σ), as required. ■

Since X and Y are each consecutive in π and cw(π) ≤ cw(σ), we can replace σX∪Y
with πX∪Y without increasing the cutwidth of the ordering; the resulting ordering proves
the lemma.
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3

1 2 4 5

Figure 3.5: A graph that shows Theorem 3.5.1 is not applicable for
false twins. Any complete bipartite graph K1,m with m ≥ 2 ver-
tices must split the leaves into two consecutive sets in any cutwidth-
minimal ordering. In particular, ⌊m/2⌋ vertices of the larger partite
set must come before the single vertex in the smaller partite set. In
this case, σ = ⟨1, 2, 3, 4, 5⟩ is such that cw(G) = cw(σ) = 2.

3.5 A Structure of Optimal Orderings

In this section, we show that for any graph G, there is a cutwidth-minimal ordering of G
in which, for each equivalence class of true twins S, the vertices of S appear consecutively.
This is helpful for FPT algorithms (e.g., Section 3.6), and may be of general interest.
The theorem is not applicable for false twins; Figure 3.5 shows a graph for which any
cutwidth-minimal ordering must split a set of false twins.

Theorem 3.5.1. For any graph G, there exists a cutwidth-minimal ordering σ of V (G)
such that each equivalence class of true twins appears consecutively in σ.

Define µ(σ) to be the number of maximal consecutive sets of true twins in the ordering
σ. Define tt(G) to be the number of equivalence classes of true twins in the graph G. By
definition, µ(σ) ≥ tt(G) for any graph G and ordering σ of G.

Proof of Theorem 3.5.1. Say that τ ⋖ σ if and only if µ(τ) < µ(σ) and cw(τ) ≤ cw(σ) for
two orderings σ and τ of G.

Suppose that σ is such that cw(σ) = cw(G) = k but µ(σ) > tt(G) (if µ(σ) = tt(G) and
cw(σ) = cw(G) there is nothing to prove). We will find an ordering τ ⋖ σ. Repeating this
until the resulting order τ is such that µ(τ) = tt(G) proves the theorem.

Let U ⊆ V (G) be an equivalence class of true twins which is not consecutive in σ.
We may assume that there are at least two distinct, maximal consecutive sets of vertices
U1 ⊆ U and U2 ⊆ U in σ. Pick two such sets U1 and U2 such that U1 <σ U2 and there is
no vertex q ∈ U such that U1 <σ q <σ U2. Let u ∈ U1 be the rightmost vertex of U1 in
σ, and v ∈ U2 be the leftmost vertex of U2 in σ. We have that u <σ v, and that u is not
beside v in σ (as otherwise U1 would be beside U2 and U1 ∪ U2 would be a consecutive set
in σ).
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σ L
U1

U1 \ {u} u
Y1 . . . Yℓ

U2

v U2 \ {v}
R

(a) Initial ordering of σ as in the proof of Theorem 3.5.1.

τ L
U1

U1 \ {u} u
Y1 . . . Yℓ

U2

v U2 \ {v}
R

(b) The resulting ordering when rankσ(u) ≤ 0 and rankσ(v) ≤ 0. In this case, all the
vertices of U2 must have had non-positive rank in σ by Observation 3.2.10, and all could
be moved backwards by Lemma 3.2.12

τ L
U1

U1 \ {u} u
Y1 . . . Yℓ

U2

v U2 \ {v}
R

(c) The resulting ordering when rankσ(u) > 0 and rankσ(v) ≥ 0. In this case, all the
vertices of U1 must have had non-negative rank in σ by Observation 3.2.10, and all
could be moved forwards by Lemma 3.2.12

σ′ L Y1 . . . Yj
U1

U1 \ {u} u

U2

v U2 \ {v}
Yj+1 . . . Yℓ R

(d) One possible resulting ordering when rankσ(u) > 0 and rankσ(v) < 0. The actual
order depends on what is provided by Lemma 3.4.5: in particular, the positions of Yj
and U1 ∪ U2 may be swapped.

Figure 3.6: An illustration of the proof of Theorem 3.5.1.
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Write σ = ⟨L · U1 · Y · U2 · R⟩ for some set Y and (possibly empty) sets L and R.
Furthermore, partition Y into maximal consecutive sets Y1, . . . , Yℓ where each Yj (1 ≤ j ≤
ℓ) is a set of true twins from the same equivalence class. Since U1 is not beside U2 in σ,
ℓ ≥ 1. This is illustrated in Figure 3.6a.

We consider cases based on the signs of rankσ(u) and rankσ(v). Since u and v are true
twins, by Observation 3.2.10, the case where rankσ(u) ≤ 0 but rankσ(v) ≥ 0 is impossible.

Let U1 = {ui, . . . , uj = u} and U2 = {v = uj+1, . . . , uk} for some positive integers i, j,
and k. Then we can see that σ = ⟨L · {ui, . . . , uj = u} · Y · {v = uj+1, . . . , uk} ·R⟩.
Case 1: rankσ(u) ≤ 0 and rankσ(v) ≤ 0. By Lemma 3.2.12, we can move all of U2

backwards, to be immediately right of u, without increasing the cutwidth of the ordering.
That is, if τ is obtained by moving U2 immediately right of u (and therefore U1), µ(τ) =
µ(σ) − 1 and cw(τ) ≤ cw(σ) and τ ⋖ σ. See Figure 3.6b. We have an ordering τ ⋖ σ in
the case rankσ(u) ≤ 0 and rankσ(v) ≤ 0.

Case 2: rankσ(u) > 0 and rankσ(v) ≥ 0. By Lemma 3.2.9, rankσ(u) ≥ rankσ(v) + 2.
Therefore, moving u forward from its position in σ to be immediately left of v results
in a non-negative rank > 1. The resulting ordering has the form ⟨L · {ui, . . . , uj−1} · Y ·
{uj = u, v = uj+1, . . . , uk} · R⟩. By Lemma 3.2.12, we can move all of U1 forwards, to
be immediately left of v, without increasing the cutwidth of the ordering. The resulting
ordering τ has µ(τ) = µ(σ)− 1 and cw(τ) ≤ cw(σ), and therefore τ ⋖ σ. See Figure 3.6c.
Thus we have an ordering τ ⋖ σ in the case rankσ(u) > 0 and rankσ(v) ≥ 0.

Case 3: rankσ(u) > 0 and rankσ(v) < 0. There is a rightmost position between u
and v to the right of u such that u will have its minimal non-negative rank. We can
move u forward to that position by Lemma 3.2.11; the resulting ordering has the form
⟨L · {ui, . . . , uj−1} · Y ′ · {uj = u} · Y ′′ · {v = uj+1, . . . , uk} · R⟩ where Y = Y ′ ∪ Y ′′. We
can then move all of U1 forward by Lemma 3.2.12. Call the resulting ordering σ0. Then,
the position immediately right of u in σ0 is where v achieves its maximal negative rank.
We can move v backward to that position by Lemma 3.2.11; the resulting ordering has the
form ⟨L ·Y ′ · {ui, . . . , uj−1, uj = u} · {uj+1 = v} ·Y ′′ · {uj+2, . . . , uk} ·R⟩. We can then move
all of U2 backward by Lemma 3.2.12. Call the resulting ordering σ1.

We have reduced µ by 1 by gathering the sets U1 and U2, but this may have resulted
in splitting some set Yj (1 ≤ j ≤ ℓ), which may have increased µ by 1. We may assume
therefore that µ(σ1) = µ(σ), as otherwise µ(σ1) < µ(σ) and cw(σ1) ≤ cw(σ); therefore
σ′ ⋖ σ and we are done.

Therefore, we must have that σ1 = ⟨L′ · Y ′
j ·U1 ·U2 · Y ′′

j ·R′⟩ where Y ′
j and Y ′′

j partition

Yj, L
′ = L ∪

(⋃j−1
i=1 Yi

)
, and R′ = R ∪

(⋃ℓ
i=j+1 Yi

)
. By Lemma 3.4.5 and the fact that
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U1 ∪U2 and Yj are sets of true twins, there is an ordering where σ′ = ⟨L′ · Yj ·U1 ∪U2 ·R′⟩
or σ′ = ⟨L′ · U1 ∪ U2 · Yj · R′⟩ and cw(σ′) ≤ cw(σ1). Thus, µ(σ′) = µ(σ1) − 1 and
cw(σ′) ≤ cw(σ1) ≤ cw(σ) and σ′ ⋖ σ, as required. See Figure 3.6d for one possible
visualization. Thus we have an ordering σ′⋖σ in the case rankσ(u) > 0 and rankσ(v) < 0.

Since we have found an ordering τ ⋖ σ in every case, the proof is complete.

3.6 Edge Clique Cover Number Parameterization

In this section, we show that Theorem 3.5.1 immediately yields an FPT algorithm when
the parameter is the edge clique cover number of the graph.

Theorem 3.6.1. Cutwidth is fixed-parameter tractable when parameterized by the edge
clique cover number of the graph.

Proof. Let k = cc(G). By Theorem 3.5.1, there exists a cutwidth-minimal ordering in
which each equivalence class of true twins appears consecutively. The ordering of vertices
within each equivalence class of true twins can be arbitrary. Gramm et al. [71] proved that
graphs with edge clique cover at most k have at most 2k different equivalence classes of
true twins (cf. Theorem 2.5.6). Note that each vertex must be in some equivalence class of
true twins (which may be a singleton set). Thus, an algorithm can try each of the O(2k!)
orderings and output the ordering with the smallest cutwidth.

3.7 Restricted Twin Cover Number Parameterization

In this section, we show that there is an FPT algorithm for Cutwidth when the parameter
is the restricted twin cover number. We use the FPT algorithm of Fellows et al. [52] for
graphs with bounded vertex cover number as inspiration, and Theorem 3.5.1.

We formulate Cutwidth as an instance of the following problem, which will also be
called p-Opt-ILP for short. The input to Cutwidth parameterized by the vertex cover
number of the graph will be a graph G and a vertex cover C of G such that |C| ≤ k. If
C is not provided but vc(G) ≤ k, then C can be found in time O(2kn) (see, e.g., Theorem
3.2.1, Downey and Fellows [46]).

Problem 3.7.1 (p-Variable Integer Linear Programming Optimization). Let
matrices A ∈ Zm×p, b ∈ Zm×1, and c ∈ Z1×p be given. We want to find a vector x ∈ Zp×1
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that minimizes the objective function c ·x and satisfies the m inequalities, that is, A ·x ≥ b.
The number of variables p is the parameter.

An instance of p-Opt-ILP is called an integer linear program (ILP). Fellows et al. [52]
showed that p-Opt-ILP is FPT when the parameter is p.

Theorem 3.7.2 (Theorem 2, Fellows et al. [52]). p-Opt-ILP can be solved using O(p2.5p+o(p)·
L · log(MN)) arithmetic operations and space polynomial in L. Here, L is the number of
bits in the input, N is the maximum of the absolute values any variable can take, and M
is an upper bound on the absolute value of the minimum taken by the objective function.

We modify the following ILP formulation for Cutwidth on graphs of bounded vertex
cover number by Fellows et al. [52]. The notation is updated to match the notation used
in this work, where possible; the following are notation is still required. Given an ordering
σ and a vertex cover C such that σC = ⟨c1, . . . , ck⟩, a vertex x ∈ σ \ C is at location i for
1 ≤ i ≤ k if i is the largest integer such that ci <σ x, or location 0 if x <σ c1. The set I
will be the independent set obtained by deleting the vertex cover C, that is, I = G − C.
The set Li will denote the vertices of I at location i. Define Ci = {c1, . . . , ci} for 1 ≤ i ≤ k.
For a subset S ⊆ C, we define IS ⊆ G− C to be the vertices with neighbourhood S, i.e.,
IS = {v ∈ G − C|N(v) = S}. Recall that σ≤i denotes σ<σ(i), which is the set of vertices
before the ith vertex in σ, and that analogous definitions are used for >, ≤, and ≥. Finally,
define a new variant of the rank function as follows: rank(S, v) = |N(v) \ S| − |N(v) ∩ S|
(this is similar to the original definition of rank which we use, but computes the value
relative to a set rather than an ordering).

ILP Formulation 3.7.3 (Cutwidth, Fellows et al. [52]).

We guess1 the ordering c1 <σ · · · <σ ck of the vertices in [the vertex cover] C
in an optimal permutation. We consider the ordering σLi

for some i between
0 and k. Suppose that σ(ci) = s, then, for any t with s < t ≤ s + |Li| we
have that cσ(vt) = cσ(vs) +

∑t
j=s+1 rank(σ≤j−1, vj). Since the set of vertices

in the locations Li (0 ≤ i ≤ k) form an independent set, rank(σ≤j−1, vj) =
rank(σ≤ci , vj) for every j between s+ 1 and t. This gives the equation cσ(vt) =
cσ(vs) +

∑t
j=s+1 rank(σ≤ci , vj).

Hence if we start with an optimal permutation σ and reorganize σLi
at each

location i to sort the vertices by rank with respect to Ci in non-decreasing order,

1Note that this is done by essentially trying the following proof for every permutation of the vertex
cover C, which adds a factor of C! to the running time, but is allowed since |C| is the parameter.
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we get another optimal ordering with a fixed inner order for each location.
[There may be vertices with the same rank, and for a particular rank value,
the order of the vertices with that rank does not matter.] In such orderings,
the largest values of [a cut] occur either at cσ(cj) or cσ(σ(cj) − 1) for some
j between 1 and k. Since the rank of a vertex v ∈ I with respect to Ci only
depends on i and the neighbourhood of v, we can use this together with the fact
that cσ(vt) = cσ(vs) +

∑t
j=s+1 rank(σ≤s, vj) in order to give an integer linear

programming formulation for the Cutwidth problem.

For every S ⊆ C and location i we introduce a variable xiS that tells us the
number of vertices with neighbourhood S that are at location i. For every
i between 1 and k we add a variable yi which encodes rank(σ<ci , ci) and the
constant ei =

∣∣|N(ci)∩ (C \Ci)| − |N(ci)∩Ci|
∣∣. For every S ⊆ C and location

i we also compute the constant eiS that indicates the rank of a vertex with
neighbourhood S with respect to Ci. [That is, eiS = rank(Ci, v) for any v ∈ IS,
as all vertices of IS are false twins.] Finally, we need a variable c that represents
the cutwidth of G. For the constraints, we need to make sure the variables xiS
represent a valid partitioning of I into L0, . . . , Lk. Finally we need constraints
to encode the rank of the vertex cover vertices and the connection between the
partitioning of I and the cutwidth c. [Each constraint is mapped to a line in
the program after the program is formulated.] This yields the following integer
linear program:

min c

s.t.
k∑

i=0

xiS = |IS| ∀S ⊆ C (3.4)

yi = ei +
∑

S⊆C|ci∈S

( k∑
j=i

xjS −
i−1∑
j=0

xjS
)

∀i ∈ {0, . . . , k} (3.5)

c ≥
i∑

j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S ∀i ∈ {1, . . . , k} (3.6)

c ≥
i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S ∀i ∈ {1, . . . , k} (3.7)

xiS ≥ 0 ∀i ∈ {0, . . . , k}, S ⊆ C (3.8)
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Since the value of cw(σ) is bounded by n2 and the value of any variable in
the integer linear program is bounded by n2, Theorem 3.7.2 implies that this
integer linear program can be solved in FPT time.

This completes the description of the ILP for Cutwidth adapted from Fellows et
al. [52]. The remainder of this section is new an additional description of the ILP constraints
and the modifications needed to adapt the ILP to the restricted twin cover number.

We describe the constraints in the ILP above so that when we modify them in the proof
below, it is clear what we are changing. Constraint 3.4 ensures that every vertex in the
independent set G − C is placed into some location, and Constraint 3.8 ensures that no
location receives a negative number of such vertices. Constraint 3.5 represents the rank of
the vertices in the vertex cover C. Finally, Constraints 3.6 and 3.7 ensure that the cutwidth
is computed by counting the edges in a cut before a vertex in the cover (Constraint 3.6)
and counting the edges in a cut after a vertex in the cover (Constraint 3.7).

Now we turn to Cutwidth parameterized by the restricted twin cover number. We will
modify the ILP formulation above to obtain a new one. The following lemma is required
for the new formulation in order to compute the maximum cut within a set of consecutive
true twins.

Lemma 3.7.4. Let Q be a set of true twins with at least two vertices which appears con-
secutively in some ordering σ starting at position i. If |N(Q)∩σ>Q| = r, |N(Q)∩σ<Q| = ℓ
and ℓ ≥ r, then a largest cut of cσ(i − 1), . . . , cσ(i + (|Q| − 1)) occurs at cut cσ(j) where
j = max{(i− 1), (i− 1) + ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉}.

Proof. We can write σ = ⟨L ·Q ·R⟩ for some sets of vertices L and R. Let O be the number
of edges passing over all vertices Q, that is, with one endpoint in L and the other in R.
Formally, O = |E(L,R)|.

Let j = max{(i − 1), (i − 1) + ⌊|Q|/2⌋ + ⌈(r − ℓ)/2⌉}. We have two cases, based on
whether ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉ < 0. Since ℓ ≥ r, (r − ℓ) ≤ 0.

Case 1: ⌊|Q|/2⌋+⌈(r − ℓ)/2⌉ < 0. We will show that j = i−1 has the largest cut among
cσ(i− 1), . . . , cσ(i+ (|Q| − 1)).

We use the following facts. First, note that if |Q| is even and r − ℓ is even,

−⌈(r − ℓ)/2⌉ > ⌊|Q|/2⌋
=⇒ −(r − ℓ)/2 > |Q|/2

=⇒ ℓ− r > |Q|
=⇒ ℓ > |Q|+ r, (3.9)
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and if |Q| is even and r − ℓ is odd,

−⌈(r − ℓ)/2⌉ > ⌊|Q|/2⌋
=⇒ −((r − ℓ) + 1)/2 > |Q|/2

=⇒ −((r − ℓ) + 1) > |Q|
=⇒ −(r − ℓ)− 1) > |Q|

=⇒ ℓ− r > |Q|+ 1 > |Q|
=⇒ ℓ > |Q|+ r. (3.10)

That is, as long as |Q| is even, we have from Equations 3.9 and 3.10 that

ℓ > |Q|+ r. (3.11)

If |Q| instead is odd and r − ℓ is even,

⌈(r − ℓ)/2⌉ > ⌊|Q|/2⌋
=⇒ −(r − ℓ)/2 > (|Q| − 1)/2

=⇒ ℓ− r > |Q| − 1

=⇒ ℓ > |Q| − 1 + r, (3.12)

and if |Q| is odd and r − ℓ is odd as well,

⌈(r − ℓ)/2⌉ > ⌊|Q|/2⌋
=⇒ −((r − ℓ) + 1)/2 > (|Q| − 1)/2

=⇒ −((r − ℓ) + 1) > |Q| − 1

=⇒ −(r − ℓ)− 1 > |Q| − 1

=⇒ ℓ− r > |Q|
=⇒ ℓ > |Q|+ r > |Q| − 1 + r. (3.13)

That is, as long as |Q| is odd, we have from Equations 3.12 and 3.13 that

ℓ > |Q| − 1 + r. (3.14)

Now, we compare the cuts between cσ(j) and another cut cσ(j + x), 1 ≤ x ≤ |Q|. If
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|Q| is even:

cσ(j) = ℓ · |Q|+O

= ℓ(|Q|+ x− x) +O for 1 ≤ x ≤ |Q|
= ℓ(|Q| − x) + ℓ · x+O

> ℓ(|Q| − x) + (|Q|+ r)x+O by (3.11)

= ℓ(|Q| − x) + |Q| · x+ r · x+O

> ℓ(|Q| − x) + (|Q| − x)x+ r · x+O since |Q| ≥ x ≥ 1

= cσ(j + x).

If |Q| is odd,

cσ(j) = ℓ · |Q|+O

= ℓ(|Q|+ x− x) +O for 1 ≤ x ≤ |Q|
= ℓ(|Q| − x) + ℓ · x+O

> ℓ(|Q| − x) + (|Q| − 1 + r)x+O by (3.14)

= ℓ(|Q| − x) + |Q| · x− x+ r · x+O

= ℓ(|Q| − x) + (|Q| − 1)x+ r · x+O

≥ ℓ(|Q| − x) + (|Q| − x)x+ r · x+O since |Q| ≥ x ≥ 1

= cσ(j + x).

Regardless of whether |Q| is even or odd, the cut at cσ(j) is at least as large as the cut
between any two vertices of Q or after the last vertex of Q.

Case 2: ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉ ≥ 0. We will show that the cut at j = (i− 1) + ⌊|Q|/2⌋+
⌈(r − ℓ)/2⌉ is the largest in this case. Note that (r − ℓ)/2 ≤ 0 since ℓ ≥ r and if we are in
this case, −⌈(r − ℓ)/2⌉ ≤ ⌊|Q|/2⌋. Thus, if |Q| is even and r − ℓ is even,

−⌈(r − ℓ)/2⌉ ≤ ⌊|Q|/2⌋
=⇒ −(r − ℓ)/2 ≤ |Q|/2

=⇒ ℓ− r − 1 ≤ ℓ− r ≤ |Q|, (3.15)

and if |Q| is even but r − ℓ is odd,

−⌈(r − ℓ)/2⌉ ≤ ⌊|Q|/2⌋
=⇒ −((r − ℓ) + 1)/2 ≤ |Q|/2

=⇒ −((r − ℓ) + 1) ≤ |Q|
=⇒ −(r − ℓ)− 1 ≤ |Q|

=⇒ ℓ− r − 1 ≤ |Q|, (3.16)
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That is, as long as |Q| is even, we have from Equations 3.15 and 3.16 that

ℓ− r − 1 ≤ |Q|. (3.17)

If |Q| is instead odd and r − ℓ is even,

−⌈(r − ℓ)/2⌉ ≤ ⌊|Q|/2⌋
=⇒ −(r − ℓ)/2 ≤ (|Q| − 1)/2

=⇒ ℓ− r ≤ |Q| − 1 ≤ |Q|, (3.18)

and if |Q| is odd and r − ℓ is also odd,

−⌈(r − ℓ)/2⌉ ≤ ⌊|Q|/2⌋
=⇒ −((r − ℓ) + 1)/2 ≤ (|Q| − 1)/2

=⇒ −((r − ℓ) + 1) ≤ |Q| − 1

=⇒ −(r − ℓ)− 1 ≤ |Q| − 1

=⇒ ℓ− r ≤ |Q|, (3.19)

That is, as long as |Q| is odd, we have from Equations 3.18 and 3.19 that

ℓ− r ≤ |Q|. (3.20)

In this case, there are j − (i− 1) = ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉ = y ≥ 1 vertices of Q to the
left of cσ(j). First, we handle the case that |Q| is even:

cσ(j) = ℓ · (|Q| − y) + r · y + (y)(|Q| − y) +O

= ℓ · (|Q| − y) + r · y + (y)(|Q| − y) + (x)(|Q| − y)− (x)(|Q| − y) +O

= ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− (x)(|Q| − y) +O

≥ ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− (x)(ℓ− r − 1− y) +O by (3.17)

= ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− x · ℓ+ x · r + x · y + x+O

≥ ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− x · ℓ+ x · r + x · y +O since x ≥ 0

= ℓ · (|Q| − y) + (r)(x+ y) + (x+ y)(|Q| − y)− x · ℓ+ x · y +O

≥ ℓ · (|Q| − y) + (r)(x+ y) + (x+ y)(|Q| − y)− x · ℓ+O since x · y ≥ 0

= ℓ · (|Q| − y − x) + (r)(x+ y) + (x+ y)(|Q| − y) +O

= ℓ · (|Q| − (y + x)) + (r)(x+ y) + (x+ y)(|Q| − y) +O

≥ ℓ · (|Q| − (y + x)) + (r)(x+ y) + (x+ y)(|Q| − (y + x)) +O

= cσ(j + x).
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If instead |Q| is odd:

cσ(j) = ℓ · (|Q| − y) + r · y + (y)(|Q| − y) +O

= ℓ · (|Q| − y) + r · y + (y)(|Q| − y) + (x)(|Q| − y)− (x)(|Q| − y) +O

= ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− (x)(|Q| − y) +O

≥ ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− (x)(ℓ− r − y) +O by (3.20)

= ℓ · (|Q| − y) + r · y + (x+ y)(|Q| − y)− x · ℓ+ x · r + x · y +O

= ℓ · (|Q| − y) + (r)(x+ y) + (x+ y)(|Q| − y)− x · ℓ+ x · y +O

≥ ℓ · (|Q| − y) + (r)(x+ y) + (x+ y)(|Q| − y)− x · ℓ+O since x · y ≥ 0

= ℓ · (|Q| − y − x) + (r)(x+ y) + (x+ y)(|Q| − y) +O

= ℓ · (|Q| − (y + x)) + (r)(x+ y) + (x+ y)(|Q| − y) +O

≥ ℓ · (|Q| − (y + x)) + (r)(x+ y) + (x+ y)(|Q| − (y + x)) +O

= cσ(j + x).

Therefore, the cut at cσ(j) is at least as large as the cut between any two vertices of Q
after the first y vertices of Q and the cut after the last vertex of Q.

We also need to show that no cut between vertices of Q before cσ(j) or at location i−1
is larger than cσ(j).

Consider the difference between cσ(z−1) and cσ(z) for 1 ≤ z ≤ y, i.e., cσ(z−1)−cσ(z):

cσ(z − 1)− cσ(z) = −r + ℓ+O − (z(|Q| − z)− (z − 1)(|Q| − (z − 1)) +O)

= −r + ℓ− (z|Q| − z2 − (z − 1)(|Q| − z + 1))

= −r + ℓ− (z|Q| − z2 − (z|Q| − z2 + z − |Q|+ z − 1)

= −r + ℓ− (z|Q| − z2 − (z|Q| − z2 + 2z − |Q| − 1)

= −r + ℓ− (z|Q| − z2 − z|Q|+ z2 − 2z + |Q|+ 1)

= −r + ℓ− (|Q| − 2z + 1)

= −r + ℓ− |Q|+ 2z − 1

We show that−r+ℓ−|Q|+2y−1 ≤ 0. Suppose to the contrary that−r+ℓ−|Q|+2y−1 >
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0; then,

−r + ℓ− |Q|+ 2y − 1 > 0

=⇒ ℓ− r + 2y > |Q|+ 1

=⇒ 2y > |Q|+ 1− ℓ+ r

=⇒ y > (|Q|+ 1− ℓ+ r)/2

=⇒ y > |Q|/2 + (r − ℓ+ 1)/2

=⇒ y > ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉.

However, by definition y = ⌊|Q|/2⌋+ ⌈(r − ℓ)/2⌉, so we have a contradiction.

Therefore, there is no cut between vertices of Q before cσ(j) or at location i− 1 that is
larger than cσ(j).

Theorem 3.7.5. Cutwidth is fixed-parameter tractable when parameterized by the re-
stricted twin cover number of the graph.

Proof. Let G be a graph with rtc(G) = |T |+q = k for some q, k ≥ 0 and twin cover T . We
can compute T in time f(k) ·nO(1) by Theorem 2.5.19. There are q non-trivial components
of G− T . We modify the approach of ILP 3.7.3 as follows.

First, instead of trying every permutation of a vertex cover, we try every permutation of
the twin cover T and q non-trivial components; there are (|T |+ q)! such permutations. Let
Q1, . . . , Qq be the non-trivial components of G−T , and let Q = ∪q

i=1Qi. By Lemma 2.5.2,
each non-trivial component of G − C is an equivalence class of true twins; by Theorem
3.5.1 there is a cutwidth-minimal ordering of G such that each equivalence class of true
twins is consecutive; we will find such an ordering using an ILP.

Let τ1, . . . , τk be the ordering imposed on T ∪ (∪qi=1Qi) where τi is either some t ∈ T
or an arbitrary consecutive ordering of Qj for some 1 ≤ j ≤ q. Let Ti = ∪ij=1V (τj), where
V (τi) = τi if τi ∈ T (i.e., τi is a vertex in the twin cover), or V (τi) = V (Qj) for some
1 ≤ i ≤ q (i.e., τi is a non-trivial component of G− T ).

We redefine a location as being between two vertices of the twin cover, between two
non-trivial components of G−T , or between a non-trivial component of G−T and a vertex
of the twin cover. That is, a vertex v ∈ V (G− (T ∪Q)) is in L0 if v <σ τ1 or is in Li if i is
the largest integer such that τi <σ v (the same as in the vertex cover case). This means the
definition of “location” applies to “between twin cover vertices or non-trivial components”
rather than “between vertex cover vertices” in the proof that follows.
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For a set S and index i, the constant eiS and variable xiS are the same as in the bounded
vertex cover number ILP formulation. That is, the constant eiS is the rank of a vertex
with neighbourhood S at location i and the variable xiS is the number of vertices with
neighbourhood S at location i. Note that since vertices of Qi are true twins (Lemma
2.5.2), a vertex in G− (T ∪Q) is either adjacent to all of Qi or none of it. Thus, there are
still only 2rtc(G) subsets S that we need to consider.

We now describe how to define the constant define ei. If τi ∈ T , then we define
ei =

∣∣|N(τi)∩ (T \Ti)|− |N(τi)∩Ti|
∣∣ (also essentially the same as in the vertex cover case).

Otherwise, τi = Qj for some 1 ≤ j ≤ q, and we define ei =
∣∣|Qj| · |N(τi) ∩ (T|T |+q \ Ti)| −

|Qj| · |N(τi)∩Ti|
∣∣ We can compute ei for 1 ≤ i ≤ k before creating an instance of an integer

linear program in time that only depends on k (we don’t need to look at a component Qj

except to see its size during this process).

For each permutation, we create an instance of an integer linear program. We have the
same objective function as in the vertex cover case, and keep Constraints 3.4 and 3.8.

As in the bounded vertex cover number case, a maximum cut may occur immediately
after or before a vertex in the twin cover, so we keep Constraints 3.6 and 3.7. However,
it may also be immediately before or after a consecutive set of vertices in some non-trivial
component of G− T , or in between two vertices of such a component.

Thus, we add the following constraint which counts the maximum cut when at least
one side of the cut is a vertex of Qi. The new variables are defined after the constraint is
listed, and it is explained in the following claim.

c ≥ fi − ℓi +
i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S ∀i ∈ {1, . . . , k} (3.21)

We introduce constants fi and li for 1 ≤ i ≤ k to handle the above case. For τi where
τi = Qj for some 1 ≤ j ≤ q, we define the constant ℓi = |Qj| · |N(τi) ∩ Ti|. For τi where
τi ∈ T , we define ℓi = 0. The constant ℓi represents the number of edges from τi to its
left, immediately before the first vertex of τi, i.e., E(V (τi), Ti−1) for 1 < i ≤ |T | + q. For
τi ∈ T , fi = 0. For τi = Qj for some 1 ≤ i ≤ q, we let fi be the value of the largest cut
such that at least one vertex on either side of the cut is in τi.

Claim 3.7.6. Constraint 3.21 ensures that the objective function accounts for cuts in the
orderings where the cut has at least one vertex of some Qi on either side of it, and we can
compute fi constant time.
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Proof of claim: First, note that if q = 0 (i.e., T is a vertex cover of G), then Constraint
3.21 is exactly the same as Constraint 3.6. This follows from the fact that fi = ℓi = 0 for
τi when τi ∈ T .

In particular, the terms

i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S ∀i ∈ {1, . . . , k}

are the same as Constraint 3.6. As the discussion after the ILP Formulation 3.7.3 states,
Constraint 3.6 counts the number of edges immediately left of a vertex in the vertex cover.
Therefore, these terms count the edges immediately left of the vertices of a non-trivial
component Qi.

Thus, if we subtract ℓi from this value, we have the edges crossing over the vertices of
the non-trivial component Qi. This is because ℓi counts the edges from Qi to the vertices
of Tk that are left of Qi, and any vertices of I to the left of Qi are not adjacent to Qi (as
otherwise they would be in the component). Therefore, the terms

−ℓi +
i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S ∀i ∈ {1, . . . , k}

are the edges over Qi (the value O in the proof of Lemma 3.7.4). We can compute fi in this
case by using Lemma 3.7.4 if |N(τi)∩Ti| ≥ |N(τi)∩(T \Ti)| or applying Lemma 3.7.4 to σR

otherwise. Lemma 3.7.4 indicates which index should be used to compute the largest cut;
let ι be the index provided by the lemma. Note that once an ordering τ1, . . . , τk is known,
the values of ℓ and r required by the lemma are known for a τj = Qi, as N(Qi) ⊆ T .
Suppose that α vertices of Qi are to the left of ι and β vertices are to its right (so that
α + β = |Qi|). Since each Qi is a set of true twins, we can compute fi as follows

fi = ℓ · β + r · α + α · β,

since ℓ · β represents the edges from the left of Qi to the vertices of Qi on the right of the
cut, r · α represents the edges from the right of Qi to the vertices of Qi on the left of the
cut, and α · β represents the edges between vertices of Qi. Since we know which index to
check, we can compute the value fi in constant time after the ordering τ1, . . . , τk has been
chosen. ■

The correctness of the ILP follows from the previous claim and the discussion prior to
it.
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Finally, since we have only added 2k more constants and the variables in the ILP
remain bounded, Theorem 3.7.2 implies that Cutwidth is fixed-parameter tractable with
the parameter rtc(G).

91



Chapter 4

Imbalance

4.1 Introduction

The Imbalance problem was introduced by Biedl et al. [8] in the context of graph drawing,
where such an ordering is helpful (Kant [85], Kant and He [86], Papakostas and Tollis [117],
Wood [137, 138]).

Biedl et al. [8] showed that Imbalance is NP-complete for bipartite graphs with degree
at most 6 and weighted trees and they provided a pseudo-polynomial time algorithm for
weighted trees which runs in linear time on unweighted trees. Kára et al. [87] showed that
the problem is NP-complete for graphs of degree at most 4 and planar graphs.

In the parameterized complexity setting, Imbalance has been studied almost as well
as Cutwidth. Fellows et al. [52] showed that the problem is FPT when the param-
eter is the vertex cover number of the graph. Bakken [4] showed that Imbalance is
FPT when parameterized by the neighbourhood diversity of the graph. Lokshtanov et
al. [104] showed that Imbalance is FPT when parameterized by the solution size k by
constructing an algorithm that runs in time O(2O(k log k) · nO(1)), or when parameterized
by k = f(tw(G),∆(G)) for some function f where tw(G) is the treewidth of the graph
and ∆(G) is the maximum degree of the graph. The maximum degree is likely required
as the problem is similar to Cutwidth, and that problem is NP-complete for graphs with
treewidth at most 2 (Monien and Sudborough [113]). Previously, we claimed (Gorzny
and Buss [68]) that Imbalance is FPT when parameterized by twin cover number of the
graph. However, Misra and Mittal [111] showed that our approach was not correct (and
this is explained in Section 4.8). Misra and Mittal [111] also show that Imbalance is FPT
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when parameterized by the size of a twin cover and the size of the largest set of true twins
outside the twin cover and show that there is an XP-time Imbalance when the parameter
is the twin cover number. This XP time algorithm (an algorithm with run time O(nf(k))) is
weaker than an FPT (an algorithm with run time O(f(k)nO(1))) result (and the XP result
does not imply an FPT result). Gaspers et al. [61] showed that Imbalance is equivalent
to the Graph Cleaning problem, which yielded a O(n⌊k/2⌋(n+m)) time parameterized
algorithm where k is the solution size.

Some of the known complexity results for Imbalance are shown in Figure 4.1.

We aim to show that the complexity of Imbalance is often exactly the same as the
complexity of Cutwidth. This is not always true (and there is no equivalence between
the problems): for example, the FPT results for the parameter neighbourhood diversity are
different for Cutwidth and Imbalance. The order in which we prove things may suggest
that Imbalance is a specialized case of Cutwidth. However, we do not know how to
formalize this specialization, but think it would be of interest and enable many results
to carry over from one problem to the next without effort like that of this thesis. The
orderings that minimize Cutwidth also appear to be similar to those for Imbalance. In
the case of a kernel for graphs with bounded vertex cover number, the exact same reduction
for Cutwidth is immediately applicable. A dynamic programming approach similar to
the Cutwidth algorithm also apples to the imbalance case with only a few changes. For
many proofs used for Imbalance results, counting arguments are the only tools at our
disposal, and many are only possible because of the structure we impose on the graphs in
question. More general arguments appear necessary to prove results for larger classes of
graphs.

Summary of Results

In this chapter we first show some preliminary results for Imbalance. These include
observations that bound the difference in imbalances after swapping the location of some
sets in an ordering (Section 4.2), and proving closed formulas for Imbalance on some
very small graph classes (Section 4.3). We then show some helpful theorems that show
there are two useful structures for imbalance-minimal orderings on arbitrary graphs: one
with sets of true twins appearing together, and one that says an independent set within a
graph can always be perfectly balanced (Section 4.4).

Afterwards, we establish some complexity results for Imbalance. In the parameterized
complexity setting, we show that existing techniques from Cutwidth enable a faster
FPT algorithm for Imbalance when the parameter is the vertex cover number of the
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Bipartite [8] AT-Free Chordal

Bipartite
Permutation

Interval Split k-Tree

Proper
Interval

Threshold
Superfragile

[*]
Tree [8]

(a) Some known complexity results for Imbalance on restricted graph classes. The problem is
NP-complete for classes with a solid gray background, has unknown complexity for classes with
a hatched background, and is in P otherwise. Results for classes marked with [*] are shown in
this work.

vc(G) [52]

nd(G) [4]

tc(G)

mw(G)

tw(G) and ∆(G) [104]

cwd(G)

pw(G) and ∆(G) [104]

rtc(G) (from nd(G))

cc(G) (from nd(G))

FPT Unknown

(b) Some known parameterized complexity results for Imbalance for common graph parameters.
For each parameter to the left of the thick line, there is an FPT algorithm for Imbalance with
that parameter. The complexity of Imbalance is open for those parameters to the right of the
thick line.

Figure 4.1: Some known complexity results for Imbalance.
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graph and that Imbalance is not likely to admit a polynomial-size kernel with the same
parameter (Section 4.7). Specifically, we show an improved FPT algorithm for graphs with

bounded vertex cover number that is an improvement over the existing O(22O(vc(G))
nO(1))

time algorithm of Fellows et al. [52]; our algorithm runs in time O(2vc(G)nO(1)). Since
vc(G) is O(n/2) for a bipartite graph, this algorithm is also an improvement over the
existing O(n

2
!) algorithm for bipartite graphs (Biedl et al. [8]). Unlike for Cutwidth, we

do not show that Imbalance is FPT for the parameters restricted twin cover number and
edge clique cover number of the graph, as this is implied by the algorithm for graphs with
bounded neighbourhood diversity (Bakken [4]). In Section 4.5, we prove that Imbalance is
in P for superfragile graphs. In all cases, the complexity results for Imbalance that we
establish match those of Cutwidth.

These results may help solve larger open questions. For example, the result for su-
perfragile graphs builds towards an understanding of the Imbalance problem on general
interval graphs, for which the complexity of the problem is unknown.

4.2 Preliminaries

In this section we establish some useful results related to Imbalance.

We start with observations related to the reverse of an ordering. Unlike in the case of
cutwidth, reversing an ordering has no effect on the imbalances of each individual vertex.

Observation 4.2.1. If σ is an ordering of a graph with its reverse ordering σR, then
im(σ) = im(σR).

Observation 4.2.2. If σ is an ordering of a graph with its reverse ordering σR, then
ϕσ(v) = ϕσR(v) for all vertices v of σ.

We now prove some helpful and straightforward lemmas.

Lemma 4.2.3. Let G = (V,E) be a graph. Suppose that rankσ(x) ≤ 0 for some vertex
x ∈ V and ordering σ of G. Let σ′ be an ordering of G such that σV \{x} = σ′

V \{x}. If

rankσ′(x) = rankσ(x)− 2y for some y ≥ 1, then ϕσ′(x) = ϕσ(x) + 2y.

Proof. Suppose that

0 ≥ rankσ(x) ≥ rankσ(x)− 2y = rankσ′(x).
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Then
− rankσ(x) = |rankσ(x)| ≥ 0, (4.1)

and
− (rankσ(x)− 2y) = −rankσ′(x) = |rankσ′(x)| = −rankσ(x) + 2y ≥ 0. (4.2)

Putting it all together, we have

ϕσ′(x) = |rankσ′(x)|
=

∣∣|rankσ′(x)|
∣∣

= | − rankσ(x) + 2y| by (4.2)

=
∣∣|rankσ(x)|+ 2y

∣∣ by (4.1)

= |rankσ(x)|+ 2y since y ≥ 1

= ϕσ(x) + 2y,

as required.

Lemma 4.2.4. Suppose that X is a set of twins which are consecutive in some ordering
σ.

1. If |Y | neighbours of X are moved forward past X to the right of X to obtain σ′, then
ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y |.

2. If |Y | neighbours of X are moved backward past X to the left of X to obtain σ′, then
ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y |.

Proof. We prove only the first statement, as the second is symmetric (apply the first
statement to σR).

Note that

rankσ′(x) = succσ′(x)− predσ′(x)

= (succσ(x)− |Y |)− (predσ(x) + |Y |)
= succσ(x)− predσ(x)− 2|Y |
= rankσ(x)− 2|Y |.
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Therefore, each vertex x ∈ X can have its imbalance increase by at most 2 · |Y |. Thus, if
σX = σ′

X = ⟨x0, x1, . . . , xk⟩,

ϕσ′(X) =
k∑

i=0

ϕσ′(xi)

≤
k∑

i=0

(ϕσ(xi) + 2|Y |)

=
k∑

i=0

ϕσ(xi) + 2 · |Y | · |X|

= ϕσ(X) + 2 · |Y | · |X|,

as required.

Lemma 4.2.5. Let G = (V,E) be a graph. Suppose that y > rankσ(x) ≥ 0 for some y ≥ 1,
vertex x ∈ V , and ordering σ of G. Let σ′ be an ordering of G such that σV \{x} = σ′

V \{x}.

If rankσ′(x) = rankσ(x)− 2y, then ϕσ′(x) > ϕσ(x).

Proof. Assume that rankσ′(x) = rankσ(x)− 2y and y > rankσ(x) ≥ 0. Then we have:

0 ≤ rankσ(x) < y (4.3)

=⇒ −2y ≤ rankσ(x)− 2y < −y
=⇒ −2y ≤ rankσ′(x) < −y by assumption. (4.4)

Multiplying (4.3) by −1 yields:

0 ≥ −rankσ(x) > −y (4.5)

Combining (4.4) with (4.5) yields

0 ≥ −rankσ(x) > −y > rankσ′(x).

Since 0 ≥ −rankσ(x) > rankσ′(x), ϕσ′(x) = |rankσ′(x)| ≥ |rankσ(x)| > ϕσ(x), as required.

Lemma 4.2.6. Let G = (V,E) be a graph. Suppose that rankσ(x) > y > 0 for some y ≥ 1,
vertex x ∈ V , and ordering σ of G. Let σ′ be an ordering of G such that σV \{x} = σ′

V \{x}.

If rankσ′(x) = rankσ(x)− 2y, then ϕσ′(x) < ϕσ(x).
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Proof. Assume that rankσ′(x) = rankσ(x)− 2y and rankσ(x) > y > 0. Then we have:

rankσ(x) > y > 0 (4.6)

=⇒ rankσ(x)− 2y > −y > −2y

=⇒ rankσ′(x) > −y > −2y by assumption. (4.7)

We have two cases based on the sign of rankσ′(x).

Case 1: rankσ′(x) < 0. Combining the case assumption along with (4.7) yields:

0 > rankσ′(x) > −|Y | =⇒ 0 < −rankσ′(x) < |Y |,

and therefore, when combined with (4.6), we have

rankσ(x) > y > −rankσ′(x) > 0,

which implies that ϕσ′(x) < ϕσ(x).

Case 2: rankσ′(x) ≥ 0. Since rankσ(x) > rankσ(x) − 2y = rankσ′(x) ≥ 0, we have that
ϕσ′(x) < ϕσ(x).

Lemma 4.2.7. Let G = (V,E) be a graph. Suppose that rankσ(x) ≥ y > 0 for some y ≥ 1,
vertex x ∈ V , and ordering σ of G. Let σ′ be an ordering of G such that σV \{x} = σ′

V \{x}.

If rankσ′(x) = rankσ(x)− 2y and rankσ′(x) < 0, then ϕσ′(x) ≤ ϕσ(x).

Proof. Assume that rankσ(x) ≥ y > 0 for some y ≥ 1, rankσ′(x) = rankσ(x) − 2y and
rankσ′(x) < 0. These assumptions yield the following observation:

0 > rankσ′(x) by assumption

=⇒ 0 > rankσ′(x) = rankσ(x)− 2y by assumption

=⇒ 2y > rankσ′(x) = rankσ(x). (4.8)

Combining (4.8) with the assumption rankσ(x) ≥ y > 0 yields

2y > rankσ(x) ≥ y > 0. (4.9)

Multiplying (4.9) by −1, we get

− 2y < −rankσ(x) ≤ −y < 0. (4.10)

Subtracting 2y from (4.9), we get

0 > rankσ(x)− 2y ≥ −y > −2y. (4.11)
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Now we can combine (4.10) and (4.11), along with the fact rankσ′(x) = rankσ(x)− 2y that
to get

0 > rankσ(x)− 2y = rankσ′(x) ≥ −y ≥ −rankσ(x) ≥ −2y.

in which case 0 > rankσ′(x) ≥ −rankσ(x), which implies that ϕσ′(x) ≤ ϕσ(x).

The next lemma is an analogue of Lemma 3.2.11, but deals with the imbalance of an
ordering.

Lemma 4.2.8. If moving vp = σ(p) backward to a position q results in an ordering σ′ such
that rankσ′(vp) ≤ 0, then im(σ′) ≤ im(σ). If moving vp = σ(p) forward to a position q
results in an ordering σ′ such that rankσ′(vp) ≥ 0, then im(σ′) ≤ im(σ).

Proof. Let vp = σ(p). If moving vp forward results in rankσ′(vp) ≥ 0, then by definition of
the rank of a vertex, it must have been the case that rankσ(vp) ≥ 0 as well. Similarly, if
moving vp backwards results in rankσ′(vp) ≤ 0, then by definition of the rank of a vertex, it
must have been the case that rankσ(vp) ≤ 0 as well. We therefore proceed by cases based
on the sign of rankσ(vp).

Case 1: rankσ(vp) ≥ 0. Let τ be obtained by moving vp forward past vp+1 = σ(p + 1)
where ϕτ (vp) ≥ 0.

• If vp+1 /∈ N(vp), then neither vp nor vp+1 has its imbalance change. Therefore,
im(τ) ≤ im(σ).

• Otherwise, vp+1 ∈ N(vp). Then ϕτ (vp) = ϕσ(vp)−2 ≥ 0 (which implies that ϕσ(vp) >
1) and ϕτ (vp+1) ≤ ϕσ(vp+1) + 2. Therefore, im(τ) ≤ im(σ).

We can repeat this as long as vp moves forward and the resulting position has a non-negative
rank. In this case, im(τ) ≤ im(σ), as required.

Case 2: rankσ(vp) ≤ 0. Let τ be obtained by moving vp backward past vp−1 = σ(p − 1)
where ϕτ (vp) ≤ 0.

• If vp−1 /∈ N(vp), then neither vp nor vp−1 has its imbalance change. Therefore,
im(τ) ≤ im(σ).

• Otherwise, vp−1 ∈ N(vp). Then ϕτ (vp) = ϕσ(vp)−2 ≤ 0 (which implies that ϕσ(vp) ≤
−2) and ϕτ (vp−1) ≤ ϕσ(vp−1) + 2. Therefore, im(τ) ≤ im(σ).
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We can repeat this as long as vp moves backward and the resulting position has a non-
positive rank. In this case, im(τ) ≤ im(σ), as required.

Lemma 4.2.8 above does not describe all the scenarios where vertices can be freely
moved without increasing the imbalance of an ordering. For example, a pendant vertex
with negative rank may freely be moved forward without increasing the imbalance of the
ordering, as it is not adjacent to any vertex to its right in the ordering.

Lemma 4.2.9. Let G = (V,E) be a graph and let (u, v) ∈ E for u, v ∈ V . If u <σ v in an
ordering σ of G, then

1. rankσ−v(u) = rankσ(u)− 1, and

2. rankσ−u(v) = rankσ(v) + 1.

Proof. We first prove (1). In σ − v, which is obtained by deleting v from σ, u has one less
neighbour to its right but the same amount to its left. From the definition of rank, we
have

rankσ−v(u) = succσ−v(u)− predσ−v(u)

= succσ(u)− 1− predσ(u)

= rankσ(u)− 1.

We now prove (2). In σ − u, which is obtained by deleting u from σ, v has one less
neighbour to its left but the same amount to its right. From the definition of rank, we
have

rankσ−u(v) = succσ−u(v)− predσ−u(v)

= succσ(v)− (predσ(v)− 1)

= rankσ(v) + 1.

Lemma 4.2.10. Let G be a graph. If there is an imbalance-minimal ordering σ of G where
σ(1) = v, then im(G) ≥ im(G− v).

Proof. Let σ be an imbalance-minimal ordering of G where σ(1) = v. Since σ(1) = v, all
of N(v) is to the right of v in σ, i.e., ϕσ(v) = |N(v)| = rankσ(v) ≥ 0.
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Let R≥0 = {u ∈ N(v) | rankσ(u) ≥ 0} and R<0 = {u ∈ N(v) | rankσ(u) < 0}. The sets
R≥0 and R<0 partition N(v), that is, |R≥0|+ |R<0| = |N(v)|.

If u ∈ R≥0, then rankσ−v(u) = rankσ(u) + 1, and therefore ϕσ−v(u) = ϕσ(u) + 1 by
Lemma 4.2.9. If u ∈ R<0, then rankσ−v(u) = rankσ(u) + 1, and therefore ϕσ−v(u) =
ϕσ(u)− 1 by Lemma 4.2.9.

Putting it all together,

im(G) = im(σ)

=
∑
u∈V

ϕσ(u)

=
∑

u∈V \{v}

ϕσ(u) + ϕσ(v)

=
∑

u∈V \{v}

ϕσ(u) + |N(v)|

=
∑

u∈V \{v}

ϕσ(u) + |R≥0(v)|+ |R<0(v)|

≥
∑

u∈V \{v}

ϕσ(u) + |R≥0(v)| − |R<0(v)| since |R<0(v)| ≥ 0

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

ϕσ(u) +
∑

u∈R<0

ϕσ(u)

+ |R≥0(v)| − |R<0(v)|

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

ϕσ(u) + |R≥0(v)|

+
∑

u∈R<0

ϕσ(u)− |R<0(v)|

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

(ϕσ(u) + 1)

+
∑

u∈R<0

(ϕσ(u)− 1)

=
∑

u∈V (G)\N(v)

ϕσ−v(u) +
∑

u∈R≥0

ϕσ−v(u) +
∑

u∈R<0

ϕσ−v(u)

=
∑

u∈V (G)\{v}

ϕσ−v(u)
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= im(σ − v)

≥ im(G− v).

Let X be a consecutive set in an ordering σ. Recall that ϕσ(X) denotes the sum of the
imbalance of vertices in X for the ordering σ. For an ordering σ and a consecutive set of
true twins vertices X, we will use ϕ̂σ(X) to denote |succσ(X)− predσ(X)|.
Observation 4.2.11. Let G be a graph and let X be an equivalence class of true twins.
Suppose that σ and τ are two orderings of G that place X consecutively. If ϕ̂σ(X) > ϕ̂τ (X),
then ϕσ(X) > ϕτ (X).

Recall that σX denotes the ordering of X imposed by σ, for a set X. The notation
σ<X , where X is a consecutive set in σ, denotes the ordering of σ restricted to the vertices
prior to the consecutive set X (we will use analogous for >, ≤, and ≥).

Lemma 4.2.12. Let G be a graph with |U(G)| ≥ 1. If σ is an ordering of a G that places
U(G) consecutively and rankσ(u) ≥ 0 for all u ∈ U(G), then |σ<U(G)| ≤ |σ>U(G)|.

Proof. Write σ = ⟨L · U(G) · R⟩ for some sets L,R ⊆ (V (G) \ U(G)). Let u ∈ U(G) be
rightmost in U(G) among all vertices of U(G). Then,

0 ≤ rankσ(u) = succσ(u)− predσ(u)

= |R| − (|L|+ |U(G)| − 1)

= |R| − |L| − |U(G)|+ 1

≤ |R| − |L| − |U(G)|+ |U(G)|
= |R| − |L|,

that is, |R| − |L| ≥ 0. Since R = σ<U(G) and L = σ>U(G), we are done.

The next lemma provides bounds on the difference |im(σ′)−im(σ)| when σ′ is obtained
by interchanging two consecutive sets of twins in σ. Figure 4.2 illustrates example cases
for the lemma.

Lemma 4.2.13. Let X be a set of true twins with Y ⊆ N(X) for some set of vertices Y .
Suppose that X <σ Y for some σ, where there is no vertex between X and Y , and X and
Y are consecutive in σ. Let σ′ be obtained from σ by swapping the positions of X and Y
in σ.

If predσ(X) ≥ succσ(X), then ϕσ(X) < ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y |. Otherwise,
predσ(X) < succσ(X) and
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1. if succσ(X)−|Y | < predσ(X) < succσ(X), then ϕσ(X)+2·|X|·|Y | ≥ ϕσ′(X) > ϕσ(X);

2. else if predσ(X) = succσ(X)− |Y |, then ϕσ′(X) = ϕσ(X);

3. otherwise predσ(X) < succσ(X)− |Y |, and ϕσ′(X) < ϕσ(X).

Proof. We break the proof up into several claims. The following equations are necessary,
and arise due to the construction of σ′ from σ:

succσ(X) = succσ′(X) + |Y | (4.12)

predσ(X) = predσ′(X)− |Y | (4.13)

By definition, we have the following

succσ(X)− predσ(X) = succσ′(X) + |Y | − predσ(X) by (4.12)

= succσ′(X) + |Y | − (predσ′(X)− |Y |) by (4.13)

= succσ′(X)− predσ′(X) + 2|Y | by (4.13),

which implies

succσ(X)− predσ(X)− 2|Y | = succσ′(X)− predσ′(X). (4.14)

Claim 4.2.14. If predσ(X) ≥ succσ(X), then ϕσ(X) < ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y |.

Proof of claim: Note that

0 ≤ ϕ̂σ(C1) = |succσ(X)− predσ(X)|
= |predσ(X)− succσ(X)|
= predσ(X)− succσ(X) since predσ(X) ≥ succσ(X)

< predσ(X) + |Y | − succσ(X) + |Y | since |Y | ≥ 1

= predσ′(X)− (succσ(X)− |Y |) by (4.13)

= predσ′(X)− succσ′(X) by (4.12)

= |predσ′(X)− succσ′(X)|
= ϕ̂σ′(C1).

Therefore, we have that ϕσ(X) < ϕσ′(X) by Observation 4.2.11. We also have that
ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y | by Lemma 4.2.4. Combining these two facts concludes
the proof of the claim. ■
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7 3 5

X Y

σ

predσ(X) = 7
succσ(X) = 5

7 5 3

Y X

σ′

(a) An example of statement 1 where
predσ(X) ≥ succσ(X). Observe that
ϕσ(X) = 6 and ϕσ′(X) = 36 = ϕσ(X) +
2 · |X| · |Y |.

11 3 7 5

X Y

σ

predσ(X) = 11
succσ(X) = 12

11 7 3 5

Y X

σ′

(b) An example of statement 1a) where
predσ(X) < succσ(X) and succσ(X) −
|Y | < predσ(X) < succσ(X). Observe that
ϕσ(X) = 5 and ϕσ(X) + 2 · |X| · |Y | = 47 >
ϕσ′(X) = 39.

5 3 7 5

X Y

σ

predσ(X) = 5
succσ(X) = 12

5 7 3 5

Y X

σ′

(c) An example of statement 1b) where
predσ(X) < succσ(X) and predσ(X) =
succσ(X)−|Y |. Observe that ϕσ(X) = 21 =
ϕσ′(X).

11 3 7 13

X Y

σ

predσ(X) = 11
succσ(X) = 20

11 7 3 13

Y X

σ′

(d) An example of statement 1c) where
predσ(X) < succσ(X) and predσ(X) <
succσ(X) − |Y |. Observe that ϕσ(X) = 27
and ϕσ′(X) = 15.

Figure 4.2: An illustration of Lemma 4.2.13. An edge between boxes
indicates that every vertex in one box is adjacent to every vertex in
the other box. Each of the sets X and Y are a set of true twins in
these examples.
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Claim 4.2.15. Suppose that predσ(X) < succσ(X). If succσ(X) − |Y | < predσ(X) <
succσ(X), then ϕσ(X) + 2 · |X| · |Y | ≥ ϕσ′(X) > ϕσ(X).

Proof of claim: Since predσ(X) < succσ(X), ϕ̂σ(X) > 0, and moreover,

0 < ϕ̂σ(X) = |succσ(X)− predσ(X)|
= succσ(X)− predσ(X) since predσ(X) < succσ(X)

< succσ(X)− (succσ(X)− |Y |) since succσ(X)− |Y | < predσ(X)

= |Y |.

Thus we have

0 < succσ(X)− predσ(X) < |Y | (4.15)

=⇒ −2|Y | < succσ(X)− predσ(X)− 2|Y | < −|Y |
=⇒ −2|Y | < succσ′(X)− predσ′(X) < −|Y | by (4.14) (4.16)

Now multiply 4.15 by −1 to get

0 > −(succσ(X)− predσ(X)) > −|Y |. (4.17)

Combine (4.16) and (4.17) to get

0 > −(succσ(X)− predσ(X)) > −|Y | > succσ′(X)− predσ′(X) > −2|Y |.

Since 0 > −(succσ(X) − predσ(X)) > succσ′(X) − predσ′(X), ϕ̂σ′(X) = |succσ′(X) −
predσ′(X)| > | − (succσ(X)− predσ(X))| = ϕ̂σ(X).

Therefore, we have that ϕσ(X) < ϕσ′(X) by Observation 4.2.11. We also have that
ϕσ′(X) ≤ ϕσ(X) + 2 · |X| · |Y | by Lemma 4.2.4. Combining these two facts concludes the
proof of the claim. ■

Claim 4.2.16. Suppose that predσ(X) < succσ(X). If predσ(X) = succσ(X) − |Y |, then
ϕσ′(X) = ϕσ(X).
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Proof of claim: Note that

0 ≤ ϕ̂σ(C1) = |succσ(X)− predσ(X)|
= succσ(X)− predσ(X) since predσ(X) < succσ(X)

= predσ(X) + |Y | − predσ(X) by claim assumption

= |Y |
= succσ(X)− succσ(X) + |Y |
= succσ(X)− (succσ(X)− |Y |)
= succσ(X)− predσ(X)

= succσ(X)− predσ(X) + |Y | − |Y |
= succσ′(X)− (predσ(X) + |Y |) by (4.12)

= succσ′(X)− predσ′(X) by (4.13)

= |succσ′(X)− predσ′(X)|
= ϕ̂σ′(C1),

implying that ϕσ(X) = ϕσ′(X), as required. ■

Claim 4.2.17. Suppose that predσ(X) < succσ(X). If predσ(X) < succσ(X) − |Y |, then
ϕσ′(X) < ϕσ(X).

Proof of claim: First, note that

succσ′(X) + predσ′(X) = succσ(X) + predσ(X). (4.18)

By the claim assumption and (4.12), we also have

predσ(X) < succσ(X)− |Y | = succσ′(X). (4.19)

Combining (4.18) and (4.19), we must also have that

succσ(X) > predσ′(X). (4.20)

Now observe that

ϕ̂σ(X) = |succσ(X)− predσ(X)|
= succσ(X)− predσ(X) since predσ(X) < succσ(X)

> predσ′(X)− predσ(X) by (4.20)

= predσ(X) + |Y | − predσ(X) by (4.12)

= |Y | > 0. (4.21)

106



There are two cases, based on whether predσ′(X) ≥ succσ′(X).

Case 1: predσ′(X) ≥ succσ′(X).

0 ≤ ϕ̂σ′(X) = |succσ′(X)− predσ′(X)|
= |predσ′(X)− succσ′(X)|
= predσ′(X)− succσ′(X) by case assumption

< predσ′(X)− predσ(X) by (4.19)

= predσ(X) + |Y | − predσ(X) by (4.13)

= |Y |. (4.22)

Combining (4.21) and (4.22), we have that ϕσ′(X) < ϕσ(X) by Observation 4.2.11, in this
case.

Case 2: predσ′(X) < succσ′(X). We break this case into two subcases, based on how
large ϕ̂σ(X) is.

Case 2A: ϕ̂σ(X) ≥ 2|Y |. In this case,

ϕ̂σ(X) ≥ 2|Y |
=⇒ |succσ(X)− predσ(X)| ≥ 2|Y |

=⇒ succσ(X)− predσ(X) ≥ 2|Y | since predσ(X) < succσ(X)

=⇒ succσ(X)− predσ(X)− 2|Y | ≥ 0 since |Y | ≥ 0.

Therefore, we have that ϕ̂σ(X) = succσ(X)− predσ(X) ≥ succσ(X)− predσ(X)− 2|Y | =
ϕ̂σ′(X) ≥ 0 by the case assumption. Therefore, we have that we have that ϕσ′(X) < ϕσ(X)
by Observation 4.2.11, in this case.

Case 2B: ϕ̂σ(X) < 2|Y |.
Note that

2|Y | > succσ(X)− predσ(X) > |Y | > 0 by (4.21)

=⇒ 0 > succσ(X)− predσ(X)− 2|Y | > −|Y | > −2|Y |
=⇒ 0 > succσ′(X)− predσ′(X) > −|Y | > −2|Y | by (4.14). (4.23)

Now we can use (4.21):

ϕ̂σ(X) > |Y | > 0

=⇒ succσ(X)− predσ(X) > |Y | > 0 by (4.21)

=⇒ −(succσ(X)− predσ(X)) < −|Y | < 0. (4.24)
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Therefore, from 4.23 and 4.24, we have 0 > succσ′(X)−predσ′(X) > −|Y | > −(succσ(X)−
predσ(X)). This implies ϕ̂σ′(X) = |succσ′(X)−predσ′(X)| < |− (succσ(X)−predσ(X))| =
ϕ̂σ(X). Therefore, we have that we have that ϕσ′(X) < ϕσ(X) by Observation 4.2.11, in
this case.

Since we have ϕσ′(X) < ϕσ(X) in any case, the claim is proved. ■

The lemma follows from the previous claims.

4.3 Small Graph Classes

Lokshtanov et al. [104] proved Lemma 3.1.1 and wondered if it may be of general interest.
In this section we show how Lemma 3.4.2, which strengthens Lemma 3.1.1, can be used
to get closed formulas for Imbalance. We focus on some small graph classes that have
simple formulas for Cutwidth.

The triangulated triangle Tℓ is the graph1 whose vertices are the non-negative integer
triples with sum ℓ such that vertices (x, y, z) and (x′, y′, z′) are adjacent if and only if
|x − x′| + |y − y′| + |z − z′| = 2 (see, e.g., Hochberg et al. [81]). Lin et al. [100] show
how such graphs can be drawn in the plane by putting vertex (x, y, z) at point (x, y). An
example is provided in Figure 4.3a, which also indicates the position of each vertex in a
cutwidth-minimal ordering. Lin et al. [100] determined the following closed formula for
the cutwidth of these graphs, using the ordering indicated on Figure 4.3a.

Theorem 4.3.1 (Theorem 1.1, Lin et al. [100]). cw(Tℓ) = 2ℓ.

We prove the following corollary, establishing the imbalance of triangulated triangles.

Corollary 4.3.2. im(Tℓ) = 2cw(Tℓ) = 4ℓ.

Proof. Given a triangulated triangle Tℓ, draw it in the plane using the method of Lin et
al. [100]. Let σ be an ordering of the vertices which corresponding to the lexicographic order
of coordinates (x, y) which contain a vertex of a graph, starting with (0, 0), (0, 1), . . . , (0, ℓ+
1) (see e.g., Figure 4.3b). Lin et al. showed that such orderings are cutwidth-minimal.

In this ordering, ϕσ(σ(1)) = rankσ(σ(1)) = 2 and ϕσ(σ(i)) = rankσ(σ(i)) = 2 for all
1 < i < ℓ + 1. For any vertex v with coordinate (x, 0) for x > 0 such that v is not last in

1Note that these graphs are not triangulated in the sense of chordal graphs.
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(a) The graph T3 drawn in the plane.

1 2 3 4 5 6 7 8 9 10v

rankσ(v) 2 2 2 0 0 0 −2 0 −2 −2

(b) An ordering σ such that cw(σ) = cw(T3). The vertical line is the first largest cut.

Figure 4.3: An example triangulated triangle and its cutwidth-
minimal ordering.

σ, ϕσ(v) = rankσ(v) = 0, as it has two neighbours before it in the ordering and two after.
For any vertex u with coordinate (x, y) where x > 0 and there is no vertex at coordinate
(x, y′) where y′ > y, ϕσ(u) = 2 and rankσ(u) = −2.

The only vertices which remain are vertices w with coordinates (x, y) x > 0 such that
they have neighbours at coordinates (x, y+1), (x+1, y), (x+1, y−1), (x, y−1), (x−1, y),
and (x−1, y+1); half of these neighbours are placed after w in σ and the other half appear
before w in σ.

It is easy to verify that the first largest cut is immediately after the first vertex u with
coordinate (0, ℓ).

Thus, vertices only have non-negative rank before the first largest cut and vertices only
have non-positive rank after it. Therefore by Lemma 3.4.2, im(G) = 2cw(G) = 4ℓ.

The Möbius ladder Mk (k ≥ 3) is a cycle of length 2k with each pair of vertices at
distance k apart in the cycle joined by an edge. Example Möbius ladders are provided
in Figures 4.4a and 4.4b. Lin et al. [101] proved the following constant value for Möbius
ladders.

Theorem 4.3.3 (Theorem 4.2, Lin et al. [101]). cw(Mk) = 5.

109



0 1 2

3 4 5

(a) The graph M3. Thick edges
are cycle edges.

0 1 2 3

4 5 6 7

(b) The graph M4. Thick edges
are cycle edges.

0 3 1 4 2 5

3 1 1 −1 −1 −3

v

rankσ(v)

(c) The graph M3 drawn to illustrate a cutwidth-minimal ordering. The vertical line
indicates the (only) largest cut.

0 4 1 5 2 6 3 7

3 1 1 −1 1 −1 −1 −3

v

rankσ(v)

(d) The graph M4 drawn to illustrate a cutwidth-minimal ordering. The vertical line
indicates the first largest cut.

Figure 4.4: Example Möbius ladders and their cutwidth-minimal or-
derings.
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In the next theorem, we prove that im(M3) = 2cw(M3) = 10, but for k > 3, im(Mk) >
2cw(M3). This provides an explicit class of graphs for which the bound provided by Lemma
3.1.1 is not tight. For k > 3, Lemma 3.4.2 is not applicable since there is no largest cut in
a cutwidth-minimal ordering which results in a sign change for the ranks of the vertices,
unlike when k = 3 (see Figures 4.4c and 4.4d).

Theorem 4.3.4. im(Mk) = 2k + 4.

Proof. Note that every vertex has odd degree exactly 3 (its two neighbours on the cycle
and the single vertex “across” from it on the cycle). Therefore ϕσ(σ(1)) = ϕσ(σ(n)) = 3
and ϕσ(σ(i)) ≥ 1 for any 1 < i < n for any imbalance-minimal ordering σ. Therefore if
im(σ) = im(G), then im(σ) ≥ (2k−2)+6 = 2k+4. Suppose that Mk was constructed from
the cycle {v0, . . . , v2k−1}. An ordering σ = ⟨v0, vk, v1, vk+1, . . . , vk−1, v2k−1⟩ has imbalance
im(σ) = 3 + 2(k − 1) + 3 = 2k + 4, which is the best possible.

Lemma 4.3.5. If G is the complete graph Kn, then im(G) = 2cw(G) = 2 ·
⌈
n
2

⌉
·
⌊
n
2

⌋
.

Proof. Since all vertices are true twins in a complete graph, any ordering σ of G achieves
is both cutwidth-minimal and imbalance-minimal. The result follows from Lemma 3.3.1
and Lemma 3.4.2.

Lemma 4.3.6. Consider a complete bipartite graph Km,n. Then

im(Km,n) =

{
mn if mn is even

mn+ 1 if mn is odd

Proof. The result follows from Lemma 3.3.2 and Lemma 3.4.2. Hence im(G) = 2cw(G) in
this case.

There may be other small graph classes for which closed formulas for imbalance can be
proved using Lemmas 3.4.2 or 3.1.1. As we will see in Section 4.7, these lemmas can also
be used in more involved settings.

4.4 Structures for Optimal Orderings

In this chapter we show that, for any graph, two different types of imbalance-optimal
orderings always exist.
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v1

v2

v3

v4

Figure 4.5: An example graph G where it is not possible to perfectly
balance a given independent set and have each equivalence class of
true twins be consecutive. Vertices 1 and 4 form an independent set,
while vertices 2 and 3 are true twins. An imbalance-minimal ordering
of G balancing {v1, v4} (satisfying Theorem 4.4.1) is ⟨v2, v1, v4, v3⟩,
while an imbalance-minimal ordering with {v2, v3} (satisfying Theo-
rem 4.4.2) is ⟨v1, v2, v3, v4⟩. It is easy to see that in any ordering σ
of G such that ϕσ(v1) = 0, the ordering necessarily places v1 between
v2 and v3. Similarly, any ordering σ′ of G that keeps the vertices v2
and v3 consecutive places v1 on one side of {v2, v3}, in which case
ϕσ′(v1) = 2.

The first type of optimal ordering shows that an independent set can always be perfectly
balanced in some imbalance-minimal ordering.

The second shows that there are imbalance-minimal orderings that group each equiva-
lence class of true twins consecutively (similar to those for Cutwidth provided by Theorem
3.5.1). This type of ordering is helpful for superfragile graphs (Section 4.5).

Note that it is not always possible to have imbalance-minimal orderings for general
graphs which satisfy both constraints at once; see Figure 4.5 for an example.

The first structure is easier to establish, and is formalized in the following theorem.

Theorem 4.4.1. Let G = (A ∪B,E) be a graph where B is an independent set and let σ
be such that im(σ) = im(G). There exists an imbalance-minimal layout σ∗ such that for
all b ∈ B, ϕσ∗(b) ∈ {0, 1}; moreover, σA agrees with σ∗

A.

Proof. Let σ be an imbalance-minimal ordering and suppose that b ∈ B has ϕσ(b) > 1.
Without loss of generality, suppose that b has k ≥ 2 more neighbours to its right than its
left. Let w be the vertex to the right of b in σ, and let σ′ be the result of swapping b and w.
If (b, w) /∈ E, the swap does not change the total imbalance of the ordering as ϕσ′(b) = ϕσ(b)
and ϕσ′(w) = ϕσ(w). If (b, w) ∈ E, ϕσ′(b) = ϕσ(b) − 2 and ϕσ′(w) ≤ ϕσ(w) + 2. In this
case, k is reduced by 2 (since the number of its neighbours on its left increases by one and
the number of its neighbours on its right decreased by one). We can repeat this until k = 1
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and ϕσ∗(b) = 1 if |N(b)| is odd, or k = 0 and ϕσ∗(b) = 0 if |N(b)| is even. Since we did not
move any vertices of A past any other vertices in A, σA agrees with σ∗

A.

We now prove that there are imbalance-minimal orderings where the equivalence classes
of true twins of a graph are each consecutive. The proof follows the same structure as the
proof of Theorem 3.5.1.

Theorem 4.4.2. For any graph G, there exists an imbalance-minimal ordering σ of V (G)
such that each equivalence class of true twins appears consecutively in σ.

Recall that µ(σ) is the number of maximal consecutive sets of true twins in the ordering
σ, and that tt(G) is the number of equivalence classes of true twins in the graph G. Lastly,
recall that by definition, µ(σ) ≥ tt(G) for any graph G and ordering σ of G.

Proof of Theorem 4.4.2. Say that τ ⋖ σ if and only if µ(τ) < µ(σ) and im(τ) ≤ im(σ) for
two orderings σ and τ of G.

Suppose that σ is such that im(σ) = im(G) = k but µ(σ) > tt(G) (if µ(σ) = tt(G) and
im(σ) = im(G) there is nothing to prove). We will find an ordering τ ⋖ σ. Repeating this
until the resulting order τ is such that µ(τ) = tt(G) proves the theorem.

Let U ⊆ V (G) be an equivalence class of true twins which is not consecutive in σ.
We may assume that there are at least two distinct, maximal consecutive sets of vertices
U1 ⊆ U and U2 ⊆ U in σ. Pick two such sets U1 and U2 such that U1 <σ U2 and there is
no vertex u ∈ U such that U1 <σ u <σ U2. Let u ∈ U1 be the rightmost vertex of U1 in
σ, and v ∈ U2 be the leftmost vertex of U2 in σ. We have that u <σ v, and that u is not
beside v in σ (as otherwise U1 would be beside U2 and U1 ∪ U2 would be a consecutive set
in σ).

Write σ = ⟨L · U1 · Y · U2 · R⟩ for some set Y and (possibly empty) sets L and R.
Furthermore, partition Y into maximal consecutive sets Y1, . . . , Yℓ where each Yj (1 ≤ j ≤
ℓ) is a set of true twins from the same equivalence class. Since U1 is not beside U2 in σ,
ℓ ≥ 1.

We may assume Yℓ ⊆ N(v) as otherwise we can swap U2 left until it is immediately to
the right of one of its neighbours. Similarly Y1 ⊆ N(u), as otherwise we can swap U1 right
until it is immediately to the left of one of its neighbours.

We will show that σ can be modified to an ordering π where U1 is beside U2 (so that
U1 ∪U2 is consecutive) such that the resulting order has no worse imbalance and does not
have any set Yi split either. The imbalance of vertices in L ∪R will not change.
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We consider cases based on the signs of rankσ(u) and rankσ(v). Since u and v are true
twins, by Observation 3.2.10, the case where rankσ(u) ≤ 0 but rankσ(v) ≥ 0 is impossible.

Case 1: rankσ(u) ≤ 0 and rankσ(v) ≤ 0. If we move v immediately right of u to get
σ′, v would have rank at most rankσ(u) − 2 ≤ 0 by Lemma 3.2.9. Since the rank of a
vertex increases by two when it moves backward past one of its neighbours, and v moved
past |Mv| such neighbours in σ′, we must have had rankσ(u) ≤ −1− (2 · |Mv|). Since the
ranks of true twins are non-increasing (Observation 3.2.10), all vertices in U2 have rank
at most −1 − (2 · |Mv|). Since the rank of u ∈ U2 was negative and increased to a value
which is still negative, the imbalance of u ∈ U2 has improved by 2 · |Mv|. Therefore, if we
let τ = ⟨L · U1 · U2 · Y · R⟩, we have that ϕτ (U2) = ϕσ(U2) − 2 · |U2| · |Mv|. By Lemma
4.2.4, ϕτ (Mv) ≤ ϕσ(Y ) + 2 · |U2| · |Mv|. Note that ϕτ (Y \Mv) = ϕσ(Y \Mv) since those
vertices have the same number of vertices on either side of them in both orderings. Thus,
im(τ) ≤ im(σ), and since U1 ∪ U2 is consecutive, µ(τ) < µ(σ); therefore τ ⋖ σ. We have
an ordering τ ⋖ σ in the case rankσ(u) ≤ 0 and rankσ(v) ≤ 0.

Case 2: rankσ(u) > 0 and rankσ(v) ≥ 0. If we move u immediately left of v to get
σ′, u would have rank at least rankσ(v) + 2 ≥ 0 by Lemma 3.2.9. Since the rank of a
vertex decreases by two when it moves forward past one of its neighbours, and v moved
past |Mv| such neighbours in σ′, we must have had rankσ(u) ≥ 2 · |Mv|. Since the ranks
of true twins are non-increasing (Observation 3.2.10), all vertices in U1 have rank at least
2 · |Mv|. Since the rank of u ∈ U1 was positive and decreased to a value which is still
non-negative, the imbalance of u ∈ U1 has improved by 2 · |Mv|. Therefore, if we let
τ = ⟨L · Y · U1 · U2 · R⟩, we have that ϕτ (U1) = ϕσ(U1) − 2 · |U1| · |Mv|. By Lemma
4.2.4, ϕτ (Mv) ≤ ϕσ(Y ) + 2 · |U1| · |Mv|. Note that ϕτ (Y \Mv) = ϕσ(Y \Mv) since those
vertices have the same number of vertices on either side of them in both orderings. Thus,
im(τ) ≤ im(σ), and since U1 ∪ U2 is consecutive, µ(τ) < µ(σ); therefore τ ⋖ σ. We have
an ordering τ ⋖ σ in the case rankσ(u) > 0 and rankσ(v) ≥ 0.

Case 3: rankσ(u) > 0 and rankσ(v) < 0. There is a rightmost position between u and v
such that u will be perfectly balanced (and the rank of v will be non-negative). We can
move u forward to that position, followed by all of U1, by Lemma 4.2.8. Call the resulting
ordering σ0. Then, the position immediately right of u in σ0 is where v achieves is maximal
non-positive rank, and would have an imbalance that is no worse than ϕσ(v). Therefore,
we can move v backward to that position, followed by all of U2, by Lemma 4.2.8. Call the
resulting ordering σ1.

We have reduced µ by 1 by gathering the sets U1 and U2, but this may have resulted
in splitting some set Yj (1 ≤ j ≤ ℓ), which may have increased µ by 1. We may assume
that µ(σ1) = µ(σ), as otherwise µ(σ1) < µ(σ) and im(σ1) ≤ im(σ); therefore σ′ ⋖ σ and
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we are done.

Therefore, we must have that σ1 = ⟨L′ · Y ′
j ·U1 ·U2 · Y ′′

j ·R′⟩ where Y ′
j and Y ′′

j partition

Yj, L
′ = L ∪

(⋃j−1
i=1 Yi

)
, and R′ = R ∪

(⋃ℓ
i=j+1 Yi

)
. By Theorem 3.4.4 and the fact that

U1 ∪U2 and Yj are sets of true twins, there is an ordering where σ′ = ⟨L′ · Yj ·U1 ∪U2 ·R′⟩
or σ′ = ⟨L′ · U1 ∪ U2 · Yj · R′⟩ and im(σ′) ≤ im(σ1). Thus, µ(σ′) = µ(σ1) − 1 and
im(σ′) ≤ im(σ1) ≤ im(σ) and σ′ ⋖ σ, as required. We have an ordering σ′ ⋖ σ in the case
rankσ(u) > 0 and rankσ(v) < 0.

Since we have found an ordering τ ⋖ σ in every case, the proof is complete.

Consequences

The remaining results in this section follow from the previous theorem. They are not used
in this thesis, but may be helpful for future proofs. In particular, they may enable inductive
proofs in some settings. The first result establishes a condition for when a vertex is first
in some imbalance-minimal ordering.

Corollary 4.4.3. Let G be a graph such that U(G) ̸= ∅. If v ∈ V (G) \ U(G) is such that
N(v) = U(G), then there is an imbalance-minimal ordering σ of G such that σ(1) = v and
U(G) is consecutive.

Proof. Let τ be an imbalance-minimal ordering provided by Theorem 4.4.2, i.e., one which
places all of U(G) consecutively. Suppose without loss of generality that v <τ U(G) (as
otherwise we can use τR).

Since v is only adjacent to U(G), v is not adjacent to the vertex u immediately left of
v in τ . We can swap the positions of u and v without increasing the imbalance, as neither
vertex has its rank change in this operation. We can repeatedly swap v with the vertex
to its left in the resulting ordering until v is the first vertex, and call that ordering σ. No
swap increased the imbalance of the ordering, so im(σ) = im(τ) = im(G).

The previous corollary allows us to say a bit more about the structure of (optimal)
orderings, as shown in the next two lemmas.

Lemma 4.4.4. Let G be a graph such that U(G) ̸= ∅ and let v ∈ V (G) \ U(G) be such
that N(v) = U(G). If im(G) = im(G− v), then there is an imbalance-minimal ordering π
of G such that rankπ(u) ≥ 0 for all u ∈ U(G).
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Proof. The proof is by contradiction; suppose to the contrary that im(G) = im(G − v)
and, for every imbalance-minimal ordering π, there is at least one vertex of N(v) such
that rankπ(u) < 0. Let σ be a imbalance-minimal ordering of G where σ(1) = v; one
exists by Corollary 4.4.3. Since σ(1) = v, all of N(v) is to the right of v in σ, i.e.,
ϕσ(v) = |N(v)| = rankσ(v) > 0.

Let R≥0 = {u ∈ N(v) | rankσ(u) ≥ 0} and R<0 = {u ∈ N(v) | rankσ(u) < 0}. The
sets R≥0 and R<0 partition N(v), that is, |R≥0|+ |R<0| = |N(v)|. Since every imbalance-
minimal ordering of G has at least one vertex of N(v) with negative rank, |R<0| ≥ 1.

If u ∈ R≥0, then rankσ−v(u) = rankσ(u) + 1, and therefore ϕσ−v(u) = ϕσ(u) + 1 by
Lemma 4.2.9. If u ∈ R<0, then rankσ−v(u) = rankσ(u) + 1, and therefore ϕσ−v(u) =
ϕσ(u)− 1 by Lemma 4.2.9.

Putting it all together,

im(G) = im(σ)

=
∑
u∈V

ϕσ(u)

=
∑

u∈V \{v}

ϕσ(u) + ϕσ(v)

=
∑

u∈V \{v}

ϕσ(u) + |N(v)|

=
∑

u∈V \{v}

ϕσ(u) + |R≥0(v)|+ |R<0(v)|

>
∑

u∈V \{v}

ϕσ(u) + |R≥0(v)| since |R<0(v)| ≥ 1

>
∑

u∈V \{v}

ϕσ(u) + |R≥0(v)| − |R<0(v)| since |R<0(v)| ≥ 1

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

ϕσ(u) +
∑

u∈R<0

ϕσ(u)

+ |R≥0(v)| − |R<0(v)|

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

ϕσ(u) + |R≥0(v)|

+
∑

u∈R<0

ϕσ(u)− |R<0(v)|
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=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈R≥0

(ϕσ(u) + 1)

+
∑

u∈R<0

(ϕσ(u)− 1)

=
∑

u∈V (G)\N(v)

ϕσ−v(u) +
∑

u∈R≥0

ϕσ−v(u) +
∑

u∈R<0

ϕσ−v(u)

=
∑

u∈V (G)\{v}

ϕσ−v(u)

= im(σ − v)

≥ im(G− v)

= im(G) by assumption on v,

which is a contradiction.

Lemma 4.4.5. Let G be a graph such that U(G) ̸= ∅ and let v ∈ V (G) \ U(G) be such
that N(v) = U(G). If there is an ordering σ of G such that rankσ(u) ≥ 0 for all u ∈ U(G)
and σ(1) = v, then im(σ) = im(σ − v).

Proof. Since σ(1) = v, all of N(v) is to the right of v in σ, i.e., ϕσ(v) = |N(v)| = rankσ(v) >
0.

For all u ∈ U(G), rankσ−v(u) = rankσ(u) + 1, and therefore ϕσ−v(u) = ϕσ(u) + 1 by
Lemma 4.2.9.

Putting it all together,

im(G) = im(σ)

=
∑
u∈V

ϕσ(u)

=
∑

u∈V \{v}

ϕσ(u) + ϕσ(v)

=
∑

u∈V \{v}

ϕσ(u) + |N(v)|

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈U(G)

ϕσ(u) + |N(v)|

=
∑

u∈V (G)\N(v)

ϕσ(u) +
∑

u∈U(G)

(ϕσ(u) + 1)
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=
∑

u∈V (G)\N(v)

ϕσ−v(u) +
∑

u∈U(G)

ϕσ−v(u)

=
∑

u∈V (G)\{v}

ϕσ−v(u)

= im(σ − v),

as required.

4.5 Superfragile Graphs

Superfragile graphs are a subclass of interval graphs for which the complexity of Cut-
width is known to be O(n2) (Lilleeng [99]). We now show that the complexity of Imbal-
ance is the same on this class of graphs.

The result uses a solution to the following problem, Number Partitioning.

Problem 4.5.1 (Number Partitioning). Given a list a1, a2, . . . , aN of positive integers,
find a subset A ⊂ {1, . . . , N} minimizing the discrepancy∣∣∣∑

i∈A

ai −
∑
i/∈A

ai

∣∣∣.
Number Partitioning is NP-complete when the values ai are unbounded, but has a

polynomial time solution when these values are bounded (see, e.g., Mertens [109]). That
is, Number Partitioning has a pseudo-polynomial time algorithm.

Finally, recall that by Observation 2.3.1, if G is a connected superfragile graph which
is not a complete graph, then G was constructed by a complete join of U and the graph
consisting of the cliques C1, . . . , Ck. The k + 1 equivalence classes of true twins in G are
the sets C1, . . . , Ck along with the set U .

We are now ready to prove the main result of this section.

Theorem 4.5.2. If G is a superfragile graph, then im(G) can be computed in O(n2) time.

Proof. We may assume G is connected; if not, we can compute the imbalance of each
component and add them together. If G is a complete graph, the result follows by Theorem
4.3.5. By definition of a superfragile graph, if G is not a clique, the set U(G) of universal
vertices is a clique, and G − U(G) is a disjoint union of cliques C1, . . . , Ck (Observation
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2.3.1). Each Ci is an equivalence class of true twins in G. Therefore by Theorem 4.4.2
there is an imbalance-minimal ordering σ where the vertices of each Ci appear consecutively.
Similarly, U(G) is an equivalence class of true twins (Observation 2.1.1) and as such U(G)
would appear together in one such σ as well. Since N(Ci) = U(G) for any i, the only set
which we need to minimize the imbalance of is U(G), as necessarily Ci will be entirely on
one side of U(G) in σ.

Finding σ can be done by creating an instance of the Number Partitioning problem.
Set ai = |Ci| for 1 ≤ i ≤ k. Observe that ai ≤ n = |V (G) for all 1 ≤ i ≤ k and that k < n
since U(G) is not empty. An O(N · A)-time algorithm is known for this problem (see,
e.g., Mertens [109]), where N is the size of the list and A bounds each element in the list.
Taking N = A = n means we can solve this instance in O(n2) time. Given a solution A, we
can create an imbalance-minimal ordering σ as follows. Starting with an empty ordering,
for each ai ∈ A, append all the vertices of Ci in any order to the existing ordering. Then,
append all the vertices of U(G) in any order. Finally, for each ai /∈ A, append all the
vertices of Ci consecutively. Take the resulting order to be σ: each equivalence class of
true twins is consecutive, and the imbalance of U(G) is minimized. Thus this ordering
has the minimum imbalance over all orderings which place each equivalence class of twins
consecutively and is an imbalance-minimal ordering of G.

4.6 Proper Interval k-Trees

In this section, we show that proper interval graphs that are also k-trees have imbalance
equal to exactly twice their cutwidth.

An ordering σ of a graph G is called a regular ordering (or regular labelling) of G if for
every edge (u, v) ∈ E(G) with u <σ v, V (u, v) = {x ∈ V (G) | σ(u) ≤ σ(x) ≤ σ(v)} is a
clique of G. Such an ordering is also called a unit interval ordering (Corneil and Stacho
[38]).

Graphs which have a regular ordering are precisely the proper interval graphs (Looges
and Olariu [105]). Yuan and Zhou [140] showed that regular orderings are optimal for sev-
eral linear layout problems including Cutwidth and Optimal Linear Arrangement.
Using LBFS+ (Algorithm 2.6.3), it is possible to recognize if a graph is a proper interval
graph and generate a regular ordering if it is.

Theorem 4.6.1 (Theorems 2 and 9, Corneil [31]). A graph G is a proper interval graph
if and only if the third LBFS+ sweep on G is a regular ordering.
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We prove the results of this section in the context of regular orderings which are obtained
from LBFS and LBFS+. Recall that LBFS+ is LBFS which breaks ties based on the
position of tied vertices in another ordering provided as input; every LBFS+-generated
ordering is therefore an LBFS-generated ordering. Corneil et al. [36] proved the following
characterization of end-vertices of a regular orderings generated by LBFS. Recall that a
vertex x is simplicial if its neighbourhood induces a complete graph, and admissible if it
does not have any pair of vertices which are unrelated with respect to x. We extend this
to additionally characterize the first vertex in a regular ordering by observing that LBFS+

on such an ordering reverses it.

Theorem 4.6.2 (Theorem 4.5, Corneil et al. [36]). If σ is an ordering of an interval graph
generated by LBFS, then σ(n) is simplicial and admissible.

Theorem 4.6.3 (Theorem 5, Charbit et al. [24]). If G is a proper interval graph with
regular ordering σ, then LBFS+(σ) = σR.

Corollary 4.6.4. If σ is a regular ordering of a proper interval graph, then both σ and σR

are LBFS orderings. Moreover, both σ(1) and σ(n) are simplicial and admissible vertices.

Proof. Let σ be a regular ordering of a proper interval graph. By Theorem 4.6.3, LBFS+(σ) =
σR. Therefore, we have LBFS+(LBFS+(σ)) = (σR)R = σ. Combining this with Theorem
4.6.2 proves the corollary.

Therefore, N [σ(1)] and N [σ(n)] are cliques as σ(1) and σ(n) are both simplicial. In
fact, these closed neighbourhoods must form maximal cliques: if there is another clique
C containing, say without loss of generality N [σ(1)], then any vertex of C \N [σ(1)] must
also be adjacent to every vertex of N [σ(1)], and in particular, it must also be adjacent to
σ(1). We formalize this as the following observation so that we can reference it.

Observation 4.6.5. If σ is a regular ordering of a proper interval graph, N [σ(1)] and
N [σ(n)] are maximal cliques in G.

Before proceeding, recall the following well-known characterization of proper interval
graphs, where a K1,3 is also called a claw graph.

Theorem 4.6.6 (e.g., Theorem 1, Gardi [60]). For an undirected graph G, the following
statements are equivalent:

1. G is a proper interval graph.
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2. G is an interval graph that is K1,3-free (i.e., G does not have an induced K1,3).

Recall that a k-tree is a graph which can be constructed by starting with a complete
graph on k + 1 vertices and repeatedly adding vertices which are adjacent to k vertices
which form a clique. As a result of this construction, no k-tree has a clique of size greater
than k + 1, and k-trees are chordal.

For a pair (n, k) where k < n, we construct proper interval k-trees as follows. Starting
with an ordering of n vertices, for each 1 ≤ i ≤ n, add the set V (σ(i), σ(j)) as a clique,
where j = min{i + k, n}. By construction, this ordering is regular and therefore these
graphs are proper interval graphs by Theorem 4.6.1. An alternative construction of the
same ordering starts with an ordering of k+ 1 vertices which form a clique, and repeatedly
appends a vertex which is adjacent to the last k vertices of the previous ordering, until
the length of the ordering is n. Therefore, these graphs are also k-trees. Moreover, for
each pair (n, k) where k < n, there is only one graph G which is obtained by the previous
construction. Examples are shown in Figure 4.6.

Before establishing the imbalance of these graphs, we show that they are edge-maximal
graphs on n vertices for a fixed pathwidth value. That is, it is not possible to take such a
graph and add an edge without also increasing its pathwidth. Moreover, this shows that
these graphs are unique for a given pair (n, k), regardless of construction.

Recall that a graph has pathwidth k if the vertices can be put into bags with size at
most k + 1, every edge has both endpoints in some bag, and the bags can be linearly
ordered so that the bags containing each vertex are consecutive.

Lemma 4.6.7 (Lemma 5.4, Proskurowski and Telle [120]). A proper interval graph G with
pathwidth k is edge-maximal if and only if G has an interval model corresponding to a path
decomposition X1, . . . , Xm where (1) |Xi| = k + 1 for all 1 ≤ i ≤ m, (2) |Xi ∩Xi+1| = k
for 1 ≤ i < m, and (3) each v ∈ V (G) \ (X1 ∪Xm) is in at least k + 1 bags.

Proposition 4.6.8. Proper interval k-trees have pathwidth k and are edge-maximal.

Proof. Let G be a proper interval k-tree and let σ be a regular ordering of G.

First, observe that by taking Xi to be {σ(i), σ(i+k)} for 1 ≤ i < n−k, |Xi| = k+1, and
moreover, |Xi ∩Xi+1| = k for 1 ≤ i < m For every (σ(a), σ(b)) ∈ E(G) where 1 ≤ a < b ≤
n, b − a ≤ k, so (σ(a), σ(b)) ∈ Xb, i.e., every edge of G is in a bag. Finally, if v ∈ V (G),
then let ℓ be the index of its leftmost neighbour in σ. Then v ∈ {Xℓ, Xℓ+1, . . . , Xσ(v)}
and no other bags, i.e., the bags containing v are consecutive in an ordering X1, . . . , Xn−k.
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(a) A proper interval 2-tree on seven vertices.
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rankσ(vi)

(b) A proper interval 3-tree on seven vertices.

Figure 4.6: Example proper interval k-trees, each illustrated two
ways. The bottom illustration of the graph is a linear ordering which
is also a regular ordering of the graph (and therefore also a cutwidth-
minimal ordering). The vertical line through the linear ordering in-
dicates a largest cut of the ordering.
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73

Figure 4.7: An edge-maximal 2-tree that is not a proper interval
graph. The set {1, 3, 6, 7} induces a claw, which means that the
graph is not a proper interval graph by Theorem 4.6.6. On the other
hand, G can be constructed by starting with {1, 2, 3} and adding the
vertices in the order indicated by the figure, showing that the graph
is a 2-tree.

Therefore, we have a pathwidth decomposition which satisfies (1) and (2); since the biggest
bag size is k + 1, pw(G) ≤ k.

Second, let v ∈ V (G) \ (X1 ∪Xn−k), if it exists. Since v /∈ X1, σ(v) > k + 1 as X1 is
defined to be the first k + 1 vertices of σ. Similarly, since v /∈ Xn−k, σ(v) < n − k as X1

is defined to be the first k + 1 vertices of σ. Thus v has k neighbours to its left, and k
neighbours to its right. Each of v’s neighbours to its left, say {σ(i), . . . , σ(i + (k − 1))},
first appears in Xi. Since v is also in Xσ(i+k) as it has k neighbours to its right, v is in at
least k + 1 bags.

Therefore, either no v ∈ V (G)\(X1∪Xn−k) exists, or every such vertex is in at least k+1
bags; either way, we have satisfied condition (3). By Lemma 4.6.7, G is edge-maximal.

However, it is important to note that proper interval k-trees are not the only edge-
maximal graphs for a fixed pathwidth value. The graph in Figure 4.7 is also edge-maximal
2-tree but it is not a proper interval graph.

We now prove the main result for this section, which is a corollary of the next theorem
and the following lemma.

Theorem 4.6.9 (Theorem 2.7, Yuan and Zhou [140]). If G is a proper interval graph and
σ is a regular ordering of G, then cw(σ) = cw(G).

Lemma 4.6.10. Let G be a proper interval that is also a k-tree. If σ is a regular ordering of
G, then there exists an index i such that rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤ j, rankσ(σ(i)) ≤ 0
for all j < i ≤ n, and c(i) = cw(σ).
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Proof. Since ϕσ(v1) = dG(v1) ≥ 0 and ϕσ(vn) = −dG(vn) ≤ 0, the fact that there is an
index i such that rankσ(σ(i)) ≥ 0 for all 1 ≤ i ≤ j and rankσ(σ(i)) ≤ 0 for all j < i ≤ n
follows from the next claim.

Claim 4.6.11. rankσ(vi) ≥ rankσ(vi+1) for all 1 ≤ i < n.

Proof of claim: We break the proof into two cases, based on whether i+ 1 ≤ n− (k − 1).

Case 1: i+ 1 < n− (k−1). By construction, every vertex vj has at most k neighbours to
its right in σ, and exactly k if j < n−(k−1). Therefore, succσ(vi) = succσ(vi+1) = k. Also
by construction, every vertex vj has at most k neighbours to its left in σ. If predσ(vi) = k,
then predσ(vi+1) = k as well, otherwise, predσ(vi) < k and predσ(vi+1) = predσ(vi) + 1.
Therefore, predσ(vi+1) ≥ predσ(vi).

Now observe that

rankσ(vi+1) = succσ(vi+1)− predσ(vi+1)

= succσ(vi)− predσ(vi+1)

≤ succσ(vi)− predσ(vi)

= rankσ(vi),

as required.

Case 2: i + 1 ≥ n− (k − 1). By construction, every vertex vj has at most k neighbours
to its left in σ. Since i+ 1 ≥ n− (k− 1), succσ(vi+1) < k, then succσ(vi) = succσ(vi+1) + 1;
therefore, succσ(vi) ≥ succσ(vi+1). Also by construction, every vertex vj has at most k
neighbours to its left in σ. If predσ(vi) = k, then predσ(vi+1) = k as well, otherwise,
predσ(vi) < k and predσ(vi+1) = predσ(vi) + 1. Therefore, predσ(vi+1) ≥ predσ(vi).

Now observe that

rankσ(vi+1) = succσ(vi+1)− predσ(vi+1)

≤ succσ(vi)− predσ(vi+1)

≤ succσ(vi)− predσ(vi)

= rankσ(vi),

as required. ■

The only thing left to prove is that there is a maximum cut at index i. By Observation
3.2.7, for any ordering σ and 1 ≤ j ≤ n− 1, cσ(σ(j + 1)) =

∑j+1
i=1 rankσ(σ(i)). Thus cw(σ)

is maximized at after vi, as after this vertex, the total sum is non-increasing.
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Corollary 4.6.12. If G is a proper interval graph and a k-tree, then im(G) = 2cw(G).

Proof. Let σ be a regular ordering of G, which exists by Theorem 4.6.10 and is cutwidth-
minimal by Theorem 4.6.9. By Lemma 4.6.10, there is an index i of σ such that the ranks
of all vertices before σ(i) are non-negative, and the ranks of all remaining vertices are all
non-positive. By Lemma 3.4.2, im(G) = 2cw(G).

Proper Interval k-Trees and Bandwidth

We end this section with a conjecture relating the graphs in this section to another ordering
problem, Bandwidth. We start by formally defining the problem.

Problem 4.6.13 (Bandwidth). Given a graph G and a positive integer k, determine if
there is an ordering σ of G such that max(u,v)∈E(G){|σ(u)− σ(v)|} ≤ k.

Ideally, a solution to Bandwidth finds an ordering σ of G such thatW(σ) ≤ k. As we
will discuss in Section 5.1, Bandwidth is related to Optimal Linear Arrangement.

We conjecture that an (n, k) proper interval k-tree is the edge-maximal graph with n
vertices of bandwidth at most k. By “edge-maximal”, we mean that adding any edge which
is not present increases the bandwidth of the graph.

4.7 Vertex Cover Parameterizaton

4.7.1 Kernelization Lower Bound

In this section show that there is likely no polynomial size kernel for Imbalance when
the parameter is vc(G), the size of a minimum vertex cover of the graph.

The proof uses an auxiliary problem, Hypergraph Minimum Bisection, which we
define first. A hypergraph H is a pair H = (V,E) where V is a set of vertices and e ∈ E is a
subset of vertices in V (i.e., e ⊆ V for all e ∈ E). A subset e ∈ E is called a hyperedge. For
a hypergraph H = (V,E), the set V is sometimes called the universe of the hypergraph.
A hypergraph is a multihypergraph if it allows multiple edges to exist which consist of
the same subset of vertices in V . A bisection of V is a colouring B : V → {0, 1} such
that |B−1(0)| = |B−1(1)| = n/2. For a hyperedge e, define the cost of e with respect to
a bisection B as cost(e,B) = min(|e ∩ B−1(0)|, |e ∩ B−1(1)|). The cost of a bisection B is
defined as cost(B) =

∑
e∈E cost(e,B).
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(a) A hypergraph H with a bisection
B of black-filled and white-filled vertices.
Observe that cost(B) = cost(e1,B) +
cost(e2,B) + cost(e3,B) = 1 + 0 + 1 = 2.
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v4
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ye1
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ye3

V1,2

V1,3

...

V5,4

V5,6

(b) A graph G constructed from H. Each
set Va,b is an independent set of size N
where each vertex in the set is adjacent to
va and vb.

Figure 4.8: The reduction of Lemma 4.7.3. A (multi)hypergraph H
is shown in (a) with n = 6 and m = 3, therefore N = nm+ 1 = 7 in
this example. Subfigure (b) shows the resulting graph G constructed
from H.

Problem 4.7.1 (Hypergraph Minimum Bisection with parameter n). Given a mul-
tihypergraph H with n vertices, where n is even and an integer k, determine if there is a
bisection of H with cost at most k?

Hypergraph Minimum Bisection without a parameter is NP-complete (Cygan et
al. [42]).

Cygan et al. [42] showed the following lemma for Cutwidth.

Lemma 4.7.2 (Lemma 12, Cygan et al. [42]). There exists a polynomial-time algorithm
that, given an instance of Hypergraph Minimum Bisection problem with n vertices,
outputs an equivalent instance of the Cutwidth problem along with a vertex cover of size
n for the graph of this instance.

By adapting the proof of Lemma 4.7.2 and using Lemma 3.4.2 we can prove the following
lemma.
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Lemma 4.7.3. There exists a polynomial-time algorithm that, given an instance of Hy-
pergraph Minimum Bisection problem with n vertices, outputs an equivalent instance
of the Imbalance problem along with a vertex cover of size n for the graph of this instance.

Proof. Let (H = (V,E), k) be an instance of Hypergraph Minimum Bisection. Then
H is a hypergraph with n vertices and m edges; let N = nm+1. We will construct a graph
G = (V ′, E ′) such that im(G) ≤ 2(n2N/4 + k) if and only if H has a bisection B such that
cost(B) ≤ k. The construction of G is exactly the same as the construction used for the
proof of Lemma 4.7.2 in Cygan et al. [42]; we include it here for completeness.

We begin by taking the whole set V to be the set of vertices of G. For every
distinct u, v ∈ V , we introduce N new vertices xiu,v for i = 1, 2, . . . , N , each
connected only to u and v. Then, for every e ∈ E we introduce a new vertex
ye connected to all v ∈ e. Denote the set of all vertices xiu,v by X and the set
of all vertices ye by Y . This concludes the construction. Observe that V is a
vertex cover of G of size n. We now prove that H has a bisection with cost at
most k if and only if G has cutwidth at most n2N/4 + k.

Assume that H has a bisection B with cost at most k. Let us order the
vertices of the graph G as follows. First, we order the vertices from V : we
place B−1(0) first, in any order, and then B−1(1), in any order. Then, we place
xiu,v anywhere between u and v. At the end, for every e ∈ E we place ye at
the beginning if at least half of the vertices of e are in B−1(0), and in the end
otherwise. Vertices ye at the beginning and at the end are arranged in any
order.

Now we prove that the cutwidth of the constructed ordering is at most
n2N/4 +k. Consider any cut C, dividing the order on V (G) into a first part V1
and a second part V2. Suppose that |V1∩V | = n/2−ℓ for some −n/2 ≤ ℓ ≤ n/2,
thus |V2 ∩ V | = n/2 + ℓ. Observe that C cuts exactly N(n/2 − ℓ)(n/2 + ℓ) =
n2N/4 − ℓ2N edges between V and X. Note that there are not more than
nm < N edges between V and Y . Therefore, if ℓ ̸= 0, then C can cut at most
n2N/4−N + nm < n2N/4 + k edges.

We are left with the case when ℓ = 0. Observe that V1 ∩ V = B−1(0) and
V2 ∩V = B−1(1). Moreover, the cut C cuts exactly nN/4 edges between sets V
and X. As far as edges between V and Y are concerned, for every hyperedge
e ∈ E, the cut C cuts exactly cost(e,B) edges incident on ye. As cost(e,B) ≤ k,
the cut C cuts at most n2N/4 + k edges.

Now assume that there is an ordering of vertices of G that has cutwidth at
most n2N/4 + k. We construct a bisection B of H as follows. Let B(v) = 0 for
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every v among the first n/2 vertices from V with respect to the ordering, and
B(v) = 1 for v among the second n/2 vertices. We now prove that the cost of
this bisection is at most k.

Let C be any cut dividing the order into the first part V1 and the second
part V2, such that V1 ∩ V = B−1(0) and V2 ∩ V = B−1(1). As the cutwidth of
the ordering is at most n2N/4 + k, C cuts at most n2N/4 + k edges. Observe
that C needs to cut at least n2N/4 edges between sets V and X, therefore it
cuts at most k edges between sets V and Y . For every hyperedge e ∈ E, C
cuts at least cost(e,B) edges incident to ye, thus cost(B) ≤ k.

Therefore, if cost(B) ≤ k, there is an ordering σ such that cw(σ) = n2N/4 + k, a
largest cut always exists after n/2 vertices of G, and that ϕσ(xiu,v) = 0 for any u, v ∈ V
and 1 ≤ i ≤ N .

We first prove the following claim:

Claim 4.7.4. im(G) ≤ 2(n2N/4 + k) if and only if cost(B) ≤ k for some bisection B.

Proof of claim: First, suppose that cost(B) ≤ k for some bisection B. By the proof above,
there is an ordering σ of G such that cw(σ) = n2N/4 + k. Let Yℓ ⊆ Y be the vertices
appearing before any vertex of V , and Yr = Y \ Yℓ be those appearing at the end of the
ordering.

If ϕσ(v) = 0 for any v ∈ V (G), we are done; we may therefore assume ϕσ(v) ≥ 0. In
particular, this means we only need to deal with vertices of V and Y , as those vertices xiu,v
for any u, v and 1 ≤ i ≤ N have imbalance zero. Recall that rankσ(v) = |N(v) \ σ≤v| −
|N(v) ∩ σ≤v| = succσ(v)− predσ(v).

Suppose ye ∈ Yℓ. Since Y is an independent set, all neighbours of ye are to the right
of ye in σ. That is, rankσ(ye) = succσ(ye) − predσ(ye) = succσ(ye) ≥ 0. Similarly, for
y∈Yr, since Y is an independent set, all neighbours of ye are to the left of ye in σ. That is,
rankσ(ye) = succσ(ye)− predσ(ye) = −predσ(ye) ≤ 0.

Suppose v ∈ V (G) is within the first n/2 vertices of V (G) in σ; we claim that rankσ(v) ≥
0.

Let v be the ith vertex of V in σ for 1 ≤ i ≤ n/2. We will show that rankσ(v) ≥ 0.
Then predσ(v) = |N(v)∩ Yℓ|+N · (i− 1) as v is adjacent to any neighbours in Yℓ, and for
each v′ ∈ V such that v′ <σ v (of which there are i− 1), each vertex xjv,v′ is between v′ and
v in σ (of which there are N for each such v′). Similarly, succσ(v) = |N(v)∩Yr|+N ·(n−i),
as v is adjacent to any neighbours in Yr, and for each v′ ∈ V such that v <σ v

′ (of which
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there are n− i), each vertex xjv,v′ is between v and v′ in σ (of which there are N for each
such v′).

Since n/2 ≥ i, (n− i)− (i− 1) > 0; let d = (n− i)− (n− 1) > 0. We have

rankσ(v) = succσ(v)− predσ(v)

= |N(v) ∩ Yr|+N · (n− i)−
(
|N(v) ∩ Yℓ| −N · (i− 1)

)
= |N(v) ∩ Yr| − |N(v) ∩ Yℓ|+N · ((n− i)− (i− 1))

= |N(v) ∩ Yr| − |N(v) ∩ Yℓ|+N · d.

Since |N(v) ∩ Yr| ≥ 0 and

|N(v) ∩ Yℓ| ≤ m ≤ nm+ 1 = N ≤ Nd,

we have that |N(v) ∩ Yr| − |N(v) ∩ Yℓ|+N · d ≥ 0 and therefore rankσ(v) ≥ 0.

Similarly, if v ∈ V (G) is within the last n/2 vertices of V (G) in σ, we will show
that rankσ(v) ≤ 0. Then predσ(v) = |N(v) ∩ Yℓ| + N · (i − 1) as v is adjacent to any
neighbours in Yℓ, and for each v′ ∈ V such that v′ <σ v (of which there are i − 1), each
vertex xjv,v′ is between v′ and v in σ (of which there are N for each such v′). Similarly,
succσ(v) = |N(v)∩ Yr|+N · (n− i), as v is adjacent to any neighbours in Yr, and for each
v′ ∈ V such that v <σ v

′ (of which there are n − i), each vertex xjv,v′ is between v and v′

in σ (of which there are N for each such v′).

Since n/2 > i, (n− i)− (i− 1) < 0; let d = |(n− i)− (n− 1)|. We have

rankσ(v) = succσ(v)− predσ(v)

= |N(v) ∩ Yr|+N · (n− i)−
(
|N(v) ∩ Yℓ| −N · (i− 1)

)
= |N(v) ∩ Yr| − |N(v) ∩ Yℓ|+N · ((n− i)− (i− 1))

= |N(v) ∩ Yr| − |N(v) ∩ Yℓ| −N · d.

Since |N(v) ∩ Yℓ| ≥ 0 and

|N(v) ∩ Yr| ≤ m ≤ nm+ 1 = N ≤ Nd,

we have that |N(v) ∩ Yr| − |N(v) ∩ Yℓ| −N · d ≤ 0 and therefore rankσ(v) ≤ 0.

Therefore, by Lemma 3.4.2, im(G) = 2cw(G) = 2(n2N/4 + k).

Suppose instead that im(G) ≤ 2(n2N/4+k), which implies that im(G)/2 ≤ n2N/4+k.
By Lemma 3.1.1, cw(G) ≤ im(G)/2 for any graph G. Therefore, we have cw(G) ≤
im(G)/2 ≤ n2N/4 + k and by the proof above, cost(B) ≤ k. This completes the proof of
the claim. ■

The lemma is immediate from the claim.
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Now we aim to prove the main result of this subsection, Theorem 4.7.5, which is stated
next.

Theorem 4.7.5. Imbalance parameterized by the size of the vertex cover does not admit
a polynomial kernel, unless NP ⊆ coNP/poly.

We require the following lemma, also due to Cygan et al. [42].

Lemma 4.7.6 (Lemma 9, Cygan et al. [42]). Hypergraph Minimum Bisection, pa-
rameterized by the the size of the universe, does not admit a polynomial kernel, unless
NP ⊆ coNP/poly.

Using Lemma 4.7.6 and Theorem 4.7.8 below (which requires Definition 4.7.7, also
below), Cygan et al. [42] were able to show an analogous result of Theorem 4.7.5 for Cut-
width. Note that the Definition 4.7.7 is similar to that of an FPT reduction, however, we
require that the new parameter value is computed via a polynomial function.

Definition 4.7.7 (Definition 7, Bodlaender et al. [13]). Let P and Q be parameterized
problems. We say that P is polynomial parameter reducible to Q if there exists a polynomial
time computable function f : Σ∗ × N → Σ∗ × N, and a polynomial p, such that for all
(x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q and
k′ ≤ p(k).

Theorem 4.7.8 (Theorem 8, Bodlaender et al. [13]). Let P and Q be parameterized prob-
lems and P ′ and Q′ be the unparameterized versions of P and Q respectively. Suppose that
P ′ is NP-hard and Q′ is in NP. Assume there is a polynomial parameter transformation
from P to Q. Then if Q admits a polynomial kernel, so does P .

Finally, we can prove Theorem 4.7.5.

Proof of Theorem 4.7.5. Use Lemma 4.7.3, Lemma 4.7.6 and Theorem 4.7.8; the result
is immediate as Imbalance and Hypergraph Minimum Bisection are both NP-
complete.

4.7.2 Improved Imbalance FPT Algorithm for Graphs of Bounded
Vertex Cover Number

In this section, we note that the approach of Cygan et al. [42] that was used to solve
Cutwidth is applicable to Imbalance. Therefore, we will show that given a graph
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∈ X(S, v)

S

∈ Y (S, v)
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I

Figure 4.9: Illustration of the sets X(S, v) and Y (S, v), redrawn from
Cygan et al. [42].

G = (C ∪ I, E) with a vertex cover C of size k, we can compute the imbalance of G in
time O(2knO(1)). The solution uses dynamic programming and is an improvement over

the previous algorithm by Fellows et al. [52], who obtained an O(22O(k)
nO(1)) algorithm.

Fellows et al. were not concerned with optimizing the running time of their algorithm, only
showing that an FPT algorithm exists for this problem and parameter.

Explicitly stated, the main result of this section is the following theorem. We base its
proof off of the proof of the analogous theorem for Cutwidth by Cygan et al. [42].

Theorem 4.7.9. Let G be a graph with vertex cover of size k. There is an algorithm to
solve Imbalance in time O(2knO(1)). Therefore, there is a O(2n/2nO(1))-time algorithm
for Imbalance on bipartite graphs.

Let G = (C ∪ I, E) for a vertex cover C and an independent set I. The proof uses
the notion of C-good orderings and C-good prefix orderings . A C-good ordering σ is a
refinement of the orderings provided by Theorem 4.4.1. In addition to requiring that every
vertex of v ∈ I has ϕσ(v) ∈ {0, 1} depending on the parity of |NG(v)|, a C-good ordering
requires that the vertices in I between any two consecutive vertices of C in σ are sorted
by rankσ(v) in ascending order. Thus, between any two consecutive vertices ci, ci+1 in
σC , (σ>ci ∩ σ<ci+1

) ⊆ I has all vertices with non-negative rank after those with negative
rank. The existence of such an ordering follows from Theorem 4.4.1 and the fact that the
imbalance of a vertex is not affected by swapping it past a non-neighbour.

Using such orderings, we can now prove Theorem 4.7.9.

Proof of Theorem 4.7.9. Let G = (C ∪ I, E) for a vertex cover C and an independent set
I. We will establish a recurrence relation that can be used to compute im(G), but need to
define several sets which are used in the formulation first.
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Partition I into sets Iodd, which contains only odd-degree vertices, and Ieven, which
only contains even-degree vertices.

We define two sets X(S, v) and Y (S, v) for S ⊆ C and v ∈ S (see Figure 4.9). Define
X(S, v) as X(S, v) = Xeven(S, v) ∪Xodd(S, v), where

• Xodd(S, v) = {u ∈ Iodd
∣∣ |N(u) ∩ (S \ {v})| > |N(u) \ (S \ {v})|}, and

• Xeven(S, v) = {u ∈ Ieven
∣∣ |N(u) ∩ S| > |N(u) \ S|}.

Finally, define Y (S, v) = {u ∈ N(v)
∣∣ |(N(u) \ {v}) ∩ S| = |(N(u) \ {v}) \ S|}. clearly

Y (S, v) ⊆ Iodd. Observe that X(S, v) ∩ Y (S, v) = ∅ for any S ⊆ C and v ∈ S.

If σ is a C-good ordering, let σC = {c1, . . . , ck}.

Observation 4.7.10 (Observation 3, Cygan et al. [42]). In a C-good ordering σ, let i be
an integer such that ci ∈ C and S = σ≤i∩C. Then X(S, ci) ⊆ σ≤i∩I ⊆ X(S, ci)∪Y (S, ci).

We now define C-good prefix orderings as in Cygan et al. [42]. For an ordering τ , let
Cτ

i−1 be the first i− 1 vertices of C.

A prefix ordering is an ordering τ of a set of vertices V ′ ⊆ V = C ∪ I. A
prefix-ordering such that τ(|τ |) = ct for some ct ∈ C is C-good if the following
conditions are satisfied:

1. For every vertex v ∈ τ ∩ I of even degree, rankτ (v) = 0 and for every
vertex v ∈ τ ∩ I of odd degree, rankτ (v) ∈ {−1, 1}.

2. X(τ ∩ C, τ(i)) ⊆ τ ∩ I ⊆ X(τ ∩ C, τ(i)) ∪ Y (τ ∩ C, τ(i)).

3. For every vertex v ∈ X(τ ∩ C, ci) such that rankτ (v) ≥ 0 and ci ∈ τ ∩ C
we have ci <τ v if and only if |N(v) ∩ Cτ

i−1| ≤ |N(v) \ Cτ
i−1|.

4. For every vertex v ∈ X(τ ∩ C, ci) such that rankτ (v) < 0 and ci ∈ τ ∩ C
we have ci <τ v if and only if |N(v) ∩ Cτ

i−1| < |N(v) \ Cτ
i−1|.

5. Between any two consecutive (ci, ci+1) ∈ C∩τ , the vertices with rankτ (v) <
0 come before all vertices with rankτ (v) ≥ 0.

Comparing the properties of C-good orderings and C-good prefix orderings
it is easy to see that the following lemma holds.

Lemma 4.7.11 (Lemma 4, Cygan et al. [42]). Let σ = v1 . . . vn be a C-good ordering and
let τ be the restriction of σ to the first t vertices such that σ(t) ∈ C. Then τ is a C-good
prefix ordering.

132



Finally, let Li(v) = N(v) ∩ (X(S, v) ∪ S ∪ Yi(S, v)) and Ri(v) = N(v) \ Li(v), where
Yi(S, v) is an arbitrary subset of Y (S, v) with size i.

We are now ready to establish the following recurrence relation, using the sets X and
Y as defined above. Let T (S, v) be the minimum value of im(σ) where the minimum is
taken over all C-good prefix orderings σ with σ ∩ C = S and v being the last vertex of σ.

Claim 4.7.12. T (S, v) = minu∈S min0≤i≤|Y (S,v)| T (S\{v}, u)+|Y (S, v)|+
∣∣|Li(v)|−|Ri(v)|

∣∣
for S ⊆ C and v ∈ S.

Proof of claim: The recurrence relation computes the imbalance of “extending” the pre-
vious best prefix ordering with a new vertex of C, and adding the imbalances for other
vertices which should also be counted by such an extension.

T (S \ {v}, u) is the minimum imbalance from the first |S| − 1 vertices and vertices to
the left of the last vertex in the corresponding prefix that satisfies T (S \ {v}, u).

For any set S ⊆ C and vertex v ∈ S, every vertex u ∈ Y (S, v) has odd degree and is
adjacent to v and satisfies |(N(u) \ {v})∩ S| = |(N(u) \ {v}) \ S|. Therefore, every vertex
in Y (S, v) will have imbalance 1, and this set contributes |Y (S, v)| to the total imbalance.

We now consider the vertices of X(S, v). Since vertices in X(S, v) which have even
degree do not increase the imbalance (as they are placed so that they have imbalance 0),
the extension of a C-good prefix by vertices in X(S, v) matters only if they have odd degree.
Now consider the odd degree vertices of X(S, v) and observe that Y (S \ {v}, u) ⊆ X(S, v);
in fact, Y (S \ {v}, u) ⊆ Xodd(S, v). In particular, this means that we have added the
imbalance of x ∈ Xodd(S, v) as part of the contribution of Y (S \ {v}, u), so it is not
necessary to count it again.

Therefore, only the imbalance of v remains to be counted, and it should be minimal.
To minimize the imbalance of v, for every possible pair (α, β) (α, β ≥ 0) such that α+β =
|Y (S, v)| we place α vertices of Y (S, v) on the left of v and the remaining β vertices of
Y (S, v) on the right v. The imbalance of v for a given partition of Y (S, v) is

∣∣|Li(v)| −
|Ri(v)|

∣∣. We choose the partition of Y (S, v) that minimizes this value. ■

Finally, note that im(G) = minv∈C T (C, v).

The recurrence relation implies a dynamic programming algorithm. In the base case—
for small sized subsets S—we try all possible permutations of S and fill in the gaps as
appropriate. In larger cases, we append a vertex of the vertex cover to a previous instance
according to the recurrence relation in Claim 4.7.12. We now analyse the time complexity
of such an algorithm.
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• If |S| = 1, let {v} = S. The value T (S, v) is the imbalance of the optimal ordering
σ = L · {v} for some set L ⊆ I, since the C-good prefix ordering must end with a
vertex in C. Any vertices w ∈ I such that N(w) = {v} must be placed in either L
or later in the ordering; choose |L| such that assuming all non-pendant neighbours
of v are to its right, the imbalance of v is minimal. Determining σ and computing
T (S, v) requires at most linear time.

• If |S| = 2, let {u} = S \ {v}. The value T (S, v) is the imbalance of the optimal
ordering σ = L ·{u}·M ·{v} for some sets L,M ⊆ I since the C-good prefix ordering
must end with a vertex in C. Any vertices w ∈ I such that N(w) = {u, v} must be
placed in M . Any vertices w ∈ I such that N(w) = {u} must be placed in either L or
M , split them among these sets so that assuming all non-pendant neighbours of u are
to its right, the imbalance of u is minimal. Some vertices w ∈ I such that d(w) = 3
and u, v ∈ N(w) may require placement in M : choose the appropriate amount so
that the imbalance of v is minimized given that the vertices already placed to its left
are fixed. Determining σ and computing T (S, v) takes at most linear time.

• Otherwise, |S| > 2, and T (S, v) = minu∈S min0≤i≤|Y (S,v)| T (S \ {v}, u) + |Y (S, v)| +∣∣|Li(v)| − |Ri(v)|
∣∣. Determining σ and computing T (S, v) requires quadratic time at

worst for each u ∈ S.

Therefore, for a vertex cover of size |C|, we consider |C|−2 subsets each of size |C|−1 such
that each subset does not have the |C|th element in them. There are at most O(|C| · 2|C|)
subproblems, and each one takes at most quadratic time to solve. The total running time
is therefore O(|C|3 · 2|C|).

4.8 Remarks on Previous Attempts

In this section, we make some remarks on previously claimed results for Imbalance which
are not correct.

4.8.1 FPT Algorithm for Twin Cover Number

Previously, we claimed (Gorzny and Buss [68]) that both Imbalance and Cutwidth are
FPT when parameterized by the twin cover number of a graph. However, Misra and Mittal
[111] showed that our approach was not correct; we explain the error in this section.
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Recall that a twin cover of a graph G is a set T ⊆ V such that for every edge (u, v) ∈ E,
either {u, v} ∩ T ̸= ∅ or u and v are true twins (Ganian [57]). Every vertex cover is a twin
cover, though not every twin cover is a vertex cover. The minimum size of a twin cover for
a graph is the graphs twin cover number and is denoted tc(G).

The approach that was attempted for graphs with bounded twin cover number is similar
to the one used for restricted twin cover number (rtc(G)) for Cutwidth (Section 3.7).
This approach may also be applicable for Imbalance for graphs of bounded restricted
twin cover number, but since the neighbourhood diversity of a graph generalizes restricted
twin cover number (see Section 2.5.2), the bounded neighbourhood diversity result for
Imbalance already implies that the problem is FPT when the parameter is rtc(G).

The approach taken by Gorzny and Buss [68], oversimplifying, was the following:

1. Obtain a minimum twin cover T of G;

2. Contract the edges which do not have an endpoint in T and call the resulting graph
G′;

3. Observe that T is now a vertex cover of G′ (Lemmas 2.5.1 and 2.5.2);

4. Apply the ILP for Imbalance on graphs of bounded vertex cover number of Fellows
et al. [52], which uses Theorem 3.7.2, for every permutation of the vertices of T ;

5. Return the minimum ordering found;

6. Replace the contracted vertices in G′ with the un-contracted sets in G.

The result was claimed to be imbalance-minimal. The approach is attractive: it is simple
and tries to exploit the useful connection of Lemmas 2.5.1 and 2.5.2. However, there is a
simple flaw: the ILP cannot differentiate between contracted sets of vertices of different
sizes.

To illustrate this, consider the superfragile graph in Figure 4.10. The graph G has a
vertex cover T = {1}. The three disjoint cliques {2, 3}, {4}, {5, 6, 7, 8} are contracted
into vertices a, b, and c to obtain G′. It is easy to verify that T is a vertex cover of G′.
There is only one permutation of T , so only one ILP would be constructed. Necessarily,
any minimum ordering found would place at least one of {a, b, c} to the left of 1 in the
ordering, and the remaining vertices of {a, b, c} to the right of 1 (or vice-versa). Indeed,
for this example, any such ordering that splits {a, b, c} as evenly as possible is minimum
for G′. However, since the ILP treats those vertices equally, it does not know that c should
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Figure 4.10: A superfragile graph G illustrating how the FPT algo-
rithm for Imbalance fails for tc(G). The set T = {1} is a twin
cover of G. Each of the disjoint cliques K2 = {3, 2}, K1 = {4}, and
K4 = {5, 6, 7, 8} are contracted into vertices a, b, and c respectively
in G′.

not be on the same side of 1 as a or b. Thus, if the result was σ = ⟨{a}·{c}·{1}·{b}⟩, then
im(σ) = im(G′). However, replacing {a, b, c, } by the sets of vertices that were contracted
to obtain the vertices, we obtain σ′ = ⟨{3, 2} · {5, 6, 7, 8} · {1} · {4}⟩ which has a greater
imbalance than, say, ⟨{5, 6, 7, 8} ·{1} ·{3, 2} ·{4}⟩, and is therefore not imbalance-minimal.

Misra and Mittal [111] overcame this issue by also requiring the size of a largest clique
outside of the twin cover is also a part of the parameter. This issue was corrected for Cut-
width in Section 3.7 by using the restricted twin cover number, which was defined exactly
to overcome this issue. The restricted twin cover overcomes the issue by ensuring that the
number of (non-singleton) cliques outside the twin cover is also a part of the parameter.

4.8.2 Proper Interval (Bipartite) Graphs

We also attempted to show that Imbalance has linear time solutions for proper interval
graphs and proper interval bipartite graphs, a.k.a. bipartite permutation graphs (Gorzny
and Buss [68], Gorzny [67]). In both cases, flaws exist in the proofs, though we conjecture
that the theorem statements are true (see Chapter 7).

The method for both of these classes of graphs are the same, though the details differ.
The proofs were set up in order to apply induction on either the number of maximal cliques
(proper interval graphs) or the number of vertices (bipartite permutation graphs). Then,
after establishing some suitable base cases, the inductive step would be as follows:
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• Determine one “end” of the graph G, with respect to its linear structure. In the
case of proper interval graphs, this would be a simplicial vertex; such a vertex can
be the rightmost or leftmost end of a regular ordering (see Section 4.6) of the graph.
For bipartite permutation graphs, it would be one of the end points of the strong
ordering (see Section 2.3.3) of the graph.

• Remove that end of the graph G, and apply the induction hypothesis to the resulting
graph G1.

• Identify another “end” of the graph G, with respect to its linear structure. For
example, in the proper interval graph setting, this would be a simplicial vertex of the
graph that is farthest from the simplicial vertex chosen in step 1.

• Remove this end of the graph, and apply the induction hypothesis to the resulting
graph G2.

• Identify a vertex v common to both G1 and G2 that has its closed neighbourhood in
the same ordering in both G1 and G2, and then take an imbalance-minimal ordering
of G1 up to that vertex, and then use G2 from that point onward.

The difficulty in the inductive step arises from the last step described above. Showing
that such a vertex always exists in both graphs, along with its closed neighbourhood, is
not trivial. However, as long as the inductive step deals with sufficiently large graphs, this
appears possible. The “gluing” operation of the last step was also fairly straightforward,
provided the structure of the optimal orderings was well-defined.

As an example, for the case of proper interval graphs, the conjecture is that a regular
ordering was imbalance-minimal. If one can show that there is a vertex v whose closed
neighbourhood has the same relative ordering in imbalance-minimal orderings of G1 and
G2, then the gluing is technique a good idea. First, the resulting ordering is easily shown to
be a regular ordering of the graph G, as both the imbalance-minimal orderings of G1 and
G2 are too. Second, the optimality of the ordering arises from the fact that every vertex
before v might as well be in an ordering of G1 rather than G, since its closed neighbourhood
would have also been contained in G1. Similarly, any vertex that came after v might as
well be in an ordering of G2 rather than G. That is, from the point of view of a vertex
only in G1, it does not care about vertices to the right of v, i.e., those vertices only in G2,
and vice-versa. Then the concern is vertices which may be present in both graphs, but this
can be handled by choosing v carefully, and relying on the properties of regular orderings.
Thus, if G1 and G2 were optimal, so was the resulting ordering. This is illustrated in Figure
4.11.
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σ 1 2 3 4 5 6 7 8 9 10

G1

G2

v

Figure 4.11: A proper interval graph G illustrating how to use induc-
tion for Imbalance. The vertices 1 and 10 can be considered the
“ends” of the graph. The ordering σ is in fact imbalance-minimal, as
is σV (G1)] and σV (G2), and all of these orderings are regular orderings.
The vertices to the left of v (and v itself) have the same imbalance in
σV (G1) and σ, while the vertices to the right of v (and v itself again)
have the same imbalance in σV (G2) and σ. These vertices are indiffer-
ent to what happens at the other “end” of the graph. Putting σV (G1)

and σV (G2) together by using the ordering G1 \G2 ·G1 ∩G2 ·G2 \G1

keeps those imbalances, and results in the ordering σ.

It turns out that the real issue is the base cases for these proofs.

For proper interval graphs, the induction used maximal cliques (Gorzny and Buss [68]).
In this case, one would not only remove the leftmost or rightmost simplicial vertex, but the
maximal clique containing it. Then, instead of finding a vertex v to use as a gluing point
in the inductive case, one would consider a maximal clique. There is nothing substantially
different about this than the method described above; it simplifies book keeping in some
ways since there are fewer things to count. However, it requires finding a maximal clique
in the inductive step which is not adjacent to either end of a regular ordering. The base
case was incorrectly assumed to have only a small finite number of maximal cliques in such
a scenario (3 or 5), which was not true. As a result, this special “common” clique is not
always found.

The proof would be repaired if the base case can be repaired. This boils down to
showing that all proper interval graphs with a non-empty set of universal vertices have an
imbalance-minimal ordering which is also a regular ordering. This is because if the graph
has a non-empty set of universal vertices, any maximal clique in the proper interval graph
contains at least one of the endpoints of the regular ordering. Since these graphs have a
non-empty universal set of vertices, they also have a diameter of at most two. This turns
out to be difficult – one can find diameter 2 proper interval graphs which do not satisfy the
requirements of Lemma 3.4.2 (see Figure 4.12), which removes the most straightforward
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σ 1 2 3 4 5 6 7 8 9 10

rankσ(v) 4 2 0 −1 1 2 1 −1 −3 −5

Figure 4.12: A proper interval graph with diameter 2 which does not
satisfy the requirements of Lemma 3.4.2. Note that the ordering is a
regular ordering, and that it is imbalance-minimal.

option. Worse, there is a lack of helpful lemmas. The most helpful would be a lemma
saying that a simplicial vertex of a proper interval graph appears first in some imbalance-
minimal ordering of the graph, but the proof of Corollary 4.4.3 does not apply since there
is no guarantee that the open neighbourhood is consecutive in some imbalance-minimal
ordering. This also means we cannot adapt the proof of Lemma 4.4.4.

For bipartite permutation graphs, the same is also more or less true. The conjecture is
that every bipartite permutation graph has an imbalance-minimal ordering which agrees
with a strong order of the graph (which always exists by Theorem 2.3.5). The induction by
Gorzny [67] was on the number of vertices, rather than the number of maximal cliques, but
follows the same outline, and suffers again from a base case which is not clear. The base
case is more difficult to explain, as there were more cases to consider. Instead of diameter
exactly two graphs being problematic, the issue is graphs with diameter at most three.
We will explain a bit more, though perhaps it is easier to see this by simply noting that
bipartite graphs of diameter at most 2 are complete bipartite graphs, for which the problem
is solved by Lemma 4.3.6. To explain, suppose that a bipartite permutation graph has a
bipartition (A,B). The “ends” of the graph are less clear: each partite set has an “end”,
that is, there is a leftmost vertex in A and a leftmost vertex in B, and similarly there are
two “rightmost” vertices. Similar to the issue for proper interval graphs, complications
arise when ends are at distance two. In particular, even if dG(a, a′) = 2 for any vertices
a, a′ ∈ A, which would imply a vertex b ∈ B which is adjacent to all of A, there may be
pendant vertices b′ ∈ B adjacent to only the left- or rightmost vertex in A according to a
strong ordering. In such a case, the diameter is at least three. So the (corrected) proof for
bipartite permutation graphs requires an even more complicated base case.

We make one final remark on imbalance-minimal orderings of proper interval graphs.
We conjecture that regular orderings are imbalance-minimal, and we do so in part because
they also fit the description of an optimal ordering of the graph that exists by Theorem
4.4.2: regular orderings place each class of true twins consecutively in the ordering. This
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is shown by the next lemma.

Lemma 4.8.1. If σ is a regular ordering of some proper interval graph G, then each
equivalence class of true twins C of G is consecutive in σ.

Proof. Let G = (V,E) and suppose that σ is a regular ordering where a <σ x <σ b and
N [a] = N [b]. We will show that N [x] = N [a] = N [b], which will show that between any
two true twins in a regular ordering, there can only be more true twins from the same
equivalence class. Since a and b are true twins, (a, b) ∈ E.

First, since (a, b) ∈ E and σ is a regular ordering, we must have that (a, x) ∈ E and
(x, b) ∈ E, as V (a, b) must be a clique by definition of a regular ordering.

We now prove that N(a) \ {b, x} = N(x) \ {a, b} in two claims.

Claim 4.8.2. If a′ ∈ N(a) \ {b, x}, then a′ ∈ N(x) \ {a, b}.

Proof of claim: Since a′ ∈ N(a), (a, a′) ∈ E. We proceed by cases based on where a′ is in
σ, relative to a, b, and x.

Case 1: a <σ x <σ b <σ a
′. The existence of the edge (a, a′) implies that (x, a′) ∈ E as

V (a, a′) must be a clique by definition of a regular ordering.

Case 2: a <σ x <σ a
′ <σ b. The existence of the edge (a, b) implies that (x, a′) ∈ E as

V (a, b) must be a clique by definition of a regular ordering.

Case 3: a <σ a
′ <σ x <σ b. The existence of the edge (a, b) implies that (x, a′) ∈ E as

V (a, b) must be a clique by definition of a regular ordering.

Case 4: a′ <σ a <σ x <σ b. Since a and b are true twins, if (a, a′) ∈ E, then (b, a′) ∈ E.
The existence of the edge (b, a′) implies that (x, a′) ∈ E as V (a′, b) must be a clique by
definition of a regular ordering.

Thus, (a′, x) ∈ E in every case, and the claim is proved. ■

Claim 4.8.3. If x′ ∈ N(x) \ {a, b}, then x′ ∈ N(a) \ {b, x}.

Proof of claim: Since x′ ∈ N(x), (x, x′) ∈ E. We proceed by cases based on where x′ is in
σ, relative to a, b and x.

Case 1: a <σ x <σ b <σ x
′. The existence of the edge (x, x′) implies that (x′, b) ∈ E as

V (x, x′) must be a clique by definition of a regular ordering. Since a and b are true twins,
(x′, a) ∈ E too.
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Case 2: a <σ x <σ x
′ <σ b. The existence of the edge (a, b) implies that (x′, b) ∈ E and

(x′, a) ∈ E as V (a, b) must be a clique by definition of a regular ordering.

Case 3: a <σ x
′ <σ x <σ b. The existence of the edge (a, b) implies that (x′, b) ∈ E and

(x′, a) ∈ E as V (a, b) must be a clique by definition of a regular ordering.

Case 4: x′ <σ a <σ x <σ b. The existence of the edge (x, x′) implies that (x′, a) ∈ E as
V (x′, x) must be a clique by definition of a regular ordering. Since a and b are true twins,
(x′, b) ∈ E too.

Thus, (x′, a) ∈ E and (x′, b) ∈ E in every case, and the claim is proved. ■

Combining the previous two claims, we have thatN(a)\{b, x} = N(x)\{a, b}. Therefore

N [a] = N(a) \ {b, x} ∪ {a, b, x} = N(x) \ {a, b} ∪ {a, b, x} = N [x],

as required.

4.8.3 Threshold Graphs

Recall from Section 2.3 that threshold graphs are graphs which can be partitioned into a
clique and an independent set, where the neighbourhoods of the independent set can be
ordered by inclusion. In Gorzny [67], there was an attempt to show that Imbalance has
a linear time solution on threshold graphs, which is also unfortunately not correct. We
first formally define a threshold partition in the following subsection. Afterwards, in the
next subsection, we discuss what went wrong in that proof.

Threshold Partition Definition

We first define a threshold partition before stating some properties of a threshold partition.

Let (C, I) be a split partition where C is a clique and I is an independent set; among
all possible choices, choose a split partition that maximizes the cardinality of I. We may
assume that every vertex c ∈ C has a neighbour in I, as otherwise we may take a new split
partition (C ′, I ′) where C ′ = C \ {c} and I ′ = I ∪ {c} for any c ∈ C that does not have a
neighbour in I, which would have a larger independent set. We will partition I into sets
(I0, I1, . . . , Iℓ) such that I0 is the set of isolated vertices, and N(I1) ⊊ N(I2) ⊊ · · · ⊊ N(Iℓ),
where ℓ is largest possible. All vertices in Ij have the same neighbours (and therefore the
same degree) for 0 ≤ j ≤ ℓ. The partition on I defines a partition (C1, C2, . . . , Cℓ) of C,
where C1 = N(I1) and Cj = N(Ij)\N(Ij−1) for 1 ≤ j ≤ ℓ. All vertices in Cj have the same
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Figure 4.13: A threshold graph G with the levels of a threshold par-
tition indicated.

degree for 1 ≤ j ≤ ℓ. Vertices of Ci are on the ith level of the clique, and vertices of Ii are
on the ith level of the independent set. By construction, each set Ii and Ci is non-empty for
1 ≤ i ≤ ℓ. Figure 4.13 shows an example of a threshold graph with a threshold partition.
The following observation is immediate from the definition of a threshold partition.

Observation 4.8.4. Let G be a threshold graph with a threshold partition (C, I). If j > i,
then

1. N [Cj] ⊊ N [Ci] and therefore |N [Ci]| > |N [Cj]|; and

2. N(Ij) ⊊ N(Ii) and therefore |N(Ii)| > |N(Ij)|.

Mahadev and Peled [106] provide a linear time algorithm to determine if a graph is a
threshold graph and compute a threshold partition if it is.

What Went Wrong

In Gorzny [67], there was an attempt to show that Imbalance has a linear time solution
on threshold graphs.

The claim in that paper is that there is an imbalance-minimal ordering of any threshold
graph which does not have any inverted pairs, which we now define. We use the following
definitions for a connected threshold graph with threshold partition (C, I) = (C1 ∪ C2 ∪
· · · ∪Cℓ, I1 ∪ I2 ∪ · · · ∪ Iℓ) and an ordering of the graph σ. An inverted-clique-pair is a pair
(x, y) where y <σ x, x ∈ Ci, y ∈ Cj, and j > i. An inverted-independent-pair is a pair
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(x, y) where y <σ x, x ∈ Ii, y ∈ Ij, and j > i. An inverted pair is an inverted-clique-pair
or an inverted-independent-pair.

The conjecture is that there is an imbalance-minimal ordering of a threshold graph
with no inverted pairs. If there is such an imbalance-minimal ordering for every threshold
graph, then this may also be the ordering which minimizes the cutwidth of the graph as
well. Cutwidth-minimal orderings of threshold graphs with this property are established
by Heggernes et al. [77].

The proof attempts to first show that there an imbalance-minimal ordering of a thresh-
old graph with no inverted-clique-pairs. Then, an imbalance-minimal ordering with no
inverted pairs is claimed to be found by simply using an algorithm, Median Placement, of
Biedl et al. [8]. Since the threshold partition can be found in linear time, and the Median
Placement algorithm runs in linear time, the result would follow. Both steps may be true;
however, there is a problem with the first step.

We now describe how the attempted proof attempts fails. First, the proof uses Theorem
4.4.1 to find an imbalance-minimal ordering of the threshold graph G where the indepen-
dent set of the threshold partition has every vertex perfectly balanced. This allows us to
establish that if there is an inverted-clique-pair, then there is one that is “rightmost” in
some sense, and moreover, that the neighbourhoods to the right of both vertices in the
pair are equal. Then the proof invokes a version of Lemma 4.2.13, which says that the
imbalance of at least one of the vertices in the pair would be better if it was swapped past
the other, which would also remove the clique pair. However, since the proof does not
establish that the two vertices of the inverted pair are consecutive in the ordering, this
may increase the imbalance of the vertices in between the pair of vertices.

Helpful Facts and Ideas for a New Proof

It is tempting to try to use the algorithm for Cutwidth on threshold graphs to obtain
an imbalance-minimal ordering, given the similarity of the problems. The algorithm for
Cutwidth, MinCut (Heggernes et al. [77]), is not described in this thesis but the result
of its execution on a graph is shown in Figure 4.14. Figure 4.14 shows that the ordering
produced by MinCut does not always meet the requirements of Lemma 3.4.2. However,
the algorithm did produce an imbalance-minimal ordering of the graph G. In other small
cases, Lemma 3.4.2 can be used on the result of MinCut order to show that the result
is in fact imbalance-minimal in addition to being cutwidth-minimal. Therefore, while I
conjecture that MinCut does provide imbalance-minimal orderings, it is not proven to do
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(a) A threshold graph G.

1 2 3 4 58 6 7 9 10

1 1 1 1 1 −1 −1 1 −1 −3rankσ(v)

(b) An ordering σ of G generated by the algorithm MinCut for Cutwidth on threshold
graphs (Heggernes et al. [77]). Note that cw(G) = cw(σ) = 5 but im(G) = im(σ) =
12 > 2cw(G) = 10. Also observe that there is no single point where the ranks of the
vertices in σ change sign; such an ordering exists (⟨1, 2, 3, 4, 8, 7, 9, 10, 5, 6⟩), but has a
larger cutwidth.

Figure 4.14: A threshold graph G where im(G) > 2cw(G).

so. Moreover, the graph in Figure 4.14 shows that for a threshold graph G, it is not always
the case that im(G) = 2cw(G).

An alternative proof may exploit the recursive linear structure of threshold graphs
which is presented by the next lemma. A proof by induction on the number of levels
of the threshold graph may be possible. In such a proof, the base case would have one
level; it’s not possible to have any inverted pairs. For the induction step, one can observe
that I1 = U(G) is also present in G \ I1, and could be considered the leftmost set of
clique vertices in the threshold partition of G \ I1. Then, all that remains is to modify
the ordering provided by a suitable induction hypothesis to include the vertices of I1 so
that the imbalance of the ordering is minimum. This has some promise for a couple of
reasons. First, Lemma 4.4.3 says that one knows there is always an ordering of G where
the vertex v ∈ I1 which is to be added to the ordering may come first. This may let one
fill an ordering with vertices from I1 in a left-to-right manner. Second, Lemma 4.2.10 gives
one a lower bound for the imbalance of the graph for G − v. However, in our attempt of
this proof, the lower bound is not always tight (in particular, when |U(G)| > 1), and thus
more study is necessary. However, much of the heavy lifting, or the inspiration for it, may
already be done.
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(a) A threshold graph G.
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(b) The graph G2 constructed from G.

Figure 4.15: An example of the recursive structure of threshold
graphs.

The following lemma is helpful to understand the recursive structure of threshold
graphs.

Lemma 4.8.5. If G is a threshold graph on ℓ ≥ 2 levels, then G′ = G \ I1 is a threshold
graph on ℓ− 1 levels.

Proof. It suffices to provide a threshold partition for G′. Partition G′ into (C ′, I ′) where

• C ′ = C ′
1, C

′
2, . . . , C

′
ℓ−1 and for 2 ≤ j ≤ ℓ− 1, C ′

j = Cj+1, while C ′
1 = C1 ∪ C2.

• I ′ = I ′0, I
′
1, I

′
2, . . . , I

′
ℓ−1 and for 2 ≤ j ≤ ℓ− 1, I ′j = Ij+1, while I ′1 = I2 and I ′0 = I0.

We verify that this is a valid threshold partition:

• For v ∈ I ′1 = I2, NG(v) = NG′(v) = C1 ∪ C2 = C ′
1.

• For v ∈ Ij for 2 < j ≤ ℓ, NG(v) = NG′(v) = Cj = C ′
j−1.

• For v ∈ I0 = I ′0, NG(v) = NG′(v) = ∅.
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Figure 4.16: A graph illustrating how the NP-complete reduction for
Imbalance on split graphs fails. The graph G (top) is transformed
into the graph G′ (bottom) in the reduction. The set V (G) becomes
a clique, and each edge in E(G) is split by a vertex. Lastly, each
vertex in V (G) is attached to n−1 pendants intended to “offset” the
edges introduced by making V (G) a clique. An imbalance-minimal
ordering of either graph is obtained by taking the vertices from left-
to-right as drawn in these illustrations.
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4.8.4 Split Graphs

Finally, we attempted (Gorzny and Buss [68]) to show that Imbalance is NP-complete
for split graphs. Therese Biedl has found a counter-example to the reduction, which is
redrawn in Figure 4.16. The set V (G) becomes a clique, and each edge in E(G) is split by
a vertex. Lastly, each vertex in V (G) is attached to n−1 pendants intended to “offset” the
edges introduced by making V (G) a clique. The reduction incorrectly claims that G has
imbalance at most k if and only if G′ has imbalance at most k+n(n−1) where n = |V (G)|.
The graph G′ on the bottom has imbalance 2 + 7(6) = 2 + n(n − 1), implying that the
graph G has imbalance at most 2. However, the graph G in the figure has imbalance at
least 4 since there are four odd degree vertices. The claim that the pendants (only) offset
the edges introduced by making V (G) a clique is incorrect.
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Chapter 5

Optimal Linear Arrangement

5.1 Introduction

Optimal Linear Arrangement was initially studied due to its various applications and
relation to the so-called Bandwidth problem. Optimal Linear Arrangement arises
in the context of blackboard wiring, a.k.a. module placement (Adolphson and Hu [1], Hanan
and Kurtzberg [73]), data arrangement and ordering (Iordanskii [82]), and error-correcting
codes (Harper [74]). Optimal Linear Arrangement is also related to the Band-
width problem (formally defined in Section 4.6), which asks to minimize the maximum
weight of any edge, rather than the sum of all edge weights, in an ordering. Bandwidth is
notoriously hard—it is NP-complete even on caterpillars (Monien [112])—but it does have
some positive results: Bandwidth is in P for bipartite permutation graphs (Heggernes et
al. [76]), chain graphs (Kloks et al. [89]), and interval graphs (Kratsch [91]).

Optimal Linear Arrangement is NP-complete on interval graphs, permutation
graphs, cocomparability graphs (Cohen et al. [29]) and bipartite graphs (Even [48]). It is
solvable in linear time on proper interval graphs (Yuan and Zhou [140]). It can be solved
efficiently on trees (Chung [26], Goldberg and Klipker [64], Shiloach [127]) and small graph
classes like hypercubes or grids (see, e.g., Dı́az et al. [44]). It can be approximated within
O(log n) on general graphs (Rao and Richa [121]).

Some previous complexity results for Optimal Linear Arrangement are shown in
Figure 5.1.
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Bipartite [48] AT-Free Chordal

Bipartite
Permutation

Interval [29] Split k-Tree

Proper
Interval [140] Threshold

Superfragile
[*]

Tree [64]

(a) Some known complexity results for Optimal Linear Arrangement on restricted graph
classes. The problem is NP-complete for classes with a solid gray background, has unknown
complexity for classes with a hatched background, and is in P otherwise. Results for classes
marked with [*] are shown in this work.

vc(G) [103]

nd(G)

tc(G)

mw(G)

tw(G)

cwd(G)

pw(G)

rtc(G) [*]

cc(G) [49]

FPT Unknown

(b) Some known parameterized complexity results for Optimal Linear Arrangement for
common graph parameters. For each parameter to the left of thick line, there is an FPT algorithm
forOptimal Linear Arrangement with that parameter. The complexity of Optimal Linear
Arrangement is open for those parameters to the right of the thick line. FPT algorithms for
parameters marked with [*] are shown in this work.

Figure 5.1: Some known complexity results for Optimal Linear
Arrangement.
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Summary of Results

In this chapter, we show similarities between Optimal Linear Arrangement and or-
dering problems: Imbalance and Cutwidth. The previous results for Cutwidth helped
establish complexity results for Imbalance, and now we show that those results for Im-
balance can be adapted for similar results on Optimal Linear Arrangement. An-
swering a question of Lilleeng [99], we show that Optimal Linear Arrangement has
a polynomial time algorithm on superfragile graphs using a result of Fellows et al. [49].
Fellows et al. [49] observed that there are optimal orderings where equivalence classes of
true twins appear together for any graph. We observe that for superfragile graphs there
is a solution which is also imbalance-minimal, and therefore can be solved using the re-
sults of Chapter 4. We also show that Optimal Linear Arrangement admits an
FPT algorithm for graphs with small restricted twin cover number, adapting our approach
from Section 3.7 to the integer quadratic program that is known for Optimal Linear
Arrangement on graphs with a bounded vertex cover number.

5.2 Preliminaries

The following two results are helpful. The first provides a way to partition a graph’s
edges to get lower bounds for Optimal Linear Arrangement, while the second is the
analogous version of Theorems 3.5.1 and 4.4.2 for Optimal Linear Arrangement.

Lemma 5.2.1 (Corollary 1, Cohen et al. [29]). Let G = (V,E), V = V1∪· · ·∪Vk and E =
E1∪· · ·∪Ek where E1, . . . , Ek are pairwise disjoint. Then W(G) ≥ W(G1)+ . . .+W(Gk),
where Gi = (Vi, Ei), 1 ≤ i ≤ k.

Theorem 5.2.2 (Lemma 4.2, Fellows et al. [49]). For any graph G, there exists an optimal
linear arrangement (ordering) σ of V (G) such that each equivalence class of true twins
appears consecutively in σ.

The next lemma connects Imbalance to Optimal Linear Arrangement. It shows
that balancing a universal set of vertices within a graph reduces the weights of edges
incident with those vertices. Recall that U(S) denotes the set of universal vertices for
S ⊆ V , i.e., U(S) = {v | v ∈ S and S ⊆ N [v]}.

Lemma 5.2.3. Suppose that H = (V,E) is a graph where U(H) ̸= ∅. Let G = (V,E ′)
where E ′ = E \ E(V \ U(H), V \ U(H)); that is, G is obtained by deleting all edges from
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H except those with an endpoint in U(H). Note that U(G) = U(H). Finally, suppose that
σ = ⟨L · U(G) ·R⟩ is an ordering of G for some sets L,R where |L| > |R|+ 1.

If σ′ = ⟨L′ ·U(G) ·R′⟩ is an ordering of G for some sets L′, R′ where |L′| = |L| − 1 and
|R′| = |R|+ 1, then W(σ) >W(σ′).

Proof. Recall that E(X, Y ) indicates the edges which have one endpoint in X and the
other in Y . The weights of the edges with both endpoints in U(G) do not change as U(G)
is a set of true twins, and we may assume the ordering of U(G) is the same in both σ and σ′

(Observation 2.1.1). We therefore only consider the weights of edges in E(U(G), G−U(G)).

Let k be the weights of edges in E(U(G), U(G)). ThenW(σ)−k represents the weights
of the edges in E(U(G), G− U(G)) in σ and W(σ′)− k represents the weights of edges in
E(U(G), G− U(G)) in σ′.

For convenience, let r = |R|, ℓ = |L|, r′ = |R′|R, and ℓ′ = |L′|. By assumption that
|L| > |R|+ 1, we have that ℓ > r + 1, ℓ′ = ℓ− 1, and r′ = r + 1.

We can count the weights of the edges in E(U(G), G − U(G)) in σ. If we count the
weight of the edges by their left endpoints, we have

W(σ)− k =
ℓ∑

i=1

|U(G)|∑
j=1

|(ℓ+ j)− i|+
n∑

i=|U(G)|+ℓ+1

|U(G)|∑
j=1

|(ℓ+ j)− i|

=
ℓ∑

i=1

|U(G)|∑
j=1

((ℓ+ j)− i) +
n∑

i=|U(G)|+ℓ+1

|U(G)|∑
j=1

|(ℓ+ j)− i|. (5.1)

where we can drop the absolute values in the first double sum since i ≤ ℓ. The first double
sum counts the weights of the edges incident with vertices to the left of U(G) in σ and
U(G), while the second double sum counts the weights of the edges incident with vertices
to the right of U(G) in σ and U(G).

For the edges with an endpoint to the right of U(G) in σ, we can also count the weights
by the right endpoint of each edge, in which case we have

n∑
i=|U(G)|+ℓ+1

|U(G)|∑
j=1

|(ℓ+ j)− i| =
r∑

i=1

|U(G)|∑
j=1

|(r + j)− i|

=
r∑

i=1

|U(G)|∑
j=1

((r + j)− i), (5.2)
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where we can again drop the absolute value from the second double sum since i ≤ r.

Similarly, we can count the weights of the edges in E(U(G), G − U(G)) in σ′. If we
count the weight of the edges by their left endpoints, we have

W(σ′)− k =
ℓ′∑
i=1

|U(G)|∑
j=1

|(ℓ′ + j)− i|+
n∑

i=|U(G)|+ℓ′+1

|U(G)|∑
j=1

|(ℓ′ + j)− i|

=
ℓ′∑
i=1

|U(G)|∑
j=1

((ℓ′ + j)− i) +
n∑

i=|U(G)|+ℓ′+1

|U(G)|∑
j=1

|(ℓ′ + j)− i|. (5.3)

where we can drop the absolute values in the first double sum since i ≤ ℓ′.

Again, we can also count the weights of edges with an endpoint to the right of U(G)
by their right endpoints in σ′. In this case, we have

n∑
i=|U(G)|+ℓ′+1

|U(G)|∑
j=1

|(ℓ′ + j)− i| =
|U(G)|∑
j=1

|(r′ + j)− i|

=

|U(G)|∑
j=1

((r′ + j)− i), (5.4)

where we can again drop the absolute value from the second double sum since i ≤ r′.

Putting these equations together, along with some algebra, gives us the following:

W(σ)− k

=
ℓ∑

i=1

|U(G)|∑
j=1

((ℓ+ j)− i) +
n∑

i=|U(G)|+ℓ+1

|U(G)|∑
j=1

|(L+ j)− i| by 5.1

=
ℓ∑

i=1

|U(G)|∑
j=1

((ℓ+ j)− i) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i) by 5.2

=

|U(G)|∑
j=1

((ℓ+ j)− 1) +
ℓ∑

i=2

|U(G)|∑
j=1

((ℓ+ j)− i) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i)

>

|U(G)|∑
j=1

(((r + 1) + j)− 1) +
ℓ∑

i=2

|U(G)|∑
j=1

((ℓ+ j)− i) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i)
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by assumption

=

|U(G)|∑
j=1

((r′ + j)− 1) +
ℓ∑

i=2

|U(G)|∑
j=1

((ℓ+ j)− i) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i)

by assumption

=

|U(G)|∑
j=1

((r′ + j)− 1) +
ℓ−1∑
i=1

|U(G)|∑
j=1

((ℓ+ j)− (i+ 1)) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i)

=

|U(G)|∑
j=1

((r′ + j)− 1) +
ℓ′∑
i=1

|U(G)|∑
j=1

((ℓ′ + j)− i) +
r∑

i=1

|U(G)|∑
j=1

((r + j)− i)

by assumption

=

|U(G)|∑
j=1

((r′ + j)− 1) +
ℓ′∑
i=1

|U(G)|∑
j=1

((ℓ′ + j)− i) +
r+1∑
i=2

|U(G)|∑
j=1

((r + j)− (i− 1))

=

|U(G)|∑
j=1

((r′ + j)− 1) +
ℓ′∑
i=1

|U(G)|∑
j=1

((ℓ′ + j)− i) +
r′∑
i=2

|U(G)|∑
j=1

((r′ + j)− i)

by assumption

=
ℓ′∑
i=1

|U(G)|∑
j=1

((ℓ′ + j)− i) +
r′∑
i=1

|U(G)|∑
j=1

((r′ + j)− i)

=
ℓ′∑
i=1

|U(G)|∑
j=1

|(ℓ′ + j)− i|+
n∑

i=|U(G)|+ℓ′+1

|U(G)|∑
j=1

|(ℓ′ + j)− i| by 5.4

=W(σ′)− k by 5.3,

as required.

Lemma 5.2.4. Suppose that H = (V,E) is a graph where U(H) ̸= ∅. Let G = (V,E ′)
where E ′ = E \ E(V \ U(H), V \ U(H)); that is, G is obtained by deleting all edges from
H except those with an endpoint in U(H). Note that U(G) = U(H). Finally, suppose that
σ = ⟨L · U(G) ·R⟩ is an ordering of G for some sets L,R where |L| < |R|+ 1.

If σ′ = ⟨L′ ·U(G) ·R′⟩ is an ordering of G for some sets L′, R′ where |L′| = |L|+ 1 and
|R′| = |R| − 1, then W(σ) >W(σ′).
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Proof. The result is immediate from Lemma 5.2.3 applied to σR.

We also require the following result as well, which is a closed formula for the weight of
a complete graph.

Theorem 5.2.5 (Remark 2, Liu and Williams [102]). For a complete graph Kn,

W(Kn) =

(
n+ 1

3

)
.

5.3 Superfragile Graphs

Lilleeng [99] asked if Optimal Linear Arrangement has a polynomial time algorithm
for superfragile graphs. We prove the following corollary of Theorem 5.2.2, answering the
question positively, using the same approach as in Section 4.5.

Recall that by Observation 2.3.1, if G is a connected superfragile graph which is not a
complete graph, then G was constructed by a complete join of U and the graph consisting
of the cliques C1, . . . , Ck. The k + 1 equivalence classes of true twins in G are the sets
C1, . . . , Ck along with the set U .

Theorem 5.3.1. If G is a superfragile graph, then W(G) can be computed in O(n2) time.

Proof. We may assume G = (V,E) is connected; if not, we can compute the weight of
each component and add them together. If G is a complete graph, the result follows by
Theorem 5.2.5. If G is not a clique, G − U(G) is a disjoint union of cliques C1, . . . , Ck

(Observation 2.3.1). Each Ci is an equivalence class of true twins in G. Therefore by
Theorem 5.2.2 there is an minimum weight ordering σ of G where the twins of each Ci

appear consecutively. Since U(G) is a also a class of true twins (Observation 2.1.1), U(G)
would appear together in one such σ as well.

By Lemma 5.2.3, the weights of the edges in E(U(G), V − U(G)) decrease as U(G)
becomes more balanced. Therefore, we need to minimize the imbalance of U(G) so that
the weights of the edges between U(G) and ∪ki=1Ci are minimized (edges within each Ci are
already minimized). This can be done by solving Imbalance on G using the algorithm
of Theorem 4.5.2. Specifically, set ai = |Ci| for 1 ≤ i ≤ k. An O(N · A)-time algorithm
is known for this problem (see, e.g., Mertens [109]), where N is the size of the list and
A bounds each element in the list. Taking N = A = n means we can solve this instance
in O(n2) time. Given a solution A, we can create an imbalance-minimal ordering σ as
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follows. Starting with an empty ordering, for each ai ∈ A, append all the vertices of Ci

in any order to the existing ordering. Then, append all the vertices of U(G) in any order.
Finally, for each ai /∈ A, append all the vertices of Ci consecutively. Take the resulting
order to be σ: each equivalence class of true twins is consecutive, and the imbalance of
U(G) is minimized. The result is also an optimal linear arrangement for G.

5.4 Restricted Twin Cover Number Parameterization

In this section, we show that there is an FPT algorithm for Optimal Linear Arrange-
ment when the parameter is the restricted twin cover number. We use the FPT algorithm
of Lokshtanov [103] for graphs of bounded vertex cover as inspiration.

We formulate Optimal Linear Arrangement as an instance of the following prob-
lem.

Problem 5.4.1 (Integer Quadratic Programming). Let matrices Q ∈ Zn×n, A ∈
Zm×n, and b ∈ Zm×1 be given. Find a vector x ∈ Zn×1 that minimizes the objective function
xTQx and satisfies the m inequalities, that is, Ax ≤ b.

An instance of Integer Quadratic Programming, called an integer quadratic
program (IQP), may be infeasible, unbounded, or not unbounded. An infeasible instance
is one where no vector x satisfies Ax ≤ b, whereas an unbounded instance is one where for
every integer y, there is some vector x such that xTQx ≤ y. A not unbounded instance is
one which is feasible (there is a vector x that satisfies Ax ≤ b) and there is a vector x such
that xTQx is in fact minimum over all feasible vectors.

Lokshtanov [103] showed the following result, establishing that Integer Quadratic
Programming has an FPT algorithm when the parameter is the number of variables and
the largest absolute value of the entries in Q and A.

Theorem 5.4.2 (Theorem 1, Lokshtanov [103]). There exists an algorithm that given an
instance of Integer Quadratic Programming, runs in time f(n, α)LO(1), and outputs
a vector x ∈ Zn. Here, L is the total number of bits required to encode the input IQP, n is
the number of variables in the IQP, and α is the largest absolute value of the entries in Q
and A. If the input IQP has a feasible solution then x is feasible, and if the input IQP is
not unbounded, then x is an optimal solution.

We modify the following integer quadratic program (IQP) formulation for Optimal
Linear Arrangement on graphs of bounded vertex cover number by Lokshtanov [103].
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The notation is updated to match the notation used in this work, where possible. Recall
that IS = {v ∈ I|N(v) = S} for a set S. As in the case of Cutwidth, the input
to Optimal Linear Arrangement parameterized by the vertex cover number of the
graph will be a graph G and a vertex cover C of G such that |C| ≤ k. If C is not provided
but vc(G) ≤ k, then C can be found in time O(2kn) (see, e.g., Theorem 3.2.1, Downey and
Fellows [46]).

IQP Formulation 5.4.3 (Optimal Linear Arrangement, Lokshtanov [103]).

We assume that a vertex cover C of G of size at most k is given as input. The
remaining set of vertices I = V (G)−C forms an independent set. Furthermore,
I can be partitioned into at most 2k sets IS based on each subset S ⊆ C.

Let C = {c1, c2, . . . , ck}. By trying all k! permutations of C we may assume
that the optimal solution σ satisfies σ(ci) < σ(ci+1) for every 1 ≤ i ≤ k − 1.
For every i between 1 and k− 1, we define the location Li of σ to be the set of
vertices appearing between ci and ci+1 according to σ. Location L0 is the set of
all vertices appearing before c1 and location Lk is the set of vertices appearing
after ck. For every location Li and neighbourhood S ⊆ C of vertices we denote
by I iS the set Li ∩ IS of vertices of neighbourhood S appearing in location i.

We say that an ordering σ is homogeneous if, for every location Li and every
neighbourhood S ⊆ C the vertices of I iS appear consecutively in σ.

Fellows et al. [49] showed that there exists an optimal solution which is homo-
geneous, and where in every location, the vertices are ordered from left to right
in non-decreasing order by their rank. We will call such an ordering solution
super-homogeneous.

Notice that a super-homogeneous linear arrangement σ is completely defined
(up to swapping positions of vertices with the same neighbourhood) by speci-
fying for each i and each neighbourhood S ⊆ C the size |I iS|. For each location
i and each neighbourhood S we introduce a variable xiS ∈ Z representing |I is|.
Clearly the variables xiS need to satisfy

∀i ≤ k, ∀S ⊆ C xiS ≥ 0 (5.5)

and

∀S ⊆ C
k∑

i=0

xiS = |IS|. (5.6)
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On the other hand, every assignment to the variables satisfying these (linear)
constraints corresponds to a super-homogeneous linear arrangement σ of G with
|I iS| = xiS for every neighbourhood S and location i.

We now analyze the cost of σ as a function of the variables. The goal is to
show that W(σ) is a quadratic function of the variables with coefficients that
are bounded from above by a function of k. The coefficients of this quadratic
function are not integral, but half-integral, namely integer multiples of 1/2. For
the analysis below is helpful to re-write W(σ). For a fixed ordering σ of the
vertices we say that and edge uv flies over the vertex w if

min(σ(u), σ(v)) < σ(w) < max(σ(u), σ(v)).

We define the “fly over” relation ∼ for edges and vertices, i.e., uv ∼ w means
that uv flies over w. Since an edge with σ(u) < σ(v) flies over the σ(v)−σ(u)−1
vertices appearing between σ(u) and σ(v) it follows that

W(σ) = |E(G)|+
∑

uv∈E(G)

∑
w∈V (G)
uv∼w

1.

we partition the set of edges of G into several subsets as follows. The set EC

is the set of all edges with both endpoints in C. For every location i with
i ∈ {0, . . . , k}, every j ∈ {1, . . . , k} and every S ⊆ C we denote by ES

i,j the set
of edges whose one endpoint is in I iS and the other is cj. Notice that |ES

i,j| is
either equal to xiS or to 0 depending on whether vertices of neighbourhood S
are adjacent to cj or not. We have that

W(σ) = |E(G)|+
∑

cicj∈E(G)

∑
w∈V (G)
cicj∼w

1 +
∑
i,j,S

∑
ucj∈ES

i,j

∑
w∈V (G)
ucj∼w

1. (5.7)

Further, for each edge cicj ∈ EC (with i < j) we have that

∑
w∈V (G)
cicj∼w

1 = j − i− 1 +

j−1∑
p=i

∑
S⊆C

xpS. (5.8)

In other words, the first double sum of Equation 5.7 is a linear function of the
variables. Since |EC | ≤

(
k
2

)
, the coefficients of this linear function are integers

upper bounded by
(
k
2

)
.
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We now turn to analyzing the second part of Equation 5.7. We split the triple
sum in three parts as follows∑

i,j,S

∑
ucj∈ES

i,j

∑
w∈V (G)
ucj∼w

1

=
∑
i,j,S

( ∑
ucj∈ES

i,j

∑
w∈C
ucj∼w

1 +
∑

ucj∈ES
i,j

∑
w∈IiS
ucj∼w

1 +
∑

ucj∈ES
i,j

∑
w∈I−IiS
ucj∼w

1
)
. (5.9)

For any fixed i, j, and S, and any edge ucj ∈ ES
i,j the number of vertices w ∈ C

such that ucj ∼ w depends solely on i and j. It follows that∑
ucj∈ES

i,j

∑
w∈C
ucj∼w

1 = f(i, j) · xiS (5.10)

for some function f , which is upper bounded by k (since |C| = k).

Consider a pair of vertices u,w in I iS and a vertex cj ∈ C such that vertices
with the same neighbourhood as u and w are adjacent to cj. Either the edge
ucj flies over w or the edge wcj flies over u, but both of these events never
happen simultaneously. Therefore,∑

ucj∈ES
i,j

∑
w∈IiS
ucj∼w

1 =

(
xiS
2

)
=

(xiS)2

2
− xiS

2
. (5.11)

In other words, this sum is a quadratic function of the variables with coefficients
1/2 and −1/2. Further, if vertices in IS are not adjacent to cj this sum is 0.

For the last double sum in Equation 5.9 consider an edge ucj ∈ ES
i,j and vertex

v ∈ I i′S′ such that S ′ ̸= S or i′ ̸= i. If ucj flies over v then all the edges in ES
i,j

fly over all the vertices in I i
′

S′ . Let g(i, j, S, i′, S ′) be a function that returns 1 if
vertices in IS are adjacent to cj and all the edges in ES

i,j fly over all the vertices

in I i
′

S′ . Otherwise, g(i, j, S, i′, S ′) returns 0. It follows that∑
ucj∈ES

i,j

∑
w∈I−IiS
ucj∼w

1 = xiS ·
∑

(i′,S′ )̸=(i,S)

g(i, j, S, i′, S ′)xi
′

S′ . (5.12)

In other words, this sum is a quadratic function of the variables with 0 and 1
as coefficients.
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The outer sum of Equation 5.9 goes over all 2k choices for S, k + 1 choices
for i, and k choices for j. Since the sum of quadratic function is a quadratic
function, this concludes the analysis and proves the following lemma.

Lemma 5.4.4 (Lemma 10, Lokshtanov [103]). W(σ) is a quadratic function
of the variables {xiS} with half-integral coefficients between −2kk2 and 2kk2.
Furthermore, there is a polynomial time algorithm that given G computes the
coefficients.

For each permutation c1, . . . , ck of C we can make an integer quadratic pro-
gram for finding the best super-homogeneous solution to Optimal Linear
Arrangement which places the vertices of C in the order c1, . . . , ck from left
to right. The quadratic program has variable set {xiS} and constraints as in
Equations 5.5 and 5.6. The objective function is the one given by Lemma 5.4.4
but with every coefficient multiplied by 2. This does not change the set of op-
timal solutions and makes all the coefficients integral. This quadratic program
has at most 2k · (k+ 1) variables, 2k · (k+ 2) constraints, and all coefficients are
between −2k+1k2 and 2k+1k2. Furthermore, since the domain of all variables
is bounded the IQP is bounded as well. Thus, we can apply Theorem 5.4.2 to
solve each IQP in time f(k) · n.

This completes the description of the IQP for Optimal Linear Arrangement adapted
from Lokshtanov [103]. The remainder of this section describes the modifications needed
to adapt the IQP to the restricted twin cover number for the main result of this section.

Theorem 5.4.5. Optimal Linear Arrangement is fixed-parameter tractable when the
parameter is the restricted twin cover number of the graph.

Proof. Let G be a graph with rtc(G) = |T |+q = k for some q, k ≥ 0 and twin cover T . We
can compute T in time f(k) ·nO(1) by Theorem 2.5.19. There are q non-trivial components
of G− T . We modify the approach of IQP 5.4.3 as follows.

First, instead of trying every permutation of a vertex cover, we try every permutation
of the twin cover T ; there are |T |! such permutations. Let Q1, . . . , Qq be the non-trivial
components of G− T , and let Q = ∪q

i=1Qi. By Lemma 2.5.2, each non-trivial component
of G − C is a set of true twins; by Theorem 5.2.2 there is an optimal linear arrangement
of G such that each of these sets is consecutive.

Let G′ = (V ′, E ′) where V ′ = V and E ′ = E(G) \ (∪qi=1(Qi × Qi)). That is, G′ is the
graph obtained by deleting the edges of the non-trivial components Qi of G− T . If T is a
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twin cover of G, then by Lemma 2.5.1, T is a vertex cover in G′, and therefore also a twin
cover.

For each permutation t1, . . . , tk of T , we create (|T |+1)q instances of an integer quadratic
program based on the one described above. Each instance of the program will place the q
non-trivial components of G−T into locations (i.e., the set of locations Li for 0 ≤ i ≤ k+1)
of the ordering imposed on t1, . . . , tk, the vertices of T .

In particular, there are (|T | + 1)q ways to put q sets Qi into |T | + 1 locations Li

(0 ≤ i ≤ k). For each combination, we let B(S, i) be the union of those components Qj

with NG(Qj) placed into bin i. Therefore, we require that each xiS is at least the sum of
some values |B(S, i)|.

Thus, we will create (|T |!) · (|T |+1)q ≤ (rtc(G)!) · (rtc(G)+1)rtc(G) instances of an IQP
referring to G′ (not G).

As in the IQP used by Lokshtanov, the variable xiS represents the number of variables of
G−(T ∪Q) with neighbourhood S ⊆ T . Let QS be the union of the non-trivial components
of G− T that have the neighbourhood S ⊆ T , i.e.,

QS =
⋃

1≤j≤q
NG(Qj)=S

Qj.

Instead of Equation 5.6 from the Lokshtanov program, we modify it as follows:

∀S ⊆ C
k∑

i=0

xiS = |IS|+ |QS|. (5.13)

To each instance of the program, we add the following constraint (instead of Equation
5.5; note that if B(S, i) = ∅, then the constraint for that pair (S, i) is the same):

∀i ≤ k,∀S ⊆ C xiS ≥ |B(S, i)|. (5.14)

Finally, we update the objective function. Starting with the objective function of the
IQP for graphs with bounded vertex cover number, we add a constant term h which is
equal to

∑q
i=1

(|Qi|+1
3

)
, which accounts for the weights of edges between vertices in each

component Qi by Theorem 5.2.5. These edges are not included in G′, so we are not double
counting them by adding this term. The term h can be computed prior to creating any
instances of the IQP and passed to an instance as a constant each time (that is, we only
need to compute each binomial coefficient once).
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The reason we update the objective function and introduce the term h is because the
original IQP formulation finds a super-homogeneous optimal linear arrangement. In such
an ordering, the value h necessarily contributes to the total weight of the ordering. On
the other hand, ignoring those edges only, the vertices within a non-trivial component are
indistinguishable from a vertex in a trivial component with the same neighbourhood in T .
Therefore, when we have xiS vertices of this kind within a location Li, we can partition
this set – which is consecutive by definition of super-homogeneous – into the non-trivial
components placed into this location in an arbitrary order, followed by the vertices of the
non-trivial components. For example, if Qj and Qj+1 are the only non-trivial components
of G − T for some j placed into location Li for some i, necessarily xiS ≥ |Qj| + |Qj+1|.
Therefore, within location Li, we can take the first |Qj| vertices of xiS to be those of Qj, the
next |Qj+1| vertices to be those of Qj+1, and any remaining vertices with the neighbourhood
S to be trivial components of G − T . All the edges from Qj to T and Qj+1 to T will be

accounted for, while the
(|Qj |+1

3

)
+

(|Qj+1|+1
3

)
edges within Qj and Qj+1 are accounted for

by the h term in the objective function.

Therefore, we have the same number of constraints as in the IQP for graphs with
bounded vertex cover number, and no additional variables: each instance of the IQP
receives each |B(S, i)| value and |IS| + |QS| value as constants. Moreover, the coefficients
are not increased in either Q or A (only the right side of the inequalities changes, which
is the b vector) and the IQP is still bounded as all variables are still bounded. Taking the
ordering with the smallest weight will allow us to compute W(G), since by Theorem 5.2.2
there is an optimal layout where all classes of true twins appear consecutively.
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Part II

Type II Problems

162



Chapter 6

End-Vertex Problem

6.1 Introduction

The well-known search algorithms presented in Section 2.6 have been applied to a wide
range of problems. For example, BFS can be used to check if a graph is bipartite and DFS
can be used to find cut vertices of a graph (see, e.g., Bondy and Murty [14]). LBFS is used
for recognizing graph classes, computing graph parameters, and detecting certain graph
structures (a survey is provided in Corneil et al. [30]). Other searches, like Lexicographic
Depth-First Search (LDFS), have also been shown to be helpful for other problems. For
example, LDFS is used for computing maximal cardinality matchings on so-called cocom-
parability graphs (Mertzios et al. [110]).

One of the first applications of end-vertices are perfect elimination orderings. A perfect
elimination ordering (PEO) for a graph G is an ordering σ such that for all v ∈ V (G),
N [v]∩ σ≤v induces a clique in G. It is known that a graph is chordal if and only if it has a
PEO (Fulkerson and Gross [55]), and that PEOs can be generated efficiently using LBFS.
This is because if the input graph for LBFS is chordal then the last visited vertex of an
LBFS is simplicial. This resulted in an efficient algorithm for recognizing chordal graphs
(see also Rose, Tarjan, and Lueker [124]). However, a perfect elimination ordering can
also be found by Maximal Cardinality Search (MCS) (Tarjan and Yannakakis [131, 132]).
Understanding the end-vertices generated by these algorithms enabled simple inductive
proofs of correctness for such recognition algorithms.

These results have stimulated research on last visited vertices of various search algo-
rithms on many classes of graphs (Berry et al. [6], Berry and Bordat [7], Corneil et al. [33],
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Brandstädt et al. [16], Gorzny [66], Gorzny and Huang [69], Jamison and Olariu [83], Zou
et al. [141]). However, end-vertices are still not fully understood. For example, not all
simplicial vertices of a chordal graph are LBFS end-vertices. Understanding end-vertices
may enable these algorithms to be applied to even more problems.

Naturally, subsequent research studied the complexity of determining if a vertex is a
possible end-vertex of a search. Recall that this is the S-End-Vertex: given a graph
G = (V,E), a vertex t ∈ V , and a search algorithm S, determine if there exists an ordering
σ : V → {1, . . . , n} (where n = |V |) generated by S of V such that σ(t) = n.

The end-vertices of BFS, DFS, LBFS, LDFS, MNS, and MCS have all been studied
on various class graphs (Beisegel et al. [5], Cao et al. [21], Charbit et al. [23], Corneil et
al. [33], Gorzny and Huang [69], Zou et al. [141]). Table 6.1 shows the known complexity
for S-End-Vertex.

S-End-Vertex is NP-complete in general for each of the aforementioned search algo-
rithms (Beisegel et al. [5], Cao et al. [21], Charbit et al. [23], Corneil et al. [33], Zou et
al. [141]). In fact, the problem is NP-complete for weakly chordal graphs: graphs without
an induced cycle of length at least five.

On restricted graph classes, characterizations of end-vertices enable tractable algo-
rithms for S-End-Vertex. Recall that a vertex v is admissible if there are no vertices
unrelated to it, that is, for every pair of vertices u,w, every u,w path contains a vertex
of N [v]. Corneil, Olariu and Stewart [36] proved that the end-vertices of LBFS of an in-
terval graph are precisely the simplicial and admissible vertices after establishing that all
LBFS end-vertices of AT-free graphs are admissible. The characterization of end-vertices
of LBFS of interval graphs led to a linear time solution to the LBFS-End-Vertex for
interval graphs. LBFS end-vertices of split graphs, (House, Hole, Domino)-free graphs and
distance-hereditary graphs also have nice properties (Charbit et al. [23], Brandstädt et
al. [16], Jamison and Olariu [83]). End-vertex characterizations on split graphs have since
been found for BFS, LDFS, MNS, and MCS (Beisegel et al. [5], Charbit et al. [23]). On
general chordal graphs, end-vertices are understood for LDFS, MNS, and MCS (Beisegel
et al. [5], Cao et al. [21]). There is also some preliminary work on determining if there are
classes of graphs where several orderings are valid executions of multiple searches simulta-
neously (Krnc and Pivač [93]).

Recently, Gorzny and Huang [69] proved1 that LBFS-End-Vertex is NP-complete for
bigraphs (see also Kratsch et al. [92]). For the subclass of bipartite permutation graphs,
Gorzny and Huang [69] obtained a characterization of end-vertices of LBFS using the

1This result is from Jan Gorzny’s master’s thesis [66], which is why it does not appear in this work.
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notion of eccentricity, which appears in the next section. However, there are vertices which
are BFS end-vertices but not LBFS end-vertices (this will be illustrated in Section 6.3), so
that result alone does not paint a complete picture of end-vertices for both of these layer
searches.

Summary of Results

In this work, we show that both BFS-End-Vertex and MNS-End-Vertex have poly-
nomial time solutions and that DFS-End-Vertex has a linear time solution on bipartite
permutation graphs. We also provide a non-trivial linear-time algorithm to determine if a
vertex of a bipartite permutation graph is an LBFS end-vertex, which improves the result
of Gorzny and Huang [69]. Since bipartite permutation graphs are weakly chordal (recall
that they contain no induced cycle of length greater than four), these results demonstrate
that there are additional subclasses of weakly chordal graphs for which these problems are
tractable.

Our end-vertex results often exploit the same linear structure of the graph. Many
results stem from finding a good vertex from which to start a breadth-first search of the
graph. We observe that there is a highly structured setup of layered vertices based on the
distance from the start vertex along with a good understanding of the components if the
closed neighbourhood of the first vertex is removed. In particular, there can only be two
“large” components of such a graph, and those can be considered to contain the ends of
the linear structure, i.e., admissible vertices. This approach applies even in cases when
the search is not related to breadth-first search, like our result for maximal neighbourhood
search.

6.2 Preliminaries

We start with some definitions that will be used in this chapter.

Recall that an (x, y)-path P misses (or avoids) z if V (P ) ∩ N [z] = ∅, that is, P
contains neither z nor a neighbour of z; otherwise the vertex z is said to intercept
(or hit) the path P .

A dominating path in G is a path P such that no vertex in G is missed by P . A pair of
vertices (x, y) is said to be a dominating pair if every (x, y)-path is a dominating path
in G. When x, y are both diametrical and dominating, they are called a diametrical
dominating pair. These concepts are illustrated in Figure 6.1.
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u v

w

Figure 6.1: An illustration of dominating vertices of a graph. The
vertices u and v are a dominating pair of G since every vertex in
G intercepts every (u, v)-path. Since dG(u, v) = diam(G), the pair
(u, v) is a diametrical dominating pair. The vertices w and v are not
a dominating pair of G since u does not intercept the only (w, v)-path
of G.

Several propositions regarding end-vertices and the structure of bipartite permutation
graphs are necessary to simplify many of the proofs in this work. Recall that the diameter
of a graph, denoted diam(G), is the largest distance between any two vertices in the graph
and that the eccentricity of a vertex, denoted ecc(v), is the largest distance between v and
any other vertex in the graph.

Proposition 6.2.1 (Combination of Theorem 1, Corneil et al. [32] and Theorem 4.2,
Corneil et al. [35]). If v is the end-vertex of an LBFS of an AT-free graph G, then v is
admissible and ecc(v) ≥ diam(G)− 1.

Theorem 6.2.2 (Theorem 4.2, Corneil et al. [35]). Let G be a connected AT-free graph
and v be an admissible vertex in G. Suppose that there is an LBFS ordering which begins
at v and ends at w. Then v, w are a dominating pair in G. Moreover, if ecc(v) = diam(G),
then v, w are a diametrical dominating pair.

Fix an arbitrary vertex z and recall that Li(z) denotes the ith layer of a graph with
respect to z and is equal to all vertices at distance i from z. Let ℓ be a natural number. Note
that when G is bipartite, Lℓ(z) is an independent set for each ℓ. To see this, suppose that
this was not the case and (u, v) ∈ E(G) for u, v ∈ Li(z) for some i > 0 and u, v, z ∈ V (G).
Then a shortest (v, z)-path and a shortest (u, z)-path along with the edge (u, v) would
form an odd walk, contradicting the fact that the graph is bipartite. We restate this fact
so that we can reference it in proofs.

Observation 6.2.3. If G is a bipartite graph, for any vertex v ∈ V (G) and 0 ≤ i ≤ ecc(v),
Lℓ(v) is an independent set.

Fix an arbitrary vertex z. We shall use N z
ℓ (a) to denote the set of all neighbours of a

in Lℓ(z), that is, N z
ℓ (a) = N(a) ∩ Lℓ(z). It is clear that if a ∈ Lℓ+1(z) then N z

ℓ (a) ̸= ∅.

167



Lemma 6.2.4 (Lemma 3.3, Gorzny and Huang [69]). Let G be a bipartite permutation
graph and z be a vertex of G. Suppose that C is a connected component of G −N [z] and
that a, b ∈ Lℓ(z) are two vertices in C. Then

1. N z
ℓ−1(a) ⊆ N z

ℓ−1(b) or N z
ℓ−1(a) ⊇ N z

ℓ−1(b);

2. N z
ℓ+1(a) ⊆ N z

ℓ+1(b) or N z
ℓ+1(a) ⊇ N z

ℓ+1(b);

3. if N z
ℓ−1(a) ⊊ N z

ℓ−1(b) then N z
ℓ+1(a) ⊇ N z

ℓ+1(b);

4. if N z
ℓ+1(a) ⊊ N z

ℓ+1(b) then N z
ℓ−1(a) ⊇ N z

ℓ−1(b).

Suppose that C is a component of G−N [z] and a, b ∈ N(z). It follows from statement 2
of Lemma 6.2.4 that either N(a) ∩ C ⊆ N(b) ∩ C or N(a) ∩ C ⊇ N(b) ∩ C. The next
lemma formalizes this idea.

Lemma 6.2.5. Let C be a component of G−N [z] for some vertex z and bipartite permuta-
tion graph G. If i > 1, then there is a vertex ci ∈ C ∩Li(z) such that, if (Li+1(z)∩C) ̸= ∅,
then N z

i+1(ci) = (Li+1(z) ∩ C).

Proof. By Lemma 6.2.4, N z
i+1(a) and N z

i+1(b) are comparable for any a, b ∈ Li(w) ∩ C for
any component C of G − N [z]. Thus we can order the vertices of L1(z) ∩ C by inclusion
based on their neighbours in Li+1(z) ∩C. Therefore there is a vertex which is adjacent to
all of Li+1(z) ∩ C.

In particular, if c ∈ N(z) is a vertex adjacent to the maximum number of vertices in
C, then for any u ∈ Lℓ(z) ∩ C with ℓ ≥ 2, d(c, u) ≤ ℓ − 1. To see this, note that we can
construct a path with the desired length by taking the vertices in each layer Li(z) that
have the largest neighbourhood on the next layer Li+1(z) in the component (such vertices
always exist by statement 2 of Lemma 6.2.4, and are necessarily adjacent to the entire next
layer in the component), until one is adjacent to u.

Recall that a component is trivial if it contains a single vertex and that a non-trivial
component is a component which contains an edge (since such a component must have at
least two vertices and be connected). Fix an arbitrary vertex z. We call a component C
a deep component of G − N [z] if it contains an eccentric vertex of z. Note that a deep
component of G−N [z] exists if and only if ecc(z) ≥ 2. Deep components are particularly
relevant for layer search algorithms, while non-trivial components are more useful for non-
layer search algorithms. The different kinds of components are illustrated in Figure 6.2.
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321 4 5

6 7 8 9

10 11 12 13

14

C3C1

C2

N [w]

Figure 6.2: An illustration of the types of components considered
in this work. The components of G − N [w] are C1 = {6, 10, 11},
C2 = {7} and C3 = {8, 9, 12, 13, 14}. The components C1 and C3

are non-trivial components of G − N [w], while the component C2 is
trivial. Since d(14, w) = ecc(w) = 4, C3 is also a deep component.

Lemma 6.2.6 (Lemma 3.4, Gorzny and Huang [69]). Let G be a connected bipartite per-
mutation graph and z be a vertex of G. If ecc(z) ≥ 3, then G−N [z] has at most two deep
components.

In fact, we can say the following stronger statement.

Lemma 6.2.7. Let G = (v, E) be a connected bipartite permutation graph and z be a
vertex of G. If ecc(z) ≥ 3, then G−N [z] has at most two non-trivial components.

Proof. Suppose to the contrary that G − N [z] has at least three non-trivial components
for a bipartite permutation graph G.
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Choose three non-trivial components C1, C2, and C3, of G − N [z]. Since each of
these has an edge but L2(z) is an independent set by Observation 6.2.3, there is a vertex
ci ∈ (Ci ∩ L3(z)) for 1 ≤ i ≤ 3.

However, any shortest (ci, cj)-path for i ̸= j, i, j ∈ {1, 2, 3} does not intersect NG[ck]
for k ∈ {1, 2, 3} \ {i, j}. To see this, consider a shortest (ci, cj)-path P which uses as few
vertices of Ck as possible. As ci ∈ Ci, ci is not adjacent to any vertex of Ck. Similarly,
if c′i = P ∩ L2(z), c′i ∈ Ci as ci is only adjacent to vertices of Ci, and c′i is not adjacent
to any vertices of Ck. As cj ∈ Cj, cj is not adjacent to any vertex of Ck. Similarly, if
c′j = P ∩ L2(z), c′j ∈ Cj as cj is only adjacent to vertices of Cj, and c′j is not adjacent
to any vertices of Ck. Thus, either c′i and c′j have a common neighbour in N(z) = L1(z)
which is not adjacent to ck (which is on L3(z)), or P uses z itself (it cannot use a vertex of
Ck as otherwise using z would use fewer vertices of Ck), which is also not adjacent to ck.

Therefore, {ci, cj, ck} is as asteroidal triple, contradicting the fact that G is AT-free.

Lemma 6.2.8 (Lemma 3.5, Gorzny and Huang [69]). Let G be a connected bipartite per-
mutation graph and v be an admissible vertex with ecc(v) = diam(G)−1. Suppose that x, y
are a diametrical dominating pair. Then v is adjacent to one of x, y. Moreover, there is a
shortest (x, y)-path containing v.

The LBFS end-vertex characterization on bipartite permutation graphs obtained by
Gorzny and Huang [69] follows. It implies a polynomial time solution to LBFS-End-
Vertex for bipartite permutation graphs: by testing all candidates for the vertex w, one
can determine whether v is an LBFS end-vertex of G. However, this is not a linear time
solution.

Theorem 6.2.9 (Theorem 3.6, Gorzny and Huang [69]). Let G be a connected bipartite
permutation graph and v be a vertex of G. Then v is an end-vertex of an LBFS if and only
if there exists a vertex w such that, for every eccentric vertex u of w, N(u) ⊇ N(v).

6.3 The BFS-End-Vertex Problem for Bipartite Per-

mutation Graphs

In this section, we show that the BFS-End-Vertex is in P for bipartite permutation
graphs.

First, observe that since BFS is a layer search, the following observation holds.
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2 3

4 5 6

7 v 8

Figure 6.3: A vertex v of a bipartite permutation graph which is not
a BFS end-vertex. The vertex v is an eccentric vertex of w.

w

2 3

4 v

Figure 6.4: A vertex v of a bipartite permutation graph which is a
BFS end-vertex but not an LBFS end-vertex.

Observation 6.3.1. If v is a BFS end-vertex, then d(v, w) = ecc(w) for some vertex w.

Recall that in such a case, the vertex v is an eccentric vertex of w. In particular, if v
is a BFS end-vertex of some BFS ordering σ, then d(v, σ(1)) = ecc(σ(1)).

It is tempting to think that any vertex v of a bipartite permutation graph which is an
eccentric vertex can be a BFS end-vertex. Figure 6.3 shows a counter-example. To be last,
BFS must start at a vertex where v is the last layer, in this case, that must be the vertex
w. However, to make v last, 8 and 7 must come before it. But if BFS attempts to put
7 before v by choosing 2 after 1, then since 5 is a neighbour of 2, it must be placed into
the queue before 6. Therefore, all neighbours of 5 on layer three will be placed before the
neighbour of 6 on layer three, i.e., v will be before 8. Similarly, if 8 comes before v, then
7 will come after it. In that particular example, v is also not an LBFS end-vertex.

It may therefore also be tempting to think that every vertex which is a BFS end-vertex
is also an LBFS end-vertex. However, Figure 6.4 shows a vertex which is a BFS end-vertex
but not an LBFS end-vertex. To be last, LBFS must start at a vertex where v is the last
layer, in this case, that must be the vertex w. Then, no matter how the vertices in layer
one are chosen, v will always have a lexicographically larger label than the vertex 4.

Before characterizing BFS end-vertices on bipartite permutation graphs formally (in
Theorem 6.3.7), we provide some intution. First, we will show that if the end-vertex has
a start vertex which is very close, the graph behaves like a split graph, and we can use
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1 2 3 4

5 t 7

Dt

Figure 6.5: An illustration of the set Dt for a vertex t. In this exam-
ple, Dt = {5, 7}.

the characterization of BFS end-vertices on split graphs. When the start vertex must
be farther away from the end-vertex, we will use the structure of bipartite permutation
to guide our characterization. From Lemma 6.2.7, we know that if we remove the start
vertex for our desired ordering, we have at most two deep components. If we have one
deep component (where our target end-vertex is in the last layer), Lemma 6.2.4 will be
used to show that any vertex in the last layer is an end-vertex. If we have two, we will
characterize a set of neighbours of our start vertex, X. The set X will need to separate the
start vertex from the vertices in the last layer of the component that does not contain the
target end-vertex. If all vertices of the last layer—including those in the same component
as the target end-vertex—are not further away from X than the end-vertex itself, we will
be able to end BFS at the target vertex.

The proofs only rely on the fact that Lemmas 6.2.4 and 6.2.7 hold. Both follow from
the fact that bipartite permutation graphs are AT-free. It may be that for other graphs
where similar lemmas hold, the same BFS end-vertex characterization also holds.

We start by handling some easy cases for when v is a BFS end-vertex. First, we observe
that a necessary condition for BFS end-vertices shown by Charbit et al. [23] is sometimes
also sufficient for bipartite permutation graphs. Second, we show that if G − N [w] has
a single deep component for some w, then any vertex in the Lecc(w)(w) can end a BFS
starting at w.

We require the following definition from Charbit et al. [23]: for a vertex t ∈ V (G), let
Dt = {y|NG(y) ⊂ NG(t)}. This definition2 is illustrated in Figure 6.5.

The following condition was used by Charbit et al. [23] to characterize BFS end-vertices
of split graphs.

2Charbit et al. [23] uses the term “dominates” to refer to a vertex which has a strictly larger neigh-
bourhood than another. We do not use this term to avoid confusion with vertices in a “dominating pair”.
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4 x 5 2

6 v 7

Dv

Figure 6.6: An example for the proof of Lemma 6.3.3. The target
end vertex is v (in red), with the starting vertex w (in green). In
this example, Dv = {6, 7} (in blue), and the set S used in the proof
is S = {2}. The special vertex x ∈ N(v) (in white) is such that
Dv ⊆ N(x). One resulting BFS ordering is σ = ⟨w, 2, x, 4, 5, 6, 7, v⟩.

Theorem 6.3.2 (Theorem 3.14, Charbit et al. [23]). Let G = (V,E) be a graph, and let
t ∈ V be any vertex. A necessary condition for t to be the last vertex of some BFS ordering
σ of G is that there exists a neighbour x of t such that Dt ⊆ N(x).

We are now ready to show that the condition of Theorem 6.3.2 is also sufficient when
the start vertex is not too eccentric. More precisely, it is sufficient when the starting
vertex w is such that ecc(w) ≤ 2. An example graph for the proof is in Figure 6.6. For this
proof, we do not require that the provided bipartite graph is also a permutation graph.
The condition for split graphs works for these bipartite graphs since they have a similar
structure: making L1(w) a complete graph for a bipartite graph where ecc(w) = 2 results
in a split graph.

Lemma 6.3.3. Let G = (V,E) be a bipartite graph, and v ∈ V . Let w ∈ V be such that
d(w, v) = ecc(w) and ecc(w) ≤ 2. If there exists a neighbour x of v such that Dv ⊆ N(x),
then there is a BFS starting at w and ending at v.

Proof. We will construct a valid BFS ordering ending at v. By assumption there is a vertex
w such that d(w, v) = ecc(w), v ∈ Lecc(w)(w), and d(w, v) ≤ 2.

First, suppose that d(w, v) ≤ 1. Since v ∈ Lecc(w)(w), Lecc(w)(w) is an independent set
(by Observation 6.2.3), and L0(w) = {w}, G must be a star centered at w. In this case,
x = w and Dv = ∅. After choosing w for the first vertex of the BFS ordering, all vertices of
V (G) \ {w} = NG(w) are inserted into the queue: pick any insertion ordering that places
v last.
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Therefore, we assume that d(w, v) = 2. Since x ∈ N(v), d(v, w) = 2, and L2(w) =
Lecc(w)(w) is an independent set (by Observation 6.2.3), we must have that x ∈ L1(w).
Therefore, (x,w) ∈ E(G).

Start BFS at w. Then, all neighbours of w are tied. Let S ⊆ N(w) be the neighbours
of w which are not adjacent to v, that is, S = {u ∈ N(w)|x /∈ N(u)}. Place N(w) in the
queue such that all vertices of S appear first in any order, followed by x, and then any
remaining vertices of N(w) in any order. Let S ′ ⊆ L2(w) be the vertices of L2(w) with a
neighbour in S, that is, S ′ = {u ∈ L2(w)|N(u) ∩ S ̸= ∅}. When visiting vertices of L2(w),
BFS will necessarily choose all vertices of S ′ first.

Now, suppose u ∈ L2(w) \ (S ′ ∪ {v}). We claim that we can visit u before v. Any such
vertex u has no neighbour in S, which means that N(u) ⊆ N(v). If N(u) ⊊ N(v), then
u ∈ Dv by choice of x; otherwise, N(u) = N(v). In either case, u ∈ N(x). Therefore, we
can place all unvisited vertices of N(x) \ {v} before v.

Finally, v remains to be visited, and BFS must now choose it.

We now show that if v is an eccentric vertex of some other vertex w where G − N [w]
contains a single deep component, then v is a BFS end-vertex. We first show the following,
more general, helper lemma.

Lemma 6.3.4. Let G = (V,E) be a bipartite permutation graph. Suppose that there is
a vertex w such that ecc(w) ≥ 3 and G − N [w] has a deep component C. If there is a
vertex c ∈ C ∩ L2(w) such that c is the first vertex of C visited by a BFS ordering and
(L3(w)∩C) ⊆ N(c), then any vertex v ∈ (C∩Lecc(w)(w)) can be the last vertex of C visited
by BFS.

Proof. Let h be the maximum value of d(v, w) over all v ∈ C; clearly h ≤ ecc(w) and
h ≥ 3.

We will show that the BFS can be extended so that every permutation of Lh(w)∩C can
be the last |Lh(w) ∩ C| vertices of C in the resulting ordering. The proof is by induction
on h.

By Lemma 6.2.5, for each 2 ≤ i ≤ h− 1, Li(w)∩C has a vertex ci such that Li+1(w) ⊆
N(ci).

After visiting c2, BFS must put Nw
3 = L3(w) ∩ C into the queue to be visited later.

BFS can insert these vertices in any ordering, and they will not be visited until L2(w)
has been entirely visited. Inserting the vertices into the queue such that any vertex is last
yields the result.
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Therefore, the base case holds. Suppose there is an ordering for all h = ℓ ≥ 3, and
consider h = ℓ+ 1.

By induction, there is a BFS ordering of G′ = G − (Lℓ+1(w) ∩ C) where the last
|Lℓ(w)∩C| vertices are in Lℓ(w)∩C; moreover, the vertices of Lℓ(w)∩C can be arranged
in any order. Apply the induction hypothesis to get any ordering σ of G′ where the last
|Lℓ(w)∩C| vertices are cℓ (which exists by Lemma 6.2.5) followed by the remaining vertices
of Lℓ(w)∩C. Therefore, after visiting cℓ, all of Lℓ+1(w)∩C are inserted into the queue in
whichever ordering is desired. Thus any vertex of Lℓ+1 ∩ C can be the last vertex visited
of C.

Corollary 6.3.5. Let G = (V,E) be a bipartite permutation graph, and v ∈ V . If there
is a vertex w such that d(v, w) = ecc(w), ecc(w) ≥ 3, and G − N [w] has a single deep
component, then there is a BFS starting at w and ending at v.

Proof. By Lemma 6.2.5, there is a vertex c2 ∈ L2(w) ∩ C such that (L3(w) ∩ C) ⊆ N(c2).
Since G is connected, there is a vertex w′ ∈ N(w) = L1(w) such that c2 ∈ N(w′).

We construct σ as follows: after visiting w, place w′ into the queue first, and then the
rest of N(w) in any order. Now the vertices of L2(w) can be visited so that c2 is first. The
result now follows from Lemma 6.3.4.

The following fact regarding BFS is helpful.

Lemma 6.3.6. Let σ be a BFS ordering. Suppose that d(a, α) = k, d(b, β) = k, and
d(a, β) > d(b, β) for some distinct vertices a, b, α, β and non-negative integer k. If a <σ b,
a is the leftmost vertex of σ such that d(a, α) ≤ k, and b is the leftmost vertex of σ such
that d(b, β) ≤ k, then α <σ β.

Proof. The proof is by induction on k. In the base case, k = 1. Since a is the leftmost
vertex of σ such that d(a, α) ≤ k and b is the leftmost vertex of σ such that d(b, β) ≤ k,
neither α nor β have been visited when a is visited. Since a <σ b, N(a) is inserted into the
queue before N(b). As d(a, β) > d(b, β) = 1, β /∈ N(a) and therefore α must have been
visited before β by BFS, i.e., α <σ β.

Suppose the result holds for all k′ ≥ 1 and consider the case k = k′ + 1. Again, since
a is the leftmost vertex of σ such that d(a, α) ≤ k and b is the leftmost vertex of σ such
that d(b, β) ≤ k, neither α nor β have been visited when a is visited.

Let α′ be the leftmost vertex in σ of a shortest (a, α)-path such that d(a, α′) = k − 1.
Similarly, let β′ be the leftmost vertex in σ of a shortest (b, β)-path such that d(b, β′) = k−1.
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Figure 6.7: An example bipartite permutation graph with the sets
used in Theorem 6.3.7 indicated. The deep components C1 and C2

of G − N [w] are indicated. The vertex v is a BFS end-vertex: σ =
⟨w, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, v⟩ is a BFS ordering ending at v.
The green vertices are the set Z(v, w), the blue vertices are the set
Y (v, w), and the red vertex is the necessary set X(v, w).

By induction, α′ <σ β
′. Since α′ <σ β

′, N(α′) is inserted into the queue before N(β′). As
d(a, β) > d(b, β) = k, β /∈ N(α′) and therefore α must have been visited before β by BFS,
i.e., α <σ β.

We now prove the characterization of BFS end-vertices required for an efficient algo-
rithm. Let v be a vertex such that d(v, w) = ecc(w) for some vertex w. Let Z(v, w) = {u ∈
Lecc(w)(w) | N(v) ∩ N(u) = ∅} and Y (v, w) = {u ∈ Lecc(w)(w) \ {v} | N(v) ∩ N(u) ̸= ∅}.
For a set V ′ ⊆ V (G) and vertex x ∈ V (G), we denote d(V ′, x) = miny∈V ′ d(y, x). Figure
6.7 shows an example bipartite permutation graph with these sets indicated.

Theorem 6.3.7. Let G = (V,E) be a bipartite permutation graph and v ∈ V . Let w ∈ V
be such that d(w, v) = ecc(w) and ecc(w) ≥ 3. There is a BFS starting at w and ending at
v if and only if, either

• G−N [w] has a single deep component; or
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• G − N [w] has two deep components C1 and C2, where without loss of generality
v ∈ C1, and there is a set X ⊆ N(w) ∩ N(C2) such that for each u ∈ Y (v, w),
d(X, v) ≥ d(X, u) and d(X, u′) = ecc(w)− 1 for all u′ ∈ Z(v, w).

Proof. We first show necessity. Let v be a BFS end-vertex for some BFS ordering σ
starting with w. By assumption, d(w, v) = ecc(w) and ecc(w) ≥ 3; therefore d(w, v) ≥ 3
and G−N [w] has at least one deep component.

If v is also an LBFS end-vertex, by Theorem 6.2.9, there must be an eccentric vertex
u of w such that N(u) ⊇ N(v); in such a case, every vertex of Lecc(w)(w) has a common
neighbour with v, and therefore G−N [w] must have exactly one deep component and we
are done. Therefore, we may assume that v is not also an LBFS end-vertex. By Theorem
6.2.9, there must be an eccentric vertex u of w such that either N(u) ⊊ N(v) or N(u)
and N(v) are incomparable. If all eccentric vertices of w are such that N(u) and N(v) are
comparable, then Nw

ecc(w)−1(u) ∩ Nw
ecc(w)−1(v) ̸= ∅ for any such u. That is, u and v are in

the same component, and since there are no other eccentric vertices of w, it must be the
case that G−N [w] has a single deep component. If G−N [w] has a single deep component
we are done, as we have proved the first statement.

We may therefore assume that there is a vertex u of Lecc(w)(w) such that N(u) and
N(v) are incomparable; u and v must be in different components of G−N [w] as otherwise
we have a contradiction to Lemma 6.2.4. By Lemma 6.2.6, there are at most two deep
components of G − N [w]. Let C1 and C2 be the deep components of G − N [w]; without
loss of generality, assume that v ∈ C1. In this case, u ∈ C2 and by definition of Z(v, w),
u ∈ Z(v, w) and thus |Z(v, w)| ≥ 1.

Necessarily, N(C2) intersects every shortest (u′, w)-path for every u′ ∈ Z(v, w). There-
fore, d(N(C2), u) = ecc(w) − 1 for all u′ ∈ Z(v, w) (this follows from the remark after
Lemma 6.2.5). If d(N(C2), v) ≥ d(N(C2), v

′) for all v′ ∈ Y (v, w), then we may take
X = N(C2) and there is nothing left to prove. In particular, if there is any subset
X ⊆ N(C2) that hits every shortest (u′, w)-path for every u′ ∈ Z(v, w) but no short-
est (v, w)-path, then we are done.

We may therefore assume that every set X ⊆ N(C2) that intersects every shortest
(u′, w)-path for every u′ ∈ Z(v, w) also intersects at least one shortest (v, w)-path. Thus,
we have that d(X, v) = ecc(w)− 1 for any such set X.

Among all possible choices for X such that X ⊆ N(C2) where X intersects every
shortest (u′, w)-path for every u′ ∈ Z(v, w), choose X to be as large as possible.

Claim 6.3.8. For each v′ ∈ Y (v, w), d(X, v′) ≤ d(X, v) = ecc(w)− 1.

177



C1C2

w

p1 q1

p2 q2

u′ v v′

...

L1(w) = N(w)

L2(w)

...

Lecc(w)−1(w)

Lecc(w)(w)

P QR

Z(v, w)

X

Y (v, w)

Figure 6.8: An illustration of the proof of Claim 6.3.8. Each layer
may have more vertices than is shown. Regardless of other vertices,
u′ ∈ Z(v, w) is (one) vertex such that every set X ⊆ N(C2) that
separates u′ and w must also intersect a shortest (v, w)-path. The
paths P , Q, and R are not necessarily the only such paths, but are
drawn to illustrate the important properties of each path. The graph
is drawn so that the path P is always left of the path Q in C1 to
clearly illustrate that pi is not adjacent to qi+1. Similarly, there may
be other choices for R, but in any case, q1 is not adjacent to R∩L2(w).

Proof of claim: We prove the claim by contradiction. The proof of the claim is illustrated
in Figure 6.8. Suppose to the contrary that d(X, v) < d(X, v′) for some v′ ∈ Y (z, w).
Therefore, no shortest (v′, w)-path is intersected by X, and X does not separate w and v′.

Consider a shortest (v, w)-path P such that P ∩X ̸= ∅ (we were allowed to assume such
a path exists by the argument just prior to the claim’s statement). Let pi ∈ Li(w) ∩ P ; pi
is unique for 1 ≤ i ≤ ecc(w). Among all choices for P , pick P so that p1 is as leftmost as
possible in σ.

Similarly, let Q be a shortest (v′, w)-path such that Q ∩ X = ∅; at least one such
path Q must exist since X does separate w and v′. Let qi ∈ Li(w) ∩ Q; qi is unique for
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1 ≤ i ≤ ecc(w). Among all choices for Q, pick Q so that q1 is as leftmost as possible in σ.

Since X was chosen to be as large as possible, q1 /∈ R ∩ L2(w) for any shortest (u′, w)-
path R for any u′ ∈ Z(v, w). (If q1 ∈ R ∩ L2(w), then q1 ∈ N(C2), and we would have
put q1 in X; in this case, d(X, v′) = d(X, v), which is contrary to our assumption that
d(X, v) < d(X, v′)).

It must be that P is such that N(qi+1) ∩ {pi} = ∅ for every 1 ≤ i ≤ ecc(w) − 1,
as otherwise X intersects a shortest (v′, w)-path (take P but choose qi+1 instead of pi+1

after pi for some i), which is a contradiction to X intersecting no such path. By Lemma
6.2.4, it must therefore be the case that (N(qi) ∩ Li−1(w)) ⊊ (N(pi) ∩ Li−1(w)) for every
2 ≤ i ≤ ecc(w). In particular, we must have that N(v′) ⊊ N(v).

We proceed by cases, based on whether q1 <σ p1.

Case 1: q1 <σ p1. Since N(v′) ⊊ N(v), d(q1, v) = ecc(w) − 1. Since q1 /∈ R ∩ L2(w)
for any shortest (u′, w)-path R (recall that u′ ∈ Z(v, w)) and q1 ∈ N(w), d(u′, q1) =
ecc(w) + 1 (L1(w) is an independent set by Observation 6.2.3, but there is a path of this
length through w). By Lemma 6.3.6, since d(q1, v) = ecc(w) − 1, d(p1, u

′) = ecc(w) − 1,
d(q1, u

′) = ecc(w) + 1 > d(p1, u
′) = ecc(w)− 1, v <σ u

′, a contradiction to the fact that v
is the last vertex of σ. Thus the claim holds when q1 <σ p1.

Case 2: p1 <σ q1. By Lemma 6.3.6, since d(q1, v
′) = ecc(w) − 1, d(p1, v) = ecc(w) − 1,

d(p1, v
′) = ecc(w) + 1 > d(q1, v) = ecc(w) − 1, v <σ v

′, a contradiction to the fact that v
is the last vertex of σ. Thus the claim holds when p1 <σ q1.

We have therefore shown the claim. ■

Necessity follows from the claim, as all other cases have been covered prior to it.

For sufficiency, suppose that ecc(w) ≥ 3, d(w, v) = ecc(w), and that G − N [w] has at
least one deep component; thus d(w, v) ≥ 3. If G−N [w] has a single deep component, we
are done by Corollary 6.3.5. Otherwise, G − N [w] has two deep components by Lemma
6.2.6. Assume without loss of generality that v ∈ C1. There are two cases:

Case 1: X does not intersect any shortest (v, w)-path. Let w′ ∈ N(w) be any neighbour
of c ∈ C1 ∩ L2(w) where N(c) ∩ L3(w) = L3(w) ∩ C1 (which must exist by Lemma 6.2.4).
Since w′ ∈ N(c), and c is on a shortest (v, w)-path, so is w′. Thus, w′ /∈ X. We can start
BFS at w, then insert NG(w) into the queue as follows: X,w′, N(w) \ (X ∪ {w′}) (where
X and N(w) \ (X ∪ {w′} are inserted in any order). Then Lecc(w)(w) ∩ C2 will be visited
before any vertices in Lecc(w)(w) ∩ C1, and those in Lecc(w)(w) ∩ C1 can be chosen so that
v is last by Lemma 6.3.4. Thus v is a BFS end-vertex if X does not intersect any shortest
(v, w)-path.
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Case 2: X intersects some shortest (v, w)-path P . It must intersect a shortest path
to w for every vertex in Y (v, w) as well. To see this, let v′ ∈ Y (v, w) be arbitrary. If
Nw

ecc(w)−1(v) ⊆ Nw
ecc(w)−1(v

′), then we can take a shortest (w, v)-path that is intersected

by X up to Lecc(w)−1 and then append v′ to get such a path. Otherwise, Nw
ecc(w)−1(v

′) ⊂
Nw

ecc(w)−1(v) and |Nw
ecc(w)−1(v) \ Nw

ecc(w)−1(v
′)| ≥ 1. Let v∗ ∈ Nw

ecc(w)−1(v) \ Nw
ecc(w)−1(v

′) be

on a shortest (v, w)-path intersected by X (this must exist or every shortest (v, w)-path
intersected by X also intersects a shortest (v′, w)-path). Let v† ∈ Nw

ecc(w)−1 be arbitrary.

Thus we have that Nw
ecc(w)(v

†) ⊂ Nw
ecc(w)(v

∗). By Lemma 6.2.4 statement (4), we have that

Nw
ecc(w)−2(v

∗) ⊂ Nw
ecc(w)−2(v

†). Thus we can take shortest (v, w)-path intersected by X up

to a vertex of Nw
ecc(w)−2(v

∗), then take v† and w to obtain a shortest (v′, w)-path.

Partition X into disjoint sets X1 ∪ X2 ∪ X3 such that X1 consists of vertices which
only intersect shortest paths from w to Z(v, w), X2 consists of vertices that only intersect
shortest paths from w to Z(v, w)∪ Y (v, w), and X3 = X \ (X1 ∪X2). Note that X3 is the
set that contains vertices which are on some shortest path to v. Start BFS at w. Then,
insert NG(w) into the queue as follows: X1, X2, X3, where the vertices within X1, X2, and
X3 are ordered arbitrarily.

Starting with this prefix, we claim that BFS can order Lecc(w)(w) such that v is last.
Any vertex v′ ∈ Y (v, w) must have d(X, v′) = ecc(w) − 1 since d(X, v) = ecc(w) − 1 and
by definition of X, d(X, v) ≥ d(X, v′). If d(X, v′) is minimum due to a vertex x ∈ X2,
it will be visited before v as x <σ x′ for any x′ ∈ X3. Otherwise, d(X, v′) is minimum
due a vertex x′ ∈ X3. Consider any shortest (v, w)-path P that contains x′ and a shortest
(v′, w)-path P ′ which also contains x′. There must be a largest index 2 ≤ i ≤ ecc(w) − 1
where (P ∩ Li+1 ∩ C1) ̸= (P ′ ∩ Li+1 ∩ C1) since these paths end at different vertices. At
such an index i, we can place (P ′∩Li+1∩C1) into the queue before (P ∩Li+1∩C1), which
will force v′ to appear before v in the resulting ordering. Thus v is a BFS end-vertex if X
does intersect some shortest (v, w)-path.

In either case, we have shown that v is a BFS end-vertex.

The previous characterizations enable a proof of the next theorem, which is the main
result for this section.

Theorem 6.3.9. The BFS-End-Vertex problem for bipartite permutation graphs is in
P.

Proof. Let G = (V,E) be a bipartite permutation graph. Algorithm 6.3.1 shows how to
determine determine if v ∈ V is a BFS end-vertex for G. We show its correctness, and
that every step can be completed in polynomial time.
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Algorithm 6.3.1: Polynomial Time BFS-End-Vertex solution for Bipartite
Permutation Graphs.

Input: A bipartite permutation graph G = (V,E) with vertex v ∈ V .
Output: true if there is a BFS ordering of G ending at v, or false otherwise.

1 S ← ∅; X ← ∅;
2 for w ∈ V \ {v} do
3 if d(w, v) = ecc(w) then S ← S ∪ {w} ;

4 if |S| = 0 then return false ;
5 for w ∈ S do
6 if d(w, v) ≤ 2 then
7 if ∃x ∈ N(v) such that Dv ⊆ N(x) then return true;

8 for w ∈ S do
9 compute C1 and C2 of G−N [w]; // assume that v ∈ C1.

10 compute Y (v, w) and Z(v, w);
11 for w′ ∈ N(w) ∩N(C2) do
12 if d(w′, v) > ecc(w)− 1 then X ← X ∪ {w′} ;
13 if d(w′, v) = ecc(w)− 1 then
14 if d(Z(v, w), w′) ≤ ecc(w)− 1 and d(Y (v, w), w′) ≤ ecc(w)− 1 then
15 X ← X ∪ {w′};

16 if |X| = 0 then return false;
17 for u ∈ Z(v, w) do
18 if d(X, u) > ecc(w)− 1 then return false;

19 for v′ ∈ Y (v, w) do
20 if d(X, v′) > ecc(w)− 1 then return false;

21 return true;
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Line 1 initializes some relevant sets; S will be the set of possible start vertices and X
will be the set required by Theorem 6.3.7 if there is no start vertex w such that d(w, v) ≤ 2.

Lines 2-3 compute potential start vertices w in polynomial time, by iterating over every
w ∈ V (G)\{v} and recording those for which d(w, v) = ecc(w). Distance can be computed
in polynomial time by using, e.g., BFS. If there are none, we can immediately conclude
that v is not a BFS end-vertex (line 4).

Lines 5-7 handle the case where BFS may need to begin at a vertex at distance at
most two from v. If there are any potential start vertices w such that d(w, v) ≤ 2 (which
can be checked in polynomial time), we can check if the condition of Theorem 6.3.2 holds
in polynomial time, which is also sufficient by Lemma 6.3.3. If any such w meets the
requirements of Theorem 6.3.2, we can conclude that v is a BFS end-vertex (line 7).

Lines 8-15 handle the case where a start vertex must be distance at least three from v.
For a possible start vertex w with d(w, v) ≥ 3, we can also compute C1, C2 of G−N [w] in
polynomial time. Without loss of generality, we can assume that v ∈ C1.

In polynomial time, we can see if w′ ∈ N(w) ∩ N(C2) is on a shortest (x,w)-path for
all x ∈ Lecc(w)(w) by computing dG−{w}(x,w

′) and comparing it to d(w, v) − 1. We can
iterate over W = N(w) ∩ N(C2) (line 11) and add w′ ∈ W to X if w′ is not on any
shortest (v, w)-path (line 12). If w′ is on a shortest (v, w)-path, then we add w′ ∈ W to
X if and only if d(w′, u) ≤ ecc(w)− 1 for all u ∈ Z(v, w) and d(w′, v′) ≤ ecc(w)− 1 for all
v′ ∈ Y (v, w) (line 13). Since all of these checks, including computing the eccentricity of w,
can be performed in polynomial time, the entire loop starting on line 8 runs in polynomial
time too.

Line 16 handles the case where no X was able to be constructed. Note that if all
possible start vertices are such that d(w, v) ≤ 2 and none meet the required condition of
Theorem 6.3.2, then X remains empty (as N(w)∩N(C2) is always empty on line 11) after
executing lines 8-16. Thus, if we have reached line 16 and |X| = 0, we can conclude v is
not a BFS end-vertex.

Lines 17-20 make sure that X satisfies the properties required of X by Theorem 6.3.7.
Lines 13-15 make sure that every vertex in X satisfy the requirements, but lines 17-20 make
sure that, e.g., no shortest (u,w)-path is missed for any u ∈ Z(v, w). Lines 17-20 only
deal with distances between sets of vertices, and thus can be complete in polynomial time.
That is, if |X| ≥ 1 and d(X, u) ≤ ecc(w)− 1 for all u ∈ Z(v, w) and d(X, v′) ≤ ecc(w)− 1
for all v′ ∈ Y (v, w), then v is a BFS end-vertex; otherwise, v is not a BFS end-vertex.
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6.4 The LBFS-End-Vertex Problem for Bipartite Per-

mutation Graphs

In this section, we show that LBFS-End-Vertex has a linear time solution on bipartite
permutation graphs.

Let G be a bipartite permutation graph and let v be a vertex of G. Suppose that v
is an end-vertex of LBFS of G. Then by Proposition 6.2.1 and Theorem 6.2.9, ecc(v) ≥
diam(G) − 1 and there is a vertex w such that for every eccentric vertex u of w, N(u) ⊇
N(v). When ecc(v) = diam(G), such a vertex w can be chosen to be any vertex with
d(w, v) = ecc(v) as shown by Gorzny and Huang [69]. The following theorem explains how
to find such a vertex w in the case when ecc(v) = diam(G)− 1.

The intuition for the theorem is as follows. We know from Lemma 6.2.7 that the
bipartite permutation graph has at most two non-trivial components after removing a
start vertex. From the characterization of LBFS end-vertices on bipartite permutation
graphs (Theorem 6.2.9), we know that we want the target end-vertex to have the smallest
neighbourhood among all eccentric vertices. If we happen to get the case where we have two
non-trivial components after removing our start vertex, the theorem says how we can pick
another start vertex, which will only have one deep component. It does this by prescribing
a new start vertex which is closer to the eccentric vertices in the component that does not
contain the target end-vertex than the eccentric vertices in the component containing the
target end-vertex.

Theorem 6.4.1. Let G be a connected bipartite permutation graph such that diam(G) = k.
Suppose that v with ecc(v) = k − 1 is an LBFS end-vertex of G. If w is the first vertex

of Lr(v) where r =
⌈
ecc(v)+3

2

⌉
in an LBFS ordering of G that begins at v, then for every

eccentric vertex u of w, N(u) ⊇ N(v).

Proof. Since v is an end-vertex of LBFS, there is an LBFS ordering σ of G with σ(n) = v
(i.e., v is the last vertex in σ). Denote z = σ(1) and s = ecc(z). Clearly, v ∈ Ls(z).

The assumption that ecc(v) = k − 1 implies immediately that s ≥ 2. As k − 1 cannot
be negative, s ≥ 1. If s = 1, then G is a star centered at z. If G is a star on two vertices,
then diam(G) = 1 = ecc(v) = k, a contradiction to the fact that ecc(v) = k − 1. However,
if G is a star on more than two vertices, then diam(G) = 2 = ecc(v) = k, a contradiction
to the fact that ecc(v) = k − 1. Thus, s ≥ 2.

Claim 6.4.2. s ≥ 3.
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Proof of claim: Assume to the contrary that s = 2. Then N(v) ⊆ N(z) and 2 ≤ ecc(v) =
k − 1 ≤ 3.

Case 1: ecc(v) = 2. If ecc(v) = 2, then N(v) = N(z) and hence for every eccentric
vertex u of z, N(u) ⊆ N(v). Since v is the last vertex in σ, we must have N(u) = N(v) for
every eccentric vertex u of z, which means G is a complete bigraph and ecc(v) = 2 = k, a
contradiction to the assumption ecc(v) = k − 1.

Case 2: ecc(v) = 3. If N(w)∩N(v) = ∅ for some eccentric vertex w of z, then d(v, w) ≥
4 > 3 = ecc(v), a contradiction. Therefore, it must be the case that N(u) ∩N(v) ̸= ∅ for
every eccentric vertex u of z. Since k = ecc(v) + 1 = 4, there are two eccentric vertices
u,w of z with N(u) ∩ N(w) = ∅. Since v is an LBFS end-vertex, by Theorem 6.2.9,
N(w) ⊇ N(v) and N(u) ⊇ N(v). Pick w′ ∈ N(w) \ N(v) and u′ ∈ N(u) \ N(v), and
(w′, u′, v) form an asteroidal triple in G, contradicting the assumption that G is AT-free.

Since we have a contradiction in both cases, we have s = ecc(z) ≥ 3. ■

Let C1, C2, . . . , Cq be the connected components of G−N [z]. Without loss of generality
assume that v ∈ Cq. Let x, y be a diametrical dominating pair in G which exists according
to Theorem 6.2.2. By Lemma 6.2.8, v is adjacent to one of x, y. Assume by symmetry that
v is adjacent to y. Then y is also in Cq and d(z, y) = d(z, v)− 1 = ecc(z)− 1 = s− 1.

Note that d(x, y) = k = ecc(v) + 1 ≥ d(v, z) + 1 = s+ 1. Every vertex in N [z]∪Cq is at
distance at most s from y and thus x /∈ N [z] ∪Cq. Assume without loss of generality that
x ∈ C1. Denote s1 = d(x, z). The existence of an (x, y)-path of length s1 + s− 1 (through
the vertex z) implies that k = d(x, y) ≤ s1 + s − 1. On the other hand, any (x, y)-path
through v is of length ≥ s1 + s− 1. Hence, k = d(x, y) = s1 + s− 1.

Consider a shortest (x, y)-path that contains v, which exists according to Lemma 6.2.8.
Let P : xx1x2 . . . xk−2vy be such a path. Then P contains a vertex in N(z) as x and y
belong to the different components of G − N [z]. Let xα ∈ N(z) be the vertex in P with
the smallest subscript and let Q be the subpath xαxα+1 . . . vy of P . Since

s = ecc(z) = d(z, v) ≤ d(xα, v) + 1 = d(xα, y) ≤ ecc(z) = s,

we have d(xα, y) = s, i.e., the length of Q is s. It follows that P does not contain z and
moreover, if Q is replaced by an (xα, y)-path of length s through z then we obtain another
shortest (x, y)-path P ′ containing z but not v. The existence of the shortest (x, y)-path P ′

(containing z) further implies every vertex in C1 is at distance at most s1 from z. Denote
P ′ : xx1x2 . . . xαzy1y2 . . . ys−2y. Note that xα−1 ∈ N(xα)\N(y1) and xα ∈ N(xα+1)\N(y2).

Clearly, s1 ≤ s. There are two cases, based on whether or not the inequality is strict.
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Case A: s1 = s. Then

r =

⌈
ecc(v) + 3

2

⌉
=

⌈
s1 + s+ 1

2

⌉
=

⌈
2s+ 1

2

⌉
= s+ 1.

Let τ be an LBFS ordering of G that begins at v. Observe that {xα, y1} ⊆ Ls−1(v):
by P , we know that d(xα, v) = s − 1, and d(y1, v) = d(y, v1) + 1 = (d(z, y) − 1) + 1 =
((s − 1) − 1) + 1) = s − 1 as required by P ′. Observe further that Ls−1(v) ⊆ N(z) ∪ Cq:
every vertex in Cq must be hit by P , and therefore can be distance at most s − 2 away
from z; in order for such a vertex to exist, it must be a neighbour of xα, which means in
any case that it is not in Cq.

It follows that the first vertex w of Lr(v) in τ must be in N(z). Since d(w, v) = s+ 1,
w is not adjacent to xα+1 (and w is not adjacent to xα as they are both neighbours of z)
and hence is adjacent to xα−1 as P is a dominating path. Now it is easy to see that the
eccentric vertices u of w are all in Cq (as d(w, x) = s1 − 2 = s− 2 < s + 1 = d(w, v)) and
satisfy the property that N(u) ⊇ N(v).

Case B: s1 < s. Then

r =

⌈
ecc(v) + 3

2

⌉
=

⌈
s1 + s+ 1

2

⌉
≤

⌈
2s

2

⌉
= s.

In the case when s1 = s− 1, w is a vertex adjacent to both xα and y1; note that d(w, x) =
s1 = s − 1 < d(w, v) = s. In the case when s1 ≤ s − 2, w is in Cq; note that d(w, x) ≤
s− 2 < s = d(w, v). In any case the eccentric vertices u of w are all in Cq and satisfy the
property that N(u) ⊇ N(v).

Thus the theorem is proved in either case.

Algorithm 6.4.1 solves the LBFS-End-Vertex problem for bipartite permutation
graphs. The correctness of the algorithm follows from Theorem 6.2.9, Theorem 6.4.1 and
the remarks prior to Theorem 6.4.1. Theorem 6.2.9 establishes the conditions for a vertex
to be an LBFS end-vertex. Then, Theorem 6.4.1 shows how to find the specific start vertex
in the case the target end-vertex’s eccentricity is not the diameter of the graph. Recall
that LBFS can be implemented in linear time (e.g., Rose et al. [124]). Therefore a desired
vertex w (as described in Theorem 6.2.9) can be found in linear time and verifying whether
all eccentric vertices u of w satisfy the property that N(u) ⊇ N(v) can also be done in
linear time, the algorithm can be implemented to run in linear time. Therefore we have
the following:

Theorem 6.4.3. The LBFS-End-Vertex problem for bipartite permutation graphs can
be solved in linear time.
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Algorithm 6.4.1: Linear Time LBFS-End-Vertex solution for Bipartite Per-
mutation Graphs.

Input: A bipartite permutation graph G with vertex v.
Output: A vertex w such that N(u) ⊇ N(v) for every eccentric vertex u of w in

which case v is an end-vertex of G, or else v is not an end-vertex of
LBFS of G.

1 Run LBFS beginning at v to find an LBFS ordering τ . Let w1 = τ(n) and w2 be

the first vertex of Lr(v) in τ where r =
⌈
ecc(v)+3

2

⌉
2 Run LBFS beginning at w1 to find all eccentric vertices of w1. If N(u) ⊇ N(v) for

all eccentric vertices u of w1, v is an end-vertex of LBFS of G.
3 Run LBFS beginning at w2 to find all eccentric vertices of w2. If N(u) ⊇ N(v) for

all eccentric vertices u of w2, v is an end-vertex of G; otherwise v is not an
end-vertex of LBFS of G.

6.5 The DFS-End-Vertex Problem for Bipartite Per-

mutation Graphs

In this section we show that we can identify a DFS end-vertex in linear time on bipartite
permutation graphs. To do this, we refine the following characterization of (arbitrary) DFS
end-vertices of Kratsch et al. [92]. A Hamiltonian path P of a graph G is a path such that
V (P ) = V (G) and all vertices of P are distinct.

Theorem 6.5.1 (Proposition 2, Kratsch et al. [92]). Let G be a connected graph, and let
t be a vertex of G. Then t is a DFS end-vertex of G if and only if there is X ⊆ V (G) such
that NG[t] ⊆ X and G[X] has a Hamiltonian path with endpoint t.

Our refinement allows us to use a strong ordering to find the required set X. We
describe this informally before stating the condition in the next corollary. Suppose that G
is a bipartite permutation graph G, (σA, σB) is a strong ordering of G, and v ∈ A is the
target DFS end-vertex. Because G is connected, σA has both the adjacency and enclosure
properties (Theorem 2.3.7). Therefore, N(v) ⊆ B is consecutive in σB. Then, if a set X as
required by Theorem 6.5.1 exists, we only need to look at the vertices between the leftmost
vertex of σA which is adjacent to a vertex in N(v) and the rightmost vertex of σA which is
adjacent to a vertex in N(v) in order to find it. This is because a Hamiltonian path would
not need to use any more vertices of B. An example is shown in Figure 6.9.
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va2a1 a4

b3b2b1 b4 b5

σA

σb

ai aj

bα bβ

A′

N(v)

Figure 6.9: A vertex v of a bipartite permutation graph which is a
DFS end-vertex. One partite set, A, is indicated in red on the top
row, while the other, B, is in grey on the bottom row. Each partite
set is drawn so that the resulting orderings form a strong ordering
(σA, σB) (v = a3). The path {b1, a2, b2, a4, b3, v} is a Hamiltonian
path for G[A′ ∪ N(v)] and is indicated by thick arrows. A DFS
ending at v is σ = ⟨b1, a1, a2, b2, a4, b4, b5, b3, v⟩.

Theorem 6.5.2. Let (σA, σB) be a strong ordering of a bipartite permutation graph. With-
out loss of generality, assume v ∈ A.

Vertex v is a DFS end-vertex if and only if there is a consecutive set A′ ⊆ ⟨ai, . . . , aj⟩
such that ai ≤σA v ≤σA aj, G

′ = G[A′ ∪ N(v)] is an induced subgraph of G where |A′| =
|N(v)| and G′ has a Hamiltonian path ending at v.

Proof. Sufficiency is immediate from Theorem 6.5.1. We therefore only show necessity.

Suppose that v is a DFS-end vertex. Therefore, v = ai for some i.

By Theorem 6.5.1, since v is a DFS end-vertex, there must be a set X such that
N [v] ⊆ X and X induces a subgraph G′ = G[X] of G which has a Hamiltonian path
ending at v. We will show it is not necessary to include any vertices of B other than
N(v) ⊆ B.

If d(v) = 1, we are done by Theorem 6.5.1 and taking A′ = {v}; clearly we do not need
any vertices of B \N(v). We may therefore assume that d(v) ≥ 2.

Claim 6.5.3. X ∩B = N(v).
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a′a′′

b′b

σA

σb

(a) The initial configuration of the Hamil-
tonian path H.

a′a′′

b′b

σA

σb

(b) The new configuration of the Hamilto-
nian path H.

Figure 6.10: Case 1 of the proof of Theorem 6.5.2 illustrated.

Proof of claim: Suppose to the contrary that for every X ⊆ V (G) that contains N [v] has
a Hamiltonian path ending at v, X ∩ (B \ N(v)) ̸= ∅. Among all possible choices of X,
choose one which minimizes |X|. Let X ′ = X \N [v].

There are no vertices x ∈ X ′ such that dG′(x) = 1. Suppose to the contrary that there
is such a vertex u. The vertex u must be the endpoint of the Hamiltonian path H which is
not v. Moreover, since u ∈ X ′, u /∈ N(v). Therefore, we could start the Hamiltonian path
at the neighbour of u on H to get a smaller set X, contradicting ouR choice of a minimal
set X.

Since (σA, σB) is a strong ordering of G, N(v) is consecutive in σB by Theorem 2.3.7.
Without loss of generality, we may assume that there is a b ∈ X ′ such that b <σB N(v),
as if this is not the case, we can use ((σA)R, (σB)R) as the initial strong ordering of G.
Let b ∈ X ′ be as leftmost as possible in σB as possible. Let H be a Hamiltonian path
of G[X] ending at v. If b is the first vertex of H, then clearly we can remove b from X,
contradicting our choice of a minimal X. Let a′ ∈ A be the vertex immediately before b
in H, and a′′ ∈ A be the vertex immediately after b in H.

We proceed by cases based on whether a′′ is before or after a′ in σA. Case 1 is illustrated
in Figure 6.10.

Case 1: a′′ <σA a′. Since b /∈ N(v), a′′ ̸= v. There must is a vertex b′ ∈ X after a′′ in H,
and since b was earliest in σB, b <σB b′ (recall also that b <σB N(v)). Since (b, a′) ∈ E,
(a′′, b′) ∈ E, and (σA, σB) is a strong ordering, b′a′ ∈ E. Since H is a Hamiltonian path,
a′ and b′ are only visited once, in particular, the edge (a′, b′) is never used. Therefore, we
can remove (a′′, b) from H and replace it by the edge (a′, b′) to get a shorter Hamiltonian
path H ′. Since b /∈ N(v), N [v] ⊆ H ′ still, and H ′ contains a Hamiltonian path ending at
v, i.e., we could have taken H ′ instead of X, contradicting our choice, as |H ′| < |X| and
we chose X so that |X| was minimized.
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Case 2: a′ <σA a′′. If a′ is the first vertex of H, then we can remove both a′ and b
from H and start a new Hamiltonian path H ′ at a′′, using an X which does not include
a′ or b, contradicting the minimality of X. Therefore, there is a vertex b′ ∈ B such that
b <σB b′ where (b′, a′) ∈ E. Since (b, a′′) ∈ E, (a′, b′) ∈ E, and (σA, σB) is a strong ordering,
(a′′, b′) ∈ E. Since H is a Hamiltonian path, a′′ and b′ are only visited once, in particular,
the edge (a′′, b′) is never used. Therefore, we can remove (a′, b) from H and replace it by
the edge (a′′, b′) to get a shorter Hamiltonian path H ′. Since b /∈ N(v), N [v] ⊆ H ′ still,
and H ′ contains a Hamiltonian path ending at v, i.e., we could have taken H ′ instead of
X, contradicting our choice, as |H ′| < |X| and we chose X so that |X| was minimized.

Since we have a contradiction in either case, the claim is proved. ■

It remains to be shown that X ∩ A is consecutive, in which case we can partition X
into X ∩ A and X ∩B, and take A′ = X ∩ A to complete the proof.

Claim 6.5.4. There is a smallest X such that X ∩A is consecutive in σA where X ∩B =
N(v).

Proof of claim: Suppose to that for the set X, there are vertices ai <σA aj <σA ak where
ai, ak ∈ (X ∩ A) but aj /∈ X.

Necessarily, v ∈ X, so aj ̸= v. Without loss of generality, assume that v ∈ (σA)≤i, as
otherwise we can reverse both σA and σB. Therefore, we also have that ak ̸= v.

Since X is as small as possible and X ∩B = N(v), the Hamiltonian path H contained
in X does not end at a vertex of A \ {v}. Therefore, there are two vertices b, b′ ∈ H that
are both adjacent to ak. By relabelling these vertices, we may assume that b <σB b′. Since
X ∩B = N(v), b, b′ ∈ N(v).

Since σB has the adjacency property, v <σA ak, and v, ak ∈ N(b), it must be that
aj ∈ N(b). Since v <σA aj, b <σB b′, (v, b′), (aj, b) ∈ E(G) and (σA, σB) is a strong
ordering, we must have that aj ∈ N(b′).

Thus, we could replace ak by aj in H. We can repeat this for all v <σA ak′ where
ak′ ∈ X. Thus, (X ∩ A) ∩ (σA)≥v is consecutive. Symmetrically, we can ensure that
(X ∩ A) ∩ (σA)≤v is consecutive. The resulting set X is such that X ∩ A is symmetric.

Since we have not changed any vertices of X ∩ B, we still have that X ∩ B = N(v),
and the proof of the claim is complete. ■

The previous claim completes the proof of the corollary.

A Hamiltonian cycle C of a graph G is a cycle of length |V (G)| such that V (C) = V (G).
If there is a set provided by the previous corollary and the end-vertex is not a pendant,
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then we also have a Hamiltonian cycle in the graph induced by the set, as shown in the
next proposition. This is helpful to simplify the complexity of finding such a set.

Proposition 6.5.5. Let G = (A,B,E) be bipartite permutation graph and let v ∈ A be a
DFS end-vertex such that d(v) > 1. Let X = A′ ∪ N(v) be a minimal set such that G[X]
has a Hamiltonian path ending at v, X ∩ B = N(v), and A′ is a consecutive set of σA

containing v (i.e., X is a minimal set provided by Theorem 6.5.2).

Then G[X] has a Hamiltonian path if and only if G[X] has a Hamiltonian cycle.

Proof. Suppose first that G[X] has a Hamiltonian cycle H = {x1, . . . , x|X| = v}. Since
(x1, v) ∈ E and v ∈ A, we must have that x1 ∈ B. Therefore, we can remove the edge
(x1, v) from H to get a Hamiltonian path ending at v.

Suppose instead that G[X] has a Hamiltonian path H = {x1, . . . , x|X| = v}.

We claim that |H| = 2|N(v)|. Since G is bipartite, xi must be in a different set from
xi+1 for all 1 ≤ i < |X|. Since v ∈ A is last and the sets of each xi alternate, we must
have that every b ∈ N(v) is followed by a vertex in A′ ⊆ A. However, if there is a vertex
a ∈ A which is before the first vertex of B in H, we can remove it to get a smaller set X.
We must therefore have had that |X ∩ A| = |X ∩ B|. Since X ∩ B = N(v), we have that
|X| = 2|N(v)|.

Since |H| = 2|N(v)|, each vertex alternates partite sets, and H ends at v ∈ A, we must
have that x1 ∈ B. Since X ∩ B = N(v), we have that (x1, v) ∈ E and we can add (x1, v)
to H to get a Hamiltonian cycle containing v.

Using the following condition for when a Hamiltonian path exists in bipartite permu-
tation graphs, we can show the main result of the section.

Theorem 6.5.6 (Theorem 2, Brandstädt and Kratsch [17]). If G = (A,B,E) is a bipartite
permutation graph with |A| = |B|, then G has a Hamiltonian cycle if and only if for each
1 ≤ i < |A|, (ai, bi), (ai, bi+1), (ai+1, bi), (ai+1, bi+1) ∈ E. Therefore, determining if G has a
Hamiltonian cycle takes O(n) time.

Theorem 6.5.7. The DFS-End-Vertex problem for bipartite permutation graphs can
be solved in linear time.

Proof. Algorithm 6.5.1 solves DFS-End-Vertex. We now show its correctness. Recall
that a strong ordering (σA, σB) of a bipartite permutation graph G = (A,B,E) can be
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Algorithm 6.5.1: Linear Time DFS-End-Vertex solution for Bipartite Per-
mutation Graphs.

Input: A bipartite permutation graph G = (A,B,E), a strong ordering (σA, σB)
of G, and a vertex v ∈ A.

Output: true if there is a DFS ordering of G ending at v, or false otherwise.
1 if d(v) ≤ 1 then return true ;
2 i′ ← i (where σA(v) = i);
3 r ← 0; j′ ← −∞;
4 if i′ < |A| and ∃bj ∈ N(v) such that (bj, ai′+1) ∈ E then
5 j′ ← j;
6 while true do
7 if i′ = |A| or i′ > i+ |N(v)| or j′ > |B| or bj′ /∈ N(v) then break ;
8 if (ai′ , bj′), (ai′ , bj′+1), (ai′+1, bj′), (ai′+1, bj′+1) ∈ E then
9 r ← r + 1; i′ ← i′ + 1; j′ ← j′ + 1;

10 else
11 break;

12 if r ≥ |N(v)| − 1 then return true;
13 i′ ← i (where σA(v) = i);
14 ℓ← 0; k′ ← −∞;
15 if 1 < i′ and ∃bk ∈ N(v) such that (bj, ai′−1) ∈ E then
16 k′ ← k;
17 while true do
18 if i′ = 1 or i′ < i− |N(v)| or k′ = 1 or bk′ /∈ N(v) then break ;
19 if (ai′ , bk′), (ai′ , bk′−1), (ai′−1, bk′), (ak′−1, bk′−1) ∈ E then
20 ℓ← ℓ+ 1; i′ ← i′ − 1; j′ ← j′ − 1;

21 else
22 break;

23 if ℓ ≥ |N(v)| − 1 then return true;
24 if j′ ≥ k′ and (j′ − j + 1) + (k − k′ + 1)− (j′ − k′ + 1) ≥ |N(v)| then
25 return true;

26 else if j′ < k′ and (j′ − j + 1) + (k − k′ + 1) + (k′ − j′ − 1) ≥ |N(v)| then
27 return true;

28 return false;
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computed in linear time (Chang et al. [22]). Without loss of generality, assume that v ∈ A
and therefore N(v) ⊆ B.

Line 1 handles the easiest cases where v has very small degree. Therefore, we may
assume that d(v) ≥ 2 after line 1.

Lines 2-22 count the number of vertices of A that could be used for the set X which is
both necessary and sufficient by Theorem 6.5.2.

Lines 2-11 count the number of vertices of A that could be used for the set X which
are to the right of a in σA. Starting at v = σA(v), we will see if there are any vertices
of N(v) that have a neighbour that follows v in σA (the condition on line 4). Note that
we can find a vertex bj for line 4 in linear time by pre-processing the graph: we can scan
each vertex of σB and record its rightmost neighbour in σA (this takes time O(n + m)).
Then, we see if the vertex to the right of bj (i.e., bj+1) is adjacent to the vertex right of
ai+1 (i.e., ai+2), and continue until this this condition fails (lines 8-11). We may also stop
if the indices of vertices we wish to consider are no longer valid or no such vertex exists
(line 7). Once the condition fails, we break out of the loop (lines 10-11). We break out of
the loop because we know, by Proposition 6.5.5 and Theorem 6.5.6, that the condition is
required for a Hamiltonian path; if it is not met, we are wasting time.

In particular on line 12, if r > 0, there is a subgraph Gr = (Ar, Br, Er) of G such that
|Ar| = |Br| = r, Ar = ⟨v = ai, . . . , ai+r⟩, Br ⊆ N(v) and Gr has a Hamiltonian cycle by
Theorem 6.5.6. Then we know v is a DFS end-vertex by Theorem 6.5.2 if r ≥ |N(v)| − 1.

Lines 13-22 count the number of vertices of A that could be used for the set X which
are to the left of a in σA. Starting at v = σA(v), we will see if there are any vertices of
N(v) that have a neighbour that is before v in σA (the condition on line 15). Note that we
can find a vertex bj for line 15 in linear time by pre-processing the graph: we can scan each
vertex of σB and record its leftmost neighbour in σA (this takes time O(n + m)). Then,
we see if the vertex to the left of bj (i.e., bj−1) is adjacent to the vertex left of ai−1 (i.e.,
ai−2), and continue until this this condition fails (lines 19-22). We may also stop if the
indices of vertices we wish to consider are no longer valid or no such vertex exists (line 18).
Once the condition fails, we break out of the loop (lines 21-22). We break out of the loop
because we know, by Proposition 6.5.5 and Theorem 6.5.6, that the condition is required
for a Hamiltonian path; if it is not met, we are wasting time.

In particular on line 23, if ℓ > 0, there is a subgraph Gr = (Ar, Br, Er) of G such that
|Ar| = |Br| = r, Ar = ⟨v = ai, . . . , ai+r⟩, Br ⊆ N(v) and Gr has a Hamiltonian cycle by
Theorem 6.5.6. Then we know v is a DFS end-vertex by Theorem 6.5.2 if ℓ ≥ |N(v)| − 1.

From line 24 onward, we are considering two cases which imply that v is a DFS end-
vertex (lines 24 and 26). Note that if we enter either case, we must have that k′ > −∞
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and j′ > −∞ (i.e., the vertices bj and bk defined in lines 4 and 15 exist).

In the first case (line 24), we are ensuring that the number of vertices in σB which are
adjacent to a vertex to the right of v in σA (j′ − k + 1) and the number of vertices in σB

which are adjacent to a vertex to the left of v in σB (k − k′ + 1), minus the number of
vertices which are adjacent to vertices on either side of v in σA (j′−k′+1) is at least |N(v)|.
Let s = min{ℓ, |N(v)| − 1} (and note that |N(v)| − 1 ≥ s ≥ 0 as ℓ ≥ 0 and N(v) ≥ 2),
and let t = |N(v)| − 1− s (note that t ≥ 0). Consider the subgraph G′ = (A′, B′, E ′) of G
where A′ = ⟨ai−s, . . . , ai−1, v = ai, ai+1, . . . , ai+t⟩, B′ = ⟨bj, . . . , bk⟩. Since B′ ⊆ N(v) and
(j′− j+1)+(k−k′ +1)− (j′−k′ +1) ≥ |N(v)|, |B′| ≥ |N(v)|. Then G′ has a Hamiltonian
cycle by Theorem 6.5.6 and the conditions enforced on lines 8 and 19. Therefore v is a
DFS end-vertex by Theorem 6.5.2.

In the second case (line 24), we are ensuring that the number of vertices in σB which
are adjacent to a vertex to the right of v in σA (j′−k+1) and the number of vertices in σB

which adjacent to a vertex to the left of v in σB (k − k′ + 1), plus the number of vertices
which are only adjacent to vertices on one side of v in σA (j′ − k′ + 1) is at least |N(v)|.
Let s = min{ℓ, |N(v)| − 1} (and note that |N(v)| − 1 ≥ s ≥ 0 as ℓ ≥ 0 and N(v) ≥ 2),
and let t = |N(v)| − 1− s (note that t ≥ 0). Consider the subgraph G′ = (A′, B′, E ′) of G
where A′ = ⟨ai−s, . . . , ai−1, v = ai, ai+1, . . . , ai+t⟩, B′ = ⟨bj, . . . , bk⟩. Since B′ ⊆ N(v) and
(j′− j+1)+(k−k′ +1)+(k′− j′−1) ≥ |N(v)|, |B′| ≥ |N(v)|. Then G′ has a Hamiltonian
cycle by Theorem 6.5.6 and the conditions enforced on lines 8 and 19. Therefore v is a
DFS end-vertex by Theorem 6.5.2.

If we have not yet returned, then we know v is not a DFS end-vertex (line 28).

6.6 The MNS-End-Vertex Problem for Bipartite Per-

mutation Graphs

In this section, we show that MNS-End-Vertex problem for bipartite permutation
graphs is in P.

Before formally characterizing MNS end-vertices on bipartite permutation graphs in
Theorem 6.6.1, we provide some intuition. One way that a vertex v would be last in an
MNS ordering is if we could visit all the components of G−N [v], along with N(v) itself,
before visiting v. We first prove that this is possible if there is a vertex in N(v) which
is adjacent to all the components of G − N [v]. Then, starting MNS at that vertex, we
can visit the components in a sort of depth-first manner (though not strictly depth-first).
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For the trivial components, this is easy, but it turns out this is also possible for the at
most two (Lemma 6.2.6) non-trivial components of G − N [v] as well. Since MNS does
not say which maximal label we should take, we can entirely visit a component before
going to another. Then, all that remains is to show that this can be done so that the
neighbours of v must also be picked before v itself. Moreover, it turns out that a vertex
in N(v) adjacent to all components is also necessary. The proof is more complicated, and
proceeds by contradiction. The contradiction is reached when we show that if no such
vertex adjacent to all components exists, then the graph should have been infinite. In
particular, if there are two components which do not share a common neighbour in N(v),
then v should have been chosen between the components, unless the graph was infinitely
large.

We use one definition from Berry et al. [6] for our characterization of MNS end-vertices
on bipartite permutation graphs. We do this in order to make the differences in the
characterizations apparent when comparing our results with theirs (e.g., their MNS end-
vertex characterization for chordal graphs). Let G = (V,E) be a graph and v ∈ V . Let
C1, . . . , Ct be the connected components of G−N [v]. The substars of v are the elements
of NG(Ci) for each i. See Figure 6.11 for an illustration of substars.

The MNS end-vertex characterization for bipartite permutation graphs follows; its proof
is delayed until after some helpful lemmas are established. Figure 6.11 illustrates the
condition. As a corollary, MNS-End-Vertex can be solved efficiently using standard
techniques. Recall that a cut vertex is a vertex v such that G−{v} has more components
than G.

Theorem 6.6.1. Let G be a connected bipartite permutation graph and let v be a vertex of
G. Then v is an MNS end-vertex if and only if v is not a cut vertex and there is a vertex
y ∈ N(v) that is in every substar of v.

Every MNS-generated ordering is also a generic search ordering (see Figure 2.19).
Therefore, if a vertex is an MNS end-vertex, it is also a generic search end-vertex. The
following theorem characterizes end-vertices of generic search, and is the reason we require
that MNS end-vertices are not cut vertices.

Theorem 6.6.2 (Theorem 2.1, Charbit et al. [23]). A vertex v is the end-vertex of some
generic search of G if and only if it is not a cut vertex of G.

We now show sufficiency. The following lemma shows that MNS can visit a component
of G−N [v] entirely once it has been started and simplifies the proof. Let ℓ(v) denote the
label of a vertex assigned by MNS.
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v

751 9 13

2 6 8 12

3 4 10 11

C3C1

C2

NG(C3)NG(C2)NG(C1)

Figure 6.11: An example bipartite permutation graph G where the
components C1, C2, and C3 of G − N [v] are indicated. For each
component Ci (1 ≤ i ≤ 3), NG(Ci) is the substar of Ci. The sets
used in Theorem 6.6.1 are the substars of the components; vertex 5
is in all the substars of G−N [v]. The vertex v is a MNS end-vertex:
σ = ⟨1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, v⟩ is an MNS ordering ending
at v.

Lemma 6.6.3. Let G be a connected bipartite permutation graph, and let C be a non-trivial
component of G −N [v] for some v ∈ V (G). Suppose that there is a vertex y ∈ N(v) that
is in every substar of v. Finally, let T ⊆ V be the trivial components of G−N [v].

If the vertices of {y} ∪ T are the only vertices numbered by MNS and y was numbered
first, then C ∪ (N(C) \ {y}) can be the next |C|+ |N(C)| − 1 vertices numbered by MNS.

Proof. Let q be a vertex in C as far away from v as possible, and let h′ = dG(v, q); note that
h′ ≥ 3 as otherwise C is not a non-trivial component. For 2 ≤ h ≤ h′, let ch ∈ Lh(v) ∩ C
be such that (Lh−1(v) ∩ N [C]) ⊆ N(ch); that is, ch is adjacent to all vertices of N [C] on
the layer above ch in N [C]. Such a vertex always exists by Lemma 6.2.5.

The vertex c2 can be chosen next by MNS, since y ∈ N(v)∩N(C) and (N(c2)∩N(v)) =
N(C).

We prove that the next |C| − 1 vertices chosen are those of C \ {c2}. The proof is by
induction on h′.
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In the base case, suppose that h′ = 3. After choosing c2, each vertex in N(C) \ {y}
receives the number given to c2 in its label, as does c3. Since we have numbered the vertices
of T , we may not be able to choose c3 before some vertices of N(C) \ {y}; label as many
vertices of N(C) \ {y} as required by MNS before we can choose c3. Since c3 ∈ L3(v) and
(N(C)\{y}) ⊆ L1(v), the vertices on L3(v)∩C2 never have their label updated by visiting
vertices of N(C) \ {y}. Therefore, we can choose c3 next. Then, we can label the vertex
c′2, where c′2 is such that (L3(v) ∩ C) ⊆ N(c′2) (which exists by Lemma 6.2.5), if it was
not already labeled (it may be that c′2 = c2). Following c′2, we can label by L2(v) ∩ C in
any order: all such vertices have maximal labels with the number given to c3. Then, all
vertices of L3(v) ∩C can be numbered in some order, as all of their neighbours have been
visited.

Therefore, assume that the result holds for h′ ≥ 3 and consider h′ +1. By induction, all
vertices of C at distance at most h′ from v can be labeled after the prefix defined above.

After labeling the vertices at distance most h′ from v in C, we must have labelled the
vertex c′h′ , which is the vertex such that (Lh′+1(v) ∩ C) ⊆ N(c′h′) (c′h′ exists by Lemma
6.2.5). Therefore we can choose the vertices of Lh′+1(v) ∩ C next in some order. This
concludes the induction.

Finally, we can visit the remaining vertices of N(C): each vertex of N(C) has a maximal
label from a neighbour in C which v does not have, so we need not choose v before any
vertex of S.

Lemma 6.6.4. Let G be a connected bipartite permutation graph with two non-trivial
components C1 and C2 of G − N [v] for some v ∈ V (G). Suppose that there is a vertex
y ∈ N(v) that is in every substar of v and that N [C1] has been numbered by MNS along
with all trivial components of G−N [v]. Finally, let S ′ ⊆ N(C2) be the unnumbered vertices
of N(C2).

If y was numbered first by MNS among all vertices of N(C2), v is not numbered, and
no vertex in C2 is numbered, then C2 ∪ S ′ can be the next |C2 ∪ S ′| vertices numbered by
MNS.

Proof. Let q be a vertex in C2 as far away from v as possible, and let h′ = dG(v, q); note that
h′ ≥ 3 as otherwise C2 is not a non-trivial component. For 2 ≤ h ≤ h′, let ch ∈ Lh(v)∩C2

be such that (Lh−1(v) ∩N [C2]) ⊆ N(ch); that is, ch is adjacent to all vertices of N [C2] on
the layer above ch in N [C2]. Such a vertex always exists by Lemma 6.2.4.

MNS must choose a next vertex whose label is maximal; it must therefore have a
neighbour in N(C1)∪N(C2)∪ T where T is the set of trivial components of G−N [v]. By
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definition, N(C2) ⊆ N(c2), and therefore c2 can be chosen next by MNS as no vertex in
L2(v) \ (T ∪N(C1)) ∪ {v} has a label yet.

Now we proceed as in the proof of Lemma 6.6.3. The proof is by induction on h′. In the
base case, suppose that h′ = 3. After choosing c2, each vertex in S ′ receives the number
given to c2, as does c3. Since we have numbered the vertices of T , we may not be able to
choose c3 before some vertices of S ′; label as many vertices of S ′ as required by MNS before
we can choose c3. Since c3 ∈ L3(v) and S ′ ⊆ L1(v), the vertices on L3(v) ∩ C2 never have
their label updated by visiting vertices of S ′. Therefore, we can choose c3 next. Then, we
can label the vertices of L2(v)∩C2 as required until we can label the vertex c′2, where c′2 is
such that (L3(v) ∩ C2) ⊆ N(c′2) if it was not already labeled. We can then finish labelling
all vertices of L2(v) ∩ C2 in some order: all such vertices have maximal labels with the
number given to c3. Then, all vertices of L3(v)∩C2 can be numbered in some order, as all
of their neighbours have been visited.

Therefore, assume that the result holds for h′ ≥ 3 and consider h′ +1. By induction, all
vertices of C at distance at most h′ from v can be labeled after the prefix defined above.

After labeling the vertices at distance most h′ from v in C, we must have labelled the
vertex c′h′ such that (Lh′+1(v) ∩ C2) ⊆ N(c′h′): therefore we can choose the vertices of
Lh′+1(v) ∩ C2 next in some order. This concludes the induction.

Finally, we can visit vertices of S ′ which have not yet been labelled: each vertex of S ′

has a maximal label from a neighbour in C2 which v does not have, so we need not choose
v before any vertex of S ′.

Lemma 6.6.5. Let G be a connected bipartite permutation graph, and let v be a vertex of
G. If v is not a cut vertex and there is a vertex y ∈ N(v) that is in every substar of v,
then v is an MNS end-vertex.

Proof. Start an MNS ordering at y. Let T be the trivial components of G − N [v]; after
visiting y, visit all vertices of T in any order.

By Lemma 6.2.7, there are at most two non-trivial components of G − N [v], say C1

and C2. By Lemma 6.2.4, there is a vertex c1 ∈ C1 such that N(C1) ⊆ N(c1) and there is
a vertex c2 ∈ C2 such that N(C2) ⊆ N(c2).

By assumption that y is in every substar of v, (y, v), (y, c1), (y, c2) ∈ E(G), and after
choosing y, ℓ(c1) = ℓ(c2) = ℓ(v). By Lemma 6.6.3, we can visit all of C1 next along with
N(C1). By Lemma 6.6.4, we can visit all of C2 next along with N(C2).

Since v is not a cut vertex, there are no vertices of N(v) which are left unnumbered.
Finally, we can finish the ordering with v, as required.
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ba c

(a) A triple of vertices in an ordering
with a <σ b <σ c.

ba c

d

(b) A required neighbor d <σ b; it is
not known whether d <σ a or a <σ d.

Figure 6.12: The situation to consider for characterizing orderings
generated by MNS. A solid line indicates that the edge is present,
while a dashed line indicates the absence of a edge. There may be
other vertices between those shown, i.e., {a, b, c} need not be con-
secutive. Vertices with no lines between them may or may not be
adjacent.

The remainder of the section is dedicated to showing that the condition is necessary.
We will make use of the following theorem for MNS, which is illustrated in Figure 6.12. In
fact, all search algorithms have a similar theorem which characterizes the orderings they
generate, but we will only use this one. Such a characterization is called a vertex ordering
characterization; see e.g., Corneil and Stacho [38] for more on this topic.

Theorem 6.6.6 (Theorem 2.8, Corneil and Krueger [34]). Given an MNS ordering σ of
G = (V,E), if a <σ b <σ c and (a, c) ∈ E and (a, b) /∈ E, then there exists a vertex d with
d <σ b such that (d, b) ∈ E and (d, c) /∈ E.

We first establish the following consequences of Theorem 6.6.6. Both of the following
lemmas apply Theorem 6.6.6 in some specific conditions. They are intended to be used
alternately. For example, if Lemma 6.6.7 applies, then afterwards, Lemma 6.6.8 will apply,
and after that, Lemma 6.6.7 will once again apply. Thus, if you can prove that one of
these specific cases is met, one can alternate these lemmas indefinitely. This enables a
contradiction in the proof of Lemma 6.6.9, the necessity condition for v to be an MNS end-
vertex. Specifically, the contradiction will be to the fact that the graph we are considering
is finite. The conditions for these lemmas are illustrated in Figure 6.13.

Lemma 6.6.7. Let G be a graph and let v ∈ V (G). Suppose that σ is an MNS ordering
of G ending at v, and that y ∈ N(v) is leftmost in σ. Let C1, . . . , Ct be the components of
G−N [v]. Suppose that Cj is such that y /∈ N(Cj).

If cα <σ yq <σ cβ for some cα ∈ Cj, cβ ∈ N [Cj], and yq /∈ N [Cj], where (cα, cβ) ∈ E(G),
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cα yq cβ x

y

∈ N [Cj]

(a) The situation required to apply Lemma 6.6.7.

yr cβ yq x

y

∈ N [Cj]

(b) The situation required to apply
Lemma 6.6.8.

Figure 6.13: The situation to consider for Lemmas 6.6.7 and 6.6.8.
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(yq, cα) /∈ E(G), and yq ≤σ y, then there is a vertex yr <σ cα such that yr /∈ N [Cj].
Moreover, there is a vertex y′q with cα <σ y

′
q ≤σ yq such that (yr, y

′
q) ∈ E(G).

Proof. We can apply Theorem 6.6.6 to (cα, yq, cβ) to get a vertex y0r such that (y0r , yq) ∈
E(G) but (y0r , cβ) /∈ E(G) and y0r <σ yq. Since yq <σ v (as v is last), y0r ̸= v. Therefore
y0r <σ y, y0r /∈ N(v), and we have that y0r /∈ N [Cj].

If y0r <σ cα <σ yq <σ cβ, then we are done by taking yr = y0r and y′q = yq.

Since y0r /∈ N [Cj], we have that (cα, y
0
r) /∈ E(G). Moreover, it is still the case that

(cα, cβ) ∈ E(G). Starting with i = 0, we can apply Theorem 6.6.6 to (cα, y
i
r, cβ) to get a

vertex yi+1
r such that (yi+1

r , yir) ∈ E(G) but (yi+1
r , cβ) /∈ E(G) and yi+1

r <σ y
i
r.

Since yi+1
r <σ y, yi+1

r /∈ N(v), and therefore yi+1
r /∈ N [Cj].

While yi+1
r is such that cα <σ y

i+1
r <σ y

i
r <σ cβ, we can continue to apply Theorem

6.6.6 to (cα, y
i
r, cβ) after updating i to have value i+ 1. Since G is finite, we cannot apply

Theorem 6.6.6 indefinitely, and therefore we must eventually get a vertex yi+1
r such that

yi+1
r <σ cα. Take yr = yi+1

r and y′q = yir to complete the proof.

Lemma 6.6.8. Let G be a graph and let v ∈ V (G). Suppose that σ is an MNS ordering
of G ending at v, and that y ∈ N(v) is leftmost in σ. Let C1, . . . , Ct be the components of
G−N [v]. Suppose that Cj is such that y /∈ N(Cj).

If yr <σ cβ <σ yq for some cβ ∈ Cj, and yr, yq /∈ N [Cj], where (yr, yq) ∈ E(G) and
(yr, cβ) /∈ E(G), then there is a vertex cα <σ yr such that cα ∈ N [Cj]. Moreover, there is
a vertex c′β with yr <σ c

′
β ≤σ cβ such that (cα, c

′
β) ∈ E(G).

Proof. We can apply Theorem 6.6.6 to (yr, cβ, yq) to get a vertex c0α such that (c0α, cβ) ∈
E(G) but (c0α, yq) /∈ E(G) and c0α <σ cβ. Since yq <σ v (as v is last), c0α ̸= v. Since
(c0α, cβ) ∈ E(G), c0α ∈ N [Cj].

If c0α <σ yr <σ cβ <σ yq, then we are done by taking cα = c0α and c′β = cβ

Since c0α ∈ N [Cj], we have that (c0α, yr) /∈ E(G). Moreover, it is still the case that
(yr, yq) ∈ E(G). Starting with i = 0, we can apply Theorem 6.6.6 to (yr, c

0
α, yq) to get a

vertex ci+1
α such that (ci+1

α , ciα) ∈ E(G) but (ci+1
α , yq) /∈ E(G) and ci+1

α <σ c
i
α.

Since ci+1
α ∈ N [Cj], (ci+1

α , yr) /∈ E(G).

While ci+1
α is such that yr <σ ci+1

α <σ ciα <σ cβ, we can continue to apply Theorem
6.6.6 to (yr, c

i
α, yq) after updating i to have value i+ 1. Since G is finite, we cannot apply

Theorem 6.6.6 indefinitely, and therefore we must eventually get a vertex ci+1
α such that

ci+1
α <σ yr. Take cα = ci+1

α and c′β = ciα to complete the proof.
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Lemma 6.6.9. Let G be a connected bipartite graph and let v be a vertex of G. If v is an
MNS end-vertex, then v is not a cut vertex and there is a vertex y ∈ N(v) that is in every
substar of v.

Proof. Let σ be an MNS ordering of G ending at v.

Since every MNS search ordering is a generic search ordering, v is not a cut vertex by
Theorem 6.6.2.

Let C1, . . . , Ct be the connected components of G − N [v]. If t ≤ 1, then the lemma
holds trivially. If t = 2, then since v is not a cut vertex and there are no edges between
vertices in N(v) by Observation 6.2.3, the lemma must hold. We therefore assume that
t ≥ 3.

Let y ∈ N(v) be leftmost in σ. We claim that y must be adjacent to all components
of G − N [v]. Suppose the contrary that this is not the case, and let Cj be such that
y /∈ NG(Cj).

Let c ∈ NG(Cj) ⊆ N(v) be leftmost in σ. Since y is leftmost among all vertices of N(v)
in σ, we have that y <σ c.

Claim 6.6.10. There is no vertex c1 ∈ Cj such that c1 <σ c and d(c1, c) = 1.

Proof of claim: Suppose to the contrary that there is a vertex c1 ∈ Cj such that c1 <σ c
and d(c1, c) = 1. Let c0 = c.

There are two cases, based on where c1 is relative to y.

Case 1: c1 <σ y <σ c0. Since (c1, c0) ∈ E(G) but (y, c1) /∈ E(G) (because y is not adjacent
to Cj), we can apply Lemma 6.6.7 to (c1, y, c0). Then, we can alternate applications of
Lemmas 6.6.8 and 6.6.7 to establish that σ must be infinitely long, a contradiction to the
fact that G is finite.

Case 2: y <σ c1 <σ c0. Since v is the last vertex of σ, we have y <σ c1 <σ c0 <σ v.
Since y ∈ N(v), (y, v) ∈ E(G); since c1 ∈ Cj and y is not adjacent to Cj, (y, c1) /∈ E(G).
Therefore we can apply Lemma 6.6.8 to (y, c1, c0). Then, we can alternate applications of
Lemmas 6.6.7 and 6.6.8 to establish that σ must be infinitely long, a contradiction to the
fact that G is finite.

Since we have a contradiction in either case, the lemma is proved. ■

Claim 6.6.11. If there is no vertex ci ∈ Cj such that ci <σ c and d(ci, c) = i, then there
is no vertex ci+1 ∈ Cj such that ci+1 <σ c and d(ci+1, c) = i+ 1.
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Proof of claim: Suppose to the contrary that there is a vertex ci+1 ∈ Cj such that ci+1 <σ c
and d(ci+1, c) = i+ 1 but for all ci ∈ Cj such that d(ci, c) = i, c <σ ci. Let c0 = c.

There are two cases, based on where ci+1 is relative to y.

Case 1: ci+1 <σ y <σ c0 <σ ci. Since (ci+1, ci) ∈ E(G) but (y, ci+1) /∈ E(G) (because y
is not adjacent to Cj), we can apply Lemma 6.6.7. Then, we can alternate applications of
Lemmas 6.6.8 and 6.6.7 to establish that σ must be infinitely long, a contradiction to the
fact that G is finite.

Case 2: y <σ ci+1 <σ c0 <σ ci. Since v is the last vertex of σ, we have y <σ ci+1 <σ

c0 <σ ci <σ v. Since y ∈ N(v), (y, v) ∈ E(G); since ci+1 ∈ Cj and y is not adjacent to Cj,
(y, ci+1) /∈ E(G). Therefore we can apply Lemma 6.6.8. Then, we can alternate applica-
tions of Lemmas 6.6.7 and 6.6.8 to establish that σ must be infinitely long, a contradiction
to the fact that G is finite.

Since we have a contradiction in either case, the lemma is proved. ■

Therefore, for all c′ ∈ Cj, c <σ c
′. Since v is the end vertex, y <σ c <σ c

′ <σ v. Let
c′ ∈ Ci be leftmost in σ. When c′ is chosen by MNS, l(c) = S for some non-empty set
S. Since c′ is leftmost, it must have received a number in its label from a neighbour of
v. Let T = {t ∈ N(v)|σ(t) ∈ S} be the neighbours of v contributing to the label of c′.
Since S is non-empty, T is non-empty as well. However, since y <σ c, (y, v) ∈ E(G), and
(t, v) ∈ E(G) for all t ∈ T , σ(y) ∈ l(v) and σ(t) ∈ l(v) for all t ∈ T when c′ is chosen.
Therefore, l(c′) ⊊ l(v) at this step, and MNS must choose v over c′. That is, y <σ v <σ c

′,
contradicting that v was the last vertex of σ.

It is now clear that Theorem 6.6.1 follows from Lemmas 6.6.5 and 6.6.9; therefore we
also have the following corollary.

Corollary 6.6.12. The MNS-End-Vertex problem for bipartite permutation graphs is
in P.

Proof. Algorithm 6.6.1 solves MNS-End-Vertex. In polynomial time, we can compute
the substars of G − N [v] for a candidate end-vertex v. Also in polynomial time, we can
determine if there is a vertex of N(v) which is present in every substar of G − N [v]. By
Theorem 6.6.1, we can use this information to determine if v is an MNS end-vertex.
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Algorithm 6.6.1: Polynomial Time MNS-End-Vertex solution for Bipartite
Permutation Graphs.

Input: A bipartite permutation graph G = (V,E) and a vertex v ∈ V .
Output: true if there is a MNS ordering of G ending at v, or false otherwise.

1 Compute the components C1, . . . , Ck of G−N [v];
2 for w ∈ N(v) do
3 s← true;
4 for i = 1; i < k + 1; i+ + do
5 if w /∈ N(Ci) then s← false;

6 if s then return true;

7 return false;
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Chapter 7

Conclusions and Future Work

We conclude the thesis with a summary of main results and a discussion on future work.

7.1 Summary of Main Results

This thesis has aimed to relate various orderings of graphs. Focusing on two types of
problems, the thesis attempts to answer two main questions, each related to a type of
ordering problem. First, do “linear” graphs have efficient algorithms for solving ordering
problems? Second, can “linear” graphs be traversed efficiently so that a particular vertex
is last?

In this thesis, we considered AT-free graphs to be “linear”. This is due to their gen-
eralization of interval graphs (see, e.g., Corneil and Stacho [38]), which can be seen as
generalizations of paths, which are very linear. This thesis dealt with superfragile graphs
and proper interval k-trees, and bipartite permutation graphs which are all subsets of
AT-free graphs.

The first question attempts to determine if this linear structure assists with solving
Type I problems. From the existing work on Optimal Linear Arrangement, we know
that the answer to this question is “not always” (unless P = NP). In particular, we
know that Optimal Linear Arrangement is NP-complete on interval graphs (Cohen
et al. [29]). However, when efficient algorithms are possible for one problem on such a
graph, other problems can also be tackled using similar ideas. Thus, the intuition that
“linear graphs” yield efficient algorithms for linear ordering problems should be modified.
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Rather than expecting efficient algorithms on these classes of graphs for Type I problems,
one should expect similarities between problems on “linear graphs”.

We explored this modified intuition on AT-free graphs by connecting the Type I prob-
lems considered. First, we connected optimal orderings for Cutwidth to those for Im-
balance (Lemma 3.4.2). We showed that when an optimal ordering for Cutwidth has
a nice property regarding the ranks of the vertices, this ordering is immediately opti-
mal for Imbalance as well. Exploring this connection further, the remainder of Section
3.4 showed thinking about both Cutwidth and Imbalance was helpful to prove results
about optimal orderings for both of these problems. This connection also yielded closed
formulas for the graph classes in Section 4.3. When we considered the additional structure
imposed on graphs by being AT-free, we were able to show that proper interval k-trees
have imbalance-minimal orderings which are also cutwidth-minimal and optimal for Op-
timal Linear Arrangement all at once (Corollary 4.6.12). In the case of superfragile
graphs, there is an ordering which is optimal for both Imbalance and Optimal Linear
Arrangement at the same time (Theorems 4.5.2 and 5.3.1). Section 4.8 discussed how
others may be able to accomplish this goal for additional classes of AT-free graphs. These
results encourage the consideration of all Type I problems simultaneously for a given class
of graphs when efficient algorithms are possible for any single problem.

The study of these problems on AT-free graphs led to general results. We were able
to prove that for any graph, there is an imbalance-minimal or cutwidth-minimal ordering
where each equivalence class of true twins appears consecutively (Theorems 3.5.1 and 4.4.2).
This result may be very helpful on other subclasses of AT-free graphs (e.g., for threshold
graphs), but also allowed progress in the fixed-parameter setting. These theorems show
that for these problems, vertices that are true twins “behave” similarly, enabling us to
treat equivalence classes of true twins as single entities. Since each class may be arbitrarily
large, this allows us to reduce the complexity of problems in cases where there are many
(or large) classes of true twins.

We are able to solve these Type I problems efficiently for more graph parameters by
observing how true twins behave. First, we showed that Cutwidth has FPT algorithms
for the parameters edge clique cover number (Theorem 3.6.1). Then, by defining the
restricted twin cover number of a graph, we generalized the of the vertex cover number to
tackle denser graph classes. Using this new parameter, we were able to solve both Cut-
width and Optimal Linear Arrangement with a parameter more general than the
vertex cover number (Theorems 3.7.5 and 5.4.5). We can now efficiently solve Optimal
Linear Arrangement with a parameter than allows denser graphs than vertex cover
number does; this is a feat that had not been done before. Thus, we are building towards
an understanding of these problems with parameters which are suitable for even more dense
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graphs (like clique width). This understanding comes from a combination of the behaviour
of true twins and twin covers on these graphs, which often apply techniques introduced for
vertex cover number parameterizations.

Studying vertex cover number parameterizations continues to be helpful. In addition
to adapting the work of Fellows et al. [52] and Lokshsatnov [103] to graphs with bounded
restricted twin cover number, we expanded the results of Cygan et al. [42]. We applied their
ideas for Cutwidth to Imbalance for two results. First, we obtained an FPT algorithm
for Imbalance with the vertex cover number parameter (Theorem 4.7.9). This algorithm
improves the result of Fellows et al. [52] for Imbalance. Second, we were able to show
that under reasonable complexity assumptions, Imbalance does not have a polynomially
sized kernel when the parameter is the vertex cover number of the graph (Theorem 4.7.5).
This work provides more evidence that there are connections between Type I problems,
including connections which may arise from studying how vertex covers affect the solutions
to these problems.

Turning to the second main question, we are interested in if linear structure enables
placing a vertex last by a search algorithm. For bipartite permutation graphs, a subset
of AT-free graphs that we studied for this problem in the thesis, the answer appears to
be “yes”. Here, our intuition regarding the “linear” structure of the graph was correct
for Type II problems. By understanding the AT-free structure of the graph, we were able
to characterize vertices which appear last for most search algorithms. Bipartite permuta-
tion graphs were shown to have at most two deep components after removing the closed
neighbourhood of a vertex. The components can be thought of as the “ends” of the graph
relative to the vertex removed to obtain them (if there is only one such component, the
vertex removed is “near” one end).

Understanding these components and how they are connected was immensely useful.
Depending on the search algorithm, we needed to determine where the target end-vertex
would be: in such a component, or the vertex to be removed to create them. In the case
of layer searches, like BFS or LBFS, a candidate end-vertex must have been in a deep
component. Characterizing the vertices to remove in order to obtain such a deep compo-
nent yielded efficient algorithms for BFS-End-Vertex (polynomial, Theorem 6.3.9) and
LBFS-End-Vertex (linear, Theorem 6.4.1). For other searches, like DFS and MNS, we
showed that one would need to “skip” the candidate vertex until the rest of the graph
was searched. In particular, by characterizing the end-vertices for these searches, we know
what the neighbourhoods of an end-vertex need to have for both of these searches. In
turn, we found efficient algorithms for both DFS-End-Vertex (linear, Theorem 6.5.7)
and MNS-End-Vertex (polynomial, Corollary 6.6.12). From the background work dis-
cussed in Section 6.1, we know that interval graphs yield to efficient algorithms. This
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thesis showed that, for all but MCS and LDFS, the bipartite analog of interval graphs
have efficient algorithms too.

When solving ordering related problems on AT-free graphs, one should look for similar-
ities with other problems. In the case of Type I problems, connections to other problems
have been shown and should henceforth be sought out. These connections have been shown
to be useful for proving new results and exploring optimal orderings. Such connections may
arise from the behaviour of true twins, vertex covers, or a lack of asteroidal triples. For
Type II problems, understanding the linear structure of the graphs has been shown to be
fruitful. The linear structure can be understood by looking at the layers of the graph, and
understanding where candidate vertices are in those layers.

7.2 Future Work

Type I Problems

There are several concrete problems which naturally lend themselves to future work. First,
there are some straightforward questions regarding some classes of graphs:

• What is the complexity of Cutwidth, Imbalance, and Optimal Linear Ar-
rangement on the classes for which these problems have no known complexity?
(Figures 3.1a, 4.1a, and 5.1a.)

• What is the complexity of Cutwidth, Imbalance, and Optimal Linear Ar-
rangement on trivially perfect graphs? Trivially perfect graphs are interval graphs
for which there is a representation of the graph where, for each pair of intervals,
one contains the other or the two are disjoint. These graphs are a generalization of
superfragile graphs. One can obtain a connected superfragile graph by taking a star
and replacing each vertex of the star with a clique, and adding all edges from one
clique to another if the corresponding vertices for the cliques were adjacent in the
star. Trivially perfect graphs are similar, except that one uses a rooted tree, rather
than a star, and all edges are added to any clique on a path to the root (see Figure
7.1). Trivially perfect graphs are a natural next step after establishing algorithms
for superfragile graphs. Preliminary exhaustive computer searches show that there
is always an ordering which is optimal for all three problems simultaneously when
these graphs are small (when the graphs are large, exhaustive search takes too long
to verify this claim).
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a

b c

a1 a2

b1 c1

c2

c3

(a) A superfragile graph (right) created by replacing vertices of a (rooted) star (left)
with a clique.

a

b c

d

a1 a2

b1 c1

c2

c3

d1 d2

(b) A trivially perfect graph (right) created by replacing vertices of a rooted tree (left)
with a clique. After replacing vertices with cliques, all edges are also added to any
clique on the shortest path to the root.

Figure 7.1: The similarities between superfragile graphs and trivially
perfect graphs.

• The positive superfragile results encourage the investigation of these problems in the
“reverse” direction. Knowing that the answer to the first question investigated by
this thesis may be “not always”, one wonders if we can say more. Since Optimal
Linear Arrangement is NP-complete on interval graphs, are Cutwidth and Im-
balance also NP-complete on interval graphs? The previous discussion notes that
efficient algorithms on Cutwidth inspired efficient algorithms on Imbalance and
Optimal Linear Arrangement. Do hardness results for Optimal Linear Ar-
rangement inspire hardness results for Imbalance and Cutwidth?

• Is an (n, k) proper interval graph an edge-maximal graph with n vertices of bandwidth
at most k?

Second, there are some unresolved questions in the FPT setting:

• Does Imbalance have a polynomial-sized kernel when the parameter is the solution
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size?

• Can the algorithm of Theorem 4.7.9 and its corresponding algorithm for Cut-
width (Cygan et al. [42]) be used to speed up parameterizations of these problems
for graphs of bounded restricted twin cover number? As this does not yield a new
FPT result for Imbalance (it might only be faster), this question is targeted towards
Cutwidth.

• Does Optimal Linear Arrangement admit an FPT algorithm when the param-
eter is the treewidth of the graph (and maybe the maximum degree)?

• Another generalization of the twin cover number and neighbourhood diversity number
of a class of graph is the shrub depth (denoted sd(G)) (Ganian et al. [59]. The
definition is rather technical (and we refer the reader to Ganian et al. [59] for it), but
the relation to other parameters studied in this work is shown in Figure 7.2. What
is the complexity of Imbalance on classes of graphs with bounded shrub depth?

More generally, are these approaches helpful for other graph ordering problems? For
example, Fellows et al. [52] also use an ILP for a vertex-cover parameterization for Band-
width and Distortion (see, e.g., Fellows et al. [52] for a definition). However, since
there are results for both of these problems on bipartite permutation graphs and threshold
graphs (Heggernes et al. [76], Heggernes et al. [78], Uehara [135]), progress may only be
possible in the parameterized setting. Dı́az [44] lists other ordering problems with numerical
optimization functions (i.e., Type I problems) that may be less studied.

Perhaps the most challenging direction for future work would be to determine if there
exists a common framework for describing Cutwidth, Imbalance, and Optimal Lin-
ear Arrangement which could be used to prove complexity results about all of them
simultaneously. If such a framework is not feasible, perhaps more results like Lemma 3.4.2
may still be of help. An explicit connection that that relates Imbalance and Optimal
Linear Arrangement is missing in general.

Type II Problems

The most obvious directions for future work for the S-End-Vertex are very concrete,
and are based on filling in Table 6.1.

• Is S-End-Vertex in P for LDFS and MCS on bipartite permutation graphs?
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• Is MNS-End-Vertex NP-complete for general bipartite graphs?

Table 6.1 does not mention general AT-free graphs. As suggested in the previous
section, considering these general classes of “linear” graphs will provide a much more
complete understanding of S-End-Vertex.

There are also some directions for future work that are unrelated to Table 6.1.

• Are there any FPT results for these problems? The work of Kratsch et al. [92]
showed that BFS-End-Vertex has a O(2n) algorithm on general graphs—can this
be improved to polynomial in n but exponential in some parameter k?

• The proofs in e.g., Section 6.3, only rely on the fact that Lemma 6.2.4 hold, the graphs
are bipartite, and the graphs have at most two deep components after removing a
vertex. Are these properties enough to characterize bipartite permutation graphs?
Are there other classes of graphs where related properties hold and we can obtain
similar end-vertex characterizations?

• Do Algorithms 6.3.1, 6.4.1, 6.5.1, or 6.6.1 have any other applications? For example,
can one of them be used to test if a graph is a bipartite permutation graph?
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[116] Jan Obdržálek. Graphs, Their Width, and Logic. Habilitation thesis, Masaryk Uni-
versity, 2017.

[117] Achilleas Papakostas and Ioannis G. Tollis. Algorithms for area-efficient orthogonal
drawings. Computational Geometry, 9(1-2):83–110, 1998.

[118] H.P. Patil. On the structure of k-trees. Journal of Combinatorics, Information and
System Sciences, 11(2-4):57–64, 1986.

[119] Myriam Preissmann, Dominique de Werra, and Nadimpalli V.R. Mahadev. A note
on superbrittle graphs. Discret. Math., 61(2-3):259–267, 1986.

[120] Andrzej Proskurowski and Jan Arne Telle. Classes of graphs with restricted inter-
val models. Discrete Mathematics and Theoretical Computer Science, 3(4):167–176,
1999.
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