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Abstract

Applications that use passwords or cryptographic keys to authenticate users or perform

cryptographic operations rely on centralized solutions. Trusted Platform Modules (TPMs)

do not offer a way to replicate material, making accessing this information in a hetero-

geneous environment difficult. Meanwhile, remote services require a constant network

connection and are a central point of failure.

We present SEEDS, a secure decentralized multi-user data store that generates, stores,

and operates on users’ authentication material such as passwords and cryptographic keys

on local machines. To ensure the confidentiality and integrity of user accounts and crypto-

graphic keys, SEEDS leverages Intel SGX —a hardware-based trusted execution environ-

ment, to store and operate on this data while protecting from a compromised host. We

support user-defined policies that restrict users’ operations to protect against a malicious

user attempting to access data without sufficient privileges. In addition, we replicate data

across machines to improve accessibility and support offline participants for high avail-

ability. We implement the storage data structure using Conflict Free Replicated Data

Types (CRDTs) to replicate data, recover from network partitions gracefully and offer a

horizontally scalable system.

We developed two applications that demonstrate the benefits of our system. First,

we address centralized user authentication issues by implementing a database module that

replaces and decentralizes LDAP user authentication. Next, we improve the management of

users’ cryptographic keys by developing a software U2F token that replicates this material

across machines for high availability.
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Chapter 1

Introduction

Managing authentication material in a secure and easily accessible way is a challenge. Both

users and services rely on key-management services for authentication and cryptographic

operations such as signing and encryption. Authentication is paramount as it protects

sensitive resources from unauthorized access, therefore, the integrity and confidentiality of

the authentication process are required.

Users typically resort to storing and copying this information insecurely to improve

availability across machines. Solutions such as password managers store the data directly

on the user’s device and are known to suffer from flaws that expose passwords and en-

cryption keys in memory [6]. As a result, malicious software on the host can learn these

secrets and access the user’s sensitive data. In addition, password managers do not protect

against an adversary with system read access.

Alternatively, users may use dedicated hardware such as Trusted Platform Modules

(TPMs) to securely store, manage, and operate on this data, even on an untrusted host.

This way, even if a machine were to be compromised, the contents of the TPM are isolated

and protected. However, TPMs have a restrictive API that only supports cryptographic op-

erations and is relatively complex to use with the specification [8] containing 125 functions.

Furthermore, TPMs offer a single-machine solution but lack availability across machines.

They cannot replicate the data, requiring users to register a new key with each service
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on new machines, which unnecessarily complicates the key management problem for users

and services.

Cloud-based solutions such as Cloud Key Store (CKS) [29] rely on network connectivity

in order to use the service. Solutions that require network connectivity are susceptible to

DDoS attacks and can suffer from availability issues when immediate access to services

is required. Alternatively, a cloud TPM solution such as cTPM [19] does not require

constant connection since data is synced with the cloud periodically and accessed locally

upon request. This approach establishes a pre-shared key between TPMs and the cloud,

which is used to encrypt and authenticate messages, requiring the cloud to remain trusted.

cTPM expects the key to be shared during TPM manufacturing which requires changes

out of the end-user’s control making this solution idealistic.

Trusted execution environments (TEEs) support isolated execution of programs that

protects them from unauthorized access or modification. Even privileged software cannot

access these regions, ensuring confidentiality and integrity of program code and data. TEEs

are available in commodity hardware including smartphones, tablets, and laptops. Imple-

mentations such as Intel SGX [5] and ARM TrustZone [1] provide extensions to existing

architectures that use hardware-based access control to provide a secure virtual processor.

There are a lack of services that use this technology to secure applications directly.

Typically services using Intel SGX use a remote access model, where users connect to

the service in a TEE on an untrusted cloud provider. The threat model of these services

assumes that the host running the TEE can be compromised while the remote user remains

wholly trusted.

SEEDS bridges the gap between users and their data by providing a secure distributed

multi-user data store with policy-based access control. SEEDS runs in a TEE where it

manages user accounts, generates and stores keys, and performs cryptographic operations

such as verification, signing, and encryption. That is, SEEDS offers a flexible interface that

allows users to securely store arbitrary data within the TEE while supporting standard

TPM functionality. In addition, SEEDS enforces policies to protect the confidentiality and

integrity of the data by authorizing each operation.
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All data is stored in a key-value store and securely replicated to improve reliability

and availability. Updates are made independently, without coordination, and applied in

any order at each replica while still converging to the same state. We achieve this func-

tionality by implementing the key-value store as a Conflict-Free Replicated Data Type

(CRDT), allowing SEEDS to service local requests without requiring immediate connec-

tivity. SEEDS only requires connectivity to share system updates, thus making the system

highly available.

We developed and run SEEDS across a cluster of commodity desktop computers with

Intel SGX. We implemented two services using SEEDS that show the different kinds of

applications possible with the system. First, we built a decentralized replacement for

LDAP authentication that replicates the data securely across machines to ensure high

availability in a multi-user environment with more complex policies. Second, we developed

a single-user replicated U2F software token.
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Chapter 2

Background

SEEDS provides a key-value store service that protects high-level operations through a

fine-grained policy layer. The entire service runs inside of a TEE and is accessible through

a library. Individual cryptographic operations, including key generation, verification, en-

cryption, and data signing are mediated through the policy.

The key-value store is represented internally as a composition of CRDTs to allow up-

dates to happen asynchronously to support end-user environments where individual devices

may come online and go offline anytime. Using the properties of CRDTs enables replicas

to make updates and resolve conflicts independently and in a deterministic way.

2.1 Intel SGX

A trusted execution environment (TEE) isolates code and data to prevent other software,

including system software, from reading or tampering with it during execution. Both

hardware and software approaches exist to achieve these strict guarantees. Intel Software

Guard Extensions (SGX) implement a hardware-based approach using custom on-chip

technology and microcode extensions to create and mediate access to a protected memory

region of main memory.
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Intel SGX applications maintain separate trusted and untrusted parts that communi-

cate through a call-gate mechanism. This allows the untrusted part to change the privilege

level of the current process to execute the trusted code. The code and data of the trusted

part reside in the protected region of memory known as an enclave. The memory is pro-

tected by an on-chip memory encryption engine (MEE) that encrypts and decrypts enclave

memory (at cache line granularity) to enforce confidentiality and integrity[21].

The enclave contents are loaded into a single page within the protected region of mem-

ory which has a size of 128 MB in total. Approximately 32MB is dedicated to enclave

metadata [12, 37], leaving 96 MB for pages to be shared amongst enclaves. Page swapping

is supported but incurs high overheads. Therefore, developers must minimize the footprint

of enclave code and data.

Intel SGX offers two methods of attestation: local and remote. Local attestation proves

the identity of the enclave on the same host using a MAC and a symmetric key unique to

the enclave that is protected by the hardware. Remote attestation proves the identity and

contents of an enclave to a remote party and requires both a report and a signature of the

report using the hardware key burned into the chip. Upon initialization, the CPU computes

thr report which is a secure hash of the enclave’s code and initialization parameters. The

remote party must verify the report and ask Intel’s Attestation Service (IAS) to verify the

quote to ensure the enclave is running on genuine Intel hardware [2].

A background enclave runs independently and provides access to on-chip services such

as encryption keys, counters, and trusted time. Data can be secured and persisted to

untrusted storage through a process known as sealing. A sealing key is generated and used

to encrypt the data. Only certain enclaves can regenerate the decryption key depending on

the key generation policy. System software does not have access to the key, and therefore

the data is securely encrypted before being offloaded to untrusted storage. Furthermore, an

enclave can use the counters within replay-protected storage to ensure freshness of sealed

data.

We strategically isolate SEEDS system components to run in an enclave using the Intel

SGX SDK. There are several existing frameworks for running unmodified applications
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in an enclave [44, 12], however, these frameworks are not compatible with the OS we

used for system development. Furthermore, using the SDK lets us directly interface with

trusted and untrusted parts, allowing for fine-grained control over the memory usage and

performance.

2.2 Conflict Free Replicated Data Types

Distributed systems replicate data to improve reliability and performance, which requires

a trade off between consistency and availability according to the CAP theorem. In systems

where availability is essential, replicas independently handle updates causing replicas to

diverge as updates are applied. Each replica propagates updates to other replicas and ap-

plies updates locally to reconcile state. Since updates occur concurrently and can conflict,

replicas must agree on how to resolve conflicts which usually relies on consensus. CRDTs

offer a unique solution to resolve conflicts that arise from concurrent updates without

communication between replicas.

CRDTs extend a subset of traditional data structures to reconcile conflicting updates

by strictly relying on additional metadata. As a result, CRDTs can integrate updates from

other replicas and reconcile any conflicts without consensus. Instead, all operations are

performed locally and independently, and they eventually propagate to other replicas by

sharing updates. Each replica will resolve any conflicting updates deterministically and

modify their copy of the data structure accordingly.

CRDTs guarantee that after no new updates, all replicas will converge to the same state

assuming all updates are delivered. This consistency model is known as strong eventual

consistency (SEC) and offers a greater guarantee than eventual consistency [41]. Eventual

consistency may require replicas to roll back state and perform consensus to agree on the

order of updates and converge to a final state. Meanwhile, SEC avoids the overheads of

consensus because each replica can make these decisions independently.

The resolution of conflicting updates is known as concurrency semantics and depends

on the underlying data structure. If operations of the data structure commute, the data
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structure’s final state converges regardless of ordering. Some data structures have a nat-

ural CRDT implementation. For example, consider a monotonically increasing counter

initialized to 0. We expect two concurrent increments to resolve to the sum of the two

increments, since the order in which these increments are applied does not influence the

final value. Applications must be able to support the discrepancy of this counter in their

application. Not surprisingly, many data types such as registers and sets do not have up-

dates that naturally commute. For example, what should the final register value be when

two concurrent updates set the register to differing values? We must define the outcome

of such updates which depends on the application using the CRDT.

There are two main approaches to implementing CRDTs: state-based and operation-

based. Updates are defined differently between the two but require that conflicting updates

commute. This ensures that updates can execute at different orders at each replica.

A state-based implementation defines an update as the entire data structure itself and

defines a merge function to merge the data structure in the update into the replica’s local

version. Since a merge is a union of two states, this should form a least-upper bound (LUB)

and ensure a single outcome given any two states [41]. As a result, the merge function must

be associative, commutative, and idempotent. Associativity ensures that the order of these

merges does not impact the final result. Idempotence guarantees that we can merge the

same state multiple times and achieve the same result. A consequence of the state-based

implementation is that updates grow proportional to the amount of data stored within the

data structure. Therefore, updates can become very large according to the size of the data

structure.

An operation-based implementation defines an update as the metadata concerning the

operation (i.e., the operation and parameters). Updates are twofold; each update im-

plements a prepare phase and an effect phase. The prepare phase prepares metadata at

the source replica. The effect phase occurs at all replicas and uses the metadata to up-

date the data structure. The effect phase must be commutative concerning concurrent

updates to avoid ordering across replicas. Typically, operation-based implementations as-

sume causally-ordered communication to relieve the effect phase from being commutative

7



for all operations (not just concurrent ones) [15]. If the effect phase is not commutative

for all updates, we require the messaging middleware to deliver updates in the same order

that they were applied at the source replica.
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Chapter 3

Threat Model and Security Goals

3.1 Threat Model

We differ from the typical SGX threat model where trusted users establish an attested

and secure communication channel to an enclave running in a cloud provider’s machine.

Instead, SEEDS runs on SGX-capable user devices and allows local applications to submit

commands using IPC or a locally attested channel between an SGX application and SEEDS

enclave.

We assume hosts are initially trusted, and may become untrusted after initialization of

SEEDS. An untrusted host may be compromised, meaning an adversary has some control

over the system software. As a result, the system can fail to respond to enclave requests,

respond incorrectly, and issue requests to the enclave. We expect a secure I/O between

the user, the application and the SEEDS service. Therefore, we do not protect against key

loggers or other malicious system software that reads or tampers with the I/O.

Furthermore, the applications using SEEDS are expected act in good-faith. We assume

that there are no exploitable software bugs within the trusted code that can be used to

influence enclave code execution. Additionally, the adversary can interfere with network

traffic by modifying, dropping, delaying, and reordering packets.
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We do not protect against side-channel [32, 46] or speculative execution [20, 17] attacks

as they are out of the scope of this work. Existing research has developed side-channel

countermeasures and tools to assist in detecting potential speculative execution bugs using

code instrumentation and static analysis [36, 35]. Finally, we do not protect against denial

of service (DoS) attacks [25] that prevent the enclave from executing.

3.2 Security Goals

The main goal of SEEDS is to ensure confidentiality and integrity of the generated data

by preventing unauthorized access or modification. All SEEDS functions should be secure

from any malicious software on the host. We ensure this by generating, managing, and

operating on the data in an Intel SGX enclave using an access control policy.

We protect the data from compromised users by enforcing access control policies on

the data itself. Users only access protected data if they are authenticated against the

system, and there exists a policy to authorize the operation. An attacker who learns a

user’s login credentials and impersonates a user should not access or modify data that the

compromised user does not have permission to access. That is, the damage of the attack

should be limited to the scope of that user. Of course, if the compromised user has many

privileges (i.e., permitted to modify policy), then the attacker can affect how other users

interact with the data through policy modifications. Nonetheless, this can be thwarted by

strict initial policies that prevents any user from making security-sensitive modifications.

Additionally, an attacker should not be able to launch a replay or rollback attack on

SEEDS. Replay attacks attempt to subvert a program by executing previously authorized

operations, while rollback attacks revert state. Hence replaying any requests between an

application and SEEDS or updates between SEEDS replicas should not execute or influence

the state in any way.
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Chapter 4

Design

SEEDS uses Intel SGX to secure system components, so it consists of a trusted and un-

trusted part as shown in Figure 4.1. The trusted part, or enclave, maintains all user

account information, keys, policies, and other metadata using an in-memory key-value

store. In contrast, the untrusted part manages communication with applications on the

same machine and the correspondence with other replicas.

Applications invoke operations listed in Table 4.1 by issuing requests to SEEDS. All op-

erations expect a uid to associate it with a user. Applications first issue an authentication

request to bind a user’s identity to the session. Then, the subsequent request is authorized

by checking a list of policies that permit the request based on the operation and identity of

the authenticated user. Only if authorization succeeds is the request performed. Option-

ally, applications can issue operations without prior authentication and an empty uid if the

operation is permitted by all users on that data. Standard applications connect to SEEDS

through IPC, while SGX applications can connect directly to the SEEDS enclave using

local attestation. The latter ensures that the host cannot read or modify the contents of

the request. We discuss more details in § 4.1.

All operations are performed locally, making the system highly available. Replication

is transparent; replicas send, receive, and apply updates in the background while servicing

requests locally. This update propagation method does not ensure that all updates on
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Figure 4.1: The basic architecture of SEEDS.

the data are immediately reflected at each replica. As a result, applications must tolerate

temporary inconsistencies.

4.1 Users and Operations

SEEDS is a multi-user service, so users must verify their identity before accessing or op-

erating on sensitive data. Each user maintains an account with SEEDS, corresponding

to several unique entries in the key-value store that holds account information such as a

username, user identifier, and login credentials.
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Accounts are initialized with a password that authenticates the user to SEEDS. The

username and password are passed to the auth() operation using the uid and cred pa-

rameters, respectively. We rate-limit the number of authentication attempts to prevent

an adversary from guessing credentials. Each failed attempt exponentially increases the

timeout for the next authentication attempt. We use Intel’s trusted time primitive to

accomplish this timeout in the enclave.

To change credentials, users call update user() with the value of the new password that

will update the account information for the specified user. The user must be authenticated

prior to calling this operation. Policies restrict the operations users can perform, so a

policy must exist that allows users to modify their credentials. More details about policies

are covered in § 4.2.

Intel SGX does not provide secure I/O to the enclave, therefore, the host can read

the credentials passed to SEEDS during each operation over an IPC connection. We do

not take any precautions from an adversary intercepting request parameters. Instead, it

is the application’s responsibility to correctly and securely gather these credentials and

provide them to SEEDS. Ideally, we want a secure channel between the user and SEEDS

enclave over the host system. SEEDS supports locally attested communication channels

with SGX applications to secure I/O between the application and the SEEDS enclave.

However, such applications must still take measures to prevent intercepting input from a

device. A possible solution is shuffle mapping, where the software scrambles the system

message queue [47] to prevent an adversarial host from reading the keyboard input of the

password.

If a user attempts to access other users’ data, we expect that the user has sufficient

permissions to view or modify it. Otherwise, the operation should fail since our goal is

to protect data from unauthorized access or modification. Flexible policies describe which

users can perform what actions on specific data and are checked on each operation. Next,

we consider how data is stored to allow for such policies.
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Operation(s) Input

get uid, name

put uid, name, value

delete uid, name

create user uid, new uid

update user uid, cred

auth uid, cred

gen key uid

sign,verify uid, name, bytes

encrypt,decrypt uid, name, bytes

Table 4.1: SEEDS API.

4.2 Entries and Policies

We store user accounts, cryptographic keys, policies, and all other data within entries inside

an in-memory key-value store. The key-value store resides in enclave memory, therefore,

the total number and size of entries are restricted by the memory limit. However, all entries

are relatively small, so storing all this data in the enclave is feasible assuming a moderate

number of entries.

Entries are key-value pairs, where the key is a string, and the value holds arbitrary

data associated with the key. To avoid confusion with cryptographic keys, we refer to the

key of an entry as its name. Operations in Table 4.1 interface with the key-value store

using get(), put() and delete() operations. A get queries the key-value store for an entry,

while the put inserts or updates an entry, and the delete removes an entry. For example,

gen key() generates a cryptographic key and stores it in the key-value store using a put.

Meanwhile, sign() reads the key from the store using a get and then performs the signature.

To distinguish entries all entry names follow a naming convention that identifies the

entry’s type, owner, and resource name. This convention allows us to store different data

within the key-value store while tagging similar data with a similar prefix. Specifically, the
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entry names are period separated as follows: ‘type.owner.resource’, where the type is one of

three types: accounts, machines and policy. The owner field maintains the username of the

user who owns the entry. Specifying the owner simplifies access control on the entry. The

resource maintains the name of the data held by the entry. Table 4.2 provides an example

of some standard entries.

Each user maintains several entries with the accounts type that store data related to

the user’s account such as account information, as well as any SEEDS generated keys.

Similarly, each ‘machines’ entry maintains the domain name of a machine in the replica

group. Replicas share and receive updates from these machines, and we discuss more

details about this in § 4.5. A single entry with the name ‘policy’ maintains a global list

of policies that define relationships between entries, users, and operations. The owner and

resource fields are omitted from this entry since it maintains information relevant to all

users in the system and is used on each operation.

This organization of keys makes defining policies on the entries straightforward. Each

policy is a string describing the permitted operation and consists of the desired entry,

username, and operation. Policies may contain specifiers ¡USERNAME¿ and ¡ANY¿, where

the former matches the username of the user issuing the operation, and the latter matches

any username or operation. This way, a single policy can apply to more than one user or

operation making it very flexible. Table 4.3 holds a list of example policies where each

policy maps an entry to one or more usernames and the operation(s) that are permitted

on the entry. For example, the first entry in Table 4.3 indicates that all users can perform

a get on every user’s email. Meanwhile, the second entry indicates that the user issuing

the operation can only update their own email entry.

SEEDS validates all operations against the policies which are found in the policy entry.

On each operation, a string describing the current operation is created and compared

against each policy in the policy entry until a match is found. If there is no matching

policy the operation fails, otherwise, the operation executes. Policies give explicit access

since it is inherently safer to list the permitted operations rather than those that are

not. The validation occurs entirely within the enclave, so an adversary cannot influence
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Entry Name

policy

machines.admin.domain name1

accounts.admin.userid

accounts.admin.passwd

accounts.alice.userid

accounts.alice.passwd

accounts.alice.key rsa3072

Table 4.2: Sample key-value store entries in SEEDS.

Entry Username Permissions

accounts.<ANY>.email <ANY> get

accounts.<USERNAME>.email <USERNAME> put

accounts.<ANY>.pub key <USERNAME> encrypt

policy admin put

machines admin put, delete

Table 4.3: List of policies that map key-value store entries, to users and permitted op-

erations. The <USERNAME> specifier matches to the user preforming the action, and

<ANY> matches to all valid values in that field.

the policy decision. Users can only influence the policy if they are permitted to do so

according to the policy itself. The administrator is responsible for providing a correct list

of policies that are loaded on initialization and done while the device is trusted to ensure

the host cannot tamper with it.

As mentioned in § 4.1, we do not protect against attacks where the parameters of the

operations are compromised. The security of SEEDS depends on the set of policies, and

for operations that make changes to the policy such an attack could seriously impact

16



confidentiality and integrity of data. It is up to the application to ensure any operations

that make such changes occur on a trusted host or through a trusted channel. Furthermore,

the adversary does not gain anything from learning some operations’ parameters since data

is not revealed. For example, the sign() operation keeps the signing key in the enclave and

only requires a username, key handle, and bytes to be signed. An adversary should not

be able to forge a signature or learn the signing key with only the parameters and signed

data.

4.3 Replication

The key-value store maintains all user and system data and is replicated across hosts.

Using a single key-value store ensures all data is accounted for and we do not need to

replicate multiple data structures. We trade-off consistency for availability to ensure that

SEEDS can always complete a request since the data stored does not frequently change

and can tolerate moderate divergence. Most data is unique to an individual user, so many

conflicting updates are easily resolved since they make updates on different entries. For

example, the gen key() operation generates a cryptographic key on the user’s behalf, and

subsequent requests only read that key from the key-value store. Also, as long as the data

is available on the machines of that user, it is not imperative that all machines immediately

view updates from all users.

All gets on the key-value store read a local copy of the data, and all puts and deletes

write to the local copy. Updates are not propagated to other hosts immediately, so updates

may occur concurrently among replicas, leaving the key-value stores in inconsistent states.

The CRDT guarantees that all replicas’ key-value stores’ converge to the same contents

after no new updates.

We use state-based replication, where updates propagate the entire key-value store

state. Replicas merge this state into their local state using a merge function that reconciles

any conflicts found in the two states. We explain the motivation behind this choice in

§ 4.3.3, after introducing the key-value store CRDT design.
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4.3.1 Key-Value Store CRDT

A key-value store (or map) is a composition of a set data structure, where each entry in

the set maintains a register data structure. The set manages entries in the key-value store,

while each register manages the value of an entry. The set API includes lookup(), add()

and remove(), where only the last two operations mutate the data structure. Similarly, the

register data structure maintains a value() and assign() interface, where only the assign()

modifies the register by overwriting it. Joining the two data structures together, the key-

value store CRDT exposes a get(), put() and delete() API. A put(key, value) adds key into

the set if it does not already exist, and assigns value to the associated register. A delete(key,

value) removes key from the set if it exists and frees any memory associated with value.

Finally, a get(key) performs a lookup and returns the entry if it exists, not mutating the

data structure in any way.

4.3.2 Conflict Resolution

Our key-value store CRDT must resolve conflicting updates to the data structure. Updates

on the key-value store conflict if they occur concurrently and modify the same entry. A

conflicting put and delete must either keep the updated entry in the key-value store or

remove it entirely. Meanwhile, concurrent puts on the same entry must resolve to the same

final value. The choice is not apparent in either case since concurrent updates do not

commute, and the outcome depends on the order in which the updates are applied.

We define the reconciliation of concurrent updates on the set independently from con-

current updates on a register. Replicas resolve conflicting puts and deletes by adding the

entry to the key-value store. That is, a put dominates all concurrent deletes; this is known

as add-wins semantics since the final result ensures the entry is added. Replicas resolve

conflicting puts on the same key by assigning all puts a timestamp and choosing the up-

date with the highest timestamp. This is known as last-writer-wins semantics since the

timestamps are totally ordered, so the last update (i.e., highest timestamp) will take effect.

Updates can become ”lost” since they do not persist until all conflicting updates are
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reconciled at each replica. The user can introduce conflicts by making updates at replicas

where the latest updates have not yet arrived. It may be the case where an entry is

deleted but still exists on future queries or that the value of an entry does not contain an

update made at a replica since it happens to be concurrent with another update that took

precedence. Policies allow users to share entries, thus further complicating how users view

the state if multiple users are making updates to the same entries.

These scenarios are generally tolerable given the data in our key-value store, since most

operations do not modify the entries. Operations that modify the key-value store generate

cryptographic material, insert arbitrary data or update system configurations such as user

accounts, machines, and policy.

When generating a new cryptographic key, SEEDS is responsible for assigning a name

to the entry, and the application is responsible for using this name to access the entry.

SEEDS can assign a unique name to each new entry to ensure that no concurrent updates

insert the same entry. If a user issues an operation on that key on a different replica, it

may fail if the replica still has not received the update from the source since the entry does

not exist in its key-value store. Furthermore, no operations can update the key since the

entry name is unique to the replica creating the entry, and so no conflicting updates can

occur.

Applications must take precautions with operations that affect system configuration

such as user accounts, machines and policies. Consider a scenario where a machine is

removed by one replica but added to the group at another replica. The offending machine

will remain in the group and continue to share updates, which is undesirable if we wish

to revoke a machine’s ability to share updates if we know it is malicious. Such scenarios

are problematic since we expect consistency across replicas. Applications are responsible

for not introducing such inconsistencies if they cannot tolerate the possibility of updates

being overwritten.
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4.3.3 How do we actually resolve conflicts?

SEEDS uses an Observed Remove Set (OR Set)[41] design to implement add-wins semantics

for the set CRDT. The idea is to uniquely tag each put and store the tag alongside the

entry. Tags accumulate as concurrent puts occur. A delete removes the entry and moves

the tags to the tombstone set, which maintains all the puts observed by all deletes. A

concurrent put will create a tag that is not visible to a concurrent delete. As a result, the

entry is added to the set.

Tombstones maintain a list of all affected puts, preventing out-of-order puts from taking

effect and allowing elements to be re-added since they are unique according to their tag.

The tombstone set continues to grow as entries continue to be deleted. As a result, the

tombstone set unboundedly grows as deletes continue to be applied. Wuu et al. [48] suggest

a method of garbage-collecting tombstones already delivered to each replica. However,

this approach depends on acknowledgments and introduces message delivery requirements

which is undesirable given that SEEDS replicas can come online and go offline for varying

periods.

We implement an Optimized OR Set (Opt-OR Set) [16] to avoid keeping unbounded

tombstone metadata using version vectors. Version vectors track the causality of operations

across replicas. A version vector is typically associated with a distributed object and they

can be compared to determine if one object is more up-to-date or contains concurrent

updates. They can be merged to reflect all versions that have occurred on the object at

each replica, which is simply a pairwise maximum of each version. Each replica maintains a

global version vector and a per-entry version vector that denotes the replica’s local version

and per-entry version, respectively.

The Opt-OR Set works best with state-based replication since state-based updates en-

capsulate all operations causally preceding a delete operation, which simplifies the ordering

requirements of the updates. Conversely, assume each update contains a version vector and

an operation, if updates arrive out of order, merging a version vector attached to the latest

update will indicate that the replica has seen all previous updates associated with all con-

secutive versions. This is not necessarily true if updates arrive out of order and requires
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that updates are delivered in the ordered they are applied at the source to ensure repli-

cas do not miss any updates. This means, operation-based updates may require replicas

to queue updates until earlier ones arrive. Since each state-based update maintains all

causally related updates, these updates can be applied out of order and do not require

strict guarantees from the messaging middleware.

On a delete, the replica deletes the entry and per-entry version vector from the key-value

store. On each put, the local replica’s version in the global version vector is incremented

by one, an entry structure is created if necessary and the replica’s version in the per-

entry version vector is set to the replica’s version in the global version vector. The global

version vector indicates the number of puts at that replica. We can track which versions

are associated with which entries by storing the version with the corresponding entry in

the per-entry version vector. This way, replicas can compare version vectors to determine

which state has a more recent update on each entry.

As mentioned earlier, we employ a state-based update scheme where each update main-

tains all entries in addition to a per-entry version vector and a global version vector.

Merging works as follows, if the update is missing an entry that the local replica has in

its key-value store, then the update either has a more recent delete, or the local replica

has issued a more recent put on this entry. This situation can be resolved by comparing

the version vector of the entry in question against the update’s global version vector. If at

least one version in the local entry’s vector is larger (i.e., more up to date) than a version

in the update’s global version vector, it means that the local entry has a more recent put

not known by the update. A similar process determines if the update has more recent puts

than local deletes. Entries are only removed if the global version vector of the replica with

the deleted entry dominates the entry’s version vector. As a result, a concurrent put will

update the entry’s version vector to be concurrent with the replica’s global version vector

ensuring it is not removed. If an entry exists in both the local replica and the update,

then the per-entry version vectors are merged. Finally, we merge global version vectors to

indicate that the replica is aware of all operations in the update.

The merge operation mentioned above for the Opt-OR Set adheres to CRDT rules
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since version vectors are CRDTs themselves. Specifically, merging two version vectors

is commutative, idempotent, and associative. Furthermore, since the merge function is

commutative and associative, updates may arrive out of order at each replica.

We extend the Optimized OR Set to associate each entry with a register CRDT to

implement our key-value store. Each replica must decide which put assigns the register’s

value to implement last-writer-wins semantics. We tag each put with a timestamp by

concatenating a counter and replica identifier. The counter on each update is larger than

the counter currently associated with the entry to ensure that this update takes precedence

over the visible update. This way, tags are unique and totally ordered, meaning all puts are

ordered as well. As concurrent puts occur, replicas only apply the put with the higher tag.

All replicas independently apply the same final put making this operation commutative

since all replicas will converge to the same final register value. Therefore, a merge will first

determine if the entry is in the set and then compare the remaining entries and update the

tags and values accordingly.

Therefore, each entry contains a string denoting the name, a blob of bytes that maintain

the value, a version vector, and a timestamp. The key-value store additionally maintains a

global version vector. Although this adds moderate metadata per entry, we gain the ability

to share updates in any order and do not require cleaning up tombstones. Furthermore,

we accept the bandwidth necessary to send state-based updates since the alternative of

sending operation-based updates with tombstones introduces similar problems but with

the added requirement of garbage collection. Updates occur periodically and encapsulate

one or more operations on the key-value store.

4.3.4 Policy Replication

Every operation only executes at the source replica if a matching policy exists in the

policy entry. Different replicas may have different versions of the policy, impacting which

operations are allowed and which updates are accepted. This introduces a dependency

between differing entries that breaks the commutative property of updates.
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Consider two replicas A and B, assume an admin on replica A modifies the policy in

Table 4.3 to remove users’ put permission on their email entry. At the same time, on

replica B, Alice issues an operation that updates her email. Alice successfully updates her

email since the policy entry at replica B permits this operation. However, after sharing

updates, replica A’s policy does not allow Alice’s update on the email. Meanwhile, the

policy update will reflect on replica B, and Alice’s email entry will remain updated. This

scenario leads to an inconsistent state across replicas if replica A rejects the operation in

the update.

A straightforward approach to mitigate inconsistencies that arise from update ordering

is to trust the updates from other replicas and apply them locally without verification

against the local policy entry. Since each replica must act according to some old but

valid version of the policy, all updates are correct. Furthermore, it is unclear how to

isolate operations in state-based updates without maintaining a log of operations since the

merge function only compares version vectors and timestamps, not the actual operations.

Therefore, SEEDS only guarantees that a policy will take effect system-wide after the

update eventually arrives at each node.

We still ensure eventual consistency since all replicas will accept the updates made by

other replicas even if the updates conflict with local policy. Policies only prevent operations

from being accepted by the source replica, once the update is accepted it is propagated to

other replicas. Security critical updates must occur when all replicas have high connectivity

to ensure the update is accepted system wide, and concurrent conflicting operation do not

succeed.

4.4 Establishing Secure Channels

Replicas establish point-to-point connections with one another to share and receive up-

dates. A list of SEEDS machines is available at initialization, which describes the machines

that maintain replicas. Each SEEDS replica periodically checks these entries to determine

which replicas it must stay in communication with. Replicas engage in a TLS handshake to
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establish a secure communication channel and perform mutual attestation to ensure both

endpoints are running the correct software.

Traditionally, public key infrastructure allows parties to establish a secure communica-

tion channel by verifying each other’s identities. The party responding to the connection

shares an x509 certificate that binds their identity to a public key. The initiating party

verifies this binding by checking with a certificate authority (CA), who acts as the root of

trust. The verified public key is then used to perform a key exchange to share encrypted

messages over the network.

Instead, we rely on Intel SGX as the hardware root of trust rather than a CA. We

link the public key to a specific instance of the SEEDS enclave and prove to the party

initiating the connection that it is communicating with genuine Intel hardware [27]. This

way, the initiating party can ensure that the key was generated in an enclave within a

correct instance of SEEDS.

On initialization, each replica is loaded with a public-private key pair, then generates

a report that describes the enclave, including the enclave’s measurement and a hash of

the public key. The report achieves the first goal of linking a key with a specific enclave

instance. The report is then signed using an Intel hardware key to generate a quote used

to verify the hardware. This data is placed into an x509 certificate (under it’s own object

identifier) and self-signed with the enclave generated key. This certificate is shared during

the TLS handshake.

The initiating replica requests the x509 certificate of the remote party and presents its

own x509 certificate to establish trust in both directions. Both parties verify the quote

in the certificate by sharing it with Intel’s Attestation Service (IAS), who responds by

verifying whether or not the quote was produced by genuine Intel hardware. If verification

is successful, both parties check the report within the quote to make sure each side’s enclave

is running the expected software. Upon successful verification, each party can verify the

signature in the x509 certificate to ensure a secure and mutually attested communication

channel is initialized and can be used to share updates.

It is important that we ensure the communicating party is authorized and belongs to
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our desired group of replicas. This can be done by maintaining a list of authorized keys

in each enclave and validating the keys upon connection initialization. Alternatively, we

can rely on traditional PKI and rely on a CA to issue certificates to valid SEEDS replicas.

This would require us to swap out the self-signed certificates for CA signed certificates,

and load the replicas with these certificates at initialization.

4.5 Adding a Host

To scale the SEEDS service, privileged users add machines to the cluster by calling put()

with an entry of type machines, which expects the IP address/domain name of the new

host. This operation will add a new entry to the key-value store and share this entry with

all replicas through an update. Replicas periodically check the lists of hosts in the key-

value store to determine which machines are in the group. Newly added machines must be

initialized with at least one valid machine to bootstrap the state. To remove a host and

revoke its privilege of sharing and receiving updates, a user can issue a delete() operation

to remove the entry of the of the target machine. Note that if a concurrent update adds

the deleted machine to the list, the machine will not be removed and will continue to

participate in updates.

4.6 Disconnected Updates

SEEDS allows replicas to make disconnected updates. Consequentially, an adversarial

host may intentionally disconnect a replica from the network. As a result, the replica will

continue to service requests but fail to synchronize state with other replicas, thus allowing

access to data that another replica may have modified or deleted.

More importantly, the disconnected replica is permitted to make updates to the key-

value store, and upon re-connection, it will share its state with other replicas. These

updates can potentially overwrite any updates made and accepted by other replicas given

how we reconcile conflicts using CRDTs.
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Users are responsible for removing machines they believe should no longer send and

receive updates. All replicas cease sending updates to the revoked machine once they

receive the update that removes the machine from the key-value store. Alternatively, users

can create a policy that limits the disconnected period of updates and acts as a ”dead

man’s switch” that suspends the interaction with disconnected machines.

4.7 Persistence

SEEDS persists state to recover from a crash or shutdown by periodically saving the key-

value store to disk. SEEDS leverages the serialized state in the update to accomplish this.

Each time the replica prepares an update, it seals the update to disk, overwriting the

previously saved update. Sealing is necessary to ensure the confidentiality and integrity

of the persisted state. The sealed update is decrypted, deserialized, and loaded into the

enclave as the key-value store state to reconstruct the replica after a crash or shutdown.

SEEDS cannot protect against a malicious host deleting the persisted state.

Furthermore, the host may be adversarial upon restarting and present the enclave with

a stale copy of the saved update. This update may contain more permissive policies and

old entries that should no longer be valid. SEEDS ensures freshness of saved data by

using Intel’s trusted hardware counter. On each update, SEEDS increments and seals the

updated counter value and the update to untrusted storage. On an unseal, the replica

reads the hardware counter and ensures this value matches the value of the last update in

the unsealed update. If the unsealed counter is less than the hardware counter, the host

is attempting to load the enclave with old state since a sealed version must exist with a

larger counter. In this scenario, the replica terminates.

There has been some debate on the usability of Intel’s hardware counters due to their

high overheads and the limited number of updates. ROTE [30] proposes a trusted counters

solution using a set of distributed replicas and a quorum. This technique can apply to

SEEDS in the event Intel discontinues support for hardware counters [9].
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Chapter 5

Implementation

SEEDS is implemented in C with ∼ 14k LoC for FreeBSD 12.2 and relies on the FreeBSD

port of the Linux SGX SDK. It runs as a background service, and standard applications

connect using IPC or SGX-applications connect using local attestation. The service com-

prises the key-value store, state machine, and an SSL engine.

The key-value store wraps an in-memory hashtable [24] adding CRDT metadata such

as version vectors and timestamps. Serialization of the key-value store relies on the C

implementation of the protobuf library [22] that is statically linked against the enclave

code.

A state machine in the enclave steps through authentication and authorization. Policies

are checked using a regular expression engine [7] linked against the enclave. The security

of the policies depends on the correctness of this engine to correctly match operations and

policies, which has been formally verified using KLEE [18]. We do not require the full

power of regular expressions. Instead, we can implement a subset of the functionality for

policy checking purposes, reducing the memory overhead and simplifying verification.

To establish channels between replicas, we use the wolfSSL library [23] which enables

TLS termination and management within the enclave. Specifically, the wolfSSL library

permits extending an x509 certificate to add metadata required for remote attestation. We
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Binary Size (KB)

protobuf-c 48

tiny-regex 3

uthash 1

wolfSSL 383

Total 435

Table 5.1: Breakdown of libraries used by SEEDS.

use the Intel SGX library for cryptographic operations provided in SEEDS API and use

wolfSSL to establish mutually authenticated and attested channels between replica.

Since we rely on the system software for network and IPC functionality, the untrusted

code of SEEDS establishes and accepts connections and makes the enclave calls. A dedi-

cated thread manages the sending and receiving of updates, while another thread manages

IPC, however, a single lock protects the key-value store to ensure atomicity of updates.

Applications link against custom client stub code written in C to format the requests

before sending them to the SEEDS service. The implementation went through several

versions, including an operation-based construction which we consequently used to imple-

ment the client and server RPC code. Instead, we can use GRPC to allow for applications

written in different languages to connect to SEEDS.

Table 5.1 shows a breakdown of the static libraries included in SEEDS enclave. Not

surprisingly, the library with the most overheads is the one that implements the TLS

protocol. Any parts not explicitly mentioned in this section, such as version vectors,

CRDTs, and policy-related functionality, make up the remaining portion of the SEEDS

enclave code.
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Chapter 6

Applications

We implemented two applications to use SEEDS, a distributed authentication system, and

a virtual U2F token. This section describes the motivation behind each application and

the primary implementation details. We discuss how each application deals with conflicts

and how policies are used to protect operations.

6.1 Decentralized Authentication

Computers in a network require seamless sharing of information about users, groups,

and several other resources. A directory service stores these resources in a hierarchical

database and defines a namespace to identify each resource to enforce access control. The

Lightweight Directory Access Protocol (LDAP) defines how users can read and update

the database over a network connection. Since a directory service stores users’ account

information, LDAP also supports authentication services by validating login credentials

against the database.

Typically, a user forwards a request to an LDAP server responsible for the resources

in that namespace, making each LDAP server a central point of failure. These servers are

susceptible to DDoS attacks where adversaries flood the network with malicious traffic,
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making LDAP and its services unusable. As a result, users cannot authenticate and gain

access to their computers.

We implemented a decentralized replacement for LDAP user authentication that ad-

dresses these limitations. Specifically, we implemented system database modules that use

SEEDS to ensure user account information is always available, secure, and replicated across

hosts. As a result, our system does not suffer from DDoS attacks since information is read-

ily available at each host. We only manage user account information, and do not address

the other resources managed by LDAP. Each replica maintains a full copy of the user

account information allowing for reliability in the face of replica crashes or faults.

Unix-like operating systems maintain system information in separate system databases

(i.e., passwd, group, shadow). Each database has a unique API to retrieve entries im-

plemented by independent modules. System administrators can load different modules to

replace where and how the system looks up this information. The Name Service Switch

(NSS) configuration file maps each database to a module implemented as a shared object.

We implemented an NSS module for the passwd interface, which tells the system about

user account information.

These functions do not need to be performed by an authenticated user since they

provide lookup functionality to all users in the system. For example, the getpwnam()

function expects a username and returns a passwd structure. This is implemented by

making a call to the get() operation in Table 4.1 with the entry name corresponding to the

user, which returns a similar structure. Notice that the password is not revealed in the

structure, only information such as user ID and group ID.

NSS modules only provide lookup functionality for user accounts. To provide authen-

tication services used by applications on the system, we implemented Pluggable Authenti-

cation Modules (PAMs). Applications call PAM functions to dispatch the desired authen-

tication instead of implementing it themselves. Some examples of PAM aware applications

are login and su. PAM offers four module types: account, authentication, password, and

session management, each offering a unique set of authentication services. We implemented

the authentication module responsible for requesting and verifying the user’s credentials
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and the password module that allows users to change their account passwords.

For this application, SEEDS is initialized with several users and policies similar to

those in Table 4.3, and the system entries are similar to those in Table 4.2. SEEDS

runs in the background, and each time an NSS or PAM function is called, the system

consults the respective configuration file and dispatches a custom module. The module

is simply a program that implements the functionality of the PAM or NSS function and

connects with SEEDS, issues a request providing the necessary information, and terminates

immediately upon completion. The modules can be implemented as an SGX application

or an untrusted application. Therefore, the connection to SEEDS can be through a locally

attested communication channel between the module and SEEDS enclaves, or through

IPC, respectively. The decision to use either depends on the underlying threat level of the

host.

To reiterate, we do not protect against a host that can read or modify the requests

passed to and from SEEDS. We expect the system software to be trusted in this case for

the host to correctly load our module. We do not implement any mechanisms for secure IO

in our module implementations. For example, an application such as login, makes a call to

the pam sm authenticate() function which prompts the module to collect a username and

password from the keyboard input and sends the collected data to SEEDS, which validates

the user against the local key-value store. Other existing TEE technologies support secure

UI [3, 34], using such technology is a potential direction for future work.

Since users can update their authentication information using the pam chauthtok(), a

user can make an update at one machine and then go to another machine that has not

yet received the update. In this scenario, the user would need to use old information to

authenticate since the most recent information is not yet available on the second replica. We

imagine that users do not frequently change machines, otherwise, replicas must regularly

connect to ensure shared updates. Issues with concurrent policy and machine updates

follow a similar requirement.

To test our implementation, we developed a simple PAM-aware application that au-

thenticates a user using the pam authenticate() function, and we compare the execution
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Figure 6.1: Time to execute PAM authentication function using different modules using

an average of three runs.

time of different modules in Figure 6.1. Since the function uses a callback to gather the

username and password from standard input, we rely on an expect script to submit the

credentials. We initialized each database with 52 users, where our test user was the last in

the list. The first module we tested was the LDAP module (pam ldap.so), which requires

a network connection to verify the credentials. For this reason, the LDAP module takes

approximately 3.6 × longer to authenticate a user than a local method. Next, we tested

the UNIX module (pam unix.so), also known as the system database module, which reads

the system flat-file databases (/etc/passwd and /etc/shadow) to verify credentials. Finally,

we tested our implementation where our module connects to the SEEDS service through

IPC. The UNIX module reads the databases into memory, meanwhile, our implementation

has the account entries loaded in enclave memory. We believe this to be the reason for the

1.88 × slowdown in the UNIX module compared to the SEEDS module.
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6.2 Software U2F Token

Over recent years there has been a rise in the use of second-factor authentication (2FA)

protocols to authenticate users and achieve a higher degree of certainty that the user is

whom they claim to be. The Universal 2nd Factor (U2F) protocol offers 2FA through a

peripheral device that creates and stores cryptographic keys and computes digital signa-

tures. A popular choice is a USB token, also known as a U2F token. This device plugs into

a computer and communicates with a service, usually through a web browser, without the

need for additional client software. The security lies in the cryptographic secrets provided

by the token and the physical possession similar to a smartphone or house keys.

If users lose their U2F token, they must authenticate to the service using an alternative

mechanism (i.e., email or SMS) and delete the lost token from the account. Many sites

support multiple tokens to be registered with a single account [11] to avoid falling back

on less secure authentication mechanisms. As a result, many users are burdened with pos-

sessing and managing multiple physical tokens to avoid these complications. Furthermore,

there have been known vulnerabilities in cryptographic hardware, specifically relating to

bugs in the cryptographic library used such that an attacker could learn the private RSA

key from just possessing the public counterpart [33].

To address these concerns, we emulated a U2F token entirely in software that uses

SEEDS to generate, store and operate on keys. We allow token material to be replicated

across users’ devices for high availability, this way, users do not need to worry about losing

their authentication material along with physical hardware. In addition, users can remove

a machine from the group, ensuring stolen devices do not continue to have access to cryp-

tographic material. Like the U2F hardware token, the data in our software implementation

cannot be read or modified by system software, meaning authentication material remains

secure and only accessible to the owner. Finally, any bugs in the code can be updated

but requires that each replica receive a new report of the code to remotely attest the new

enclave.

To implement the token in software, we emulate a HID device using CUSE. Instead

of relying on communication between SEEDS and a separate process, we implement the
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token as an SGX application and link the SEEDS code statically. Therefore, the token

must perform the SEEDS initialization process before use. For this application, it is not

necessary to initialize SEEDS with multiple user accounts since a physical token typically

holds authentication material for a single user. However, it is possible to allow multiple

users to use our software token to manage authentication material. Policies for the U2F

token are relatively simple and mainly describe system configuration permissions since we

use a single-user model.

Hardware tokens are initialized with a per-model key pair 1 and x509 certificate. The

devices generates a new key pair per service, and signs the newly generated service public

key with the private key burned into the device [39]. This certificate authenticates the

device model to the service through standard PKI, and allows the signed public key to

be verified. The FIDO specification does not enforce that a service verifies this certificate

since they assume that the client’s device is trusted. Furthermore, the communication

between the browser and the service is authenticated with TLS, making it difficult for an

adversary to interfere with messages exchanged between the token and service.

Suppose the service wishes to authenticate the token. In this case, FIDO allows self-

signed certificates that contain an identifier that corresponds to a record in the FIDO

Metadata Service that can help the service identify the genuineness of a third-party token

[39]. We generate a key pair and a self-signed certificate to initialize our software token,

but we do not register it with the FIDO Metadata Service.

A U2F token supports two operations: registration and authentication. The former

registers the token with a service, and the latter proves its identity to the service. Both op-

erations use a challenge-response protocol between three entities: the device, the browser,

and the service, where the browser acts as a middle man to relay messages. Alternatively,

the browser can be replaced by any software that communicates with the token on behalf

of the service.

On registration, the service sends a challenge to the web browser who forwards the

messages to the device. The device mints a new key pair, generates a key handle to

1Observe that a per-token key pair would allow an adversary to identify and track users.
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identify the key pair and saves this data along with a counter. With this data, the token

generates a response message and submits it to the web browser who forwards it to the

service. Assuming the response is correct, the service will register the provided public key

with the user.

Authentication follows similar steps. The service sends a challenge and expects a re-

sponse message that is signed by the private key associated with the public key registered

with the service. The response message also contains a counter that is incremented prior

to each authentication operation. The goal of the counter is to protect the user against a

cloned U2F token. If the service receives a counter lower than expected, it refuses authen-

tication and notifies the user, who should delete the potentially compromised key.

An issue with our decentralized software token is the reconciliation of counter updates.

Assuming a counter is stored in a separate entry in the key-value store. When reconciling

counter entries, we expect the highest counter to be taken since presenting an old counter

will alert the service. With last-writer-wins semantics, we may not choose the highest

counter since we compare timestamps, not counters.

To ensure counters are correctly synchronized, SEEDS offers a counter data type that

can be initialized according to the entry’s name. These entries store a counter CRDT

instead of a register CRDT. The correct merge logic is dispatched according to the entry’s

type during a merge. SEEDS exposes additional API functions to create and update a

counter entry, which is omitted from Table 4.1 for brevity.

This solves counter reconciliation but does not address issues that arise if replicas do

not have the most up-to-date counter value. For example, a user can authenticate with a

service on one replica which updates the counter and then at a later time authenticate with

the same service from a different replica with a stale counter. Since the service maintains

the last seen counter, it will suspect that it is replicated (since the U2F protocol does not

support token replication) and refuse service to the replica with stale but valid data. To

this end, we expect clients to ensure replicas regularly share updates.

Compared to the hardware token, our solution allows 2FA material to be replicated

across users’ machines. This way, they do not need to carry around a physical token and
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worry about losing it since we gain reliability from replication. Furthermore, policies allow

users to add new machines and delete old machines from accessing new keys. If a user

removes a machine, that machine will still contain keys that are registered with services; it

is the user’s responsibility to re-register new keys so that the disconnected device cannot

authenticate as the user. In terms of security, the keys never leave the enclave, which

matches the guarantees of the hardware token.
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Chapter 7

Evaluation

In this section, we first evaluate the performance of SEEDS. Next, we discuss how SEEDS

addresses the security goals outlined in § 3.

7.1 Performance Evaluation

We benchmark SEEDS by considering the time spent checking policies and time taken

to reconcile state between two replicas. We do not include SGX overheads (i.e., switch

to enclave) in our measurements since the process of authentication, policy checking and

merging are strictly preformed in the enclave. Furthermore, all benchmarks are reported as

an average of three runs, and are single threaded since we require exclusion when updating

the replica’s global version vector.

First, we measure the time spent checking policies to determine the impact on each

operation. Figure 7.1 lists the time taken to match an operation against a policy entry with

a varying number of policies. We measure the worst-case scenario, that is, the operation

matches the very last policy in the policy file. Since policies are scanned in order, the time

to match an operating with each policy grows linearly with the total number of policies.

We see that when we check less than 16 policies, the time taken to generate the operation
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policy and read the policy entry dominates the actual policy checking since the time does

not respect the linear trend seen for points greater than or equal to 16 policies.
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Figure 7.1: Time spent scanning through policy list with varying number of policies.

Finally, we measure the time it takes to merge two key-value stores using a key and

value size of 16 bytes each. Merging occurs each time a replica receives an update from

another replica. On a merge, all keys from the update must be merged into the local

replica’s state, and any local entries may be deleted. There are two types of conflicts: a

set and register conflict. A set conflict means that one replica has an entry that the other

does not have, while a register conflict means both replicas have the duplicate entry, and

the final value must be resolved.

We benchmark the merge operation on two replicas with the same number of entries

but differing conflicts. Merging identical replicas is the fastest since no new entries are

created and no values are over-written. However, merging two replicas where each key in

both sets has a register conflict is on average 1.22× slower than a merge with no conflicts.

Meanwhile, merging two replicas where each entry in the update must be added to the local

key-value store is 1.33× slower than a merge with no conflicts and only 1.11× slower than
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a merge with only register conflicts. This is because a register conflict needs to update the

value and some metadata, while a set conflict must create the entry structure and add it

to the key-value store, requiring expensive operations. A merge with half conflicts of each

type performs similarly when all conflicts are those of the set type since these dominate

the register conflicts.

The time for replicas to converge depends on the time it takes to share updates over

the network and apply the updates locally. Traditional eventually consistent systems, such

as [42], require replicas to undo and redo updates according to an ordering decided by a

coordinator, increasing the time it takes for the system to converge. CRDTs allow each

replica to apply updates and resolve conflicting updates locally, therefore sidestepping such

overheads.
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Figure 7.2: Time spent preforming a merge, where both replicas have the same number of

entries and there is a conflict on each entry. The type of conflict varies (i.e., a set conflict

or a register conflict).
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7.2 Security Evaluation

We compare SEEDS against related solutions and discuss how the systems address the

security goals outlined in § 3. Access control allows multiple users to access system re-

sources and restricts which users can access what data. TEE key-value store solutions do

not offer access control and operate as a single-user data store. For the solutions that offer

access control and allow multiple users to access the services, a compromised user should

not exfiltrate the user’s data from the service. Otherwise, the user will need to change any

information (i.e., cryptographic keys) since the attacker may clone the data. The Cloud

Key Store (CKS) does not provide any functionality that explicitly reads cryptographic

keys. Meanwhile, cTPM and SEEDS require that policies are in place to avoid exfiltration.

Additionally, SEEDS policies protect the operations that can be carried out on specific

entries on behalf of the users. If a user becomes compromised, the policy protects what

operations can be carried out on specific entries on behalf of that user. Unfortunately,

if the impersonated user is privileged, they can change the policies to allow reading and

writing to any data in the system.

Next, we consider a compromised host. TEE solutions ensure confidentiality and in-

tegrity of program execution and data by running the system componeWe compare SEEDS

against related solutions and discuss how the systems address the security goals outlined

in § 3. Access control allows multiple users to access system resources and restricts which

users can access what data. TEE key-value store solutions do not offer access control and

operate as a single-user data store. For the solutions that offer access control and allow

multiple users to access the services, a compromised user should not exfiltrate the user’s

data from the service. Otherwise, the user will need to change any information (i.e., cryp-

tographic keys) since the attacker may clone the data. The Cloud Key Store (CKS) does

not provide any functionality that explicitly reads cryptographic keys. Meanwhile, cTPM

and SEEDS require that policies are in place to avoid exfiltration.

Additionally, SEEDS policies protect the operations that can be carried out on specific

entries on behalf of the users. If a user becomes compromised, the policy limits what oper-

ations can occur on the entries on behalf of that user. Unfortunately, if the impersonated
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user is privileged, they can change the policies to allow reading and writing to any data in

the system.

Next, we consider a compromised host. TEE solutions ensure confidentiality and in-

tegrity of program execution and data by running the system components in an enclave.

Furthermore, memory dumps and DMA operations are not permitted by TEE technology

and are protected from such attacks.

TEE solutions that execute in the cloud require the user to establish a secure connection

to the service, thus allowing the data to be safely marshaled from the user to the cloud

TEE. These systems adopt the traditional TEE threat model where the cloud provider

may be untrusted while the user’s machine remains completely trusted.

SEEDS differs from other TEE solutions since it runs on the user’s machine and expects

all data marshaled to the enclave to be securely handled by the application. Therefore,

SEEDS does not protect against an untrusted host eavesdropping or manipulating I/O.

Applications are responsible for securely collecting and passing data to SEEDS according

to their desired level of protection. Applications that are worried about the host being

compromised and using this attack vector can implement their program using Intel SGX to

securely marshal data to the SEEDS enclave. Otherwise, applications that do not assume

the host is adversarial can use our system to protect against other applications while

ensuring their data is highly available across machines. Furthermore, upon initialization,

any data marshaled into the enclave must be done on a trusted machine. We believe that

this is a reasonable assumption, given that users would not use inherently compromised

machines.

Only SEEDS remains available during a DDoS attack since all requests are handled

locally, and connectivity is only required to share updates. Therefore, such an attack

only impacts the time to share state and become consistent. The distributed TEE key-

value store only protects against DDoS attacks if a quorum of machines remains available

to approve the update and will fail to accept an update if a quorum cannot be met.

Meanwhile, CKS and cTPM rely on asynchronous commands that communicate with the

cloud to access resources stored in the cloud and will fail if the single machine is not
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accessible.
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Security

Multi-User Access Control # #    

DDoS - # # #  

Compromised User - -  #  

Compromised Host    G# G#

Functionality

Replication #  G# G#  

Disconnected Operations - # # G#  

Arbitrary Data   # #  

Table 7.1: Comparison of related approaches.
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Chapter 8

Related Work

Secure key storage. The Cloud Key Store (CKS) [29] generates, manages, and stores

users’ personal cryptographic keys in an enclave in an untrusted cloud environment TEEs

for quick and reliable access. SEEDS provides similar services but maintains this data

directly on user machines. This way, users do not need to maintain a network connection

to the cloud to access their credentials. CKS provides a highly available service since all user

devices can establish this connection to the cloud without running into compatibility issues.

Instead, SEEDS maintains high availability by replicating data across user’s machines,

allowing applications on the same host to use the data. CKS does not consider replication

in the design and acknowledges this as a possible extension to the system. SEEDS is

replicated on many machines and uses CRDTs to scale the system without worrying about

agreement overheads. CKS also provides access control to specify the number of key

uses and expiration while delegating keys to other CKS users. SEEDS also offers access

control and key delegation and allows finer-grained permissions on which operations can

be performed on specific data.

Policy-based storage systems. Policy-based storage systems such as Guardat [45],

and Pesos [28] protect the confidentiality and integrity of files by allowing users to specify

per file policies concerning the read, write and delete permissions. These permissions

encompass all the possible operations on files. SEEDS provides a more detailed API since
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the data can be one of many types (e.g., a key, account information), each with its own

operations. To this end, SEEDS policies better restrict what operations can be used on

specific data. For example, a user may wish to allow another user to verify a signature

using a specific key but not read the key. In this scenario, the user may assign a verify

permission on the entry and nothing else. In all these systems, policies reduce the damage

of an attack by ensuring that an impersonated user can only access data with respect to

their policies.

To replicate files and associated policies, Guardat users issue commands that specify the

Guardat device to create a replica. Meanwhile, Pesos replicates files and associated policies

across persistent storage to improve reliability. SEEDS also replicates data together with

policies but does so transparently without user involvement. Furthermore, Guardat and

Pesos are remote and centralized solutions, meaning the user must maintain a network

connection to make requests. If the node goes down, the service is unusable. SEEDS does

not suffer from these issues since it is a decentralized system.

SGX key-value stores. Several works [14, 26, 13, 31] implement a key-value store

using Intel SGX to improve confidentiality and integrity of data stored with the system.

SEEDS differs from these solutions as it is not a general-purpose key-value store since all

data is stored within enclave memory, severely restricting the size and number of entries.

Furthermore, these secure key-value stores rely on the secure remote computation model,

where users must establish a secure network connection to the system’s enclave located

in untrusted cloud storage. Instead, SEEDS integrates with applications on the same

machine, not relying on the network as part of the service. Similarly, SEEDS and these

systems rely on untrusted storage to persist key-value store data, which requires counters

to ensure freshness across restarts and crashes. Avocado [13] is a distributed key-value

store that offers strong consistency guarantees and implements a custom network stack to

improve throughput. SEEDS relaxes consistency to provide a highly-available service with

disconnected operations.

TPMs. Tian et al. [43] propose a system to run applications relying on SGX services

inside Linux containers in the cloud. Unfortunately, these applications rely on common
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cryptographic functionalities which cannot be shared due to EPC restrictions, thus increas-

ing memory overheads. To address this, the authors implement a software TPM (tpmsgx )

to reduce code redundancy. The software TPM runs as a daemon in the cloud and provides

cryptographic operations, RNG, and secure storage. SEEDS provides a similar service but

improves the standard TPM functionality to provide multi-user access control and im-

proved reliability through replication. Furthermore, SEEDS runs on client machines and

devices rather than in cloud environments.

cTPM [19] extends TPMs with an additional key to offload storage to the cloud and

provide cross-device functionality. cTPM is limited to a single user and replicates across

devices owned by the same user. SEEDS allows multi-user access and replication on ma-

chines shared by multiple users. Furthermore, TPMs do not provide remote attestation;

therefore, cTPM relies on a one-time key-migration scheme to share a secret key from one

TPM to another, which must occur on a trusted host. This key is used to encrypt the

TPM data and store it in the cloud for access by all other TPMs that share the same

key. SEEDS faces a similar issue to secure I/O and thus requires secure initialization on

trusted machines. The authors assume that a device that is disconnected for an extended

period means that the device is no longer in use and does not protect against this scenario.

Similarly, we expect the user to issue an operation that removes a device that has been

disconnected for too long and should no longer be apart of the group.

Unified Access Management. Identity access management (IAM) is a catch-all

term for technologies that identify, authenticate and authorize users. Unified access man-

agement (UAM) is an extension of IAM that allows services (such as websites) to share

IAM functionality. This way, services can share user account information and reduce the

number of IAM instances.

UAM is a centralized solution where clients register with an identity provider (IDP),

and many different service providers communicate with the IDP for access management.

OAuth is an example of a popular UAM protocol. However, OAuth has several known

vulnerabilities, such as man-in-the-middle, phishing, and replay attacks.

Wu et al. [47] propose SGX-UAM, a protocol that uses Intel SGX and One Time Pass-
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words (OTPs) to offload the authentication process from the IDP to the client machine.

SGX-UAM stores all client account information on the IDP, each time the client needs cre-

dentials from the IDP, they must authenticate to the IDP to retrieve the credentials. Each

authentication requires a connection to a centralized IDP over the network. Conversely,

SEEDS acts as an IDP for co-resident applications, so authentication occurs offline and

relies only on the replica’s local copy.

Upon registering a new login credential with the IDP, the client must input their pass-

word, which is marshaled into the enclave. Hostile system software such as a keylogger

poses a threat to input security. The authors implement ”shuffle mapping” to substi-

tute the user’s keyboard input in the system message queue before a keylogger can access

them. This process is periodically re-installed to ensure the substitution executes ahead

of the keylogger. This technique can be applied by applications using SEEDS to secure

password-based authentication.
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Chapter 9

Conclusion

This thesis presents SEEDS, a secure decentralized multi-user service that manages user

accounts, generates and stores keys, and performs cryptographic operations. SEEDS is dif-

ferent from other solutions because it secures system components using TEE technology on

user machines. Additionally, SEEDS replicates data seamlessly to improve the availabilitiy

of system services while gracefully handling offline operations.
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