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Abstract

Box and Draper's (1965) determinant criterion for multiresponse parameter
estimation is commonly used in preference to ordinary icast squares when the
measurement error covariance matrix is unknown. Phillips (1976) has shown that the
determinant criterion is numerically equivalent to an iterated generalized least squares
scheme. From this equivalence, it is shown that, of all such weighting schemes, the
determinant criterion in a certain sense minimizes the estimated parameter variances.
However, when the number of sets of measurements is not large relative to the number of
responses, Monte-Carlo simulation reveals that a multivaniate weighted least squares
scheme can give parameter variances that are smaller than those given by the determinant
criterion. This suggests that the optimality property of the determinant criterion cited
above is only asymptotically valid. Monte-Carlo simulation also reveals that, in contrast
to multivariate weighted least squares, the determinant criterion can yield parameter
estimates whose frequency distribution is very far from normal in the tails. Multivariate
weighted least squares (MWLS) is therefore recommended as a robust alternative to the

determinant criterion for multiresponse parameter estimation.
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Chapter 1 - Introduction

Chemical engineers routinely deal with mathematical models of physio-chemical
processes. These models frequently contain parameters that must be estimated by a
statistical analysis of experimental data. The statistical techniques trace their history to
the development of the method of least squares by Gauss and Legendre at the beginning
of the nineteenth century. The method of least squares is commonly applied where one
variable, the response or dependent variable, is considered as a function of one or more
independent variables. But mathematical models of interest to chemical engineers often
consist of systems of equations where several response or dependent variables are
considered as functions of one or more independent variables. This multiresponse
parameter estimation problem is complicated by the fact that different equations may
share common parameters. However, the complication of shared parameters offers an
opportunity in that the model parameters can, in principle, be better estimated from

multiple responses than from single responses.

Two approaches to multircsponse parameter cstimation are currently popular. A
two-step generalized least squares method, based on Zellner's (1962) work, is popular
with econometricians (see for example Davidson & MacKinnon (1993)).
Econometricians often use Zellner's term "seemingly unrelated regressions" to refer to the
multiresponse parameter estimation problem. The determinant criterion for
multiresponse parameter estimation, popular with engineers, was developed by Box and
Draper (1965). Phillips (1976) has shown that the determinant criterion is equivalent to
an iterated generalized least squares scheme. The two-step generalized least squares
method can be regarded as the first iteration of this scheme with the appropriate
initialization. Because of this close relationship between the determinant criterion and
Zellner's two-step generalized least squares method, the latter method will not be

considered in this thesis.



Since Box and Draper's (1965) introduction of the determinant criterion, other
investigators have shown that the determinant criterion gives unreliable parameter
estimates in cases where the measurement error covariance matrix is inherently singular.
In this thesis, I extend this work by showing that the determinant criterion can give
unreliable parameter estimates even when the error covariance matrix is not inherently
singular. For cases where the number of sets of measurements is not large or the
measurement error structure does not satisfy certain idealized assumptions, [ am
proposing the use of an alternative multiresponse parameter estimation method,
multivariate weighted least squares (MWLS), that appears to be relatively robust in the
sense that it gives reliable parameter estimates in cases where the determinant criterion

does not.

One very important point of terminology will be clarified here to avoid confusion.
The terms 'weighted least squarcs’ and 'generalized least squares' do not have universally
accepted definitions in the literature. These terms will be defined here with reference to

the quadratic form (1.0.1), where = is a vector of deviations and A is a symmetric matrix:
T4z (1.0.1)

In this thesis, weighted least squares refers to cases where 4 is a diagonal matrix and
generalized least squares refers to cases where A is not a diagonal matrix. When A is a
diagonal matrix it will be referred to as a weight matrix and when 4 is not diagonal it
will be referred to as a generalized weight matrix. (For the sake of completeness, it is a
commonly accepted definition that ordinary least squares refers to cases where 4 is an

identity matrix and the quadratic form reduces to z7=.)
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1.1 Literature Review

A review article by Stewart et al. (1992) attributes the first treatment of
multiresponse parameter estimation to Gauss early in the nineteenth century. Modemn
treatments of the subject originate with Aitken's (1935) generalized least squares method.

This method is applicable to multiresponse parameter estimation when the measurement
error covariance matrix, X, is known and the measurement error structure satisfies

certain assumptions. In this case, the parameter estimates minimize the generalized sum

of squares of deviations:
tr| 2(6)7 2:'Z9) | (1.1.1)

where Z is the m by n matrix of deviations:
Z©)=y-f(x,0) (1.1.2)

m is the number of response variables, 7 is the number of sets of measurements, 9 is the
vector of model parameters, y is the m by n matrix of measurements, / is the matrix

function representing the model, and x is the vector of independent variables.

In most practical applications, the error covariance matrix is unknown and

expression (1.1.1) cannot be evaluated. An alternative to expression (1.1.1) is to use an

estimate, 2., of the error covariance matrix giving:

[ 20)7£:' Z(0) | (1.1.3)

The error covariance matrix can be estimated by fitting the model parameters to each of
the individual response variables using ordinary least squares. A vector of residuals is

calculated for each fit to each response variable. The residual covariance matrix is

calculated from all of the vectors of residuals. This matrix is taken as an estimate, flg, of

3



the measurement error covariance matrix. Note that although each separate fit to the
individual response variables will give a different set of parameter estimates, it is the
residuals that are of interest, not the parameter estimates. Once the error covariance
matrix is estimated, the second step of the method applies Aitken's generalized least
squares in the usual manner. This approach was first proposed by Zellner (1962) for
linear models and extended by Beauchamp and Comell (1966) to nonlinear models.
Gallant (1975) showed that Beauchamp and Comell's (1966) multivariate approach could

be transformed to a univariate one.

The two-step generalized least squares method suggests an extension. The
parameters estimated from the generalized least squares step can be used to calculate

residuals from which the error covariance matrix is reestimated:
£ = 20) Z6)"/n (1.1.4)

With this equation, the estimate of the error covariance matrix depends on the parameter
cstimates and the parameter estimates depend on the estimate of the error covariance
matrix through expression (1.1.3). Phillips (1976) has shown that the mutual satisfaction
of these two conditions, which in practice is achieved through iteration to convergence, is

numerically equivalent to Box and Draper’s (1965) determinant criterion.

Box and Draper (1965) used a Bayesian argument to derive the determinant
criterion for multiresponse parameter estimation. Their derivation assumes that the
response measurement errors are normally distributed with zero mean. Errors of different
measured responses within a measurement set are assumed to be correlated. (By
'measurement set’ [ mean a vector of measured responses for a fixed value of the
independent variable.) The unknown error covariance matrix is assumed to be constant.
Errors between measurement sets are assumed to be independent. With these

assumptions and a noninformative (Jeffreys) prior on the error covariance matrix, the



elements of the error covariance matrix can be integrated out of the posterior probability
density function giving the following marginal posterior probability density function for

the model parameters:
p(@ly) = |2©)Z@®)T|™ (1.L3)

Point estimates of the parameters can be obtained by maximizing this function with
respect to the parameters. This is equivalent to minimizing the determinant of the
deviation covariance matrix, |Z(0) Z(6)"/ n|, with respect to the parameters, 0. Bard
(1974) has shown that this determinant criterion is also a maximum likelihood criterion

under the assumption of normality in the measurement error distribution.

Box et al. (1973) assert that application of the determinant criterion will lead to
serious difficulties if the elements of the measurement vectors are linearly dependent.
They claim that such a dependency will cause the deviation covariance matrix to be
singular. McLean et al. (1979) clarify this issue by pointing out that a linear dependency
in the data must also be implicit in the model to cause a singularity due to a linear

dependency in the deviations. The argument is straightforward:

given ay;=b (1.1.6a)
then afy,-/(x,0)]=0 (1.1.6b)
ifand only if afi(x,8)=5 (1.1.6¢)

To remedy the singularity problem, Box et al. propose a method based on an eigenvalue
analysis of the data matrix. Khuri (1990) shows that this remedy is scale dependent and
gives an method for handling the scaling problem. The singularity problem in the context
of the two-step generalized least squares method has been discussed by Takada et al.
(1995).



The method of multivariate weighted least squares (MWLS) introduced in this
thesis consists of two steps iterated to convergence. In the first step, a weighted sum of

squares is minimized with respect to the model parameters:
tr [Z(G)T WZ(O)] (L.LL.7)

Here W is a diagonal matrix where each element of the diagonal corresponds to a
response. [n the second step, the reciprocals of the diagonal elements of the residual

covariance matrix are assigned to the diagonal elements of W

W= [diag (2®) z®)71n) T (1.1.8)

Carroll and Ruppert (1988) discuss an iteratively weighted least squares scheme
in the context of uniresponse models where the measurement errors are assumed to be
independent but heteroscedastic. In this case, the weights are also determined from the
residuals. Of course, the standard multiresponse parameter estimation problem can be
thought of in terms of a heteroscedastic error model. However, no literature reference to
an iteratively weighted least squares scheme applied to the multiresponse parameter

estimation problem has been found.

A few complete examples of applications to data from chemical kinetics can be
found in the literature. Box and Draper (1965) discuss an example with three responses.
The purpose of this example is to show that multiresponse parameter estimation applied
to all of the responses gives much better parameter estimates than does uniresponse
parameter estimation applied to any of the individual responses. Box et al. (1973)
consider an example with five responses based on data from Fuguitt & Hawkins (1947).
In their textbooks, Bates and Watts (1988) and Seber and Wild (1989) repeat the analysis
of Box et al. (1973) apparently without appreciating the relevance of the paper by
McLean et al. (1979). This example will be considered in this thesis in some detail.
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A particularly challenging four-response problem that originated with the Dow
Chemical Company is described by Biegler et al. (1986). What makes this problem
challenging is the fact that the model is made up of a stiff system of mixed differential
and algebraic equations. Unfortunately, the computational burden associated with solving
this system of equations makes this problem unsuitable as the basis for a simulation
study. In all of the examples cited thus far the independent variable is time. In her recent
PhD research, Burke (1994) did copolymerization experiments yielding six responses
where the independent variable is feed composition. This example will also be

considered in this thesis in some detail.

In this thesis, the issue of the number of degrees of freedom (defined in §3.6)
associated with multiresponse parameter estimation will be considered. If the number of

response variables is m, the number of sets of measurements is », and the number of
model parameters is p, then Bard (1974) takes the number of degrees of freedom, v, to

be:
v=n-plm (1.1.9)

Bates and Watts (1985) and Kang and Bates (1990) argue for the traditional equation:
v=n-p (1.1.10)

[ will show that neither equation can be generally applicable but that equation (1.1.9) can

be considered to be a reasonable approximation.

Some of the results given in this thesis require a fair amount of matrix algebra.
Searle's (1982) book on the subject was very useful. Selected routines from the collection
of numerical recipes by Press et al. (1992) were used in the coding of the simulation

programs.



Chapter 2 - Research Motivation

The research leading to this thesis began with an investigation of chemical
engineering applications of the Gibbs sampler, a technique for randomly sampling from
probability density functions. In the course of this investigation, the determinant criterion
for multiresponse parameter estimation was applied to an estimation problem originating
with a PhD thesis by Burke (1994). In this examination of Burke's estimation problem, an
anomaly in the results from the determinant criterion was observed. This anomaly is

described in §2.1.

To check if this anomaly was specific to this particular problem, another
multiresponse estimation problem described by Box et al. (1973) was examined. This
examination revealed another anomaly of a quite different character, as described in
§2.2. These two anomalous results associated with the determinant method motivated the

research described in this thesis.

2.1 Burke's Multiresponse Parameter Estimation Problem

In her thesis, Burke (1994) considered copolymerization reactions. In the
modeling of these reactions, the two reactants can be denoted by subscripts 1 and 2. R ,
denotes a chain of » monomer units ending in the free radical monomer unit / where i is |

or 2. M, denotes the monomer ;. The four polymer chain propagation reactions are:

k

Rny + M| 3 Rpern (2.1.1a)
kl‘l

Rﬂ.] +AM; “)Rm-ll (21”3)
ky

Ru2 +Mi = Rpr) (2.1.1¢c)
k2

Rp2+ Mz 5 Rpii2 (2.1.1d)



where the _ are kinetic rate constants for the addition of monomer to a chain ending in

radical monomer unit . Of interest are the reactivity ratios r, and r, defined as:
k
= (2.1.2a)

k
r,= kn (2.1.2b)

The reactivity ratios can be determined from triad fractions, the fractions of
sequences of three consecutive monomer units in the copolymer chain. These fractions
are denoted by 4,, where ¢,/ and k are monomer units 1 or 2. This gives eight triad
fractions but 4,,, and A,,, are indistinguishable as are 4,,; and A4,,,, leaving six distinct
triad fractions. The relationships between the reactivity ratio r, and the three monomer-1

centered triad fractions are expressed in the following equations given by Koenig (1980):

d) =3 f+2r fifs + 1} (2.1.3a)
Ay, =riflid, (2.1.3b)
Ay =2rf\f2/d, (2.1.3¢c)
Ay =f71d, (2.1.3d)

where /| and f, are the feed fractions of monomer reactants 1 and 2 so f, + f, = L.

Similarly, for reactivity ratio r, and the three monomer-2 centered triad fractions we

have:

dy = rif} +2r:fof) + 12 (2.1.4a)
Ay =rafs 1 d, (2.1.4b)
A\ =2ry/5f\/d, (2.1.4c)
Ay =f12/d2 (2.1.4d)



Triad fractions cannot be measured directly but, for the copolymer styrene-
methylmethacrylate they are linearly related to C'*-NMR spectral data through the
following equations given by Aerdts (1993):

X 0 0 (1-0,)? Ay
Y [=]{1 1-0,; 20,(1-0,,) Az (2.1.5a)
Y4 0 oy 0'%2 Aapz
A o1 02012 o3 A
B+C [=| l-of, 1-065,6y; 26,(1-65) || 412 (2.1.5b)
D 0 0 (1-065)? Ay

where X, Y, Z, A, B, C, and D are relative peak areas in the C*-NMR spectrum. The
fixed parameters 6, = 0.44 and &, = 0.23 relate to the C*-NMR spectral characteristics
of styrene-methylmethacrylate and are not standard deviations of any kind. It can be seen
from the structure of the coefficient matrices that normalized triad fractions will lead to

normalized peak areas because the matrix columns sum to unity.

Burke measured experimental data from which the reactivity ratios r, and 7, can
be estimated. The data, as given on page 160 of her thesis, are given in Table 2.1.1 below
and plotted in Figure 2.1.1 on the next page.

Table 2.1.1 C"“-NMR Data from Burke's Thesis

o

fi X Y Z A B+C D

0.21232  0.17477 0.54829 0.27695 0.09908 0.68361 0.21731
0.22490  0.20291 0.53759 025950 0.08317 0.71368 0.20315
0.39255 0.16945 0.60578 0.22477 0.08787 0.78201 0.13012
0.39715 0.15556 0.53333 0.31112 0.11592 0.75007 0.13401
0.51690 0.11864 0.62423 0.25713 0.11206 0.81746 0.07048
0.51701 0.12033 0.60967 0.27000 0.11255 0.77942 0.10803
0.79132  0.04592 0.74733 0.21676 0.13330 0.78146 0.08524
0.7918 0.05760 0.76525 0.17715 0.15984 0.74077 0.09938

R I WA W -~
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X, Y, Z Peaks (area fraction)

A, B+C, D Peaks (area fraction)

Figure 2.1.1 Multivariate Weighted Least Squares Fit
to CI3-NMR Data from Burke's Thesis
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Because the peak areas are normalized we should have X+Y+Z = A+B+C+D = L.
The value of Z, is highlighted in Table 2.1.1 because the normalization check showed a
discrepancy subsequently attributed to a typographical error in this entry. The correct
value should be 0.20676 instead of 0.21676. The difference of 0.01 provides the basis for

a sensitivity check on parameter estimates derived from the data.

Table 2.1.2 below gives parameter estimates fitted to the data, for both values of
Z,, using the determinant criterion and multivariate weighted least squares (MWLS). The
data and the fit from MWLS are graphically shown in Figures 2.1.1(a) and 2.1.1(b) on the
previous page. In this figure Z, is the shaded circle in Figure 2.1.1(a).

Table 2.1.2 Point Estimates of Parameters (In r, In r,)

Z, Determinant  Multivariate Weighted
Criterion Least Squares (MWLS)

0.20676 (-0.477,-0.373) (-0.439, -0.682)
0.21676 (-0.440, -0.469) (-0.447, -0.682)

The standard deviation in Z is estimated from the MWLS residuals to be 0.027.
This is almost three times the perturbation in Z, 0of 0.01, so one might expect that the
perturbation in Z, would result in changes in the parameter estimates that are small
relative to the parameter uncertainties. Estimates of the parameter uncertainties for the
determinant criterion and MWLS are given by equations (3.3.8) and (3.3.6), respectively.
These equations are based on a linearized model. Equations (2.1.3) and (2.1.4) are
nonlinear in the parameters r, and r,. It happens that the model is more nearly linear with
respect to the logarithm of the parameters. Since reactivity ratios cannot be negative, this
transformation gives parameter uncertainty estimates that are more realistic. The
approximate 50% joint confidence regions for the parameter estimates is determined

using equation 3.6.1.

12



Figure 2.1.2 Approximate 50% Joint Confidence Regions
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Figures 2.1.2(a) and 2.1.2(b) on the previous page give the approximate 50% joint
confidence regions for the parameter estimates from the determinant criterion and
MWLS, respectively. The contours for the two values of Z, are given by the solid (Z,
=(0.20676) and broken (Z, = 0.21676) ellipses. The scales of the two figures differ only
by a translation in In r,. In comparing the two figures two things stand out. Firstly, the
areas of the joint confidence regions from the determinant criterion are about half the
areas of the regions from MWLS. Secondly, the shift between the solid and broken
ellipses is much greater for the determinant criterion compared to MWLS. (A 50% joint

condifence region was chosen instead of 95% to highlight this difference.)

These two facts present something of a paradox. It will be shown in §3.3 that the
determinant criterion theoretically should give parameter estimates with a smaller
variance than those given by MWLS. If so, then why are the parameter estimates from the
determinant critcrion much more sensitive to a perturbation in the data? The answer to

this question is the subject of this thesis.

The results from the examination of Burke's (1994) multiresponse parameter
estimation problem suggested that an examination of a textbook example might be a
good idea. This example is discussed in §2.2. But before this example is discussed, a
loose end should be tied up. Two linear dependencies in the data in Table 2.1.1, i.e.
X+Y+Z = 1 and A+B+C+D = 1, also appear in the model. Box et al. (1973) and McLean
et al. (1979) discuss why this will cause difficulty in applying the determinant criterion.
The difficulty is avoided by dropping two of the redundant observations. If the roundoff
error in the observations is small relative to the experimental error then it does not matter

which observations are dropped. Burke dropped the X and D observations.

14



2.2 The Alpha-Pinene Parameter Estimation Problem

The alpha-pinene estimation problem has been discussed in a paper by Box et al.
(1973) and in textbooks by Bates and Watts (1988) and Seber and Wild (1989). The data
originated with Fuguitt and Hawkins (1947) who studied the thermal isomerization of

alpha-pinene (y,) to dipentene (y,) and allo-ocimene (y,). Allo-ocimene (y,) in turn yields

pyronene (y,) and a dimer (y,). The conversion of allo-ocimene (y,) to the dimer (y,) is

reversible while the other conversions are irreversible. Thus we have the reactions:;

(2.2.1a)

(2.2.1b)

(2.2.1¢c)

(2.2.1d)

Assuming first-order kinetics, the associated system of differential rate equations can be

expressed in matrix format as:

[ o

B4

Y2

Y3

ya

Vs

[k ~k, O

k0

=l & 0
0 0

1L o o

0 0 O Vi
0 0 0 V2
—k3—ky O ks Y3
ks 0 0 Vs
kq 0 —ks [ ys

where italicized 'y's are used to represent concentration.

15
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Box et al. give the analytical solution of this system of differential equations to

be:
y1(0) =y,(0) exp (1) (2.2.3a)
V20 =) (1~ exp60)] (2.2.3b)
y5(0) = Crexp (=6 1) + C2exp (B ) + Csexp (¥ 1) (2.2.3¢)
Yo = k;[—cd,—‘[l ~exp (4] + SHexp (B~ 11+ SHexp(rn) - 11] (223d)
ys©) = k4[ Fg P80+ o ipexp (B + e (vz)} (22.3¢)
where:

a=ky+k,+ks (2.2.4a)
B=(a+ 1/ocz —4kyks)/2 (2.2.4b)
Y=(-a— Jo? —4ksks)/2 (2.2.4c)

O=k, +ky (2.2.4d)
C1=y,(0) &, (ks ~ §)/[(® + B) (@ +V)] (2.2.4¢)
C2 = y1(0) k, (ks + B)/ [0+ BY (B~ )] (2.2.4f)
C3 =310k (ks + 1)/ [@ +V) (Y~ B)] (2.2.4g)

and y,(0) is the initial value of y, (i.e. at time ¢ = 0). It is assumed that the initial values of

the other reactants are all zero (i.c. y,(0) = y4(0) = y,(0) = y,(0) = 0).

16



The experimental data measured by Fuguitt and Hawkins for the isothermal

isomerization of alpha-pinene at 189.5 C are given in Table 2.2.1 below. The data are

expressed as percentages so y,(0) would be 100. The difference between 100 and the sum

of values in each row is attributable to roundoff error (except for the third row).

Table 2.2.1 Alpha-Pinene [somerization Data

t (min)

1230
3060
4920
7800
10680
15030
22620
36420

Wi Y2
8835 73
76.4 156
65.1 23.1
504 329
375 427
259 491
140 574

45 63.1

Y3

23
45
53
6.0
6.0
59
5.1
3.8

Vs

0.4
0.7
1.1
1.5
1.9
22
26
29

Ys

1.75
2.8
5.8
93
12.0
17.0
21.0
25.7

sum

100.1
100.0
100.4
100.1
100.1
100.1
100.1
100.0

Table 2.2 2 below gives parameter estimates fitted to the data using two variants

of the determinant critcrion, designated as (3) and (4), and MWLS. The parameter

estimates designated as determinant criterion (3) are the best estimates presented in the

paper by Box et al (1973). The corresponding fit is shown in Figure 2.2.1 on the next

page.

Table 2.2.2 Parameter Estimates for Alpha-Pinene Problem

k,x10°
k,x10°
k,x10°
k,x10°
k,x10°

Determinant
Criterion (3)

5.95
2.84
0.43

31.3

5.74

Determinant
Criterion (4)

5
l

5.84
2.95
2.25
1.3

0.54

MWLS

592
2.95
2.05
30.3
4.92
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Concentration (percent)

Concentration (percent)

40

Figure 2.2.1 Determinant Criterion (3) Fit to Alpha-Pinene Data
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Figure 2.2.1(a) is a reproduction of Figure 2 on page 46 of Box et al. (1973). It
shows their best fit to the data using the determinant criterion. This figure is also
reproduced in Seber and Wild (1989). In both of these references, there is one common
omission. The data and fit for y, is missing. This omission is corrected in Figure 2.2.1(b)

and the fit for y, is terrible.

The reason for the termible fit for y, can be traced to the way the investigators
above handled two linear dependencies in the data. The first linear dependency is due to

the fact that, in the absence of roundoff error, the measurements sum to y,(0):
i) +y2(0 +y;(0 +y5(0) +ys() = y,(0) (2.2.5)

The second linear dependency is due to the fact that Fuguitt and Hawkins (1947) did not
actually measure y,. They synthesized the data for y, based on the assumption that y, is

three percent of the conversion of y:
yo(0) = 0.03 [yl(O) - yl(!)] (2.2.6)

Box et al. (1973), Bates and Watts (1988), and Seber and Wild (1989) all argued that
these two linear dependencies in the data would reduce the rank of the measurement
EITOT covariance matrix by two from five to three. However, McLean et al. (1979) used
the argument of §1.1 to show that a linear dependency in the data will reduce the rank of
the error covariance matrix only if the same linear dependency is also implicit in the
model. It happens that equation (2.2.5) is implicit in the model, equations (2.2.3) and
(2.2.4), but equation (2.2.6) is not implicit in the model. For the first-order kinetics model

described by equation (2.2.2) the relationship between y, and y, cannot be linear.
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Box et al. (1973) describe how the determinant criterion should be applied when
the rank of the error covariance matrix is less than the number of measured responses. In
this case, taking the rank of the error covariance matrix to be three is a mistake which
leads to loss of information and a terrible fit for y,. The rank of the error covaniance
matrix should be four. In Table 2.2.2 of parameter estimates and Table 2.2.3 of mean
squared residuals the designations (3) and (4) refer to the rank of the error covanance

matrix used in the analysis.

Table 2.2.3 Mean Squared Residuals for Alpha-Pinene Problem

Determinant Determinant MWLS
Criterion (3) Criterion (4)

¥, 0.687 0.687 0.567
¥, 1.009 0.738 0.649
" 0.271 0.633 0.183
¥, 2276 0.497 0.369
v, 0.631 2.342 0.805

Table 2.2.3 shows that taking the rank of the error covariance matrix to be four
improves the fit for y,. But this improvement seems to come at the expense of the fits for
y; and y,. Table 2.2.3 also shows that the mean squared residuals for MWLS are all
smaller than those for the determinant criterion (4). Since the determinant criterion is
generally considered to be a standard technique for multiresponse parameter estimation,
this result, taken with the anomalous result of §2.1, provided the motivation behind this

thesis.

The fit for MWLS is shown in Figure 2.2.2 on the next page. There is still a
mismatch between the data and model for y, and this simply reflects the fact that
equation (2.2.6) used to synthesize the y, data cannot be consistent with the model and
the rest of the data.
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The discussion of the last two paragraphs raises an important issue about
goodness of fit. For single response problems, relative goodness of fit is usually
established by applying an F test to a ratio of residual sum of squares. The statistical
validity of the test is based on the assumption that the measurement errors are
independent and of constant variance. But in the multiresponse problem the residuals for
different responses are assumed to be correlated and to have different variances.

Therefore a simple F test is inappropriate for statistical inference in the multiresponse

Ccase.

Cox (1962) developed a generalization of the F test that, for multiresponse
inference, uses the ratio of determinants of residual covariance matrices. This test will
always favor the determinant criterion which minimizes the determinant of the residual
cavariance matrix. Given, then, the problematic nature of using goodness of fitas a
means for assessing multircsponse parameter estimation methods, another means of
assessment will have to be considered. It is usually considered desirable for an estimation
method to generate good parameter estimates where 'good’ means small biases and small
norms of the covariance matrix of the parameter estimates. It is also desirable for the
estimation method to yield a good estimate of the covariance matrix of the parameter
estimates. Therefore, the quality of the parameter estimates, as determined in a
frequentist sense using Monte-Carlo simulation, will be used in this thesis as the basis for

assessing alternative multiresponse parameter estimation methods.
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Chapter 3 - Theoretical Results

In this chapter a theoretical result that is the foundation of this thesis will be
established. It is based on Phillips' (1976) result that the determinant criterion is
numerically equivalent to an iterated generalized least squares scheme. This result will be
used to show that, of all such iterated schemes, the determinant criterion is theoretically
optimal in the sense that it generates parameter estimates with 2 minimum determinant of
the estimated parameter covariance matrix. [n addition to this result, two secondary
theoretical results will also be established. The first is that multivariate weighted least
squares (MWLS) has an equivalent counterpart resembling the determinant criterion. The
second result concerns the number of degrees of freedom associated with multiresponse

parameter estimation.

3.1 Multiresponse Estimation and the Determinant Criterion

In a multiresponse estimation problem, m dependent variables, y,, ... y_, are
associated with one or more independent variables, x. For n measured values of the
independent variable, x, ... x,, there are mn measured values of the dependent variables,
Yi» - Vo B€tween the independent variable x and m dependent variables y there are m
functional relationships, £, ... f,., parameterized by a vector 0 of p parameters. If the true

parameter values are indicated by 0° then:
vy =/x,,8%) +eg; i=l.m, j=1.n B.L1)

where g, are the measurement errors in y. The measurement errors in x are assumed to

be zero. The mn deviations, y,; - fi(x,, 8), regarded as functions of 8, can be assembled
into an m by n matrix Z(6). (Some investigators define Z(8) to be n by m, the transpose of
the definition used here. Later the vec operator will be applied to Z(6) and, for this

purpose, it is convenient to define Z(8) to be m by n.)



Box and Draper (1965) showed that if the measurement errors, £, are random,
normally distributed with zero mean, independent between measurement vectors, and
correlated within measurement vectors with constant m by m covariance matrix X, then
the likelihood function for 6 and Z. is:

L@, %) o |2 exp[-%tr (Z(G)T z;'Z(e)) ] (3.1.2)

Bard (1974) showed that the likelihood function can be maximized with respect to the
elements of 8 and Z. in two steps. In the first step, 0 is held constant and the likelihood

is maximized with respect to the elements of .. This gives a maximum likelihood

estimate of Z., £.(8), that is an implicit function of 6 and is just the deviation covariance
matrix:

£(8) = Z8) Z(B) I n (3.1.3)

In the second step, the elements of . are eliminated as parameters in the likelihood
function by substituting equation (3.1.3) back into equation (3.1.2), giving the conditional
likelihood function:

L[6l£.0) ] = |{z@®) 2©)7|™"" (3.1.4)

Therefore, it follows that the value of 0 that maximizes the likelihood is that which
minimizes |Z(8) Z(8)7|. Box and Draper (1965) first developed this determinant criterion
using a Bayesian argument. Bard's derivation is presented here because, in the next
section, it will be used to establish the equivalence of the determinant criterion with an
iterated generalized least squares scheme. From equation (3.1.3), the maximum
likelihood estimate of Z: conditional on a parameter estimate, é, is the residual

covariance matrix:
S.=20)Z8)In (3.1.5)
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3.2 The Determinant Criterion as an Iterated GLS Scheme

The likelihood function, (3.1.2), conditioned on a fixed estimate of the error

covariance matrix, Z., IS

L(BIZ:) « exp [-g tr (Z(e)r'?:;‘Z(e)) ] (3.2.1)

This can be written in terms of a more familiar quadratic form as
L@IZ:) < exp[ ~12(0) £51 =9) | (3.2.2)

where =(6) = vec(Z(0)) is a vector of length mn made up of the concatenated columns of
Z(0) and £, =1, @ £, is a block diagonal matrix whose 7 blocks are 2. Equation
(3.2.2) has the form of a likelihood function for generalized least squares (GLS) which
justifies the following Gauss-Newton equation for determining the value of 6 that

maximizes this (conditional) likelihood:

AB® = (XTES1 X)1xT $21 /(6% (3.2.3)

where X;; = ~0:2(0);/006; for i = 1..mn andj = 1...p and k denotes the & th Gauss-Newton

iteration,

With the maximum likelihood estimate of 8 conditioned on . from (3.2.3), the
maximum likelihood estimate of =, conditioned on & can be determined from (3.1.5).
When iterated to convergence these two steps yield estimates of 8 and Z. that maximize
the likelihood function, (3.1.2). This is because the partial derivatives of a function are
zero at the maximum. This iterated GLS scheme is, then, numerically equivalent to the

determinant criterion. This result is originally due to Phillips (1976).
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The numerical equivalence of the determinant criterion and the iterated GLS
scheme can also be explained with a graphical analogy. Figure 3.1.1 below shows the
contours of a likelihood function for scalar values of 8 and Z.. The solid line is the locus
of points that maximize the likelihood with respect to Z. for constant values of 8. This
locus is obtained from equation (3.1.5). The determinant criterion gives the value of 8 on
this locus that maximizes the likelihood with respect to 8 and ;. The dashed line is the
locus of points that maximize the likelihood with respect to 6 for constant values of Z..
This locus is obtained from equation (3.2.3). The maximum of the likelihood with
respect to 0 and Z. is at the intersection of the two loci of points represented by the solid
and dashed lines. Therefore the dotted 'staircase’ of points obtained by iterating equations
(3.2.3) and (3.1.5) will converge to the same optimum as the determinant criterion. (For

multiple local optima this argument holds only in the neighborhood of a local optimum.)

Figure 3.1.1 Contours of a Likelihood Function




3.3 _An Optimality Property of the Determinant Criterion

Equation (3.2.3) can be generalized by replacing the inverse of the estimate of the

error covariance matrix, 37!, with an arbitrary symmetric positive definite matrix, #:
AB® = (XTWX)~' XTW (6% (3.3.1)

If the measurement errors are random with zero mean and known error covariance matrix
X., then it follows from equation (3.3.1) that the p by p parameter covariance matrix is

estimated by:

2o = XTWX) ' XTWE . WX(XTWX)™! (3.3.2)

where 2., = I, ® X. . For linear models and constant ¥, this estimate of ¢ is exact. If
the determinant of this estimate of the parameter covariance matrix, lf‘.o I , Is minimized

with respect to the elements of #, the solution is independent of X and is simply:
W=z (3.3.3)

Substitution of equation (3.3.3) into equation (3.3.1) gives a multiresponse version of

Aitken's (1935) generalized least squares:
AB® = (XTZ 1) XTE ;] -(6™) (3.3.4)

Substitution of equation (3.3.3) into equation (3.3.2) gives the estimate of the parameter

covariance matrix:
o= (Y7L (3.3.5)

Therefore, when the error covariance matrix is known, among all estimation schemes of

the form of (3.3.1), equation (3.3.4) has the property of giving the minimum value of the

determinant of the estimate of the parameter covariance matrix, l ) ' .
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[f the error covariance matrix, Z., is unknown, then the next best alternative to

equation (3.3.2) is to use an estimate of Z, £, in equation (3.3.2) giving:

o = (XTWX) ' XTWE o, WX(XTWX)™! (3.3.6)

[f the determinant of this estimate of the parameter covariance matrix is minimized with

respect to the elements of W, the solution is:
w=2%z (3.3.7)

Substitution of equation (3.3.7) into equation (3.3.1) gives equation (3.2.3) which, when
iterated with equation (3.1.5), is equivalent to the determinant criterion as shown in §3.2.
Substitution of equation (3.3.7) into equation (3.3.6) gives the estimate of the parameter

covariance matrix for the determinant criterion:
$o=(XTE5 X (3.3.8)

Kang and Bates (1990) derived this equation using an argument based on likelihood

inference.

Therefore, of all estimation schemes in the form of (3.3.1), it is equation (3.2.3),
equivalent to the determinant criterion, that minimizes Iio | , the determinant of the

estimate of the parameter covariance matrix, when the error covariance matrix is

unknown. (Numerical experiments suggest that equation (3.3.7) minimizes all reasonable
norms of £¢.) This appears to be a rather strong result in support of the determinant
criterion becauselﬁel is proportional to the square of the estimate of the parameter

confidence region hypervolume. It might also be noted that, unlike derivations based on
likelihood, this result does not depend on the measurement errors being normally
distributed because the validity of equations (3.3.2) and (3.3.6) does not depend on a

normality assumption.
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But this analysis exposes a serious weakness in the determinant criterion. Ideally
one would want the generalized weight matrix, /#, to be the inverse of the error
covariance matrix, X.,, as expressed by equation (3.3.3). But the determinant criterion, in
effect, makes the compromise of substituting the residual covariance matrix,

Z®6) Z(é) T/ n, for the error covariance matrix. The potential problem here is that, if the
data set is not large, the residual covanance matrix may be a poor estimate of the error
covarance matrix. A poor estimate of the error covariance matrix will likely lead, by
equation (3.3.8), to a poor estimate of the parameter covariance matrix. Although the
determinant criterion gives the minimum determinant of the estimate of the parameter
covariance matrix, if this estimate is a poor, then the optimality property may be of little
significance. This means that the optimality property of the determinant criterion is more
relevant for large data sets than for small ones. This is equivalent to saying that the
determinant criterion is only asymptotically optimal. The simulation studies of §4 will

demonstrate that this is something of an Achilles heel for the determinant criterion.

In a simulation study there is an alternative way to estimate the parameter
covariance matrix, Z¢ . Equation (3.3.6) gives the estimate of the parameter covariance

matrix from a single set of data. In a simulation study, g sets of simulated data may be

used to estimate Ly from g sets of estimated parameters:
_1 A _as1la a7
£o = qg[e, 0*][6.~e"] (3.3.9)

where §° is the true value of the parameter vector, known in simulation. If g is as large as
10%, then equation (3.3.9) should give a better estimate of the parameter covariance
matrix than does equation (3.3.6) because ¢ may be defined in a frequentist sense as:

Zo = lim %é[é,—-e'][é;-e']r (3.3.10)

29



3.4 Bias of the Parameter Estimates

For models that are linear with respect to the parameters, equation (3.3.1)

converges in one iteration:
d=XTWX)'XTWy (3.4.1)
[f the generalized weight matrix W is constant, then taking expectations gives:
E®) = XTWX) ' XTWE@) (3.4.2)
The linear model can be written as:

y=X0°'+¢ (3.4.3)

where 0" is the true value of the model parameters, 0. The expectation value of the

measurement errors, £(g), is assumed to be zero so that:
EQp)=X0" (3.44)
Substitution of equation (3.4.4) back into equation (3.4.2) gives the result;
E@)=0" (3.4.5)

The expectation value of the parameter estimates is the true value of the parameter
estimates. Therefore, for models linear with respect to the parameters, the parameter
estimates from equation (3.4.1) are unbiased for any constant value of W for which
XTWX is nonsingular. This derivation is not valid for models that are nonlinear with
respect to the parameters or if # depends on the data as in equation (3.3.7). In the
examples discussed in §4, both of these invalidating conditions hold and bias in the

parameter estimates is, in fact, observed.
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3.5 Multivariate Weighted Least Squares (MWLS)

As an alternative to the determinant criterion, a two-step iterated weighting
scheme will be considered. In the first step, the model parameters are estimated by

minimizing a weighted sum of squares of deviations with respect to the model

parameters:
6 =6 s.t 6 minimizes tr[Z(e)TWZ(e)] (3.5.1)

Here W is a diagonal weight matrix which can be initialized to the identity matrix. In the
second step the diagonal elements of the weight matrix are set to the inverse of the

diagonal elements of the residual covariance matrix:
. . -1
W= [diag (2(9) Z(e)T/n) ] (3.5.2)

The m diagonal elements of W are the inverse of the estimated error variances of the m
responses. Because é depends on W and /¥ depends on 6, equations (3.5.1) and (3.5.2)

are iterated to convergence.

Therefore this is a multivariate weighted least squares scheme where the weights
are determined iteratively from the variance of the residuals. Carroll and Ruppert (1988)
discuss a conceptually similar iteratively weighted least squares scheme in the context of
uniresponse models where the measurement errors are assumed to be independent but
heteroscedastic. However, no literature reference to an iteratively weighted least squares

scheme applied to the multiresponse parameter estimation problem has been found.
The general Gauss-Newton equation (3.3.1) is applicable to MWLS. The estimate

of the parameter covariance matrix for MWLS is given by equation (3.3.6) and, unlike

the case for the determinant criterion, no further simplification is possible in this case.
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Just as the determinant criterion has an equivalent iterative counterpart (§3.2),
MWLS has an equivalent that resembles the determinant criterion. To demonstrate this,
we go back to the discussion of the determinant criterion in §3.1 and the likelihood

function for 8 and X. for random and normally distributed measurement errors with zero

mean:
L®,%.) < |Z.[ ™2 exp [—%U(Z(G)TZ;'Z(G)) ] (3.5.3)

For the sake of this argument it will be assumed that the measurement errors within a
measurement vector are independent. This will make £; a diagonal matrix. Bard (1974)

showed that under this assumption the maximum likelihood estimates of © and Z. are:

8= 051, 0 minimizes [ 1 20)20)" | (3.5.4)
=1 ii
$. = diag[ 28) Z6)/n (3.5.5)

The likelihood functional conditional on an estimate of the error covariance matrix is:
LOIE) « exp[-§ tr (2(9)7‘2;12(0))] (3.5.6)

By comparing equations (3.5.1) and (3.5.2) with equations (3.5.5) and (3.5.6) it can be
seen that equation (3.5.2) of MWLS corresponds to equation (3.5.5) and equation (3.5.1)
of MWLS corresponds to equation (3.5.6). Under these conditions, the argument of §3.2
can be employed to show that MWLS is equivalent to equation (3.5.4). In other words,
iterating equations (3.5.1) and (3.5.2) to convergence is equivalent to minimizing the
product of the diagonal elements of the deviation covariance matrix with respect to the
model parameters. This result is of computational significance because MWLS is
first-order in its rate of convergence. But a second-order Newton method might be

applied to the minimization problem posed by equation (3.5.4).
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Equation (3.5.4) provides a maximum likelihood estimate of the model
parameters when the measurement errors within a measurement vector are random,
independent, and normally distributed with zero mean. Equation (3.5.4) is also equivalent
to MWLS. However, this does not mean that the use of MWLS is being justified on
likelihood grounds. Nor does it imply that the use of MWLS is justified only when the
measurement errors within a measurement vector are independent. The simulation
studies of §4 will demonstrate that, even when the measurement errors with a
measurement vector are correlated, the use of MWLS can be justified on the grounds that
the parameter estimates obtained using MWLS can have a smaller variance and are more

nearly normally distributed than those obtained using the determinant criterion.

Before this section is concluded, a brief comment on the handling of redundant
response variables will be made. The reason redundant response variables can and should
be dropped when applying the determinant criterion is that the information in the
redundant response variables is implicit in the deviation covariance matrix by equations
(1.1.6). But in applying MWLS only the diagonal elements of this matrix are used as
weights. Consequently, dropping redundant response variables can result in a loss of
information for MWLS. Furthermore, retaining redundant response variables can do no

harm because the weights will adjust themselves accordingly.

33



3.6 Degrees of Freedom for Multiresponse Estimation

Given an estimate of the parameter covariance matrix, %6, an equation for the
approximate joint confidence region for the parameter estimates, as given for example by

Draper and Smith (1981), can be written as:

©-6)755'0-0)< pF(p,v,@) (3.6.1)

where F(p, v,a) is the upper a quantile of the F distribution with p and v degrees of
freedom. v is the number of degrees of freedom associated with £¢ which, in turn, is

derived from £, through equation (3.3.6) for both MWLS and the determinant criterion.
The maximum likelihood estimate of Z. is given by equation (3.1.5) to be the residual

covariance matrix Z(é) Z(8)7/ n. Now, v would be equal to # if this estimate of X. was

unbiased.

According to Bard (1974), v is n - p/m whereas Bates and Watts (1985) make a
case for n - p. Either choice implies that the maximum likelihood estimate of I,

Z(8) Z(B)7/ n, is biased. It would be nice to resolve this issue because the estimate of the

parameter covariance matrix, £q, depends on £, through equation (3.3.6). To make the

mathematics tractable, [ will consider the linear model:
y=X0*+e (3.6.2)

where 6 is the true value of the parameters and £(g) = 0. The least squares parameter

estimate given a generalized weight matrix W is:

8 = (XTWX) '\ XTWy (3.6.3)
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From equations (3.6.2) and (3.6.3) it follows that:
6=0"+(XTWX) "' X We (3.6.4)
Now a subset of the data, s, will be considered such that:
ys =X0" +8 (3.6.5)

In the multiresponse context, this data subset will be the data for a particular response.

From equations (3.6.4) and (3.6.5), the residuals for the data subset are:

Vs = X5 =€, - X,(XTWX) ' XTWe (3.6.6)

Given that the errors of the data subset, s, have the covariance matrix, X.;, the number of
degrees of freedom, v, associated with the generalized sum of squares of the subset
residuals is, by definition:

v, = E[ 0 - X.0)7Z3 (s - X.) | (3.6.7)
Substituting equation (3.6.6) into equation (3.6.7) and assuming W to be constant gives:

vi=n -2 tr[-X’IZ;,‘E(e,eT)W(,\”mo-l] +

tr[X,T S XA XTWX) XTW E,, WX(XTWX)"] (3.6.8)

where n is the number of elements in the data subset. Because the set s is a subset of the
whole data set, the elements of the matrices Z.; and E(e;e7) are all elements of the error

covariance matrix, X.. As before, o, = [, ® .. If the data subset is the whole data set

(i.e. X, = X) and if W is the inverse of the error covariance matrix (i.e. W= Z_}) then
equation (3.6.8) simplifies to the familiar result v=n-p.
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For a multiresponse problem, the data subsets will correspond to m subsets of n
elements per subset. Measurement errors between measurement vectors are assumed to
be independent so, for the ith response, Z.. = I, - (). For the special case where the

error covariance matrix, X, is known and W= X!, we have the result that:
E(eseDWX = E(ee DIt X = X, (3.6.9)
With this result equation (3.6.8) can be reduced to:
vi=n-t[ XX (X207 ] 12, (3.6.10)

For the special case where measurement errors within measurement vectors are
independent, .. is a diagonal matrix. Because the trace operator is a linear operator, it
follows from (3.6.10) that, for a diagonal £, , the mean number of degrees of freedom

per response is:
LSy, =n-L2 (3.6.11)

Equation (3.6.11) does not imply that each v, has the value # — p/m. Only the mean has

this value and then only if Z., is diagonal and W= X!.

A limiting case of equation (3.6.10) will now be considered. Suppose that, for
response /, (Ze)ii — 0. The number of degrees of freedom associated with response i can

be determined by taking the limit of the right hand side of equation (3.6.10):

lim vi=n-p (3.6.12)

Ee)u— 0

This corresponds to the case where the measurement errors for one response, response i,

are negligible relative to the errors for the other responses. In this case the parameter
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estimates will, in effect, be solely determined by response / and the multiresponse

problem becomes equivalent to a uniresponse problem with » — p degrees of freedom.

Now, there are n — p degrees of freedom for one of the responses in the special
case just considered. But it cannot be that the number of degrees of freedom is n ~ p in
general for all responses. A general value of n — p for all responses would be inconsistent
with the special result of equation (3.6.11) (for m > 1). Bates and Watts (1985) consider
the special case where » — p and argue that v = i — p applies in this case. They then
suggest that v = n ~ p is generally applicable. It has just been shown that this cannot be
the case. Bard's (1974) suggestion that v = n — p/m is generally applicable for all
responses is, of course, consistent with equation (3.6.11) but it is not consistent with the

special result of equation (3.6.12).

Equation (3.6.8) should dispel the notion that any simple expression for v can be
generally applicable to multiresponse estimation. Even equation (3.6.8) itself is only
valid if /¥ is constant (i.e. independent of the data). For both the determinant criterion
and MWLS this is not the case. Therefore any simple expression for the number of
degrees of freedom is going to have to be something of an approximation. In the light of
equation (3.6.11), Bates and Watts (1985) suggestion of » ~ p seems too conservative. In
the absence of any other simple alternative to Bard's (1974) suggestion of n - p/m, |
would recommend the use of this expression. This gives the following equation for an

approximation to an unbiased estimate of the error covariance matrix:

& _ZO)Z®)T

= (3.6.13)
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Chapter 4 - Simulation Studies

Simulation studies for three multiresponse parameter estimation problems were
done to show that the theoretical optimality property of the determinant criterion (§3.3) is
of limited relevance to finite data sets. These studies were based on Burke's (1994)
parameter estimation problem, the alpha-pinene problem of Box et al. (1973), and an

example problem discussed by Box and Draper (1965).
4.1 Burke's Parameter Estimation Problem

Burke's (1994) parameter estimation problem was discussed in §2.1. The model
described there is called the terminal model because the reaction rate is assumed to be
influenced by the last, or terminal, monomer unit on the copolymer chain. Burke
considered the case where the reaction rate is aiso assumed to be influenced by the
second to last, or penultimate, monomer unit on the copolymer chain. The equations for

this penultimate model are a slight modification of equations (2.1.3) and (2.1.4):

dy = royrf+2rafifs + 137 (4.1.1a)
Ay = rgrfEld, (4.1.1b)
App = 2rafifa 1 d, (4.1.1¢)
Ay = f114d, (4.1.1d)

Equations (4.1.1) represent half the model. The equations for the monomer-2-centered
triad fractions are obtained by interchanging the subscripts 1 and 2. In the penultimate
model equations (2.1.5) remain unchanged. The penultimate model therefore contains
four parameters: r,, ry,, ry,, and r,. Setting r,, = r,, and r,, = r,, restores the terminal

model.
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As part of a mode! discrimination study Burke performed an experiment that

added a ninth set of measurements to the eight given in Table 2.1.1:

Table 4.1.1 Additional C'*-NMR Data from Burke's Thesis

i f X Y z A B+C D

9 0.56030 0.11975 0.56075 0.31950 0.17333 0.77779 0.04888

The parameters of the penultimate model were fitted to the nine sets of
measurements using multivariate weighted least squares (MWLS). The point estimates

are:
Table 4.1.2 Parameter Estimates

inr, -0.567
Inr, -0.447
Inr, -0.877
Inr, 0.041

The residuals yield the following estimates of the error standard deviations and

correlation matrix:

G.=(2.41 3.02 303 199 404 430)x107 (4.1.2)

r -

I -0.398 -0.399 -0.066 -0.654 0.644
-0.398 1 -0.682 -0.657 0.416 -0.086
A -0.399 -0.682 1 0.709 0.106 -0.427
-0.066 -0.657 0.709 I -0.107 -0.362
—0.654 0416 0.106 -0.107 1 -0.888

0.644 -0.086 -0.427 -0.362 -0.888 1

(4.1.3)

e,
©
I

The correlation matrix shows fairly high correlation between the residuals for some of

the response variables.
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From the parameters of Table 4.1.2 one million data sets were synthesized with
the simulated measurement errors multinormally distributed with zero mean and
covariance matrix derived from equations (4.1.2) and (4.1.3). Each data set contained
nine sets of measurements with nine values of the independent variable, f,, taken from
Tables 2.1.1 and 4.1.1. Parameters were estimated from each data set using both MWLS
and the determinant criterion (Det) with two redundant response variables dropped for
the latter method. The statistics of the sample distributions of the parameter estimates are

tabulated below:

Table 4.1.3 Simulation Results from One Million Data Sets

Means Standard Deviations
True
Parameter Value MWLS Det MWLS Det
Inr, ~0.567 -0.568 -0.565 0.156 0.201
Inr, - 0.447 —-0.448 -0.450 0.133 0.167
Inr, -0.877 -0.874 -0.877 0.179 0.242
Inr, 0.041 0.052 0.071 0.396 0.544

The mean values of the sample distributions of the parameter estimates do not
suggest that bias is an issue here. But the standard deviations from MWLS are all smaller
than those from the determinant criterion. Now, the theory of §3.3 showed that the
determinant of the parameter covariance matrix should be smaller for the determinant
criterion. Determinants, representing hypervolumes, greatly exaggerate small differences
in spaces of even a moderate number of dimensions, p. Therefore, it is more realistic to
deal with [Ze|"” and |Ze|"? which will be referred to in this thesis as the generalized
parameter variance and standard deviation, respectively. In this case, the generalized
parameter standard deviation, as determined from equation (3.3.9), is 0.168 for MWLS
and 0.219 for the determinant criterion. Clearly, the simulation result is not consistent

with the theoretical result that |Zg| should be smaller for the determinant criterion.
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Figures 4.1.1(a) to 4.1.1(d) on the following pages show the sample distributions
of the four model parameters estimated from the one million synthetic data sets. The
frequency scale is logarithmic to highlight the tails of the distributions. On such a scale a
normal distribution would take the form of a parabola. The distributions from MWLS
(solid curves) are very nearly normal. But the tails of the distributions from the

determinant criterion (broken curves) are heavier than those from a normal distribution.

With reference to equation (3.6.4), a multinormal measurement error distribution
will give a multinormal distribution in parameter estimates if the model is linear in the
parameters (i.e. matrix X is constant) and the weight matrix W is constant from sample to
sample. The lack of normality in the sample distributions for the parameter estimates
from the determinant criterion cannot be attributed to model nonlinearity which would
affect the results from MWLS as well. So the difference in distributions must be
associated with the weight matrix which is determined from the residual covanance

matrix by equation (3.3.7) for the determinant criterion and equation (3.5.2) for MWLS.

To characterize the variation in the residual covariance matrix as a distribution, it
is convenient to consider a scalar function of the residual covariance matrix, the ratio of
the condition numbers of the residual covariance matrix and the sample error covariance
matrix. For this discussion, the sample error covariance matrix is the covariance matrix

of the synthetic errors for a given sample. Therefore,

condition number [Z(é) Z6)7/ n]
condition number [Z(G') 2697/ n]

condition ratio = (4.1.4)

where 6° is the true value of the parameters. The sample error covariance matrix can
only be known in a simulation and it is, of course, different from sample to sample.
Taking the ratio of the condition numbers compensates for the effect of random variation

in the condition numbers of the sample error covariance matrices.
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Figure 4.1.1 Sample Distributions of Parameter Estimates

with 95% Confidence [ntervals
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Figure 4.1.1 (Continued)
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The condition ratio is a measure of how much the residual covariance matrix is
biased as an estimate of the sample error covariance matrix. By using condition number,
the bias is expressed in terms of ill-conditioning. The higher the condition ratio, the more
the residual covariance matrix is biased towards ill-conditioning. Figure 4.1.2 below
shows a distribution nearly symmetrical about zero in the logarithm of condition ratio for
MWLS. However, the distribution for the determinant criterion is skewed far to the right
in the direction of ill-conditioning. (Note that the scale of the condition ratio in Figure
4.1.2 is log base 10.)

Figure 4.1.2 Sample Distributions of Condition Ratio
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The determinant criterion finds the point in parameter space that minimizes the
determinant of the residual covariance matrix. The determinant is the product of the
eigenvalues. The condition number is the ratio of largest to smallest eigenvalue. An
examination of the distributions of the eigenvalues of the sample error and residual
covariance matrices shows that the determinant criterion, in minimizing the determinant,
tends to preferentially bias the smallest eigenvalue towards zero. This, in turn, biases the
residual covariance matrix towards ill-conditioning. The lack of normality in the
parameter distribution from the determinant criterion can therefore be attributed to the
simple fact that the generalized weight matrix is the inverse of a residual covariance

matrix that is biased towards ill-conditioning.

In the demonstration of §3.3 that the determinant criterion is optimal among
weighting schemes where the error covariance matrix is unknown, a key assumption is
that the residual covariance matrix is a good estimate of the error covariance matrix. This
example shows that the determinant criterion can violate this assumption by biasing the
residual covariance matrix as an estimate of the error covariance matrix. Bias towards
ill-conditioning in the residual covariance matrix is not evident with MWLS. This
explains why MWLS can give a smaller value of the determinant of the true parameter
covariance matrix than the determinant criterion, contrary to the theory of §3.3 which

deals with estimates of the parameter covariance matrix.

Figures 4.1.1(a) to 4.1.1(d) showed the distributions of point estimates of the
model parameters from MWLS and the determinant criterion. But these two estimation
methods also yield estimates of the uncertainty in the parameter estimates through
equation (3.3.6) for the parameter covariance matrix, £g. So this raises the following
question: How good are these estimates of the parameter uncertainty? This question can
be addressed through the same Monte-Carlo procedure used to generate the distributions

of the point estimates of the model parameters.
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In this case, ten thousand synthetic data sets were generated using the same
procedure described earlier. For each data set, point estimates of the parameters were
obtained from MWLS and the determinant criterion and corresponding estimates of the

parameter covariance matrix were obtained from equations (3.3.6) and (3.3.8),
respectively. The determinant criterion gives the minimum value of I)fe [ . Since the
frequency distribution of this quantity is very skewed, the related quantity, In | 20|/,

was used to generate more symmetric frequency distributions.

In simulation the error covariance matrix, Z., is known. By the argument of §3.3,
if Z¢ is known, then the optimal estimation method is generalized least squares with the
generalized weight matrix set to the inverse of the error covariance matrix. Here, as in
§3.3, optimal is in the sense of minimizing the determinant of the parameter covariance
matrix. So, in simulation, generalized least squares provides a reference standard by
which MWLS and the determinant criterion may be evaluated. If Z. is known, then
equation (3.3.5) can be used to estimate the parameter uncertainty for generalized least
squares. However, the parameter uncertainty estimates for both MWLS and the
determinant criterion are derived from equation (3.3.6). So, for the sake of a consistent

comparison, equation (3.3.6) will be used for generalized least squares as well.

[f the number of simulated data sets is very large, then equation (3.3.9) gives a
much better estimate of the parameter covariance matrix than does equation (3.3.6).

When the number of simulated data sets is as large as ten thousand then, for the purpose
of comparison, equation (3.3.9) may be regarded as giving the 'true’ value of Zg.
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The results of the simulations are given in the histograms of Figures 4.1.3(a) to
4.1.3(c) on the next page. For each method, the 'true’ value of |Zg| from equation (3.3.9)
is indicated by a vertical broken line. For generalized least squares, some bias in the
estimates of In|Zq|/p from equation (3.3.6) is evident because the quite symmetrical
distribution is centered to the left of the 'true' value, as is also shown in Table 4.1.4
below. For MWLS both the distribution and the 'true’ value shift to the right indicating
more uncertainty in the parameter estimates. For the determinant criterion the
distribution shifts to the left (and widens) while the 'true’ value shifts even more to the
right. The reason the distribution shifts to the left is that the determinant criterion, by the
optimality property of §3.3, gives the smallest estimate of [Zy|. But, as has been
discussed, minimizing the estimate of |Zg| does not guarantee that |Zg] itself will be

minimized.

The main point here is that the distribution of estimates of the parameter
uncertainty, as determined using equation (3.3.6), is much closer to the reference
standard (generalized least squares) for MWLS than for the determinant criterion. This
can be attributed to the fact that the determinant criterion biases the residual covariance

matrix as an estimate of the error covariance matrix.

Table 4.1.4 Simulation Results from Ten Thousand Data Sets

In|Zg|/p Distribution True'

Mean Value

Generalized least squares ~4.01 -3.75
MWLS -3.91 —-3.57
Determinant criterion —-4.51 -3.13
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In the next simulation study, the effect of replication in the data on the parameter
variance was examined. The true values of the model parameters, 8, and the error
covariance matrix, X, were set to the estimates given in Table 4.1.2 and equations

(4.1.2) and (4.1.3), respectively. The vector of independent variables was set to:
fi=(0.219 0.395 0.517 0.792 )" (4.1.5)

Ten thousand synthetic data sets were generated with the simulated measurement errors

being normally distributed with zero mean and covariance matrix as indicated above.

Model parameters werc estimated from each data set using three methods: the

determinant criterion, MWLS, and generalized least squares (GLS) where the generalized
weight matrix is the inverse of the true error covariance matrix, Z. . The latter method

provides a reference that is idealized in the sense that the true error covariance matrix is
usually known only in simulation. The determinant of the parameter covariance matrix,
|Z6], for each of the three methods was estimated from 10000 sets of fitted model

narameters using equation {3.3.9).

To investigate the effect of the number of sets of measurements, 7, on the results,
the simulation study was repeated for six full levels of replication giving results for n = 4,

8, 12, 16, 24 and 32. These results, in the form of generalized parameter variance,
|Zo} "7, plotted as a function of n on a log-log scale, are given in Figure 4.1.4 on the next

page.
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As expected, generalized least squares estimation using a generalized weight
matrix derived from the true error covariance yields the smallest parameter variance. For
this GLS reference standard, the relationship between generalized parameter variance and
number of sets of measurements on a log-log scale is nearly linear with a slope of minus
one (solid line), reflecting the inverse relationship between variance and sample size for
simple estimation. As 7 increases, the results from the determinant criterion (dotted
curve) converge to the ideal reference line because the residual covariance matrix
converges to the true error covariance matrix with increasing 7. The results from MWLS
(dashed curve) show an offset from the reference line because the inverse of the diagonal
weight matrix does not converge to the true error covariance matrix with increasing ».
Therefore Figure 4.1.4 provides strong empirical support to the argument made in §3.3

that the determinant criterion is only asymptotically optimal.

The divergence of the curve for the determinant criterion from the GLS reference
line with decreasing # leads to a limiting case for n =m — 1, where m is the number of
response variables. For this limiting case the residual covariance matrix is singular and
the parameter covariance for the determinant criterion is infinite. But a singular residual
covariance matrix does not cause a problem for MWLS unless one of the diagonal
elements is zero. Thus the crossing of the two curves for the determinant criterion and
MWLS with decreasing # is not a peculiar feature of this example, as will be shown in
§4.2 and §4.3.
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4.2 The Alpha-Pinene Parameter Estimation Problem

The alpha-pinene parameter estimation problem was discussed in §2.2. Given the
very small values of the reaction rate constants, of the order of 107, the model will be

reparameterized as follows:
8; =k, x 10° i=1..5 4.2.1)

The parameters estimated using MWLS are:

Table 4.2.1 Parameter Estimates

0, 592
0, 2.95
05 2.05
84 30.3
0s 4.92

The residuals yield the following estimates of the error standard deviations and

correlation matrix:

S =(0.753 0.806 0428 0.607 0.897) (4.2.2)

1 -0.830 -0.015 -0.378 0.163
—0.830 1 0228 0.366 -0.568
pe=| -0.015 0228 1 -0.161 -0.632 (4.2.3)
-0.378 0366 -0.161 1 -0.487
0.163 -0.568 ~0.632 ~0.487 1|

The residual correlation matrix shows fairly high correlation between the residuals for

some of the response variables.
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From the parameters of Table 4.2.1, one million data sets were synthesized with
the simulated measurement errors being multinormally distributed with zero mean and
covariance given by equations (4.2.2) and (4.2.3). Each data set contained eight sets of
measurements with the independent variable, ¢, set to the eight values of Table 2.2.1.
Next, the simulated values of y, were discarded and replaced with values determined
using equation (2.2.6). This simulated the procedure used by Fuguitt and Hawkins in their
original analysis of data that didn't include actual measurements of y,. Therefore, the

errors in the 'measurements’ of y, are far from random and normally distributed.

Parameters were estimated from each data set using both MWLS and the
determinant criterion (Det) with one redundant response variable dropped for the latter
method. The statistics of the sample distributions of the parameter estimates are

tabulated below:

Table 4.2.2 Simulation Results from One Million Data Sets

Means Standard Deviations
True

Parameter  Value MWLS Det MWLS Det
0. 5.92 5.94 5.93 0.074 0.27
03 2.95 297 2.97 0.042 0.13
03 2.05 2.11 2.16 0.085 0.28

04 303 304 29.0 2.6 9.6

05 492 4.89 3.97 0.88 2.6

In this case, the values of the generalized parameter standard deviation, {Ze| Y%, as
determined by equation (3.3.9), are 0.176 for MWLS and 0.531 for the determinant
criterion. In other words, the generalized parameter variance for MWLS is about an order
of magnitude less than that for the determinant criterion. This result is, of course, wildly

inconsistent with the optimality property of the determinant criterion derived in §3.3.
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The sample distributions of the parameter estimates and the condition ratio, on a
logarithmic frequency scale, are given in Figures 4.2.1(a) to 4.2.1(f) on the following
pages. The nearly parabolic shapes of the parameter distributions for MWLS (solid
curves) indicate near normal distributions in the parameter estimates. On the other hand,
the shapes of the distributions for the determinant criterion (broken curves) are very far
from the parabolic shape of a normal distribution. The heavy tails on these distributions

greatly inflate the variance of the parameter estimates for the determinant criterion.

The sample distributions of the condition ratio, defined in §4.1 as the ratio of the
condition numbers of the residual covanance matrix and the sampie error covariance
matrix, shows the same features of the condition ratio distributions in Figure 4.1.2. The
distribution in the condition ratio for the determinant criterion is skewed to the right in
the direction of ill-conditioning. Because the determinant criterion biases the residual
covariance matrix as an estimate of the error covariance matrix, the validity of the theory

supporting the optimality property of this criterion is compromised.

A word should be said here about the optimization procedure used to determine
the point estimates of the parameters. The initial values of the parameter estimates were
set to the true values of Table 4.2.1 used to generate the data set. Newton optimization
steps could have been applied at first but this would have been risky, given that the
objective function can have multiple local optima. So a conservative gradient method
was used to get to the vicinity of the optimum, at which point Newton steps were applied
to 'polish’ the result. In the case of the determinant criterion, severe ill-conditioning of the
deviation covariance matrix stalled the search in about 0.04% of the one million cases,
but this would most likely result in the parameter variance for the determinant criterion
to be underestimated because the searches were initialized with the true parameter

values.
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Figure 42,1 Sample Distributions of Parameter Estimates
with 95% Confidence Intervals
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Figure 4.2.1 (Continued)
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This example demonstrates that the determinant criterion can give very poor
parameter estimates relative to MWLS when the measurement errors are not random with
zero mean. In such a case, it is pointless to do a comparison between MWLS and the
determinant criterion in terms of the quality of the estimates of parameter uncertainty
from equation (3.3.6). This is because the validity of equation (3.3.6) depends on the
measurement errors being random with zero mean. However, it is easy to remedy this by
not building into the simulated data the defect that Fuguitt and Hawkins built into their
data through equation (2.2.6). Thus, the simulated measurement errors will satisfy the

assumptions that validate equation (3.3.6) as in the simulation study of §4.1.

A simulation study similar to the one described in §4.1 was conducted with the
simulated measurement errors normally distributed with variances and correlation matrix

given by equations (4.2.2) and (4.2.3). Generalized least squares (known Z. ), MWLS and

the determinant criterion were applied to ten thousand simulated data sets and equation
(3.3.6) was used to estimate the parameter covariance matrix, X, for each method. The
histograms of In igl /p are given in Figures 4.2.2(a) to 4.2.2(c) on the next page. The
'true’ values of the parameter uncertainty, as determined from equation (3.3.9), are

indicated by vertical broken lines.

Figure 4.2.2 for the a-pinene problem shows the same characteristics as Figure
4.1.3 does for Burke's copolymerization problem. The distribution of estimates of
In|Ze|/p, relative to the 'true’ value, is about the same for generalized least squares and
MWLS. However, the distribution of estimates for the determinant criterion is quite
different in that it is much more biased towards underestimating the parameter
uncertainty. The noteworthy point here is that, because Figures 4.1.3 and 4.2.2 are so
similar, their characteristics are not likely due to some peculiar feature of the respective

models or simulated data.
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In the next simulation study, the effect of replication in the data on the parameter
variance was examined. The true values of the model parameters, 6, and the error

covariance matrix, X, were set to the estimates given in Table 4.2.1 and equations

(4.2.2) and (4.2.3), respectively. The vector of independent variables was set to:
1=( 1230 3060 4920 7800 10680 15030 22620 36420 ) (4.2.4)

Ten thousand synthetic data sets were generated with the simulated measurement errors

being normally distributed with zero mean and covariance matrix as indicated above.

Model parameters were estimated from cach data set using three methods: the
determinant criterion, MWLS, and generalized least squares (GLS) where the generalized
weight matrix is the inverse of the true error covariance matrix, .. The determinant of

the parameter covariance matrix, [Z¢|, for each of the three methods was estimated from

10000 sets of fitted model parameters using equation (3.3.9).

To investigate the effect of the number of sets of measurements, #, on the results,
the simulation study was repeated for six full levels of replication giving results for n = 8,
16, 24, 32, 48 and 64. These results, in the form of generalized parameter variance,
|Z6{ "7, plotted as a function of » on a log-log scale, are given in Figure 4.2.3 on the next
page. The features of Figure 4.2.3 are qualitatively similar to those of Figure 4.1.4. The
crossing of the curves for MWLS and the determinant criterion supports the

interpretation of Figure 4.1.4 discussed in §4.1.
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4.3 Box and Draper's Parameter Estimation Problem

In introducing the determinant criterion, Box and Draper (1965) discussed an
example from chemical reaction kinetics involving the reactions 4 —» B — C. If the
proportion of reactants 4, B and C at time ¢ are denoted by y,, y, and y, then first-order

reaction kinetics with rate constants ¢, and ¢, yields the system of ordinary differential

equations:
dy,/dt=-¢,y, (4.3.1a)
dyy/de =0y, ~ oy, (4.3.1b)
dy,/dt=¢,y, (4.3.1c)

With initial conditions y, = 1 and y, = y; =0 at ¢ = 0, the solution to these ODEs is

Y1 =€exp(—,/) (4.3.2a)
Yy =[exp(—9;0)—exp(-$:010,/ (92— ) (4.3.2b)
vi=l=-y,-y, (4.3.2¢)

The data Box and Draper used consisted of the twelve sets of measurements given in

Table 4.3.1:
Table 4.3.1 Data for Box and Draper's Example

4 y[ .Vz yJ
0.5 0.959 0.025 0.028
0.5 0.914 0.061 0.000
1 0.855 0.152 0.068
I 0.785 0.197 0.096
2 0.628 0.130 0.090
2 0.617 0.249 0.118
4 0.480 0.184 0.374
4 0.423 0.298 0.358
8 0.166 0.147 0.651
8 0.205 0.050 0.684
16 0.034 0.000 0.899
16 0.054 0.047 0.991
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Box and Draper parameterized the model in terms of 8 = In(¢). The determinant criterion

applied to this data yields the parameter estimate:

(4.3.3)

- 1.572
-0.702

==

The fit to the data is shown in Figure 4.3.1 on the previous page. The residuals yield the

following estimates of the error standard deviations and correlation matrix:

6. =(0.0319 0.0498 0.0321 )7 (4.3.4)

1 -0.418 0422
pe=| 0418 1 0330 (4.3.5)
0422 0330 1

For the purpose of the simulation study, the true values of the model parameters,

9, and the error covariance matrix, Zc, were set to the estimates from equations (4.3.3),

(4.3.4) and (4.3.5). The vector of independent variables was set to:
t=(12438) (4.3.6)

Ten thousand synthetic data sets were generated with the simulated measurement errors

being normally distributed with zero mean and covariance as given above.

Model parameters were estimated from each data set using three methods: the
determinant criterion, MWLS, and generalized least squares (GLS) where the generalized

weight matrix is the inverse of the true error covariance matrix, Z¢. The determinant of
the parameter covariance matrix, |4}, for each of the three methods was estimated from

10000 sets of fitted model parameters using equation (3.3.9).
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To investigate the effect of the number of sets of measurements, n, on the results,
the simulation study was repeated for six full levels of replication giving results for n =4,
8, 12, 16, 24 and 32 . These results, in the form of generalized parameter variance,
|Z6]| "7, plotted as a function of » on a log-log scale, are given in Figure 4.3.2 on the next
page. The features of Figure 4.3.2 are qualitatively similar to those of Figures 4.1.4 and
4.2.3. The crossing of the curves for MWLS and the determinant criterion supports the
interpretation of Figure 4.1 4 discussed in §4.1.
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Figure 4.3.2 Effect of Sample Size on Parameter Variance
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Chapter 5 - Discussion

The argument being made in this thesis can be broken down into the following

components:

(a)

(b)

In comparing multivariate weighted least squares (MWLS) with the determinant
criterion for multiresponse parameter estimation, a goodness of fit test is
problematic. As discussed in §2.2, Cox's (1962) generalization of the F test relies
on the ratio of determinants of the residual covariance matrices. Therefore this
test will always favor the determinant criterion. In §3.5, it was shown that MWLS
was equivalent to minimizing the product of the diagonal elements of the
deviation covariance matrix with respect to the model parameters. So a goodness
of fit test based on the ratio of products of residual variances will always favor
MWLS. Given, then, this problem with goodness of fit as an evaluation criterion

in a multiresponse context, a frequentist evaluation approach was chosen.

A frequentist approach to evaluating parameter estimation methods considers the
frequency distribution of the parameter estimates. In a case study, the true values
of the model parameters and measurement error structure are known. Therefore,
Monte-Carlo simulation can be used to sample from the frequency distribution of
the parameter estimates. As the sample size increases, the sample distribution of
parameter estimates becomes more representative of the frequency distribution of
parameter estimates. For evaluation purposes the sample distribution of parameter
estimates is characterized by its mean and covariance matrix. The covariance
matrix is further characterized by a suitable norm, its determinant, which is

proportional to the square of the hypervolume of the parameter confidence region

in parameter space.
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(c)

(d)

(e)

In §3.2 the numerical equivalence of the determinant criterion to an iterated
generalized least squares scheme was discussed. In the iterated scheme, the
parameters are estimated using generalized least squares where the weight matrix
is the inverse of the residual covariance matrix. The residual covariance matrix,
in turn, is determined from the parameter estimates, making for an iterated
scheme. At convergence, the parameter estimates from this iterated scheme
maximize the same likelihood function as the parameter estimates from the
determinant criterion, thus establishing the numerical equivalence of the two

methods. This result is originally due to Phillips (1976).

In §3.3 it was shown that, when the measurement error covariance matrix is
known, Aitken's (1935) generalized least squares estimation method minimizes
the determinant of the estimate of the parameter covariance matrix. It does this by
using a weight matrix that is the inversc of the error covariance matrix. When the
error covariance matrix is unknown, of all weighting schemes, the determinant
criterion minimizes the determinant of the estimate of the parameter covariance
matrix. It does this by using a weight matrix that is the inverse of the residual
covariance matrix. Thus, the determinant criterion, in effect, approximates the

error covariance matrix by the residual covariance matrix.

The three simulation studies of §4 clearly show that the determinant criterion's
optimality property, giving the smallest determinant of the estimate of the
parameter covariance matrix, is of limited practical significance. The simulation
study of §4.1, based on Burke's (1994) parameter estimation problem, shows that
even when the measurement errors satisfy the standard validating assumptions,
MWLS can give a smaller determinant of the true parameter covariance matrix
than the determinant criterion. The frequency distributions of the parameter

estimates in Figure 4.1.1 show near normal distributions (parabolic on the log
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(8)

scale used) from MWLS while the distributions from the determinant criterion

show relatively heavy tails.

In the simulation study of §4.2 based on the alpha-pinene parameter estimation
problem, a defect was built into the measurement error structure. Figure 4.2.1
shows the effect of this defect on the frequency distributions of the parameter
estimates. Again, MWLS yields near normal distributions of the parameter
estimates while the determinant criterion yields distributions that are very far
from normal. In fact, the distribution tails from the determinant criterion are so
heavy that the parameter variances are an order of magnitude greater than those

from MWLS.

It was noted in (d) that the determinant criterion, in effect, approximates the error
covariance matrix with the residual covariance matrix. Continuing with this
perspective, MWLS approximates the error covariance matrix with the diagonal
matrix of the diagonal elements of the residual covariance matrix. [t would seem
at first glance that the approximation used by the determinant criterion must be
better than that used by MWLS. But the two estimation methods, applied to the
same data, will not yield the same residual covariance matrices. Figures 4.1.2 and
4.2 1(f) show that the determinant criterion biases the residual covariance matrix
as an estimate of the error covariance matrix in a way that MWLS does not. This
bias is in the direction of ill-conditioning and it clearly can be severe enough to
render the optimality property of the determinant criterion meaningless. This is
because the validity of the optimality property depends on the residual covariance
matrix being a good estimate of the error covariance matrix. (Davidson and
MacKinnon (1993) note the tendency of the determinant criterion to bias the
correlation between response residuals but the implication of this is not

discussed.)
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Both MWLS and the determinant criterion yield estimates of the uncertainty in
the point estimates of the parameters through equation (3.3.6). Figures 4.1.3 and
4.2.2 show that the estimates of the parameter uncertainty from MWLS can be
substantially better than those from the determinant criterion. Here again, the
difference can be attributed to the fact that the determinant criterion biases the
residual covariance matrix as an estimate of the error covariance matrix to a

greater degree than MWLS.

In the simulation study of §4.3 based on Box and Draper's (1965) parameter
estimation problem, the effect of the number of sets of measurements on the
determinant of the parameter covariance matrix was examined. Figures 4.1.4,
4.2.3 and 4.3.2 show that with increasing replication in the data, the mean
parameter variance for the determinant criterion converges to the mean parameter
variancc for generalized least squares where the weight matrix is the inverse of
the known error covariance matrix. This is because, as the number of sets of
measurements increases, the residual covariance matrix becomes a better estimate
of the error covariance matrix. This illustrates the asymptotic nature of the

determinant criterion's optimality property.

This interpretation of the results from the simulation studies has been from a
strictly frequentist perspective. The Bayesian context of §3.1 offers a different
perspective. In this context, all of the elements of the measurement error
covariance matrix are, strictly speaking, model parameters. They parameterize the
error model. Although Box and Draper (1965) integrated them out in their
Bayesian approach and Bard (1974) eliminated them as parameters by a
maximization procedure in his maximum likelihood approach, they are model
parameters nevertheless. A simple interpretation of the results is to regard the
determinant criterion as being associated with an overparameterized measurement

error model when the number of sets of measurements is not large. From a

-
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Bayesian perspective, it might be argued that the error model is not
overparameterized and that the posterior probability density function for the
parameters faithfully represents the information contained in the data. However,
the determinant criterion condenses the posterior probability density function into
point estimates of the model parameters. There is no guarantee that these
condensed point estimates will have desirable attributes like small bias and

variance.

These results show that while the determinant criterion is asymptotically optimal
for certain measurement error structures, MWLS can give substantially better
results when either the data set is not large or the measurement error structure
does not conform to that which validates the determinant criterion (§3.1). The
word that best describes this situation is 'robust’. The central point of this thesis is
that MWLS is a more robust estimation method than the determinant criterion.
Figures 4.1.4,4.2.3 and 4.3.2 show that this robustness does come at a price.
When there is a large amount of data whose measurement error structure
conforms to that which validates the determinant criterion (§3.1), then MWLS
will give parameter estimates with a larger variance than those given by the

determinant criterion.

The argument presented here does depend on the empirical observation that the

determinant criterion tends to bias the residual covariance matrix as an estimate of the

error covariance matrix and that this bias is in the direction of ill-conditioning. This kind

of bias is not nearly so evident with MWLS. The weakness with the general argument is

that it is based on a limited number of case studies. While a larger number of case studies

would strengthen this empirically based argument, a semi-quantitative explanation for

the empirical observation regarding bias of the residual covariance matrix would be

preferable.
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Following is a semi-quantitative explanation for the mathematically tractable case
of two response variables. In this case, the residual covariance matrix is a symmetric two
by two matrix whose elements will be denoted by a, 5, and ¢ where a and b are the
diagonal variance elements and c is the off-diagonal covanance element. The
determinant criterion minimizes the determinant of the residual covariance matrix which
is given by:
=ab-c? (5.0.1)

o Q
o 0

The eigenvalues of the residual covariance matrix are given by:

eigenvalues [ “ Z ] =7la+bt Ja? —2ab + b2 +4c? ) (5.0.2)
c

The condition number of the residual covariance matrix is the ratio of the larger to the
smaller eigenvalue. With some algebraic manipulation, the condition number can be

expressed in terms of the determinant, ab — ¢2, and the trace, a + b:

ac|_ (a+h)? _4@h-chH) 2
cond. no.[cb:l-———-4(ab_cz)l:l+JI @i } (5.0.3)

Equation (5.0.3) provides the incriminating link between minimizing the determinant and
biasing the condition number. The parameter estimates from the determinant criterion
will yield a residual covariance matrix determinant that is necessarily smaller than the
residual covariance matrix determinant corresponding to the true parameters. Thus, the
determinant criterion biases the determinant of the residual covariance matrix towards
zero. By equation (5.0.3), this will bias the condition number of the residual covariance
matrix in the direction of ill-conditioning which is exactly what is observed. (This
assumes that the trace will be relatively unaffected by bias in the determinant. Given that

the trace is the sum of variances this assumption seems reasonable.)
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MWLS, on the other hand, does not minimize the determinant of the residual
covariance matrix. In §3.5, it was shown that MWLS is equivalent to minimizing the
product of the diagonal elements of the residual covariance matrix. For the two response
case under consideration, MWLS will bias the product a b downward. Now, equation

(5.0.3) can be rewritten as:

2
cond.no.[zz]=§%[l+‘[l-%} (5.0.4)
The empirical observation that the condition ratio is relatively unbiased by minimizing

a b can be explained by the reasonable assumption that bias in the product a b does not
imply bias in the squared correlation term, c?/a b, or the ratio of a to b. (Note that
because a, b and ¢ are mutually dependent on the parameter estimates, ¢ is not
independent of @ and b. Therefore, minimizing a b will not necessarily bias c?/ab.)
Furthermore, because a and b are variances, one would not expect a large bias in the
product a b (except when the number of sets of measurements, n, is not greater than the
number of responses, m). Therefore, it follows that there can be a significant difference,
in terms of the effect on condition number, between biasing just the product ab (MWLS)

and biasing the determinant, a b — ¢* (determinant criterion).
g

This argument can be summed up concisely, if somewhat loosely, using
teleological language. In minimizing the determinant of the residual covariance matrix,
the determinant criterion has an incentive to find a point in parameter space that will
introduce a near linear dependency in this matrix even if the dependency is purely
spurious due to the random nature of the measurement errors. This is what can make the
distribution of the parameter estimates for the determinant criterion far from normal in
the tails. On the other hand, MWLS has no incentive to search for spurious near linear
dependencies in parameter space. Being well behaved in this regard, MWLS gives

parameter estimate distributions that are much more nearly normal.
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This discussion leads to a question of practical significance: For a particular
parameter estimation problem, which method should be used, MWLS or the determinant
criterion? This question can be answered definitively (through simulation) only when the
true measurement error model is known. In this situation the question is moot because
generalized least squares should be used to estimate the parameters. For practical

estimation problems the true measurement error model is almost certainly unknown.

A purely pragmatic answer to the question can be offered by considering the two
possible outcomes of applying MWLS and the determinant criterion to an estimation
problem. Suppose that the parameter estimates from the two methods can be judged by
some criterion to be etther significantly different or not significantly different. If the
estimates are significantly different, then the results presented in this thesis would call
into question the estimates from the determinant criterion. In this case the estimates from
MWLS should be chosen. If, on the other hand, the estimates are not significantly
different, then the estimates from MWLS can still be chosen.

This question can also be looked at from a risk-benefit perspective. The
alpha-pinene example shows that when the measurement error structure does not
conform to that which validates the determinant criterion (§3.1), use of the determinant
criterion can be very risky relative to MWLS. Figures 4.1.4,4.2.3 and 4.3.2 all show that,
even when the measurement error structure conforms to that which validates the
determinant criterion (§3.1), the relative benefit from using the determinant criterion is
small or nonexistant. This leads me to conclude that, in general, MWLS is a preferable

alternative to the determinant criterion for multiresponse parameter estimation.

74



Chapter 6 - Summary and Conclusions

The use of Box & Draper's determinant criterion for multiresponse parameter
estimation is justified on Bayesian grounds for the case where the measurement errors are
multinormally distributed within measurement sets and independent between
measurement sets. This study shows that even when these conditions hold, multivariate
weighted least squares (MWLS) can give parameter estimates with a smaller variance
when the number of sets of measurements is not large. This empirical result is seemingly
at variance with a theoretical result to the effect that the determinant criterion is optimal
in the sense of giving the smallest parameter variance. But the theoretical result is based
on an approximation that is strictly valid only for infinite data sets. So, in this sense, the
determinant criterion is only asymptotically optimal. Whether an optimal multiresponse

estimation method for finite data sets exists or not is an interesting question.

This study also shows that when the validating assumptions of the determinant
criterion do not hold, as in the alpha-pinene case, the variances of the parameter
estimates from the detcrminant critcrion can be as much as an order of magnitude greater
than that for MWLS. This shows a notable lack of robustness in the determinant criterion
that is attributable to an inherent tendency of the determinant criterion to bias the
residual covariance matrix as an estimate of the error covariance matrix. The
alpha-pinene case also highlights the problem of correctly identifying redundant response
variables when applying the determinant criterion. Therefore, in the final analysis, it is
the robust character of MWLS that leads me to conclude that its use is preferable to the

determinant criterion for practical multiresponse parameter estimation applications.
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The results described in this thesis suggest a direction for further work based on
the key issue of the conditioning of the generalized weight matrix. MWLS makes this
matrix well-conditioned by making it diagonal. This is simple and effective but it may
not be the best way to make the matrix well-conditioned. Numerical methods such as
Levenberg- Marquardt optimization often deal with ill-conditioned positive definite
matrices by augmenting the diagonal elements. MWLS can be regarded as taking this
approach to the limiting extreme where the diagonal elements are muitiplied by an
infinitely large constant. Further work might explore less extreme augmentation schemes

or other approaches to avoid ill-conditioning of the generalized weight matrix.
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