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Box and Draper's (1965) deteminant critenon for multiresponse parameter 

estimation is comrnonly used in preference to oro'inary kast squares when the 

measurement enor covariance matrix is unknown. Phillips (1976) has s h o w  that the 

deteminant criterion is numerically equivalent to an iterated genenilized least squares 

scheme. From this equivalence, it is s h o w  &ut, of ail swh weighting schemes, the 

determinant criterion in a certain sense minimizes the estirnateci parameter variances. 

However, when the number of sets of nieasurements is not large relative to the number of 

responses, Monte-Carlo simulation reveals that a multivan'ate weighted least squares 

scheme can give parameter variances that are smaller than those given by the determinant 

criterion. This suggests that the optimality property of the determinant critenon cited 

above is only asymptotically valid. Monte-Carlo simulation also reveals that, in contrast 

to multivariate weighted least squares, the determinant critenon can yield parameter 

estimates whoçe fiequency distribution is very far from normal in the tails. Multivanate 

weighted least squares (MWLS) is therefore recommended as a robust alternative to the 

determinant criterion for multiresponse parameter estimation 
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Chaoter 1 - Introduction 

Chernical engineers routinely deal with mathematical models of physio-chernical 

processes. These models fiequently contain parameters that must be estimated by a 

statistical analysis of experirnental data. The statistical techniques trace their history to 

the development of the method of lest  squares by Gauss and Legendre ai the beginning 

of the nineteenth century. The method of least squares is commoniy applied where one 

variable, the response or dependent variable, is considered as a function of one or more 

independent variables. But mathematical models of interest to chernical engineers often 

consist of systems of equations where several response or dependent variables are 

considered as functions of one or more independent variables. This multiresponse 

parameter estimation problern is compkated by the fact that different quations may 

share common parameters. However, the complication of shared parameters offers an 

opportunity in that the mode1 parameters c m ,  in principle, be better estimated fiom 

multiple responses than fiom single responses. 

Two approaches to multiresponse parameter estimation are currently popular. A 

two-step generalized least squares method, based on Zellner's (1962) work, is popular 

with econornetricians (see for example Davidson & MacKinnon (1 993)). 

Econometricians often use Zellner's term "seemingly unrelated regressionsf' to refer to the 

multiresponse parameter estimation problem. The determinant criterion for 

multiresponse parameter estimation, popular with engineers, was developed by Box and 

Draper (1965). Phillips (1976) has shown that the determinant criterion is equivdent to 

an iterated generalized least squares scheme. The twostep generalized least squares 

method can be regarded as the first iteration of this scheme with the appropriate 

initialization. Because of this close relationship between the deteminant criterion and 

Zellner's two-step generalized least squares method, the latter method will not be 

considered in this thesis. 



Since Box and Draper's (1965) introduction of the determinant criterion, other 

investigaton have shown t hat the determ inant criterion gives unrel iable parameter 

estimates in cases where the mesurement error covariance matrix is inherently singular. 

in this thesis, 1 extend this work by showing tbat the determinant criterion cm give 

unreliable parameter estimates even when the error covariance matrix is not inherentiy 

singular. For cases where the number of sets of measurements is not large or the 

measurement enor structure does not satisfy certain idealized assumptions, 1 am 

proposing the use of an alternative multiresponse parameter estimation method, 

muhivariate weighted lest squares (MWLS), that appears to be relatively robust in the 

sense that it gives reliable parameter estimates in cases where the determinant criterion 

does not. 

One very important point of terminology will be clarified here to avoid confusion. 

The tems 'weighted least squares' and 'generalized least squares' do not have universal1 y 

accepted definitions in the literature. These terms will be defined here with reference to 

the quadratic fom ( 1 .O. 1 ), where z is a vector of deviations and A is a symmebic matix: 

In this thesis, weiglited l e s t  squares refers to cases where A is a diagonal rnattix and 

generali~ed least squares refers to cases where A is not a diagonal matrix. When A is a 

diagonal matrix it will be referred to as a weight matrix and when A is not diagonal it 

wiIl be referred to as a generalized weight matrix. (For the sake of completeness, it is a 

commonly accepted definition that ordinaJy least squares refers to cases where A is an 

identity matrix and the quadratic fom reduces to rTz.) 



1.1 Literature Review 

A review article by Stewart et al. (1992) attributes the first treamient of 

muitiresponse parameter estimation to Gauss early in the nineteenth century. Modern 

treatments of the subject originate with Aitken's (1935) generalized l e s t  squares method. 

This method is applicable to multiresponse parameter estimation when the measwement 

error covariance matrix, CG, is known and the measurement error structure satisfies 

certain assumptions. In this case, the parameter estimates minimize the generalized sum 

of squares of deviations: 

where Z is the m by n matrix of deviationç: 

m is the number of response variables, n is the number of sets of rneaçurementç, 8 is the 

vector of model parameters, y is the rn by n matrix of rneasurernents, f is the matrix 

function representing the model, and x is the vector of independent variables. 

In most practical applications, the error covariance rnatrix is unknown and 

expression ( 1 . l . l )  cannot be evaluated. An alternative to expression (1.1.1) is to use an 

estimate, te, of the error covariance macrix giving: 

The error covariance matrix can be estimated by fitting the model parameters to each of 

the individual response variables using ordinacy least squares. A vector of residuals is 

calculated for each fit to each response variable. The residual covariance matrix is 

calculated fiom al1 of the vectors of residuals. This matrix is taken as an estimate, e,, of 

3 



the rneasurement error covariance maaix. Note that although each separate fit to the 

individual response variables will give a different set of parameter estimates, it is the 

residuals that are of interest, not the parameter estimates. Once the error covariance 

matrix is estimated, the second step of the method applies Aitken's generalized Ieast 

squares in the usual marner. This approach was first proposeci by Zellner (1962) for 

linear models and extended by Beauchamp and Corne11 (1966) to nonlinear models. 

Gallant (1975) showed that Beauchamp and CorneIl's (1 966) multivariate approach could 

be transforrned to a univariate one. 

The two-step generalized ieast squares method suggests an extension. The 

parameters estimated fiorn the generalized least squares step c m  be used to cacalcuiate 

residuals fTom which the enor covariance matrix is reestimated: 

With this equation, the estirnate of the error covariance matrix depends on the parameter 

estimates and the pararnetcr estimates depend on the estimate of the enor covariance 

matrix through expression (1.1.3). Phillips (1976) has show that the mutual satisfaction 

of these two conditions, which in practice is  achieved through iteration to convergence, is 

numerically equivalent to Box and Drapeh (1965) determinant criterion. 

Box and Draper (1 965) used a Bayesian argument to derive the determinant 

criterion for multiresponse parameter estimation Their derivation assumes th& the 

response measurement errors are normally distributed with zero mean. Errors of different 

rneasured responses within a measurement set are assurned to be correlated. (By 

'measurement set' 1 mean a vector of rneasured responses for a fixed value of the 

independent variable.) The unknown error covariance matrix is assumed to be constant. 

Errors between measurement sets are assumed to be independent. With these 

assumptions and a noninformative (Jeffreys) prior on the error covariance mabix, the 



elements of the error covariance matnx can be integrated out of the posterior probability 

density function giving the foilowing marginal posterior probability density function for 

the mode1 parameters: 

Point estimates of the parameten can be obtained by maximizing this function with 

respect to the parameters. This is eqw'valent to minimizing the deteminant of the 

deviation covariance matrix, IZ(0) %(O) n 1 , with respect to the parameten, 0.  Bard 

( 1  974) has shown that this determinant criterion is aIso a maximum likelihood criterion 

under the assumption of normality in the measurement error distribution. 

Box et al. ( 1973) assert that application of the determinant criten'on wil J lead to 

serious difficulties if the elements of the measurement vecton are linearly dependent. 

They claim that such a dependency will cause the deviation covariance matrix to be 

singular. McLean et ai. (1979) clarify this issue by pointing out that a Iinear dependency 

in the data must also be implicit in the mode1 to cause a singularity due to a linear 

dependency in the deviations. The argument is straightforward: 

given ay, = b 

if and only if of;@, 0) = 6 

To remedy the singularity problem, Box et al. propose a rnethod based on an eigenvdue 

analysis of the data matrix. Khuri (1 990) shows that this remedy is scale dependent and 

gives an method for handling the scaling problem. The singularity problem in the context 

of the two-step generalized least squares method has been discussed by Takada et al. 

(1 995). 



The method of muhivariate weighted least squares (MWLS) introduced in this 

thesis consists of two steps iterated to convergence. In the first step, a weighted sum of 

squares is minimized with respect to the model parameters: 

Here W is a diagonal rnatrix where each element of the diagonal corresponds to a 

response. In the second step, the reciprocds of the diagonal elements of the residual 

covariance matnx are assigned to the diagonal elements of W 

Carroll and Ruppert (1988) discuss an iteratively weighted lest squares scheme 

in the context of uniresponse models where the measurement erron are assumed to be 

independent but heteroscedastic. In this case, the weights are also detennined from the 

residuals. Of course, the standzrci multiresponse parameter estimation problem can be 

thought of in ternis of a heteroscedastic error model. However, no literature reference to 

an iteratively wcighted lcast squares scheme applied to the multiresponse parameter 

estimation problem has been found. 

A few complete examples of applications to data fiom chernical kinetics can be 

found in the literature. Box and Draper ( 1  965) discuss an example with three responses. 

The purpose of this example is to show that multiresponse parameter estimation applied 

to dl of the respomes gives much better parameter estimates than does uniresponse 

parameter estimation applied to any of the individual responses. Box et al. (1973) 

consider an example with five responses based on data fiom Fuguitt & Hawkins (1947). 

In their textbooks, Bates and Watts ( 1988) and Seber and Wild (1 989) repeat the anal ysis 

of Box et al. (1973) apparently without appreciating the relevance of the paper by 

McLean et al. (1979). This example Ml1 be considered in this thesis in some detail. 



A particularly c hallenging four-response problem that originated with the Dow 

Chernical Company is described by Biegier et al. (1986). What makes this problem 

challenging is the fact that the model is made up ofa stiff system of mixed differential 

and algebraic equations. Unfortunately , the compuîational burden associated with solving 

this system of equations makes this problem unsuitable as the basis for a simulation 

study. In al1 of the examples cited thus far the independent variable is tirne. In her recent 

P D  research, Burke ( 1  994) did copolymerization experiments yielding six responses 

where the independent variable is feed composition. This example will also be 

considered in this thesis in some detail. 

In this thesis, the issue of the number of &grees of fieedom (defined in 53.6) 

associated with multiresponse parameter estimation will be considered. If the number of 

response variables is rn, the number of sets of measurements is n, and the number of 
model parameters is p, then Bard ( 1974) takes the number of degrees of freedorn, v , to 

be: 
v =  n - p h  (1  - 1  -9) 

Bates and Watts (1 985) and Kang and Bates (1990) argue for the traditional equation: 

I wili show that neither equation c m  be generally applicable but that equation (1.1.9) can 

be considered to be a teasunable approximation. 

Sorne of the results given in thiç thesis require a fair amount of rnatrix algebra. 

Searle's (1982) book on the subject was very useful. Selected routines fiom the collection 

of numerical recipes by Press et al. (1992) were used in the coding of the simulation 

programs. 



Chapter 2 - Research Motivation 

The research leading to this thesis began with an investigation of chernical 

engineering applications of the Gibbs sampler, a technique for randomly sampling from 

probability density functions. In the course of this investigation, the determinant criterion 

for multiresponse parameter estimation was applied to an estimation problem originating 

with a PhD thesis by Burke (1994). In this examination of Burke's estimation problem, an 

anornaly in the results from the determinant criterion was obsewed. This anomaly is 

described in 52.1. 

To check if this anomaly was specific to this particular problern, another 

multiresponse estimation problem described by Box et al. ( 1  973) \vas examined. This 

examination revealed another anomaly of a quite different character, as described in 

52.2. These two anomalou resuits associated with the determinant method motivated the 

research described in this thesis. 

2.1 Burke's Multiresponse Parameter Estimation Problem 

In her thesis, Burke ( 1  994) considered copolymerization reactions. In the 

modeling of these reactions, the two reactants can be denoted by subscripts 1 and 2. Ra, 

denotes a chain of n monomer units ending in the free radical monomer unit i where i is 1 

or 2. y- denotes the monomer j. The four polymer chain propagation reactions are: 



where the kg are kinetic rate constants for the addition of monomer j to a chah ending in 

radical monomer unit i. Of interest are the reactivi~ ratios r, and r, defined as: 

The reactivity ratios can be determined from triad fractions, the fractions of 

sequences of three consecutive monomer units in the copolymer chain These fractions 

are denoted by Ac where i, j and k are monomer units I or 2. This gives eight triad 

fractions but A,, , and A ,  ,, are indistinguishable as are A,, and A,,, leaving six distinct 

triad fractions. The relationships between the reactivity ratio r,  and the three monomer4 

centered triad fractions are expressed in the following equations given by Koenig ( 1  980): 

wherej; andf, are the feed fractions of monomer reactants 1 and 2 sol, +f, = 1. 

Similady, for reactivity ratio r, and the three monomer-2 centered triad fractions we 

have: 

d, = rg: + 2rrffi +f: (2.1.4a) 



Triad fractions cannot be measured directly but, for the copolymer styrene- 

methyimethacrylate they are linearly related to C1'-NMR spectral data through the 

following equations given by Aerdts (1993): 

whae X, Y, 2, A, B, C ,  and D are relative peak areas in the c"-NMR spectmrn. The 

fixed parameters a,, = 0.44 and a- = 0.23 relate to the c"-NMR spectral characteristics 

of styrene-rnethylmethacry1ate and are not standard deviations of any kind. It cm be seen 

fiom the structure of the coefficient matrices that nonnalized tiad fiactions will iead to 

normalized peak areas because the matrix columns sum to unity. 

Burke measured experimental data fiom which the reactivity ratios r, and r, can 

be estimated. The data, as given on page 160 of her thesis, are given in Table 2.1.1 below 

and plotted in Figure 2.1 .1  on the next page. 

Table 2.1.1 Cl3-NMR Data from Burke's Thesis 



Figure 2.1.1 Multivariate Weighted Least Squares Fit 
to CI3-NMR Data fiom Burke's Thesis 

Feed (mole fraction styrene) 

Feed (mole fhdon styrene) 



Because the peak areas are normalized we should have X+Y+Z = A+B+C+D = 1. 

The value of 2, is highlighted in Table 2.1.1 because the normalization check showed a 

discrepancy subsequently attributed to a typographical error in this entry. The correct 

value should be 0.20676 instead of0.21676. The difference of0.0 1 provides the bais for 

a sensitivity check on pararneter estimates derived fiom the data. 

Table 2.1.2 below gives parameter estimates fitted to the data, for both values of 

2,. using the determinant criterion and multivariate weighted least squares (MWLS). The 

&ta and the fit from MWLS are graphically showvn in Figures 2.1.1 (a) and 2.1.1 (b) on the 

previous page. In this fi yre 2, is the shaded circle in Figure 2.1.l(a). 

Table 2.1.2 Point Estimates of Parametea (ln r , ,  In r,) 

2, Determinant Muhivariate Weighted 
Critenon Least Squares (MWLS) 

The standard deviation in Z is estimated fiorn the MWLS residuaIs to be 0.027. 

This is almost three times the perturbation in Z, of 0.0 1, so one might expect that the 

perturbation in 2, would result in changes in the parameter estimates that are srnail 

relative to the pararneter uncertainties. Estirnates of the parameter uncertainties for the 

deteminant critenon and MWLS are given by equations (3.3.8) and (3.3.6), respectively. 

These equations are based on a Iinearized rnodel. Equations (2.1.3) and (2.1.4) are 

nonlinear in the parameters r, and r,. It happens that the mode1 is more nearly linear with 

respect to the logarithm of the parameten. Since reactivity ratios cannot be negative, this 

transformation gives parameter uncertainty estimates that are more realistic. nie 

approximate 50% joint confidence regions for the prameter estimates is detemined 

using equation 3.6.1. 



Figure 2.1.2 Approximate 50% Joint Confidence Regions 

Determinant 
Criterion 

Muttivariate 
Weighted 
Least Squares 



Figures 2.1.2(a) and 2.1.2(b) on the previous page give the approximate 50% joint 

confidence regions for the parameter estimates from the determinant criterion and 

MWLS, respectively. The contours for the two values of 2, are given by the solid (2, 

= 0.20676) and broken (2, = 0.2 1676) ellipses. The scdes of the two figures differ only 

by a translation in In r,. In comparing the two figures two things stand out. Firstly, the 

areas of the joint confidence regions fiom the determinant critenon are about half the 

areas of the regions from MWLS. Secondl y, the shift between the solid and broken 

ellipses is rnuch greater for the determinant criterion compared to MWLS. (A 50% joint 

condifence region was chosen instead of 95% to highlight this difference.) 

These two facts present something of a paradox. It will be showvn in 93.3 that the 

determinant criterion theoretically should give parameter estimates w-th a smaller 

variance than those given by MWLS. If so, then why are the parameter estirnates from the 

determinant critenon much more sensitive to a perturbation in the data? The answer to 

this question is the subject of this thesis. 

The results From the examination of Burke's (1 994) multiresponse parameter 

estimation problern suggested that an examination of a textbook example might be a 

good idea. This example is discussed in $2.2. But before this example is discussed, a 

loose end should be tied up. Two linear dependencies in the data in Table 2.1.1, i-e. 

X+Y+Z = 1 and A+B+C+D = 1, also appear in the rnodel. Box et al. (1973) and McLean 

et al. ( 1979) discuss why this will cause difficulty in applying the determinant criterion- 

The difficulty is avoided by dropping two of the redundant observations. If the roundoff 

error in the observations is small relative to the experimental error then it does not matter 

which observations are dropped. Burke dropped the X and D observations. 



2.2 The Abha-Pinene Parameter Estimation P roblem 

The alpha-pinene estimation problem has been discussed in a paper by Box et al. 

( 1973) and in textbooks by Bates and Watts (1988) and Seber and Wild (1989). The data 

originated with Fuguitt and Hawkins (1  947) who studied the thermal isomerization of 

alpha-pinene (y,) to dipentene (y,) and allwcimene O;). Alloacimene (y,) in him yields 

pyronene (ya) and a dirner (y,). The conversion of alloocimene (y,) to the dimer (y,) is 

reversible while the other conversions are irreversible. Thus we have the reactions: 

(2.2. la) 

(2.2. lc) 

Assuming first-order kinetics, the associated system of differential rate equations can be 

expressed in matrix format as: 

where italicized 'y's are used to represent concentnition. 



Box et al. give the analytical solution of this system of differential equations to 

be : 

cz exp (-4 I )  + - exp (P i) + - c3 exp ((y t )  
k , + P  k, +Y 1 

where: 

and y,(O) is the initial value of y, (Le. at tirne r = O). It is assumed that the initial values of 

the other reactants are al1 zero (i-e. y,(O) = y,(O) = y,(O) = y,(O) = O). 



The experimental data measured by Fuguitt and Hawkins for the isothermal 

isomenzation of alpha-pinene at 189.5 C are given in Table 2.2.1 below. The data are 

expressed as percentages so y,(0) would be 100. The difference between 100 and the sum 

of values in each row is attributable to roundoff error (except for the third row). 

Tab te 2.2.1 Alpha-Pinene Isornerization Data 

t (min) 

Table 2.2.2 below gives parameter estimates fitted to the data using two variants 

of the determinant criterion, designatcd as (3) and (4), and MWLS. Thc parameter 

estimates designated as deteminant critenon (3) are the best estimates presented in the 

papa by Box et al ( 1  973). The cumesponding fit is shown in Figure 2.2.1 on the next 

page- 

Table 2.2.2 Parameter Estirnates for Alpha-Pinene Problem 

Deterrn inant Determinant MWLS 
Criterion (3) Criterion (4) 



Figure 2.2.1 Deteminant Cnterion (3) Fit to Alpha-Pinene Data 

Time (minutes / 1000) 

Time (minutes / 1000) 



Figure 2.2.1(a) is a reproduction of Figure 2 on page 46 of Box et al. ( 1973). It 

shows their best fit to the data using the determinant criterion. This figure is a h  

reproduced in Seber and Wild (1989). In both of these references, there is one comrnon 

omission The data and fit for y, is missing. This omission is conected in Figure 2.2.l(b) 

and the fit for y, is terrible. 

The reason for the terrible fit for y, c m  be traced to the way the investigators 

above handled two linear dependencies in the data. The tint linear dependency is due to 

the fact that, in the absence of roundoff errot, the measurements sum to y ,(O): 

The second linear dependency is due to the fact that Fuguin and Hawkins (1947) did not 

actually measure y,. They synthesized the data for y, based on the assumption that y, is 

three percent of the conversion of y, : 

Box et al. ( 1973), Bates and Watts ( 1988), and Seber and Wild ( 1989) al1 argued that 

these two linear dependencies in the data would reduce the rank of the measurement 

error covariance matrk by two fiom five to three. However, McLean et al. (1979) used 

the argument of 5 1.1 to show that a linear dependency in the data will reduce the rank of 

the error covariance mattix only if the same linear dependency is also implicit in the 

model. It happens that equation (2.2.5) is irnplicit in the model, equations (2.2.3) and 

(2.2.4), but equation (2.2.6) is not implicit in the model. For the first-order kinetics mode1 

described by equation (2.2.2) the relationship between y, and y, camot be linear. 



Box et al. (1973) describe how the determinant criterion should be applied when 

the rank of the error covariance rnatnx is less than the number of measured responses. In 

this case, taking the rank of the emor covariance matix to be three is a mistake which 

leads to loss of infomtion and a temble fit for y,. The rank of the error covariance 

matrix should be four. In Table 2.2.2 of pararneter estimates and Table 2.2.3 of mean 

squared residuals the designations (3) and (4) refer to the rank of the enor covariance 

rnatrix used in the analysis. 

Table 2.23 Mean Squared Residuals for Alpha-Pinene Problem 

Determinant Determinant MWLS 
Cntenon (3) Cntetion (4) 

Table 2.2.3 shows that taking the rank of the error covariance matrix to be four 

improves the fit for);. But this improvement seerns to corne at the expense of the fits for 

y, and y,. Table 2.2.3 also shows that the mean squared residuals for MWLS are al1 

smaller than those for the determinant criterion (4). Since the determinant criterion is 

generally considered to be a standard technique for multiresponse parameter estimation, 

this result, taken with the anomalou result of 52.1, provided the motivation behuid this 

thesis. 

The fit for MWLS is shown in Figure 2.2.2 on the next page. There is still a 

mismatch between the data and model fory, and this simply reflects the fact that 

equation (2.2.6) used to synthesize they, data cannot be consistent with the model and 

the rest of the data. 



Figure 2.2.2 Multivariate Weighted Least Squares Fit to Alpha-Pinene Data 

Time (minutes / 1000) 

Time (minutes / 1000) 



The discussion of the last two paragraphs raises an important issue about 

gmdness of fit. For single response problems, relative goodness of fit is usually 

established by applying an F test to a ratio of residual sum of squares. The statistical 

validity of the test is based on the assurnption that the measurement erron are 

independent and of constant variance. But in the multiresponse problem the residuals for 

different responses are assumed to be correlated and to have different variances. 

Therefore a simple F test is inappropriate for statistical inference in the rnuitiresponse 

case. 

Cox (1 962) developed a generalization of the F test that, for multiresponse 

inference, uses the ratio of determinants of residual covariance matrices. This test wiII 

always favor the determinant criterion which minimizes the determinant of the residual 

covariance matnx. Given, then, the problematic nature of using goodness of fit as a 

means for assessing multiresponse parameter estimation methods, another means of 

assessrnent will have to be considered. Lt is usually considered desirable for an estimation 

method to generate good parameter estimates where 'goob means small biases and small 

noms of the covariance rnatn'x of the parameter estimates. It is also desirable for the 

estimation method to yield a good estimate of the covariance rnatnx of  the pararneter 

estirnates. Therefore, the quality of the pararneter estimates, as detennined in a 

frequentist sense using Monte-Carlo simulation, will be used in this thesis as the basis for 

assessing alternative multiresponçe pararneter estimation methods. 



Chapter 3 - Theoretical Results 

In this chapter a theoretical result that is the foundation of this thesis will be 

established. It is based on Phillips' (1976) result that the deteminant criterion is 

numerically equivalent to an iterated generalized least squares scheme. This result will be 

used to show that, of al1 such iterated schemes, the determinant criterion is theoretically 

optimal in the sense that it generates parameter estimates with a minimum determinant of 

the estimated parameter covariance matrix. In addition to this result, two secondary 

theoretical results also be established. The first is that multivariate weighted lem 

squares (MWLS) has an equivalent counterpart resembling the determinant criterion. The 

second result concerm the number of degrees of freedorn associated with multirespnse 

parameter estimation. 

3.1 .MuItiresponse Estimation and the Determinant Criteriou 

In a rnultiresponse estimation problem, m dependent variables, y,, ... y,, are 

associatcd with one or more independent variables, x For n measured values of the 

independent variable, x,, . . . x, there are rnn rneasured values of the dependent variables. 

Y I P  ... y,. Between the independent variable x and rn dependent variables y there are rn 
functional relationçhips,f,, ... fm, parameterized by a vector 0 ofp parameters. If the true 

parameter values are indicated by 9' then: 

where E~ are the measurement errors in y. The rneasurernent erron in x are assumed to 

be zero. The mn deviations, y# -f;(x,, O), regarded as functions of O, can be assembled 

into an m by n matnx Z(0). (Some investigators define Z(e) to be n by m, the transpose of 

the definition used here. Later the vec operator wili be applied to Z(û) and, for this 

purpose, it is convenient to define Z(6) to be m by n.) 



Box and Draper ( 1965) showed that if the measurement errors, E, are randorn, 

normal ly distributed with zero mean, independent behveen rneasurement vectors, and 

correlated within measurement vecton with constant m by m covariance rnatrix L., then 

the likelihood function for 8 and Ce is: 

Bard ( 1974) showed that the likelihood function can be maximized with respect to the 

elements of 8 and Z, in two steps. In the first step, 0 is held constant and the likelihood 

is maximized with respect to the elements of Z.. This gives a maximum likelihood 

estimate of Z,. f,(0), that is an implicit function of0 and is just the deviation covariance 
matnx: 

in the second step, the elements of Z, are eliminated as parameten in the likelihood 

function by substituting equation (3.1.3) back into equation ( 3 . 1 4 ,  giving the conditional 

1 ikel ihood function: 

Therefore, it follows that the value of (3 that rnaximiw the likelihood is that which 

minimizes Iz@) Z(û>'l. Box and Draper (1965) first developed this determinant criterion 

using a Bayesian argument. Bard's derivation is presented here because, in the ries 

section, it will be used to establish the equivalence of the determinant cnterion with an 

iterated generalized least squares scheme. From equation (3.1.3), the maximum 

likelihood estimate of Z, conditional on a parameter estimate, 4, is the residuai 

covariance rnatrix: 

5. = & ~ ê ) ' i n  (3 .1 .5)  



3.2 The Determinant Criterion as an Iterated GLS Scheme 

The likelihood function, (3.1.2), conditioned on a fixed estirnate of the error 

covariance matrix, t, , is  

This can be written in terms of a more familiar quadratic form as 

where :(O) = vec(Z(9)) is a vector of length rnn made up of the concatenated columns of 

Z(0) and 2, = 1, Q 2, is a block diagonal matix whose n blocks are f e. Equation 

(3.2.2) has the form of a likelihood function for generalized least squares (GLS) which 

justifies the following Gauss-Newton equation for detemining the value of 0 that 

maximizes this (condi tiona1) likeli hood: 

where X, = -ûz(B)* /de, for i = I ..mn and j = 1 ..P and k denotes the k th Gauss-Newton 

i teration. 

With the maximum likelihood estimate of 8 conditioned on 2, from (3.2.3), the 

maximum likelihood estimate of Le conditioned on 6 can be determined from (3.1.5). 

When iterated to convergence these two steps yield estimates of 0 and Z. that maximize 

the likelihood function, (3.1.2). This is because the partiai derivatives of a function are 

zero at the maximum. This iterated GLS scheme is, then, numerically equivalent to the 

determinant criterion. This result is originally due to Phillips (1976). 



nie numerical equivalence of the deterrninant criterion and the iterated GLS 

scherne can also be explained with a graphical analogy. Figure 3.1.1 below shows the 

contours of a likelihood h c t i o n  for scalar values of 8 and L.. The solid line is the locus 

of points that maxirnize the likelihood with respect to L, for constant values of 8. This 

locus is obtained corn equation (3.1 S). The determinant criterion gives the value of 8 on 

this locus that maximizes the likelihood with respect to 0 and Z,. The dashed line is the 

locus of points that maximize the likelihood with respect to 6 for constant values of L.. 

This locus is obtained from equation (3.2.3). The maximum of the likelihood with 

respect to 0 and Z. is at the intersection of the two loci of points represented by the solid 

and dashed Iines. Therefore the dotted 'staircase' of  points obtained by iterating equations 

(3.2.3) and (3.1.5) MI1 converge to the same optimum as the determinant criterion. (For 

multiple local optima this argument holds only in the neighborhood of a local optimum.) 

Figure 3.1.1 Contours of a Likelihood Function 



3.3 An O~timality Property of the Determinant Criterion 

Equation (3.2.3) can be generalized by replacing the inverse of the estirnate of the 

error covariance maeix, f d , with an arbitrary syrnmetric positive definite matrix, W: 

If the mesurernent errors are random with zero mean and known error covariance matrix 

LE then it follows h m  equation (3.3.1) that the p by p panmeter covariance matnx is 

estirnated by: 

te = ( X u i u ) - ' ~ ? w ~ ~ ~ ( x 7 ~ - '  (3.3.2) 

where C, = 1,, @ C,. For linear models and constant W, this estimate of te is exact. If 

the determinant of this estimate of the parameter covariance matrix, 120 1 . is rninirnized 

with respect to the elements of W, the solution is independent of X and is simply: 

Substitution of equation (3.3.3) into equation (3.3.1) gives a multiresponse version of 

Aitkenfs ( 1  935) generalized least squares: 

Substitution of equation (3.3.3) into equahon (3.3.2) gives the estimate o f  the parameter 

covariance matnx: 
2 0  = (xrz;fx)-' (3.3.5) 

Therefore, when the error covariance matrix is known, among al1 estimation schemes of 

the form of (3.3.1), equation (3.3.4) has the property of giving the minimum value of the 

determinant of the estimate of the parameter covariance matrix, 120 1 . 



If the error covariance matix, Cc, is unknown, then the next best alternative to 

equation (3.3.2) is to use an estimate of Z,, e,, in equation (3.3.2) giving: 

If the determinant of this estirnate of the parameter covariance rnatrix is minimized with 

respect to the elements of W, the solution is: 

Substitution of equation (3.3.7) into equation (3.3.1) gives equation (3.2.3) which, when 

iterated with equation (3.1.5), is equivalent to the determinant criterion as show in 53.2. 

Substitution of equation (3.3.7) into equation (3 .X6) gives the estimate of the parameter 

covariance matrix for the determinant criterion: 

Kang and Bates ( 1  990) derived this equation using an argument based on likelihood 

inference. 

Therefore, of al1 estimation schemes in the form of (3.3.1 ), it is equation (3.2.3), 

equivaht to the determinant criterion, that minimizes 120 1 , the determinant of the 

estimate of the parameter covariance matrix, when the error covariance matix is 

unknown. (Numerical expenments suggest that equation (3.3.7) minimizes a11 reasonable 

noms of 2 0  .) This appears to be a rather strong result in support of the determinant 

criterion because 1 f e  1 is proportional to the square of the estimate of the parameter 

confidence region hypervolume. It might also be noted that, unlike denvations baçed on 

likelihood, this result does not depend on the measurement errors being normally 

distributed because the validity of equations (3.3.2) and (3.3.6) does not depend on a 

normality assumption. 



But this analysis exposes a serious weakness in the determinant cnterion. Ideally 

one would want the generalized weight maîrix, W, to be the inverse of the error 

covariance rnatrix, I,, as expressed by equation (3.3.3). But the detenninant criterion, in 

effect, makes the compromise of substituting the residual covariance matrix, 

~ ( 6 )  ~ ( 6 )  n , for the error covariance matrix The potential problern here is that, if the 

data set is not large, the residual covariance rnatrix rnay be a poor estimate o f  the error 

covariance matrix. A poor estimate of the error covariance rnatrïx will likely lead, by 

equation (3.3.8), to a poor estimate of the parameter covariance rnatrix. Although the 

determinant criterion gives the minimum determinant of the estimate of the parameter 

covariance matrix, if this estimate is a poor, then the optimality property rnay be of little 

signifieance. This means that the optimality property of the deteminant criterion is more 

relevant for large data sets than for srnaIl ones. This is equivalent to saying that the 

detenninant criterion is only asymptotically optimal. The simulation snidies of $4 will 

demonstrate that this is something of an Achilles heel for the detenninant criterion. 

In a simulation study there is an alternative way to estimate the parameter 

covariance matrix, Le. Equation (3.3.6) gives the estimate of the parameter covariance 

matrix fiom a single set of data. In a simulation study, q sets of sirnulated data may be 

used to estimate & fiorn q sets of estirnated parameters: 

2, = 2 [êi - e*] [êi -CI*]' 
4 ,, 

where 8' is the tme value of the parameter vector, known in simulation. If q is as large as 

IO4, then equation (3.3.9) should give a better estimate of the parameter covariance 

matix than does equation (3.3.6) because Le rnay be defined in a frequentist sense as: 

= iim 15 [ê, - û * ] [ ê i - O * ] *  
<I-ra. q i=* 



3.4 Bias of the Parameter Estirnates 

For models that are linear with respect to the parameten, equation (3.3.1) 

converges in one iteration: 

If the generalized weight matrix W is constant, then taking expectations gives: 

The linear mode1 c m  be written as: 

where 6' is the tnie value of the mode1 parameters, 0 .  The expectation value of the 

measurement errors, E(& is assumed to be zero so that: 

Substitution of equation (3.4.4) back into equation (3.4.2) gives the result: 

The expectation value of the parameter estimates is the tme value of the parameter 

estimates. Therefore, for models linear with respect to the parameters, the parameter 

estimates fiom equation (3.4.1) are unbiased for any constant value of W for which 

X W X  is nonsingular. This derivation is not valid for models that are nonlinear with 

respect to the parameters or if W depends on the data as in equation (3.3.7). In the 

e-xarnples discussed in 54, both of these invalidating conditions hold and bias in the 

parameter estimates is, in fact, observed. 



3.5 Multivariate Weiehted Least Squares l M W L S )  

As an alternative to the deteminant criterion, a two-step iterated weighting 

scheme will be considered In the fm step, the mode1 pammeters are estirnated by 

minimizing a weighted sum of squares of deviations with respect to the mode1 

parameters: 

Here W is a diagonal weight matrix which c m  be initialized to the identity matrix. In the 

second step the diagonal elements of the weight matix are set to the inverse of the 

diagonal elements of the residual covariance matix: 

The m diagonal elements of W are the inverse of the estimated e m r  variances of the 171 

responseç. Because 6 depends on W and W depends on 6, equations (3.51 ) and (3.5.2) 

are iterated to convergence. 

Therefore this is a muhivariate weighted least squares scheme where the weights 

are determined iteratively from the variance of the residuals. Carroll and Ruppert ( 1988) 

discuss a conceptuelly similar iteratively weighted lest  squares scheme in the context of 

uniresponse models where the measurement errors are assmed to be independent but 

heteroscedastic. However, no literature reference to an iteratively weighted lest squares 

scheme applied to the multiresponse parameter estimation problem has been found. 

The general Gauss-Newton equation (3.3.1 ) is applicable to MWLS. The estimate 

of the parameter covariance matrix for MWLS is given by equation (3.3.6) and, unlike 

the case for the determinant criterion, no further simplification is possible in this case. 



Just as the determinant criterion has an equivalent iterative counterpart (§3.2), 

MWLS has an equivalent that resembies the determinant criterion. To dernonstrate this, 

we go baclc to the discussion of the determinant criterion in 93.1 and the likelihood 

function for 8 and L, for random and nonnally distributed measurement errors with zero 

mean: 

For the sake of this argument it will be assurned that the measurement erron within a 

mesurement vector are independent. This will make I, a diagonal matrix. Bard ( 1974) 

showed that under this assumption the maximum likelihood estimates of 0 and L, are: 

The likelihood functional conditional on an estimate of the error covariance matrix is: 

By comparing equations (3.5.1) and (3.5.2) with equations (3.5.5) and (3.5.6) it cm be 

seen that equation (3.5.2) of MWLS corresponds to equation (3.5.5) and equation (3.5.1) 

of MWLS corresponds to equation (3.5.6). Under these conditions. the argument of $3.2 

can be employai to show that MWLS is equivalent to equation (3.5.4). in other words, 

iterating equations (3.5.1) and (3.5.2) to convergence is equivalent to minimizing the 

product of the diagonal elernents of the deviation covariance matrix with respect to the 

mode1 parameten. This result is of computational significance because MWLS is 

first-order in its rate of convergence. But a second-order Newton method might be 

applied to the minimization problem posed by equation (3.5.4). 



Equation (3.5.4) provides a maximum likelihood estimate of the mode1 

parameters when the measurement erron within a rneasurement vector are random, 

independent, and normally distributed with zero mean. Equation (3.5.4) is also equivalent 

to MWLS. However, this does not mean that the use of MWLS is being justified on 

likelihood grounds. Nor does it imply that the use of MWLS is justified only when the 

measurement erron w*thin a measurement vector are independent. The simulation 

studies of $4 will demonstrate that, even when the measurement mors with a 

measurement vector are correlated, the use of MWLS can be justified on the grounds that 

the parameter estimates obtained using MWLS can have a smaller variance and are more 

nearly normally distributed than those obtained using the deteminant criietion. 

Before this section is concluded, a brief comment on the handling of redundant 

response variables wi11 be made. The reason redundant response variables c m  and should 

be dropped when applying the determinant criterion is that the information in the 

redundant response variables is implicit in the deviation covariance matrix by equations 

(1.1.6). But in applying MWLS only the diagonal elements of this rnatrix are used as 

weights. Consequently, dropping redundant response variables can result in a loss of 

information for MWLS. Furthemore, retaining redundant response variables can do no 

harm because the weights will adjust thernselves accordingly. 



3.6 Degreea of Freedom for Muitirtmonse Estimation 

Given an estimate of the parameter covariance rnatrix, 20, an equation for the 

approximate joint confidence region for the parameter estirnates, as given for example by 

Draper and Smith (198 1), can be written as: 

where F e ,  v, a) is the upper a quantile of the F distribution with p and v degrees of 

freedorn. v is the number of degees of freedorn associated with 2 0  which, in tum, is 

derived from 2, through equation (3.3.6) for both MWLS and the deteminant criterion. 

The maximum (ikelihood estimate of L, is given by equation (3.1.5) to be the residual 

covariance rnatrix ~ ( 6 )  ~ ( 6 ) ~ /  n . Now, v would be equal to n if this estimate of  L, was 

unbiased. 

According to Bard (1 974), v is rz -ph  whereas Bates and Watts (1985) make a 

case for n -p .  Either choice implies that the maximum likelihood estimate of Z,, 

~ ( 6 )  ~ ( 6 ) ~ l  12, iç biased. It would be nice to resolve this issue because the estimate of the 

parameter covariance matrix, fe ,  depends on 5, through equation (3.3.6). To make the 

mathematics tractable, 1 will consider the linear model: 

where 8' is the true value of the parameten and E(E) = O. The least squares parameter 

estimate given a generalized weight rnatrix fi7 is: 



From equations (3.6.2) and (3 A.3) it fol lows that: 

Now a subset of the data, s, !vil1 be mnsidered such that: 

In the multiresponse context, this data subset will be the data for a particular response. 

From equations (3.6.4) and (3.6.5), the residuals for the data subset are: 

Given that the emors of the &ta subset, s, have the covariance matrix, E,, the number of 

degrees of freedorn, v,, associated with the generalized sum of squares of the subset 

residuals is, by definition: 

Substiniting equation (3 6 . 6 )  into equation (3.6.7) and assuming W to be constant gives: 

where n is the number of elements in the data subset. Because the set s is a subset of the 
whole data set, the elements of the matrices L, and E ( E & ~  are al1 elements of the error 

covariance mani'x, Cc. As before, Lm = 1, O L,. If the data subset is the whole data set 

(i. e. X, = X )  and if W is the inverse of the error covariance rnatix (i.e. W = LPf ) then 
equation (3.6.8) simplifies to the familiar result v = n - p .  



For a multiresponse problem, the data subsets will correspond to rn subsets of n 

elements per subset. Measurement errors between measurement vectors are assumed to 

be independent so, for the ith response, Lu = In - Ge), . For the special case where the 

error covariance rnatrix, L., is known and W = ~ 2 ,  we have the result that: 

With this result equation (3.6.8) can be reduced to: 

For the special case where measurement errors within rneasurement vectors are 

independent, X, is a diagonal rnatrix. Because the trace operator is a linear operator, it 

follows from (3 -6.10) that, for a diagonal Z, , the mean number of degees of freedom 

per response is: 

Equation (3.6.1 1 )  does not imply that each v, has the value n - p h .  Only the mean has 

this value and then only if L, is diagonal and W = Lz . 

A limiting case of equation (3.6.10) will now be considered. Suppose that, for 

response i, (CG), + O. The number of degrees of fieedom associated with response i can 

be detennined by taking the limit of the right hand side of equation (3.6.10): 

lim vi = n - p  
(Sc),,-, 0 

Ris  corresponds to the case where the rneasurement errors for one response, response i, 

are negligible relative to the errors for the other responses. In this case the parameter 



estirnates wi11, in effect, be solely detetmined by response i and the multiresponse 

problem becomes equivalent to a uniresponse problem with n - p degrees of fieedom. 

Now, there are n - p degrees of freedom for one of the responses in the special 

case juçt considered. But it cannot be that the number of degrees of fieeciorn is n - p  in 

general for al1 responses. A general value of n - p for al1 responses would be inconsistent 

with the special result of equation (3.6.1 1 ) (for m 4 1 ). Bates and Watts (1 985) consider 

the special case where n - p and argue that v = n - p  applies in this case. They then 

suggest that v = n - p  is generally applicable. it has just been show that this cannot be 

the case. Bard's ( 1 974) suggestion that v = n - p h  is generally applicable for al1 

responses is, of course, consistent with equation (3.6. I 1) but it is not consistent with the 

special result of equation (3.6.1 2). 

Equation (3.6.8) should dispel the notion that any simple expression for v can be 

generally applicable to multiresponse estimation. Even equation (3.6.8) itself is only 

valid if W is constant (Le. independent of the data). For both the determinant criterion 

and MWLS this is not the case. Therefore any simple expression for the number of 

degrees of fieedom is going to have to be çomething of an approximation. In the light of 

equation (3.6.1 1), Bates and Watts (1985) suggestion of n - p  seems too conservative. In 

the absence of any other simple alternative to Bard's (1974) suggestion of n - p h ,  1 

would recommend the use of this expression. This gives the following equation for an 

approximation to an unbiased estimate of the error covariance matrix: 



Chapter 4 - Simulation Studies 

Simulation studies for three multiresponse parameter estimation problems were 

done to show that the theoretical optirnality property of the deteminant criterion (53.3) is 

of limited relevance to finite data sets. These studies were based on Burke's ( 1994) 

parameter estimation problem, the alpha-pinene problem of Box et al. (1973), and an 

example problem discussed by Box and Draper ( 1965). 

4.1 Burke's Parameter Estimation Problem 

Burke's (1994) pararneter estimation problem was discussed in $2.1. The rnodel 

described there is called the terminal model because the reaction rate is assumed to be 

influenced by the iast, or terminal, monorner unit on the copolyrner chain. Burke 

considered the case where the reaction rate is also assurned to be influenced by the 

second to last, or penultimate, monomer unit on the copolyrner chain. The equations for 

this penultirnate model are a slight modification of equations (2.1.3) and (2.1.4): 

(4.1. la) 

Equations (4.1.1) represent half the model. The equations for the monomer-2-centered 

triad fractions are obtained by interchanging the subscripts 1 and 2. In the penultimate 

model equations (2.1.5) rernain unchanged. The pendtirnate model therefore contains 

four parameters: r, ,, r,,, r,, and r,,. Setting r,, = r,, and r, = r, ,  restores the terminal 

model. 



As part of a model discrimination dudy Burke performed an expriment that 

added a ninth set of measurements to the eight given in Table 2.1.1: 

Table 4.1.1 Additional C'"-NMR Data fiom Burke's Thesis 

The parameten of the penultimate model were fineci to the nine sets of 

measurements using multivariate weighted least squares (MWLS). The point estimates 

are: 
Table 4.1.2 Parameter Estimates 

The residuafs yield the following estimates of the error standard deviations and 

correlation matrix: 

The correlation mamx shows fairly high correlation between the residuals for some of 

the response variables. 



From the parameten of Table 4.1.2 one million data sets were synthesized with 

the simulated measurement errors multinormally distributeci with zero rnean and 

covariance maîrix derived frorn equations (4.1.2) and (4.1.3). Each data set contained 

nine sets of measurements with niae values of the independent variable,f;, taken from 

Tables 2.1.1 and 4.1.1. Parameters were estimated from each data set using both MWLS 

and the determinant criterion (Det) with two redundant response variables dropped for 

the latter method. The statistics of the sampie distributions of the parameter estimates are 

tabulated below: 

Table 4.1.3 Simulation Resdts from One Million Data Sets 

Means Standard Deviat ions 
True 

Parameter Value M W t S  Det MWLS Det 

The mean values of the sample distributions of the parameter estimates do not 

suggest that b i s  is an issue here. But the standard deviations from MWLS are al1 smaller 

than those from the deteminant criterion. Now, the theory of 53.3 showed that the 

determinant of the parameter covariance matrir should be smaller for the deteminant 

criterion. Determinants, representing hypervolumes, greatly exaggerate small differences 

in spaces of even a moderate number of dimensions, p. Therefore, it is more realistic to 

deai with ILe 1 ''P and 1x0 1 "2p which will be refened to in this thesis as the generalized 

parameter variance and standard deviation, respectively. In this case, the generalized 

parameter standard deviation, as deterrnined from equation (3.3.9). is 0.168 for MWLS 

and 0.2 19 for the determinant criterion. Clearly, the simulation resuit is not consistent 

with the theoretical result that IZB ( should be smaller for the determinant criterion. 



Figures 4.1.l(a) to 4.l.l(d) on the following pages show the sample distributions 

of the four mode1 parameters estimated fiom the one million synthetic data sets. The 

fiequency scale is logarithmic to highlight the tails of the distributions. On such a seale a 

nomial distribution would take the f o m  of a parabola. The distributions from MWLS 

(solid cuves) are very nearly normal. But the tails of the distributions from the 

determinant criterion (broken curves) are heavier than those from a normal distribution 

With reference to equation (3.6.4). a multinormal measurement error distribution 

will give a multinormal distibution in parameter estimates if the model is linear in the 

parameten (Le. matrix X is constant) and the weight rnatrix W is constant Rom sarnple to 

sarnple. The lack of nomality in the sarnple distributions for the parameter estimates 

from the deteminant criterion cannot be attributed to model nonlinearity which would 

affect the resdts from MWLS as well. So the difference in distributions must be 

associated with the weight matrix which is determined from the residual covariance 

matrix by equation (3.3.7) for the determinant criterion and equation (3.5.2) for MWLS. 

To characterize the variation in the residual covariance matrix as a distribution, it 

is convenient to consider a scalar function of the residual covariance matrix, the ratio of 

the condition numbers of the residual covariance matrix and the sanigle error covariance 

rnatrix For this discussion, the sample error covariance matri.-- is the covariance matrix 

of the synthetic enors for a given m p l e .  Therefore, 

condition number [~ (ê)  ~ ( 6 )  n] 
condition ratio = (4.1 -4) 

condition number [Z(O ') Z(B ') ? n] 

where 8' is the true value of the parameters. The sample error covariance rnatrix can 

only be known in a simulation and it is, of coune, different fiom sarnple to sarnple. 

Taking the ratio of the condition numbers compensates for the effect of random variation 

in the condition numbers of the sample error covariance matrices. 



Figure 4.1.1 Sample Distributions of Parameter Estimates 
with 95% Confidence Intervals 

Multivariate Weighted Least Squares 

- - - - - * - -  Determinant Criterion 



Figure 4.1.1 (Continued) 

(cl 

Multivariate Weighted Least Squares 

_ _ _ _ _ _ _ _  Determinant Criterion 



The condition ratio is a mesure of how much the residual covariance matrix is 

biased as an estimate of the sample error covariance matrix. By using condition number, 

the bias is expressed in terms of ill-conditioning. The higher the condition ratio, the more 

the residual covariance matrix is biased towards ill-conditioning. Figure 4.1.2 beiow 

shows a distribution nearty symmetrical about zero in the logarithm of condition ratio for 

MWLS. However, the distribution for the determinant criterion is skewed far to the right 

in the direction of ill-conditioning. (Note that the scale of the condition ratio in Figure 

4.1.2 is log base IO.) 

Figure 4.1.2 Sample Distributions of Condition Ratio 

log condition ratio 

Multivariate Weighted Least Squares 

- - - - - - - -  Determinant Criterion 



The determinant criterion finds the point in parameter space that minimizes the 

deteminant of the residual covariance matrix. The determinant is the product of the 

eigenvalues. The condition number is the ratio of largest to smallest eigenvalue. An 

examination of the distributions of the eigenvalues of the sample enor and residual 

covariance matrices shows that the deteminant criterion, in minimizing the determinant, 

tends to preferentially bias the smallest eigenvalue towards zero. This, in hm, biases the 

residual covariance matix towards ill-conditioning. The lack of nomality in the 

parameter distribution from the determinant criterion can therefore be attributed to the 

simple fact that the generalid weight matrix is the inverse of a residual covariance 

matrix that is biased towards ill-conditioning. 

In the demonstration of $3.3 that the determinant criterion is optimal among 

weighting schemes where the error covariance matrix is unknown, a key assumption is 

that the residual covariance matrix is a good estimate of the emr covariance matrix. This 

exarnple shows that the determinant criterion can violate this assumption by biasing the 

residirril covariance matrix as an estimate of the enor covariance matrix. Bias towards 

ill-conditioning in the residual covariance matrix is not evident with MUrLS. This 

explains rvhy MWLS can give a smaller value of the determinant of the true pararneter 

covariance matrix than the deteminant criterion, contrary to the theory of 93.3 which 

deals with estintates of the parameter covariance matrix. 

Figures 4.l.l(a) to 4.1. I(d) showed the distributions of point estimates of the 

mode1 parameten h m  MWLS and the determinant critenon. But these two estimation 

methods also yield estimates of the uncertainty in the parameter estimates through 

quation (3.3.6) for the pararneter covariance rnatn'x, S e .  So this raises the following 

question: How good are these estimates of the parameter uncertainty? This question can 

be addressed through the same Monte-Carlo procedure used to generate the distributions 

of the point estimates of the mode1 parameters. 



In this case, ten thousand synthetic data sets were generated using the same 

procedure describeci earlier. For each data set, point estimates of the parameters were 

obtained from MWLS and the deteminant criterion and corresponding estimates of the 

parameter covariance maîrix were obtained fkom equations (3 -3 -6) and (3 - 3 . Q  

respectiveiy. The determinant criterion gives the minimum value of If 0 1 . Since the 

frequency distribution of this quantity iç very skewed, the reiated quantity, ln 1 I p, 

was used to generate more syrnmetric fiequency distributions. 

In simulation the error covari-ance matrix, T,, is known. By the argument of 43.3, 

if L, is known, then the optimal estimation method is generalized lest  squares with the 

generalized weight matrix set to the inverse of the error covariance matrix. Here, as in 

53.3, optimal is in the sense of minimizing the determinant of the parameter covariance 

rnatrix. So, in simulation, generalized least squares provides a reference standard by 

which MWLS and the detenninant criterion may be evaluated. If ZZ is known, then 

equation (3.3.5) cm be used to estimate the parameter uncertainty for generalized lest 

squares. However, the parameter uncertainty estimates for both MWLS and the 

determinant criterion are derived h m  equation (3.3.6). So, for the sake of a consistent 

comparison, equation (3.3.6) will be used for generalized least squares as well. 

If the number of simulated data sets is very large, then equation (3.3 -9) gives a 

much better estirnate of the parameter covariance matrix than does equation (3.3.6). 

Whcn the number of simuiated data sets is as large as ten thousand then, for the purpose 

of comparison, equation (3.3.9) may be regarded as giving the 'me' value of Le. 



The results o f  the simulations are given in the histograms o f  Figures 4.1.3(a) to 

4.1.3(c) on the next page. For each method, the 'tnie' value of lZe 1 from equation (3.3.9) 

is indicated by a vertical broken line. For generalized lest squares, some bias in the 

estimates of In lXel l p  fiom equation (3.3.6) is evident because the quite symmetrical 

distribution is centered to the lefi of the 'mief value, as is also shown in Table 4.1.4 

below. For MWLS both the distribution and the 'true' value shift to the nght indicating 

more uncertainty in the parameter estimates. For the determinant criterion the 

distribution shiAs to the lefl (and widens) while the 'truef value shifls even more to the 

nght. The reason the distribution shifts to the left is that the determinant criterion, by the 

optirnality property of $3.3, gives the smallest estimate of 1x0 1. But, as has been 

discussed, rninirnuing the estimate o f  ILe 1 does not guarantee that ILe 1 itself will be 

minimized. 

The main point here is that the distribution of estimates of the parameter 

uncertainty, as determined using equation (3.3.6), is much closer to the reference 

standard (generalized least squares) for MWLS than for the determinant criterion. This 

can be attributed to the fact that the determinant critenon biases the residual covariance 

matrix as an estimate of the error covariance matrix. 

Table 4.1.4 Simulation Results fiom Ten Tbousand Data Sets 

ln [Le 1 / p  Distribution True' 
M a n  Value 

Generalized least squares 
MWLS 
Determinant critenon 



Figure 4.13 Sampie Distributions of Parameter Uncertainty Estimates 

(a) Generalized Least Squares (known Zs) 

(b) Multivariate Weighted Least Squares 

(c) Determinant Criterion 
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In the next simulation study, the effect of replication in the data on the parameter 

variance was examined. The true values of the model parameters, 0, and the error 

covariance matrix, L,, were set to the estimates given in Table 4.1.2 and equations 

(4.1.2) and (4.1.3), respectively. The vector of independent variables was set to: 

Ten thousand synthetic data sets were generated with the sirnulated rneasurernent errors 

king normally distributed with zero mean and covariance matrix as indicated above. 

Model parameters werc estimated fiom each data set using three methods: the 

determinant criterion, MWLS, and generalized lest squares (GLS) where the generalized 

weight matrix is the inverse of the true error covariance mat* Z,. The latter method 

provides a reference that is idealized in the sense that the true error covariance matrix is 

usually known only in simulation. The determinant of the parameter covariance matnx, 

1x0 1, for each of the three methods was estimated corn 10000 sets of fitted model 

p ~ ~ ~ ? p e r s  using eq~xtio:: (3.3.9). 

To investigate the effect of the number of sets of measurements, n, on the results, 

the simulation study was repeated for six full levels of replication giving results for n = 4, 

8, 12, 16,24 and 32. These results, in the fom of generalized parameter variance, 

ILu ( " P ,  plotted as a function of n on a log-log scale, are given in Figure 4.1.4 on the next 

P W -  



Figure 4.1.4 Effect o f  Sample Size on Parameter Vanance 
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As expected, generalized least squares estimation using a generalized weight 

rnatrix derived fiom the true error covariance yields the smallest parameter variance. For 

this GLS teference standard, the relationship between generalized parameter variance and 

nurnber of sets of measurements on a log-log scale is nearly linear with a dope of minus 

one (solid line), reflecting the inverse relationship between variance and sample size for 

simple estimation. As n increases, the results from the determinant criterion (dotted 

curve) converge tu the ideal reference line because the residual covariance maîrix 

converges to the true error covariance rnatrix with increasing n. The results h m  MWLS 

(dashed curve) show an offset from the reference line because the inverse of the diagonal 

weight rnatrix does not converge to the mie error covariance rnatnx with increasing n. 

Therefore Figure 4.1.4 provides strong empirical support to the argument made in 43.3 

that the determinant criterion is only asymptotically optimal. 

The divergence of the curve fur the determinant criterion from the GLS reference 

line with decreasing n leads to a limiting case for n = m - 1, where m is the number of 

response variables. For this limiting case the residual covariance rnatrix is singular and 

the parameter covariance for the determinant criterion is infinite. But a singular residual 

covariance mavix does not cause a problem for M W L S  unless one of the diagonal 

elements is zero. Thus the crossing of the two curves for the determinant criterion and 

MWLS with decreasing n is not a peculiar feature of this example, as will be shown in 

64.2 and $4.3. 



4.2 The Al~ha-Pinene Parameter Estimation Problem 

The alpha-pinene parameter estimation problem was discussed in 52.2. Given the 

very small values of the reaction rate constants, of the order of IO-*, the mode1 will be 

reparameterized as follows: 

ei = k, x IO* i =  1. .S  (4.2.1 ) 

The parameters estimated using MWLS are: 

Table 4.2.1 Parameter Estirnates 

The residuals yield the following estimates of the error standard deviations and 

correlation matrix: 

The residual correlation matrix shows fairly high correlation between the residuals for 

some of the response variables. 



From the parameten of Table 4.2.1, one million data sets were synthesized with 

the simulated measurement errors being multinonnally distributeci with zero mean and 

covariance given by equations (4.2.2) and (4.2.3). Each data set contained eight sets of 

rneasurements wiîh the independent variable, 1, set to the eight values of Table 2.2.1. 

Next, the simulated values of y, were discarded and replaced with values detemined 

using equation (2.2.6). This simulated the procedure used by Fuguitt and Hawkins in their 

original analysis of data that didnt include actual measurements ~ fy , .  Therefore, the 

erron in the 'measurements' ofy, are far fiom random and nomally distributed. 

Parameten were estimateci fiom each data set using both MWLS and the 

deteminant critenon (Det) with one redundant response variable dropped for the latter 

method. The statistics of the sample distributions of the parameter estimates are 

tabdated below: 

Table 4.2.2 Simulation Resuits from One MiIlion Data Sets 

Means Standard Deviations 
True 

Parameter Value MWtS Det MWLS Det 

In this case, the values of the generalized parameter standard deviation, (Lo 1 "*, as 

detemined by equation ( 3 . 3 3 ,  are 0.176 for MWLS and 0.53 1 for the determinant 

criterion. In other words, the generalized parameter variance for MWLS is about an order 

of magnitude less than that for the determinant criterion. This result is, of course, wildly 

inconsistent with the optirnality property of the determinant criterion deriveci in 53.3. 



The sample distributions of the parameter estimates and the condition ratio, on a 

logarithmic frequency scale, are given in Figures 4.2. I(a) to 4.2. i(f) on the following 

pages. The nearly parabolic shapes of the parameter distributions for MWLS (solid 

curves) indicate near n o m l  distributions in the parameter estimates. On the other han& 

the shapes of the distributions for the determinant ctitenon (broken curves) are very far 

from the parabolic shape of a normal distribution. The heavy tails on these distnlmtions 

greatly inflate the variance of the parameter estimates for the determinant criterion. 

The sample distributions of the condition ratio, defined in $4.1 as the ratio of the 

condition numbers of the residual covariance mahix and the sample error covariance 

matrix, shows the same features of the condition ratio distributions in Figure 4.1.2. The 

distribution in the condition ratio for the determinant criterion is skewed to the right in 

the direction of ill-conditioning. Because the deteminant criterion biases the residual 

covariance matrix as an estimate of the cmor covariance matrix, the validity of the theory 

supporting the optimality property of this cnterion is compromised. 

A word should be said here about the optimization procedure used to determine 

the point estimates of the parameters. The initial values of the parameter estirnates were 

set to the tme values of Table 4.2.1 used to generate the data set. Newton optimization 

steps could have been applied at fint but this would have been risky, given that the 

objective function can have multiple local optima. So a conservative gradient method 

was used to get to the vicinity of the optimum, at which point Newton steps were applied 

to 'polish' the result. In the case of the determinant criterion, severe ill-conditioning of the 

deviation covariance matrix stalled the search in about 0.04% of the one miIIion cases. 

but this would most likely result in the parameter variance for the deteminant ctiterion 

to be underestimated because the searches were initialized with the tnie parameter 

values. 



Figure 4.2.1 Sample Distributions of Parameter Estimates 
with 95% Confidence Intervals 

Multivariate Weighted Leas t Squares 

- - - * - - - -  Determinant Criterion 



Figure 4.2.1 (Continued) 

Multivariate Weighted Least Squares 

_ _ _ _ _ _ _ _  Determinant Criterion 



Figure 4.2.1 (Continued) 

log condition ratio 

Multivariate Weighted Least Squares 

- _ _ - _ _ _ _  Deteminant Criterion 



This example demonstrates that the determinant criterion can give very poor 

parameter estimates relative to MWLS when the measurement errors are not random with 

zero mean. In such a case, it is pointless to do a cornparison between MWLS and the 

determinant criterion in terms of the quality of the estimates of parameter uncertainty 

fiorn equation (3.3.6). This is because the vaiidity of equation (3.3.6) depends on the 

measurement errors being random with zero mean. However, it is easy to remedy this by 

not building into the simulated data the defect that Fuguia and Hawkins built into their 

data through equation (2.2.6). nius, the simulated measurement mon will satisfy the 

assumptions that validate equation (3.3.6) as in the simulation study of 54.1. 

A simulation study similar to the one described in $4.1 was conducted with the 

simulateed measurement errors nomally distributed with variances and correlation matrix 

given by equations (4.2.2) and (4.2.3). Generalized l e s t  squares (known Z, ), MWLS and 

the deteminant criterion were applied to ten thousand simulated data sets and equation 

(3.3.6) was used to estimate the parameter covariance matrix, Te, for each rnethod. The 
histograms of In 1 f e 1 Ip are aven in Figures 4.2.2(a) to 4.2.2(c) on the next page. The 

'truef values of the parameter uncertainty, as determined from equation (3.3.9). are 

indicated by vertical broken fines. 

Figure 4.2.2 for the a-pinene problem shows the same characteristics as Figure 

4.1.3 does for Burke's copolyrnerization problem. The distribution of estimates of 

In ICe 1 l p ,  relative to the 'true' value, is about the same for generalized least squares and 

MWLS. However, the distribution of estimates for the determinant criten'on is quite 

different in that it is much more biased towards underestimating the parameter 

uncertainty. The noteworthy point here is that, because Figures 4.1.3 and 4.2.2 are so 

similar, their characteristics are not likely due to some peculiar feature of the respective 

models or simuiated data 



Figure 4.2.2 Sample Didibutions of Parameter Uncertainty Estimates 

(a) Generalized Least Squares (known LE) 

(b) Multivariate Weighted Least Squares 

(c) Deteminant Criterion 
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In the next simulation study, the effect of replication in the data on the parameter 

variance was examined. The true values of the model parameters, 8, and the error 

covariance matrix, L,, were set to the estimates given in Table 4.2.1 and equations 

(4.2.2) and (4.2.3), respcctively. The vector of independent variables was set to: 

Ten thousand synthetic data sets were generated with the simulated measurement errors 

king normally distributed with zero mean and covariance matrix as indicated above. 

Model parameters were estimated fiom each data set using three methods: the 

deteminant critenon, MWLS, and generalized least squares (GLS) where the generalized 

weight matrix is the inverse of the true error covariance ma* Lc. The determinant of 

the parameter covariance matrix, IL,, 1, for each of the three methods was estimated from 

10000 sets of fined model parameters using equation (3.3.9). 

To investigate the effect of the number of sets of rneasurements, n, on the results, 

the simulation study \vas repeated for six full levels of replication giving results for n = 8, 

16,24,32,48 and 64. These results, in the form o f  generalized parameter variance, 

1 X e  ( " p ,  plotted as a function of 12 on a log-log scale, are given in Figure 4.2.3 on the next 

page. The features of Figure 4.2.3 are qualitativeiy similar to those of Figure 4.1.4. The 

crossing of the curves for MWLS and the determinant criterion supports the 

interpretation of Figure 4.1.4 discussed in 54.1. 



Figure 4.2.3 Effect of Sample Size on Parameter Variance 
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4.3 Box and Draper's Parameter Estimation Problem 

In introducing the determinant criterion, Box and Draper (1 965) discussed an 

example from chemical reaction kinetics involving the reactions A + B + C. If the 

proportion of reactants A, B and C at time t are denoted by y,, y, and y, then first-order 

reaction kinetics with rate constants 4,  and 4, yields the system of ordinary differential 

equations: 
(4.3. la) 
(4.3.1 b) 

(4.3. lc) 

With initial conditions y ,  = 1 and y ,  =y,  = O at r = O ,  the solution to these ODES is 

The data Box and Draper used consisted of the twelve sets of measurements given in 

Table 4.3.1 : 

Table 4.3.1 Data for Box and Drapefs Examplc 



Figure 43.1 Determinant Criterion Fit to Data 
from Box and Draper's Example 

Time 



Box and Draper parameterized the model in ternis of Q = In(@). The determinant criterion 

applied to this data yields the parameter estimate: 

The fit to the data i s  shown in Figure 4.3.1 on the previous page. The residuals yield the 

following estimates of the error standard deviations and correlation matix: 

For the purpose of the simulation study, the true values of the model parameten, 

0, and the error covariance matrix, L,, were set to the estimates from equations (4.3.3), 

(4.3-4) and (4.3.5). The vector of independent variables was set to: 

Ten thousand synthetic data sets were generated with the sirnulated measurement erron 

being norrnally distributed with zero mean and covariance as Qven above. 

Model parameters were estimated from each data set using three methods: the 

determinant critenon, MWLS, and generalized least squares (GLS) where the generalized 

weight matrix is the inverse of the true error covariance matrix, X,. The determinant of 

the parameter covariance matix, Ire 1,  for each of the three methods was estimated from 

10000 sets of fined rnodel parameten using equation (3.3.9). 



To investigate the effect of the number of sets of measurements, n, on the results, 

the simulation audy was repeated for six full levels of replication giving results for n = 4, 

8, 12, 16,24 and 32 . These results, in the form of generalized parameter variance, 

IlCo 1 "P, plotted as a hnction of n on a log-log scale, are given in Figure 4.3.2 on the next 

page. The features of Figure 4.3.2 are qualitatively similar to those of Figures 4.1.4 and 

4.2.3. The crossing of the curves for MWLS and the determinant criterion supports the 

interpretation of Figure 4.1.4 discussed in $4.1. 



Figure 43.2 Effect of Sample Size on Parameter Variance 
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Chaoter 5 - Discussion 

The argument king made in this thesis can be broken dom into the following 

components: 

(a) ln comparing multivariate weighted least squares ( M W L S )  with the determinant 

criterion for multiresponse parameter estimation, a goodness of fit test is 

problematic. As discussed in $2.2, Cox's (1962) generalization of the F test relies 

on the ratio of deterrninants of the residual covariance matrices. Therefore this 

test will always favor the deteminant criterion. In 53.5, it was show that MWLS 

was equivalent to minimizing the product of the diagonal elements of the 

deviation covariance matrk with respect to the model parameters. So a gwdness 

of fit test based on the ratio of products of residual variances will aiways favor 

MWLS. Given, then, this problern with goodness of fit as an evaluation criterion 

in a multiresponse context, a frequentist evaluation approach was chosen. 

(b) A frequentist approach to evaluating parameter estimation methods considen the 

frequency distribution of the parameter estimates. In a case study, the tme values 

of the model parameters and measurement error structure are known. Therefore, 

Monte-Carlo simulation can be used to sample from the frequency distribution of  

the parameter estimates. As the sample size increases, the sample distribution of 

parameter estimates becornes more representative of the freguency distribution of 

panuneter estimates. For evaluation purposes the sampie distribution of parameter 

estimates is characterized by its mean and covariance matrix. The covariance 

mauiv is further characterized by a suitable nom, its determinant, which is 

proportional tu the square of the hypervolurne of t l e  parameter confidence region 

in parameter space. 



(c) In $3.2 the numerical equivalence of the detenninant criterion to an iterated 

generalized least squares scheme was diseusseci. Ln the iterated scheme, the 

parameters are estimated using generalized least squares where the weight marrix 

is the inverse of the residuai covariance mairix The residual covariance rnatrix, 

in tum, is detemined fiom the parameter estimates, making for an iterated 

scheme. At convergence, the parameter estimates from this iterated scheme 

rnaximize the same likelihood function as the parameter estimates fiom the 

determinant criterion, thus establishing the numerical equivalence of the two 

methods. This result is originally due to Phillips (1 976). 

(d) In $3.3 it was shown thai, when the measurement error covariance rnatrix is 

known, Aitken's (1935) generalized lest  squares estimation method minirnizes 

the deteminant of the estimate of the parameter covariance matrix It does this by 

using a wcight matrix that is the inverse of the error covariance m a t i x  When the 

error covariance matnx is unlaiown, of al1 weighting schernes, the determinant 

criterion minirnizes the determinant of the estimate of the parameter covariance 

matrix. It does this by using a weight matrix that is the inverse of the residual 

covariance matrix. Thus, the deteminant criterion, in efZect, approximates the 

error covariance rnatnx by the residual covariance matrix. 

(e) The three simulation studies of $4 clearly show that the deteminant criterion's 

optirnality property, giving the smallest deteminant of the estimate of the 

pammeter covariance matrix, is of limited practical significance. The simulation 

study of 54.1. based on Burke's (1994) parameter estimation problem, shows that 

even when the measurement errors satisfy the standard validating assumptions, 

MWLS can give a smaller deteminant of the true parameter covariance matrix 

than the deteminant criterion. The fiequency distributions of the parameter 

estimates in Figure 4.1.1 show near normal distributions (parabolic on the log 



scaie used) from MWLS while the distributions From the determinant criterion 

show relatively heavy tails. 

In the simulation shdy of 54.2 based on the alpha-pinene parameter estimation 

problem, a defect waç built into the maurement error structure. Figure 4.2.1 

shows the effect of this defect on the frequency distributions of the parameter 

estimates. Again, MWLS yields near normal distributions of the parameter 

estimates while the determinant criterion yields distributions that are very far 

from normal. In fact, the distribution tails from the determinant criterion are so 

heavy that the parameter variances are an order of magnitude greater than those 

from MWLS. 

(g) It was noted in (d) that the determinant criterion, in effect, approxirnates the error 

covariance matrix with the residual covariance matrixe Continuing with this 

perspective, MWLS approximates the error covariance rnatrix with the diagonal 

matrix of the diagonal elements of the residual covariance matrix. It would seem 

at first glance that the approximation used by the determinant criterion must be 

better than that used by MWLS. But the two estimation methods, applied to the 

same data, will not yield the same residual covariance maaices. Figures 4.1.2 and 

4.2.l(f) show that the determinant criterion biases the residuai covariance matnx 

as an estimate of the error covariance matrix in a way that MWLS does not. This 

bias is in the direction of ill-conditioning and it clearly can be severe enough to 

render the optimality property of the determinant criterion meaningless. This is 

because the validity of the optimality property depends on the residual covariance 

matrix king a goad estimate of the error covariance matrix. (Davidson and 

MacKinnon (1993) note the tendency of the determinant cnterion to bias the 

correlation between response residuals but the implication of this is not 

discussed. ) 



(h) Both MWLS and the detenninant criterion yield estimates of the uncertainty in 

the point estimates of the parameters through equation (3.3.6). Figures 4.1.3 and 

4.2.2 show that the estimates of the parameter uncertainty from MWLS can be 

substantiaIIy better than those fiom the detenninant criterion Here again, the 

ciifference can be attributed to the fact that the determinant criterion bises the 

residual covariance matrix as an estimate of the error covariance matrix to a 

greater degree than MWLS. 

(i) In the simulation study of 54.3 based on Box and Draper's ( 1  965) parameter 

estimation problem, the effect of the number of sets of measurements on the 

&terminant of the pararneter covariance matrix was exarnined. Figures 4.1.4, 

4.2.3 and 4.3.2 show that with increasing replication in the data, the mean 

pararneter variance for the detenninant criterion converges to the mean pararneter 

variance for gcneralized lcast squares where the weight matrix is the inverse of 

the knom error covariance matrix. This is because, as the number of sets of 

rneasurements increases, the residual covariance rnatrix becornes a better estimate 

of the error covariance matrix. This illustrates the asyrnptotic nature of the 

deteminant criterion's optimality property. 

0) This interpretation of the results fiom the simulation studies has been fiom a 

stnctly frequentist perspective. The Bayesian context of 53.1 offers a different 

perspective. In this context, al1 of the elements of the measurement error 

covariance matri x are, strict 1 y spea king, mode1 parsmet en. They parametenze the 

error model. Although Box and Draper (1965) integated them out in their 

Bayesian approach and Bard ( 1974) eliminated them as parameters by a 

maximization procedure in his maximum likelihood approach, they are model 

parameten nevettheless. A simple interpretation of the results is ta regard the 

detenninant criterion as k ing  associateci with an overpararneterized measurement 

error model when the nurnber of sets of measurements is not large. From a . 



Bayesian perspective, it might be argued that the error model is not 

oveprameterizci and that the posterior probability density function for the 

parameten faithfuliy represents the information contained in the data. However, 

the determinant criterion condenses the posterior probabiliîy density function into 

point estimates of the model parameters. There is no guarantee that these 

condensed point estimates will have desirable attributes like small bias and 

(k) These results show that while the determinant criterion is asymptotically optimal 

for certain measurement error structures, MWLS can give substantially better 

results when either the data set is not large or the measurement error structure 

does not confonn to that which validates the determinant criterion ($3.1). The 

word that best describes dus situation is 'robust'. The central point of this thesis is 

that MWLS is a more robust estimation method than the detenninant criterion. 

Figures 4.1.4,4.2.3 and 4.3.2 show that this robustness does corne at a price. 

When there is r large amount of data whose measurement enor structure 

conforms to that which validates the determinant criterion (53. l), then MWLS 

w i l l  give parameter estimates with a larger variance than those given by the 

detenninant criterion. 

The argument presented here does depend on the empirical observation that the 

determinant criterion tends to bias the residual covariance matrix as an estimate of the 

error covariance matix and that this bias is in the direction of ill-conditioning. This kind 

of bias is not nearly so evident with MWLS. The weakness with the general argument is 

that it is based on a limited number of case studies. While a larger nurnber of case studies 

would strengthen this empirically based argument, a semiquantitative explanaiion for 

the empirical observation regarding bias of the residual covariance matrix would be 

preferable. 



Following is a semi-quantitative explanation for the mathematically tractable case 

of two response variables. ln this case, the residual covanance matrix is a symmetic two 

by two matrix whose elements will be denoted by a, b, and c where a and b are the 

diagonal variance elements and c is the off-diagonal covariance element The 

deteminani criterion rninimizes the determinant of the residual covariance matrix which 

is given by: 

The eigenvalues of the residual covariance matnx are given by: 

The condition number of the residual covariance matrix is the ratio of the larger to the 

srnaller eigenvalue. With some algebraic manipulation, the condition number can be 

expressed in terms of the determinant, ab - c2, and the trace, a + b : 

sond. no. [: ] = [ I  + 1-1 ' (5.0.3) 
4 (ab - c2) (a + 6) 

Equation (5.0.3) provides the incriminating link between minimizing the determinant and 

biasing the condition nurnber. The parameter estimates from the deteninant critenon 

will yield a residual covariance matix determinant that is necessarily smaIler than the 

residual covariance matrix determinant correspnding to the true parameters. Thus, the 

deteminant critenon biases the deteminant of the residual covariance rnatrix towards 

zero. By equation (5.0.3), this will bias the condition nurnber of the residual covariance 

manix in the direction of illtonditioning which is exactly what is observed (This 

assumes that the trace will be relatively unaffected by bias in the determinant. Given that 

the trace is the sum of variances this assumption seems reasonable.) 



MWLS, on the other hand, does not minimize the determinant of the residual 

covariance mam'x. In 93.5, it was shown that MWLS is quivalent to minimizing the 

product of the diagonal elements of the residual covariance rnatrix. For the two response 

case under consideration, MWLS will bias the product a 6 downward. Now, equation 

(5.0.3) c m  be rewritten as: 

The empirical observation that the condition ratio is relatively unbiased by minimizing 

a b  can be explained by the reasonable assumption that bias in the product a b does not 

imply bias in the squared correlation term, c'la b ,  or the ratio of a to b. (Note that 

because a, b and c are mutually dependent on the parameter estimates, c is not 

independent of o and 6 .  Therefore, minimizing a b wïll not necessarily bias c2/a b .) 

Furthemore, because a and b are variances, one would not expect a large bias in the 

product a b  (except when the number of sets of measurernents, n, is not greater than the 

number of responses, m). Therefore, it follows that there can be a significant difference, 

in ams of the effect on condition number, between biasing just the product ab (MWLS) 

and biasing the determinant, a b - c' (determinant criterion). 

This argument can be summed up concisely, if somewhat loosely, using 

teleofogical language. In minimizing the determinant of the residual covariance matrix, 

the determinant cnterion has an incentive to find a point in parameter space that will 

introduce a near linear dependency in this matix even if the dependency is purely 

spurious due to the random nature of the measurement errors. This is what can make the 

distribution of the parameter estirnates for the determinant criterion far From normal in 

the ta&. On the other hanci, M W L S  has no incentive to search for spurious near linear 

dependencies in parameter spacc. Being well behaved in this regard, MWLS gives 

parameter estimate distributions that are much more nearly normal. 



This discussion leads to a question of practical significance: For a particular 

parameter estimation problem, which method should be used, MWLS or the determinant 

criterion? This question cm be answered definitively (through simulation) only when the 

true measurement error model is kmwn In this situation the question is moot because 

generalized least squares should be used to estimate the parametes. For practical 

estimation problems the true measurement enor model is almost certainly unknown 

A purely pmgmatic answer to the question can be offered by considering the two 

possible outcornes of appiying MWLS and the determinant criterion to an estimation 

problem. Suppose that the parameter estimates fiom the two methods can be judged by 

some criterion to be either significantly different or not significantly different. If the 

estirnates are significantly different, then the results presented in this thesis would cal1 

into question the estimates from the deteminant criterion. In this case the estimates from 

MWLS should be chosen- If, on the othcr hand, the estimates are not significantly 

different, then the estimates from MWLS can still be chosen. 

This question can also be looked at from a risk-benefit perspective. The 

alpha-pinene example shows that when the measurement error structure does not 

conform to that which validates the deteminant critetion ($3.1 ), use of the detenninant 

criterion can be very risky relative to MWLS. Figures 4.1.4,4.2.3 and 4.3.2 d l  show thai, 

even when the measurement error structure conforms to that which validates the 

determinant criterion ($3.1), the relative benefit from using the determinant criterion is 

smal 1 or nonexistant. This leads me to conclude that, in general, MWLS is a preferable 

alternative to the determinant criterion for multiresponse parameter estimation. 



Chapter 6 - Summarv and Coociusions 

The use of Box & Draper's deteminant criterion for multiresponse parameter 

estimation is justified on Bayesian grounds for the case where the measurement errors are 

multinormall y distributed within measurement sets and independent between 

measurement sets. This study shows that even when these conditions hold, multivariate 

weighted least squares (MWLS) can give parameter estirnates with a smailer variance 

when the number of sets of measurements is not large. This empirical result is seemingly 

at variance with a theoretical result to the effect that the determinant criterion is optimal 

in the sense of giving the smallest parameter variance. But the theoretical result is bas& 

on an approximation that is strictly valid ody for infinite data sets. So, in this sense, the 

detenninant ctiterion is only asymptotically optimal. Whether an optimal multiresponse 

estimation method for finite data sets exists or not is an interesting question. 

This shidy also shows that when the validating assumptions of the determinant 

criterion do not ho14 as in the alpha-pinene case, the variances of the parameter 

estimates from the deteminant cntcrion can bc as much as an order of magnitude greater 

than that for MWLS. This shows a notable lack of robustness in the determinant critenon 

that is attributable to an inherent tendency of the determinant criterion to bias the 

residual covariance matrîx as an estimate of the error covariance matix. The 

alpha-pinene case also highlights the problem of correctly identimng redundant response 

variables when applying the deteminant criterion. Therefore, in the final analysis, it is 

the robust character of MWLS that leads me to conclude that its use is preferable tu the 

deteminant criterion for practical multiresponse parameter estimation applications. 



The results descnbed in this thesis suggest a direction for further work based on 

the key issue of the conditioning of the generalized weight matrix. MWLS makes this 

matix well-conditioned by making it diagonal. This is simple and effective but it may 

not be the best way to aake the rnatrk well-conditioned Numericd rnethods such as 

Levenberg- Marquardt optimization often deal with ill-conditioned positive definite 

matrices by augmenting the diagonal elements. MWLS can be regarded as taking this 

approach to the limiting extreme where the diagonal elements are muitiplied by an 

infinitely Iarge constant. Further work rnight explore less extreme augmentation schemes 

or other approaches to avoid ill-conditioning of the generalized weight matrix. 
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