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Scale-dependent anisotropy in forced stratified turbulence
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In stratified turbulence, buoyancy forces inhibit vertical motion and lead to anisotropy
over a wide range of length scales, which is characterized by layerwise pancake vortices,
thin regions of strong shear, and patches of small-scale turbulence. It has long been known
that stratified turbulence becomes increasingly isotropic as one moves to smaller length
scales, as the eddy timescale decreases towards and below the buoyancy period. This paper
investigates the anisotropy of stratified turbulence across scales and the transition towards
isotropy at small scales, using a variety of techniques. Direct numerical simulations of
strongly stratified turbulence, with buoyancy Reynolds numbers Reb up to 50, are analyzed.
We examine the relative contributions of different components of the strain rate tensor
to the kinetic energy dissipation, the invariants of the isotropy tensor, directional kinetic
energy spectra, and the subfilter energy flux across different length scales. At small scales,
the degree of isotropy is determined by Reb, while at the Ozmidov and larger scales, the
anisotropy also depends on the Froude number. The change in the anisotropy with scale
and with the parameters is examined in detail. Interestingly, Ozmidov-scale eddies are
found to become increasingly isotropic as Reb increases, as characterized by the isotropy
tensor invariants and the subfilter energy flux. At larger scales, the energy spectra for
near-vertical wave vectors have a spectral slope around −3, which shallow towards −1
for near-horizontal wave vectors. These spectra converge beyond the Ozmidov scale,
increasingly so for large Reb. These results suggest that Reb � 500 would be necessary to
obtain the same degree of small-scale isotropy that is found in similarly sized simulations
of unstratified turbulence.
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I. INTRODUCTION

Stratified turbulence is inherently anisotropic. Gravity, background density stratification, and
shear contribute to the breakdown of isotropy and the distinction between horizontal and vertical
gradients and velocity components. Under strong stratification, buoyancy forces inhibit vertical
motion, reduce the vertical scale of turbulent eddies, and lead to distinct anisotropic modes of
motion, including vortical modes and gravity waves [1–3]. Stratified turbulence in the atmosphere
and ocean occurs at intermediate and small scales, which are large enough to be influenced by
stratification but small enough to not be strongly affected by Coriolis forces [4]. Homogeneous
stratified turbulence with vortical mode forcing or initial conditions is commonly used as an
idealized model for geophysical turbulence in this regime [5–10]. In this paper, we consider the
anisotropy across different scales of stratified turbulence forced by vortical motion. We focus in
particular on the large scales, the Ozmidov scale, and the dissipation scale.
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The anisotropy of stratified turbulence varies across length scales. In turbulence dominated by
vortical motion, the largest scale eddies are characterized by thin layers of quasihorizontal rotational
velocities separated by regions of strong vertical shear. These structures are sometimes called
pancake vortices [1]. The limiting behavior for strong stratification at fixed Reynolds number is
layerwise two-dimensional turbulence [11–13]. When viscous effects are weak, the thickness of
these layers is determined by the buoyancy wave number kb ≡ N/U , where N is the buoyancy
frequency and U is the RMS velocity [7–9,14,15], and the layers are separated by regions of
Kelvin-Helmholtz instability and small-scale turbulence [16,17]. The large-scale aspect ratio is
therefore proportional to the horizontal Froude number

H

L
∼ U

NL
≡ Frh, (1)

where H and L are the vertical and horizontal length scales, and is small in strongly stratified
turbulence [14]. The associated vertical velocities are weak [18,19]. The energy cascade to small
scales includes anisotropic nonlocal transfers from large horizontal and small vertical scales directly
to more isotropic motions around the buoyancy scale [17,20]. When viscous effects are stronger,
pancake vortices are viscously coupled in the vertical, and the instabilities and transition to small-
scale turbulence are suppressed [9,16,21].

The anisotropy of large-scale vortical motion extends to smaller length scales in stratified
turbulence. This anisotropy is characterized by different kinetic energy spectra in the horizontal
and vertical wave numbers. Down to the buoyancy wave number, the horizontal wave-number
spectral slope is approximately −5/3 and the vertical wave-number spectrum is relatively flat
[7–9,15,19,22]. At the buoyancy wave number, the horizontal wave-number spectrum sometimes
exhibits a bump associated with Kelvin-Helmholtz instabilities between the pancake vortices
[9,16,17], while the vertical wave-number spectral slope steepens to around −3 [9,15]. Directional
spectra, in which the energy spectra are computed along different angles from the horizontal, also
show steeper spectra for more vertical wave vectors [23].

At sufficiently small scales, stratified turbulence starts to resemble isotropic three-dimensional
turbulence. This transition happens around the Ozmidov wave number [24,25]

kO ≡
(
N3

ε

)1/2

, (2)

where ε is the kinetic energy dissipation rate. (No factor of 2π is included in the definition of the
Ozmidov and other characteristic wave numbers [24,26–28].) At the Ozmidov wave number, the
wave-number-dependent eddy frequency (k2Oε)1/3 is equal to the buoyancy frequency N . Below
the Ozmidov scale, eddies evolve more quickly than the buoyancy period; when this timescale
separation is large enough, i.e., at sufficiently small scales, the eddies are expected to evolve without
being influenced by the stratification. If the Reynolds number is sufficiently large, the horizontal
and vertical wave number energy spectra exhibit a −5/3 power law between the Ozmidov and
Kolmogorov dissipation wave number [22,26,29,30]

kd ≡
(

ε

ν3

)1/4

. (3)

The length of the inertial range between kO and kd is given by

kd
kO

= Re3/4b , (4)

where

Reb ≡ ε

νN2
(5)
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is the buoyancy Reynolds number [27,31]. When L is related to ε using Taylor’s relation [8] L ∼
U 3/ε, then Reb ∼ Fr2hRe, where Re ≡ UL/ν is the large-scale Reynolds number. (Note, however,
that Taylor’s relation may not always be appropriate in stratified turbulence [15,32].) Similarly, the
length of the stratified inertial range between the energy-containing wave number ki ≡ 1/L and kO
is [9]

kO
ki

=
(
L2N3

ε

)
∼ Fr−3/2

h . (6)

Therefore, stratified turbulence with a long stratified inertial range (between ki and kO) and long
small-scale inertial range (between kO and kd ) requires small Frh and large Reb, and therefore very
large Re. Minimum Reb values required for a fully developed small-scale inertial range have been
quoted at from 30 [33] to 200 [27].

At the smallest scales, where viscous dissipation occurs, anisotropy can be quantified by compar-
ing the contributions to the total dissipation. This can be done by comparing the overall contributions
from horizontal and vertical gradients [7,22] or by considering the different components of the
velocity gradient or strain rate tensors [34–36]. In geophysical or laboratory turbulence, ε is often
inferred from measurements of a small number of velocity gradients, so knowledge of the ratios
of the individual components to the total is important. Dissipation scale isotropy, as described by
these ratios, appears to be entirely determined by Reb [37]. When Reb � O(1), layerwise vortical
motion is viscously coupled in the vertical, there is no inertial range below the Ozmidov scale,
and the dissipation is dominated by vertical gradients and is therefore very anisotropic [34,38–40].
For increasing Reb � O(1), the vertical shear contribution to the dissipation decreases and the
other components increase, and the dissipation approaches isotropy [9,36,37]. In direct numerical
simulation (DNS) studies of homogeneous stratified turbulence without mean shear in which the
isotropy of the dissipation components was investigated, Reb values of up to 14 [36] and 16 [9] were
considered. In stratified shear flows, extrapolation of results at lower Reb suggest that the dissipation
would become fully isotropic at Reb ∼ 105 [37]; however, without the additional anisotropy of the
shear, stratified turbulence without mean shear may isotropize at lower Reb. Indeed, analysis of
PDFs of velocity gradients shows good agreement with isotropic values for Reb ≈ 200 [41].

In this work, we investigate the development of isotropy across scales in stratified turbulence
forced by vortical modes over a range of Frh, Re, and Reb. In particular, we focus on the anisotropy
of the large scales, associated with the energy-containing vortical modes; the Ozmidov scale, at the
scale transition between strongly and weakly stratified eddies; and the small scales associated with
energy dissipation. The scaling argument in Eq. (1) suggests that anisotropy of the large scales is
determined by Frh, while (4) suggests that the isotropy of the dissipation scales is set by Reb [37].
Such scaling arguments provide a useful guide for thinking about stratified turbulence, but they do
not predict how the anisotropy of the turbulence, which can be quantified in various ways, depends
on the different parameters. Furthermore, scaling arguments do not predict the anisotropy of eddies
at the transition Ozmidov scale. It is not clear how the isotropy of the Ozmidov-scale eddies may
depend on Frh and Re. Viscous effects at the Ozmidov scale may be important when Reb is not large
enough. These issues are investigated in this work.

Four different anisotropy diagnostics are applied to simulations with Reb values from 2 to 50, all
with very strong stratification. First, the anisotropy of the dissipation tensor is analyzed. While this
is a standard approach, we apply it to larger Reb values than have been considered for homogeneous
stratified turbulence without shear. Second, the invariants of the isotropy tensor are considered
[42,43]. This approach characterizes the nature of the anisotropy at the energy-containing scales;
it has been used in the study of stratified shear flows [37] but not for homogeneous stratified
turbulence without shear. We adapt this method, using high-pass filtering, to investigate anisotropy
at various length scales. Third, directional kinetic energy spectra are analyzed to determine the
degree of isotropy across all length scales over a wider range of parameters than has previously
been considered [23,39]. Finally, subfilter-scale energy fluxes [44] are computed and analyzed to
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determine the anisotropy of the energy transfer across different length scales. The numerical model
is described in the next section. In Sec. III the four anisotropy diagnostics are presented. Results are
discussed in Sec. IV, and conclusions are given in Sec. V.

II. NUMERICAL MODEL

Simulations of homogeneous stratified turbulence are performed with a numerical model of the
Boussinesq equations

Du
Dt

= −∇p+ bẑ + F + ν∇2u, (7)

Db

Dt
+ N2w = κ∇2b, (8)

∇ · u = 0, (9)

where u ≡ (u, v,w) is the velocity, p is the pressure scaled by a reference density, b is buoyancy, F
is the velocity forcing, N is the constant buoyancy frequency, ν is the kinematic viscosity, and κ is
the buoyancy diffusivity. All simulations assume a unit Prandtl number with κ = ν.

Equations (7)–(9) are solved with periodic boundary conditions using a Fourier-based spectral
transform method. The time-stepping scheme is third-order Adams-Bashforth, with the viscous and
diffusive terms handled implicitly with Crank-Nicolson [45]. The number of grid points and wave
numbers in each direction is n. The cubic domain has size 2π , yielding integer wave numbers
kx, ky, kz. Most aliasing error is eliminated by keeping 8n/9 wave numbers in each direction and
truncating the rest (a ratio of 2/3 eliminates all aliasing [45], but DNSs have been performed with
a ratio as large as 15/16 [6]). As a result, the maximum effective wave number in each direction is
kmax = 4n/9 (rounded to the nearest integer), and the effective grid resolution is

�x = 9

8

L

n
. (10)

The total, horizontal, and vertical magnitudes of wave vectors k ≡ (kx, ky, kz ) are denoted by k ≡
|k|, kh ≡

√
k2x + k2y , and kv ≡ |kz|. The domain-average velocities are zero.

Turbulence is forced by random excitation of large-scale vortical modes [7,8]. Fourier modes
with k ∈ [3, 5] are forced independently with AR(1) red noise. Forcing is centered at k = 4, with
the amplitude decreasing quadratically to zero at k = 3 and 5, as in Ref. [7]. The decorrelation
timescale is set to 10 model time steps, so the forcing is effectively white noise [46]. On average,
the energy injection rate is approximately equal in all simulations and balances the total dissipation
of kinetic and potential energy. Weak damping is applied to the horizontally averaged mean flow
(modes with kh = 0) to avoid the slow build-up of energy in the vertically sheared horizontal flow
(VSHF), which would otherwise inhibit the development of a stationary state [47–50]. As a result,
the kinetic energy in the VSHF saturates at no more than a few percent of the total kinetic energy
and does not grow to dominate the flow.

Parameters and some time-integrated quantities are given in Table I. Three stratifications and four
viscosities are considered: N = 0, 0.15, 0.3, and ν = 10−5, 0.6 × 10−5, 0.27 × 10−5, and 0.157 ×
10−5. Time averages are indicated by an overbar. The velocity scaleU is calculated as EK

1/2
, where

EK is the domain-average kinetic energy, and L is computed from the time-averaged kinetic energy
dissipation rate using Taylor’s relation [8] L ≡ U 3/ε. Note, however, that, by (5), the key parameter
Reb does not depend on how L is computed. Resolutions for the four viscosities are n = 384, 576,
1024, and 1536, respectively.

All simulations are initialized with low-level noise at t = 0, except for the n = 1536 cases, which
are initialized with interpolated n = 1024 fields with the same N at t = 450. Simulations are run
to t = 1000 time units. The kinetic energy increases until t ≈ 200, at which time the dissipation
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FIG. 1. Time series of (a) kinetic energy and (b) kinetic energy dissipation for simulations with N = 0.15
and different n.

reaches a maximum (Fig. 1). Statistical stationarity is reached after a few hundred time units, and
various quantities are averaged over 500 � t � 1000. Stratified simulations have U ≈ 0.017, Frh
from 0.02 to 0.04, Re from 5000 to 40 000, and Reb from 2 to 50. All of these simulations can be
categorized as strongly stratified (inside the dark gray triangle in the regime diagram by Brethouwer
et al. [8]); Reb values are increased by increasing Re, not by weakening the stratification. In all
cases, the Kolmogorov scale is resolved with kmax/kd ≈ 0.8, and therefore the grid size n is a proxy
for Re; we use n values to distinguish simulations with different ν and Re.

The choice of forcing wave number (k = 4) is a compromise between competing requirements
in DNS of stratified turbulence: the need to minimize domain-size effects, which suggests a large
forcing wave number, and the need for large-scale separation between the forcing, Ozmidov, and
Kolmogorov scales (small Frh and large Reb), which is facilitated by a small forcing wave number.
Our choice of forcing wave number 4 is consistent with other numerical studies of stratified
turbulence, which have used both smaller and larger forcing or initial wave numbers. For example,
previous DNSs of forced stratified turbulence have forced wave numbers (nondimensionalized for
a domain size of 2π ) 3 [9], 4 [8], and 5 [22], while studies of decaying stratified turbulence have
initialized wave numbers 2 [6], 2.5 [32], 5.6 [19], and 7 [15]. In recent simulations of decaying
stratified turbulence [51], the domain size is up to 86 times the initial integral scale, though this
ratio decreases as the integral scale grows. We have examined domain-size sensitivity by repeating
the simulation with n = 576 and N = 0.15 with a larger domain size of 4π (effectively forcing wave
number 8) and found that the isotropy diagnostics presented below are not significantly affected.

III. QUANTIFYING ANISOTROPY

Four methods are used to quantify the degree and scale dependence of anisotropy in stratified
turbulence. Each method is applied to the stratified simulations as well as the unstratified cases,
which give a benchmark for the maximum degree of isotropy to expect at a given Re.
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A. Dissipation

Evaluation of the relative contributions of the strain rate components to the kinetic energy
dissipation is a common approach for evaluating isotropy [34,36] that dates to Taylor [52]. The
kinetic energy dissipation rate is given by

ε ≡ 2ν〈si jsi j〉, (11)

where 〈·〉 is the domain average and si j is the strain rate tensor. The dissipation is a sum of nine
terms εi j , given by the RHS of (11) with no summation. In isotropic turbulence, there are only two
different values of εi j , diagonal and off-diagonal, which satisfy [52]

εi j

ε
= Si j ≡

{
2
15 i = j
1
10 i 	= j

. (12)

Therefore, the degree of isotropy at the dissipation scales can be quantified by comparing the actual
values of εi j to their corresponding isotropic values εSi j . In addition to considering the individual
components of εi j/ε, an overall isotropy measure can be obtained from the mean square difference
χε between the six independent values and their isotropic values. Using time-averaged dissipations,
this gives

χε ≡ 1

6

∑
i� j

(εi j/ε − Si j )
2. (13)

Small values of χε , which is dimensionless, denote greater isotropy at the dissipation scale. For
small values of Reb, ε is expected to be dominated by the vertical shear, with [36]

ε ≈ 2(ε13 + ε23). (14)

For axisymmetric turbulence, this gives χε = 0.0181. Therefore, stratified turbulence is expected to
have χε � 0.0181, and stratified turbulence with isotropic dissipation scales will have χε 
 0.0181.

B. Isotropy tensor invariants

A second method for diagnosing isotropy in the velocity field employs invariants of the isotropy
tensor [37,42,43]

bi j ≡ 〈uiu j〉
〈ukuk〉 − 1

3
δi j . (15)

This tensor is dimensionless, symmetric, and traceless and vanishes identically in the case of an
isotropic Reynolds stress tensor. It has two nontrivial invariants

≡ bi jbi j, ≡ bi jb jkbki. (16)

The other invariant is the trace, which is always zero. All possible values of and must
lie inside a triangular region of the – plane (the Lumley triangle [42]), two sides of which
correspond to axisymmetric turbulence, and one corner of which ( = = 0) corresponds to
isotropic turbulence [see labels in Fig. 5(a) below] [42]. By examining the position of various
simulations on the – plane, the degree and type of anisotropy can be diagnosed [42,43].

Since bi j is based on the domain-averaged Reynolds stresses, the invariants measure isotropy
of the large energy-containing scales [37]. This is in contrast to the dissipation approach, which
diagnoses isotropy of the small dissipative scales. However, information about scale-dependent
isotropy can be obtained from the invariants by high-pass filtering the velocity fields to remove
the largest scales before computing bi j . We employ an isotropic spectral cutoff filter which passes
all k larger than the cutoff and completely filters all smaller wave numbers. Two types of cutoffs
are considered. First, we remove all k < 6, so that the invariants are not contaminated by the
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forcing scales, where anisotropy results from the selective forcing of vortical modes and by the
relatively small number of Fourier modes. Second, we analyze isotropy at smaller scales relative
to the Ozmidov scale by removing all wave numbers with k/kO below different thresholds (0.25,
0.5, 1, and 1.4). In all cases, invariants are computed from instantaneous velocity fields at t = 1000
(t = 750 for n = 1536, N = 0.3).

C. Directional energy spectra

Kinetic energy spectra are computed by summing over spherical shells in wave number space:

E (k) ≡ 1

2

∑
p∈Sk

ûi(p, t )ûi∗(p, t ), (17)

for integer values of k, where Sk is the spherical shell of radius k and unit width. In Eq. (17),
the hat denotes the Fourier coefficient and the star denotes the complex conjugate. In isotropic
turbulence, the energy should be uniformly distributed over the spherical shells. However, in
anisotropic turbulence the energy distribution may not be uniform, and information about the
angular dependence of the energy is lost in the calculation of E (k). A common approach is to
separately consider horizontal and vertical wave number spectra by summing over kv and kh,
respectively. However, more detailed information about anisotropy can be obtained by considering
the angular dependence of energy in the Sk [39,53]. We follow the approach of Delache et al. [53],
who divide the Sk into 2M latitude bands Ok,i of equal angular width �θ ≡ π/(2M ). We useM = 6
[53]. Band i corresponds to |θ | ∈ [θi−1, θi ) (vertical wave vectors with |θ | = π/2 are included in
Ok,M ). The bands are ordered so thatOk,1 corresponds to nearly horizontal wave vectors with |θ | ≈ 0
and Ok,M corresponds to nearly vertical wave vectors with |θ | ≈ π/2 (note, this ordering is opposite
to that employed in Ref. [53]). Using weights

mi ≡ π

4�θ [sin(θi ) − sin(θi−1)]
, (18)

which are based on the surface area of the latitude bands, the average energy in each band is

E (k, i) ≡ 1

mi

1

2

∑
p∈Ok,i

ûi(p, t )ûi∗(p, t ), (19)

and the weighted average of the directional spectra gives the total spectrum

E (k) =
M∑
i=1

miE (k, i). (20)

Because of the normalization, the different directional spectra E (k, i) can be compared directly
to evaluate the relative amount of energy in different bands. Isotropic turbulence has E (k, i)
independent of i.

The spread in the directional spectra gives a measure of anisotropy at each k. This spread can be
quantified by computing the standard deviation of the E (k, i) at each k:

σ (k) ≡
[∑M

i=1 (E (k, i) − μ(k))2

M

]1/2

, (21)

where

μ(k) ≡ 1

M

M∑
i=1

E (k, i) (22)

is the average energy across latitude bands [note that, due to the variable weights mi, μ(k) 	= E (k)].
The standard deviation can be normalized by μ(k) to give a dimensionless measure of isotropy at
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wave number k. Wave numbers with σ (k)/μ(k) 
 1 are isotropic, while those with σ (k)/μ(k) =
O(1) have significant anisotropy.

D. Subfilter-scale dissipation

Another scale-dependent measure of isotropy can be obtained by performing an a priori analysis
of the subfilter-scale energy flux. Let F̃ denote a low-pass filter of field F . We employ an isotropic
spectral cutoff filter which passes all k with k < kc perfectly and completely filters all larger wave
numbers. The rate at which kinetic energy is transferred across kc from filtered to subfilter scales is
[43]

� ≡ 〈2τi j̃ si j〉, (23)

where

τi j ≡ ũiũ j − ũiu j (24)

is the subfilter stress tensor and s̃i j is the filtered rate of strain. Note that, while τi j̃ si j need not be
positive at every point in stratified turbulence, and may be negative on a significant fraction of the
domain, the domain average � is positive, as expected for a direct energy cascade [44].

The isotropy of the energy flux � across kc can be analyzed in a similar fashion to ε. It is the
sum of nine terms �i j , given by the RHS of (23) with no summation. In isotropic turbulence, there
are only two different values of �i j , diagonal and off-diagonal, which satisfy

�i j

�
= Si j ≡

{
2
15 i = j
1
10 i 	= j

. (25)

The derivation of (25) follows Taylor’s [52] derivation of (12) and is given in the Appendix. As
above, the overall degree of isotropy in �i j can be obtained from the mean square distance between
the six independent values of �i j/� and their isotropic values Si j :

χ� ≡ 1

6

∑
i� j

(�i j/� − Si j )
2. (26)

In all cases, �i j and χ� are computed from instantaneous velocity fields at the same times as the
invariants.

IV. RESULTS

A. Overview

Snapshots of vertical slices of u are shown in Fig. 2 for N = 0.15 and different n. These plots
exhibit the familiar pancake structure of stratified turbulence, with the flow organized into vertical
layers [5,7,9,29]. In each panel of Fig. 2, there are approximately eight layers visible. Since the
buoyancy wave number is kb ≈ 9 for N = 0.15, the number of layers is consistent with their
thickness being equal to the buoyancy scale [7,14]. The large-scale layered structure is insensitive
to Reynolds number, but increasing Re leads to more fine-scale structure, and possible regions of
small-scale isotropy, which will be explored more below (see the transition from panel a to d in
Fig. 2). By contrast, the dependence of the large-scale vertical structure on N is significant (Fig. 3,
which shows u for n = 576 and different N). In the unstratified case, the wave number 4 forcing is
clearly visible, and the velocity field appears isotropic at all scales. However, as N increases, the
layered structure emerges and the vertical scale decreases. Furthermore, the small-scale velocity
also becomes increasingly anisotropic as N increases, as expected.
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FIG. 2. Vertical (x, z) slices of u at t = 1000 for N = 0.15 and n = (a) 384, (b) 576, (c) 1024, and (d) 1536.
Contour spacing is 0.009.

B. Dissipation

The relative contributions of the different components of the dissipation εi j/ε are plotted against
Reb in Fig. 4(a). At low Reb = O(1), the main contributions are from ε13 and ε23, as expected.
These components contain the vertical shear, which is known to dominate the dissipation at low
Reb � O(1) where the flow is characterized by quasihorizontal pancake vortices [36] [see, e.g.,
Fig. 3(c), which has Reb = 3]. As Reb increases towards 10, ε13 and ε23 decrease and the other
components increase. Nevertheless, the vertical components ε13 and ε23 remain larger, and the
horizontal components ε11, ε22, and ε12 remain smaller, than their isotropic values, as Ref. [36]
found at similar Reb. Beyond Reb ≈ 20, the components are clearly approaching their isotropic
values, although they have still not reached them in any of these simulations. Even at the largest
Reb = 50, which is three times larger than the largest Reb obtained in Ref. [36], the dissipation is
still slightly dominated by the vertical shear.

The overall degree of anisotropy in the dissipation is characterized by χε , the mean square
difference between the εi j/ε and their isotropic values, which is plotted in Fig. 4(b). This quantity
exhibits a clear dependence on Reb, confirming that the degree of anisotropy in the dissipation
is determined Reb in Ref. [37]. As Reb increases, the dissipation becomes more isotropic and χε

decreases. In cases where two simulations have different Frh and Re but similar Reb (N = 0.15,
n = 384 and N = 0.3, n = 1024, which both have Reb ≈ 7–8, and N = 0.15, n = 576 and N = 0.3,
n = 1536, which both have Reb ≈ 13–15), the χε values collapse well when plotted against Reb
in Fig. 4(b). Indeed, there is an approximately power law relationship between χε and Reb, with
χε ∼ Re−1.2

b [solid curve in Fig. 4(b)]. The largest Reb = 50 has χε = 8 × 10−5, which, while small,
is still 1–2 orders of magnitude larger than the values with N = 0 at all resolutions (Table I). Indeed,
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FIG. 3. Vertical (x, z) slices of u at t = 1000 for n = 576 and N = (a) 0, (b) 0.15, and (c) 0.3. Contour
spacing is 0.009.
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FIG. 4. (a) Relative contribution of different components to the total dissipation εi j/ε, and (b) mean square
distance χε between the εi j/ε and their isotropic values. In panel (a) the isotropic values 1/10 (for i 	= j) and
2/15 (for i = j) are denoted by horizontal lines, and the points for (1,1) and (1,3) are not visible because, due
to axisymmetry, they are directly behind the points for (2,2) and (2,3), respectively. In panels (a) and (b), all
stratified simulations are included, and values are plotted against Reb. The solid line shows the power law best
fit.

if the power law Reb dependence in Fig. 4(b) holds at larger Reb, one would require Reb ≈ 550, 960,
1300, and 1900 to get the same χε found in unstratified turbulence at n = 384, 576, 1024, and 1536,
respectively.

C. Isotropy tensor invariants

Figure 5 shows the isotropy tensor invariants and for all simulations with the forcing
scales (k < 6) removed. Panel (a) shows the full Lumley triangle, and panel (b) zooms in on the
simulation data. All invariants lie on the bottom left side of the triangle, which is axisymmetric and
connects two-dimensional and three-dimensional isotropic turbulence. The unstratified simulations
lie at the three-dimensional isotropic point = = 0, as expected, indicating that there is
no significant residual anisotropy from the vortical mode forcing at k > 6. The invariants for the
stratified simulations are clustered by N , with ≈ −0.013 for N = 0.3 and ≈ −0.004 for
N = 0.15. The invariants approach 0 with increasing Frh, indicating an approach to isotropy with
decreasing stratification. By contrast, the dependence on Re is much weaker. Since the Reynolds
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FIG. 5. Isotropy tensor invariants of all simulations. Panel (a) shows the full Lumley triangle, and panel
(b) is a zoom on the bottom left side. Shading denotes N = 0 (white), 0.15 (gray), and 0.3 (black), and symbols
denote n = 384 (square), 576 (diamond), 1024 (triangle), and 1536 (star). The triangle boundary and reference
points for 1D, isotropic 2D, and isotropic 3D turbulence are also indicated for clarity [43]. Invariants are
computed after filtering out the forcing scales k < 6.

stresses depend on the velocity components, and the relative size of the large-scale horizontal and
vertical velocities in stratified turbulence is determined by Frh [1,14], it is natural that Frh, not Re,
determines the large-scale anisotropy measured by the invariants.

The stratified invariants become increasingly isotropic if the velocity fields are high-pass filtered
relative to the Ozmidov scale first. Figure 6 shows the invariants computed after removing scales
relative to the Ozmidov scale with k/k0 < 0.25, 0.5, 1, and 1.4 (panels (a)–(d), respectively).
Even with the smallest wave number cutoff k/kO < 0.25 (k < 10 and k < 30 for N = 0.15 and
0.3, respectively), the invariants are more isotropic than when only the forcing wave numbers are
removed [Fig. 6(a)]. For example, the values for N = 0.15 go from −0.004 to −0.001 as the
filter cutoff increases from 6 to 0.25kO ≈ 10. As more large scales are removed, the invariants move
along the axisymmetric blue curve towards = = 0, indicating increasing isotropy at smaller
scales. Note the different axis scales in Fig. 6: when velocities are filtered to remove all scales
larger than the Ozmidov scale, the largest are less than 10−3 in size [Fig. 6(c)]; if plotted on the
original axes in Fig. 5, these points would be almost indistinguishable from 0.

However, despite filtering relative to the Ozmidov scale, the invariants still cluster by N , with
the more weakly stratified cases being consistently more isotropic than the stronger stratified cases
even with the same k/k0 cutoff. This is even true for the n = 384, N = 0.15 case (gray square) and
the n = 1024, N = 0.3 case (black triangle), which have similar Reb ≈ 8: the N = 0.15 invariants
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FIG. 6. Invariants after high-pass filtering scales relative to the Ozmidov scale. Invariants are computed
after removing (a) k < 0.25kO, (b) k < 0.5kO, (c) k < kO, and (d) k < 1.4kO. Symbols and shading are as in
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are more isotropic than the N = 0.3 invariants at all k/k0 cutoffs. The same is true for the n = 576,
N = 0.15 (gray diamond) case and the n = 1536, N = 0.3 case (black star), which have similar
Reb ≈ 14. While the Reynolds stresses are clearly more isotropic around the Ozmidov scale than
they are at large scales, the degree of isotropy depends on Frh independently of Reb. This behavior
is unlike the anisotropy of the dissipation scales considered above, which is entirely determined by
Reb.

In addition, the Ozmidov-filtered invariants exhibit much greater dependence on Re at higher
stratifications than lower. The spread in the black points in Fig. 6 is consistently larger than that in
the gray points. In all cases, the trend is towards increased isotropy for increasing Re at the same N .
Unlike the large-scale isotropy (Fig. 5), the local isotropy around the Ozmidov scale likely depends
on Re via Reb, which gives the width of the inertial range between kO and kd [Eq. (4)]. All the
simulations with N = 0.3 have relatively small Reb � 10 and so may depend more on Re than the
N = 0.15 simulations.

D. Directional energy spectra

Directional kinetic energy spectra for the unstratified simulations are shown in Fig. 7. Outside
the forcing range, which is affected by the vortical mode forcing (no direct excitation of w) and
the relatively small number of wave vectors at large scales, the simulations exhibit a high degree of
isotropy at all resolutions, as expected. The various E (k, i) are close together, with no tendency
for energy to accumulate at near-vertical or near-horizontal wave vectors. Beyond k ≈ 20, the
directional spectra are indistinguishable from one another and follow an approximately −5/3 slope
to kd . This isotropy is confirmed by considering the standard deviation of the directional spectra,
which is shown in Fig. 10(a) below. The normalized standard deviation σ (k)/μ(k) is less than
0.5 at all k and all n. It is smallest in the inertial range, where σ (k)/μ(k) < 0.1 and reaches a
minimum of 0.04, 0.03, 0.01, and 0.005 for n = 384, 576, 1024, and 1536, respectively. The increase
in σ (k)/μ(k) at the largest k ≈ kmax is due to the rapid decrease of μ(k) deep inside the dissipation
range rather than enhanced anisotropy and will be omitted in the following discussion.

The directional spectra for N = 0.15 (Fig. 8) exhibit much greater anisotropy at large and
intermediate scales compared to the unstratified simulations. For near-horizontal wave vectors
(small i), there is a sharp peak at the forcing wave number k = 4; however, moving towards more
vertical wave vectors with larger i, the peak broadens, and there is a secondary peak around the
buoyancy wave number kb ≈ 8. Outside the forcing range, the directional spectra E (k, i) increase
with increasing i, indicating that there is greater energy in near-vertical wave vectors than in
near-horizontal wave vectors. This angular dependence is characteristic of pancake-like structures
[39], e.g., as seen in Fig. 2. The dependence on i is significant: at k = 10, just beyond the forcing
range and near kb, there is approximately 50–70 times more energy in Ok,6 than in Ok,1, yielding
σ (10)/μ(10) ≈ 1.5 [Fig. 10(b) below]. This large-scale anisotropy does not depend significantly
on Re.

Moving to larger k, the spread in the directional spectra narrows because the spectra at large
i are steeper than those at small i. For example, for n = 1536 [Fig. 8(d)], the spectral slope
between k = 10 to 40 ranges from −0.98 for near-horizontal wave vectors with i = 1 to −2.84
for near-vertical wave numbers with i = 6. Slopes at intermediate angles increase with i: slopes are
−1.1, −1.3, −1.6, and −2.3 for i = 2, 3, 4, and 5. As a result of this steepening, by k = k0 ≈ 40
there is only approximately five to six times more energy in Ok,6 than in Ok,1. Beyond kO, the
spectra at all i follow an approximately −5/3 slope when the inertial range from kO to kd is
sufficiently long [Fig. 8(d)]. As a result, the standard deviation also decreases with increasing
k: σ (k)/μ(k) reaches ≈0.7 at k = kO in all cases with N = 0.15 and plateaus at smaller values
for larger n, indicating that greater small-scale isotropy, especially in the dissipation range, is
reached for higher Re. Nevertheless, even for n = 1536, the smallest σ (k)/μ(k) ≈ 0.16 is 30 times
larger than that obtained for N = 0 at the same n. The stratified turbulence in this simulation
has the largest Reb = 50 and therefore is expected to have the largest inertial range between the
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FIG. 7. Directional kinetic energy spectra for N = 0 for (a) n = 384, (b) 576, (c) 1024, and (d) 1536. The
reference lines have slopes of −5/3 and −3.
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FIG. 8. Directional kinetic energy spectra for N = 0.15 for (a) n = 384, (b) 576, (c) 1024, and (d) 1536. In
all cases, kb ≈ 9 and kO ≈ 43 are shown with vertical lines. The reference lines have slopes of −5/3 and −3.
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Ozmidov and Kolmogorov scales; however, the directional spectra at small scales never reach the
same degree of isotropy found in unstratified turbulence, even unstratified turbulence with much
lower Re.

The directional spectra in the most stratified simulations with N = 0.30 (Fig. 9) display even
greater anisotropy at all scales. As for N = 0.15, there is a preference for energy to accumulate
around near-vertical wave numbers with large i, and this preference extends to even larger k than in
the N = 0.15 simulations. The energy in near-vertical wave numbers continues to show a peak at
the buoyancy scale, which is larger at this stratification (kb ≈ 17). At k = 10, there is approximately
200–300 times more energy in Ok,6 than in Ok,1. Again, the spectra at large i are steeper than those
at small i: the spectral slopes for n = 1536, measured between k = 20–40, steepen from −0.66 for
i = 1 to −2.7 for i = 6. By k = kO ≈ 120, the ratio of energy in Ok,6 to Ok,1 is reduced to from 20
for n = 384 to 5 for n = 1536. These ratios are generally larger than those obtained at N = 0.15
except for the n = 1536 case, which is similar. Similarly, the standard deviation σ (k)/μ(k) at k = kO
is more sensitive to n than in the N = 0.15 cases and equals 1.1, 0.98, 0.7, and 0.65 for n = 384,
576, 1024, and 1536. The isotropy at the Ozmidov scale is sensitive to Re at this stratification,
possibly due to the fact that the Reb values are not too large. While the lower Re simulations have
larger E (k, 6)/E (k, 1) and σ (k)/μ(k) at k = kO than for N = 0.15, indicating greater anisotropy
at the Ozmidov scale, the ratios and standard deviations in the higher resolution simulations are
similar. Beyond the Ozmidov scale, the steep spectra at large i do not have enough room to shallow
before reaching the dissipation range, and σ (k)/μ(k) never falls below 0.3 in all simulations with
N = 0.3.

The nature of the large-scale anisotropy described by σ (k)/μ(k) is different in the unstratified
and stratified cases. In the unstratified case, there is a modest degree of anisotropy (σ (k)/μ(k) ≈
0.5), mainly around the forcing scales. By contrast, in the stratified cases, the wave number
of maximum anisotropy shifts downscale and seems to follow the buoyancy wave number kb
[Figs. 10(b) and 10(c)]. The directional variation in the amount of energy at kb is greater than
at other scales, due to the pancake structure of the large-scale vortices, the thickness of which is
given by kb. The maximum σ (k)/μ(k) increases with increasing stratification, from around 1.5 for
N = 0.15 to 2 for N = 0.3. The maximum values of σ (k)/μ(k) do not depend on Re.

Interestingly, the degree of isotropy in the directional spectra at the Ozmidov scale seems to be
largely determined by Reb, without separate dependence on Frh and Re. Consider the simulations
with n = 384 and N = 0.15, and n = 1024 and N = 0.30, both of which have Reb ≈ 8. The
corresponding values of σ (kO)/μ(kO) are very similar, at 0.73 and 0.76, respectively [see Figs. 10(b)
and 10(c)]. A similar result holds for the simulations with n = 576 and N = 0.15, and n = 1536 and
N = 0.30, both of which have Reb ≈ 14, and have σ (k0)/μ(k0) of 0.67 and 0.65. Similarly, the ratio
of Ozmidov-scale energy in the most vertical and horizontal wave-number bands Ok,6 and Ok,1 is
also a function of Reb (Fig. 11) and clearly approaches a value between 5 and 6 for Reb � 10.
These findings suggest that the isotropy of the total energy distribution in wave vector space at
the Ozmidov scale is determined by Reb. By contrast, the isotropy of the velocity components, as
described by the invariants of the isotropy tensor discussed above, are not.

An overall measure of small-scale isotropy is given by the minimum value of σ (k)/μ(k) over
k in each simulation. The minimum values generally occur in the dissipation range. The values
for the unstratified simulations are 0.041, 0.027, 0.014, and 0.0051 for n = 384, 576, 1024, and
1536; these values characterize the maximum amount of isotropy expected at a given n. The values
for the stratified simulations are plotted against Reb in Fig. 12. The data in Fig. 12 collapse well
when plotted against Reb, with an approximate power law of ∼Re−0.57

b ; this collapse supports the
finding that small-scale isotropy is determined by Reb. As we did above for χε , we can extrapolate
this power law to larger Reb to estimate the Reb at which the stratified directional spectra exhibit
the same degree of small-scale isotropy as the unstratified simulations. This power law suggests that
one would require Reb ≈ 570, 1200, 3700, and 21 000 to get the same minimum value of σ (k)/μ(k)
found in unstratified turbulence at n = 384, 576, 1024, and 1536, respectively. Interestingly, the first
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FIG. 9. Directional kinetic energy spectra for N = 0.30 for (a) n = 384, (b) 576, (c) 1024, and (d) 1536.
In all cases, kb ≈ 17 and kO ≈ 120 are shown with vertical lines. The reference lines have slopes of −5/3 and
−3.
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FIG. 10. Standard deviation of the directional spectra E (k, i) over i, normalized by the mean, for (a) N = 0,
(b) 0.15, and (c) 0.30. In the stratified cases (b) and (c), the buoyancy and Ozmidov wave numbers kb and kO,
with kO > kb, are shown with vertical lines.

two values are similar to the Reb estimates obtained above when considering χε , but the last two are
much larger.

E. Subfilter-scale dissipation

The relative contribution �i j/� of the various components of the subfilter-scale dissipation are
plotted in Fig. 13 for the four different filter cutoffs. At small Reb for all filters, the subfilter-scale
dissipation is dominated by the horizontal components �11, �22, and �12. The contribution from
�12 decreases when kc � kO but is still larger than the vertical components. By contrast, the
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FIG. 11. Ratio of the Ozmidov-scale energy in Ok,6 to Ok,1.

behavior at larger Reb, which appears to converge for Reb � 30, is very sensitive to the scale of
the filter. When the filter is imposed at scales larger than the Ozmidov scale [Figs. 13(a) and 13(b)],
the �i j do not get more isotropic as Reb increases; instead, the horizontal components continue
to dominate even for Reb = 50, while �1,3, �2,3, and �3,3 are smaller than expected for isotropic
turbulence. The anisotropy in the energy transfers above the Ozmidov scale, which are dominated
by horizontal components, is different from that in viscous dissipation εi j , where vertical gradients
dominated. This difference is due to the fact that vertical velocities and gradients, which influence
the vertical components of�i j through τi j and s̃i j , are inhibited above the Ozmidov scale in stratified
turbulence.

As the cutoff wave number kc crosses the Ozmidov wave number [Figs. 13(c) and 13(d)], �i j

remains anisotropic at smaller Reb as described above, with the horizontal terms dominating �.
However, as Reb approach 20, the horizontal components decrease, and the vertical components
increase, towards their isotropic values.

The overall approach to isotropy in the �i j and the dependence on Reb can be seen in the mean
square distance χ� in Fig. 14. For all filter scales, χ� ∼ 10−2 for the smallest Reb and decreases
slightly as Reb increases towards 10. Energy transfer through all of the filter scales becomes more
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FIG. 12. The minimum value of σ (k)/μ(k) over k. All stratified simulations are included, and values are
plotted vs Reb. The solid line shows the power law best fit.
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isotropic as Reb increases from 2, due to the reduction in viscous forces around the Ozmidov scale,
as indicated by (4). The χ� values at small Reb are similar to the χε at the same Reb. As Reb
increases beyond 7, the χ� values become more dependent on the filter used. At these intermediate
Reb ≈ 10, there is no collapse of the data with Reb, even for a fixed filter scale (see, e.g., the spread
in χ� for kc = kO/4 as Reb increases from 8 to 15). However, the trend as Reb increases towards 50
seems clear. For the largest scale filter kc/kO = 1/4, χ� plateaus at around 10−2 as Reb increases to
50. The transfer of energy across kO/4 is inherently anisotropic and does not become more isotropic
with increasing Reb. A similar behavior occurs for kc/kO = 1/2, for which χ� plateaus at around
2 × 10−3. This plateau value is smaller than that obtained with kO/4, indicating that the energy
transfer across kO/2 is more isotropic; however, transfer across this scale does not become more
isotropic with increasing Reb.

A different behavior occurs when the cutoff wave number is equal to or larger than the Ozmidov
wave number. For kc/kO = 1 and 1.4, there is no plateau; instead, χ� generally decreases for
increasing Reb. The energy transfer across the Ozmidov scale does become increasingly isotropic as
Reb increases, in contrast to the transfers at larger scales. Larger Reb implies a longer inertial range
below the Ozmidov scale, which seems to enhance the isotropy at and below the Ozmidov scale.

V. CONCLUSIONS

We have performed direct numerical simulations to investigate the anisotropy of stratified
turbulence and the transition to isotropy at small length scales. Turbulence was generated by
forcing large-scale vortical modes, an approach that is broadly consistent with geophysical stratified
turbulence, in which vortical (quasigeostrophic) motion dominates at large scales. The anisotropy
of the turbulence at large scales, the Ozmidov scale, and small dissipation scales was quantified
using four approaches: (1) the contributions of different strain rate components to the kinetic energy
dissipation, which is a common isotropy diagnostic; (2) the invariants of the isotropy tensor and their
position inside the Lumley triangle, which have not been widely applied to stratified turbulence,
and which we couple with filtering to produce a scale-dependent isotropy measure; (3) directional
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kinetic energy spectra, which provide a more complete picture of energy spectrum anisotropy than
the more commonly used horizontal and vertical wave number spectra; and (4) the subfilter-scale
energy flux, which we analyze in the same way as the dissipation. Together, these techniques offer a
comprehensive picture of turbulence anisotropy across scales. We apply these techniques to stratified
turbulence simulations with Reb up to 50 and very strong stratification.

Isotropy at the dissipation scale increases with increasing Reb, consistent with the interpretation
of Reb as the width of the inertial range between the Ozmidov and dissipation length scales.
Significantly, the small-scale isotropy depends only on Reb and not separately on Frh or Re.
The singular importance of the parameter Reb in characterizing the small-scale isotropy has been
previously shown for the dissipation components [37]; we have demonstrated here that it also
holds for the convergence of the directional spectra at small scales. Interestingly, the degree of
isotropy in the dissipation components, and the spread of the directional spectra at small scales,
all collapse to power laws when plotted against Reb. These power laws can be extrapolated to
estimate the degree of isotropy that will occur at even larger Reb. While the threshold for what
constitutes nearly isotropic is subjective, these quantities can be compared objectively to their values
in unstratified turbulence at different Re. Interestingly, the extrapolation of both quantities indicates
that Reb ≈ 500 and 1000 are necessary for stratified turbulence to exhibit the same degree of
small-scale isotropy found in the unstratified simulations with Re = 3000 (n = 384) and Re = 5000
(n = 576), respectively. These Reb values are larger than that proposed in Ref. [27] (200) but
smaller than that proposed in Ref. [37] for stratified shear flows (105). The small deviations from
isotropy that occur at our largest Reb are manifested as a slight bias towards vertical gradients in the
dissipation and vertical wave numbers in the directional spectra.

Moving upscale towards the Ozmidov scale, the anisotropy increases. However, despite the
definition of the Ozmidov scale as the transition scale at which buoyancy forces are always O(1),
the anisotropy at this scale may depend on Frh, Re, and Reb. Different diagnostics offer different
perspectives. The directional energy spectra start to diverge as k decreases towards kO, as expected.
For Reb � 10, the spectra exhibit a fixed degree of anisotropy at the Ozmidov scale that does not
change with increasing Reb, Frh, or Re: the standard deviation in the spectra at kO is approximately
0.7 in all such cases, and the ratio of kinetic energy in the most vertical and horizontal wave number
bands is between 5 and 6. However, for smaller Reb, viscous effects at the Ozmidov scale are
non-negligible and there is more spread in the directional spectra around kO. By contrast, the energy
transfer across the Ozmidov wave number does become more isotropic for increasing Reb, even for
values �10. Similarly, the invariants of the isotropy tensor at the Ozmidov scale, while generally
much more isotropic than those at large scales, do become increasingly isotropic for increasing Frh
and Re. Interestingly, the Ozmidov-scale invariants are not fully determined by Reb and depend
separately on Frh and Re. Overall, it appears that the energy transfer and invariants, which are both
based on the Reynolds stresses at different length scales, are more sensitive to changes in anisotropy
at the Ozmidov scale, likely because they include information from all scales below the cutoff. By
contrast, the directional energy spectra, which describe the overall distribution of kinetic energy
at specific wave numbers, see only a fixed degree of isotropy at the Ozmidov scale. Simulations
with higher Reb may be required to determine whether these different measures of Ozmidov-scale
anisotropy converge as Reb increases further.

Not surprisingly, the large scales display the most anisotropy, the degree of which is determined
by Frh. The invariants of the isotropy tensor display significant anisotropy. All invariants lie on the
axisymmetric curve that connects isotropic two- and three-dimensional turbulence; the invariants
for N = 0.3 are located approximately half way between these extremes, while those for N = 0.15
are closer to the isotropic three-dimensional value. The large-scale invariants are set by Frh and
are mostly independent of Re, consistent with the weak large-scale viscous effects in all these
simulations.

The anisotropy of the directional spectra at large scales is demonstrated by a strong dependence
on the wave vector angle: near-horizontal wave vectors have spectral slopes around −1 or
shallower, while near-vertical wave vectors have slopes closer to −3 [54]. These spectra reduce
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to approximately k−5/3
h when integrated in the vertical [8,9,15,19,22], but interestingly, only the

directional spectra at intermediate angles (i = 4 or θ ∈ [π/4, π/3)) have slopes around −5/3. At
near-vertical wave vectors, where most of the energy is located, the peak is set by kb rather than the
forcing and is determined by Frh. Finally, the energy fluxes at scales larger than the Ozmidov scale,
even at twice the Ozmidov scale, are inherently anisotropic and do not isotropize with increasing
Reb. The contrast in this behavior with that at k � kO underlines the importance of the Ozmidov
scale in the transition to isotropy.

In summary, our simulations indicate the following trends in anisotropy at the three different
scales of interest: Large-scale anisotropy is set by Frh and occurs at the buoyancy scale, associated
with the thickness of the large-scale vortical modes. Stronger stratification leads to more large-
scale anisotropy. Ozmidov-scale eddies are anisotropic. Energy spectra exhibit a fixed degree of
anisotropy as Reb increases, while the invariants and energy transfers become increasingly isotropic
with increasing Frh and Re. Dissipation-scale isotropy is determined by Reb. Our results suggest
that Reb � 500 is required to obtained the same degree of small-scale isotropy seen in unstratified
turbulence at similar Re. The applicability of these findings to decaying stratified turbulence, and
forced stratified turbulence in which the VSHF is allowed to grow to dominate the flow, requires
further study.

These results have significant implications for the parametrization of subgrid turbulence in large
eddy simulation of stratified turbulence. Most models assume isotropic subgrid turbulence, both
through the use of three-dimensional eddy viscosity as well as through the particular eddy viscosity
parametrization [55,56]. For grid spacings smaller than the Ozmidov scale, this assumption seems
reasonable and, at a first approximation, is largely consistent with our results, especially for large
Reb, as there is a trend towards increased isotropy at the Ozmidov scale in this regime. On the other
hand, isotropic models are inappropriate for much larger grid spacings and possibly questionable at
the Ozmidov scale for modest Reb. Any attempt to incorporate anisotropy into the subgrid model
requires knowledge of how these effects depend on Frh, Re, and Reb, which has been outlined here.
While isotropic models have shown some promise with grid spacings around the buoyancy scale
[55,56] (which is larger than the Ozmidov scale but, at least for numerical simulations, usually
not much larger [9,21]), a subgrid modeling approach for strongly stratified turbulence with coarse
grids, e.g., for geophysical flows, clearly requires an anisotropic treatment of the unresolved scales.
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APPENDIX: ISOTROPIC VALUES OF �i j

To show that �i j/� has the same values as εi j/ε for isotropic turbulence, we adapt Taylor’s [52]
derivation. For isotropic turbulence, the six independent terms of �i j can be written in terms of two
independent values, one diagonal and one off-diagonal:

� ≡ 2〈τi j̃ si j〉 = 6〈τ11̃s11〉 + 12〈τ12̃s12〉 = 6

〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
+ 12

〈
(̃ũv − ũv)

∂ ũ

∂y

〉
. (A1)

The filtered continuity equation gives

∂ ũ

∂x
+ ∂ ṽ

∂y
+ ∂w̃

∂z
= 0, (A2)
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from which follows 〈
(̃u2 − ũ2)

(
∂ ũ

∂x
+ ∂ ṽ

∂y
+ ∂w̃

∂z

)〉
= 0. (A3)

Isotropy implies that 〈
(̃u2 − ũ2)

(
∂ ṽ

∂y

)〉
=

〈
(̃u2 − ũ2)

(
∂w̃

∂z

)〉
, (A4)

which, when substituted into (A3), gives〈
(̃u2 − ũ2)

(
∂ ũ

∂x
+ 2

∂ ṽ

∂y

〉
= 0. (A5)

Now, consider a rotation of the coordinates by π/4 about the z axis, with new coordinates and
velocities given by

√
2x′ = x + y,

√
2y′ = −x + y, z′ = z, (A6)

√
2u′ = u + v,

√
2v′ = −u + v, w′ = w. (A7)

By isotropy, we expect 〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
=

〈
(ṽ′2 − ṽ′2)

∂ ṽ′

∂y′

〉
(A8)

and 〈
(̃v2 − ṽ2)

∂ ṽ

∂y

〉
=

〈
(ũ′2 − ũ′2)

∂ ũ′

∂x′

〉
(A9)

which give, respectively,〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
= 1

4

〈
(̃u2 − 2̃u ṽ + ṽ2 − ũ2 + 2ũv − ṽ2)

(
∂ ũ

∂x
− ∂ ũ

∂y
− ∂ ṽ

∂x
+ ∂ ṽ

∂y

)〉
, (A10)

and 〈
(̃v2 − ṽ2)

∂ ṽ

∂y
〉 = 1

4

〈
(̃u2 + 2̃u ṽ + ṽ2 − ũ2 − 2ũv − ṽ2)

(
∂ ũ

∂x
+ ∂ ũ

∂y
+ ∂ ṽ

∂x
+ ∂ ṽ

∂y

)〉
. (A11)

Summing (A10) and (A11) and using, by the assumption of isotropy, that〈
(̃v2 − ṽ2)

∂ ṽ

∂y

〉
=

〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
, (A12)

leads to 〈
(̃u2 − ũ2)

(
∂ ũ

∂x
− ∂ ṽ

∂y

)〉
= 2

〈
(̃u ṽ − ũv)

∂ ũ

∂y

〉
. (A13)

Substituting into (A5) and simplifying, we find that〈
(̃u ṽ − ũv)

∂ ũ

∂y

〉
= 3

4

〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
, (A14)

and therefore, from (A1),

� = 15

2

〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
. (A15)
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Consider the expressions for the diagonal and off-diagonal components of �i j . If i = j, then

�i j =
〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
. (A16)

If i 	= j, then

�i j =
〈
(̃u ṽ − ũv)

∂ ũ

∂y

〉
= 3

4

〈
(̃u2 − ũ2)

∂ ũ

∂x

〉
. (A17)

From (A15), we see that

�i j

�
=

{
2
15 i = j
1
10 i 	= j

. (A18)

So, for isotropic turbulence, the relative contributions of the different �i j to � are the same as the
contributions of the different εi j to the molecular dissipation (12).
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