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Abstract 

The Cumberland Sound Beluga is a threatened population of belugas and the 

assessment of the population is done by a manual review of aerial surveys. The 

time-consuming and labour-intensive nature of this job motivates the need for a 

computer automated process to monitor beluga populations. In this paper, we 

investigate convolutional neural networks to detect whether a section of an aerial 

survey image contains a beluga. We use data from the 2014 and 2017 aerial surveys 

of the Cumberland Sound, conducted by the Fisheries and Oceans Canada to 

simulate two scenarios: 1) when one annotates part of a survey and uses it to train a 

pipeline to annotate the remainder and 2) when one uses annotations from a survey 

to train a pipeline to annotate another survey from another time period. We 

experimented with a number of different architectures and found that an ensemble 

of 10 CNN models that leverage Squeeze-Excitation and Residual blocks 

performed best. We evaluated scenarios 1) and 2) by training on the 2014 and 2017 

surveys respectively. In both scenarios, the performance on 1) is higher than 2) due 

to the uncontrolled variables in the scenes, such as weather and surface conditions.  
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RÉSUMÉ 

Le béluga de Cumberland Sound est une population de bélugas menacée et 

l'évaluation de la population se fait en partie par un examen manuel d’image de 

relevés aériens. La nature de cette tâche, qui prend du temps et demande beaucoup 

de travail, motive la nécessité d'un processus informatique automatisé pour 

surveiller les populations de bélugas. Dans cet article, nous étudions les réseaux de 

neurones à convolution (RNC) afin de détecter si une section d'une image de relevé 

aérien contient un béluga. Nous utilisons les données des relevés aériens de 2014 et 

2017 du détroit Cumberland Sound, réalisés par le ministère Pêches et Océans 

Canada, pour simuler deux scénarios : 1) lorsque l'on annote une partie d'un relevé 

et qu'on l'utilise pour entraîner un pipeline à annoter le reste et 2) lorsque l'on utilise 

les annotations d'un relevé pour entraîner un pipeline à annoter un autre relevé 

d'une autre période. Nous avons expérimenté plusieurs architectures différentes et 

avons constaté qu'un ensemble de 10 modèles RNC qui exploitent des blocs « 

Squeeze-and-Excitation » ainsi que des blocs résiduels donnent les meilleurs 

résultats. Nous avons évalué les scénarios 1) et 2) par un entraînement sur les 

survols aériens de 2014 et 2017. Dans les deux scénarios, la performance de 1) est 

supérieure à 2) en raison des variables non contrôlées dans les scènes, telles que la 

météo et les conditions de surface.   

 

Introduction 

The Cumberland Sound (CS) beluga is a distinct population that stays in Cumberland Sound, 

Nunavut, year-round (de March et al. 2004, Richard and Stewart 2009).  Male and female CS 

belugas measure an average length of 3.6 m and 4.3 m, respectively, and have a mass from 800 

to 1000 kg (Brodie 1971). Currently, the CS beluga is listed as threatened under the Species at 

Risk Act (SARA) in Canada (COSEWIC 2004) and a recovery strategy is being developed by 

the Minister of Fisheries and Oceans Canada (DFO) who is the competent minister for the 

recovery of the CS Beluga (DFO Unpublished). The DFO performs aerial surveys of the 
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Cumberland Sound Bay during late July and August in order to obtain population counts of the 

CS belugas, which are instrumental to providing advice on sustainable hunt for this population 

(Marcoux and Hammill 2016).  

 Population counts are obtained from a manual review process of the aerial images. This 

process is not ideal due to the required time and labour. Therefore, the creation of a computer 

automated prediction model to detect belugas would be beneficial. Designing such a method is a 

challenging task due to the few belugas in the images relative to open water areas and the 

heterogeneous appearance of the images from varying water depth, water surface patterns, and 

solar illumination. Solar illumination and weather conditions can also create wave patterns that 

resemble belugas.  

The objectives of this study are to:  

• Develop an automated model to identify belugas in aerial images to assist in population 

counts. 

• Propose a numerical score, called PTPVSA, to gauge the usefulness of a whale detection 

pipeline for a human annotator. 

•  Develop techniques when constructing and training automated models that can overcome 

the challenge of the heterogenous appearance of the images in the dataset.  

We propose a deep learning model, specifically a convolutional neural network, that 

strides through aerial images and extracts patches that are 65 x 65 pixels and assigns the 

probability of a whale being in that patch. We first define a baseline model of random forest as a 

benchmark for comparison. Then deep learning architectures, ensemble models, and data 

augmentation are explored.  Using images from two separate surveys taken during 2014 and 

2017, we consider two scenarios: one where a practitioner labels a subset of scenes in a survey 

and uses the proposed pipeline to aid in labelling remaining scenes, and another where the 
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practitioner uses labelled data from a previous year to automatically aid in labelling a new data 

set. For the former scenario, we divided the 2014 survey into two partitions such that the first 

partition is used to train the pipeline and aid in labelling the second partition. For the second 

scenario, we used the first partition from the former scenario to train the pipeline and apply it 

towards labelling the entirety of the 2017 survey. We also train our model with the 2017 survey 

and evaluate with the 2014 survey. Overall, we found that deep learning models with more 

advanced architectures, ensemble methods, and augmentation were beneficial. We also note that 

there is a performance gap between the first and second scenarios, indicating that the 

environmental changes between the two time periods are significant enough to affect 

performance. 

Related Work 

Prediction of objects within aerial images is a standard task within remote sensing. Applications 

of this range from sensing man-made objects or natural features, fauna, or flora. In terms of 

identifying whales, Fretwell et al. (2014) utilized the ArcGIS framework to identify southern 

right whales using WorldView2 satellite images. Maire et al. (2013) studied the application of 

using unmanned aerial vehicles for detecting marine mammals (dugongs). They noticed that the 

shape and colour of the dugongs varied with respect to the depth and turbidity of the water. They 

also found that solar glare increases the difficulty of detecting dugongs. Maire et al. (2013) 

leveraged the fact that dugongs are rare in the image and developed regions of interest based on 

colour rarity. This approach would not work for our problem because of the variations in tone for 

the different image scenes and whales.  Maire et al. (2015) had very similar objectives to our 

own work as they also leveraged deep learning to identify dugongs. They used a Simple Linear 

Iterative Clustering (SLIC) region proposal algorithm followed by a deep convolutional model. 

Using this model, they achieved a recall of 80% with a precision of 27%. The dataset used for 

their problem consisted of images taken at lower altitudes. The dugongs have much different 
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scale in their images than the belugas from our images, which make it more difficult to identify 

features of belugas in our images. 

As the availability of unmanned aerial vehicles (UAV) have increased, so too have their 

applications towards counting and surveying animals. Kellenberger et al. (2018) investigated the 

benefits of applying deep learning to identify regions with mammals within the African savanna 

for screening images captured by UAVs. Although similar goals existed for their study, the data 

set is very different. Belugas occupy a smaller number of pixels than animals in the African 

savanna. The visibility of belugas is also affected by factors, such as water depth, and they can 

easily become obstructed by water ripples and glare. A key similarity between the two tasks is 

the threat of false positives, which were very common in the animal detection in the African 

Savanna due to other objects in the scene. The same problem exists for beluga detection due to 

changing surface conditions of the water. Overall, Kellenberger et al. (2018) found that deep 

learning provided a good avenue for screening potential regions of the images.  In the work by 

Barbedo et al. (2020), various deep learning models were evaluated in order to count cattle in 

UAV surveys. The authors adapted a tiling strategy that subdivided the large image into smaller 

subimages. Overall, the authors found that a large selection of off-the-shelf CNNs could be 

trained to achieve high prediction performance. Guirado et al. (2019) also investigated whale 

detection using satellite and aerial images with deep learning. They used Faster-RCNN based on 

RenNet v2. They chose this architecture based on performance in other object detection 

problems.  

In object detection challenges, one will typically have to grapple with two challenges: 

predicting the size or bounding-box of an object and predicting the class of an object. In terms of 

deep learning, such tasks can be implemented with what are called region-proposal networks 

(Ren et al. 2015; Girshick 2015; Girshick et al. 2014; Redmon et al. 2016). While some authors 

utilized region-proposal networks (Kellenberger et al. 2018; Andrew et al. 2017; Guirado et al. 

2019), Barbedo et al. (2020) avoided these architectures due to their difficulty in recognizing 
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“small groups of objects and to generalize aspect ratios”.  It is worth mentioning that the problem 

of object detection specifically for remote sensing images is still a very active area of research, 

with many novel approaches being developed to tackle the challenges of object detection in 

remote sensing data. In the work by Ghorbanzadeh et al. (2020) the issue of detecting refugee 

dwellings from high resolution satellites was tackled using an object-based image analysis 

approach along with convolutional networks. The work by Courtrai et al. (2020) examined the 

utility of a super-resolution pipeline for detecting small objects by way of generative adversarial 

networks.  

Data 

The data used in this study consists of images taken from aerial surveys of the Cumberland 

Sound Bay, Nunavut during the summer observation periods of 2014 and 2017 during late July 

and early August. Of the total images taken, only those within the area of the Clearwater Fiord, 

as shown in Figure 1, were used for this study. This region is the major congregation point of 

Cumberland Sound belugas during summer months (Richard and Stewart 2009).  

 

Figure 1: Map of the study area in Clearwater Fiord within Cumberland Sound, Nunavut, Canada. Area 

in orange shows the individual outlines of the photos taken on August 7, 2017. 
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The aerial geo-coded images were acquired from a Nikon D810 camera equipped with a 

25 mm lens and flown at height of 610 m at a speed of 204 km/h with each image containing 

4912 × 7360 pixels, representing an approximate pixel spacing of 10 cm. During flight, the 

camera continuously acquired images with an interval of about 4 seconds. Images outside the 

study area were excluded. In addition, images of scenes that captured areas entirely above sea 

level were excluded through registration with the Canadian Digital Elevation Model (CDEM), 

since whales are sea dwelling creatures. This inclusion criteria resulted in a total of 3888 images 

in the 2014 dataset and 2712 images in the 2017 dataset. Since the two datasets were taken from 

different time periods, the weather conditions were different. In Table 1, we compare the weather 

conditions that occurred during the survey periods in each day of the 2014 and 2017 dataset. 

From this comparison, we can see that the scenes from the 2014 dataset have more clear 

conditions while the scenes from the 2017 dataset have more overcast conditions. 

 

Table 1: Weather during aerial surveys. The most prevalent weather condition each day was 

declared as the weather for the day. Data acquired from Pangnirtung A, Nunavut weather station 

(Government of Canada, 2019).  

Dataset Date Weather Wind Speed (km/h) 

2014 Aug 3, 2014 Clear 8.95 

Aug 4, 2014 Clear 12.04 

Aug 10, 2014 Clear 18.96 

Aug 11, 2014 Cloudy 24.04 

2017 Jul 29, 2017 Foggy 7.17 

Aug 7, 2017 Cloudy 7.71 

Aug 8, 2017 Clear 11.41 

Aug 12, 2017 Cloudy 8.33 
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We partitioned the data into two separate scenarios, scenario A where the model was 

trained with data from 2014 and scenario B where the model was trained with data from 2017.  

Each scenario splits the data into three mutually exclusive groups:  

Scenario A: Train-A 2014, Eval-A 2014, and Eval-A 2017  

Scenario B: Train-B 2017, Eval-B 2014, Eval-B 2017.  

A breakdown of the datasets is shown in Table 2.  

 

Table 2: Breakdown of beluga findings by category. Note that the numbers do not account for 

duplicate counts of belugas that appear from overlapping images. 

 2014 Dataset 2017 Dataset 

Group Train-A 2014 Eval-A 2014 Eval-A 2017 

Total number of belugas 1190 447 3691 

Total number of images 373 3515 2712 

Total number of images 

 without belugas 

92 3444 2482 

 Eval-B 2014 Train-B 2017 Eval-B 2017 

Total number of belugas 1637 2781 910 

Total number of images 3888 186 2526 

Total number of images 

 without belugas 

3536 3 2479 

 

Data Challenges 

Training a deep learning model to predict whales on aerial surveys is a challenging task due to 

the heterogeneous appearance of the images and relative size of belugas.  



 
 

 9 

The appearance of the background in the images varies significantly throughout the 

dataset because the appearance of the water depends on environmental variables such as the time 

of day, wind speed, weather conditions, sediment, and viewing angle. Figure 2 shows some 

examples of the heterogeneous backgrounds in images within the study zone. These conditions 

cause difficulties from a classification perspective because the appearance of a beluga with 

respect to the background will vary based on these factors. Exposure or compensation for 

different tones of water are thus required to build an effective classifier. Also, regions with high 

amounts of specular reflection (i.e., glare) from the sun greatly reduce visibility. Consequently, 

these factors place the onus on the classification model to have enough complexity or capability 

to handle these variations. As will be shown in the following sections, regions with high glare 

were a significant source of false positives created by the classifiers. 

 

 

 

 

 

  

  

 

 

 

Figure 2: Images of heterogenous appearance due to solar illumination. The coverage for 

each image was roughly 900 m and 600 m in terms of image width and height respectively. 

 

(a) 08/04/2014 (b) ) 08/08/2014  

(c) 08/07/2017 (d) 08/07/2017 
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The size of belugas is another challenge when working with aerial surveys. While 

dependent on the physical size of the beluga, the aircraft altitude, and viewing angle, adult 

belugas have a length of approximately 30 to 40 pixels, which make them small components of 

the image. The younger belugas are smaller and more difficult to identify. The combination of 

the heterogeneous backgrounds, different appearances of the belugas, and the small size of 

belugas make it difficult to identify belugas within an image.  

Methodology 

The backbone of our pipeline is a machine learning classifier that is capable of mapping a 

subimage to a desired label: whale or non-whale. The pipeline is designed to produce likelihood 

predictions for overlapping patches of the original images to aid a human operator in recognizing 

regions that contain whales. We consider a baseline random forest (RF) model, a base 

convolutional neural network (CNN) model, and enhanced CNN models with advanced deep 

learning techniques. In this section we discuss the classifier as well as our patch extraction 

procedure. A summary of the entire pipeline is visualized in Figure 3. 

Figure 3: Evaluation pipeline to obtain annotated output from Eval 2014/Eval 2017 scenes.  
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Patch Extraction 

 The machine learning models used in this study require uniform patches as input.  

Patches were obtained using a tiling strategy to break the original 7360 × 4912 pixel input 

images into overlapping 65 × 65 pixel patches, with the patch size being a tradeoff between 

having sufficient pixels to capture the beluga and the prediction granularity. The tiling strategy 

differed for training set (Train-A 2014 and Train-B 2017) and the evaluation sets (Eval-A/B 2014 

and Eval-A/B 2017).  

 

We create sets of patches called TrainPatches-A and TrainPatches-B composed of an 

equal number of patches labelled as whale and non-whale that are extracted from Train-A 2014 

and Train-B 2017. The subimages labelled as whale were created by selecting 129 × 129 large 

patches surrounding the beluga coordinate, then dividing this into 65 × 65 patches using a stride 

of 16 in both x and y directions. We do this to ensure that our model is shift invariant. An 

example of the patch extraction procedure is shown in Figure 4. Next, we obtain patches labelled 

 

Figure 4: 129 × 129 patch surrounding a whale sighting extracted from image with two 

sample 65 × 65 sub-patches used for training (red/blue).  
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as non-whale by taking an equivalent number of 65 × 65 patches, not adjacent to belugas, 

randomly selected from Train-A/B. An additional set, TrainPatches-A/B + High Glare, adds onto 

TrainPatches-A/B by selecting patches with high glare, by a process explained in more detail in 

the Hardmining section. Overall, this extraction process resulted in a total of 35,950 patches 

containing whales, 35,950 patches that do not contain whales, and 8000 patches from high glare 

regions away from whales. An overview of the patch extraction pipeline for training is shown in 

Figure 5. 

 

 

For evaluation, Eval-A/B 2014 and Eval-A/B 2017, the tiling strategy was adapted so that 

it would cover the entire image, using a stride spacing of 32. The stride size was increased to 

make evaluation on the full image more manageable. These patches are ultimately what are 

passed into the evaluation pipeline, as previously shown in Figure 3, that uses the trained models 

to predict labels for the entire images. 

Figure 5: Patch extraction pipeline to obtain TrainPatches and TrainPatches+Glare from Train 
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Baseline Machine Learning Model 

The field of image recognition has proposed many different methods for the problem of 

classifying images, which vary in performance depending on the problem’s characteristics. With 

the popularity of deep learning, much development has been focused on applying deep learning 

models, namely CNNs, towards image recognition problems because of their abilities to learn 

high-level features without requiring to specifically engineer features for the problem. To 

validate previous studies and confirm that deep learning models are better suited for our 

problem, we develop a baseline RF classifier.  

We choose an RF classifier as the baseline because when compared to other traditional 

machine learning algorithms, an RF classifier has fewer hyper parameters to tune. Furthermore, 

previous studies have shown that RF classifiers perform just as well on remote sensing scene 

classification as other traditional machine learning algorithms (Pelletier et al. 2016; Pal 2005). 

The inputs to our RF classifier are histograms of oriented gradients (HOG) vectors (Dalal and 

Triggs 2005), which are transformations of the subimages. In terms of parameters, the HOG 

vectors were generated with 8 orientations with cells of 8 × 8, and the RF had 100 trees with Gini 

impurity. Prior to HOG transformation, a non-linear brightness and contrast adjustment (The 

Gimp Development Team, 2020) was applied to better discriminate the whales from the darker 

background. Our interest in this RF classifier is only as a baseline classifier method for 

comparing deep learning models. While there are likely improvements that could be made from 

other feature extraction algorithms and traditional machine learning classifiers, it is outside the 

scope of our work. We implemented HOG with the skimage python package and RF with the 

scikit-learn Python package (Walt et al. 2014; Pedregosa et al. 2011).  

Convolutional Neural Network 

Convolutional neural networks (CNNs) are neural networks that consist of convolutional and 

fully connected layers (LeCun et al. 1995). CNNs perform image classification by assigning a 

class likelihood to an input image and selecting the class with the highest likelihood score. CNNs 
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have become the primary choice for image classification tasks because of their ability to learn 

complex image patterns. The inputs to the CNN are the image channels. For an RGB image, such 

as the ones used in this study, the image channels are the red, green, and blue channels, which we 

normalized to be between -0.5 and 0.5. Through a series of convolutional filters, the CNN is able 

to identify and preserve features of interest. After the convolutional layers, the images are 

lexicographically stacked to 1-dimensional vectors. These vectors are passed to the fully 

connected layers, where non-linear functions are applied to linear combinations of previous 

layers. The output from the fully connected layers is the probability of the existence of a beluga. 

The parameters in the network are optimized by means of a training algorithm, such as gradient-

based algorithms. Often in CNN models, pooling operations are performed to downsample the 

image. Max pooling is a pooling operation where blocks of pixels are replaced with the pixel 

with the greatest intensity. 

 Our proposed CNN architecture for whale detection takes 65 x 65 pixel patches as input 

and determines the probability of a whale existing in that patch. This is different from the region 

proposal networks and semantic segmentation models that are popular for object detection tasks.   

We decided not to use region-proposal networks, which are commonly applied for object-

detection purposes, for the following reasons: 

(1) Belugas in the images do not appear as distinct objects in the image. Often, they appear in 

groups where multiple belugas appear to overlap within the view. In addition, they are 

similar to water ripples in the image and they are often hidden among the water ripples. 

This would likely cause regions containing belugas to go undetected, which is 

unacceptable in our context. 

(2) In the mainstream approaches, the regions are typically rescaled to a common size for the 

classifier to operate. The appearance of belugas is relatively similar in size throughout 

our dataset, so the added complexity of dynamically generating different sized regions is 
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unnecessary. Furthermore, such a method would skew the relative scale of the belugas in 

the original images and consequently destroy the prior information of the common size of 

belugas. 

We decided not to use semantic segmentation models for the following reasons:  

(1) Semantic segmentation requires pixel-wise labels of the categories. Our dataset only 

contained coordinates of whale findings and converting these to pixel-wise maps is a 

non-trivial task. 

(2) Our evaluation of this task is based on the number of whales that are successfully 

detected. As converting pixel-wise predictions to a discrete count of whales is non-trivial, 

we determined it more straightforward to do a patch-wise classification approach. 

Most of the state-of-the-art models for computer vision are built-for and tested on popular 

benchmark datasets, such as Canadian Institute for Advanced Research 10 (CIFAR-10) 

(Krizhevsky, 2009), ImageNet (Deng et al., 2009),  Microsoft Common Objects in Context (MS 

COCO) (Ling et al., 2014), and many more, that represent natural images encountered by typical 

multimedia sources (e.g., images appearing from social networks). The visual characteristics of 

these images differ from those in remote sensing tasks, so it is unestablished that the state-of-the-

art models on popular datasets will generalize to this setting.  

For this study, convolutional networks of varying complexity were used. First, a custom 

baseline CNN, hereafter referred to as BaseCNN, was implemented. The CNN architecture, as 

shown in Figure 6(a), consists of three convolution operations followed by flattening and two 

fully connected layers. 2x2 max pooling was performed between each convolutional layer to 

reduce computational cost and reduce the likelihood of overfitting. This architecture was chosen 

based on computational cost and accuracy on a validation set. Non-linear activation functions 

were used at the end of each layer. The activation functions for all layers except the last was the 
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rectified linear unit (ReLU) (Glorot et al. 2011). ReLU activation function returns zero for all 

values less than zero and performs a linear operation (y = x) for all values greater than or equal 

to zero. ReLU is a standard activation function for computer vision applications. A softmax 

activation function was used for the final layer. The softmax function converts outputs from the 

fully connected layer to class likelihood values that sum to one. From these values, a probability 

of a beluga occurrence can be determined for each patch.  

The CNN was trained using a learning rate of 1 × 10−3 with the Adam optimizer (Kingma 

and Ba 2014). The model was trained for 100 epochs as it was found that the training and 

validation loss plateaus at this point.  

Additional CNN Components 

For our study, we looked to the current literature to inspire methods for creating our deep 

learning architectures. Two architecture components we examined are residual blocks (He et al., 

2016) and squeeze-excitation (SE) blocks (Hu et al., 2018). Residual blocks, originally proposed 

by He et al. (2016), are modules that are leveraged to extend the depth and hence the predictive 

capacity of the network. Residual blocks, as visualized in Figure 6(b), facilitate this by adding 

the input after the non-linear activation in order to improve the flow of gradients in the network. 

Batch normalization is built into the residual block, which normalizes inputs to hidden layers by 

subtracting a mean and dividing by standard deviation in order to better condition activation 

outputs during training (Ioffe and Szegedy 2015).  SE blocks, proposed by (Hu et al., 2018), are 

used to model non-local channel interdependency by way of mean reducing the height and width 

dimensions, taking a trainable linear transformation of the channels (i.e., matrix multiplication), 

and then multiplying the response back into the hidden layer. An illustration of this model is 

shown in Figure 6(c). We created two more models that leverage residual blocks and SE blocks 

respectively.  
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The models leveraging SE and residual blocks were created in a similar architecture as 

the BaseCNN to evaluate the effects of the aforementioned blocks upon our task. The first 

model, hereafter referred to as the RESNET model, adds four additional residual blocks per 

level, thus making the model much deeper. Residual blocks utilize skip connections to prevent 

the vanishing gradient problem, which makes typical deep networks difficult to train (He et al. 

2016). The second model, hereafter referred to as SE-RESNET, adds SE blocks to the RESNET 

model. For model training, the CNNs were initialized with random weights and zero valued bias 

vectors. These models were also optimized using the Adam optimizer with a learning rate of 1 × 

10−3 (Kingma and Ba 2014). Both models are visualized in Figure 6(d). 

In computer vision problems, there are state-of-the-art models that are retrained for 

different applications. This is referred to as transfer learning and some of these models leverage 

the squeeze-excitation and residual blocks. We do not use transfer learning because these state-

of-the-art models are built for applications that are not detecting objects from aerial images. 

They are most often built for classifying images. These images are more complex than images of 

open water with whales. Therefore, the complexity of these models is unnecessary. Furthermore, 

the architectural design choices that are beneficial for image classification may not be beneficial 

for whale detection. Note that we attempted to apply transfer learning and we did not achieve 

performance superior to our BaseCNN. 
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(a) Architecture of BaseCNN model. 

 

 

(b) Construction of residual block with batch normalization as used in this study. Note that the dotted 

lines indicate that mean and standard deviation are only actively computed for samples during training. 

During evaluation, the mean and standard deviation are reused from those encountered during training, 

as is standard practice when implementing batch normalization. 
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(c) Construction of squeeze excitation residual blocks, according to Hu et al. (2018) 

(d) Architecture of RESNET and SE-RESNET models. 

 Figure 6: Architectures of CNN models used in the experiments. The conv indicates that 

a convolution is applied, maxpool indicates maxpooling is applied (thereby reducing 

spatial dimensions),  f indicates a non-linear activation function,  s indicates a softmax 

function is applied, and σ indicates a sigmoid function is applied. 
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Ensemble Models 

Due to the high variability in the appearance of the images, the performance of a model on 

certain scene types can be dependent on initialization conditions and the training order of the 

dataset. To make our model robust to these variations, we propose an ensemble of CNNs. In this 

paper, ensemble models refer to the creation of multiple separate models that are independently 

trained. The ensemble’s prediction is the aggregate, in our case the mean average, of the 

predictions of their contained separate models. Ensembles are attractive as they reduce the 

variability that comes from parameter initialization and batch selection during training (Ju et al. 

2018; Nanni et al. 2018). The main drawback is the time required to train several identical 

models. We chose 10 as a reasonable number of models to be contained in an ensemble. Through 

experimentation, we found that ensembles with any fewer models did not provide the same level 

of stability and ensembles with additional models did not provide any additional benefit while 

increasing computational complexity.   

Hardmining  

To reduce the false positives in regions of high glare, we propose a “hard-mining” strategy, a 

method used in the machine learning community that involves modifying a classifier’s training 

set with samples it classified incorrectly. In our implementation of hard-mining, we selected 65 

images with a high number of false positives caused by the glare. Specifically, we took images 

where the proportion of the image predicted as whales by the BaseCNN , which we call the 

surface area, was over 0.7.  From these, a total of 8000 patches of size 65 × 65 were randomly 

selected from the 65 full images and added to TrainPatches-A/B to make a new set 

TrainPatches-A/B + Glare, which are used to train the classification models.  

Identification of Regions Containing Belugas 
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All models discussed in the aforementioned sections output the probability of the 

presence of a Beluga for 65 by 65 pixel patches of the images, with a stride size of 32 by 32. 

After these probabilities are calculated, a threshold is determined which is used to identify 

regions as containing belugas. The output prediction map then takes the union of all patches with 

probabilities above the threshold. Since some regions will be overlapped by multiple patch 

predictions due to the stride size, the maximum probability is considered in these regions for 

thresholding purposes. Then, if a whale appears within a region that is above the threshold, it is 

considered detected. Likewise, total predicted area is the proportion of all pixels that have a 

probability above the threshold. 

Evaluation 

Using the strategy described above, a predicted probability score was generated for each patch 

using the trained model. Each overlapping patch was assigned a probability estimate by the 

model that indicates the model’s confidence that a beluga was present. Finally, the last element 

that is required is evaluating the effectiveness of the pipeline using the dataset annotations. There 

are two elements of concern: the number of belugas that are correctly predicted and the amount 

of area that is predicted as containing a whale in each region. Maximizing beluga predictions is 

essential for the pipeline to be considered trustworthy by a human observer, however, predicting 

too many false positives will decrease the effectiveness for the observer by raising the time 

requirements to look through output. Given that classifiers produce a probability estimate of the 

presence of a beluga, a probability threshold is needed to make a concrete decision on whether a 

beluga is or is not present.  

When one has a classifier that can generate probabilities for a discrete classification task, 

there exists several traditional measures for evaluating how well a classifier performs at different 

probability thresholds. Some of these include area under the receiver operating characteristic 

curve (AUROC – measure true positive rate vs. false positive rate) and area under the precision 
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recall curve (AUPRC – measures precision vs. recall) that evaluate the ratio of different 

confusion matrix metrics over all thresholds. However, as shown in the work by Carrington et al. 

(2020), these metrics can be skewed by factors such as class imbalance because they integrate 

over portions of the curve that are not always relevant and can provide a false sense of utility. 

This is relevant to our study because model predictions are to be used to guide a human observer 

and therefore there is a lower bound of whales that must be detected and an upper bound of total 

surface area that can predicted in order for the model to be useful. 

In this vein, we define a metric called partial true positives vs surface area (PTPVSA) 

in order to gauge how well the models performed in terms of detecting whales and keeping 

surface  area low. By evaluating at probability thresholds in the range of 0.005 to 1.0 with 

increments of 0.005 we have PTPVSA defined as  

𝑃𝑇𝑃𝑉𝑆𝐴 =  
1

𝜈𝛾
∫ max(𝑓(𝑥) − 𝛾, 0) 𝑑𝑥 

𝜈

0

 

where f(x) is the percentage of total belugas predicted for x surface area, 𝜈 is the upper bound of 

acceptable percentage of total surface area of the image and γ is the lower bound of acceptable 

percentage of belugas predicted. PTPVSA is normalized between 0 and 1, where 0 indicates that 

f(x) was below γ for all x between 0 and 𝜈, and 1 indicates that all belugas are predicted for all x 

between 0 and 𝜈. The values of ν = 0.1 and γ = 0.8 were chosen because results within these 

thresholds were deemed most useful to an observer. In other words, we felt that a pipeline that 

predicted more than 10% average surface area or less than 80% of the total number of belugas 

would not be useful to an observer. It is noted that f(x) was linearly interpolated between 

evaluating at different probability threshold points. Note that PTPVSA only evaluates over a 

portion of the curve and should not be interpreted as other metrics such as area under the receiver 

operating characteristic curve. 
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Experimental Setup 

 

With these evaluation metrics now defined, we conduct four different experiments to evaluate 

our methods: 

• Experiment 1 investigates a selection of baseline classifiers. 

• Experiment 2 explores the effect of applying ensembles of classifiers. 

• Experiment 3 explores effect of hardmining to inject high glare examples into the training 

set with the ensemble classifiers in experiment 2. 

• While the first three experiments are focused towards scenario A by training on patches 

from Train-A 2014, experiment 4 takes the best performing model and evaluates its 

performance and trains it on TrainPatches-B+HighGlare and evaluates on Eval-B 2014 

and Eval-B 2017.  

 

Results 

 

Here we will present the results of the four experiments described above. A summary of 

our results can be viewed in Table 3. The runtime for each of the models were as follows: RF=20 

s/image, BaseCNN=1.2 s/image, RESNET=1.5 s/image, SE-RESNET=2.0 s/image, BaseCNN 

=12 s/image, RESNET-x10=15 s/image, and SE-RESNET-x10=20 s/image. It should be noted 

however that our pipeline was written in Python and not fully optimized for runtime.  

Experiment 1 evaluated four classification models: RF, BaseCNN, RESNET, and SE-

RESNET. A plot showing the trade-off between predicted surface area and the fraction of 

detected belugas is shown in Figure 7. While RF had higher PTPVSA in Eval 2014, this was a 
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result of its predictions being more sensitive to threshold, so it can predict a larger range of 

surface areas, despite it being below the curves for the deep learning models. For Eval 2017, the 

PTPVSA was much lower. Based on the position of the curves in Figure 7, the models follow 

similar characteristics where SE-RESNET is on top, followed by RESNET, BaseCNN, and RF. 

The minimum predicted surface area differs greatly for each of the models, causing significant 

differences in PTPVSA despite the aforementioned ordering.  

Experiment 2 compared the performance of the deep learning models when they were 

assembled into ensembles of size 10. It is noted that RF is already an ensemble of decision trees, 

so evaluating an ensemble of RF models would be redundant. The results are visualized in Figure 

8. Compared to the models in Experiment 1, the PTPVSA for each deep learning model was 

greater than the non-ensemble variants. Lastly, when deep learning models are assembled into 

ensembles, they are also able to make predictions at lower surface areas. Therefore, we can more 

genuinely compare the PTPVSA of RF and deep learning models.   

In Experiment 3, we evaluated our trained models on images with a high amount of glare 

that did not contain belugas in order to reduce the number of false positives in the data set, 

creating the set TrainPatches-A + Glare as described in Glare Adjustment. This increases the 

number of whales identified while decreasing the predicted surface area for each threshold, 

which increases the PTPVSA, as shown in Figure 9. 

In Experiment 4, we chose SE-RESNET-x10 as the evaluation model based on the results 

from the previous experiments. We trained this model using TrainPatches-B + HighGlare and 

evaluated it on Eval-B 2014 and Eval-B 2017 respectively. There was a large difference in 

evaluation performance between the two years. As shown in Figure 10, it is clear that the model 
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has significantly lower prediction scores in 2014 than in 2017. The model only achieved a 

PTPVSA of 0.0008 in 2014 while it achieved 0.624 in 2017. 
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Figure 7: Experiment 1 prediction results. Shows classification results with baseline models trained 

on TrainPatches-A with probability thresholds between 0.005 and 1.0. This figure shows the ability 

of the models to generalize, with SE-RESNET performing better than the others. (a) Eval-A 2014 (b) 

Eval-A 2017. The annotations below the observed points indicate the threshold that was chosen to 

obtain the given point. 

 

 (a) (b) 
 

Figure 8: Experiment 2 prediction results. Shows classification results when ensembles of 10 CNN 

models are trained on TrainPatches-A with probability thresholds between 0.005 and 1.0. (a) Eval-A 

2014 (b) Eval-A 2017 

(b)  (a) 
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Figure 10: Experiment 4 prediction results. Shows classification results with ensemble models trained 

on TrainPatches-B + Glare with probability thresholds between 0.005 and 1.0 inclusive. (a) Eval-B 

2014 (b) Eval-B 2017. The results on Eval-B 2014 are much worse than previously seen due to it 

having visual characteristics that less represented in TrainPatches-B + Glare. 

 
 

 (a) (b) 

  

 (a) (b) 

Figure 9: Experiment 3 prediction results. Shows classification results with ensemble models trained 

on TrainPatches-A + Glare with probability thresholds between 0.005 and 1.0 inclusive. (a) Eval-A 

2014 (b) Eval-A 2017 
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Training dataset Model Eval 2014 Eval 2017 

Experiment 1: 

Baseline comparison 

   

TrainPatches-A RF 0.4227 0.1026 

TrainPatches-A BaseCNN 0.3219 0.1308 

TrainPatches-A RESNET 0.4047 0.1891 

TrainPatches-A SE-RESNET 0.6200 0.5065 

Experiment 2: 

Ensemble 

   

TrainPatches-A BaseCNN-x10 0.6178 0.1991 

TrainPatches-A RESNET-x10 0.5578 0.3022 

TrainPatches-A SE-RESNET-x10 0.6666 0.4769 

Experiment 3: High 

glare 

   

TrainPatches-A + 

Glare 

BaseCNN-x10 0.8487 0.2566 

TrainPatches-A + 

Glare 

RESNET-x10 0.7222 0.4700 

TrainPatches-A + 

Glare 

SE-RESNET-x10 0.7913 0.6320 

Experiment 4: 

Training on 2017 

   

TrainPatches-B + 

Glare 2017 

SE-RESNET-x10 0.0008 0.624 

  

Table 3: Numerical PTPVSA Results 
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Discussion 

In the first experiment we evaluated a selection of our models on TrainPatches-A with neither 

ensemble (except for RF) nor glare augmentation. From the graphs in Figure 7, it is apparent that 

the predictions from RF create a lower curve than the deep learning models, indicating that it 

under-performs the deep learning models with higher surface areas predicted. The deep learning 

models having a higher curve means they can predict more belugas for the same amount of 

surface area predicted. However, it must be noted that the PTPVSA value for BaseCNN and 

RESNET are lower for Eval 2014 due to their inability to make predictions at lower surface 

areas. Ultimately, it is clear that SE-RESNET was able to outperform all of the other models, as 

it was able to make predictions at low surface areas and produce a higher curve in the graph. The 

performance improvement of SE-RESNET is greatest in Eval 2017. Since Eval 2017 contains 

scenes of very different appearance than the TrainingPatches-A, which were extracted from the 

2014 set, this shows squeeze-excitation blocks allow the model to learn more general features of 

belugas. 

In the second experiment, we evaluated the usage of ensemble models while training with 

TrainPatches-A. We found that in the cases of BaseCNN-x10 and RESNET-x10, the 

introduction of ensembles raised the PTPVSA by widening the distribution of the network 

predictions and enabling the models to predict at lower surface areas. The effect of ensembles on 

SE-RESNET-x10 was less clear, as the PTPVSA improved in Eval-A 2014 but reduced in Eval-

A 2017 compared to SE-RESNET. Part of this is due to a sharp change at the 0.6 threshold, 

which seems to indicate that some of the ensembles did not train consistently and 4/10 of the 

models in the ensemble made vastly different predictions. Nonetheless, SE-RESNET-x10 still 

outperforms the other ensemble CNN models. Correct predictions made by SE-RESNET-x10 are 

shown in Figure 11. Ultimately, we found better performance from all models when training with 

an ensemble of CNNs. This observation is expected because with a wide variety of scene types, 
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depending on initialization, CNNs can learn different features. Using an ensemble of CNNs 

allows the limitations of each individual CNN to be minimized.   

(a)   (b) 

 (c)  (d) 

 

In the third experiment, we evaluated training ensemble CNNs with a training set that 

was augmented with high glare examples, TrainPatches-A + Glare. Overall, the augmentation 

greatly improved performance by lowering the ratio of surface area per beluga detected, as 

evidenced by both higher PTPVSA values and higher curves in  for all models. While BaseCNN-

x10 performed the best for Eval 2014 (PTPVSA=0.8487), its performance gap for Eval-A 2017 

(PTPVSA=0.2566) was large. In contrast, SE-RESNET-x10 performed best for Eval-A 2017 

(PTPVSA=0.6320) and was a close second place for Eval-A 2014 (PTPVSA=0.7913). The large 

Figure 11:Predictions made correctly by SE-RESNET-x10 on scenes taken (a) 08/03/2017 (b) 

08/03/2017 (c)08/07/2017 (d)08/07/2017. Image dimensions are a) 430 x 688 pixel, b) 339 x 

542 pixel, c) 386 x 615 pixel, and d) 758 x 1213 pixel. Regions with high probability of 

containing a whale in the 65 x 65 neighborhood are outlined in red.  
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performance improvement shows the impact of expanding the dataset to handle different 

environmental variables. 

We choose an ensemble of 10 SE-RESNETs as our best model for its ability to generalize and 

have better performance on a data set from a different year. The SE-RESNET identifies ~95% of 

belugas with ~2% of images labelled from Eval-A 2014 and ~90% of belugas with ~2% of 

images labelled from Eval-A 2017. It must also be noted that all models have lower performance 

on Eval-A 2017 which is due to the different appearances of the two datasets. 

The fourth experiment also highlights the discrepancy of visual appearances between 

2014 and 2017. It is clear from the numerical results that the model trained on 2017 generalized 

extremely poorly towards the images in 2014. The difference in PTPVSA seems to indicate that 

there is subset of images in 2014 that are entirely dissimilar to those found in the training set 

from 2017. One aspect that supports this the change in weather conditions between the years 

because, as mentioned in Table 1, most of the observation days in 2017 were cloudy while 2014 

contained significantly more days with clear conditions. The fact that training on 2014 achieved 

better results could indicate that appearance of TrainPatches-A was more diverse and therefore 

better able to handle the conditions in 2017. 

Now we discuss the contrast in results between Eval-A 2014 and Eval-A 2017 and the 

implications on their respective scenarios. In all scenarios, the performance on Eval-A 2014 was 

higher than Eval 2017, indicating that there were significant factors between the two time 

periods that inhibited equivalent performance between the scenarios for evaluation in the same 

time period and evaluation in future time periods. From Table 3, the performance gap between 

the two datasets is largest for BaseCNN, narrowed for RESNET, and best for SE-RESNET. 

Since SE-RESNET also typically had higher PTPVSA than the other models, it is apparent that 
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the squeeze-excitation blocks were very effective for this task. As the novelty of the squeeze-

excitation blocks is the interaction and control between channels non-locally, this could indicate 

they are more effective at handling background changes. However, Experiment 4 showed the 

squeeze-excitation blocks have limits in terms of handling background changes. 

Background analysis 

Given the difference in results between Eval-A/B 2014 and Eval-A/B 2017, we investigate 

whether the background colour is correlated with the difference in performance of the models as 

an indirect way of assessing whether the environmental variables are a cause for the discrepancy 

in performance. We specifically examine the distribution of background colour between true 

positives and false negatives for Eval 2014 and Eval 2017. For each beluga coordinate, we 

extract the background colour of a 65 × 65 pixel box by the following method. First, we convert 

the images from red-green-blue (RGB) colour space to the hue-saturation-value (HSV) colour 

space, as it is more informative for explaining the natural effects of illumination on the images. 

In order to detect the background, we assume that the beluga is brighter than the background. As 

the value channel is indicative of brightness, we select all pixels that are less than or equal to the 

25th percentile of the value channel in the 65 × 65 patch as the set S. We then record the mean 

hue, saturation, and value for all pixels in S.  

We examine the predictions from the models RESNET-x10 and SE-RESNET-x10 after 

training with TrainPatches-A + Glare. We chose the thresholds based so that the mean surface 

area predicted would be the same for both methods for both RESNET-x10 (0.8 for 2014 and 0.95 

for 2017) and SE-RESNET-x10 (threshold=0.8 for 2014 and 0.95 for 2017) for the purpose of 

examining the distribution of colour values. Table 4 shows the hue, saturation, and value for true 

positives and false positives for Eval 2014-A and Eval 2017-A via the process listed above. From 
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these figures, we can observe that the distributions of Eval-A 2014 and Eval-A 2017 follow 

distinct trends. In Eval-A 2014 using RESNET-x10, the false negatives appear to be slightly 

skewed towards lower saturation and higher value. This corresponds to backgrounds with high 

glare, as low saturation values and high value produces a washed-out effect that is produced by 

solar glare. An example of this is shown in Figure 12, in which it is difficult to identify the 

beluga, even to a human observer. The cumulative effect of the glare according to the HSV plots 

was less clear in SE-RESNET, indicating that the squeeze-excitation blocks allowed better 

compensation for these backgrounds.  

  

 

For Eval-A 2017, false negatives are concentrated with value measurements much lower 

than those in Eval-A 2014 for both RESNET-x10 and SE-RESNET. This indicates that the 

classifiers had issues in correctly predicting beluga patches that have dark backgrounds. An 

example of this is shown in Figure 13, where the classifiers fail to detect belugas on dark 

backgrounds. These examples are very easy to spot for a human observer. The fact that these 

false negatives appear at value intensities much lower than the background of any beluga in Eval 

Figure 12: Belugas missed by SE-RESNET-x10. Original high glare image (left) and 

annotated image (right) from 2014 data set with the green dots being ground truth labels of 

belugas. (600 x 400 pixel region) 
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2014 suggests that there a deficiency in the training set where examples of belugas with dark 

backgrounds are not present, and subsequently the classifiers have difficulty in predicting these 

samples in Eval 2017.  

In the context of training with the TrainPatches-B + High Glare, Table 5 shows the HSV 

distributions for true positives and false negatives for SE-RESNET-x10. It can be observed that 

for Eval-B 2014, there is a larger concentration of false positives associated with the mid-level 

hues, low saturation, and high value intensity. This appears to demonstrate a converse 

relationship that occurred when training on 2014 because the model has become accustomed to 

the darker images captured during the cloudy days of 2017 while missing the brighter examples 

in 2014. 
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 (a)  Original   (b) Annotated 

 (c) Original   (d) Annotated 

 

Thus, it appears that variables such as weather, illumination, and surface conditions 

significantly differ between datasets. These variables have a significant impact on in the 

appearance of the images that cause discrepancies between the training set and testing set that are 

problematic for generalizing models between different time periods.  Unfortunately, obtaining a 

training set that contains beluga patches with varying weather, illumination, and surface 

conditions is not be immediately feasible because it would require multiple surveys taken over a 

Figure 13: Two outlier examples where the model misses the belugas in the 2017 

data set due to the darker background that is not present in the 2014 data set. a, b) 

350 x 300 pixel sample c, d) 400 x 200 pixel sample.  
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large period of time. There are two approaches that could be taken to compensating for these 

environmental variables that could be explored for future work. The first would be implementing 

an augmentation algorithm that is capable of simulating changes in the environmental variables 

within the training set in order to make the model more robust. The second would be directly 

accounting for these environmental variables within the models such as by training separate 

models to match specific environments, such as cloudy and sunny, and then combining their 

predictions as a mixture model. When we obtain additional surveys in future work, we plan to 

adapt our training strategy to merge images from multiple surveys to evaluate on a single unseen 

survey. This will allow us to monitor the sensitivity of our methods to new survey conditions 

when additional training data from multiple time periods is considered. 

  



 

 37 

 

 Hue Saturation Value 

1 

   

2 

   

3 

   

4 

   

  

Table 4: True positives and false negatives of model predictions according to HSV 

colour analysis with TrainPatches + Glare for 1 = (Eval 2014, RESNET-x10), 2 = (Eval 

2014, SE-RESNET-x10), 3 = (Eval 2017, RESNET-x10), and 4 = (Eval 2017, SE-

RESNET-x10) 
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 Hue Saturation Value 

A 

   

B 

   

  

Table 5: True positives and false negatives of model predictions according to HSV colour 

analysis with Train2017Patches + Glare for A = (Eval 2014, SE-RESNET-x10), B = (Eval 

2017, SE-RESNET-x10), 
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Conclusion 

In this study, we applied CNNs to identify Cumberland Sound beluga belugas from aerial 

images. Aerial images and beluga sightings used in this study were part of an aerial survey of 

Cumberland Sound Bay, Nunavut during the summer observation periods of 2014 and 2017.  

Comparing with our baseline classifier, a RF classifier, we show that deep learning is a viable 

method for identifying belugas in aerial images. We support this by showing CNNs are capable 

of identifying more belugas in the images, while labelling less surface area. Three CNNs were 

used for this study and they were a base CNN consisting of three convolutional layers and two 

fully connected layers (BaseCNN), a RESNET which is the BaseCNN with residual blocks, and 

a SE-RESNET which is the BaseCNN with residual and squeeze-excitation blocks. We also 

investigated ensemble models and data augmentation through glare adjustment. We found that 

all CNNs have superior performance to the RF classifer, but SE-RESNET as an ensemble of 10 

models using glare adjustment had the best performance.  Squeeze-excitation blocks and residual 

network blocks assisted the model in learning general features of whales while creating 

ensembles allowed more stable predictions.  

Therefore, from this study, we conclude that through deep learning we can attain automation of 

beluga identification from aerial images. To make our methods production ready, more data is 

required to provide more exposure to different types of weather and lighting conditions. 
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