
Security and Interpretability in
Automotive Systems

by

Shailja Thakur

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Shailja Thakur 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Rahul Mangharam
Associate Professor, Department of ESE, University of Pennsylvania

Internal-External: Florian Kerschbaum
Associate Professor, School of Computer Science, University of Waterloo

Supervisor(s): Sebastian Fischmeister
Professor, Department of ECE, University of Waterloo

Internal Member: Mark Crowley
Assistant Professor, Department of ECE, University of Waterloo

Internal Member: Hiren Patel
Professor, Department of ECE, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Controller area network (CAN) is the most commonly found bus protocol in automotive
systems. The two-wire bus protocol helps accomplish sophisticated vehicle services in real-
time through complex interactions between hardware components. However, the lack of
any sender authentication mechanism in place makes CAN susceptible to security vulnera-
bilities and threats. To address the insecure nature of the system, this thesis demonstrates
a sender authentication technique that uses power consumption measurements of the elec-
tronic control units (ECUs) and a classification model to determine the transmitting states
of the ECUs. The method’s evaluation in real-world settings shows that the technique ap-
plies in a broad range of operating conditions and achieves good accuracy.

A key challenge of machine learning-based security controls is the potential of false pos-
itives. A false-positive alert may induce panic in operators, lead to incorrect reactions, and
in the long run cause alarm fatigue. For reliable decision-making in such a circumstance,
knowing the cause for unusual model behavior is essential. But, the black-box nature of
these models makes them uninterpretable. Therefore, another contribution of this thesis
explores explanation techniques for inputs of type image and time series that (1) assign
weights to individual inputs based on their sensitivity toward the target class, (2) and
quantify the variations in the explanation by reconstructing the sensitive regions of the
inputs using a generative model.

In summary, this thesis presents methods for addressing the security and interpretability
in automotive systems, which can also be applied in other settings where safe, transparent,
and reliable decision-making is crucial.

iv

Acknowledgements

I want to thank my supervisor Prof. Sebastian Fischmeister for his dedicated support
and guidance throughout my Ph.D. In particular, I am grateful for our regular meetings and
conversations that compelled me to think out of the box from different perspectives to form
a comprehensive and objective critique. I am also thankful to Carlos, who, despite a tight
schedule, ensured the timely availability of the hardware for the experiments. Furthermore,
I would like to thank our research team for their collaborative effort during field experiments
and data collection. I would also like to thank Ekin, Adan, and Oleg for being around. I
am thankful to Saket for his support through good and bad times. Finally, I am incredibly
grateful to my family, including Mummy, Ashu, Papa, Rozy Mummy, Papa, and Chetna
Didi, for their unconditional support during the intense academic years.

v

Dedication

This is dedicated to my family and friends.

vi

Table of Contents

List of Figures xi

List of Tables xvii

1 Introduction 1

2 Background 4

2.0.1 CAN . 4

2.0.2 Power-based Program Tracing or Monitoring 5

2.0.3 Deep Neural Network-based Classification 6

2.0.4 Explainable AI . 8

3 CANOA: CAN Origin Authentication through Power Side-Channel Mon-
itoring 15

3.1 Related Work . 16

3.2 Problem Statement . 17

3.3 Contribution . 17

3.4 Mathematical Notations . 18

3.5 Proposed Approach . 20

3.5.1 Attack Model and Assumptions . 20

3.5.2 Proposed Approach . 22

vii

3.5.3 Attack Detection . 27

3.5.4 CANOA-aware Attacker . 28

3.6 Experimental Setup . 29

3.6.1 System Description . 29

3.6.2 Model Description . 30

3.7 Evaluation Metrics . 32

3.7.1 Data Description . 35

3.8 Results . 36

3.8.1 Evaluation in Real-vehicle . 36

3.8.2 Evaluation in Lab Prototype . 45

3.8.3 Additional Module Detection . 46

3.8.4 Evaluation in Real-vehicle using stacked denoising autoencoder (SDA)
Classifier . 46

3.8.5 Summary of Comparison . 49

3.8.6 Model Selection . 49

3.8.7 Presence of Incomplete Transmissions 50

3.8.8 Experimental Factors . 52

4 A Saliency Map-based Interpretation of Model Outcome 58

4.1 Related Work . 59

4.2 Terminology . 60

4.3 Problem Statement . 61

4.4 Contribution . 61

4.5 Mathematical Formulation . 61

4.6 Proposed Technique . 63

4.6.1 Saliency Map Generation . 64

4.6.2 Relevance Mask Generation . 66

4.7 Experiments . 69

viii

4.7.1 Model and Data Description . 69

4.7.2 Evaluation Metrics . 70

4.7.3 Results . 71

4.7.4 Evaluation using Insertion/Deletion Metrics 71

4.7.5 Evaluation using Pointing Game . 71

4.7.6 Convergence . 72

4.7.7 Saliency Map for Examples from ImageNet 73

4.7.8 Evaluation using Ground-truth Annotations 74

5 Generalizability of Saliency Map-based Explanation 82

5.1 Related Work . 84

5.2 Terminology . 85

5.3 Problem Statement . 85

5.4 Contribution . 86

5.5 Proposed Technique . 86

5.5.1 Notations . 86

5.5.2 Variations of the Salient Region of the Input 88

5.5.3 Image Reconstruction . 90

5.6 Evaluation . 91

5.6.1 Model and Data Description . 91

5.6.2 Evaluation Metrics . 92

5.7 Evaluation of the Variations of the Salient Region 92

5.7.1 Classification Accuracy of Reconstructed Images 93

5.7.2 Impact of Varying Sizes of Bounding Boxes 93

6 TiME: Time Series-based Model outcome Explanation 98

6.1 Related Work . 100

6.2 Contribution . 102

ix

6.3 Notations . 103

6.4 Problem Statement . 104

6.5 Proposed Method . 104

6.6 Evaluation . 106

6.6.1 Data and Model Description . 108

6.6.2 Evaluation Metrics . 109

6.6.3 Qualitative Evaluation . 111

6.6.4 Quantitative Evaluation . 112

6.6.5 Class Discrimination Evaluation . 114

6.6.6 Use-case: Electrocardiogram (ECG) Recording Classification using
MIT-BIH ECG Dataset . 117

6.6.7 Use-case: Sender Authentication in CAN protocol 119

6.6.8 Performance . 120

6.6.9 Relevance Score on UCI Dataset . 121

7 Conclusion 130

References 132

x

List of Figures

2.1 Simplified diagram of a CAN frame. 5

2.2 Image source [60]: Figure shows the feature importance plot for the different
attributes of the Titanic dataset [3] obtained from the fitted random forest
model. 10

2.3 Image source [60]: Figure shows SHAP explanation for two images dowitcher
and meerkat. Higher (positive) SHAP values are indicated by red pixels,
and lower (negative) SHAP values are indicated by blue pixels. Equiva-
lently, positive SHAP values increase the likelihood of the output class, and
negative SHAP values reduce the likelihood of the class. 11

2.4 Image source [60]: The figure shows the locally interpretable model expla-
nation (locally interpretable model explanation (LIME)) interpretation of a
text corpus, highlighting certain tokens, which are significant in explaining
the predicted class of the input. 12

2.5 Image source [28]: Figure shows the class activation map class activation
map (CAM) generated for the image of woopets on pre-trained ResNet18 [39]
across all the variants [112, 90, 12, 74, 104, 103, 72, 30, 45]. Note: CAM and
related approaches are post-hoc methods, applied on the pre-trained model,
and model-specific; that is, the technique relies on the global average pooling
layer prior to the last fully connected layer for the method to work. 12

3.1 Examples of attacks on a CAN network . 21

3.2 Drift in the observed and the true transmission time 24

3.3 Hardware architecture for capturing CAN signal from the bus and power-
consumption-measurements of the electronic control Units (ECUs). 30

3.4 Overview of SDA. 31

xi

3.5 Pair plot colored by source address with a density plot of the diagonal. . . 38

3.6 Density plot of the Mahalanobis distance estimates of the features in the
training set for the source address: 0, 11 and 15. 41

3.7 (a) Average AUC score, (b) Average latency over the set of different feature
lengths. 42

3.8 ROC curve on a test-set of transmissions with number of PCA components
M = 50. 42

3.9 (a) Average AUC, (b) Average latency over a set of different feature lengths. 43

3.10 ROC curve of the random forest classifier based sender authentication on a
test-set of transmissions with number of PCA components M = 50. 44

3.11 Learning curve for Engine model in real-vehicle setting 48

3.12 Steps in generating incomplete transmissions: (a) shows the voltage sig-
nal of the CAN bus and the power-trace of the Engine corresponding to
a transmission, which starts at B, ends at D, C is the 50th% of transmis-
sion bits, (b) synthesized aborted transmission, (c) exponential smoothed
segment [C + u,C − u] with different smoothing levels (α), (d) smoothed
segment [C − u, C + u] using Holt’s additive damped trend model with
different values of smoothing level (α) and smoothing trend (β) 53

3.13 Accuracy of CANOA with first two significant interactions between factors
and levels. 55

3.14 Accuracy of CANOA with another two significant interactions between fac-
tors and levels. 56

4.1 Saliency map generated for the target-specific image classification using our
approach, RISE [77], GCAM [90], and LIME [83]. The first column shows
the input image along with the top predicted class of the model outcome and
the accuracy of classification. Second column onwards shows the saliency
map overlapped with the input image and the area under the curve (AUC)
scores (%) of insertion/deletion metrics [77] where a higher value is consid-
ered good for insertion, and a lower value is considered good for deletion. . 62

4.2 A random initial mask with preserved input pixels highlighted in yellow and
masked input pixels highlighted in blue . 64

4.3 Mask upsample . 66

xii

4.4 Overview of the mask generation approach 67

4.5 Visual representation of the relevance mask during mask optimization . . . 69

4.6 The figure shows the AUC score of insertion 4.6(a) and deletion 4.6(b) for
the saliency map of an input image using our approach and RISE [77] over
the iterations. 75

4.7 Saliency map comparison for the target-specific image classification using
our approach, RISE [77], GCAM [90], and LIME [83]. The first column
shows the input image along with the top predicted class of the model out-
come and the accuracy of classification. Second column onwards shows the
saliency map overlapped with the input image and the AUC scores (%) of
insertion/deletion metrics [77] where a higher value is considered good for
insertion, and a lower value is considered good for deletion. 76

4.8 Evaluation of our approach on a set of ImageNet datasets using pointing
game metric. The figure shows the human-annotated bounding box for the
object of interest (target class), followed by the saliency map generated using
our approach, followed by the binary bounding box for the corresponding
saliency map. The figure also shows the intersection over union (IOU) score
calculated using the equation 4.8 with the bounding box for ground-truth
and the saliency map of the input images shown on top of the figure. . . . 77

4.9 Evaluation of our approach on a set of ImageNet datasets using pointing
game metric. The figure shows the human-annotated bounding box for the
object of interest (target class), followed by the saliency map generated using
our approach, followed by the binary bounding box for the corresponding
saliency map. The figure also shows the IOU score calculated using the
equation 4.8 with the bounding box for ground-truth and the saliency map
of the input images shown on top of the figure. 78

4.10 Evaluation of our approach on a set of ImageNet datasets using pointing
game metric. The figure shows the human-annotated bounding box for the
object of interest (target class), followed by the saliency map generated using
our approach, followed by the binary bounding box for the corresponding
saliency map. The figure also shows the IOU score calculated using the
equation 4.8 with the bounding box for ground-truth and the saliency map
of the input images shown on top of the figure. 79

xiii

4.11 Evaluation of our approach on a set of ImageNet datasets using pointing
game metric. The figure shows the human-annotated bounding box for the
object of interest (target class), followed by the saliency map generated using
our approach, followed by the binary bounding box for the corresponding
saliency map. The figure also shows the IOU score calculated using the
equation 4.8 with the bounding box for ground-truth and the saliency map
of the input images shown on top of the figure. 80

4.12 Evaluation of our approach on a set of ImageNet datasets using pointing
game metric. The figure shows the human-annotated bounding box for the
object of interest (target class), followed by the saliency map generated using
our approach, followed by the binary bounding box for the corresponding
saliency map. The figure also shows the IOU score calculated using the
equation 4.8 with the bounding box for ground-truth and the saliency map
of the input images shown on top of the figure. 81

5.1 Saliency map for the image of broccoli. The two saliency map for broccoli
highlights non-overlapping regions of the image as important for broccoli
classification. 83

5.2 Saliency map for the image of a church. The three saliency map for church
highlights a fraction of non-overlapping regions of the image as important
for church classification. 83

5.3 Figure showing transformations such as change in color, rotation, shift, and
scale applied on the image of cat. 87

5.4 From left to right, I : input image, M : saliency map, B : bounding box, R:
reconstruction mask. 88

5.5 Visualizing image reconstruction approach 89

5.6 From left to right, the image of church with occluded relevant-mask (center
grey patch B), generated occluded region (B �G(z′)), reconstructed image
(Irec) . 91

5.7 Reconstructed images for the image of a lynx with saliency map (M) as
shown in Figure 5.4 . 94

5.8 Figures showing the histogram of the reconstructed salient pixels and the
original salient pixels. The title of the sub-figures show the accuracy of the
class lynx for input image/reconstructed image. 95

xiv

5.9 Figure shows the number and accuracy of correct classifications using the
reconstructed images over different sizes of bounding boxes. 96

5.10 Figure shows the reconstruction loss over the different sizes of bounding boxes. 97

6.1 ECG time series pattern for a normal heart beat and an abnormal heart beat. 99

6.2 Figure showing the key aspects of the mask generations steps. 102

6.3 TiME overview . 107

6.4 Middle, relevance map for an instance of class 0 and class 1 from Strawberry
dataset. Left and Right, a global perspective of the reported relevance map
of the input examples. 112

6.5 Relevance map for instances of Trace dataset across all the output classes. 116

6.6 Relevance map for instances of MIT-BIH ECG dataset across all the output
classes. 118

6.7 Feature of Trace dataset across all the output classes. 118

6.8 Correct classification of the input power consumption measurement to the
state of transmission. Green box shows the input region with features for
the state of transmission. 119

6.9 Correct classification of the input power consumption measurement to the
state of non-transmission. Green box shows the input region with features
for the state of non-transmission. 120

6.10 Incorrect classification of the input power consumption measurement to the
state of transmission. Red box shows the input region with features for the
state of transmission and non-transmission, and the source of confusion for
the misclassification. 120

6.11 The figure shows the latency of the technique against the number of queries
to the black-box model, and against the length of input time series. 121

6.12 Relevance map for CineCECGTorso dataset across all the output classes. . 122

6.13 Relevance map for instances of DistalPhalanxOutlineCorrect dataset across
all the output classes. 123

6.14 Relevance map for instances of ECGFiveDays dataset across all the output
classes. 124

6.15 Relevance map for instances of GunPoint dataset across all the output classes.125

xv

6.16 Relevance map for instances of ItalyPowerDemand dataset across all the
output classes. 126

6.17 Relevance map for instances of PhalangesOutlinesCorrect dataset across all
the output classes. 127

6.18 Relevance map for instances of Strawberry dataset across all the output
classes. 128

6.19 Relevance map for instances of TwoLeadECG dataset across all the output
classes. 129

xvi

List of Tables

3.1 The t-score (p-value) between the pairs of source addresses using the power-
traces of transmissions . 38

3.2 The t-score (p-value) between the source addresses using the PCA compo-
nents of the power-traces of transmissions 39

3.3 Confusion matrix with every entry equal to (mean ± standard deviation)
on the test-set of transmissions in a prototype setting 45

3.4 Confusion matrix for attack detection in a Sterling Acterra truck (mean ±
standard deviation) . 46

3.5 Binary state (transmitting/idle) classification results of the ECUs on the
bus in the vehicle setting . 46

3.6 Qualitative comparison of our technique against other intrusion detection
systems . 50

3.7 Qualitative comparison of our approach against other intrusion detection
systems . 51

3.8 Evaluation of the various models for ECU state classification 51

3.9 Experiemntal factors and correponding levels 54

3.10 Important interactions between factors and levels 57

4.1 Mean AUC Score(%) using insertion (Ins) and deletion (Del) metrics - I . . 71

4.2 Mean AUC Score(%) using insertion (Ins) and deletion (Del) metrics - II . 72

4.3 Mean IOU score(%) using pointing game metric 72

6.1 The table contains the baseline accuracy averaged over 10 runs of each im-
plemented model on the UCR/UEA archive, with the standard deviation. . 113

xvii

6.2 TiME evaluation with base model ResNet and UCI repository time series
datasets . 114

6.3 TiME evaluation using combined (C) metric score and a quantitative com-
parison against related approaches. 114

6.4 Trace UCI evaluation . 116

xviii

Chapter 1

Introduction

CAN is the most commonly found bus protocol in modern automobile systems today. The
two-wire bus protocol helps accomplish sophisticated vehicle services in real-time through
complex interactions between hardware components. However, one of the fundamental
limitations of CAN is the lack of any sender authentication mechanism in place, which
makes CAN vulnerable to security threats. For instance, one of the vehicle functionality
is adaptive driver-assistance systems (ADAS) that uses a fusion of sensors connected to
the CAN network to help regulate the target vehicle’s speed. However, a delay introduced
in the vehicle adversarially will cause the system to fail to increase or decrease the speed
on time. This unexpected behavior will trigger a cascade of incorrect actions, which will
result in a collision. It is also equally likely that the unusual behavior of the system is a
result of an error in the system or fault in the vehicle’s automotive components. And to
perform reliable decision-making in such an uncertain situation, it is crucial to identify the
root cause of the system’s behavior. However, due to the complex nature of the system,
the accountability of the system’s unexpected behavior is only partially established. In
this dissertation, we propose a technique for authenticating the senders of the messages
observed on the CAN bus, followed by a solution for reasoning the predictions of the
authentication technique.

To address the insecure nature of CAN protocol in automotive systems, we proposed a
novel sender-authentication technique that uses power-consumption measurements of the
ECUs to authenticate the sender of a message. The method exploits the physical char-
acteristics of the transmitting and non-transmitting states of the ECU, which a machine
learning model classifies to determine whether the message originated from the purported
sender. We tested our technique across different vehicles’ for transferability and robustness
of the method. We observe that the evaluation of our approach in a range of real-world

1

settings such as Sterling Acterra Truck, Heavy-duty vehicles over a long period and under
different operating conditions helps attain a false positive rate of 0.01%.

One of the challenges of machine learning-based security controls is the likelihood of
false alerts, wrongly denoting the presence of an attack, which can induce panic in the
vehicle operator, leads to fatal consequences. Understanding why the system erroneously
detects attacks is imperative for rational decision-making in such a context. However, the
complex nature of these techniques makes it difficult to determine the cause of the system’s
behavior. A significant body of prior work attempts to interpret model insights. However,
these methods rely on (1) models’ parameters and weights, accessible by unwanted tam-
pering with the warranty of the models, and (2) a vast majority of these techniques apply
to image-based models and cannot be used to explain time series-based models. However,
a solution based on non-intrusive techniques by Petsiuk et al. [77] depends on random in-
put perturbations, which are computationally intensive and lack consistency. Hence, their
usage is limited in the safety-critical domain. Therefore, we propose a solution comprising
solving three closely related sub-problems that help to explain the outcomes of the time
series-based sender authentication technique. The first sub-problem addresses the limita-
tion of the prior work and proposes a non-intrusive, model-agnostic, and computationally
fast explanation method. Our work builds upon the previous work by implementing a non-
intrusive perturbation-based technique that uses empirical risk minimization to optimize
a randomly initialized input mask. Because the method works by iteratively retaining and
propagating pixels sensitive for mapping to the target class, it converges to an estimate of
saliency-map faster than [77].

A limitation with the perturbation-based explanation technique is that it lacks consis-
tency [65]. As a second sub-problem, we address the instability of the explanation and
propose a method to generate variations for the salient region of the input for which the
model prediction remains unaltered. For generating alternative explanations, we used an
image completion technique [108], which reconstructs the pixels in the salient regions of
the input by locating encodings in the latent space that are closest to the encoding of the
neighboring pixels. Using this approach, we find an exhaustive and contextually similar
set of transformations for the pixels in the semantic regions, which are also classified to
the target class.

Finally, leveraging the solution for a model-agnostic and generalized explanation, we
solve the third sub-problem, that is, to explain the outcome of the time series-based sender
authentication technique. To do that, we refine our perturbation-based explanation method
for time series-based models and propose a non-intrusive and class-discriminative explana-
tion technique, TiME. This method is a refined version of the perturbation-based approach,
tailored to work with time series-based inputs. The method assigns scores to every input

2

time unit based on their significance toward the target class as an expectation over the
weighted random input subsamples. The weights are the model’s confidence in the target
classes. The sub-samples are chosen such that they are contiguous and windowed segments
of the inputs to avoid the introduction of spurious artifacts in the sub-samples. The evalu-
ation of the technique against a wide range of publically available time series datasets and
state-of-the-art models shows that the approach learns to focus and discriminate between
the relevant inputs for classification to the output classes.

The organization of the thesis is as follows. We provide the introduction in Chapter 1
followed by related background topic descriptions in Chapter 2. This is followed by the
sender authentication approach using ECUs power-consumption-measurements in Chap-
ter 3. Chapter 4 describes the motivation, proposed approach, evaluation metric for the
model explainability problem. We have also included preliminary results for interpreting a
neural network outcome for an example set of images. Following this chapter, we demon-
strate the saliency-map generalization technique in Chapter 5. A time series-based model
outcome explanation technique follows this chapter in Chapter 6. Finally, we conclude in
the last Chapter 7.

3

Chapter 2

Background

This chapter provides background related to our work. We briefly describe some aspects of
the CAN bus that is used in automotive systems, a brief overview of power-based program
tracing or monitoring, a description of machine learning-based classifiers, in particular deep
learning classification techniques, and the explainable AI techniques.

2.0.1 CAN

CAN uses a broadcast topology where multiple nodes (ECUs) can connect and exchange
data [84]. The physical layer of CAN is a twisted-pair cable for serial communication
using differential signaling. The operation of the CAN bus at the physical layer is based
on “open-collector” or “open-drain” connected devices. Without causing any conflict /
short-circuit on the bus, any device can assert a logical 0 on the bus, independently of
what any other module is transmitting. Releasing the bus implicitly brings it to a logical
1, provided that no other device asserts a logical 0.

Access to the bus is arbitrated by the devices themselves. To this end, a priority field
is used, the ID field, as illustrated in Figure 2.1. Our discussion is limited to the 11-bit
base frame, which is the most commonly used. However, we emphasize the aspect that our
proposed technique operates equally effectively with either 11-bit IDs or with the extended
frame 29-bit IDs. Lower values for this ID represent higher priority, and devices read back
the state of the bus to detect collisions: if a device transmitting a 1 as part of the ID
field reads the bus and observes a logical 0, then it concludes that some other module
of higher priority is transmitting, so it releases the bus. This is the case since the ID
is transmitted MSB to LSB. Issues related to the devices’ reaction to collisions are not

4

Additional fields

ID field Start of frame
 (Logical 0)

Data

ID10 to ID0 CRC

Figure 2.1: Simplified diagram of a CAN frame.

relevant to our work, so we omit any further details. Every CAN frame includes a 15-bit
cyclic redundancy check (CRC) field for fault-tolerance purposes — that is, to protect the
transmission from unintentional errors due to noise or other artifacts at the hardware level.
These may include loose wires, defective, or aged electronics.

2.0.2 Power-based Program Tracing or Monitoring

Based upon the field of side-channel analysis [49], power-based program tracing or moni-
toring have appeared in the literature in recent years [25, 69, 19, 70, 58]. Among these, the
earlier works ([25, 69]) propose the technique as a means to reconstruct a program’s execu-
tion trace in a deployed (uninstrumented) embedded device, although both works mention
other uses. Some of the work [19, 70, 58] focus on observing the power-consumption-
measurements of an embedded device to detect security attacks, following the rationale
that such attacks would cause the device to deviate from its normal operation. Moreno
and Fischmeister argue that this is an effective technique for monitoring safety-critical
embedded systems to enforce safety and security properties [67].

The basic idea of using power-based program tracing is to exploit the relationship
between a device’s power-consumption-measurements and its operation (more precisely,
what a processor is executing). By monitoring the power-consumption-measurements, one
can detect deviations from normal operation. This can be done either by attempting an
explicit reconstruction of the program’s execution trace or simply by profiling the power-
consumption-measurements patterns during normal operation and detecting deviations
from the profiled normal behavior.

In our proposed technique, the use of power-consumption-measurements monitoring
has a different yet closely related goal. We are only interested in exploiting the correlation
between the power-consumption-measurements of ECUs and one aspect of the ECUs pro-
gram’s execution: whether or not the given ECU is transmitting on the CAN bus. Though

5

this leads to a more limited accomplishment in terms of enforcing security, it has two
important advantages: (1) Our technique can detect attacks executed by a device, which
is added to the system by an attacker with physical access (we will discuss this aspect in
more detail in Section 3.5.1); and (2) we can achieve a significantly higher accuracy com-
pared to existing power-based monitoring techniques (or similar accuracy at much lower
computational/processing power requirements). This is because our system only needs
to reconstruct a feature that represents a much lower amount of information than recon-
structing the complete execution trace or detecting minor deviations (or deviations during
a short amount of time) in the power-consumption-measurements.

2.0.3 Deep Neural Network-based Classification

Classical supervised machine learning approach rely on statistical pattern recognition to
perform classification tasks. Given a set of input observations {x1, x2, · · · , xR} ⊆ X and
a set of output class labels C = {C1, C2, · · · , CS}, the goal of any statistical learning
method is to learn a mapping f̂ from input observations to output class labels, f̂ : X → C.
This mapping is an estimate of the true but unknown function f that maps each input
observation x to the class to which it corresponds. The function f̂ approximates f by
mapping an input observation x to the most likely class Ĉ given the observation.

Typical classifier implementations rely on features extracted using mathematical oper-
ations applied on the observations x ∈ RJ where J is the input dimension. However, for
many applications, it is difficult to identify the relevant features because of the complicated
nature of input observations. There are many ways to solve this problem. One solution to
this problem is to use an unsupervised neural network technique known as autoencoder [8].
Autoencoders learn the most relevant data representation, feed the learned representation
as input to a classifier, and perform the classification task. The classifier can be either a
neural network classifier or a classical machine learning classifier such as support-vector
machine (SVM) or random forest.

The architecture of an autoencoder comprises layers of neurons (the smallest compu-
tational unit), with each unit in the previous layer passing the output to all the units
in the next layer using a non-linear mapping [53]. Typically, autoencoders are used for
learning data representation through an identity function that maps the input to the out-
put. The fundamental components of the network are an encoder and a decoder. The
encoder maps a d-dimensional input element represented as x ∈ Rd to a new compressed
representation x∗ ∈ Rd∗ , where d∗ 6 d, to retain the most useful information from the raw
input. This is followed by a decoder that reconstructs the original input from the com-
pressed representation of the input. An improved variant of an autoencoder is a denoising

6

autoencoder (DAE) [101]. Given a corrupted version of the input, a DAE is trained to
reconstruct the original, uncorrupted version of the input. Thus, a DAE leverages the ad-
ditional constraint imposed on the reconstruction procedure of the model to learn a more
robust identity function.

Another solution to the complicated features in high-dimensional space is to use a
dimensionality reduction technique such as principal component analysis (PCA) to extract
relevant features in lower-dimensional space and classify the principal components using a
classical classifier. PCA [38] is a dimensionality reduction technique that seeks to retain
maximum variability in the input by projecting the input to linear subspace. Features
from the linear subspace can be fed as input to a classifier and perform the classification
task.

Given segments of power-consumption-measurements measurement of the ECUs corre-
sponding to a transmission, we aim to identify whether the transmission belongs to an ECU
by detecting the state of the ECUs during the transmission. For our proposed technique,
we perform binary state classification of the ECUs using a variety of algorithms such as
random forest, distance-based clustering, and DAE-based classification. We can use the
algorithm to implement a model for every ECU on the bus and use the models for the clas-
sification of the segments of power-consumption-measurements measurements to the class
of transmission and non-transmission. Finally, we use the predicted states of the ECUs
to identify the sender of the transmission as the ECU with the highest value of the trans-
mission. A random forest-based classifier is a discriminative classification algorithm that
classifies an input vector to a vector of real-valued numbers that signifies the strength of the
model in the output classes. On the other hand, to approach the binary class assignment of
a segment of power-consumption-measurements measurement using a clustering algorithm,
it is essential to cluster the segments of power-consumption-measurements measurements
of the ECUs observed during transmission intervals by ECUs. The idea is that the seg-
ments of power measures corresponding to the same ECU will occur in close proximity
within the embedded space of learned feature representation. Thus, we use the principal
components of the segments corresponding to the ECUs to estimate a similarity measure
such as a Mahalanobis distance [61, 52] per ECU, and use the distance estimate as the
threshold to assign the PCA components of segments of power-consumption-measurements
measurement to the clusters. We also perform binary classification using the encoding of
the autoencoder as the features to a classifier. We apply the input reconstruction capa-
bility of DAEs described in the above paragraph to develop a classification model that
learns to separate the relevant features of the power-consumption-measurements patterns
of transmission and non-transmission periods of ECUs. To develop the model we stack
multiple DAEs on top of each other to form a SDA [102]. The output from the last DAE

7

layer is fed to a supervised classification layer which estimates the probability distribution
over the two states of the ECU: transmission and non-transmission.

2.0.4 Explainable AI

Explainable mean to express on understandable terms [23]. The term explainability is
used when the explanation is desired from the perspective of the internal working of the
model—for instance, when identifying the weights of the neural network and the units
within the layers of the network, which are maximally activated upon observing a particular
pattern in the input.

With significant success, deep learning approaches can achieve near-real human per-
formance and, in many cases, surpass human-level accuracy in computer vision for object
detection and natural language understanding. So, why not just trust the decision of the
state-of-the-art model? Why explain the reason for model prediction? The answer depends
on the context of usage. The explanation is unnecessary if there are no significant conse-
quences of unusual predictions (such as social media or e-commerce websites). Or if the
problem is validated in real-wold such that the end-user trust the decision-making of the
system, such as postal code sorting. However, the explanation is necessary if unexpected
circumstances impact human lives and the immediate environment. Consider an object
recognition algorithm used by an oncologist to detect the presence of a cancerous tumor in
a patient. In addition to influencing the oncologist to select the right course of diagnostics,
such a decision will also affect the patient physically and psychologically. Therefore, they
are well within their rights to ask for the reason for the prediction.

The need for explanation arises because accurate predictions are not sufficient in the
real world, and it is equally important to explain the prediction [23]. In addition, they
argue that we cannot trust the prediction of machine learning-based classifiers because
the response of these models is only partially accurate. The significant reasons for the
incompleteness of these models stem from the following,

• Model biasedness: The lack of knowledge in the training data results in an under-
represented model. We can observe the impact of the under-fitted model in the
application domain such as criminal justice and healthcare, where a lack of fair and
unbiased decisions can have an immediate impact on human lives. Some real-world
examples where the impact of the biased model directly impacted humans’ lives
include: (1) The face recognition system developed by amazon is shown to have
achieved an accuracy of 90%. But, the software also possesses a high error rate in

8

marginalized and under-represented groups of people such as black and women. The
impact of such a bias led to the arrest of three black men, who were falsely categorized
as criminals by the facial recognition system. In another real-world application, (2)
the facial recognition system by Amazon, IBM, and Microsoft have shown to have
an over-representation of light-skinned subjects as opposed to dark-skinned subjects,
as well as an over-representation of men over women. The consequences of this
imbalance have resulted in a high error rate in recognizing dark-skinned females as
males. When employed in the customs and immigration system, such a system will
impact the women travelers psychologically. Hence, they are well within their rights
to demand a justification for the reason of the error.

• Model variance: Presence of noise in the training data, which results in an over-
represented model. In the face of variation, introduces in the training data in the
form of Gaussian noise, or, the model must ascertain the properties of reliability and
robustness. An over-represented model can result in learning patterns and features
that do not generalize to the real world.

The spirit of the lack of knowledge representation and model variations also extends
to other mission-critical applications. Therefore, it is crucial to understand the reason for
model predictions. Our research on explaining the model prediction is particularly moti-
vated by the unexpected false attack detection in the automotive systems; that is, the model
wrongly detects the presence of an attack. Such an unexpected false-positive generated by
a machine learning-based classifier induces panic in operators, requiring justification in the
form of model prediction explanation.

Prior interpretability techniques come in varying shapes and sizes. Several criteria can
be used to categorize the techniques. Molnar et al. [65] provides a comprehensive overview
of the interpretability techniques and provides an overview of the guidelines that we can
use to differentiate between these techniques,

• Intrinsic vs post-hoc Intrinsically interpretable methods are methods that leverage
the inherently interpretable models. For instance, a linear regression model with
regression coefficients determines the influence of the corresponding input feature on
the target output.

On the other hand, post-hoc interpretability techniques are methods applied to mod-
els that are not inherently interpretable. For instance, deep-learning techniques rely
on non-linear interactions between the various layers of its network, and hence the
inner-working is obfuscated. In this method of explanation, the technique is applied

9

Figure 2.2: Image source [60]: Figure shows the feature importance plot for the different
attributes of the Titanic dataset [3] obtained from the fitted random forest model.

on top of the deep-learning-based model. SHAP [60] and LIME [83] are the most
commonly used post-hoc interpretable methods. SHAP is based on a game-theoretic
approach to finding the contribution of different features to the model output for
a particular instance by finding the difference in model output, for instance, com-
pared to a base value. On the other hand, LIME generates an explanation for the
particular instance by perturbing in a small neighborhood of the input vector space,
synthesizing samples from this space, and fitting an interpretable proxy model such
as a linear model.

• Model-specific vs model-agnostic Model-specific methods achieve explanation
by exploiting the capabilities that are specific to the model. For instance, CAM [112]
generates a target-specific saliency map by taking the global average pooling of the
feature maps at the layer before the fully connected layer. GradCAM [90] is a gen-
eralized version of CAM that, in addition to the feature map weights, feeds the class
gradient to the fully connected layer to assign importance to each of the input pixels.
Both [112, 90] can be applied to limited neural network architectures that have a
global average pooling layer. Similarly, attention-based methods for highlighting the
important words in a text corpus rely on the attention vectors present in natural
language-based neural network architectures such as BERT [22].

10

Figure 2.3: Image source [60]: Figure shows SHAP explanation for two images dowitcher
and meerkat. Higher (positive) SHAP values are indicated by red pixels, and lower (nega-
tive) SHAP values are indicated by blue pixels. Equivalently, positive SHAP values increase
the likelihood of the output class, and negative SHAP values reduce the likelihood of the
class.

11

Figure 2.4: Image source [60]: The figure shows the locally interpretable model explanation
(LIME) interpretation of a text corpus, highlighting certain tokens, which are significant
in explaining the predicted class of the input.

Figure 2.5: Image source [28]: Figure shows the class activation map CAM generated for
the image of woopets on pre-trained ResNet18 [39] across all the variants [112, 90, 12, 74,
104, 103, 72, 30, 45]. Note: CAM and related approaches are post-hoc methods, applied
on the pre-trained model, and model-specific; that is, the technique relies on the global
average pooling layer prior to the last fully connected layer for the method to work.

12

In contrast, a model-agnostic method assumes that the model is a black box. That
is, the explanation tool will have no access to the model weights and parameters.
Consequently, a model-agnostic method of explanation is generic to any machine
learning model regardless of its architecture and internal working. The method works
by perturbing the input to determine the sensitivity of the input features towards
the output target class. For instance, SHAP [60] and RISE [77] are model-agnostic
approaches as they apply varying ways of making the inputs and determining the
regions of the input that are important for the output class.

• Local vs global A locally interpretable method focuses on the patterns specific to
the particular instance. For instance, LIME is a method that fits a linear model
to a local neighborhood and finds sub-samples within the local neighborhood to
understand the significance of the point. Local interpretation is helpful when the
end-user decides based on the model prediction on a particular input.

A globally interpretable method identifies input patterns that generalize to the class
of the dataset. For instance, SHAP explainability method assigns scores to input
features by averaging the feature contribution over the entire dataset or a subset of
the dataset.

Despite the advantages of the explanation methods, they are limited with respect to
their applicability. Some of the aspects that can be used to measure the limitations of the
interpretability techniques are:

• Reliability: Despite being universal, interpretability methods such as RISE [77], are
prone to external variations induced in the form of noise. The impact is significantly
observed in the explanations of the techniques that rely on input sensitivity for
attributions. Work by Petsiuk et al. [77] shows perceivable variations in the generated
saliency-map for the input instance across multiple runs. Such variations result in
unreliable explanations and cannot be used in a mission-critical domain such as
healthcare, where a slight variation in the input can drastically affect the course of
action.

• Scope: The scope of explanation is limited to the composition of the explanation
and the methodology. For instance, techniques such as SHAP can only determine
the individual features important for the output class without explaining the relation
between features. On the other hand, LIME exploits the sub-samples within a local
neighborhood essential for the output class. Another way of measuring the scope
of an explanation technique is the ease of applicability given a black-box classifier.

13

For instance, CAM, grad CAM, and attention-based interpretation all rely on some
aspects of the network, limiting the applicability of the interpretation method to a
diverse set of machine learning models.

• Metrices of evaluation: Measuring the accuracy of explanation depends on factors
such as the type of dataset and domain of application. For instance, when applying
a technique to explain an input of type image, we can use the metrics from literature
such as insertion/deletion [77] that assess the effect of individual pixel or a subset
of pixels at a time toward the output. This measure captures the pixels and their
variations to which the model is sensitive for the output class. However, the input of
type time series requires assessing the impact of the variations of the individual time-
points and the corresponding time-interval within which they are significant for the
output class. Therefore, in addition to considering metrics for evaluating image-based
interpretations, there is a need for metrics that capture the time features.

Our focus through this thesis is on exploiting the limitations of post-hoc and model-
agnostic interpretability techniques to deploy the technique in a real-world setting with
minimum latency at explaining the model prediction by developing the following sub-
techniques, (1) converges to a reliable saliency-map faster than the prior work [77], (2)
generalizes the saliency-map for the input by obtaining a set of variations for the detected
salient region of the input, and (3) fine-tuned the proposed approach for application with
time series based models.

14

Chapter 3

CANOA: CAN Origin
Authentication through Power
Side-Channel Monitoring

CAN is a communication protocol widely used in automotive systems for efficient real-time
applications. However, its design exhibits significant security limitations. Among the most
important of these limitations is the lack of a sender authentication mechanism. Attackers
can exploit vulnerabilities, e.g., the connectivity of automobile systems to infiltrate ECUs
and inject spoofed messages on the network. Perhaps, the security of CAN protocol may
not have been of such paramount importance when the protocol came into existence in
1993. However, in recent decades, security has become a critical aspect in automotive
systems, given the increase in complexity and connectivity of modern vehicles [51]. In
particular, a study from 2009 suggests that a high-end vehicle contains as many as 70∼100
ECUs with tens of millions of lines of source code running across these devices [2] providing
thousands of vehicle functionalities.

Besides CAN, other communication mechanisms and their protocols such as Flex Ray,
TTCAN, CANOpen, SafetyBus, CAN-FD etc. are also used widely for real-time communi-
cation. However, analogous to CAN, these protocols also lack sender authentication. This
inherent security flaw in these protocols makes them vulnerable to remote attacks. These
attacks only become more feasible as the connectivity of the systems increases.

Given the insecure nature of the CAN bus, there has been a growing interest among
researchers to study the security of in-vehicle communication systems. For instance, Check-
oway et al. [13] and Koscher et al. [50] demonstrate the potential vulnerabilities in automo-

15

tive systems by studying and exploiting various attack vectors, including remote wireless
connectivity such as Bluetooth, cellular, GPS, etc. The work by Miller and Valasek [62, 63]
highlights the lack of authentication as one of the critical limitations of CAN networks.
They exploited the radio connectivity of the infotainment unit to hijack its functionality
and send messages to other ECUs. The compromised unit impersonated ECUs involved in
the control of critical physical attributes of the vehicle. This allowed them to demonstrate a
remote attack that disrupted or hijacked the functionality of systems such as engine, brake,
and steering. Moreover, dedicated websites have materialized that provide procedures and
guidelines for CAN bus hacking and reverse engineering of vehicles [4].

3.1 Related Work

Several approaches have been proposed for sender authentication in the CAN protocol.
The solutions can be broadly categorized into two categories: message authentication using
cryptographic techniques and authentication based on fingerprinting of physical character-
istics of the transmissions.

Researchers have used traditional cryptographic techniques for message authentica-
tion [41, 55, 36] by including secret key as part of the CAN frame to prevent forgery.
However, the use of these techniques is restricted due to the limited size (8 bytes) of the
CAN frames and strict timing constraints in the trasnmission operation.

Fingerprinting techniques build upon side-channel analysis, or more in general, analysis
of physical characteristics of the transmission. One such approach [15] uses the clock skew
of periodically transmitted messages for intrusion detection. The method exploits the fact
that the crystal clocks of devices are not synchronized with each other resulting in a time
deviation that is unique and stable over time and used as the ECU identifier. One of the
limitations of the approach is that the technique does not work with aperiodic messages.
Furthermore, the work by Sagong et al. [87] demonstrates that the method can be defeated
by profiling and reproducing the timing patterns of the target ECU.

Murvay and Groza [71] devised a fingerprinting approach that uses voltage variations
to fingerprint ECUs for sender authentication. This approach applies only to the voltage
measured on a low-speed CAN bus, while vehicles today operate at varying speed from
10 kbps to 1 Mbps depending on complexity and functionality. To overcome this limita-
tion, Choi et al. [18] proposed an approach that generates ECU fingerprints from voltage
measurement using both time and frequency domain features and used a supervised classi-
fication algorithm for sender authentication. Although the approach detected transmitter

16

with improved accuracy, the method has a practical limitation that the measurements are
collected at an extremely high sampling rate (2.5 Gsps), and it works with a fixed message
format.

Cho et al. [16] developed a model for sender identification by fingerprinting the ECUs
using voltage measurements against dominant bits of the transmissions. Kneib and Huth
proposed Scission [48], an ECU profiling technique that builds upon the idea of Viden
for sender authentication. Scission relies on the use of all the transmission bits instead
of just the dominant bits to construct ECU profile. Similar to [15], this technique relies
on physical characteristics that conceivably could be profiled and imitated by a different
device. Moreover, they could potentially be affected through access to subsystems outside
the device implementing the technique, as shown by [88]. We do acknowledge that any
such attacks would require temporary physical access to the target CAN, to add a custom
device on the network.

3.2 Problem Statement

From the above discussion, it is evident that the inability of CAN bus to authenticate the
sender represents one of its most important security shortcomings. This leads us to the
problem that motivates our work: given a message containing the purported sender on a
CAN bus, determine whether the message originated from the sender. Furthermore, if the
message did not originate from the purported sender, then determine the actual sender of
the message.

3.3 Contribution

In this chapter, we propose CANOA, a novel technique for sender authentication us-
ing power-consumption-measurements of ECUs as the identifying characteristic. power-
consumption-measurements leak relevant and critical information about the sequence of
operations executed in the ECUs [49].

Specifically, we exploit the correlation between the power-consumption-measurements
of each ECU and its state (transmitting or not transmitting). From the power-consumption-
measurements for all the ECUs, CANOA determines the actual sender when a transmission
is observed on the bus (with a purported sender in its data), which constitutes an effec-
tive sender authentication mechanism. One key and unique advantage of CANOA is that

17

the classification is based on physical characteristics of the transmitting ECU that are
guaranteed to be non-clonable. We can see that this is the case, given the strict rela-
tionship between ECUs activity (in particular, transmitting vs. not transmitting) and
their power-consumption-measurements patterns: if an ECU E is not transmitting, it is
physically impossible for another ECU to make the power-consumption-measurements of E
exhibit the same pattern it does when it is transmitting. We observe that one condition for
our technique to be effective is that the power-consumption-measurements patterns when
transmitting and not transmitting, and even while receiving, must not only be different:
the difference should be large enough for the patterns to be distinguishable. This is one
aspect that the results of this study confirm.

The contributions of this paper are as follows:

• We propose and implement CANOA, a technique for sender authentication using
power-consumption-measurements characteristics of transmitting and non-transmitting
states of the ECUs.

• In addition to authenticating the sender, we also show the capability of CANOA to
detect intrusion by determining the presence of compromised and additional illegiti-
mate ECUs on the network.

• We show the applicability of CANOA in practical settings by evaluating our proposed
approach for sender authentication and intrusion detection in a lab setup and a real
vehicle.

• Lastly, we demonstrate the feasibility and technical viability of CANOA by studying
the impact of the variations in bus speed, message format and source code on the
accuracy of the CANOA.

3.4 Mathematical Notations

In this Section, we explain the technique to verify the sender of a message given the power-
consumption-measurements of the ECUs on the bus.

The mathematical notation describing the problem statement are as follows.

Let E denote a set of K ECUs connected to the CAN bus.

18

E = {E1, E2, · · · , EK}

Let EP denoted the purported ECU, and EC denote the compromised ECU.

Let Pk ∈ RJ represent a vector of power-consumption-measurements of length J from
ECU Ek.

P = {Pk : Pk ∈ RJ , 1 6 k 6 K}

Let S = {S1, S2, · · · , SL} be a set of L source addresses.

A source address is unique to a sender; however, an ECU may generate messages with
more than one source address where the source address of a message can be derived from
the ID of the message.

Let T denote a set of N decoded transmissions from the CAN bus.

T = {(tn, sn), 1 6 n 6 N}

where t represents the start time of the transmission, and S denotes the source address
of the transmission.

Let a set of H classification models are denoted by,

F = {f1, f2, · · · , fH}

Let g denotes a mapping from a set of source addresses S = {s1, s2, · · · , sk} to the
set of ECUs E .

19

g : I → E

Thus, given an id corresponding to a transmission, g(id) returns the ECU that most
likely triggered the transmission.

Let an estimate of the transmission window be denoted by τ ∈ R, corresponding to the
amount of time during which a transmission is observed on the bus.

We will use the term power-trace to refer to a segment of power-consumption-measurements
measurement of length τ , and using notations as, P [τ]. Notice that a power-trace may
contain power-consumption-measurements during a time interval where the ECU was not
transmitting.

Formally, the problem statement for sender authentication on a vehicular network is
defined as:

Given a hypothesis function f : R→ [0, 1] for classification task, a transmission T : (ts)
containing the purported sender EP = g(s) on a CAN bus, power-trace PEP

[τ] correspond-
ing to the window [t− τ, t+ τ], determine whether the transmission T originated from the
purported sender EP. Furthermore, if the message did not originate from the purported
sender EP, then determine the actual sender of the transmission from among the rest of
the ECUs E \ {EP} on the bus.

3.5 Proposed Approach

This section presents the proposed technique CANOA for sender authentication on a CAN
network. We first describe the attack model and assumptions, followed by proposed ap-
proach implementation details such as data sampling, generation of power-consumption-
measurements based ECU identifier, and SDA model implementation for attack detection.

3.5.1 Attack Model and Assumptions

In our attack model, a target ECU is denoted ET, and it represents the ECU that the
attacker wants to impersonate. That is, the attacker’s goal is to transmit messages with

20

IDs that correspond to ET. The purpose of such an attack may be to cause some other ECU
to operate on false data — data that is logically correct but with contents that are under the
attacker’s control. For example, ET could be an ECU connected to sensors, and an attacker
could transmit false temperature or speed data that could result in physical damage to a
car’s transmission or engine. This implies that ET does not have any vulnerabilities that
the attacker can exploit (for example, an ECU without any connectivity to the Internet or
mobile networks, when we consider remote attackers).

An attacker is capable of sending crafted messages using the ID of the ET in the
following scenarios:

• Compromised ECU: In this scenario, an attacker gains access to an ECU, denoted
EC. Such compromised ECU may be, for example, one with connectivity that exposes
some vulnerabilities to remote attackers, or exposes services (e.g., open ports) that
the designers of the vehicle did not intend to offer (and are unaware that those
services are active and available).

• Added ECU: Our attack model includes an adversary that may temporarily gain
physical access to the vehicle and the target CAN bus. Thus, they can attach an
additional module, denoted EA, capable of transmitting CAN messages to the exist-
ing network. This additional module can be any arbitrary, custom hardware with
firmware entirely created by the attacker, thus capable of listening and transmitting
without any restrictions.

Figure 3.1 illustrates the above two attack vectors.

Additional
Module

CompromisedTarget

Figure 3.1: Examples of attacks on a CAN network

21

Our attack model also includes the possibility of an attacker tampering with ongoing
transmissions. In particular, the malicious ECU (be it EC or EA) can hijack an ongoing
transmission from ECU E1 to change its ID and make it look like the sender is ECU E2.
We observe that this is feasible given the “wired AND” nature of the CAN bus, allowing
an attacker to change any 1’s to 0’s in an ongoing transmission. E1 will determine that
a higher-priority frame is being transmitted, and will withdraw from the bus; from that
point, the attacker can complete the transmission. Although this attack does not affect
CANOA’s ability to determine that the sender is not E2, it may be beneficial for the
attacker to attempt to avoid detection by shifting the blame to E2.

Assumptions

Our proposed technique operates under the following assumptions and limitations:

• Secure CANOA implementation: We assume that our proposed technique is
implemented in a secure and tamper-proof manner. In principle, we would expect
the module implementing our technique to be physically isolated from any ECUs on
the target CAN bus.

• No DoS: We assume that an attacker will not perform a “brute” denial-of-service
on the CAN bus. In particular, if they can place an arbitrary device, they can
certainly disrupt every transmission or even assert a permanent logical 0 on the bus,
effectively severing all communications between any ECUs on that bus. Though this
sort of “trivial” attack may seem powerful, it may also be trivial to detect; the design
of many vehicles already include safety mechanisms that would appropriately deal
with situations like this attack [43].

• Types of Attacks: Our proposed technique CANOA only detects impersonation
attacks. If a transmission from an ECU EC contains malicious data but legitimate ID
(i.e., an ID that does correspond to EC), then our system will not flag any anomalies
or suspected attacks.

3.5.2 Proposed Approach

In this section, we explain the technique to verify the sender of a message given the power-
consumption-measurements measurement of the purported sender.

The entire process of sender authentication is divided into four phases. In the first
stage, we decode the transmissions from the captured voltage signal into a series of tuples

22

comprising of the start times, the end times and the IDs of the transmissions. In the second
stage, we fetch and label the instances of the power-traces of the ECUs corresponding to
the decoded times of transmissions. The power-traces are labeled as transmitting or not-
transmitting based on the state of the ECUs at the time of transmissions. In the third
stage, we train individual models for the ECUs with the labeled power-traces. Following the
training stage is the operation stage where for every new transmission T : (u, v, id) observed
on the bus, CANOA determines the authenticity of the purported sender. To achieve this,
we first fetch the purported sender EP = g(id) based on the id of the transmissions and
predict the actual state of EP at time u using the model HP.

power-traces

Sampling

Sampling is the first stage towards CANOA implementation. During sampling, we record
voltage signals from the CAN bus and power-consumption-measurements from the ECUs.

For our proof-of-concept implementation in the lab setup, we capture the CAN bus
signal at the analog level and power from the ECUs using a simultaneous conversion two-
channel Digitizer. This ensures correct alignment between power-traces and transmissions.
The CAN bus voltage is measured through an analog differential amplifier, with a configu-
ration that maps recessive bits to a low-voltage output, and dominant bits to a high-voltage
output. In the following step, we decode CAN transmissions in the order of their occur-
rences. As CANOA relies on the times and IDs of transmissions, we decode only the IDs
of the transmissions observed on the bus.

For the implementation in a real vehicle, we used a tool which captures the decoded
transmissions. However, due to buffer overhead, there is a variable and unpredictable delay
between the actual time of transmission and the time at which the CAN controller reports
the transmission to CANOA. This is illustrated in Figure 3.2. To address the uncertainty
in the start time of transmission, we adjust the captured start time of transmission by an
amount of δ equal to half a millisecond.

Estimate transmission window

Assuming that the transmissions windows follow a normal distribution, we calculate τ to
be equal to the mean of a set of N transmissions. We refer to the resultant estimate of
transmission window τ as Dynamic Transmission Window. In contrast to the theoretical
method of estimating the transmission window [21], the dynamic method adapts to the

23

Figure 3.2: Drift in the observed and the true transmission time

network under operation by averaging the transmission windows over multiple occurrences
of transmissions.

Notice that the estimation of τ is a one-time task and the same estimate can be used
for fetching power-traces during the operation phase of CANOA as well.

Generating features of transmissions

In this section, we describe the method to construct features of transmissions using power-
consumption-measurements of the ECUs. As the first step towards the implementation
of CANOA, we capture analog voltage signal and power-consumption-measurements of
the ECUs. From the captured voltage signal, we decode the times of occurrences and
source addresses of the transmissions. We also calculate an estimate of the transmission
window (τ), which is equal to the mean of transmission windows corresponding to N
decoded transmissions. Using the power-consumption-measurements from the ECUs and
the decoded transmissions, we construct features of the decoded transmissions, which are
used as training data for the ECU state identification model implementation.

Algorithm 1 summarizes the steps for the construction of the feature vectors from
transmissions using power-consumption-measurements of the ECUs. The input to the
algorithm is a set of power-consumption-measurements from the ECUs, P , a sequence
of N decoded transmissions T . The output generated by the algorithm is a set of pairs
{(X1,y1), (X2,y2), · · · , (XK ,yK)} where Xk ∈ RN×M is a matrix of N feature vectors of
length M and yk is an array of N source addresses corresponding to the transmissions.
As a preprocessing step, we first normalize the power-consumption-measurements from
the ECUs. This is done to unify the scale of the power-consumption-measurements from
different ECUs to a common scale. In the algorithm, in the expression for normalization,
Pk and sk are the estimates of mean and the standard deviation of a sample of power
signal from the ECU Ek. The normalization of power signals is followed by generating

24

features from transmissions as follows: For a transmission (t, S) and an ECU, Ek, fetch
the power-trace Pk[τ] corresponding to the ECUs Ek starting with the time t for the
length of the transmission window τ . To the extracted segment of the power signal, we
apply a windowing called Tukey window [11]. The Tukey window method helps reduce the
amplitude of discontinuities at the boundaries of the segment by multiplying it with a finite-
length window with an amplitude that varies smoothly and gradually toward zero at the
edges. This is followed by applying fast Fourier transform (FFT) to the windowed segment
of the power-trace. This helps recognize and eliminate the frequency components that are
predominantly noise. This is followed by computing the PCA of the resultant power-trace
in the frequency domain to filter out the frequency components which posses most of the
variance in the segment, and concatenating the first M ≤ J principal components of the
PCA, which form the feature vector x for the transmission (t, S) with the decoded source
address y as the label.

Algorithm 1 Generate power-traces

Require: P ∈ RK×J , T : a set N of transmissions, E : a set of K ECUs, τ : transmission
window

1: function powertraces(T ,P , E)
2: X ← 0 . Initialize a set of K N ×M matrices
3: Y ← 0 . Initialize a set of K N -dimensional vectors

4: P ∗ ← Pk −Pk

sk
, 1 6 k 6 K . Normalize P

5: for all Ek ∈ E do
6: for n← 1 to N do . Iterate T
7: xn ← P ∗k [t : (t+ τ)] . power-trace of length τ
8: xn ← Apply Tukey Window(xn)
9: xn ← Apply FFT(xn)
10: xn ← Apply PCA(xn)
11: xn ← xn[0 : M] . First M principal components is selected as the final

feature vector xn

12: yn ← S . Decoded Source address of T is assigned the label yn
13: end for
14: end for
15: return (X,y)
16: end function

25

Model implementation

To perform sender authentication,power-consumption-measurements we implement a set of
binary (transmission/non-transmission) classification models separately for all the source
addresses observed on the CAN bus. As a source address uniquely identifies an ECU on
the bus, the model per source address acts as a sender state identifier, and hence, a sender
authenticator. Even if multiple source addresses are associated with an ECU, the fact
that only one ECU transmits at a time, thus, the non-overlapping features of transmission
and non-transmission for the ECUs helps in identifying the correct state of the ECU. The
model implementation is subdivided into two stages: training and classification.

• Training

Given a surjective function g : {S1, S2, ·, SL} → {E1, E2, ·, EK}, where an ECU Ek
corresponds to atleast one source address Sl. For the pair (Ek, Sl), we train a clas-
sifier fkl : X → R(0,1) that maps a feature vector of transmission, x ∈ X to a real
valued number y ∈ R(0,1), which signifies the strength of the classifier in the class
of transmission (1). For every pair (Ek, Sl), the training data (X,y) comprises of
a labelled set of feature vectors of trasnmissions from the ECU Ek. In the set, an
example x ∈ X is labelled as one (or, to the class of transmission for the particular
pair) if the trasnmission was observed with source address Sl; otherwise, the example
is labelled as zero (or, to the class of non-transmission because the transmission is
observed with the source address from the set {S \ Sl}). Using the prepared train-
ing set, we train the model until convergence; that is, until the error between the
predicted and the true class approaches a specific predefined threshold, ε. At conver-
gence, CANOA generates a trained classifier, fkl, which can be used for predicting
the probability of transmission from source address Sl and ECU Ek.

An ambiguity in classification may arise if more than one source address maps to the
same ECU. This is the case because the examples of transmissions used for training
the models are generated from the same ECU; and hence, an input transmission
may be classified to the same class or different class by the models depending on the
similarity of the models. However, as exactly one ECU maps to the source address,
the prediction of the source of transmission is unambiguous.

• Classification

During classification, given a decoded transmission (t, S), CANOA determines the
transmitting state of each of the pair ECU (Ek, Sl) by feeding the features of trans-
mission extracted from power-consumption-measurements of Ek at time t to the

26

corresponding model fkl, and calculating the prediction probability of transmission
of the pair (Ek, Sl). As the power-consumption-measurements measurement of the
ECUs are characteristic of the transmissions, only model fkl ∈ F specific to Ek and
Sl will report the highest probability of transmission. Thus, the (Ek, Sl) correspond-
ing to the model fkl that reports the highest probability of transmission is marked
as the actual source of the transmission. However, as the sum of the probabilities
of transmissions from the models may exceed one, we apply an activation function
called softmax to the vector of the probability of transmissions from the models so
that the output vector sums to one, a property essential for retaining the CAN bus
arbitration nature as a result of which only one ECU transmitts at a time. Based
on the softmax outcome, a value of 1 is assigned to the source address (Ek, Sl) for
which the corresponding model’s likelihood of transmission is greater than a prede-
fined threshold δ, and is greater than that of all the other model’s predictions. And
a value of 0 is assigned for the outcome from models corresponding to all the other
source addresses and ECU pairs.

Algorithm 2 Predicting transmitting state of the ECUs

Require: P ∈ RK×J , T : a set N of transmissions, E : a set of K ECUs
1: function classification(T ,P , E)
2: for all Ek ∈ E do . Calculate the features of transmission at time t from Ek
3: for all Sl ∈ S do
4: xk ← powertraces(T,Pk, Sl)
5: ŷkl ← fkl(xk) . ŷkl is the probability of transmission by fkl
6: end for
7: end for
8: return ŷ . Proability of transmission by the models f ∈ F
9: end function

3.5.3 Attack Detection

In this section, we describe how to use the model classification result to detect the attack
model explained in Section 3.5.1. Given a transmission T = (t, s) with start time of
transmission t and s as the source address decoded from the message in transmission,
CANOA identifies the purported sender EP of the transmission. And uses the power-trace
of EP as input to the classifier to determine whether EP is the source of transmission. Based

27

on the prediction, CANOA determines whether the transmission constitutes an attempted
impersonation attack.

Detection of impersonation attack Consider a transmission from some ECU attempt-
ing to impersonate some other ECU. The purported sender EP in that transmission
corresponds to the target ECU ET being impersonated. Since EP is not transmitting
at that time, the model fP outputs 0, indicating that the message does not originate
at EP. This contradiction reveals the presence of an attempted impersonation attack.
Upon intrusion detection, the attack vector is revealed as follows:

Compromised ECU detection Upon detection of an intrusion and depending on the
attack model, either an ECU on the network is compromised, or an additional il-
legitimate module is attached to the network. If the transmission originated from
a compromised ECU EC, then the model will not predict EP as the source of the
transmission. However, there will most certainly exist an ECU on the network for
which the corresponding model will output a 1. In other words, the features of trans-
missions of one of the ECUs at time t will closely match the previously observed
features of transmissions from the corresponding ECU.

To detect EC, CANOA constructs the features of transmissions using power-traces for
all the ECUs at time t except . Given the power-traces of the ECUs, CANOA iterates
over all the Ek and perform model classification to determine whether transmission
originated from Ek. The idea is that one of the ECU E\{EP} will report a probability
of transmission greater that δ. The ECU Ek for which the corresponding model fk
output is a 1 is reported as the true source of the transmission T . This reported
source ECU is also flagged as compromised.

Additional ECU detection If the impersonating transmission originated from an addi-
tional illegitimate device that was added to the network by an attacker, then every
model fk ∈ f will output 0. This indicates that none of the legitimate ECUs actually
transmitted, implying the presence of an additional device on the network which sent
the message.

3.5.4 CANOA-aware Attacker

We argue that even if an attacker is aware of the functionality of CANOA, it is still
impossible for them to mount a successful impersonation attack. An attacker will attempt
to influence the power-consumption-measurements pattern of the compromised ECU, PC,

28

to match that of the target ECU, PT, or mimic the PT, using an additional device by
taking the following measures:

• The attacker will try to use their knowledge about CANOA to drain the battery or
heat up the EC in an attempt to influence PC to match that of PT. However, any
such attempt will only show up gradually on PC, and ultimately the changes get
nullified upon scaling the signal.

• Having gained full control of EC, the attacker may also try to modify the embedded
programs executed on EC to match with that of ET in an attempt to influence the
behaviour of the resulting power-consumption-measurements pattern of EC. But in
the absence of any knowledge about the exact sequence of instructions executed in
ET, the attacker will fail to imitate the program executed on ET.

In the worst case scenario, even if the attacker succeeds in their attempt to imitate
the sequence of programs executed on ET, it will be essentially impossible to mimic PT.
In addition to the variance due to the source code, the distinction between transmitting
and non-transmitting states is most likely determined by the I/O required to transmit.
Virtually all ECUs use a hardware-based CAN controller to transmit, and have no physical
means to transmit any other way. Thus, the attacker will be unable to do anything to cancel
the inevitable power-consumption-measurements profile that the CAN controller exhibits
when transmitting.

3.6 Experimental Setup

In this section we give a brief overview of the setup for capturing CAN transmissions
and power-consumption-measurements from the ECUs, and the architecture of the neural
network for model implementation.

3.6.1 System Description

For the prototype implementation of CAN, we connected four Keil MCB1700 boards to
a CAN bus. With each board containing a CAN controller, transceiver and a receiver
providing the board with the capability to send and receive CAN messages. We supplied
the boards with the same power source to ensure the minimum introduction of noise in

29

the power-consumption-measurements pattern. Using the setup, we captured a differen-
tial voltage signal from the bus with a bus speed of 125 kbps and power-consumption-
measurements from the boards using a Digitizer with a sampling rate of 10 Msps.

For the implementation of the technique in a practical setting, we deployed custom hard-
ware in compliance with the vehicle components security and warranty, ensuring minimal
modification at the hardware level. The custom hardware is used to capture the CAN signal
and power-consumption-measurements of the ECUs. As shown in Figure 3.3, we sample
CAN bus voltage by tapping onto the bus, and the power-consumption-measurements mea-
surement of the ECUs by sampling the voltage drop across the shunt resistor. Single source
of power and clock distribution for the capturing devices ensure that the mapping between
the transmissions (captured via CAN voltage) and their power-consumption-measurements
characteristics from the ECUs are aligned with respect to time for accurate ECU state clas-
sification. Using the equipment, we captured CAN transmissions on the bus operating at
250 Kbps, and power-consumption-measurements from the ECUs with a sampling rate of
10 Msps.

V
+ -

V
+ -

V
+ -

LVDS CLK

PGND, 3.3V, 5V

 Signal

Capturing

 Device

 Signal

Capturing

 Device

 Signal

Capturing

 Device

Power and

Clock

Distribution

Shunt

Resistor

Shunt

Resistor
Shunt

Resistor

CAN-H

CAN-L

GND 24V
ABSTCMECM

Figure 3.3: Hardware architecture for capturing CAN signal from the bus and power-
consumption-measurements of the ECUs.

3.6.2 Model Description

Classical and SOTA machine learning based models

We evaluate CANOA using a wide range of classification algorithms, covering both the
machine learning and non-machine learning aspects of model implementation. In partic-
ular, our choice of models for assessing sender authentication using power-consumption-

30

measurements includes Mahalanobis distance-based clustering, Random Forest [38], SVM [38],
CNN [53], and ResNet 1D [39].

When using a classifier as a sender authentication model, the transmissions corre-
sponding to the source address of the ECU are treated as the transmission class. And,
the transmissions from the rest of the source addresses of the ECU belong to another class
(the class of non-transmission). In the case of clustering, the model is trained using the
transmissions from the particular source address and ECU pair only, and later the trained
model is used to distinguish the true transmissions from the rest of the transmission based
on the empirically estimated thresholds of Mahalanobis distance of transmission power
characteristics. Finally, based on the results of an evaluation against the set of models,
we finalize the model using which CANOA achieved best authentication accuracy with the
given constraints of computing resource such as latency, transmission window.

Custom deep learning based model description

We implemented a supervised SDA for sender state classification in Python3.5. As shown in
Figure 3.4, the network is composed of a stack of two DAE layers followed by a classification
layer.

Power-Trace

Corrupt Power-Trace

Encode

Decode original Power-Trace

 Transmitting / Not Transmitting

DAE Layer 1

DAE Layer 2

Pretraining

Classifier

Model Fine Tuning

Figure 3.4: Overview of SDA.

31

As shown in the Figure 3.4, the model training is split into two halves: pre-training
or feature-extraction as shown by the first two network layers and fine-tuning over all the
network layers. During pre-training, each DAE is greedily trained independently of each
other by freezing the parameters of the rest of the network. For a given input power-trace,
the first DAE layer is trained to reconstruct the original input power-trace by learning the
parameters (weights and biases) of the layer. The output from the previous DAE layer is
then passed as input to the second DAE layer which in turn learns the features from the
representation learned by the previous layer. Finally, the features from the last DAE layer
is input to the classification layer. Once all the DAE layers are pre-trained, the parameters
of the entire network (DAEs and Classification layer) are fine-tuned by back-propagating
the gradient from the last layer up to the first DAE layer to minimize the prediction error
on the classification task.

The values of the model hyperparameters such as the number of epochs, batch size and
learning rate are selected as per the recommendation by Bergstra et al. [9]. The models
are trained for 500 epochs each with a batch size of 100. To regulate training speed, we
choose a learning rate of 0.001.

3.7 Evaluation Metrics

An accurate measure of the empirical evidence of the decision-making algorithm is essential
in the automotive system. For instance, the presence of false positives triggers false alarms,
inducing panic in the human who controls the system leading to a risk to the safety of life
and property in the deployed environment. However, simply using the measure of accuracy
to evaluate the binary decision of a classification algorithm can be misleading [80]. Further-
more, as described in the paper [64], there is no perfect numerical measure of the different
criterias of classification algorithms. Therefore, we evaluate the performance of CANOA
for sender authentication using Receiver Operating Characteristics (ROC) curve [44], Area
Under the ROC Curve (AUC), and Confusion Matrix.

ROC curve

To evaluate the model in a real-world setting, we plot the ROC curve, which shows the
variation of the true positive rate (denoted as tpr) to the false positive rate (denoted
as fpr). In our evaluation, a tpr indicates the total number of transmissions for which
the predicted sender is correctly reported as the true sender, and fpr indicates the total
number of transmissions for which the predicted sender is falsely reported as the true

32

sender. Furthermore, an ROC curve is advantageous when the dataset is skewed with more
negative examples (transmissions belonging to the true sender) than positive examples
(transmissions not belonging to the true sender) or vice-versa. In the ROC space, the
major diagonal depicts the line of random performance, and the goal is to be in the upper-
left corner, which denotes better than random performance. We plot the ROC curve using
the estimates of tpr and fpr on the test set of transmissions. If the curve closely follows the
top left corner of the ROC space, away from the line of random performance, this indicates
a better model performance.

Area under the ROC curve

In a real-vehicle setting, in addition to the ROC curve, we also estimated the area under the
ROC curve. AUC is a metric used to measure the difference between the class distributions.
AUC score is the proportion of unit square under the ROC curve,

∫ 1

0
tpr d fpr, that measures

the separability between the binary classes. Analogously, the higher the AUC, the better
the model is at separating the transmitting and non-transmitting states of ECUs and
vice-versa.

Confusion matrix

For the case of lab prototype where we have power-traces from multiple ECUs, we report
the decision of the transmitting state of an ECU as a multi-class classification rule where the
different classes are the combination of source addresses and the ECUs. The performance
measure of the decision in the case of multiple ECUs is represented as a confusion matrix
with the left axis denoting the true sender (true labels), and the top axis denotes the
predicted senders (predicted labels). An entry, cij, in the ith row and jth column denotes
the total number of decisions whose true sender corresponds to the ith sender along the left
axis, and the predicted sender is the sender corresponding to the jth sender along the top
axis. Based on the matrix entries obtained using the test set of transmissions, we estimate
the measure of fpr. The goal is to attain a fpr of 0. Hence, the lower the estimated fpr
(≤ t), the better the classification model where t is the tolerance level to false positives in
the context of the application domain.

Precision and recall

Results of sender authentication for a given transmission might show varying results when
evaluated on different metrics. Therefore, we assess the performance of the proposed

33

technique for sender authentication using the metrics of precision, recall, accuracy, and
F-measure. Precision rightly captures the false positives of the system by calculating the
number of true positives (TP) over the number of true positives (TP) plus the number of
false positives (FP). Whereas, recall reports the relevance of the system by calculating the
number of true positives (TP) over the number of true positives (TP) plus the number of
false negatives (FN). Accuracy is the ratio of correctly predicted sources for the messages
to the total number of messages. And, F-measure is used to measure the similarity between
the predicted state and true state by calculating the weighted average between precision
and recall.

Latency

Another characteristic of the model that is critical is the latency l. Latency is the delay from
the time message is received on the bus to the time the message source is authenticated.
The latency of the approach in the detection phase is the time to process the message
and calculate the probability of the message belonging to the sender denoted by tdetect.
Low latency authentication system is preferable in a real-time and safety-critical system.
This is the case because, outside of a defined time-interval, sender authentication holds no
significance. Thus, tdetect should be minimal as reported by the proposed approach.

Memory

As the authentication system is an integral part of the system that functions in a resource-
constrained environment, the memory requirement of the proposed technique should be
within the pre-defined limits.

SWaP-C

We also evaluate the system for the three characteristics of size, weight and power to ensure
the applicability in a commercial setting.

• Size: Size of the system should be small to meet the resource-constrained environment
criteria. Moreover, the smaller size hardware is preferable for its easy deployability
and portability.

• Weight: The system should be light-weight. A light-weight system can be easily
integrated with the existing system avoiding any possible re-design, which can be
costly.

34

• Power: The power-consumption-measurements of the system should be low.

3.7.1 Data Description

To evaluate the approach against a variety of scenarios, we captured CAN transmissions
and power-consumption-measurements from a lab prototype setting and a real vehicle.

Sterling Acterra dataset

We evaluated our proposed sender authentication approach in a Sterling Acterra Truck.
In the truck, we observed messages on the CAN bus with three source addresses: 0, 11, and
15. Of the three source addresses, transmissions with source address 0 and 15 were observed
from Engine, and transmissions with source address 11 was observed from anti-lock brake
system (ABS). For the evaluation, we captured and decoded a total of 6000 CAN trans-
missions from the truck. Alongside, we also captured the segments of power-consumption-
measurements (feature vectors) of length 5000 from Engine. The only difference observed
in the stationary vehicle’s power-consumption-measurements from the moving vehicle is
the change in the noise floor, which the model learned to ignore over training iterations.
Out of the 5000 transmissions, 2000 transmissions, each triggered with source address 0,
11, and 15. Using the power-consumption-measurements of the Engine, we constructed
the features of transmissions for the three source address of the size 2000× 5000 each. Us-
ing the features, we prepared datasets for the following combinations of ECUs and source
addresses: (Engine, 0), (Engine, 15), and (Engine, 11) where source address 0 and 15 are
mapped to ECM (the Engine), and source address 11 is mapped to ABS. For the mapping
(Engine, 0), the class of transmissions comprised of features of transmissions from the En-
gine with the source address 0 and the class of non-transmission comprised of the features
of transmissions from the Engine with source addresses 11 and 15. Similarly, we prepared
the dataset for the mapping (Engine, 11) and (Engine, 15). Due to the unavailability
of the power-consumption-measurements from ECUs other than the Engine, we show the
effectiveness of the approach in authenticating the Engine of the truck. To show that the
method is equally effective in authenticating every ECU in the vehicle, CANOArequires
the power-consumption-measurements measure from the connected ECU and establish the
mapping between the true sender and the message observed on the bus.

Lab prototype dataset

With the prototype setup of the CAN network, we evaluated the accuracy of CANOA
for sender authentication. We captured and decoded 5000 CAN transmissions. Unlike
Sterling Truck, with access to the power source of more than one ECU, we were able to

35

capture the segments of power-consumption-measurements measurement from five proto-
types ECUs: E1, E2, E3, E4, and E5. The captured segments of power-consumption-
measurements of the ECUs were segments of length 5000 corresponding to the period of
transmission. To authenticate senders of the transmissions, we implemented classification
models for the pairs of ECU and source addresses using the feature vectors (M where
M ≤ 5000) prepared from the segments of power-consumption-measurementss correspond-
ing to the pairs, and the ECU and source addresses pairs as the labels. To determine all
the pairs of ECUs and source addresses, we used our prior knowledge of the setup and
obtained the mapping as follows: (E1, S1), (E2, S3), (E3, S3), (E4, S4), and (E5, S5) where
S1 maps to E1, S2 maps to E2, and so forth.

We split the feature vectors into balanced chunks (equal no of feature vectors for the
class of transmission and non-transmission) of training and cross-validation such that for
each of the (ECU, SA) pairs, 70% of the total featured vectors are reserved for training and
30% for cross-validation. Using the training and validation splits, we trained the models
for all the pairs of ECU and source address.

For the mapping (E1, S1), the training examples comprised feature vectors for the class
of transmission and non-transmission. The class of transmissions comprised of features
of transmissions from E1 where the source address was S1, and the examples of non-
transmissions comprised of features of transmissions from E1 when the source address was
not S1. Similarly, we prepared training and test sets for the rest of the combinations of
source addresses and ECUs.

3.8 Results

In this section, we evaluate the proposed technique for sender authentication.

3.8.1 Evaluation in Real-vehicle

Below we describe the evaluation of CANOA in a real-vehicle setting using the sterling
truck dataset. Also, we evaluate the impact of different feature lengths (M) on the latency
and accuracy of the model.

36

Transmission features visualization

The segments of power-consumption-measurements of length 5000 observed during the
transmission window are difficult to interpret for patterns in the two-dimensional space.
Therefore, we visualized the Fourier transform of the segments of power-consumption-
measurements for the source address 0, 11, and 15 in the lower-dimensional manifold. To
obtain the low-dimensional embeddings of the feature vectors, we use Principal Component
Analysis (PCA) [38]. PCA is an algorithm that can be used for dimensionality-reduction by
determining the direction of maximum variance in a subspace. The directions of maximum
variance are obtained using the eigendecomposition of the covariance of the segments of
power-consumption-measurements. We choose the first M eigenvectors in the order of
decreasing eigenvalues such that 90% of the variance from the original feature space is
retained in the low-dimensional subspace. We also obtain and visualize the non-linear
embedding of the segments using tSNE [38].

Figure 4(a) shows the density estimate of the feature vectors in the original feature
space. Figure 4(c) shows the pair plot of the first five principal components of the power-
consumption-measurements in the frequency domain. Figure 4(d) shows the pair plot of
the non-linear embeddings obtained using tSNE. From the pair plots, we observe that the
features of transmissions for the source address 11 forms a cluster, distinct from the features
of transmissions for the source address 0 and 15. However, the low-dimensional projection
of SA (source address) 15 overlap and are within a close neighbourhood with the projections
of SA 0 in the subspace. This is the case because the transmissions corresponding to SA
0 and 15 are triggered from the Engine. As a result of the same source of origin of the
transmissions of SA 0 and 15, they exhibit similar characteristics in the subspace. This
is evident from the t-scores and p-values of the PCA and tSNE projections of the feature
vectors shown in Table 3.2 and Table 3.1, where t-score is a measure to determine the
difference between the features of transmissions of the various source addresses. The higher
the t-score value, the larger the differences. And, the p-value determines the significance
of t-scores. A small p-value (typically p-value 6 0.05) provides strong evidence for the
significance of the t-score. Based on the t-score and p-values of the linear and non-linear
embeddings of the feature vectors of transmissions, we observe that the characteristics of
transmission for source addresses 0 and 11 are significantly different from each other. And
as expected, a p-value > 0.05 for source address 0 and 15, both of which are triggered by
the same ECU, indicates that the characteristics of transmissions for the two source address
are indistinguishable using non-linear embedding. However, the distinction is captured in
the linear subspace using the first five components of the PCA, which is evident from the
p-value ≤ 0.05 of all the pairs of source addresses. Thus, the linear projections in the

37

subspace can be used for the identification of the state of the ECUs during a transmission.

 (b) tSNE Embedding (c) PCA Decomposition

(a) Input Power-Traces Densities

Figure 3.5: Pair plot colored by source address with a density plot of the diagonal.

Table 3.1: The t-score (p-value) between the pairs of source addresses using the power-
traces of transmissions

Source address ECUs t-score (p-value)

(0, 11) Different ECUs -20.579138 (0.030911)
(0, 15) Same ECU -1.773469 (0.3268584)
(11, 15) Different 21.943604 (0.028992)

38

Table 3.2: The t-score (p-value) between the source addresses using the PCA components
of the power-traces of transmissions

PCA components Source address ECUs t-score (p-value)

Comp0
(0, 11) Different -7.747796 (3.712786e-12)
(0, 15) Same -9.245025 (8.525175e-16)
(11, 15) Different 3.659489 (3.259903e-04)

Comp1
(0, 11) Different -7.449586 (3.640866e-12)
(0, 15) Same 4.216789 (4.586968e-05)
(11, 15) Different -16.394153 (1.229590e-35)

Comp2
(0, 11) Different -23.039880 (1.620486e-55)
(0, 15) Same -3.164143 (1.933611e-03)
(11, 15) Different -24.859311 (2.892367e-48)

Comp3
(0, 11) Different -8.850121 (3.518150e-15)
(0, 15) Same -16.046404 (1.864838e-37)
(11, 15) Different 11.858681 (1.851014e-22)

Comp4
(0, 11) Different -2.557801 (1.197010e-02)
(0, 15) Same 0.058073 (9.537973e-01)
(11, 15) Different -9.563822 (8.133678e-18)

Mahalanobis-distance based sender classification

From the Sterling truck, the set of possible sources of transmissions are

{(Engine, 0), (Engine, 11), (Engine, 15)} (3.1)

. To evaluate our sender authentication approach, we implemented three Mahalanobis
distance-based clusters as described in [61], one for every pair of ECU and source address.
And later, we used Mahalanobis distance as threshold for the cluster assignment of new
transmissions (or equivalently, to determine the state of every pair of ECU and source
address during the periods of new transmissions). The model implementation is performed
in two stages: training and testing.

In the training phase, to obtain Mahalanobis distance estimate for the clusters, we
calculated the covariance matrix estimates of the features of transmissions corresponding
to ECUs and source address pairs from the training set. This was followed by calculating

39

the distance estimates of the transmissions and clustering them by the source addresses
and ECUs. In the testing phase, for every new trasnmission, we calculated Mahalanobis
distance of the feature vector of the power-traces during the transmission for every pair of
ECU and source address using the pairs covariance matrix estimates. Finally, we used the
distance estimates of the clusters from the training stage as the threshold to determine the
similarity between the new transmission and the clusters of transmissions, and assign the
new transmission to the appropriate cluster.

We formulated the binary class assignment of a transmission to the clusters as a one-
sample testing problem where a null hypothesis is compared against an alternate hypothe-
sis. An alternate hypothesis is true if the distance of the new transmission is different from
the distance estimate of the cluster of transmissions from the training phase for the pair of
ECU and source address. On the other hand, null hypothesis is true if the distance of the
new transmission is similar to that of the distance estimate of the cluster of transmissions
from the training phase for the pair of ECU and source address. We determined the simi-
larity of the distance estimates using p-values. Based on the p-values, we determined the
transmitting state of every possible source of transmission. If the p-value is greater than
0.05, then the null hypothesis is true, and the new transmission is assigned the cluster of
transmissions for the source address (and the class of transmission for the source address is
labelled 1). However, if the p-value is less than 0.05, then the alternate hypothesis is true.
And hence, the transmission is not assigned to the cluster of trasnmissions for the source
address (and the class of non-transmission for the source address is labelled 1). Upon
the identification of the state of every possible source of transmission, the source with the
lowest p-value (and with the class of transmissions equal 1) is selected as the predicted
source of transmission.

To determine the length of the feature vector (M ≤ 5000) that helps achieve minimum
latency without compromising the sender authentication accuracy, we report the average
AUC of the classifier for different lengths of the input feature vector. For every feature-
length M ∈ {5000, 1000, 500, 100, 50, 25, 10}, we prepared the training and test sets where
the feature vectors are the first M components of the PCA of the power-trace of transmis-
sions. Based on the retained samples of the feature vectors, we calculated the Mahalanobis
distance estimates for the sources. Figure 3.6 shows the distribution of Mahalanobis dis-
tance estimates for the transmissions from the training sets across the different feature
lengths and source addresses. It is evident from the kernel density estimates of the Maha-
lanobis distances that when the number of samples of the feature vectors is 50, the different
sources are distinguishable with non-overlapping estimates of the distance mean.

Figure 6(a), shows the average AUC scores of sender authentication on the validation
set of transmissions. From the figure, we observe that the score gradually increases with

40

(a) M=5000 (b) M=1000 (c) M=500

(d) M=100 (e) M=50 (f) M=25

(g) M=10

Figure 3.6: Density plot of the Mahalanobis distance estimates of the features in the
training set for the source address: 0, 11 and 15.
.

decreasing feature lengths until M = 50, after which the score starts to drop. This indicates
that the first 50 features contain enough information to reliably determine whether the ECU
is transmitting and eliminating the samples any further results in a drop in the accuracy.
Figure 6(b) shows the latency of the model for different feature lengths. The decreasing
trend in the latency achieves a minimum value of 0.275 ms at M = 50, and decreasing
M any further has no significant impact on the latency of the model. Figure 6(c) shows
the ROC curve of the result of sender authentication on the test set of transmissions. The
figure shows that the model achieves a false positive rate of 0.01% with the feature-length
M = 50.

41

M M
(a) AUC Score (b) Latency

Figure 3.7: (a) Average AUC score, (b) Average latency over the set of different feature
lengths.

0.0 0.2 0.4 0.6 0.8 1.0
False Pos t ve Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

 t
ve

 R
at

e

Rece ver operat ng character st c

ROC fold 0 (AUC = 0.97)
ROC fold 1 (AUC = 0.97)
ROC fold 2 (AUC = 0.96)
ROC fold 3 (AUC = 0.95)
ROC fold 4 (AUC = 0.93)
L)ck
Mean ROC (AUC = 0.95 ± 0.01)
± 1 s(d. dev.

Figure 3.8: ROC curve on a test-set of transmissions with number of PCA components
M = 50.

42

(a) AUC Score (b) Latency

MM

Figure 3.9: (a) Average AUC, (b) Average latency over a set of different feature lengths.

Random forest-based sender classification

We also evaluate CANOA using a random forest-based sender classification algorithm using
different feature lengths M = {5000, 1000, 500, 100, 50, 25, 10}. In the training phase, for
each feature length, we prepared feature vectors of transmissions and implemented three
binary random forest-based classification models for the three pairs of the source address
and ECU. In the testing phase, given a new transmission, the predicted sender is the
source of transmission with the highest probability of transmission.

To determine the impact of the different feature lengths on the performance of CANOA,
we report the latency and the average AUC score of the classifier in authenticating a sender
of a transmission on the cross-validation set. From Figure 7(a), it is evident that the average
AUC score of the classifier on the validation set immediately attains the maximum accuracy
with a feature length M = 1000 until M = 50, after which the accuracy fluctuates. The
variations in the accuracy immediately after M = 50 indicates the first 50 samples of the
power-trace of characteristics of transmission are relevant for the sender identification, and
eliminating the samples any further leads to a fluctuation (and a drop) in the relevant
feature for classification of the input to the sender class. Alongside, we observe that the
latency (as shown in Figure 7(b)) of the model gradually drops with the decreasing feature-
length and attains a minimum of 0.0367ms at M = 50. Therefore, using the feature-length
M = 50, which is optimal for model accuracy and latency, we observe from the ROC curve
(as shown in Figure 7(c)) on the test set of transmissions that the classifier helps achieve
a TPR of 99.97% and a false positive rate of 0.00%.

43

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC fo d 0 (AUC = 1.00)
ROC fo d 1 (AUC = 1.00)
ROC fo d 2 (AUC = 1.00)
ROC fo d 3 (AUC = 1.00)
ROC fo d 4 (AUC = 1.00)
Luck
Mean ROC (AUC = 0.99) 0.00)
) 1 std. de(.

Figure 3.10: ROC curve of the random forest classifier based sender authentication on a
test-set of transmissions with number of PCA components M = 50.

44

3.8.2 Evaluation in Lab Prototype

As shown in Table 3.3, we also evaluate the accuracy of the models to authenticate senders
using power-traces captured from five ECUs in the lab prototype setup. We implemented
a set of twenty-five random forest-based classifiers for all the combinations of five source
addresses and ECUs. In the training phase, we trained models using the features of trans-
missions with feature length M = 100. In the testing phase, given a transmission T , we ob-
tained the probability of transmission from all the models {(Ek, Sl) : k ∈ (1, K), l ∈ (1, L)}.
The resultant vector of the likelihood of transmissions from all the models constitutes the
likelihood of transmission of all the pairs of ECUs and source addresses. As the transmis-
sion characteristics are unique to a particular pair of ECU and source address, the vector
is such that the value corresponding to the pair has a mixumum probability value. We
obtained the AUC scores of predictions on the v partitions of the test set of transmissions.
Using the predictions, we obtained the v confusion matrix of the AUC score of the pre-
dictions. Using the v confusion matrix, we obtained the resultant confusion matrix where
each entry is the mean and standard deviation of the entries from the v confusion matrices
as shown in 3.3. In the matrix, the mean AUC score of correct predictions for the true
senders (that is, the correct ECU and source address pair) is shown along the diagonal.
And, the value following the AUC score is the measure of the standard deviation of the
AUC score of transmissions from the test set. The table shows that the model for (E5,
S5) has the most variance with a minimum achievable accuracy of 99.25% and a maximum
accuracy of 99.98%. The large variance in the model accuracy is due to the presence of
noise in the extracted features of transmissions. Overall, the subtle difference in the model
accuracy across all the combinations of ECUs and source addresses shows that the tech-
nique effectively authenticates senders of the transmissions accurately with a false positive
rate of 0.0001 and an average AUC of 99.87% with a standard deviation of 0.001.

Table 3.3: Confusion matrix with every entry equal to (mean ± standard deviation) on
the test-set of transmissions in a prototype setting

(E1, 0) (E2, 1) (E3, 2) (E4, 3) (E5, 4)

(E1, 0) 1.00± 0.1 0.00± 0.05 0.00± 0.1 0.00± 0.2 0.00± 0.2
(E2, 1) 0.00± 0.2 1.00± 0.002 0.00± 0.02 0.00± 0.1 0.00± 0.3
(E3, 2) 0.01± 0.2 0.00± 0.01 0.99± 0.003 0.00± 0.03 0.00± 0.5
(E4, 3) 0.00± 0.1 0.00± 0.06 0.00± 0.09 1.00± 0.0 0.00± 0.08
(E5, 4) 0.00± 0.3 0.00± 0.2 0.00± 0.5 0.00± 0.3 1.00± 0.1

45

3.8.3 Additional Module Detection

To test the model for the detection of an additional device (spoofed transmissions), we
injected spoofed messages on the bus with the source address 0 using a Kvaser tool [1] and
captured 1000 spoofed transmissions. We evaluated CANOA for sender authentication of
the spoofed transmissions along with regular transmissions from the Engine and reporting
the confusion matrix in two variables: attack and normal. A value of one is assigned to
the variable attack if none of the source address-based model’s predicted probability of
transmission value is greater than δ, indicating that the transmission is spoofed. And
a value of one is assigned to normal if at least one of the source address based model’s
predicted probability of transmission value is greater than δ as well as greater than all
the other model’s probability value indicating the transmission is not spoofed; otherwise,
a zero is assigned. From Table 3.4, it is evident that the technique flags all the spoofed
transmissions; thus, indicating the effectiveness of the technique in sender authentication.

Table 3.4: Confusion matrix for attack detection in a Sterling Acterra truck (mean ±
standard deviation)

Normal Attack

Normal 0.99± 0.001 0.00± 0.003

Attack 0.00± 0.01 1.0± 0.02

Table 3.5: Binary state (transmitting/idle) classification results of the ECUs on the bus in
the vehicle setting

ECU Accuracy Precision Recall F1-score

ECU1 1.0 1.0 1.000 0.996
ECU2 0.995 0.983 1.000 0.991
ECU3 0.990 0.970 1.000 0.984

3.8.4 Evaluation in Real-vehicle using SDA Classifier

We evaluated our approach for determining the source of the transmission in a heavy vehi-
cle provided by our industry partner. We monitor the power-consumption-measurements

46

from three ECUs — Engine, Transmission, and ABS — connected to the bus alongside the
observed transmissions.

For the evaluation, we captured a total of 100k CAN transmissions from the vehicle in a
stationary position. The only difference observed in the power-consumption-measurements
of the stationary vehicle from the moving vehicle is the change in the noise floor, which
the model learned to ignore over training iterations. Out of the 100k transmissions, 35k
transmissions each triggered from Engine and ABS, and the remaining 30k from Transmis-
sion. We constructed 100k instances of power-traces of transmission and non-transmission
for all the three ECUs using the value of τ equal to 0.65 ms. For Engine and ABS, of
the 100k power-traces, 35k belong to the periods of transmissions which are triggered by
Engine itself and the remaining to the periods of non-transmissions which corresponds to
the periods of transmissions from other ECUs. Similarly, for Transmission, 30k power-
traces belong to the periods of transmissions which are triggered by the ECU itself and
the remaining to the periods of non-transmission. We split the power-traces of the ECUs
randomly into three chunks: train, cross-validate, and test at a ratio of 6:3:1. Finally, we
trained, cross-validated, and evaluated the models corresponding to the three ECUs. We
trained the models offline in parallel on a Linux machine with 8 CPU cores. The models
finished training on the given number of examples with an average training time of 37
hours. We also observe the response time of the models in an online setting (real-time
EP authentication using the stream of transmissions observed on the bus) and is noted
to be an average of 0.8 ms which makes the technique feasible for application in real-time
settings.

Table 3.5 shows the results of the classification accuracy where the three ECUs: Engine,
Transmission and ABS are denoted by ECU1, ECU2 and ECU3. We observe that the
precision of ABS and Transmission drops slightly below 100%. This is the case because
of the complex nature of the hardware which induces more noise in the measured signal
resulting in more randomness and less accurate results. In particular, we found the power-
consumption-measurements from ABS more complex than the rest of the ECUs which can
be attributed directly to the performance of ABS model. Furthermore, we observe from
Table 3.3 and Table 3.5 that the results for the lab setup and the vehicle are consistent
with each other with a minor variation in the mean accuracy.

One of the concerns that arise as a result of the intensive computing power requirement
for model training is the deployability to different vehicles. However, we argue that the
technique can be deployed to new vehicles with similar or different configuration without
much overhead by using a machine learning technique called transfer learning. Transfer
learning allows using the knowledge of a model called the base model from a similar task
to improve the generalizability on a new task. Thus, the models trained on one vehicle are

47

treated as base models which are then generalized to new settings by training with fewer
power-traces examples from the ECUs. By using only a fraction of the examples than
the base model to generalize makes the approach feasible for deployment at scale without
compromising on the accuracy.

Furthermore, we evaluate the generalizability of the trained models for sender authen-
tication on unseen transmissions by plotting a learning curve. The learning curve shows
the accuracy of a model during training over many iterations. A model is generalizable
if the learning curve (training and cross-validation curve) increases at first over the iter-
ations and then asymptotically approach an accuracy such that training any further has
negligible improvement on the performance of the model. In particular, we evaluate the
learning curve of the model for Engine in real-vehicle settings. From the Figure 3.11 it is
evident that the model begins to converge after training with 100k example power-traces
attaining accuracy of 98%. The generalizability of models trained with power-traces ex-
amples corresponding to the transmissions captured over a timeframe of fewer than 30
minutes indicates that the technique can be applied in a real-vehicle for operation in an
online setting without losing accuracy.

40000 10000080000

Figure 3.11: Learning curve for Engine model in real-vehicle setting

48

3.8.5 Summary of Comparison

We perform a qualitative and quantitative comparison of our approach against other sender
authentication approaches using a set of attributes. As shown in Table 3.7, for qualitative
comparison, the attributes that are satisfied by the techniques are shown by a tick mark
(3), and the attributes that are not satisfied by the techniques are shown by a cross (5).
For quantitative comparison, we report the average accuracy of our approach evaluated
on Truck B alongside the sender authentication accuracy reported by [16, 48, 18]. One
of the major distinguishing features of CANOA, as compared to the other approaches,
is that unlike the existing fingerprinting-based approaches, CANOA is least likely to fall
prey to the profile-and-mimick attack. Profile-and-mimick attack is a term coined in the
paper [68], which means an attack where the fingerprint of the ECUs can be mimicked
using an additional device to send fake messages unobtrusively with the ID of the claimed
ECU. For instance, in voltage-based fingerprinting approaches such as Viden and Scis-
sion [16, 48], the voltage profile of the claimed ECU EP can be mimicked to inject spoofed
messages. Similarly, in the timing-based fingerprinting approach [15], the timing varia-
tions of the periodic messages can be learned to flood the CAN bus with fake messages.
On the other hand, CANOA relies on the power-consumption-measurements of the ECUs
for profiling the transmission and non-transmission state of the ECU, which is difficult
to clone. Furthermore, in addition to detecting intrusion from compromised ECU, our
approach is capable of detecting intrusion from the external module, which sets our source
authentication technique apart from existing approaches [16, 18]. Quantitatively, our ap-
proach performs equally well in sender authentication using a purely side-channel-based
fingerprinting as opposed to voltage-based fingerprinting, which can be cloned.

3.8.6 Model Selection

To choose the appropriate model for ECU state classification, we compared the performance
of a set of candidate classification algorithms against a set of factors, which are the sources
of the bottleneck in real-time safety-critical systems. For comparison, we compared the
CPU utilization (in percentage) of the models, the number of CPU cores (if CPU only)
used during model training and real-time authentication, the GPU (specification of the
GPU used for computation), the time to authenticate the source for a given transmission
(latency). The suitable model for classification is selected based on the model with optimal
resource consumption, where the optimality is achieved when the estimated values of the
factors satisfy the thresholds necessary for a smooth function of the model in a resource-
constrained environment. From the Table 3.8, it is evident that random forest achieves

49

Table 3.6: Qualitative comparison of our technique against other intrusion detection sys-
tems

Viden [16] Scission [48]

Objective
IDS 3 3

Source authentication 5 3

Input source

Voltage-high 3 5

Voltage-low 3 5

Differential voltage 5 3

Clock signal 5 5

power-consumption-measurements 5 5

Technique
Voltage profile 3 3

Power profile 5 5

Timing profile 5 5

Attack types Impersonation attack 3 3

Attack vectors
Additional ECU 5 3

Compromised ECUs 3 3

Properties
Profile-and-mimick 5 5

Real-time 3 3

Accuracy Accuracy 99.8% 99.85%

a training accuracy comparable to that of ResNet and CNNs with minimal CPU usage
(%) and latency of 0.0367 ms at test time. Mahalanobis distance-based classifier performs
equivalent to a random forest. Hence, it forms another choice for the sender authentication
model; however, we preferred random forest as the suitable choice for classification due to
its relatively lower latency, accuracy, ease of implementation and interpretability. Please
note that ’-’ in the CPU and GPU field of the table shows that it is not applicable for the
particular model.

3.8.7 Presence of Incomplete Transmissions

We also evaluated the accuracy of the proposed technique using the events of incomplete
transmissions. The events of incomplete transmissions are particularly important from the
perspective of an attacker. For instance, using the attack model described in Section 3.5.1,
an attacker could wait for ET to start transmitting, then modify the ID by replacing one

50

Table 3.7: Qualitative comparison of our approach against other intrusion detection sys-
tems

Cho et al. [15] CANOA

Objective
IDS 3 3

Source authentication 5 3

Input source

Voltage-high 5 5

Voltage-low 5 5

Differential voltage 5 5

Clock signal 3 5

power-consumption-measurements 5 3

Technique
Voltage profile 5 5

Power profile 5 3

Timing profile 3 5

Attack types Impersonation attack 3 3

Attack vectors
Additional ECU 5 3

Compromised ECUs 3 3

Properties
Profile-and-mimick 5 3

Real-time 3 3

Accuracy Accuracy 96.48% 99.58%

Table 3.8: Evaluation of the various models for ECU state classification

Classifier AUC score CPU/GPU Processor usage (%) Latency (ms)

MD [52, 61] 95.45 4 CPU cores 5.55 0.00001
RF [38] 99.6 4 CPU cores 5.34 0.00002

SVM [38] 99.4 4 CPU cores 5.971 0.00002
CNN [53] 97.3 Tesla V100 11.468 0.0002

ResNet [39] 97.9 Tesla V100 12.55 0.0001

or more 1’s to 0’s,1 making ET abort, and then the attacker completes the transmission.

To evaluate this scenario, we used the signal from the real vehicle. Moreover, as there
is an important difficulty in causing incomplete transmissions in a real-vehiclewithout in-

1 Recall the “wired AND” nature of the CAN bus, as explained in Section 2.0.1

51

curring a considerable risk of disrupting its functionality, we synthetically constructed the
traces corresponding to interrupted transmissions as follows. We captured 4k transmissions
with Engine as the source of origin. Out of the 4k transmissions, we randomly selected
2k transmissions and altered the corresponding power-traces features such that they re-
sembled incomplete transmissions. For every power-trace of transmission, we kept the
number of samples equal to the first 50% of the ID bits (segment B-C in Figure 8(a)) as
it is and replaced the rest of the samples (segment C-D) with the samples of the power-
consumption-measurements immediately following the transmission window. As shown in
Figure 8(b), the resultant power-trace of aborted transmission leads to the inclusion of
artifacts such as a sharp drop in the power-trace at time C. Such events are treated as
features by the model, resulting in false positives, which are undesirable in safety-critical
systems. To make the model insensitive to such undesirable features, we apply exponential
smoothing [42] and Holt’s additive model based smoothing [42] with a range of parameter
values to the segment [C−u, C +u], where u is the fraction of voltage samples before and
after the time point C, as shown by the red shaded region in Figure 8(b). As shown in
Figure 8(c) and Figure 8(d), the selected values of the smoothing parameters are such that
the generated variants of the segment closely resemble the characteristic of the power-trace
about the end of the transmission.

Using the set of complete transmissions and aborted transmissions, we trained and
evaluated our proposed authentication model. The results of the evaluation show that the
proposed technique treats incomplete transmissions as non-transmission with an accuracy
of 100%, a precision of 99.65%, a recall of 100% and an F-score of 99.68%.

3.8.8 Experimental Factors

Power consumed by an ECU is not immune to changes in the bus parameters and other
hardware configurations. The variations introduced in the physical properties of the CAN
bus may manifest in the measured power-consumption-measurements of the ECUs resulting
in power-traces that deviate from the nominal power-traces. The presence of variations
implies that the models should be updated upon parameter changes. However, due to the
complex structure of the modern automobile system, it is not feasible to update models
upon every hardware or firmware update. Therefore, we study the impact of the variations
in the factors such as bus speed, message format and embedded programs on the power-
consumption-measurements of the ECUs.

We tested the accuracy of the classifier against a set of factors and the corresponding
levels. We selected 125 kbps, 250 kbps and 500 kbps as the levels of the bus speed. These

52

A B C D

C-u C+u

CBA D

C-u C+u C-u C+uC C

(c) Simple Exponential Smoothing (d) Holt's Additive Model Based Smoothing

(a) A Complete Transmission (b) Aborted Transmission

Figure 3.12: Steps in generating incomplete transmissions: (a) shows the voltage signal of
the CAN bus and the power-trace of the Engine corresponding to a transmission, which
starts at B, ends at D, C is the 50th% of transmission bits, (b) synthesized aborted trans-
mission, (c) exponential smoothed segment [C + u,C − u] with different smoothing levels
(α), (d) smoothed segment [C − u, C + u] using Holt’s additive damped trend model with
different values of smoothing level (α) and smoothing trend (β)

53

levels of the bus configuration are found in the majority of the modern automobile with
125 kbps used for low-speed CAN communications and 500 kbps for high-speed communi-
cations [84]. We selected two levels of message format: standard (11-bit) and extended
(29-bit). The two levels are also the only possible format of CAN frames in a CAN proto-
col. For the source code as the factor, we selected two levels: uniform and heterogeneous.
At the uniform level, we executed the same program before and after all the transmissions.
Whereas, at the heterogeneous level, we executed a randomly picked source code from
amongst a suit of mibench source code [37] before and after the transmissions.

Table 3.9: Experiemntal factors and correponding levels

Parameter Values

Bus speed 125 kbps, 250 kbps, 500 kbps

Message format Standard (11-bit), Extended (29-bit)

Embedded programs Uniform, Heterogeneous

If we test the impact of the combinations of all the three factors at all the given
levels then there will be as many as 25 possible interactions for which we will need to
conduct experiments. And the number of experiments will only become approximately
intractable as the number of factors and levels grow with the complexity of the system.
Therefore, to achieve the task with a limited amount of resource at hand, we designed
a factorial screening experiment [66]. Factorial design analysis helps to filter out all the
critical interactions between factors and the corresponding levels. Based on the analysis
of variance experiment, four of the 25 interactions are reported as most significant.

We conducted the experiments for all the significant interaction in the lab setup on
ECU1. For every experiment, we captured and decoded 5k transmissions. Using the de-
coded transmissions, we calculate the value of τ for the experiments with the bus speed
of 125 kbps, 250 kbps and 500 kbps as 0.99 ms, 0.75 ms, 0.50 ms respectively. Using the
value of τ corresponding to the bus speed, we constructed power-traces of transmissions
and non-transmissions for the ECU across all the experiments. We trained, cross-validate
and evaluated the model using the train, cross-validation and test set of power-traces. Fig-
ure 3.14 and Figure 3.13 shows the results of classification. Results show that the proposed
technique is more accurate with simple bus configuration (125 kbps bus speed, standard
format, uniform source code) than with advanced configurations (500 kbps bus speed, ex-
tended format, heterogeneous source code). However, the subtle difference between the
accuracy of the two extreme network configurations shows that the impact of the varia-

54

125 kbps 250 kbps 500 kbps

Bus Speed

0.970

0.975

0.980

0.985

0.990

0.995

1.000
M

e
tr

ic
s

M
e
a
su

re

Accuracy

F-Measure

Precision

Recall

(a) Standard format and uniform source code.

125 kbps 250 kbps 500 kbps

Bus Speed

0.975

0.980

0.985

0.990

0.995

1.000

M
e
tr

ic
s

M
e
a
su

re

Accuracy

F-Measure

Precision

Recall

(b) Standard format and heterogeneous source code.

Figure 3.13: Accuracy of CANOA with first two significant interactions between factors
and levels.

55

250 kbps 500 kbps

Bus Speed

0.95

0.96

0.97

0.98

0.99

1.00
M

e
tr

ic
s

M
e
a
su

re

Accuracy

F-Measure

Precision

Recall

(a) Extended format and heterogeneous source code.

250 kbps 500 kbps

Bus Speed

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
e
tr

ic
s

M
e
a
su

re

Accuracy

F-Measure

Precision

Recall

(b) Extended format and uniform source code.

Figure 3.14: Accuracy of CANOA with another two significant interactions between factors
and levels.

56

Table 3.10: Important interactions between factors and levels

Combination Bus speed CAN format Source code

1 125 kbps Extended (29-bit) Uniform

2 125 kbps Standard (11-bit) Uniform

3 250 kbps Standard (11-bit) Uniform

4 500 kbps Standard (11-bit) Uniform

5 125 kbps Standard (11-bit) Heterogeneous

6 250 kbps Standard (11-bit) Heterogeneous

7 500 kbps Standard (11-bit) Heterogeneous

8 250 kbps Extended (29-bit) Heterogeneous

9 500 kbps Extended (29-bit) Heterogeneous

tions of the factors has a negligible effect on the state classification accuracy of the ECU.
And hence, the proposed approach can be applied to practical settings without worrying
about the impact of small and frequent changes in the bus properties.

57

Chapter 4

A Saliency Map-based Interpretation
of Model Outcome

Recent advances in the field of deep neural networks have led to widespread applicabil-
ity of artificially intelligent systems in the field of computer vision for the task of object
detection [32], image classification [86], segmentation [59], image captioning [106], visual
question-answer [6]. Despite the significant advances in the speed and accuracy of neu-
ral networks, the complexity of the models makes the human-level understanding of the
model’s decision-making a challenging problem. Notably, the highly non-linear interactions
between the layers of the network make the outcome unintuitive and unpredictable. As
a result of their inexplicable nature, their applicability remains limited in the domain of
safety-critical systems (medicine, automotive, robotics, finance, nuclear) where a decision
based on the outcome can lead to fatal consequences.

Some of the research in the direction of explainable AI elucidate instances reflecting
on the unpredictable nature of complex machine learning systems. For instance, in [83],
the author shows how bias manifested in the machine learning algorithm through data
leads it to misconstrued the characteristics of the snow for that of husky. Another work
by Stock et al. [98] demonstrates the ImageNet [86] bias introduced in the ResNet [39]
model. As a consequence of the bias, the model prefers the image of a black person with a
basketball for the class basketball, and Asians in red dress for the ping pong class. Athalye
et al. [7] show the sensitivity of the model can lead to misclassification. In the paper, the
authors demonstrate that adding imperceptible perturbation to the input causes the model
to misclassify the image of the turtle to the class of rifle.

All the above examples scenarios show the unpredictable nature of model prediction in

58

the presence of uncertainty. Consequently, such advanced AI systems cannot be reliably
used for decision making in critical systems that demand explanation and verification.

As a consequence of the black-box nature of complex AI systems, many possible solu-
tions for understanding and interpreting the complex machine learning models have been
developed in the last couple of years. One such technique is to visualize the activations of
the individual layers of the network [109]. However, for a particular image, this method is
only able to tell apart what neurons are important for the classification of the input to a
certain class. Saliency map-based methods exist [95] that localize the input pixels which
are sensitive towards the classification of the input to an output class. However, one of the
limitations of these techniques is that they are intrusive; that is, they require access to the
network parameters and gradients flowing through the network to localize the important
input pixels. Application of such a model to understand the decision making of complex
machine learning tasks (navigation, object mapping, and lane detection) in a safety-critical
system makes it vulnerable to adversarial access. Thus, there is a need for a non-intrusive
explanation technique for target-specific model outcomes.

4.1 Related Work

With the increasing applicability of complex machine learning models, the need for an
explainable and verifiable AI is increasing. In an attempt to justify models’ outcomes, a
variety of techniques have been proposed over the years. The majority of the explainability
techniques fall into one of the three categories: (1) third-party explainer : a separate model
for explaining the outcomes of the base model (2) justify the base model outcome using
techniques such as input perturbation and network parameters.

Some of the explainability work that falls in the line of third-party explainer include
[75, 47]. In particular, [40] uses the class discriminative properties of the objects in the
images to provide a textual explanation for the images. [75] is another technique that trains
two models for providing textual as well as visual justification for the visual question
answering task and activity recognition task. However, these approaches are costly to
implement because of the reliance on the availability of large human-annotated ground-
truth explanations.

Within the realm of justifiable models, a variety of explainability approaches have been
developed. One of the earliest approaches [83] attempts to provide a linear interpretation
within the local neighbourhood of the data point. However, the approach is not effective
at explaining non-linear models. Some of the approaches [95, 109, 73, 97] attempts to syn-
thesize input images that result in a high activation score for particular neurons. Another

59

approach CAM [112] generates a target-specific saliency map by taking the global average
pooling of the feature maps at the layer before the fully connected layer. GradCAM [90]
is a generalized version of CAM that, in addition to the feature map weights, feeds the
class gradient to the fully connected layer to assign importance to each of the input pixels.
However, [112, 90] can only be applied to limited network architectures with global average
pooling. Another work by Zhang et al. [111] proposes to use a backpropagation scheme
to generate an attention map by propagating the signal downward through the network
hierarchy using a winner-take-it-all strategy. A few techniques examine the relationship
between input and output to learn a perturbation mask by backpropagating the error signal
[29].

Despite the ability of the techniques [112, 90, 29, 78] to justify the model’s decision, the
methods mentioned above have limitations. The methods [90] are constrained by the use
of network parameters such as gradients flowing through the network and network layer
weights. While techniques such as [111, 90] require a specific kind of network architecture,
in some cases [109], the method requires access to intermediate layers of computation for
visualizing the features at several layers. Furthermore, the techniques can explain only a
particular input at a time, without taking into consideration the possible variants (rotation,
inversion, deformations) of the image. A work by Kim et al. [47] proposes a technique to
provide an explanation that is representative of user-defined concepts, but the manually
generated concepts limit the technique. Our work is an extension of the work by Petsuik et
al. [77] to localize and generalize the salient pixels of the target class using a saliency map.
We obtain a saliency map (using N less than that of [77]) by empirically optimizing the
pixels important for target-specific classification. And, we propose an approach to provide
a global perspective on the explanation of the outcome using a reconstruction technique,
which generates possible variations of the salient pixels of the input.

4.2 Terminology

This section defines the terms that are used in the following sections:

1. Important input samples: Given an input vector, a classification model, and an
expected outcome of the model given the input vector, an important input sample
is a sample from the input vector which when replaced with zero or value outside of
the input distribution will lead to a reduction in the confidence of the model in the
expected outcome.

60

4.3 Problem Statement

The limited application of machine learning models in safety-critical systems forms the
motivation for our problem which is stated as follows:

Given a classification model, an input image, and a probability distribution over a
categorical target variable, identify the individual input samples that are important for
classification of the input to the target class.

4.4 Contribution

Stochastic nature of machine learning models makes them less reliable for application
in safety-critical systems. To fully exploit their capabilities, it is essential to make the
models interpretable. Therefore, we propose a non-intrusive interpretability technique by
generating a saliency map based target-specific model outcome explanation.

Inspired by the work of Petsuik et al. [77], we propose a non-intrusive explainability
technique by generating a saliency map for a target class in less number of iteration (N ∼
1000) than [77] (N ∼ 5000). We use an empirical risk minimization approach with a
randomly initialized mask to locate the input pixels sensitive for the classification of the
input to the target class. Therefore, if for the masked input, the confidence of the model
in the most probable class is given by p, then the optimal set of pixels for the input is
empirically located by randomly retaining p% of the unmasked pixels (with value > 0) and
(1− p)% of the masked pixels (with value zero) followed by weighing the pixels using the
class score.

4.5 Mathematical Formulation

Let I denote an input color image of dimension H ×W from the space of images I = {I :
ΛH×W → R3} that maps each pixel coordinate to three color values,

I = {I|I : Λ ∈ {1, ..., H} × {1, ...,W} → R3}

61

Figure 4.1: Saliency map generated for the target-specific image classification using our
approach, RISE [77], GCAM [90], and LIME [83]. The first column shows the input image
along with the top predicted class of the model outcome and the accuracy of classification.
Second column onwards shows the saliency map overlapped with the input image and the
AUC scores (%) of insertion/deletion metrics [77] where a higher value is considered good
for insertion, and a lower value is considered good for deletion.

Let a random variable C represent a categorical variable.

C = {c1, c2, ..., cx}

Let c ∈ C denote a target class.

Let a function f denote the classification task.

62

f : I → RC

where f maps inputs from the input space, I to a vector of real numbers signifying the
strength of the classifier in the target output classes, c ∈ C.

Let a random initial mask be denoted as,

M0 = {Λh×w → [0, 1], h < H,w < W}

M0 is composed of a set of unmasked, Λon, and masked pixels, Λoff.

Λh×w = Λh1×w1
on ∪ Λh2×w2

off

and,

M0(Λh×w) = M0(Λh1×w1
on) ∪M0(Λh2×w2

off)

Thus, given a binary mask M0, an input pixel λ ∈ Λon is preserved if M0(λ) = 1, and
the input pixel λ ∈ Λoff is masked if M0(λ) = 0.

Let M be the mask at ith iteration, then masked input I ′ = (I �M) where � denotes
the element-wise multiplication between the original input I and the mask M .

4.6 Proposed Technique

Our proposed technique for the explanation of model outcome is comprised of two sub-
problems. First, to generate a relevance mask highlighting the input samples which are
important for the classification of the input to the target class. And second, to identify all
the possible variations of the relevant input samples.

63

Figure 4.2: A random initial mask with preserved input pixels highlighted in yellow and
masked input pixels highlighted in blue

4.6.1 Saliency Map Generation

We use the empirical risk minimization approach to find a mask M with a minimal set of
unmasked pixels Λmin

on . The mask is such that the model’s confidence in class c using the
masked version of the input departs from the confidence with that of the actual input by
no more than a predefined threshold δ.

minimize
Λon

M

subject to |f(I �M)− f(I)| ≤ δ
(4.1)

In the equation 4.1, δ is a threshold determined empirically and � is the element wise
multiplication of the input with the mask. The key to a good estimate of the saliency map,
which satisfies the optimization condition in Equation 4.1, is to iteratively update the initial
mask M0 by selectively filtering the masked and unmasked pixels from Λon and Λoff based
on the prediction probability p = f(I�M) of the class c, where M is the upsampled version
of the mask at the ith iteration. M is upsampled using bilinear interpolation, as shown in
Figure 4.3, to the size of the input image as shown in the second column of Figure 5.4. The
bilinear interpolation is a common resizing technique in computer vision that helps avoid
the inclusion of unwanted artifacts in the mask during empirical optimization by blurring
out the edges, as shown in figure 5.4, thus, eliminating misclassifications.

Algorithm 3 shows the saliency map generation method. Based on the prediction
probability of the target class c, the algorithm randomly retains p% of the unmasked
pixels, Λon and (1 − p)% of the masked pixels, Λoff. The subset of the pixels preserved

64

Algorithm 3 Saliency map generation

Input: Input image I ∈ I, Target class c ∈ C
Output: saliency map M
1: Initialisation : M0 ∈ Rh×w

2: for i = 1 to N do
3: M ← upsample Mi−1

4: compute pi = f(I �M)
5: if i == 0 then
6: Λ1 ← randomly select 0.5× pi pixels of Λon

7: Λ2 ← randomly select 0.5× (1− pi) pixels of Λoff

8: end if
9: Λ1 ← randomly select n1pi pixels of Λon . n1 is the number of pixels in the set Λon

10: Λ2 ← randomly select n2(1− pi) pixels of Λoff . n2 is the number of pixels in the
set Λoff

11: Λon ← Λ1 ∪ Λ2

12: Λoff ← Λ \ Λon

13: if (λ ∈ Λon) then
14: Mi(λ)←Mi−1(λ)∆p
15: end if
16: if (λ ∈ Λoff) then
17: Mi(λ)← 0
18: end if
19: V =

∑
x,y

‖Mxy+1
i−1 −M

xy
i−1‖2 +

∑
x,y

‖Mx+1y
i−1 −M

xy
i−1‖2

20: Mi ←Mi + ηVMi−1

21: end forreturn M

65

Mask: (8x8)

Mask: (224x224)

Figure 4.3: Mask upsample

from Λon and Λoff forms the new set of unmasked pixels Λon, which are sensitive for the
classification of input I to the target class c. However, the mask update is likely to saturate
if the change in the prediction probability p of the target class is negligible. To overcome
the issue of saturation, we add a regularizer, which penalizes the set of unmasked pixels
according to two factors: the change in the prediction probability of the target ∆p and the
total variation of the mask V where ∆ denotes the change in the value from the previous
iteration. If the mask is invariant to small changes in the classification accuracy, then the
regularizer will heavily penalize unmasked pixel values by adding a large negative penalty.
On the other hand, if the change in ∆p is significant, the regularizer adds a low penalty to
the updated mask. This way, M captures the pixels sensitive towards the classification of I
to the target class c. In the update equation for the mask, η is a constant that determines
the amount of change in the total variation of the mask to retain.

4.6.2 Relevance Mask Generation

We use an expectation-maximization optimization technique to estimate a relevance mask
Mest using the input vector I and the target class variable c ∈ C.

• In the first step, we initialize a random real-valued mask M0. To generate the mask,
we first intialize a binary mask Mh×w

0 where h < H and w < W , using the technique
in [77]. Followed by upsampling the mask to the size of the input image I using
bilinear interpolation. Upsampling using interpolation has the effect of blurring the
contrasting edges for a smooth transition from the non-masked region to the masked

66

f ()

Updated Mi

Mi=�

C2=cC1 CK

0.01 0.030.85

Mask Update

Figure 4.4: Overview of the mask generation approach

region as shown in figure 4.2. which may appear as a feature for the model when
performing prediction on the masked input.

• In the expectation step, evaluate the likelihood of the masked input I ′ = (I �Mi)
given the target variable c ∈ C

f(I �Mi) = Pr {c|(Mi � I)} (4.2)

• In the maximization step, maximize the expectation to optimize Mi−1 by evaluating
the likelihood at Mi and updating the mask. To update the mask, first calculate,
∆p, the change in the prediction probability of the model using the masked input
(Mi−1� I) and (Mi� I). The difference in the prediction probability of the outcome
c denoted as ∆p is computed as follows,

∆p = f(Mi−1 � I)− f(Mi � I) (4.3)

This is followed by updating the values of the mask Mi corresponding to the pixels
in the revised set of preserved Λon and masked Λoff pixels, which are obtained using
steps 5-8 of Algorithm 3. If a pixel belong to the updated preserved set of pixels,
λ ∈ Λon, then retain the value of the mask weighted by ∆p, which signifies the degree
of change observed in the output confidence score from Mi−1 to Mi,

67

Mi(λ) =

{
Mi−1(λ)∆p, if λ ∈ Λon (4.4)

0, if λ ∈ Λoff (4.5)

We add a term to the updated mask called total variation, V , which acts as a reg-
ularizer and helps in a smooth navigation over the space of possible set of masks.
The variation is calculated on the mask from previous step as the square of difference
between every element across rows and columns,

V =
∑
x,y

‖Mxy+1
i−1 −M

xy
i−1‖2 +

∑
x,y

‖Mx+1y
i−1 −M

xy
i−1‖2 (4.6)

Finally, update the mask using total variation, and the amount of variation to be
retained is controlled by η using the following equation,

Mi ←Mi + ηVMi−1 (4.7)

• After every k iterations of mask update, check ∆p to determine the magnitude
of change from previous iterations, if at a point the fluctuations are negligible as
compared to the change in previous steps, and the magnitude falls within a range
(∆p− ε,∆p+ ε), then stop.

• The process is repeated until N steps are completed. At i = N , the estimate of the
learned relevance mask is given by Mest = MN

As shown in the Figure 4.5, during the optimization, the algorithm navigates an arbi-
trary space of masks M ∈M to find the best estimate of the relevance mask Mest. At the
end of each iteration, the algorithm finds an estimate of the mask Mi+1, which is at least as
good as the current estimate Mi. The total variation value at each iteration determines the
degree of variation in the relevance of the preserved set of input pixels from one iteration
to another. Over the iterations, the pixels which are rewarded with more positive weights
contribute more in deciding the outcome of the input. At the point of convergence, the
algorithm returns an estimate of the relevance mask Mest with the preserved relevant set
of input pixels, which will explain the model’s outcome for the classification of the input
I to the target c.

68

Mi=0

X

Mi=20 Mi=40 Mi=60 Mi=80

Mi=100 Mi=120 Mi=140 Mi=160

Mi=180 Mi=200 Mi=220 Mi=240

Mi=260

=Mest

Figure 4.5: Visual representation of the relevance mask during mask optimization

4.7 Experiments

4.7.1 Model and Data Description

:

We evaluate the efficacy of the proposed saliency map based explainability approach
using a range of publically available open image datasets such as ImageNet [86] and MS-
COCO (Microsoft-Common Object in Context) [57]. ImageNet is a repository of 15 M
high-resolution images gathered from more than 20 k categories. MS-COCO, on the other
hand, is a significantly smaller database of images but with more number of instances per
category. The dataset has 330 k images with more than 80 object categories. The MS-
COCO dataset is used for object detection, object segmentation, and image captioning.

We use pre-trained models: VGG16 [96], Inception V3 [100], and ResNet50 [39] as base
models for image classification. The pre-trained models are loaded with ImageNet weights
and accepts inputs of size 224× 224. The models differ in terms of their network structure
and number of trainable parameters. VGG16 is a convolutional neural network trained on
ImageNet dataset achieving top-5 accuracy of 92.0% on ImageNet. ResNet50 is a 50 layer
network achieving 93.29% accuracy on the ImageNet. Inception V3 is another model that
achieves an accuracy of 94.4% on the ImageNet. Relying on pre-trained models [96, 100, 39]
for image classification helps avoid the common training pitfalls such as model over-fitting,

69

skewed data distribution, right model selection, and insufficient resources (such as GPUs)
for training.

4.7.2 Evaluation Metrics

Motivated by [77, 47], we use the metrics of insertion and deletion to evaluate the efficacy
of the mask generation approach for explaining the model decision.

Insertion and deletion metrics

Motivated by [77], we use the metrics of insertion and deletion to evaluate our saliency map
approach. In the deletion metric, the deletion of salient pixels from the input causes the
model to drop the probability of the target class. And in the insertion metric, the insertion
of pixels from the relevant region of the input causes the model to increase the probability
of target class. We capture the sensitivity of the model to the removal and insertion of
pixels from the relevant region of the input using an average AUC score. Thus, during
deletion, as the relevant input pixels are deleted from the masked input, the AUC curve for
the model will shrink to a thin area, thus, dropping the average AUC score, indicating the
right explanation for the model decision. Similarly, during the insertion, as the pixels from
the relevant region of the input are added to the masked input, the AUC curve expands to
cover the large area under the probability curve, thus increasing the average AUC score.

Pointing game

The pointing game [111] metric is a method of evaluating the class discriminative nature of
saliency map based approaches. Given an annotated segmentation box for an instance of
an object and the corresponding saliency map, the method measures the number of pixels
on the saliency map of the input that lies on the annotated box of the object instance. To
measure the overlap, we calculate the fraction of the area (As) of the saliency map that
overlap with the annotated segmentation box (At) of the image using an IOU,

IOUscore(%) =

∑
(As ∩ At)∑
(As ∪ At)

(4.8)

The numerator is the sum of pixels values in the union of As and At, and the denominator
is the sum of pixels values in the intersection of At and As. A high IOU score (typically
> 50%) means that a large fraction of the salient region of the input overlaps with the
annotated box, indicating a good explanation.

70

4.7.3 Results

As a part of the result, we generate relevance mask for a set of images and analyze them
for visual understanding of the models outcome.

4.7.4 Evaluation using Insertion/Deletion Metrics

Given a pre-trained classifier, we evaluate the class discriminative capability of saliency
map based approaches [83, 90, 77, 97] using the quantitative measures of insertion and
deletion metric. For the base models: VGG16 [96], ResNet50 [39], and Inception V3 [100]
and the datasets: ImageNet [86] and MS-COCO [57], we report the average AUC score of
insertion and deletion on a set of images. The test images are randomly selected from the
test set of the datasets. For each technique, Table 4.2 shows the mean AUC score of the
insertion and deletion metrics for each technique across all the models and all the datasets.
We also show the standard deviation of the AUC of the insertion and deletion metrics for
our approach. From the table, it is evident that our approach outperforms other saliency
map based approaches in localizing the pixels sensitive for the classification of the input
to the target class across both the datasets and all the base models.

Table 4.1: Mean AUC Score(%) using insertion (Ins) and deletion (Del) metrics - I

Model Dataset
Ours RISE [77]

Ins Del Ins Del

ResNet50 [39]
MS-COCO [57] 75.53/0.02 1.80/0.001 73.71 4.14
ImageNet [86] 63.16/0.004 11.48/0.05 60.32 13.04

VGG16 [96]
MS-COCO [57] 64.64/0.001 4.49/0.003 62.88 5.00
ImageNet [86] 58.72/0.03 12.23/0.1 59.47 12.66

InceptionV3 [100]
MS-COCO [57] 66.25/0.001 5.88/0.005 65.87 5.00
ImageNet [86] 67.43/0.004 6.34/0.003 65.12 10.25

4.7.5 Evaluation using Pointing Game

We evaluate the localization capability of saliency map-based approaches for target-specific
objects using the pointing game. For the ImageNet dataset, we report the average IOU
score for a set of test images across all the models. The IOU score is calculated for the

71

Table 4.2: Mean AUC Score(%) using insertion (Ins) and deletion (Del) metrics - II

Model Dataset
GCAM [90] LIME [83] Guided Backprop [97]
Ins Del Ins Del Ins Del

ResNet50 [39]
MS-COCO [57] 55.08 6.95 46.27 7.02 38.96 4.25
ImageNet [86] 58.57 18.22 45.89 15.86 49.37 3.54

VGG16 [96]
MS-COCO [57] 40.03 10.07 37.94 7.06 38.96 4.25
ImageNet [86] 51.59 15.75 45.75 16.23 49.20 3.13

InceptionV3 [100]
MS-COCO [57] 62.43 4.83 53.59 6.41 39.62 6.00
ImageNet [86] 60.99 11.31 45.76 13.32 49.12 4.27

saliency map of the images using the enclosed area of the bounding box, As and the
annotated segmentation box, At for the target-specific input images. Table 4.3 shows the
mean IOU score (%) for the test set of images across all the models and both the datasets.
The table also shows the standard deviation of the IOU score for our approach. From the
table, it is evident that the performance of our saliency map approach across the models
is at least 5% more accurate than [77] and 20% more accurate than [83] at localizing the
pixels sensitive towards target-specific classification. Note that we omit the evaluation of
the gradient backpropagation technique using the pointing game as the technique highlights
only the edges of the target object, which is insufficient for evaluation against this metric.

Table 4.3: Mean IOU score(%) using pointing game metric

Model Ours RISE [77] GCAM [90] LIME [83]

ResNet50 [39] 79.01/0.02 74.9 69.11 57.29
VGG16 [96] 78.0/0.001 81.12 62.31 51.17
InceptionV3 [100] 76.0/0.002 63.23 57.54 48.21

4.7.6 Convergence

We show that our approach converges to localize pixels sensitive for the target class in
less than half the number of iterations compared to [77]. To show this, we calculated the
saliency map of a set of randomly selected images from class honey bee using our approach
and RISE [77] for N = 5000. The criteria for choosing a particular image category includes
the presence of at least one distractor object, which makes the target class discrimination

72

difficult. Figure 4.6(a) and 4.6(b) shows the insertion and deletion metric of the saliency
map at every iteration. The error bar at each iteration shows the standard deviation of
the average AUC. For every 1000th iteration, we report the average AUC of insertion and
deletion of the pixels using the saliency map generated using both the approaches. From
Figure 4.6(a), we observe that the accuracy increases over iterations and then approaches
a point after which updating the saliency mask does not improve the performance of
insertion accuracy. This point is the point of convergence. The figure shows that our
approach reaches the point of convergence faster than [77]. Furthermore, unlike [77], the
monotonically increasing and decreasing curve of the mean AUC of insertion and deletion
metric shows that the saliency map over iterations generated using our approach is more
reliable for decision-making.

4.7.7 Saliency Map for Examples from ImageNet

We generate relevance mask Mest for randomly selected set of ImageNet images using our
proposed approach alongside LIME [83], GradCAM [90], and RISE [77]. Figure 4.7 shows
the input images in the first column, the corresponding estimate of the relevance mask Mest

for the target object class, and the mask overlayed with the image for our approach in the
last column. The mask overlapping the images across all the approaches shows the parts of
the input highlighted with varying degrees of colour intensities showing the sensitivity of
the model to the different parts of the input in outcome prediction. The sensitivity of the
pixels varies from the most relevant input pixels (shown in red) to the least relevant input
pixels shown in blue. The intermediate yellow region is the ambiguous region because the
yellow region forms the part of both the relevant and irrelevant input pixels. For example,
in Figure 4.7, the saliency map for the image of banana shows regions of the input, such as
the highlighted yellow region of grapes, which also form the explanation for class banana.
Similarly, for the image of lynx (third row in Figure 4.7), a fraction of the non-cat portion of
the image around the face is assigned more weight than the non-relevant part (highlighted
in blue), which also forms the part of the explanation for the lynx class. We believe that
by penalizing the irrelevant input pixels more than the relevant pixels and by evaluating
the approaches using the insertion/deletion metric, we are able to indicate the effectiveness
of our approach. The insertion/deletion score reported for the images using our approach
achieves a higher insertion score on average than all the other approaches, with significant
improvement reported on the image of banana (first row). This is the case because our
approach detects the smallest region of all the approaches to which the model is sensitive,
resulting in an AUC score of insertion that is better than the related approaches. Similarly,
the insertion obtained on the image from the fourth row for the target class banana achieves

73

a score higher than all the other approaches by focusing on a significantly small region of
the image, including mostly the features of the banana.

4.7.8 Evaluation using Ground-truth Annotations

We also evaluate our approach using pointing game metrics by visualizing the scores across
a set of images from the ImageNet dataset. As shown in Figure 4.8, 4.9, 4.10, 4.11, 4.12,
for each input image, we report the human-annotated ground-truth for the target class in
the first column, the generated saliency map in the second column, and the bounding box
for the saliency map in the third column. The ground-truth annotation for the images is
available from the ImageNet dataset as the bounding box around the object of interest.
We visualize the saliency map for the target class of the image by overlaying the generated
relevance mask on top of the input image. To calculate the IOU score for the input image,
we also obtain an estimate of the binary bounding box for the corresponding saliency map
by assigning a value of 0’s and 1’s to the corresponding pixels using a threshold. The IOU
scores for the images are shown in the third column. We can observe that IOU scores
for some of the images are not indicative of the reported saliency map. For instance, the
saliency map for the image of whale in the first row of Figure 4.8 focuses only on the features
of the whale as relevant. However, the IOU score of the image of whale contradicts with a
low score of ∼0.42. This is the case because, in addition to the features of the whale, the
human annotation (shown in the first column) for the whale also comprises the background,
including the features for the class of sky and the sea. Such erroneous annotation results
in a higher value of the union in the denominator as opposed to the numerator, which is
the intersection of the human-annotated bounding box and saliency map bounding box.
Similarly, a low score of IOU for the image of cucumber can also be understood. The
examples in Figure 4.10 reported an IOU score of zero. This is the case because there
is negligible overlap between the bounding box for ground-truths and saliency maps for
the image of pomegranate, carton, and truck. In particular, the human annotation for
the class pomegranate wrongly annotates the part of the image containing apple as the
bounding box for the image of pomegranate. Similarly, the ground-truth for the class of
carton wrongly annotates the features of orange as the bounding box for carton, resulting
in a zero IOU score. Therefore, we conclude that relying on one or the other evaluation
metric can be unreliable to evaluate a saliency map-based approach. And we must consider
an ensemble of the metrics for the evaluation.

74

(a)

(b)

Figure 4.6: The figure shows the AUC score of insertion 4.6(a) and deletion 4.6(b) for the
saliency map of an input image using our approach and RISE [77] over the iterations.

75

Figure 4.7: Saliency map comparison for the target-specific image classification using our
approach, RISE [77], GCAM [90], and LIME [83]. The first column shows the input image
along with the top predicted class of the model outcome and the accuracy of classification.
Second column onwards shows the saliency map overlapped with the input image and the
AUC scores (%) of insertion/deletion metrics [77] where a higher value is considered good
for insertion, and a lower value is considered good for deletion.

76

Figure 4.8: Evaluation of our approach on a set of ImageNet datasets using pointing game
metric. The figure shows the human-annotated bounding box for the object of interest
(target class), followed by the saliency map generated using our approach, followed by the
binary bounding box for the corresponding saliency map. The figure also shows the IOU
score calculated using the equation 4.8 with the bounding box for ground-truth and the
saliency map of the input images shown on top of the figure.

77

Figure 4.9: Evaluation of our approach on a set of ImageNet datasets using pointing game
metric. The figure shows the human-annotated bounding box for the object of interest
(target class), followed by the saliency map generated using our approach, followed by the
binary bounding box for the corresponding saliency map. The figure also shows the IOU
score calculated using the equation 4.8 with the bounding box for ground-truth and the
saliency map of the input images shown on top of the figure.

78

Figure 4.10: Evaluation of our approach on a set of ImageNet datasets using pointing game
metric. The figure shows the human-annotated bounding box for the object of interest
(target class), followed by the saliency map generated using our approach, followed by the
binary bounding box for the corresponding saliency map. The figure also shows the IOU
score calculated using the equation 4.8 with the bounding box for ground-truth and the
saliency map of the input images shown on top of the figure.

79

Figure 4.11: Evaluation of our approach on a set of ImageNet datasets using pointing game
metric. The figure shows the human-annotated bounding box for the object of interest
(target class), followed by the saliency map generated using our approach, followed by the
binary bounding box for the corresponding saliency map. The figure also shows the IOU
score calculated using the equation 4.8 with the bounding box for ground-truth and the
saliency map of the input images shown on top of the figure.

80

Figure 4.12: Evaluation of our approach on a set of ImageNet datasets using pointing game
metric. The figure shows the human-annotated bounding box for the object of interest
(target class), followed by the saliency map generated using our approach, followed by the
binary bounding box for the corresponding saliency map. The figure also shows the IOU
score calculated using the equation 4.8 with the bounding box for ground-truth and the
saliency map of the input images shown on top of the figure.

81

Chapter 5

Generalizability of Saliency
Map-based Explanation

The black-box nature of the machine learning models has led to extensive research in the
field of model outcome interpretability and transparency. Most of the existing work in this
area falls into two categories: First, assessing the sensitivity of the model to the changes
in internal network parameters and the gradient flowing through the network in outcome
prediction [47, 10, 20, 29, 75, 90]. And second, the identification of learned features in a
low-dimensional linear subspace [83, 47]. The former is limited in its capability because it
requires access to internal network parameters. Furthermore, the latter can only capture
partial information. Therefore, we propose a model-agnostic interpretation method that
iteratively revises a mask to converge to focus on the important regions of the image. The
method assigns scores to individual pixels signifying their sensitivity toward the output
class. A high score means the pixel is significant for classification to the output class and
vice-versa.

One of the limitations of the perturbation-based explanation technique is that it lacks
consistency. Multiple runs of explanation generated on the same image result in contradic-
tory salient region detection for the target class. As shown in Figure 5.1, the input image
of broccoli constitutes more several pieces of broccoli spread across the area of the image.
And the saliency map highlights the salient regions of the input by assigning higher weights
to the relevant pixels and lower weights to non-relevant pixels. However, the weights of the
relevant pixels across multiple runs are not consistent. The first saliency map assigns more
weight to the pixels constituting broccoli in the top half of the image than the pixels in the
bottom half. However, there is no significant reason for differentiating the broccoli from
the top half to the bottom half, and vice-versa. Also, it is noticeable that regardless of

82

the variations in the scores of the pixels, the scores for the region of saliency map remain
the same with a tolerable range of variation. A work by Kim et al. [47] addresses the
uncertainty of the saliency region by attributing user-defined concepts to the target class.
However, the method relies on manually designing user-defined concepts, which is labori-
ous and infeasible for large datasets. To ensure that the technique is reliable in the face of
external noise, we propose a method to quantify the variations for the salient region of the
input. To this end, we estimate the salient region for the input as the concatenation of the
salient regions across multiple runs of the input instance. In turn, the set of variations for
which the model outcome remains unaltered also forms a global perspective for the class
of interest.

Figure 5.1: Saliency map for the image of broccoli. The two saliency map for broccoli
highlights non-overlapping regions of the image as important for broccoli classification.

Figure 5.2: Saliency map for the image of a church. The three saliency map for church
highlights a fraction of non-overlapping regions of the image as important for church clas-
sification.

83

5.1 Related Work

With the increasing applicability of complex machine learning models, the need for an
explainable and verifiable AI is increasing. In an attempt to justify models’ outcomes,
various techniques have been proposed over the years. The majority of the explainability
techniques fall into one of the three categories: (1) third-party explainer : a separate model
for explaining the outcomes of the base model (2) justify the base model outcome using
techniques such as input perturbation and network parameters.

Some of the explainability work that falls in the line of third-party explainer include
[75, 47]. In particular, [40] uses the class discriminative properties of the objects in the
images to provide a textual explanation for the images. [75] is another technique that trains
two models for providing textual as well as visual justification for the visual question
answering task and activity recognition task. However, these approaches are costly to
implement because of the reliance on large human-annotated ground-truth explanations.

Within the realm of justifiable models, there are various explainability approaches. One
of the earliest approaches LIME [83] attempts to provide a linear interpretation within the
local neighborhood of the data point. However, the approach is not effective at explaining
non-linear models. Some of the approaches [95, 109, 73, 97] attempts to synthesize input
images that result in a high activation score for particular neurons. Another approach
by [112] generates a target-specific saliency map by taking the global average pooling of the
feature maps at the layer before the fully connected layer. GradCAM [90] is a generalized
version of CAM that, in addition to the feature map weights, feeds the class gradient
to the fully connected layer to assign importance to each of the input pixels. However,
[112, 90] can only be applied to limited network architectures with global average pooling.
Another work by Zhang et al. [111] proposes to use a backpropagation scheme to generate
an attention map by propagating the signal downward through the network hierarchy using
a winner-take-it-all strategy. A few techniques examine the relationship between input and
output to learn a perturbation mask by backpropagating the error signal [29].

Despite the ability of the techniques [112, 90, 29, 78] to justify the model’s decision, the
methods mentioned above have limitations. The methods [90] are constrained by the use
of network parameters such as gradients flowing through the network and network layer
weights. While techniques such as [111, 90] require a specific kind of network architecture,
in some cases [109], the method requires access to intermediate layers of computation for
visualizing the features at several layers. Furthermore, the techniques can explain only a
particular input at a time without considering the possible variants (rotation, inversion,
deformations) of the image. A work by Kim et al. [47] proposes a technique to provide

84

an explanation that is representative of user-defined concepts, but the manually generated
concepts limit the technique. Our work is an extension of the work by Petsuik et al. [77] to
localize and generalize the salient pixels of the target class using a two-step process. First,
as proposed in Chapter 4, we obtain a model-agnostic saliency map (using less number
of iterations (≤ N) than that of [77]) by empirically optimizing the pixels important
for target-specific classification. As an extension to our explainability technique, in this
chapter, we propose an approach to provide a global perspective on the explanation of
the outcome using a reconstruction technique, which generates possible variations of the
salient pixels of the input.

5.2 Terminology

This section defines the terms that we use in the following sections:

1. Important input samples: Given an input vector, a classification model, and an
expected outcome of the model given the input vector, an important input sample is
a sample from the input vector, which when replaced with zero or value outside of
the input distribution will lead to a reduction in the confidence of the model in the
expected outcome.

2. Salient region: Given an input image, a saliency map for the target class, a salient
region is a region in the input vector that comprises of a set of important input
samples, which when replaced with zero or value outside of the input distribution,
will result in a drop in the confidence score for the target class. Visually, salient
regions are the regions that are highlighted in red.

3. Alternate explanation: Alternate explanations are variations in the sample values
in the salient region of the input such that the model’s classification of the altered
version of the image will also be classified to the target class.

5.3 Problem Statement

The limited application of machine learning models in safety-critical systems forms the
motivation for our problem, which is stated as follows:

Given a classification model, an input image, a relevance mask and a generative model,
identify the distribution of acceptable variations for the important input samples.

85

5.4 Contribution

Our contribution is a method for generating alternate explanations for the part of the
input, which is salient for target-specific classification.

To generalize the explanation for the target class using the saliency map, we propose
a technique to identify the variations of the pixels in the salient regions of the input for
which the model prediction remains unaltered. The hypothesis for finding variations of the
salient region comes from the analogy that the model is invariant to small perturbations
in the input. Thereby, the approach helps identify variations (changes in color intensities,
object rotation, or inversion) in the salient region of the input space for which the model
classification remains unaltered [34]. To generate alternative explanations for the salient
regions of the input, we use an image completion technique proposed in [108, 76] that uses
the features of the neighboring pixels to reconstruct the pixels in the salient regions of the
input. Using this approach, we are able to find an exhaustive and contextually similar set
of transformations for the pixels in the semantic regions, which are classified to the same
output class as the original input image.

5.5 Proposed Technique

We propose an approach to generate the acceptable variations for the salient region (the
highlighted region in the second column of Figure 5.4) of the input image as alternate
explanations for the model outcome.

The hypothesis for finding relevant salient region variations comes from the analogy
that input encoding in the latent space (z) is invariant to small perturbations in the input
space. Thereby, the approach aims to identify the variations (changes in color intensities,
object rotation, or inversion) in the salient region of the input space for which the model
classification remains unaltered. Input with such variations are alternate explanations
for the model outcome. For instance, Figure 5.3 shows the variants of an instance of
cat obtained using image translations such as shifting, rotation, inverting the image, and
blurring the image.

5.5.1 Notations

In this section, we describe the notations that are used in the proposed method as follows,

86

Latent Space (Z)

Invariant

Figure 5.3: Figure showing transformations such as change in color, rotation, shift, and
scale applied on the image of cat.

87

Let I be the input image.

Let M0 be the initial random mask.

Let M is the saliency map obtained for the classification of the input image to the
target class c ∈ C.

Let B be a binary bounding box for the saliency mask M of the input image I, as
shown in Figure 5.4 third from left, where pixels inside the box are set to 1’s, and the
pixels outside are set to 0’s using a pre-defined threshold δ.

The reconstruction mask, R, is the refined version of the bounding box B, obtained
by inverting B, followed by convolving it with a kernel of size (s, s) such that the weights
assigned to pixels are inversely proportional to their distance from the bounding box. As
pixels near the box are more important for the reconstruction of missing pixels from the
box, the mask R is such that it assigns more importance to the pixels in the vicinity of the
box than to the pixels far away.

Let G be a generator that learns an encoding dz of the input image distribution dI in
the latent space (z).

Figure 5.4: From left to right, I : input image, M : saliency map, B : bounding box, R:
reconstruction mask.

5.5.2 Variations of the Salient Region of the Input

To generate variations of the salient region of the input, we use an image completion
technique proposed by Pathak et al [76], which reconstructs a patch of the input by it-

88

eratively backpropagating the error in a generator that is trained on the input distribution.

The objective is to reconstruct the corrupt image ((1 − R) � I) using G. As the
corrupt image is not a sample from the input distribution dI ; therefore, G will be poor
at recognizing the patterns of the missing part of the image. Therefore, we use the image
reconstruction technique as described in [108], where the authors use the back-propagation
technique with the generator to find an encoding (z′) for the missing part of the image that
is closest in encoding to the input I while being confined to the learned manifold (z). The
objective function for learning the encoding (z′) comprises context loss and discriminative
loss.

Lookup closest encoding () for
masked input (B)

Latent space (
Compressed
representation
of the actual
input samples(X))

Figure 5.5: Visualizing image reconstruction approach

Context loss is used to reconstruct the missing part of the original image given the cor-
rupt image by measuring a squared error between the corrupt image and the reconstructed
image.

Lcxt(z) = (I � (1−R))− (G(z)� (1−R)) (5.1)

Discriminative loss is used for measuring the authenticity of the generated images
by feeding them to the discriminator D, which returns the confidence in G(z) being real.

Ldis(z) = −D(G(z)) (5.2)

89

The overall loss for learning the encoding for the missing salient region of the input is
as follows,

L(z′) = argmin
z
{Lcxt(z|I, R) + Ldis(z)} (5.3)

Using the learned encoding, G(z′) generates the image that is approximately close to
the missing salient part of the image. Figure 5.5 shows a pictorial view of the technique
for reconstructing the salient region of the input image.

5.5.3 Image Reconstruction

To reconstruct the salient region of the input image I given the target class y, we first
train a generative adversarial network (GAN) using input distribution.

GAN is a generative model framework for training parametric models. GANs comprises
of training two networks: a Generator (G) and a Discriminator (D). The generator aims
to generate realistic-looking images by learning a true data distribution pI from a prior
distribution pz where z is a noise variable. And the discriminator acts as an adversary
whose aim is to discriminate fake images generated by the generator G from a real image
from the true distribution pI . GANs are trained using a min-max game as shown in
equation 5.4 where the generator aims to maximize the error made by discriminator and
the discriminator learns to get better at discriminating the true from fake,

min
G

max
D

V (D,G) = Ex∼pI(x)[logD(x)] + Ez∼pz(z)[1− log(D(G(z)))] (5.4)

This is followed by training the generator G with the loss L(z′) to learn the encoding
z′ by back-propagation method until convergence.

The image reconstructed using the generated image is given by,

Irec = (I � (1−B)) + (B �G(z′)) (5.5)

We repeat image reconstruction for k randomly sampled noise vectors z to generate k
reconstructed variants of the salient region of the input image I where z is a sample from a
gaussian distribution with mean zero and variance one. The generated images will be such
that their encoding will lie in the vicinity of the learned manifold in the latent space (z).
However, suppose the encoding z′ fails to capture the context of the salient region of the
input using the evidence from the local neighborhood of pixels. In that case, some of the

90

reconstructed images will not be similar to the original salient region. The selected set of
Irec for which the model prediction remains unaltered is considered alternative explanations
for the salient regions of the input image. Furthermore, the reconstructed images for which
the target class prediction probability falls outside of the confidence interval are considered
outliers. Such reconstructions are excluded from the explanation for the classification of I
to the class y. The outliers are variants of the original image for which the model outcome
changes. Such a set of perturbed images can be used to make the model robust against
adversarial attacks. Figure 5.6 shows the alternate variations reconstructed for the salient
region of the image of church.

+ =

Figure 5.6: From left to right, the image of church with occluded relevant-mask (center
grey patch B), generated occluded region (B �G(z′)), reconstructed image (Irec)

5.6 Evaluation

This section gives an overview of the evaluation metrics, models, and datasets used to
describe the results of the evaluation of the proposed approach.

5.6.1 Model and Data Description

We evaluate the efficacy of the proposed saliency map-based explainability approach us-
ing a range of publically available open image datasets such as ImageNet [86] and MS-
COCO (Microsoft-Common Object in Context) [57]. ImageNet is a repository of 15 M

91

high-resolution images gathered from more than 20 k categories. On the other hand, MS-
COCO is a significantly smaller database of images but with more instances per category.
The dataset has 330 k images with more than 80 object categories. The MS-COCO dataset
is used for object detection, object segmentation, and image captioning.

We use pre-trained models: VGG16 [96], Inception V3 [100], and ResNet50 [39] as base
models for image classification. The pre-trained models are loaded with ImageNet weights
and accept inputs of size 224 × 224. The models differ in their network structure and
number of trainable parameters. VGG16 is a convolutional neural network trained on the
ImageNet dataset achieving top-5 accuracy of 92.0% on ImageNet. ResNet50 is a 50 layer
network achieving 93.29% accuracy on the ImageNet. Inception V3 is another model that
achieves an accuracy of 94.4% on the ImageNet. Relying on pre-trained models [96, 100, 39]
for image classification helps avoid the common training pitfalls such as model over-fitting,
skewed data distribution, right model selection, and insufficient resources (such as GPUs)
for training.

5.6.2 Evaluation Metrics

We evaluate the accuracy of the images reconstructed by GAN by comparing the confidence
score on the reconstructed image from the confidence score of the original image. Suppose
the reconstructed image contains variations close to that of the actual image. In that
case, we show that the target object will be identified in the reconstructed image with a
confidence score within a tolerable range from the confidence score on the actual image
and vice-versa.

5.7 Evaluation of the Variations of the Salient Region

In this section, we evaluate the generalizability of our saliency map approach on an input
image of a lynx. The image is chosen such that the presence of distractor objects makes the
discrimination of the target class against other classes challenging using a saliency map.
For instance, the image of lynx has a background whose pattern and color match with that
of the lynx, which contributes to reducing the target accuracy to 62.15%. However, we
found that the results of the evaluation followed a similar trend for other images evaluated
from the test set of the ImageNet dataset.

92

5.7.1 Classification Accuracy of Reconstructed Images

Given a saliency map for an input image of lynx, we report the classification accuracy of a
subset of reconstructed images of lynx that are correctly classified as lynx by ResNet50. To
obtain the reconstructed images, first, we created a reconstruction mask R by convolving
the bounding box for the saliency map of lynx with a kernel of size (15, 15). We also
trained a GAN [35] as the generator (G) using a set of 40 k training images from the
ImageNet dataset. The input images were downsampled to a size of (64 × 64) to speed
up the training process of G. The training is followed by feeding G with the input image,
the reconstruction mask, and a batch of 64 random noise vector z to generate a batch
of 64 images. The generated images are used to reconstruct a set of 64 images using
Equation 5.5.

Figure 5.7 shows a subset of the reconstructed images that are correctly classified to
the target class lynx with an average accuracy of 64%. The figures are pixelated because
the reconstructed images are resized from size (64×64) to size (224×224) where (64×64)
is the size of generator output and (224 × 224) is the size of the saliency map. From the
figure, we observe that most of the reconstructed parts of the images (face including eyes,
nose, mouth, left side of the face) contain a blob, which is black in the vicinity of the mouth
and the lower part of the nose. The presence of a blob-like feature across the reconstructed
images shows that the area around the nose and the mouth of the image is essential for
classifying the image to the class of lynx.

Figure 5.8 shows the histograms of the reconstructed salient region of the input and the
original salient region of the input. For each of the reconstructions, the figure also shows
the accuracy and the t-score for the target class lynx. The t-score is a measure to tell apart
the difference between the reconstructed and original pixels; thus, the higher the t-score
value, the larger the differences. Based on the t-score, it is evident that the reconstructed
pixels classified to the target class lynx have variations that are significantly different from
the original pixels. Thus, these reconstructed pixels of the salient region of the input are
the variations, which form alternate explanations for the target class.

5.7.2 Impact of Varying Sizes of Bounding Boxes

We show that the size of the bounding box enclosing the salient region of the input influ-
ences the quality of the reconstructed images and hence the alternate explanations. The
idea is that as the size of the salient region to reconstruct shrinks, the evidence from the
neighborhood to reconstruct missing pixels increases, thereby generating contextually sim-
ilar images. We reconstructed the input image using the varying sizes of the bounding

93

Class: Lynx, Accuracy: 89%, Std Deviation: 0.2%Acceptable Variations

I: Input image (Lynx)
M: Salincy-map (our)
B: Bounding-box
R: Relevant mask

Figure 5.7: Reconstructed images for the image of a lynx with saliency map (M) as shown
in Figure 5.4

boxes by reducing the bounding box by a factor of α = 0.1 until half the original size.
From Figure 5.9, it is evident that the number of reconstructed images correctly classified
to the target class lynx increases as the size of the bounding box decreases. The maximum
number of correct classifications is observed with the bounding box half the size of the
original salient region. Equivalently, as shown in Figure 5.10, the loss incurred by the
generator during the reconstruction of the images decreases as the size of the bounding
box decreases. This shows that a carefully chosen value of α helps generate contextually
similar images. For the image of lynx, a value of 8α, which retains 80% of the salient
region in the bounding box, generates reconstructed images with an average classification
accuracy of 63.4%.

94

Figure 5.8: Figures showing the histogram of the reconstructed salient pixels and the
original salient pixels. The title of the sub-figures show the accuracy of the class lynx for
input image/reconstructed image.

95

% of Bounding Box Retained

9080706050

Figure 5.9: Figure shows the number and accuracy of correct classifications using the
reconstructed images over different sizes of bounding boxes.

96

Figure 5.10: Figure shows the reconstruction loss over the different sizes of bounding boxes.

97

Chapter 6

TiME: Time Series-based Model
outcome Explanation

With significant advances in hardware technology, sensors deployed in the real world are
capable of generating a continuous stream of high-resolution data. A considerable fraction
of these sensors generate data that is variable, which varies in time. In practice, these
univariate sequences find space in a wide range of applications for performing tasks such as
classification, forecasting, and anomaly detection. In practice, these tasks are realized us-
ing deep-learning techniques, which have achieved state-of-the-art performance with time
series. For instance, ECG recordings of the patients’ heartbeats are used in predictive
diagnostics for identifying the presence/absence of a likely ailment and the possible di-
agnostics. Another example of their real-world application is in the automotive system.
The univariate sequences such as GPS logs, acceleration, break events, and CAN logs are
used in anomaly detection, driver behavior analytics, and cruise control systems. A vast
majority of these tasks are realized using state-of-the-art deep-learning techniques. How-
ever, one of the fundamental limitations of deep-learning-based methods is their inherently
non-transparent nature. And the models implemented for time series are no exception.

Within the regime of explainable AI, most of the techniques are focused on explaining
image-based deep-learning architectures, which cannot be directly applied to inputs of type
time series. And, any attempt at tailoring and transcribing these techniques to explain
time series-based models is less appealing due to the alignment of evaluation towards qual-
itative, which cannot be extended to time series. However, unlike images, time series are
unintuitive [94] to humans. A human intends to perceive and learn the surrounding objects
by consuming the visual representations, and hence, give an image; they are able to form
analogy intuitively and instinctively. Unlike images, humans are not trained to represent

98

sequences that are a function of time, and hence interpreting time series for discrimination
can be challenging. For instance, Figure 6.1 shows ECG recordings of a subject with a
normal heart beat and recordings of abnormal heart beat (irregular pattern in heart beats)
obtained by adding a calibrated amount of noise to the MIT-BIH Dataset [33]. The two
ECG recordings have different temporal patterns. However, the spike-like patterns in ab-
normal heart beat signals during time-interval 0-50, 150-200, and 200-300 are similar to
normal heart beat signals in the time-interval 150-200. However, the patterns vary over a
larger window. Suppose the model pays undue attention to the specific points in the time
series without considering the patterns over a larger window. In that case, the model will
fail to discriminate between the two classes accurately. Hence, it is important that the ex-
planation tool not only focus on what input variations are important but also where in the
time series, that is, the time interval in which their presence is essential for discrimination
between the classes. This distinction will not only help discriminate between the classes
but will help understand questions such as why not the spike in other time-intervals?,
and hence will aid in answering from the perspective of a counterfactual. Therefore, we
propose a perturbation-based model-agnostic technique, TiME, that generates scores for
the individual input time-points by querying the model using N input sub-samples. The
sub-sampling is such that the retained segments of input time series are windowed, which
forces the method to learn patterns and trends over windows. Consequently, the method
eliminates the introduction of ”spike-like” false pieces of evidence that are not related to
the features of the target class and retain patterns important during the time-interval.

0 100 200 300
Index

0

5

Va
lu

e

Normal Heart Beat

0 100 200 300
Index

2.5

0.0

2.5

Va
lu

e

Abnormal Heart Beat

Figure 6.1: ECG time series pattern for a normal heart beat and an abnormal heart beat.

99

6.1 Related Work

Much before the urge for an interpretable model grew, researchers from the field of psy-
chology, human cognition, sociology studied the importance of explanation [23]. For in-
stance, there exists a significant body of work that attempts at using causality to predict
the behavi or of a situation and policymaking under a possible set of conditions such as
gender-discrimination in hiring [85], which policymakers have used to unravel the direct
and indirect effects of gender on the hiring process. A bulk of this work is observed in the
linear regime, which cannot be translated to a non-linear paradigm. However, with the in-
creasing advent of deep-learning-based applications in healthcare and automotive systems,
researchers in the field of AI have started exploring the methods for reasoning the model
outcome for interpretability and gaining confidence in decision-making. In particular, prior
work for explaining time series-based models can be broadly categorized into two depend-
ing on the scope and method of explanation as follows: (1) rule-based and data-mining (2)
posthoc vs. ante-hoc, and(2) local vs. global.

Some of the approaches that exist in literature explicitly explain time series-based mod-
els, for instance, data-mining approaches. Two such data-mining approaches are symbolic
aggregate approximation (SAX) [56] and fuzzy logic. SAX transforms time series into
high-level abstractions using a set of strings in a two-step process. First, decomposing
time series into pieces of fixed-length segments using piece-wise aggregate approximation,
and second, assigning symbols to those pieces. An application of the method is observed in
work by Senin and Malinchik [91] where they implement an interpretable time series classi-
fier using high-level features for time series. Fuzzy logic is another method that explains in
natural language, which is more intuitive. The capability of fuzzy logic has been harnessed
by El-Sappagh [26] to develop a fuzzy logic rule-based system that harnesses the semantic
interpretation capabilities to predict diabetes on a time series and textual features. An-
other extension of the method is by Wang. et. al [105] who implemented a fuzzy cognition
map that relies on the interaction between components for time series forecasting. These
approaches only emphasize the discrete subsets of features that are important and lim-
ited in their capability and cannot be extended to the state-of-the-art deep-learning-based
models’ explanation.

Another line of work to explain time series-based models use examples that are maxi-
mally representative of the explanation. A similar approach is used to find examples from
the space of embedded examples learned by a k-nearest neighbor model [54]. Such exam-
ples are maximally representative of the behavior expected in a particular situation, and
hence, form example explanations. A similar approach exists for finding explanations using
examples for time series is shapelets [107]. They are sub-sequences that maximally repre-

100

sent a class. Shapelets are obtained by finding the sub-sequences and determining their
distances from the candidate shapelets. However, finding shapelets on a high-dimensional
time series can be computationally intensive. Several approaches optimize the candidate
shapelet estimations using kernel SHAP, Deep SHAP [14], and Max SHAP [60]. All these
approaches assume feature independence, which violates the temporal structure of the time
series, and hence, are unreliable in pointing at the input features important within a time
frame.

With a significant increase in the application of deep-learning-based methods, re-
searchers have also focused on explaining these models using saliency map-based tech-
niques highlighting the inputs important for a target class. Other variants of explanations
use captions with keywords that point to the target class. Saliency map-based techniques
are further categorized into gradient-based techniques, perturbation-based techniques, and
back propagation-based techniques. Gradient (GRAD) [5, 96], Integrated Gradient [99],
SmoothGrad [74] are all the variants of the approach where the gradient of the output
is taken with respect to the input. DeepLift [92], DeepSHAP [14] computes attribution
of the input along a path with respect to a reference point, followed by averaging the
attributions per input to get the resultant attributions. CAM [112], is a back-propagation-
based technique that relies on neuron activation based on the prediction and averages the
channel activations from the last convolutional layer. On the other hand, Feature Oc-
clusion [110], Feature Ablation, FeaturePermutation [93, 96] are approaches that rely on
altering the input by masking, adding noise, and computing the attribution with respect
to the output. ConTimeNet [46] alters sub-sequences in input time series and computes
the attribution as the difference in prediction with respect to the original input. As op-
posed to post-hoc approaches, natural language-based models are implicitly explainable
by design. Recurrent networks are explainable through their attention mechanism that
assigns weights to different regions of the time series, signifying their importance towards
the output. RETAIN [17] is an explainable two-level neural network that highlights sig-
nificant clinical variables and important patient visits from the electronic health record
dataset. Qin.et.al [81] encoder-decoder based design helps unravel time series variables
that influence the model predictions. Guo. et. al[31] analyzed the LSTM for identifying
the variables from hidden states that map to the output prediction. However, a limitation
with attention mechanism-based approaches is that they either emphasize the discrete-
time points that are important or the subsets of time series. However, for explaining time
series-based models, the technique must highlight the important time points as well as the
time-interval that are maximally discriminative between classes.

101

6.2 Contribution

Motivated by [77], we implement an approach to explain the outcome of a time series-
based classifier. However, unlike [77], our technique is capable of identifying the temporal
patterns containing the important features as well as the time-interval of importance for
classification to the output class. The key features of our approach are, (1) non-intrusive,
that is, the technique assumes the base classifier is a black-box and non of the model’s
parameters and weights are accessible to the outside world, (2) it is model-agnostic, that
is the model relies on the input vector, the confidence score assigned to the output class,
and the black-box model to assign scores to the individual points in the input time series,
(3) it is class discriminative, that is, the approach assigns scores to the individual points
such that the time-intervals and the features within the time-intervals that are essential
for the output class will have a higher score than the other time points. The method
generates a score vector as an expectation over the random input subsequences where the
individual sub-samples are weighted using the model’s confidence in the target class. The
sub-samples are chosen such that the segments of the retained time points are contiguous
and windowed segments of the inputs. This is done to learn important time-interval and
to avoid introducing spurious artifacts in the sub-samples. The values within the masked
parts of the time intervals are substituted with samples from a gaussian distribution with
the mean and standard deviation equal to the input vector’s mean and standard deviation.

The contributions of this paper are as follows:

Figure 6.2: Figure showing the key aspects of the mask generations steps.

1. In this chapter, we address the limitations with existing techniques and consider
identifying the subset of the features and the time-interval where the presence of the
features maximizes the mapping to the output class.

102

2. We implement an algorithm that assigns a score to individual points in the input
time series that determines the sensitivity of the point to the output class.

3. We evaluate the approach against the publicly available time series datasets and
against state-of-the-art time series-based classifiers. We show that our approach
outperforms the prior approaches in identifying the temporal sub-sequences to dis-
criminate between the classes.

4. We also demonstrate a use-case study, (1) highlighting the important parts of the
input power consumption measurements for sender authentication and (2) highlight-
ing the significant portion of the input ECG recordings for categorization to nor-
mal/abnormal hear-beat class. We also show that the features and time-interval of
importance in the proposed approach align with the domain expertise.

6.3 Notations

A time series T = {t1, ..., tK} is an ordered set of real values of length K, sampled at
regular intervals, where each ti ∈ R. A particular point in time i with a value ti in the
sequence is called as a time point, or a point.

time series based classification function: Given a time series T , a set of output classes
C, a classification function is a mapping between the input time series to a vector of logits
P |C| of length |C|, where the values p ∈ R signifies the confidence of the classifier in the
corresponding output class.

A relevance score is given by R : Rd ⇒ Rd that maps the input time series to a score
vector of the same size as the input.

A mask M = {m1, ...,mK} is an ordered sequence of the same length as the input.

f(T) = R|C| (6.1)

Note that the predicted class is the index of the vector R|C| with the maximum value.
And the time series classifier can be any classifier.

103

6.4 Problem Statement

Given an input time series T , a classifier f , a vector of real values of length |C|, assign a
real-valued score to each time-point where the score signifies the sensitivity of the point
toward the output class.

6.5 Proposed Method

In this section, we describe the proposed method for explaining time series based model
outcome.

Motivated by [77], we use feature occlusion on the input to generate a score vector
for mapping the input to the output class. For an input time series T , the score vector
is generated by querying the model using a set of the masked version of the input (T �
M), followed by averaging the weighted masks as per the equation 6.2. The weights are
the confidence scores observed upon querying the model using the corresponding masked
version of the input.

S = λE[f(T �M)�M] (6.2)

where λ = 1/N for the N sub-samples.

Figure 6.3 provides an overview of the proposed technique. The idea is that an input
vector where a random-subset of features are altered and replaced with zeros or samples
from a Gaussian distribution will assign a high confidence score to the output class if the
model is sensitive to the unaltered set of input features for the output class. However,
unlike [77], we perturb the input such that the sensitivity towards the output is reported
with respect to the important features as well as the time-interval where their presence
is essential. To generate sub-samples for temporal sequence, we use a mask generation
process as described below.

Mask generation: The sub-samples for querying the model is carefully synthesized
such that it exposes not only the point-wise input features but also the time intervals of
importance for classification to the output class. To retain the important features with
respect to their time interval, it is essential that the approach captures the time features
such as patterns of the input sequence that are relevant to the output classes. Therefore,

104

unlike the prior approach, in addition to retaining a random set of input points as on (that
is, retain the actual values of these points in the mask), we also apply a windowing on
those set of points. The steps toward mask generation are as follows:

• Select a random set of points from the initial mask sequence of length L. The
number of such points is constrained in the range of 1 < c ≤ L/2. This is done
to avoid exposing the model to all the points, in which case, the model’s confidence
score will be close to the confidence score obtained on the original input. And hence,
leave scope for the algorithm to learn from the fidelity from every query.

• To enable the algorithm to focus on the trends and slopes that form a part of the
input sequences and that are important for the output class, the methods must pay
attention to the locality of the selected points. Therefore, as the next step, we assign
weights to the time points in the neighborhood of the selected points in the order of
their distance. That is, the points that are close to the selected points are assigned
more weights than the points that are far away. This method of peaking into the
sequence results in a reference vector (shown in Figure 6.2) for each selected point.
The reference vector can be defined as the set of points within a distance of d from
the selected points. Reference vectors corresponding to the selected points provides
evidence in support of the points. The range of a reference vector is decided based
on the choice of windowing and empirical study.

• We apply a Tukey window [11] on top of the reference vectors to ensure a smooth
transition of the evidence from the retained window of time points. Here, the retained
windows are the segments of reference vectors of the selected points, and the masked
windows are shown as sub-samples of all 0’s segments sandwiched in between the
retained windows. A Tukey window is a window obtained by convolving a cosine
lobe with a rectangular window. This window function is a preferred choice because
of the gradual tapering at the edges, which is helpful in the slow elimination of the
evidence at the edges. Based on empirical observations, we allow the length of the
window to vary in the range 1

10
L < w ≤ 1

20
L. This choice of window length ensures

that no more than slightly greater than half of the input points are exposed using the
mask. Furthermore, windows of varying lengths ensure that the method is exposed
to all the possible variations in the neighbourhoods, which ensures that the method
learns robust patterns that are important in discriminating between classes.

• There can arise a scenario that results in spurious sharp edges in the windowed
reference vectors. For instance, a fraction of one window of reference vector overlaps
with the other, resulting in a sharp intersection. Another scenario is when the Tukey

105

window function takes a value of α < 0.5. In that case, the retained reference vectors
may still introduce spurious evidence due to a sharp drop or increase in evidence at
the edges resulting in a spike-like pattern in (T�M). And suppose the original input
also has a similar spike during the same time-frame important towards an output
class. In that case, the model will mislead the presence of this spurious evidence
as evidence of interest for that class. It will result in ambiguity and fluctuations
in the convergence process. Therefore, in addition to windowing, smoothing aids in
diminishing such evidence, which in turn aid in accelerating the convergence process.

Mask substitutes

In this context, a segment of the input sequence is masked if the actual values of the
time-points in the segment are replaced with values from a distribution other than the
input distribution. Based on observation, we found that replacing the actual values of the
selected set of time points with samples from a Gaussian white noise worked across the
different datasets and across different doamin.

Using the mask generated using our mask generation approach and for the input time
series, we generate relevant scores for the classification of input to output class using the
equation 6.2.

Algorithm 4 shows the procedure for calculating relevance score using sub-samples of
the input time series,

Also, please note that the method is evaluated against univariate time-sequence unless
explicitly mentioned. However, the technique can be extended to work with multi-variate
time series as well.

6.6 Evaluation

This section gives an overview of the datasets and the models used to evaluate the ap-
proach. This is followed by qualitative and quantitative evaluation. Finally, we discuss the
performance analysis of the technique.

106

Min. Score

Max. Score

Discriminative Time-Frame
Discriminative Time-Points

Figure 6.3: TiME overview

107

Algorithm 4 TiME algorithm

Input: T , f , λ, MN×K

1: T = (T − µ(T))/σ(T)
2: K = |T | . Length of input time series T
3: S = 0N×K . Initialize N zero score vectors of length K
4: for i = 1 to N − 1 do
5: Z = N (0,1) . Sample N vectors of Gaussian white noise of length K
6: M = (M− µ(M))/σ(M) . Scale the masks
7: M =M∗Z . Add Gaussian noise to the sub-samples
8: P |C| = f(T ∗M) . N Logit vectors of length |C|, output classes
9: Si = (M�PC) ∗ λ
10: Si = Si/N
11: end for
12: R =

∑
N SN×K/|N |

13: R = (R− µ(R))/σ(R)
14: Return R

6.6.1 Data and Model Description

To evaluate the efficacy of the proposed method, we use a range of univariate time se-
ries datasets from the UCI repository[24] and PhysioNet repository [33]. UCI repository
is a publically available repository of time series and image datasets across a wide range
of domains. We use a subset of ten univariate time series datasets, namely Phalange-
sOutlinesCorrect, CinCECGTorso, ItalyPowerDemand, Trace, GunPoint, GunPointAgeS-
pan, Strawberry, ECGFiveDays, TwoLeadECG, Chinatown, DistalPhalanxOutlineCorrect.
These datasets are used for anomaly detection, classification, and forecasting in real-world
settings. For instance, TwoLeadECG andECGFiveDays are used for detecting the dif-
ferent categories of ECG traces. GunPoint and GunPointAgeSpan are used for gesture
recognition. We also evaluate TiME against the MIT-BIH ECG dataset from the Phys-
ioNet repository. The dataset comprises of ECG recording of normal and abnormal heart
heat patterns. The abnormality is introduced in the ECG recording using a calibrated
amount of noise in the MIT-BIH dataset. Manual annotations of the QRS patterns [33]
from the ECG recordings are also available from the cardiologists. We aim to leverage this
knowledge to determine the alignment of the attributions reported by our proposed method
against the domain expertise and validate the proposed method. This form of evaluation
also helps build the users’ confidence who wish to apply the technique in a safety-critical
system for decision making.

108

We evaluate our method against the state-of-the-art models ResNet1D, Inception1D,
CNN, LSTM [53]. Based on a comparative analysis of the time series-based classification
algorithm on UCR time series datasets by [24], ResNet1D outperforms all the other tech-
niques and is only second to the FCN network. Another study by the same author shows
that InceptionTime that uses AlexNet architecture for time series classification achieves
comparable accuracy on UCR time series datasets. Evaluating the technique against all
the high-performance models helps avoid the common pitfalls that arise due to poor model
selection, such as model complexity, model generalizability, and model bias.

6.6.2 Evaluation Metrics

We evaluate our approach against a set of evaluation metrics, where different metrics
evaluate different aspects of the approach. For instance, insertion/deletion metrics evaluate
the effectiveness of the individual time points. And swap relevant time points, and mean
time points determine the quality of the highlighted patterns.

Insertion (Ins) and deletion Metrics (Del)

Motivated by [77], we use the metrics of insertion and deletion to evaluate our relevant
mask approach. In the deletion metric, the deletion of salient time points from the input
causes the model to drop the probability of the target class. And in the insertion metric,
the insertion of time points from the relevant region of the input causes the model to
increase the probability of the target class. We capture the sensitivity of the model to
the removal and insertion of pixels from the relevant region of the input using an average
AUC (Area Under the Curve) score. Thus, as the relevant input pixels are deleted from
the masked input, the AUC curve for the model will shrink to a thin area, thus dropping
the average AUC score, indicating the right explanation for the model decision. Similarly,
during the insertion, as the pixels from the relevant region of the input are added to the
masked input, the AUC curve expands to cover the large area under the probability curve,
thus increasing the average AUC score.

Complexity (Cx)

Another criterion for measuring the goodness of an attribution method is its complexity.
The technique should report the minimum number of relevant time points sufficient to

109

achieve an output confidence score within a tolerable range from the actual input’s con-
fidence score. We use the approach discussed in [79] to measure the complexity of the
method. We report the L1 norm of the relevant time-points located obtained from the
relevance score using a threshold e. That is, every time-point whose relevance score is
greater than e is considered a relevant time-point and added to the set of relevant time-
points, rel⇒ (R(Iti) > e), followed by obtaining the L1 norm of the set. Qualitatively, we
can measure the complexity as the highlighted (red time-points)—the small the number of
relevant time-points, the lower the complexity.

Swap relevant time-points (STP)

Deletion and insertion metrics rely on independent queries to the model to measure the
quality of relevance. Consequently, they fail to capture the interdependence of the relevant
time points. They also fail to capture the impact of the fidelity in the relevant trends
and patterns on the confidence score of the target class. To capture the behavior of the
attribution method on the relevant time frame, we apply the metrics approach from [89].
The idea is that any perturbation within the sequence of relevant time points will result
in a sharp drop in the target class confidence score, indicating the right time frame of
relevance. That is, if for an input time series I = {t1, t2, · · ·, tL)} the relevance score
is given by R = {r1, r2, · · ·, rL}. The sub-sequence of the relevant time-points, that is,
the time-points in the input whose relevance score is greater than a threshold e, can be
obtained in the order of their occurrence in the sequence as tsub = {ti, ti+1, · · ·, ti+ls} with
length ls. The sub-sequence gets flipped to tsub = {ti+ls , · · ·, ti+1, ti}, and inserted back
into the original input sequence. This is followed by querying the model with the modified
input time series to measure the change in the confidence score for the target class—the
lower the measured confidence score, the accurate the relevant time-points.

Mean relevant time-points (MTP)

Similar to STP, another way of determining whether the attribution captures the relevant
time series features is by replacing the whole sequence of relevant time-points with the
mean of the relevant time-points [89]. That is, if the input time series is I = {t1, t2, · · ·, tL}
and the relevance score is R = {r1, r2, · · ·, rL}. Find the sub-sequence of relevant time-
points using a threshold e and identify all the time-points in the input ri > e. This is
followed by replacing the values in the sub-sequence with the mean of the sub-sequence,
tsub = {µtsub , µtsub , · · ·, µtsub}, and inserting the subsequence back into the original sequence.
Use the modified input sequence to measure the change in the confidence score for the target

110

class. A good measure of relevant time-frame is indicated by a lower confidence score on
the modified time series.

Combined score

In addition to evaluating the individual metrics, we also evaluate the approach using an
ensemble of metrices [79], that considers evaluating the method by addressing the desirable
properties in explanation such as the coherency, complexity, and average drop in the output
confidence score in the presence of perturbations and additional noise. The mathematical
expression of the combined metric of evaluation is given by:

C = 5(Ins+Del + STP +MTP + Cx)−1

6.6.3 Qualitative Evaluation

Like the saliency map for images, the saliency map for time series univariate sequences
can also be created using the generated relevance score. We can achieve this by creating a
heat-map of the relevance score overlapping the input time series. This form of visualizing
the relevance score enriches the line plot of the input by assigning more weight to the
time-point corresponding to a higher relevance score and vice versa. We can use this
plot in addition to domain knowledge from experts to uncover useful insights such as the
significance of the highlighted interval and pattern with respect to the output category.

Figure 6.4 shows the heat-map of the relevance score for the two classes of the Straw-
berry dataset from the UCI repository. The features and the time intervals of relevance for
the two classes are shown as red regions of the contiguous segment of time points. For class
0, one of the two segments, from time-interval 190 to 235, is assigned a relevance score in
the range lower than the first segment and has fluctuations across the segment. This is
also reflected from a high SSE score of variance of the regression line fitted to the window
of relevance scores and hence, is likely a less relevant interval. We confirmed this analogy
from an experiment where we observed an insignificant drop in the confidence score of
the model, which was queried using the same set of examples from class 0 but with the
original values of time-points in the second most relevant window replaced with samples
from a Gaussian distribution. Therefore, this region with a low relevance score can be
safely ignored from the set of relevant segments for class 0. Furthermore, we also visualize
a linear regression fitted to the relevant segments of the input time series alongside the set
of examples using the learned coefficients. This is done to determine a template of relevant
patterns, which can generalize across the class of time series. From the visualization, we

111

observe that the fitted coefficients of regression achieve a low SSE score with minimum
variance across the set of examples from the class. This set of templates forms the rele-
vant patterns for the class of time series. However, in the lack of domain knowledge, the
identified patterns of relevance may be insignificant, making this evaluation method less
meaningful to an end-user. Therefore, we also evaluate the attributions using quantitative
metrics.

Relevance Score
Regression Fit

Relevance Score
Regression Fit

Relevance Score
Regression Fit

Relevance Score
Regression Fit

Relevance Score
Regression Fit

Relevance Score
Regression Fit

Figure 6.4: Middle, relevance map for an instance of class 0 and class 1 from Strawberry
dataset. Left and Right, a global perspective of the reported relevance map of the input
examples.

6.6.4 Quantitative Evaluation

We also evaluate the attributions of the time series-based explainability techniques [90,
83, 10, 14] using a range of quantitative metrics, each capturing an aspect essential for
evaluating the attribution and a combined metric (C). The metrics of insertion score and
deletion score determine the correctness of the attribution with respect to the learned
hypothesis. Complexity score determines the number of time points relevant for the class of
interest. Swap, mean, and inverse time-points metrics are related to assessing the quality of
the pattern in the captured time-frames towards the output class. And combined (Cs) score
determines the overall significance of the attribution by combining the separate evaluation
metrics into one weighted score. We report the metric scores across all the techniques for
the base models: ResNet1D, InceptionTime, CNN1D, and LSTM, and datasets from the

112

UCI repository and MIT-BIH. We report the metric score for each technique and model by
averaging over a randomly selected set of ten time series datasets from the UCI repository
and the ECG binary classification dataset from the MIT-BIH dataset. Table 6.3 shows that
our technique achieves the highest combined (Cs) score for the base models ResNet1D and
LSTM against all the other approaches. Perhaps, the inability of the related techniques
to capture the significance of attribution with respect to both the time-points of relevance
and the time-frame of relevance is the cause for the low score of attributions.

Furthermore, to evaluate the effectiveness of our approach against the individual met-
rics, we report the insertion score, deletion score, complexity, inverse time-points, mean
time-points, and swap time-points scores for a randomly selected set of ten time series UCI
repository and MIT-BIH ECG dataset. Table 6.4 shows the mean and standard devia-
tion of the metric scores averaged over the test set of the datasets. We observe that as
desired, the attribution for Strawberry and ItalyPowerDemand datasets achieves a high
insertion and deletion score, indicating correct time points of relevance. Furthermore, the
strawberry dataset also achieves a near-zero complexity. We can verify this result from
the heat-map 6.4, which shows a tiny time window of the input time series highlighted as
relevant for the output classes with a clean separation from the non-relevant time-frame.
Furthermore, a value of zero for the MPT, STP, and ITP measures of evaluation supports
our claim that the reported time-frame of relevance is also essential for the time-points to
classify them together as the class of interest (0 or 1).

Table 6.1: The table contains the baseline accuracy averaged over 10 runs of each imple-
mented model on the UCR/UEA archive, with the standard deviation.

Dataset Name Repository Accuracy [27] Model

CinCECGTorso UCI [24] 82.6± 2.4 ResNet1D [27]
DistalPhalanxOutlineCorrect UCI [24] 77.1± 1.0 ResNet1D [27]
ECGFiveDays UCI [24] 97.5± 1.9 CNN [27]
GunPoint UCI [24] 99.1± 0.7 ResNet1D [27]
GunPointAgeSpan UCI [24] 98.0± 1.0 ResNet1D [27]
ItalyPowerDemand UCI [24] 96.3± 0.4 ResNet1D [27]
PhalangesOutlinesCorrect UCI [24] 83.9± 1.2 ResNet1D [27]
Strawberry UCI [24] 98.1± 0.4 ResNet1D [27]
Trace UCI [24] 100± 0.0 CNN [27]
TwoLeadECG UCI [24] 100± 0.0 CNN [27]
MIT-BIH PhysioNet [33] 94.5± 2.3 ResNet1D [27]

113

Table 6.2: TiME evaluation with base model ResNet and UCI repository time series
datasets

Ins score Del Score Cx MTP STP ITP C

0.73/0.23 0.73/0.23 0.027/0.01 0.46/0.43 0.05/0.43 0.27/0.40 0.09/0.07
0.72/0.37 0.72/0.37 0.17/0.01 0.34/0.45 0.03/0.45 0.24/0.41 0.11/0.21
0.81/0.17 0.81/0.16 0.13/0.09 0.37/0.41 0.04/0.41 0.18/0.34 0.32/0.26
0.71/0.29 0.70/0.29 0.11/0.02 0.86/0.22 0.07/0.27 0.50/0.5 0.36/0.09
0.90/0.06 0.90/0.06 0.32/0.11 0.76/0.26 0.07/0.25 0.27/0.31 0.71/0.15
0.27/0.49 0.27/0.35 0.15/0.35 0.23/0.03 0.02/0.41 0.20/0.40 0.12/0.20
0.91/0.04 0.91/0.04 0.02/0.02 0.00/0.00 0.08/0.00 0.00/0.00 0.00/0.00
0.81/0.23 0.81/0.23 0.09/0.01 0.68/0.45 0.06/0.44 0.02/0.14 0.22/0.15
0.61/0.35 0.61/0.35 0.21/0.14 0.17/0.23 0.04/0.43 0.48/0.50 0.42/0.29
0.61/0.35 0.61/0.35 0.21/0.14 0.17/0.23 0.04/0.43 0.48/0.50 0.42/0.29

Table 6.3: TiME evaluation using combined (C) metric score and a quantitative comparison
against related approaches.

Dataset Ours DeepSHAP [14] Grad CAM [90] LRP [10] LIME [83]

CNN [53] 0.73/0.23 0.73/0.23 0.76/0.26 0.46/0.43 0.27/0.40
Inception [100] 0.81/0.17 0.72/0.37 0.17/0.01 0.34/0.45 0.24/0.41
ResNet [39] 0.90/0.06 0.81/0.16 0.68/0.45 0.37/0.41 0.18/0.34
LSTM [53] 0.91/0.04 0.70/0.29 0.61/0.32 0.86/0.22 0.50/0.5

6.6.5 Class Discrimination Evaluation

We evaluate the class discrimination ability of our approach qualitatively and using quanti-
tative metrics. Visually, a key to reliable discrimination is highlighting the minimum num-
ber of input features within time-interval maximally representative of the output classes.
Furthermore, we described in the introduction that due to the high signal-to-noise ratio in
the real-world time series datasets, the features of different classes could all be observed
in the input time series. To show the discriminating nature of TiME generated relevant
scores, we experiment and elaborate upon the interpretations for the datasets from UCI
and the ECG dataset from PhysioNet.

114

Trace dataset

The trace dataset is a subset of the dataset from the Transient Classification Bench-
mark. It is an artificial dataset designed to capture four classes of instrumentation failures
in nuclear power plants. Primarily, it is used in [82] for classification tasks. For each input
instance, regardless of their true class, we ask TiME to generate a relevance score for all
the output classes {c1, c2, c3, c4}. This is repeated for a set of the first 50 instances from
each class of the test set. Finally, we visualize the heat-map of the relevance score gener-
ated against all the output classes for each input instance. Depending on the presence of
class-specific evidence, some of the time intervals in the input time series, whose relevant
patterns align with those for that class, are assigned a higher score than others. This dis-
tinction is observed in the heat-map, where time-points are assigned colours in the order of
decreasing scores. Therefore, certain segments of the line plot of the input time series are
highlighted in red, signifying their importance for the output class, and the remaining seg-
ments are suppressed (time-points in the shades of blue), denoting non-essential intervals
for the output class.

Figure 6.5 shows a matrix of heat-map visualization of the relevance scores generated
across all the inputs and all the classes. That is, across a row, the output classes vary,
and the inputs remain the same, whereas across a column, the inputs vary, and the output
class remains the same. In particular, a row highlights the different segments of the input
time intervals that are important for the different output classes. For instance, for a set
of input time series {I1, I2, · · ·, I10} labelled class 0, the figures in the first row shows the
relevant time-intervals for the output classes {c0, c1, c2, c3}. The pattern in the time interval
(70,90) is highlighted as relevant for class 0 and is distinct from the relevant pattern for
class 1, which lies in the time interval (100,130), and so forth. As class 0 is also the true
class of {I1, I2, ..., I10}; therefore, the features highlighted in time-interval (70,90) forms
the template for class 0.

On the other hand, a column highlights the relevant pattern for the particular class of
interest across a set of input time series. The time interval contains patterns that closely
resemble the features of the template for the class. For instance, the first column highlights
time-interval containing patterns that match the pattern of class 0. This is also evident
from the similarity in the patterns of the highlighted time intervals across the inputs,
which is observed to have a steep drop in magnitude. Similarly, the relevant time-interval
for class 1 highlighted shows a consistency in the pattern across the inputs where the
feature magnitude is in the range (0,-2) and is observed to have a logarithmic growth.

This observation aligns with a robust models objective, which aims to maximize the
distance between the features of different classes and minimize the distance between the

115

Figure 6.5: Relevance map for instances of Trace dataset across all the output classes.

Table 6.4: Trace UCI evaluation

Ic=0, Rc=0 Ic=0, Rc=1 Ic=0, Rc=2 Ic=0, Rc=3

Insertion: 0.99 Insertion: 0.99 Insertion: 0.99 Insertion: 0.99
Deletion: 0.99 Insertion: 0.99 Insertion: 0.99 Insertion: 0.99
Complexity: 0.10 Complexity: 0.10 Complexity: 0.10 Complexity: 0.10
MTP: 4.8e-06 MTP: 4.8e-06 MTP: 4.8e-06 MTP: 4.8e-06
STP: 0.99 STP: 0.99 STP: 0.99 STP: 0.99
ITP: 0.94 ITP: 0.94 ITP: 0.94 ITP: 0.94
C Score:0.53 C Score:0.53 C Score:0.53 C Score:0.53

116

same class features. The discriminatory behavior of TiME also helps interpret the cause of
ambiguity in the model’s output. For instance, a majority of the time series inputs from
class 3 are miss-classified as class 2. This is the case because, as shown in cell 32 (third
row and second column), the highlighted relevant time-interval (110, 210) for class 2 is
assigned a higher score as compared to the relevant time-interval (0,90) for class 3 (shown
in cell 33), which is the true class of the input. Consequently, the instances of class 3 are
classified as class 2. Such ambiguity in the output can be explained using TiME, which
can discriminate between the relevant time intervals for different classes.

6.6.6 Use-case: ECG Recording Classification using MIT-BIH
ECG Dataset

MIT-BIH dataset is a dataset from the PhysioNet repository for arrhythmia detection. The
dataset comprises ECG recordings of 47 subjects. Each of the recordings is categorized into
normal and abnormal heart-beat. The ECG recordings for the class of abnormal heart-beat
is obtained by adding a calibrated amount of noise to a subset of ECG recordings from
subjects with normal heat. The annotations for the dataset are obtained by marking the
QRS region of the recording (shown in the highlighted red region of cell 00). We leverage
the annotations to evaluate TiME generated importance map. Figure 6.6 shows a matrix
of the heat-maps of relevance score obtained on the input ECG recordings, and the ground-
truth annotations for the recordings belonging to the two classes are shown in the boxed
regions. It is observed that the relevant samples identified by TiME align with the expert
ground-truth annotations. The highlighted time-interval around the QRS complex region
overlaps with the boxed annotations for the class of normal heart-beat, and the highlighted
time-interval for the class of abnormal heart-beat overlaps with the boxed annotation for
the class of abnormal heart. Furthermore, the relevant features for the two classes are
distinct. This distinction is essential for discrimination between the classes. For instance,
the relevant features of recording belonging to the normal heartbeat class are concentrated
around the QRS complex. In contrast, the relevant parts for abnormal heart-beat comprise
the noisy features in the QRS region and the spikes at the beginning of the time series.
Hence, these regions form the template for distinguishing the recordings belonging to the
two classes and comparing the model’s output in noisy and ambiguous situations.

117

Figure 6.6: Relevance map for instances of MIT-BIH ECG dataset across all the output
classes.

0 200 400
Time

5.0
2.5
0.0
2.5
5.0
7.5

Va
lu

e

Class
Class:0
Class:1

Figure 6.7: Feature of Trace dataset across all the output classes.

118

6.6.7 Use-case: Sender Authentication in CAN protocol

We used side-channel information – power consumption measurements of the ECUs to
classify the transmissions observed on the CAN bus to the state of transmission and non-
transmission. We also evaluate the outcome of the classifier using TiME to determine what
part of the input power consumption measurements are essential for the classification of
the input to the class of transmission and non-transmission. This information can be
used when misclassification is observed to compare the deviations from baseline (correct
classification) for further investigation.

Correct sender authentication Figure 6.8 and 6.9 show the heat-map of the rel-
evance scores obtained for the input belonging to the class of transmission and non-
transmission. The figure also shows the ground truth as the boxed regions of the inputs
obtained from the judgment of human experts. We can observe that the power consump-
tion measurement pattern for the two classes strongly resembles each other. However, the
key features of distinction for the two classes have a slight nudge in the intervals that is
not present in the same interval for either of the classes. These features are important
for distinguishing between the two states, hence forming the feature template for the two
classes.

Figure 6.8: Correct classification of the input power consumption measurement to the
state of transmission. Green box shows the input region with features for the state of
transmission.

Incorrect sender authentication

Figure 6.10 shows the relevant region for an input belonging to the class of transmission
and misclassified to the class of non-transmission. The reported region of relevance is not
aligned with the template for the correct state. The relevant region shown in the red box
partially overlaps with the template for its correct state. This is the case because the key
feature of distinction, the nudge-like feature, is missing from the input, causing the model
to behave randomly. This means that the model will fail to correctly determine the state

119

Figure 6.9: Correct classification of the input power consumption measurement to the
state of non-transmission. Green box shows the input region with features for the state of
non-transmission.

of the input transmission when the input pattern has any discrepancies from the training
set. As a precautionary measure, such input instances should be filtered out for deeper
evaluation of the system function and correction steps.

Figure 6.10: Incorrect classification of the input power consumption measurement to the
state of transmission. Red box shows the input region with features for the state of
transmission and non-transmission, and the source of confusion for the misclassification.

6.6.8 Performance

We measure the performance of TiME by reporting the latency across a set of pre-defined
input feature-length and a set of different numbers of queries for generating relevant scores.
The two factors that can induce delay are the number of iterations for which the model is
queried to generate a relevance score and the length of the input time series. Figure 6.11
shows the latency of the model. The figure on the left shows the latency, that is, the time
taken to generate a relevance score when the number of queries to the model is varied from
10 to 5000. With fewer queries to the model, the delay at the output is insignificant, but
the relevance score is inaccurate. On the other hand, with 5000 queries to the model, a

120

large delay is observed at generating the relevance score; however, the estimate of relevance
score is reliable with high insertion, deletion, and ITP scores. Therefore, we chose to query
the model with 2500 iterations, keeping the delay short while achieving a good relevance
score. Similarly, the plot of the latency of the technique against input length shows that
the delay in generating relevance score increases as the length of the input time series
increase.

15
0

14
5

13
625 15

0023
5

27
5

10
00

50
00

40
00

30
00

20
00

8
6

4
2

0

10

Feature Length

2
4

6

8

10

La
te

nc
y

(m
s)

Queries

Figure 6.11: The figure shows the latency of the technique against the number of queries
to the black-box model, and against the length of input time series.

6.6.9 Relevance Score on UCI Dataset

Similar to the Trace dataset and MIT-BIH ECG dataset, we also visualize the heat-
map of the relevance score for the test set of CinCECGTorso, DistalPhalanxOutlineCor-
rect, ECGFiveDays, GunPOint, ItalyPowerDemand, PhalangesOutlinesCorrect, Straw-
berry, TwoLeadECG datasets from the UCI repository. Figure 6.12 shows a matrix of
four columns and four rows for the four classes. Each column highlights the time-interval-
specific features significant for the particular class. For instance, the third column shows
the time-interval of interest for class 2 across the inputs, which has a common bump in
the second half. However, an overlap is observed in the time interval of interest for the
different classes on the same input. That is, the first row shows that the features in time-
interval [600-700] is important across all the classes with a variation such that the strength
of the features captured in this interval across the classes are different. Similarly, Fig-
ure 6.13, 6.14, 6.15, 6.16, 6.16, 6.17, 6.18, 6.19 shows the heat-map of the relevance score
generated for the inputs across the output classes. And a quick glimpse of the heat-map
is able to tell apart the features in the distinct time-intervals that are significant for the
output class on the given input time series.

121

Figure 6.12: Relevance map for CineCECGTorso dataset across all the output classes.

122

Figure 6.13: Relevance map for instances of DistalPhalanxOutlineCorrect dataset across
all the output classes.

123

Figure 6.14: Relevance map for instances of ECGFiveDays dataset across all the output
classes.

124

Figure 6.15: Relevance map for instances of GunPoint dataset across all the output classes.

125

Figure 6.16: Relevance map for instances of ItalyPowerDemand dataset across all the
output classes.

126

Figure 6.17: Relevance map for instances of PhalangesOutlinesCorrect dataset across all
the output classes.

127

Figure 6.18: Relevance map for instances of Strawberry dataset across all the output
classes.

128

Figure 6.19: Relevance map for instances of TwoLeadECG dataset across all the output
classes.

129

Chapter 7

Conclusion

In this thesis, we propose a novel approach for securing the automotive systems and in-
terpreting the decision-making of the machine learning based classifier used in automotive
systems and other safety-critical systems.

In the first chapter, we show the capability of the power consumption measurement-
based method to distinguish the transmission from the idle state of the ECUs resulting
in accurate sender identification. We show that the approach can be used to detect the
presence of compromised and additional devices on the network. Preliminary results of
the approach against a lab setup and a practical setting show that the technique is highly
effective with a false positive rate of 0.004%. We also show that the approach applies
to different network settings without compromising the accuracy and without completely
retraining the model.

In the second and third chapters, we propose explanation techniques using perturbation-
based method for explaining models decisions on different types of inputs such as images
and time series. In addition, we propose an approach to generalize the explanation by find
a range of acceptable variations for the sensitive parts of the input by generating various
transformations of the original input. The transformations are such that the model classifies
the input to the same target output class. The visualized interpretation of the relevance
masks for a set of example inputs shows that the technique can detect the most sensitive
features of the object under classification.

In the third chapter, we proposed a time series-based model outcome explanation ap-
proach. We show that the approach can locate the features and the time interval of
importance for classifying the output class. And we observe that the explanations align

130

with expert ground truth knowledge, pointing towards users’ confidence and reliability in
using the technique for decision making.

We can apply the techniques proposed in this thesis to other avenues where the security
and interpretability of the decision-making system are crucial. The method will be secure
against impersonation attacks as the technique relies on non-clonable power consumptions
to fingerprint the ECUs. The sender authentication followed by a model outcome explain-
ability technique alleviates the gap between the decision-making process and the rationale
behind the model’s decisions.

As the future work, a direct extension of the time series-based explanation approach is
to explain the multi-variate time series (MTS) that are widely applied across domains for
decision-making. The method for explaining the time series-based inputs and images can
be extended to answer questions such as why the model is biased and the robust features
for discriminating between the classes?

131

References

[1] Kvaser Tool. https://www.kvaser.com/.

[2] This Car Runs on Code. https://spectrum.ieee.org/transportation/systems/
this-car-runs-on-code.

[3] Titanic dataset. http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/
titanic.html.

[4] Vehicle Reverse Engineering Wiki, 2019. http://vehicle-reverse-engineering.

wikia.com.

[5] Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Zhiwei Steven
Wu, and Himabindu Lakkaraju. Towards the Unification and Robustness of Pertur-
bation and Gradient Based Explanations. arXiv:2102.10618 [cs], June 2021. arXiv:
2102.10618.

[6] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answering. 2015.

[7] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing Ro-
bust Adversarial Examples. 2018.

[8] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised Feature
Learning and Deep Learning: A Review and New Perspectives. CoRR, 2012.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
Hyper-Parameter Optimization. In Advances in Neural Information Processing Sys-
tems 24: 25th Annual Conference on Neural Information Processing Systems 2011.
2011.

132

https://www.kvaser.com/
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html
http://vehicle-reverse-engineering.wikia.com
http://vehicle-reverse-engineering.wikia.com

[10] Alexander Binder, Grégoire Montavon, Sebastian Bach, Klaus-Robert Müller, and
Wojciech Samek. Layer-wise Relevance Propagation for Neural Networks with Local
Renormalization Layers. 2016.

[11] Peter Bloomfield. Fourier Analysis of Time Series: An Introduction. New York:
Wiley-Interscience, 2000.

[12] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Bala-
subramanian. Grad-CAM++: Generalized Gradient-based Visual Explanations for
Deep Convolutional Networks. 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), Mar 2018.

[13] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Ta-
dayoshi Kohno. Comprehensive Experimental Analyses of Automotive Attack Sur-
faces. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages
6–6, Berkeley, CA, USA, 2011. USENIX Association.

[14] Hugh Chen, Scott Lundberg, and Su-In Lee. Explaining Models by Propagating
Shapley Values of Local Components, 2019.

[15] Kyong-Tak Cho and Kang G. Shin. Fingerprinting Electronic Control Units for
Vehicle Intrusion Detection. In 25th USENIX Security Symposium (USENIX Security
16), pages 911–927, Austin, TX, 2016. USENIX Association.

[16] Kyong-Tak Cho and Kang G. Shin. Viden: Attacker Identification on In-Vehicle
Networks. CoRR, 2017.

[17] Edward Choi, Mohammad Taha Bahadori, Joshua A. Kulas, Andy Schuetz, Wal-
ter F. Stewart, and Jimeng Sun. RETAIN: An Interpretable Predictive Model for
Healthcare using Reverse Time Attention Mechanism, 2017.

[18] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and
Dong Hoon Lee. Identifying ECUs using Inimitable Characteristics of Signals in
Controller Area Networks. CoRR, 2016.

[19] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber,
Wenyuan Xu, and Kevin Fu. WattsUpDoc: Power Side Channels to Nonintrusively
Discover Untargeted Malware on Embedded Medical Devices. In Presented as part
of the 2013 USENIX Workshop on Health Information Technologies, 2013.

133

[20] Piotr Dabkowski and Yarin Gal. Real Time Image Saliency for Black Box Classifiers.
In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017. 2017.

[21] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised. Real Time
Syst., 2007.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding, 2019.

[23] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning, 2017.

[24] Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.

[25] Eisenbarth, Thomas, Paar, Christof, Weghenkel, and Bj orn. Building a Side Channel
Based Disassembler. Springer Berlin Heidelberg, 2010.

[26] Shaker El-Sappagh, José M. Alonso, Farman Ali, Amjad Ali, Jun-Hyeog Jang, and
Kyung-Sup Kwak. An Ontology-Based Interpretable Fuzzy Decision Support System
for Diabetes Diagnosis. IEEE Access, 6:37371–37394, 2018.

[27] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep Learning for Time-Series Classification: A Review. Data
Mining and Knowledge Discovery, 33(4):917–963, July 2019.

[28] François-Guillaume Fernandez. TorchCAM: Class Activation Explorer, March 2020.

[29] Ruth Fong and Andrea Vedaldi. Interpretable Explanations of Black Boxes by Mean-
ingful Perturbation. 2017.

[30] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li.
Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of CNNs,
2020.

[31] Wendong Ge, Jin-Won Huh, Yu Rang Park, Jae Ho Lee, Young-Hak Kim, and
Alexander Turchin. An Interpretable ICU Mortality Prediction Model Based on
Logistic Regression and Recurrent Neural Networks with LSTM units. 2018.

[32] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation. 2013.

134

[33] Ary Goldberger, Luis A Nunes Amaral, J.M. Hausdorff, P. Ch. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank, Phys-
ioToolkit, and PhysioNet: Components of a New Research Resource for Complex
Physiologic Signals. Circulation, 2000 (June 13).

[34] Ian Goodfellow, Honglak Lee, Quoc V. Le, Andrew Saxe, and Andrew Y. Ng. Mea-
suring Invariances in Deep Networks. 2009.

[35] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014. 2014.

[36] Bogdan Groza and Pal-Stefan Murvay. Efficient Protocols for Secure Broadcast in
Controller Area Networks. Industrial Informatics, IEEE Transactions on, 9:2034–
2042, 11 2013.

[37] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop, 2001.

[38] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statis-
tical Learning, 2001.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. 2015.

[40] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
and Trevor Darrell. Generating Visual Explanations. 2016.

[41] Anthony Van Herrewege, Singelée, Dave Singelee, and Ingrid Verbauwhede. CA-
NAuth – A Simple, Backward Compatible Broadcast Authentication Protocol for
CAN bus. page 7, 01 2011.

[42] Rob Hyndman, Anne Koehler, Keith Ord, and Ralph Snyder. Forecasting with
Exponential Smoothing, 2008.

[43] International Organization for Standardization. International Standard ISO-26262 –
Road Vehicles Functional Safety, 2018.

135

[44] Hanley JA and McNeil BJ. The Meaning and Use of the Area Under a Receiver
Operating Characteristic (ROC) Curve. 1982.

[45] Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao
Wei. LayerCAM: Exploring Hierarchical Class Activation Maps for Localization.
IEEE Transactions on Image Processing, 30:5875–5888, 2021.

[46] Kathan Kashiparekh, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, and Gautam
Shroff. ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time-
Series Classification, 2019.

[47] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, and Rory Sayres. Interpretability Beyond Feature Attribution: Quantitative
Testing with Concept Activation Vectors (TCAV). 2018.

[48] Marcel Kneib and Christopher Huth. Scission: Signal Characteristic-Based Sender
Identification and Intrusion Detection in Automotive Networks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, pages 787–800, New York, NY, USA, 2018. ACM.

[49] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’99, pages 388–397, Berlin, Heidelberg, 1999. Springer-Verlag.

[50] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak N. Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. Experimental Security Analysis of a Modern Automo-
bile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pages 447–462, Washington, DC, USA, 2010. IEEE Computer Society.

[51] Karl Koscher, Tadayoshi Kohno, and David Molnar. SURROGATES: Enabling Near-
Real-Time Dynamic Analyses of Embedded Systems. In 9th USENIX Workshop on
Offensive Technologies, WOOT ’15, 2015.

[52] Raghavan Krishnan and Sarangapani Jagannathan. Hierarchical Mahalanobis Dis-
tance Clustering Based Technique for Prognostics in Applications Generating Big
Data. In 2015 IEEE Symposium Series on Computational Intelligence, pages 516–
521, Cape Town, South Africa, December 2015. IEEE.

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 2015.

136

[54] Yen-Hsien Lee, Chih-Ping Wei, Tsang-Hsiang Cheng, and Ching-Ting Yang. Nearest-
Neighbor-Based Approach to Time-Series Classification. Decision Support Systems,
53(1):207–217, 2012.

[55] Chung-Wei Lin and Alberto L. Sangiovanni-Vincentelli. Cyber-Security for the Con-
troller Area Network (CAN) Communication Protocol. In Proceedings of the 2012 In-
ternational Conference on Cyber Security, CYBERSECURITY ’12, pages 1–7, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

[56] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A Symbolic Represen-
tation of Time-Series, with Implications for Streaming Algorithms. In Proceedings of
the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, DMKD ’03, pages 2–11, New York, NY, USA, 2003. Association for
Computing Machinery.

[57] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision - ECCV 2014 - 13th European Conference, 2014.

[58] Liu et al. On Code Execution Tracking via Power Side-Channel. In ACM Conference
on Computer and Communications Security. ACM, 2016.

[59] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks
for Semantic Segmentation. 2014.

[60] Scott M. Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Pre-
dictions. page 10.

[61] Igor Melnykov and Volodymyr Melnykov. On K-means Algorithm with the use of
Mahalanobis Distances. Statistics & Probability Letters, 84:88–95, January 2014.

[62] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger
Vehicle, 2015.

[63] Charlie Miller and Chris Valasek. Advanced CAN Injection Techniques for Vehicle
Networks, 2016.

[64] Glenn W. Milligan. Construction and Assessment of Classification Rules. 1997.

[65] Christoph Molnar. Interpretable Machine Learning, 2019.

[66] D.C. Montgomery. Design and Analysis of Experiments, 2008.

137

[67] Carlos Moreno and Sebastian Fischmeister. On the Security of Safety-Critical Em-
bedded Systems: Who Watches the Watchers? Who Reprograms the Watchers? In
Proceedings of the 3rd International Conference on Information Systems Security and
Privacy (ICISSP), 2017.

[68] Carlos Moreno and Sebastian Fischmeister. Sender Authentication for Automotive
In-Vehicle Networks through Dual Analog Measurements to Determine the Location
of the Transmitter. In Proceedings of the 5th International Conference on Information
Systems Security and Privacy (ICISSP), 2019.

[69] Carlos Moreno, Sebastian Fischmeister, and M. Anwar Hasan. Non-intrusive Pro-
gram Tracing and Debugging of Deployed Embedded Systems Through Side-Channel
Analysis. 2013.

[70] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. The B-side of Side
Channel Leakage: Control Flow Security in Embedded Systems. In Security and Pri-
vacy in Communication Networks - 9th International ICST Conference, SecureComm
2013, 2013.

[71] Pal-Stefan Murvay and Bogdan Groza. Source Identification Using Signal Charac-
teristics in Controller Area Networks. Signal Processing Letters, IEEE, 21:395–399,
04 2014.

[72] Rakshit Naidu, Ankita Ghosh, Yash Maurya, Shamanth R Nayak K, and
Soumya Snigdha Kundu. IS-CAM: Integrated Score-CAM for Axiomatic-based Ex-
planations, 2020.

[73] Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.
Synthesizing the Preferred Inputs for Neurons in Neural Networks via Deep Generator
Networks. 2016.

[74] Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam.
Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique for
Deep Convolutional Neural Network Models, 2019.

[75] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Bernt Schiele Anna Rohrbach,
Trevor Darrell, and Marcus Rohrbach. Multimodal Explanations: Justifying Deci-
sions and Pointing to the Evidence. 2018.

[76] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A.
Efros. Context Encoders: Feature Learning by Inpainting. 2016.

138

[77] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling
for Explanation of Black-box Models. In British Machine Vision Conference 2018,
BMVC 2018, 2018.

[78] Dabkowski Piotr and Gal Yarin. Real Time Image Saliency for Black Box Classifiers.
2017.

[79] Samuele Poppi, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Revisiting
the Evaluation of Class Activation Mapping for Explainability: A Novel Metric and
Experimental Analysis. page 6.

[80] Foster J. Provost, Tom Fawcett, and Ron Kohavi. The Case Against Accuracy
Estimation for Comparing Induction Algorithms. ICML ’98, 1998.

[81] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cot-
trell. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Pre-
diction, 2017.

[82] Chotirat Ratanamahatana and Eamonn Keogh. Making Time-Series Classification
More Accurate Using Learned Constraints. 04 2004.

[83] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust
You?”: Explaining the Predictions of Any Classifier. 2016.

[84] Robert Bosch GmbH. CAN Specification, Version 2.0, 1991.

[85] Thomas Rojat, Raphaël Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and
Natalia Dı́az-Rodŕıguez. Explainable Artificial Intelligence (XAI) on Time-Series
Data: A Survey. arXiv:2104.00950 [cs], April 2021. arXiv: 2104.00950.

[86] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. 2015.

[87] Sang Uk Sagong, Xuhang Ying, Andrew Clark, Linda Bushnell, and Radha Pooven-
dran. Cloaking the Clock: Emulating Clock Skew in Controller Area Networks.
In Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems, pages 32–42, 2018.

[88] Sang Uk Sagong, Xuhang Ying, Radha Poovendran, and Linda Bushnell. Exploring
Attack Surfaces of Voltage-Based Intrusion Detection Systems in Controller Area
Networks. In Proceedings of the 16th ESCAR Europe (ESCAR’18), 2018.

139

[89] Udo Schlegel, Hiba Arnout, Mennatallah El-Assady, Daniela Oelke, and Daniel A.
Keim. Towards a Rigorous Evaluation of XAI Methods on Time-Series. 2019.

[90] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations From Deep
Networks via Gradient-Based Localization. 2017.

[91] Pavel Senin and Sergey Malinchik. SAX-VSM: Interpretable Time-Series Classifica-
tion Using SAX and Vector Space Model. In 2013 IEEE 13th International Confer-
ence on Data Mining, pages 1175–1180, 2013.

[92] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Fea-
tures Through Propagating Activation Differences. arXiv:1704.02685 [cs], October
2019. arXiv: 1704.02685.

[93] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not
Just a Black Box: Learning Important Features Through Propagating Activation
Differences. arXiv:1605.01713 [cs], April 2017. arXiv: 1605.01713.

[94] Shoaib Ahmed Siddiqui, Dominique Mercier, Mohsin Munir, Andreas Dengel, and
Sheraz Ahmed. TSViz: Demystification of Deep Learning Models for Time-Series
Analysis. IEEE Access, 7:67027–67040, 2019.

[95] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. 2014.

[96] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015.

[97] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-
miller. Striving for Simplicity: The All Convolutional Net. 2015.

[98] Pierre Stock and Moustapha Cissé. ConvNets and ImageNet Beyond Accuracy:
Explanations, Bias Detection, Adversarial Examples and Model Criticism. 2017.

[99] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep
Networks. 2017.

[100] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the Inception Architecture for Computer Vision. 2015.

140

[101] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and Composing Robust Features with Denoising Autoencoders. In Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
New York, NY, USA, 2008.

[102] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res., 2010.

[103] Haofan Wang, Rakshit Naidu, Joy Michael, and Soumya Snigdha Kundu. SS-CAM:
Smoothed Score-CAM for Sharper Visual Feature Localization, 2020.

[104] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr
Mardziel, and Xia Hu. Score-CAM: Score-Weighted Visual Explanations for Convo-
lutional Neural Networks, 2020.

[105] Jingyuan Wang, Zhen Peng, Xiaoda Wang, Chao Li, and Junjie Wu. Deep Fuzzy
Cognitive Maps for Interpretable Multivariate Time-Series Prediction. IEEE Trans-
actions on Fuzzy Systems, 29(9):2647–2660, 2021.

[106] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemela, and Yoshua Bengio. Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. 2015.

[107] Lexiang Ye and Eamonn Keogh. Time-Series Shapelets: A New Primitive for Data
Mining. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’09, pages 947–956, New York, NY,
USA, 2009. Association for Computing Machinery.

[108] Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Mark Hasegawa-Johnson, and
Minh N. Do. Semantic Image Inpainting with Perceptual and Contextual Losses.
2016.

[109] Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lipson.
Understanding Neural Networks Through Deep Visualization. 2015.

[110] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks, 2013.

[111] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-
down Neural Attention by Excitation Backprop. 2016.

141

[112] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning Deep Features for Discriminative Localization. CVPR, 2016.

142

	List of Figures
	List of Tables
	Introduction
	Background
	can
	Power-based Program Tracing or Monitoring
	Deep Neural Network-based Classification
	Explainable AI

	CANOA: CAN Origin Authentication through Power Side-Channel Monitoring
	Related Work
	Problem Statement
	Contribution
	Mathematical Notations
	Proposed Approach
	Attack Model and Assumptions
	Proposed Approach
	Attack Detection
	CANOA-aware Attacker

	Experimental Setup
	System Description
	Model Description

	Evaluation Metrics
	Data Description

	Results
	Evaluation in Real-vehicle
	Evaluation in Lab Prototype
	Additional Module Detection
	Evaluation in Real-vehicle using sda Classifier
	Summary of Comparison
	Model Selection
	Presence of Incomplete Transmissions
	Experimental Factors

	A Saliency Map-based Interpretation of Model Outcome
	Related Work
	Terminology
	Problem Statement
	Contribution
	Mathematical Formulation
	Proposed Technique
	Saliency Map Generation
	Relevance Mask Generation

	Experiments
	Model and Data Description
	Evaluation Metrics
	Results
	Evaluation using Insertion/Deletion Metrics
	Evaluation using Pointing Game
	Convergence
	Saliency Map for Examples from ImageNet
	Evaluation using Ground-truth Annotations

	Generalizability of Saliency Map-based Explanation
	Related Work
	Terminology
	Problem Statement
	Contribution
	Proposed Technique
	Notations
	Variations of the Salient Region of the Input
	Image Reconstruction

	Evaluation
	Model and Data Description
	Evaluation Metrics

	Evaluation of the Variations of the Salient Region
	Classification Accuracy of Reconstructed Images
	Impact of Varying Sizes of Bounding Boxes

	TiME: Time Series-based Model outcome Explanation
	Related Work
	Contribution
	Notations
	Problem Statement
	Proposed Method
	Evaluation
	Data and Model Description
	Evaluation Metrics
	Qualitative Evaluation
	Quantitative Evaluation
	Class Discrimination Evaluation
	Use-case: ecg Recording Classification using MIT-BIH ecg Dataset
	Use-case: Sender Authentication in CAN protocol
	Performance
	Relevance Score on UCI Dataset

	Conclusion
	References

