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Abstract 

      Nowadays, Non-Destructive Testing (NDT) techniques are an essential foundation of 

infrastructure retrofit and rehabilitation plans, mainly due to the huge amount of construction, as well 

as the high cost of demolition and reconstruction. Modern NDT methods are moving toward 

automated detection methods to increase the speed and probability of detection, which enlarges the 

size of inspection data and raises the demand for new data analysis methods.  

      NDT methods are divided into two main groups; active and passive. The external potentials are 

discharged into an object in an active method, and then the reflection wave is recorded. However, the 

passive methods use the self-created magnetic field of the object. Therefore, the magnetic value of 

ferromagnetic material in a passive method is less than the magnetic value of an active method, and 

defects and anomalies detection needs more variety of functional signal processing methods. The 

Passive Magnetic Inspection (PMI) method, as an NDT-passive technology, is used in this thesis for 

ferromagnetic materials quantitative assessment. The success of the PMI depends on the detection of 

anomalies of the passive magnetic signals, which is different for every single test. This research aims 

to develop appropriate signal processing methods to enhance the PMI quality of defect detection in 

ferromagnetic materials.   

      This thesis has two main parts and presents two computer-based inspection data analysis methods 

based on the Haar wavelet and the Asymmetric Gaussian Chriplet Model (AGCM). The Passive 

Magnetic Inspection method (PMI) is used to scan ferromagnetic materials and produce the raw 

magnetic data analyzed by the Haar wavelet and AGCM.  

      The first part of this study describes the Haar wavelet method for rebar defect detection. The Haar 

wavelet is used to analyze the PMI magnetic data of the embedded reinforcement steel rebar. The 
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corrugated surface of reinforcing steel makes the detection of defects harder than in flat plates. The up 

and down shape of the Haar wavelet function can filter the repeating corrugations effect of steel 

rebars on the PMI signal and thereby better identify the defects. Toogood Pond Dam piers’ rebar 

defects, as a case study, were detected using the Haar wavelet analysis and verified by the Absolute 

Gradient (AG) method using visual comparison of the resultant signals and the correlation coefficient. 

The predicted number of points with a rebar area loss higher than 4% is generally the same with the 

AG and the Haar wavelet methods. The mean correlation coefficient between the signals analyzed 

using the AG and the Haar wavelet for all rebars is 0.8. 

            In the second part of this study the use of the AGCM to simulate PMI signals is investigated. 

Three rail samples were scanned to extract a three-dimensional magnetic field along specific PMI 

transit lines of each sample for the AGCM simulations. Errors, defined as the absolute value of the 

difference between signal and simulation, were considered as a measure of simulation accuracy in 

each direction. The samples’ lengths differed, therefore error values were normalized with respect to 

the length to scale data for the three samples. The Simulation Error Factor (SEF) was used to measure 

the error and sample 3 showed the lower value. Finally, statistical properties of the samples' SEF, 

such as standard deviation and covariance, were evaluated, and the best distribution was fitted to each 

of the data sets based on the Probability Paper Plot (PPP) method. The Log-Normal probability 

distribution demonstrated the best compatibility with SEF values. These distributions and statistical 

properties help to detect outlier data for future data sets and to identify defects. 
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PART ONE 

The Haar Wavelet Decomposition Method for Concrete Reinforcement 

Assessment 

 

 

Literature Review 

Using signal processing methods to detect various types of defects or anomalies has been discussed 

extensively by researchers over the last two decades. The Wavelet Transform (WT) approach with 

different basic wavelet forms such as Symlet, Haar, etc., comprises one of the signal processing 

methods with a wide range of application.  

Saadatmorad et al. (2021) used the wavelet transform (WT) with a Neural Network to detect 

damage in Rectangular Laminated Composite Plates (RLCPs). In this approach, the location of the 

defects was detected using a two-dimensional wavelet and convolutional neural networks. An FEM 

model of damaged elements was developed to gather two-dimensional wavelet feed signals. They 

stated that the proposed method was able to detect defects in RLCPs with high accuracy.  

Elefante et al. (2019) gathered photodiode signals by monitoring laser-welded butt joints and 

analyzed them with a continuous wavelet transform. In this method, the laser-welded butt joints are 

assessed by a photodiode system that evaluates the offset between the laser beam and the joint. 
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Abdulkareem et al. (2019) worked on defect detection in steel plates using wavelet transform 

approaches. The main technical part of their research was eliminating edge distortion problems using 

a two-dimensional continuous wavelet transform. The mode shape signal of undamaged plates was 

subtracted from the damaged plate mode shape signal, and the resulted differential signal was 

decomposed using wavelet transform methods.  The results showed that the edge distortion problem 

was resolved using this proposed method.  

A new method to detect delamination in composites using wavelet transform methods was 

presented by Feng et al. (2018). They worked on CFRP (Carbon-Fibre-Reinforced Polymer) plates 

delamination length assessment and stated that the lowest frequency of the delamination-impacted 

signal increases when the length of the delamination increases; thereby, delamination length could be 

estimated.  

Zheng et al. (2012) showed the drawbacks of averaging, moving averaging, second-order 

difference, oblique cumulative curve, and short-time Fourier transform data processing methods in 

traffic engineering.  They assessed different WT capabilities for traffic engineering data processing 

and proved the capability of WT approaches for assessment of such types of data.  

Lilong et al. (2012) presented a method based on the “denoising” capability of WT for eliminating 

noises in gyroscope output signals, and they showed that WT analysis led to higher accuracy in the 

north-seeking function of the gyroscope.  

Logistic regression and WT were used by Agarwal (2016) for detecting vehicle incidents. Because 

of the binary nature of incidents (the presence or absence), the binary logistics function regression 

model was used in their study. The results demonstrated that using the regression model together with 
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wavelet feature extraction effectively detects incidents by the equilibrium between the ratio of the 

incident detection and the false alarm rate.  

  

Sahoo et al. (2017) analyzed the discriminative features of electrocardiogram (ECG) signals with 

WT. They classified cardiac abnormalities into four categories and stated that the error in this 

abnormalities detection exercise was less than 0.42%.  

Li et al. (2012) presented a new wavelet decomposition method, Adaptive Morphological Gradient 

Lifting Wavelet (AMGLW), for identification and assessment of bearing defects. The simulated and 

measured vibration signals from bearings were used for comparing the proposed AMGLW with a 

more “traditional” wavelet transform, and the results revealed that the accuracy for detecting bearing 

defects in AMGLW was obviously higher than in LW and ALW methods alone.  

Detection of alcoholism using EGG (Electrogastrography) signals and wavelet transform analysis 

was the research subject of an article by Anuragi and Sisodia (2020). They used a wavelet transform 

and a machine learning framework for categorizing EGG signals in normal and alcoholic clients and 

concluded that the statistical approach referred to as LS-SVM (Least-Squares Support-Vector 

Machine) was the best classifier for these kinds of data.  

Li et al. (2012) proposed a method that detected cracked eggshells using wavelet transform 

methods. They studied the pulse time signals gathered using a microphone when knocking the egg 

and showed that the energy parameter value between intact and cracked eggs is different.  

Albaqami et al. (2021) presented an automated method based on Wavelet Packet Decomposition 

(WPD) method for EGG signals interpretation and extracting of statistical features. Their proposed 

classification method accuracy was reported to be 87.68%.  
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Zhang et al. (2014) presented a novel application for using wavelet transform approaches. The 

continuous wavelet analysis (CWA) was compared with some traditional yellow dust disease 

detection methods, and the results showed the power of the continuous wavelet analysis method for 

detecting the disease.  (Yellow dust is the term for wind-borne dust generated in north-central China 

and Mongolia, moving toward the south east - eastern China, Korea, Japan) 

Kerut et al. (2017) presented a Morlet continuous wavelet transform (CWT) algorithm for Heart 

Rate Variability (HRV) analysis. The electrocardiogram and respiratory data were recorded and 

analyzed with the Morlet CWT and a sharp increase in wavelet frequency band of the sympathetic 

nervous system and the parasympathetic nervous system was observed.  

The wavelet transform was used to detect cracks in beams in a study published recently by Kumar 

et al. (2022). The wavelet transform analysis detected operational deflection shape (ODS) 

discontinuities as crack sites in the beams. The finite element model was employed for quantifying 

the displacement values, and their results showed an appropriate level of crack detection accuracy in 

the beams.  

A new concept for wavelet transform application detection was introduced by Bhavsar et al. 

(2020). They worked on 3D online printing quality by analyzing the vibroacoustic signals of the 

printing area and the differences in these signals for strong (intact) and failed first layer filament 

deposition. The wavelet categorized the signals’ energy into different levels, and a clear difference 

between the energy levels between poor and acceptable bond formation was observed. 

The PMI is two-dimension signal of magnetic flux density against time (location). However, the 

previous rebar defect detection methods, e.g., Absolute Gradient (AG), do not use time-frequency 

functions to find the defects in steel rebar. Therefore, that methods cannot detect the frequency of 
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defects and their location at the same time. This part of this research aims to represent a new time-

frequency signal processing method based on wavelet for defect detection in reinforced concrete steel 

rebar using the PMI magnetic signals. 

In summary, WT methods have become widely employed in many domains ranging from defect 

detection to classification methods applied to health data (diagnostic analysis).  In this work, the WL 

based on the Haar wavelet is used for analysis of passive magnetic data collected over ferromagnetic 

materials with corrosion and cracks. 
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Theoretical Background 

The central physical concept of magnetic inspection methods is the ferromagnetic materials' 

magnetic properties.  The magnetic properties of ferromagnetic materials can reflect their structural 

and mechanical properties and be impacted by alterations in stress, the presence of anomalies (cracks, 

corrosion), and other factors.  Defects like general corrosion, corrosion centers such as pitting, and 

cracks lead to anomalies.  Massive (plastic) strains and high stress levels in ferromagnetic materials 

can lead to changes in metal crystal structure and alteration of structural properties of these materials; 

these may be detected by magnetic methods (Blitz, 1997).   

Internal inhomogeneity of ferromagnetic materials arising from various sources can be assessed by 

measuring their inductive magnetic field. The magnetic field of an intact, non-damaged ferromagnetic 

material under a uniform value of induced magnetization is constant. However, any physical change 

in the specimen (shape changes, cracks, corrosion, plastic strains, etc.) alters the magnetic response 

and generates a change in the magnetic flux lines – either from active or passive magnetic fields. This 

is because of the magnetic leakage that is associated with cracks, pitting, corrosion, or any other types 

of discontinuities and associated crystal changes (ASME, Vol. 17).  Active magnetic methods 

employing strong external magnetic field application include magnetic flux measurements, magnetic 

particle inspection, and electromagnetic microwave testing. Passive methods do not use an externally 

applied magnetic field, but rely on detecting anomalies (distortions) in the natural ambient magnetic 

field created by the presence of the ferromagnetic material. 

Non-destructive inspection methods are divided into two main groups: active and passive. A 

specificied external magnetic field is applied to the ferromagnetic material in the active inspection 
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method, and a receiver records its response. In contrast, a passive method has no actively managed 

external magnetic source; the residual magnetism of the specimen affects the earth's natural magnetic 

field, and anomalies in this field are associated with inhomogeneities and discontinuities in the 

ferromagnetic material (Gontarz et al., 2009). 

The natural residual magnetic property in ferromagnetic materials results from the earth's magnetic 

field or the production process, and its intensity is much less than the inductive artificial magnetic 

property. Moreover, magnetic anomalies can reflect the stress changes in ferromagnetic materials, 

which are not directly related to material defects. Therefore, passive magnetic inspection method 

results are more complicated to analyze than active method results, and more sophisticated and 

sensitive devices are needed (Gontarz et al., 2012). 

  Reinforcement corrosion is a major issue in many types of reinforced concrete structures. The 

penetration of moisture and chloride ions into the reinforced concrete and consequent chemical 

reactions with the reinforcement rebar leads to deterioration (loss of cross-section) and defects (deep 

point corrosion) in the rebar (Zhou et al., 2015). This process may also increase the corroded rebar 

volume (oxidation and swelling), generating cracks in the concrete and further decreasing the service 

life of the reinforced concrete structure by facilitating water and oxygen penetration. 

Developing an obligatory structural repair work schedule requires quantification of the corrosion 

percentage and the distribution and location of the defects, achieved by using non-destructive or 

destructive inspection methods. Reliable non-destructive test methods are more desirable because of 

they are non-invasive, cheaper and faster in application than destructive ones.  

There are limitations to each specific non-destructive assessment method. For instance, 

applications of electrical, electromechanical, and acoustic probing methods are limited by variations 
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in the moisture, salinity conditions, and inhomogeneity of concrete. These limitations even may put a 

halt against reinforcement assessment by such methods (Mancio et al., 2004; Qian et al., 2001).    

Steel reinforcement is a ferromagnetic material, and magnetic corrosion detection methods like 

Magnetic Flux Leakage (MFL) can be used to defect detections. MFL method uses an inductive 

magnetic field, and so is an active non-destructive testing method (Fernandes et al., 2012; Gaydecki 

et al., 2007). 

The Passive Magnetic Inspection (PMI) method is used in this thesis to gather raw magnetic data of 

ferromagnetic steel reinforcement (Mahbaz, S.B., 2016). The basis of the PMI method is the natural 

magnetic field around the steel rebar. During steel rebar manufacturing, the earth’s magnetic field 

modifies the natural magnetic field of the steel rebar. This process is called Self Magnetic Flux 

Leakage (SMFL) (Wilson et al., 2007), (Doubov et al., 2000), (Doubov et al., 1998).  

A steel rebar has a unique magnetic signature arising from the stress and strain during the 

manufacturing process under the earth’s natural magnetic field. Therefore, any reinforcement has its 

specific magnetic field characteristics based on the stress-strain history and manufacturing condition 

(Hubert et al., 1998).    

The magnetization process defines the anisotropic self-magnetization field of a ferromagnetic 

material (Vlasov et al., 2004). The ambient magnetic field around any ferromagnetic material is 

distorted by the self-magnetized aligned electron dipoles in the iron crystallite. The ambient magnetic 

field is affected by crystal anisotropy (microstructure) and induced magnetization. The crystal 

anisotropy of ferromagnetic materials depends on their crystal structure and the induced anisotropy 

depends on the deviation (orientation) of electron dipoles from an initial random state. 
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The magnetic fields are classified into two general types: stray magnetic fields and external 

magnetic fields (Döring et al., 1966), (Brown et al., 1962), (Aharoni et al., 2000). There is a relation 

between an external magnetic field (H) with the vacuum magnetic permeability (𝜇0), magnetic flux 

density (B), and the magnetic polarization (J), written in Eq.2-1.  

𝑑𝑖𝑣𝐵 = 𝑑𝑖𝑣(𝜇0𝐻 + 𝐽) = 0                                                     (2-1)                                        

Hubert et al. (1998) presented the following equation for stray field gradient, in which 𝐻𝑑 is 

referred to as the stray magnetic field (Eq.2-2): 

𝑑𝑖𝑣𝐻𝑑 = −𝑑𝑖𝑣(𝐽 𝜇0⁄ )                                                         (2-2) 

The stray magnetic field 𝐻𝑑 and the energy of stray magnetic field 𝐸𝑑 are related as follows  

                                 Ed =
1

2
μ0 ∫ Hd

2dV
all space

→ Ed = −
1

2
μ0 ∫ HdJdV

sample
                                  (2-3) 

In this equation 𝑉 is the volume of the element. According to potential theory, there is a solution 

for the stray field equation which relates magnetization (M), the value of surface charge density 

(𝜎𝑠=𝑀·𝑛) and the volume charge density (𝜆𝑣).  

𝜆𝑣 = −𝑑𝑖𝑣 𝑀                                                               (2-4) 

𝑀(𝑟) = 𝐽(𝑟) 𝐽𝑠⁄                                                              (2-5) 

Here, 𝑱𝒔 is the magnetization saturation and 𝑟 indicates the vector of position. Two different materials 

with different 𝑀 values (𝑀1, 𝑀2) develop an interface charge: 

𝜎𝑆 = (𝑀1 − 𝑀2)𝑛                                                              (2-6) 
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Here, 𝑛 is the normal vector at the separation surface of the two materials. By combining equations 2-

3, 2-4, and 2-5 and integrating over the volume at the r position, the potential of the stray field energy 

would be: 

Φ𝑑(𝑟) =
𝐽𝑠

4𝜋𝜇0
[∫

𝜆𝑣(𝑟′)

|𝑟−𝑟′|
𝑑𝑉′ + ∫

𝜎𝑠(𝑟′)

|𝑟−𝑟′|
𝑑𝑆′]                                         (2-7) 

where 𝑟′, 𝑉′, and 𝑆′ are the derivatives of 𝑟, 𝑉, and 𝑆 respectively. Using Eq.(2-7) the stray field can 

be calculated as follows:   

𝐻𝑑(𝑟) = −𝑔𝑟𝑎𝑑Φ𝑑(𝑟)                                                   (2-8)  

The stray field energy is calculated as follows:   

𝐸𝑑 = 𝐽𝑠[∫ 𝜆𝑣(𝑟)Φ𝑑(𝑟)𝑑𝑉 + ∫ 𝜎𝑠(𝑟)Φ𝑑(𝑟)𝑑𝑆]                             (2-9) 

Any defects in ferromagnetic specimens lead to a change in the stray energy value. Schneider et 

al. (2001) stated that the arrangement of smaller domains, which altered the magnetic domain of walls 

by denser aligned dipoles, is the basis for a change in stray field energy. In this thesis, the changes in 

the stray field energy as a reliable method to assess the domain changes are used to simulate the 

relation between magnetic flux density and defects on ferromagnetic specimens. 

 

2.1 Wavelet  

The PMI method provides non-stationary, two dimensional signals of magnetic flux density value 

versus time or location. The time-frequency functions provide information on the frequency and time 

content of a signal simultaneously. Therefore, are suitable to transform non-stationary data like PMI. 

Wavelets are a particular type of function, mainly a basis function, localized in both time and 
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frequency. The wavelet function, or “mother” wavelet (𝜓), which defines the basic wavelet shape, 

typically defines wavelets. There are different wavelet functions with different properties (Fugal, 

2009) (Figure 2-1).  

  

Figure 2-1: Some wavelet functions  

 

The wavelet function creates an entire family of wavelets according to 2-10:   

𝜓𝑗,𝑘(𝑡) = 2
𝑗

2𝜓(2𝑗𝑡 − 𝑘)   𝑗 𝑎𝑛𝑑 𝑘 ∈ ℤ                                         (2-10)                  

where (𝑗) is dilation index or scale factor and (𝑘) is translation index or shift factor (Ogden, 1997). A 

linear combination of these dilated and translated mother wavelet functions can represent a signal.  

Wavelet function has a useful property called wavelet decomposition, discussed in the next section.  

 

Haar Shannon or Sine Daubechics 4 Daubechics 20 

Gaussian or Spline Biorthogonal Mexican Hat Coifflet 
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2.1.1 Wavelet decomposition 

Wavelet has a useful property of separating low and high-frequency content of a signal, called 

decomposition of a signal. Wavelet decomposition breaks up a signal into a low-frequency 

approximation using a scaling function (𝜙𝑗,𝑘) and high-frequency signal content by the wavelet 

function (𝜓𝑗,𝑘). A signal 𝑠(𝑡) can be decomposed into an approximation component and a detail 

component. The approximation component is defined by scaling functions, and the rest of the signal 

is described by wavelet functions (Burrus et al., 1998) (Eq.2-11).  

  

𝑠(𝑡) = ∑ 𝑐𝑗,𝑘𝜙𝑗,𝑘(𝑡)

𝑘

+ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)

𝑘

                                         2-11) 

 

Therefore, a signal can be decomposed until a specific detail of resolution is achieved. For instance, 

for level j=3 of approximation (𝐴𝑗) and signal detail (𝐷𝑗) the signal 𝑠(𝑡) is defined according to 

Eq.2-12 ( 

Figure 2-2):  

𝑠(𝑡) = 𝐴3 + ∑ 𝐷𝑗

3

𝑗=1

                                                                      (2-12) 
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Figure 2-2: Wavelet decomposition sequence (Misiti et al. 1997) 

 

Considering j as the level of resolution, the signal approximation 𝐴𝑗(𝑡), and the signal details 𝐷𝑗(𝑡) 

are defined by scaling and wavelet functions (Burrus et al., 1998) (Ogden et al., 1997): 

   

𝐴𝑗(𝑡) = ∑ 𝑐𝑗,𝑘𝜙𝑗,𝑘(𝑡)

𝑘

                                                        (2-13) 

𝐷𝑗(𝑡) = ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)

𝑘

                                                       (2-14) 

   This decomposition property of the wavelet function is used in this thesis to detect corrosion in steel 

reinforcement.  

𝑠(𝑡) 

𝐴1 𝐷1 

𝐴2 𝐷2 

𝐴3 𝐷3 
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2.2 Steel rebar corrosion assessment using wavelet decomposition 

Choosing the appropriate level of decomposition (Eq. 2-12) and selection of wavelet transform play 

essential roles in detecting rebar defects effectively. In this thesis, the Haar wavelet decomposition is 

selected to detect corrosion in the steel reinforcement. More specifically, this thesis develops an 

analysis of embedded concrete steel reinforcement magnetic data with the wavelet decomposition 

using MATLAB™ software.  

 

2.2.1 Haar wavelet decomposition 

      The Haar wavelet function for 𝑥 ∈ [𝑎, 𝑏) is defined in Eq.(2-15) (Liu et al., 2021).  

ℎ𝑖(𝑥) = {
1        𝑓𝑜𝑟   𝑥 ∈ [𝜉1, 𝜉2)

−1    𝑓𝑜𝑟   𝑥 ∈ [𝜉2, 𝜉3)

0                      𝐸𝑙𝑠𝑤ℎ𝑒𝑟𝑒 

                                                  (2-15) 

      Where 

𝜉1 = 𝑎 + (𝑏 − 𝑎)
𝑘

𝑚
 

𝜉2 = 𝑎 + (𝑏 − 𝑎)
𝑘 + 0.5

𝑚
 

𝜉3 = 𝑎 + (𝑏 − 𝑎)
𝑘 + 1

𝑚
 

𝑚 = 2𝑗, 𝑗 = 0,1, … , 𝐽 

𝑘 = 0,1, … , 𝑚 − 1 

 

      The 𝑗 parameter represents the wavelet’s level, 𝐽 is the maximum resolution level, and 𝑘 is the 

translation parameter.  
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      The Haar wavelet is a mathematical function with a wide variety of applications, like the 

approximation of the linear homogeneous and linear non-homogeneous aspects of Klein–Gordon 

equations (Ikram et al., 2021), the free vibration analysis of combined functionally graded shells 

(Kim et al., 2021), and finding a feature extraction method based on geometric features and the Haar 

wavelet.   

       The Haar wavelet function, level three of signal detail, is used to detect rebar defects in this work. 

Data analysis based on absolute Gradient Values (AG) (Mosharafi, 2020) is used to verify the Haar 

wavelet detection results. The SMFL sample signal (Figure 2-3) is gathered using the PMI device by 

scanning specific embedded rebar in the Toogood Pond Dam, Markham, Ontario (Figure 2-4), and the 

raw magnetic signal is analyzed with the Haar wavelet and AG method for verification.  

 

  

Figure 2-3. Sample SMFL signal 
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Figure 2-4. Toogood Dam sample rebar 

 

       The AG analysis shows one major corrosion site at length 1150mm, and three minor corrosion 

sites at 1050mm, 1200mm, and 1580mm length of the embedded rebar (Figure 2-5).  

 

Figure 2-5. AG corrosion analysis result 
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      MATLAB™ software is used for the Haar wavelet analysis. The sample SMFL signal is 

decomposed into one approximation signal and three detailed signals. Each level of the detailed 

signals is calculated by decomposition of the previous level of approximation signal ( 

Figure 2-2). The following image shows the approximation signal and three detailed signals of the 

sample rebar of Toogood Pond Dam. The addition of these signals constructs the sample signal (Eq. 

2-12).  

 

 

 

 

Distance (X direction (mm)) 

Distance (X direction (mm)) 

a3
 

d
1
 

(b) 

(a) 
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Figure 2-6. Haar wavelet level three decomposition results of Toogood Dam sample rebar. (a) Level three of 

approximation signal. (b) Level one of detailed signal. (c) level two of detailed signal. (d) level three of detailed 

signal. 

 

      The results show that the level three signal details have good compatibility with the AG corrosion 

detection method (Figure 2-7). The AG method resulted in a signal maximum value of 0.53, and the 

Haar wavelet analysis maximum value is 1.15. Using the scale factor 0.53/1.15, the Haar wavelet 

analysis signal illustrates clear compatibility with the AG analysis results. The Haar wavelet detailed 

signal is symmetric with respect to Y axis. Therefore, the negative part is deleted for more clarity 

(Figure 2-8).       
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Figure 2-7. Haar wavelet d3 analysis result 

 

  

Figure 2-8. Comparison between AG analysis and Haar wavelet analysis results 

 

      The correlation coefficient is used for quantifying the similarity between the signals. In general, 

the Haar detailed signal has an up-and-down shape in each cycle (Figure 2-1). Therefore, the 

maximum adjacent points of each cycle are connected to each other to reach a smooth curve and 

allow the correlation coefficient calculation. The correlation coefficient between AG and the Haar 

wavelet signals is 0.96, which shows high compatibility between the resulted signals. It should be 

Major corrosion  

Minor corrosion  

Minor corrosion  Minor corrosion  
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noted that although the correlation coefficient shows that the two signals are very similar, detection of 

the corrosion points location and amplitude are the main goals of these two detection methods. The 

location of major corrosion and the amplitude of the pulses are the same in two AG and Haar wavelet 

methods (Figure 2-9).  

      The Toogood Pond Dam piers rebar corrosion is assessed using the Haar wavelet method the 

results compared with the AG method results. The details are presented in the next chapter.  

 

 

Figure 2-9. Comparison between AG analysis and Haar wavelet analysis results (smoothed curve) 

 

    

 

 

 

 

Distance (X direction (mm)) 
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Toogood Pond Dam, The Case Study 

 

3.1 Introduction 

      The PMI method concept is presented in Chapter 2, and the wavelet ability in the signal 

decomposition is also explained in Section 2.2. In this chapter, the corrosion of the concrete 

reinforcement of a dam is assessed using the PMI method and wavelet analysis, and the results are 

verified with the available reinforcing steel rebar corrosion assessment method. In this research, the 

Toogood Dam reinforcement was assessed as a case study. Inspections focused on the lower half of 

each section since these areas are subjected to higher environmental impacts because of moisture and 

water flow and are therefore expected to have a higher amount of corrosion. For the Toogood Dam 

reinforcement assessment, rebar location and orientation were delineated first. Next, the SMFL values 

of the detected steel reinforcement were recorded using PMI technology. Subsequently, the wavelet 

decomposition was used for the interpretation of recorded magnetic dataset values and rebar corrosion 

detection. Finally, results were compared to the AG method as the other rebar reinforcement detection 

corrosion methods for verification.  

 

3.2 Site description 

Toogood Dam creates the Toogood Pond located in the Rouge River Watershed downstream of the 

confluence of Bruce Creek and Berczy Creek. The watershed area is around 7300 ha in total and 



 

 22 

continuous northward to include Preston Lake in Whitchurch Township. The pond area is about 3 ha 

(Figure 3-1). 

 

 

Figure 3-1. Toogood Pond Dam location 

 

      Reports indicate that the Toogood Pond was formed by a dam in 1960 (Toogood Correspondence, 

1980). The presently visible concrete structure was built in 1981 on top of the existing structure to 

serve recreational purposes. The dam is made up of a 23 m long, about 6 m high concrete spillway, 

including five stop log bays with earth embankments on each side. The dam includes four concrete 

bearing piers and two embankments. The dam’s embankments have concrete walkways fixed overtop 

to provide a continuous walkway across the dam. The embankments have interconnected concrete 

segments on the surface, and the dam also has an excavated channel and culvert crossing through it to 

give fish passage (Figure 3-2).  
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Figure 3-2. Toogood Pond Dam structure - South to North view 

 

3.3 PMI data gathering 

      The wet dam environment makes the concrete dam prone to electrochemical corrosion. The 

corrosion condition of embedded reinforcement rebars of the Toogood Dam was assessed using the 

PMI method. The two sides of the four bearing piers plus the exposed sides of the concrete 

embankments were inspected. The ten inspected areas are shown in Figure 3-3.  

      The inspection started with detecting the location and the orientation of the reinforcement in all 

ten areas using an industrial rebar detector –Bosch D-Tect 150 (Figure 4‑4 (a)). Then, the detected 

rebar location was marked with a visible marker on each area (Figure 4‑4 (b)). Three horizontal rebars 

Walkway 

Reinforced concrete piers 
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and two vertical rebars were marked on each area to be scanned with a PMI technology scanner 

(Figure 3-4 (c)). The start and the end points’ location of the marked rebar lines were accurately 

documented.  

 

 

Figure 3-3. Inspected areas on the bearing piers sides and two embankments  

 

 

                        

(a) (b) 
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Figure 3-4. (a) Detecting rebar location; (b) Marking the detected rebar location on each concrete area; (c) 

Three horizontal and two vertical detected rebar  

 

      In the next step, the PMI scanner moved over 50 marked paths with a constant speed to gather raw 

magnetic data (Figure 3-5). All raw magnetic data was saved in the PMI scanner’s SD card and 

uploaded on the computer for analysis.  

 

(c) 

Horizontal 3 

Horizontal 2 

Horizontal 1 

Vertical 1 Vertical 2 



 

 26 

 

Figure 3-5 Scanning the raw magnetic data using the PMI device 

 

3.4 PMI inspection results using wavelet analysis     

      In the ferromagnetic reinforcement inspection method, any changes in the magnetic-domain 

properties are considered a defect (Wang et al., 2012). Different reasons may lead to changes in the 

magnetic domain of ferromagnetic materials such as stress concentrations, cracking, fatigue, and 

corrosion. Therefore, the magnetic-domain change locations may include one or a combination of 

rebar defect types. Three approximate categories based on the rebar area loss are considered for 

establishing future maintenance plans: 

 The cross-section area loss 4-7% is considered the upper limit for small defects. 

 The cross-section area loss 7-10% is considered the range for moderate defects. 

 The cross-section area loss greater than 10% is considered the lower limit for major defects. 
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      PMI magnetic data of each wall are analyzed using the Haar wavelet analysis and then compared 

with AG analysis methods for verification. The similarity between the AG method result and the Haar 

wavelet decomposition method result is controlled visually and quantified with correlation 

coefficients.  

 

3.4.1 End west wall 

      The wall is located on the west dam embankment. The wall and five scanned paths are shown in 

Figure 3-6 and the positive direction of the PMI scanner movement is shown with the red lines.  

 

Figure 3-6. End west wall 

 

     The AG method results show the maximum corrosion equals 7% in the Horizontal 1 rebar. The 

location of maximum rebar corrosion in the Horizontal 2 rebar is the same as Horizontal 1. The 

Horizontal 3 

Horizontal 1 

Horizontal 2 

Vertical 1 Vertical 2 
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maximum corrosion in Horizontal 3, Vertical 1, and Vertical 2 are 5%, 3%, and 7%, respectively 

(Figure 3-7).  

      The Haar wavelet analysis predicted the location and amplitude of all areas with cross-sectional 

losses greater than 4% in horizontal and vertical rebars accurately. Horizontal 1 has two areas with loss 

greater than 4% at 380mm and 420mm distance, Horizontal 2 area loss greater than 4% occurs at 

380mm distance, and Horizontal 3 area loss greater than 4% area loss occurs at 1550mm distance, all 

predicted with high accuracy by the Haar wavelet. The quality of detection of the point with area loss 

greater than 4% is high for the vertical rebars too.  

        

 

 

 

Distance (X direction (mm)) Distance (X direction (mm)) 

Distance (X direction (mm)) 

(a) (b) 

(c) 

(𝜇𝑇/𝑚𝑚) (𝜇𝑇/𝑚𝑚) 

(𝜇𝑇/𝑚𝑚) 
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Figure 3-7. End west wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 2. (c) 

Horizontal 3. (d) Vertical 1. (e) Vertical 2. 

 

      The correlation coefficients between AG and Haar wavelet signals are presented in Table 1. All 

coefficient values are higher than 0.8, and the highest value is 0.94. There are some fluctuations in the 

d3 Haar wavelet of Horizontal 3 rebar, which decreased the correlation coefficient. However, the 

location of the area of losses is detected accurately (Figure 3-7 (c)).  

 

Table 1-Correlation coefficient between the AG and the Haar wavelet signals of the end west wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.94 0.92 0.83 0.90 0.93 

 

3.4.2 Pier one-west wall 

      The wall is located on the west side of pier one. Five rebar paths were scanned using the PMI 

device, and the raw magnetic data were recorded. The PMI device moved along the given paths in the 

X and Y positive directions, which are marked with the red lines in Figure 3-8.  

Distance (Y direction (mm)) Distance (Y direction (mm)) 

(d) (e) 

(𝜇𝑇/𝑚𝑚) (𝜇𝑇/𝑚𝑚) 
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Figure 3-8. Pier one-west wall horizontal and vertical scanned paths 

 

      According to the AG method results the maximum corrosion is 7% in the Horizontal 1 and 

Vertical 1 rebars. The Haar wavelet analysis shows good similarity with the AG method results 

(Figure 3-9), and the corrosion locations (the pulses in the AG method) are in general detected 

correctly with the Haar wavelet method. According to the AG method, Horizontal 1 has two small 

defects at 1050mm and 1650mm distances. The Haar wavelet method predicted the location of these 

corrosion points accurately. However, there is some difference in the corrosion value (Figure 3-9 (a)). 

The AG and the Haar wavelet give the location and amplitude of defects almost the same in 

Horizontal 2 and Horizontal 3 rebars (Figure 3-9 (b) and (c)). Vertical 2 rebar has three points with 

cross-setional area loss between 4 and 7% at the 800mm, 1080mm, and 1120mm distances. The Haar 

wavelet upper estimated the first one and underestimated two other points.   

 

Horizontal 3 

Vertical 2 

Horizontal 2 

Horizontal 1 

Vertical 1 
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Figure 3-9. Pier one- west wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 2. 

(c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 
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      All the correlation coefficients values between AG method signals and the Haar wavelet are 

higher than 0.85 (Table 2). Although the Haar wavelet method detected the corrosion points correctly, 

there are some differences between the amplitude of the signals at the corrosion points, which 

decreased the correlation coefficient.  

 

Table 2-Correlation coefficient between the AG and the Haar wavelet signals of the pier one west wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.85 0.88 0.89 0.95 0.91 

 

 

3.4.3 Pier one - east wall 

      The wall is the east part of pier one. The five PMI scanned paths and the direction of positive X 

and Y PMI device movement direction are shown in Figure 3-10.  
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Figure 3-10. Pier one - east wall horizontal and vertical scanned paths 

 

      The AG method shows the maximum area loss in this wall’s rebars is 6%, in the Horizontal 1, 

Horizontal 2, and Horizontal 3. The Haar wavelet method detected all these corrosion points 

accurately (Figure 3-11 (a), (b), and (c)). Although the defects in the vertical rebars are less than the 

limit for small defects, minor pulses of the AG method and the Haar wavelet method are identical 

(Figure 3-11 (d) and (e)).  
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Figure 3-11. Pier one- east wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 

2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 
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      The correlation coefficient shows the similarity between AG signals and Haar wavelet signals is 

in the 0.75 to 0.85 range (Table 3). Horizontal 2 and Horizontal 3 show the lowest correlation 

coefficient because of the fluctuations in the Haar wavelet resulted signal. 

 

Table 3-Correlation coefficient between the AG and the Haar wavelet signals of the pier one east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.84 0.76 0.75 0.86 0.85 

 

3.4.4 Pier two- west wall 

      Three horizontal and two vertical scanned rebars with the PMI scanner on the west wall of pier 

two are shown in Figure 3-12. The positive directions of the PMI device movement are marked with 

the red axes.  

 

Figure 3-12. Pier two - west wall horizontal and vertical scanned paths 
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      Maximum corrosion in the rebars of this wall is 15%. The Haar wavelet analysis detected location 

of all pulses in AG signals (corrosion points) correctly (Figure 3-13). For the Horizontal rabars, the 

Haar wavelet simulates the value of the rebar corrosion with high accuracy. The detected corrosion at 

the end of the Vertical 2 rebar by the Haar wavelet is less than the AG method (Figure 3-13 (e)).   
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Figure 3-13. Pier two - west wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 

2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 

 

      Correlation coefficient values demonstrate a high value of similarity between AG and Haar 

wavelet results for this wall. The minimum coefficient value is 0.95, and the maximum is 0.99 (Table 

4). 

Table 4-Correlation coefficient between the AG and the Haar wavelet signals of the pier two west wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.98 0.99 0.95 0.97 0.94 

 

 

3.4.5 Pier two - east wall 

            Five selected rebars of the pier two east wall were scanned with a PMI device, and magnetic 

raw data were transferred to the computer for analysis. The selected rebars’ paths and the positive 

movement direction of the PMI device are shown in Figure 3-14. 
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Figure 3-14. Pier two-east wall horizontal and vertical scanned paths 

 

      The Haar wavelet analysis detected two major corrosion sites between distances 1100mm and 

1200mm in the Horizontal 1 rebar, Figure 3-15 (a). According to the AG analysis results there are no 

defective points in Horizontal 2 rebar, and the Haar wavelet results give the same results as well. 

However, there are some discrepancies between AG and Haar wavelet results (Figure 3-15 (b)). The 

AG analysis shows two major corrosion sites in the Horizontal 3 rebar between distances 1000mm to 

1200mm, which are accurately captured by the Haar wavelet method (Figure 3-15 (c)). There is no 

cross-sectional area loss higher than 4% in Vertical 1, and Vertical 2 rebars, which is compatible with 

the Haar wavelet results (Figure 3-13 (c) and (d)). 
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Figure 3-15. Pier two- east wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 

2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 
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      The correlation coefficients between AG and the Haar wavelet signals are between 0.90 and 0.66 

(Table 5). The higher similarity between AG and the Haar wavelet results took place in Vertical 1 

rebar resulted signals and the lower one comes from Vertical 2 resulted signals.  

 

Table 5-Correlation coefficient between the AG and the Haar wavelet signals of the pier two east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.88 0.77 0.82 0.66 0.90 

 

3.4.6 Pier three - west wall 

     Five selected rebars paths are canned with the PMI scanning device and the raw magnetic data are 

recorded and analyzed. The selected rebars and the positive movement direction of the PMI scanner 

are shown in Figure 3-16. 

 

Figure 3-16. Pier three - west wall horizontal and vertical scanned paths 
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      The AG analysis demonstrates the area loss in Horizontal 1 rebar to be less than 4%, which is 

similar to the Haar wavelet results. However, according to the AG analysis, the major corrosion in 

this rebar took place at a distance of 400mm, and the Haar wavelet analysis shows it at the distance of 

200mm (Figure 3-17 (a)). There are two 5% areas loss in Horizontal 2 rebar at 400mm and 500mm 

distances that the Haar wavelet analysis detected corretly. However, the Haar wavelet underestimated 

the area loss at 500m distance as 1% (Figure 3-17 (b)). Although the Haar wavelet does not match the 

AG results, the Haar wavelet and AG results show the area loss in the Horizontal 3 rebar is less than 

4% (Figure 3-17 (c)). The major area loss value in the 1250mm distance is detected with the Haar 

wavelet analysis accurately in the vertical rebars (Figure 3-17 (d) and (e)) .  
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Figure 3-17. Pier three - west wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) 

Horizontal 2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 

 

      The similarity between the Haar wavelet and AG signals are shown in Table 6. Horizontal 1 does 

not have any area loss larger than 4% and demonstrates lower similarity between the AG and the Haar 

wavelet signals. Horizontal 2 rebar has two pulses in the AG signal and 0.79 as the correlation 

coefficient. Although the similarity between the AG and the Haar wavelet signals is not too high for 

Vertical 1 and Vertical 2 signals, the amplitude and the location of the pulses are predicted accurately. 

 

Table 6-Correlation coefficient between the AG and the Haar wavelet signals of the pier two east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.17 0.79 0.40 0.72 0.67 

 

It is important not to be confused by the low correlation coefficients in this case and in other cases.  

When there are strong defects that yield a strong signal, far above the background variations 
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(“noise”), the correlation coefficients will be high.  When the defects are small and yield a signal that 

is only moderate in amplitude compared to the background signal amplitude, one must expect the 

correlation coefficients to be low, as is the case here. 

3.4.7 Pier three - east wall 

      Horizontal and vertical scanned paths and the positive direction of the PMI scanner movement are 

shown in Figure 3-18. 

 

 

Figure 3-18. Pier three - east wall horizontal and vertical scanned paths 

 

      Location of all detected defects larger than 4% area loss is detected by the Haar wavelet analysis 

(Figure 3-19). The amplitude of pulses in the AG resulted signal of Horizontal 1 rebar is the same as 

the results of the Haar wavelet. However, there is a pulse in 430 mm distance of Horizontal 1 rebar 
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Haar wavelet signal which is not the same in the AG signal (Figure 3-19 (a)). The pulse amplitude of 

the Haar wavelet signals is very close to the AG signals for Horizontal 2 and Horizontal 3 signals 

(Figure 3-19 (b) and (c)). The location and the amplitude of AG signal pulses are accurately predicted 

with the Haar wavelet method (Figure 3-19 (d) and (e)).  
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Figure 3-19. Pier three - east wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) 

Horizontal 2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2 

 

      The correlation coefficients between the AG and the Haar wavelet vary from 0.68 to 0.93 (Table 

7). Vertical 1 has no area loss greater than 4% and has lower similarity. On the other hand, although 

Horizontal 1 correlation coefficient is relatively low, the location and the amplitude of the area loss 

higher than 4% are predicted accurately using the Harr wavelet method.      

 

Table 7-Correlation coefficient between the AG and the Haar wavelet signals of the pier three east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.75 0.90 0.87 0.93 0.68 
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3.4.8 Pier four - west wall 

      Two vertical and three horizontal rebar paths were selected to be scanned using the PMI scanner 

device. The raw magnetic data is recorded over given paths and is transformed to the computer for the 

analysis (Figure 3-20). 

 

 

Figure 3-20. Pier four - west wall horizontal and vertical scanned paths 

 

      The Haar wavelet analysis predicted all locations with area loss higher than 4% accurately. The 

amplitude of the area loss is very similar to the AG signal results (Figure 3-21). There is some 

discrepancy between the results of the Haar wavelet analysis and AG method in Horizontal 3 rebar. 

However, there is still acceptable similarity between these two signals in the location and the 

amplitude of corrosion area higher than 4% (Figure 3-21 (c)).  
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Figure 3-21. Pier four- west wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 

2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 
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      The correlation coefficient analysis values range from 0.94 to 0.98 which demonstrates high 

similarity between the Haar wavelet and AG signals (Table 8). 

 

Table 8-Correlation coefficient between the AG and the Haar wavelet signals of the pier four west wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.96 0.94 0.95 0.96 0.98 

 

3.4.9 Pier four - east wall 

     The five scanned paths and the positive movement direction of the PMI scanner device are shown 

in Figure 3-22. 

 

Figure 3-22. Pier four-east wall horizontal and vertical scanned paths 

Horizontal 3 
Horizontal 2 
Horizontal 1 

Vertical 1 Vertical 2 



 

 49 

      According to the AG method, no rebar has any corrosion loss area greater than 4%, which is the 

same as the Haar wavelet method results (Figure 3-23). The Horizontal 2 rebar AG result shows two 

pulses at the 1000mm and 1550mm distances. The location and amplitude of these two pulses are 

simulated with the Haar wavelet method accurately (Figure 3-23 (b)). This happens exactly for the 

450 distance of Vertical 1 rebar.  
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Figure 3-23. Pier four- east wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 

2. (c) Horizontal 3. (d) Vertical 1. (e) Vertical 2. 

 

      The correlation coefficient values range from 0.26 for Vertical 2 to 0.76 for Vertical 1. Vertical 2 

AG method result does not show any specific pulse and there is no area loss greater than 4%. 

Although the correlation coefficient for Vertical 2 rebar is low, both the AG method and the Haar 

wavelet method give the same result for the corrosion greater than 4% (Table 9).  

 

Table 9-Correlation coefficient between the AG and the Haar wavelet signals of the pier four east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.62 0.74 0.37 0.76 0.26 

 

3.4.10 End east wall 

      Three horizontal and two vertical rebars are scanned using the PMI scanning device. The selected 

rebars and the positive movement direction of the scanner are shown in Figure 3-24. 
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Figure 3-24. End east wall horizontal and vertical scanned paths 

 

      According to the AG method all the horizontal rebars have area loss greater than 4%, and the area 

loss in the vertical rebars is less than 4% (Figure 3-25). The Haar wavelet method detected the 

location and the value of the area loss in Horizontal 1 rebar (Figure 3-25 (a)). The AG method shows 

there are five areas with loss greater than 4% in Horizontal 1 rebar, including the 400mm, 680mm, 

1200mm, and 1500mm distances, also detected by the Haar wavelet method. However, the Haar 

wavelet method underestimated the amplitude of the AG signal at the 400mm distance site. The Haar 

wavelet and AG methods have the same prediction about the location and value of area loss greater 

than 4% in Horizontal 2 and Horizontal 3 rebars (Figure 3-25 (b) and (c)). While the area loss in 

Vertical 1 and Vertical 2 rebars are lower than 4%, the AG and the Haar wavelet results are the same 

about the location and area loss values (Figure 3-25 (d) and (e)).  
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Figure 3-25. End east wall AG method and Haar wavelet analysis results. (a) Horizontal 1. (b) Horizontal 2. (c) 

Horizontal 3. (d) Vertical 1. (e) Vertical 2. 
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      The similarity between the AG and the Haar wavelet resulted signals is quantified by the 

correlation coefficient value which varies from 0.69 for Vertical 1 to 0.86 for Horizontal 2 (Table 10). 

Vertical 1 does not show any area loss greater than 4% and there is some discrepancy between the 

AG and the Haar wavelet method results specifically before the pulse at 1200mm distance which 

decreased the correlation coefficient. The single pulse of corrosion in Horizontal 2 is simulated with 

the same amplitude by AG and the Haar wavelet methods which increased the correlation coefficient 

between the resulted signals.  

 

Table 10-Correlation coefficient between the AG and the Haar wavelet signals of the pier end east wall 

Rebar Horizontal 1 Horizontal 2 Horizontal 3 Vertical 1 Vertical 2 

Correlation 

coefficient 
0.69 0.86 0.70 0.62 0.70 

 

3.4.11      Comparison between AG and Haar wavelet results 

      A summary of the correlation coefficients of all ten walls is presented in Table 11.  The total 

average value of all correlation coefficients is 0.8. There is also no specific difference between the 

correlation coefficients of the horizontal and the vertical rebars. The number of detected areas with 

area loss greater than 4% in Table 12 demonstrates that the AG and the Haar wavelet method detected 

the same number of areas with greater than 4% area loss. Moreover, pier four east wall has the lower 

correlation coefficient mean value and the lower number of points with area loss greater than 4%, as 

expected, given the background noise in the signal. On the other hand, pier two west wall has the 

highest correlation coefficient mean value and number of points with area loss greater than 4%. 
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Table 11-Correlation coefficient between the AG and the Haar wavelet signals of all walls 

Rebar Horizontal1 Horizontal2 Horizontal3 Vertical1 Vertical2 Mean 

End west wall 0.94 0.92 0.83 0.90 0.93 0.90 

Pier one west wall 0.85 0.88 0.89 0.95 0.91 0.90 

Pier one east wall 0.84 0.76 0.75 0.86 0.85 0.81 

Pier two west wall 0.98 0.99 0.95 0.97 0.94 0.97 

Pier two east wall 0.88 0.77 0.82 0.66 0.90 0.81 

Pier three west wall 0.17 0.79 0.40 0.72 0.67 0.55 

Pier three east wall 0.75 0.90 0.87 0.93 0.68 0.83 

Pier four west wall 0.96 0.94 0.95 0.96 0.98 0.96 

Pier four east wall 0.62 0.74 0.37 0.76 0.26 0.55 

Pier end east wall 0.69 0.86 0.70 0.62 0.70 0.71 

Mean 0.77 0.86 0.75 0.83 0.78 0.80 

 

Table 12- Number of the detected area loss greater than 4% 

Rebar AG  Haar wavelet 

End west wall 5 4 

Pier one west wall 7 6 

Pier one east wall 3 4 

Pier two west wall 17 17 

Pier two east wall 4 4 

Pier three west wall 4 3 

Pier three east wall 5 6 

Pier four west wall 6 6 

Pier four east wall 0 0 

Pier end east wall 6 6 
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PART TWO 

Simulation of Passive Magnetic Inspection Method (PMI) Signals of Rail 

Tracks Using the Asymmetric Gaussian Chirplet Model (AGCM) 

       

 

 

LITERATURE REVIEW 

    The advent of high-speed trains is making railway infrastructure safety, especially rail track 

integrity, increasingly important. Rail assessment, which is part of railway infrastructure 

inspection, helps prevent railway traffic accidents, and many researchers have explored different 

methods to assess rail condition reliably and quickly. Here, a brief review of some significant 

contributions is presented. 

    Shi et al. (2021) used 3D dynamic stress analysis to assess the geometric irregularity adjacent to 

the weld toe at welded rail joints, a region prone to fatigue cracking because of the stress 

concentrations.  

    Steel rails subject to the growth of multiple fatigue cracks was evaluated by Masoudi Nejad et al. 

(2021) using Acoustic Emissions (AE), which requires overcoming the masking effect of the noise 

generated by the rolling wheel-rail contacts. This interference impairs the reliability of AE 

signal pickup by sensors and degrades their accuracy. Nevertheless, to detect growing cracks with AE 
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technology, rails must be under actual train loads to generate the necessary strains, which increases 

the cost of detection (Zhang et al., 2021). 

      In the AE context, Hao et al. (2018) presented an adaptive detection method for rail crack 

detection that combined multi-resolution analysis with an improved Adaptive Line Enhancer (ALE). 

To get rid of complex noise at high speed, Zhang et al. (2018) developed a new rail defect detection 

method by multi-level Adaptive Noise Cancelling (ANC) with a variable step size, least-mean-

squares (VSS-LMS) algorithm. Zhang et al. (2015) presented a rail defect detection method based on 

AE using wavelet transform to simulate signals from defective and defect-free rails. A new ANC 

method for rail defect detection was evaluated by Liang et al. (2015) to decrease undesirable 

interference and better distinguish the weak signals from background noise. A Hurst exponent-

improved ALE for weak rail crack AE signal detection at high speeds was developed by Hao et al. 

(2021) helping make this technology applicable in high-speed railways.  

      The other common method of continuously inspecting rail track is line-structured light detection, 

but it remains problematic because any sensor vibration or noise impairs its accuracy, making it more 

suitable for laboratory use than actual application Cao et al. (2020). Jiang et al. (2021) used a non-

contact laser ultrasonic method to detect rail surface rolling contact fatigue cracks and stated that the 

detection accuracy of this method is 95%. Teidj (2020) introduced a railhead defect indicator using 

laser radiation and showed good correlation with other defect detection methods. Pathak et al. (2019) 

worked on rail foot flaw detection based on laser-induced waves.  

      Chirplet atoms are now widely used in various applications for signal analysis; several examples 

are listed here. Peng et al. (2011) evaluated vibration signals for fault diagnosis in gearboxes using 

the chirplet transform. Miaofen et al. (2021) used a Component Matching Chirplet Transform 
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(CMCT) to detect faults in wind turbine planetary gearboxes. Spanos et al. (2007) worked on 

processing seismic signals using chirplet decomposition combined with the Wigner-Ville transform. 

The response of linear systems under earthquake loading was assessed statistically using chirplet 

transforms by Alderucci et al. (2017).  

      This chapter proposes a new simulation method for rail track magnetic flux density signals 

extracted by Passive Magnetic Inspection (PMI) technology (Mahbaz et al., 2016), (Mahbaz et al., 

2017), (Dusseault et al., 2020), using an Asymmetric Gaussian Chirplet Model (AGCM), based on a 

combination of experimental and simulation results.  In the experiments, three used rail pieces (the 

“samples”) were selected and scanned using Infrastructure Corrosion Assessment Magnetic Method 

(iCAMM) technology (Mosharafi et al., 2020), and the magnetic flux density values were recorded 

over various paths prescribed on each sample. The magnetic values which are recorded over the 

samples are the base data for simulation. Three components (X, Y, Z) of magnetic flux density were 

measured at each path of the rail and stored with a time signal, allowing positioning because the 

operator scanned the rail at a constant speed. Thus, each sensor provides three two-dimensional 

matrices (graphs) by scanning the samples’ (t,X), (t,Y),(t,Z), where t is time, yielding the PMI signal 

for analysis.  

      Then, the AGCM was used to simulate the collected PMI signals as a basic signal processing 

method. AGCM uses chirplet atoms for simulation, and each atom is defined with seven parameters. 

The number of atoms used depends on the complexity of a signal: the more complex the signal, the 

greater the number of chirplet atoms. In addition to the seven parameters, certain useful features such 

as the energy and domain of atoms can be used for any scanned rail. Thereby, AGCM simulation 

leads to a more useful interpretation of data and collection of relevant (useful) parameters.  
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      The capability of AGCM as a signal processing method in simulating PMI rail track signals is 

presented and its accuracy is evaluated by calculating the differences between the absolute value of 

PMI signal and simulation results. This absolute value is statistically analyzed. Next, the absolute 

values of the differences of the measured and simulated signals is fitted against Normal, Log-Normal, 

Weibull, and Gumbell probability distributions. The goal is to demonstrate that the AGCM is a strong 

method that allows statistical evaluation (probability) for quick and more reliable detection of rail 

defects under dynamic conditions. 

      The following flowchart (Figure 4-1) illustrates the study sequence, explained in more detail in 

the next sections. 

 

Figure 4-1 Methodology flowchart 
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THEORETICAL BACKGROUND 

 

5.1 Rail track inspection method 

      The Infrastructure Corrosion Assessment Magnetic Method (iCAMM) is used to assess rail track 

condition. iCAMM technology is based on the PMI concept (Mahbaz et al., 2017), (Dusseault et al., 

2020), and it can assess the condition of ferromagnetic materials such as steel rail tracks, and steel 

reinforcement embedded in concrete and rail tracks. Passive inspection means there is no direct 

magnetic field imposed nor any extraneous excitation such as an electrical, acoustic, or optical emitter 

(Ahmad et al., 2015), (Gontarz et al., 2019). Any defects in ferromagnetic specimens lead to changes 

in the stray energy value (Hubert et al., 1998). Schneider et al. (2001) stated that the arrangement of 

smaller magnetic domains in ferromagnetic materials, which alters the magnetic domain of walls by 

denser aligned dipoles, is the basis for a change in stray magnetic field energy. In this study the 

changes in the stray magnetic field energy along the scan lines is used as a reliable method to assess 

the domain changes that are used to simulate the relation between magnetic flux density and defects 

on the rail specimens. 

 

5.2 Simulation 

      The main goal of most signal-simulation methods is to obtain the “best” simulation of real signals 

in a quantitative manner so that useful information can be extracted.  In this research, the sum of 

chirplet atoms of an Asymmetric Gaussian Chirplet Model (AGCM) is used to simulate signals. This 
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method can simulate different types of signals such as the pulse-like velocity signals of earthquakes 

(Sharbati et al., 2020) and the vibration signals from gearboxes during fault diagnosis (Peng et al., 

2011). Moreover, the AGCM can lead to methods using genetic algorithms that can lead to higher 

quality decomposition of multi-component signals (Zanjireh et al., 2013). 

      This method, introduced by Demirli et al. (2014), uses the inner product of real signals with a 

family of atoms and consists of two operations: the envelope part 𝐸𝑝(𝑡), and the frequency part 𝐹𝑝(𝑡) 

(Eq.5-1). The two occur simultaneously and each is made up of different parameters: 𝛼, 𝛽, and 𝜏 for 

the envelope part; 𝑓, 𝛾, and 𝜃 for the frequency part. 

   

𝐴𝑝(𝑡) = 𝐸𝑝(𝑡)𝐹𝑝(𝑡)                                                              (5-1)   

𝐸𝑝(𝑡) = 𝑒𝑥𝑝
−𝛼(1−𝛽 𝑡𝑎𝑛ℎ(𝐶(𝑡−𝜏)))(𝑡−𝜏)2

                                         (5-2) 

𝐹𝑝(𝑡) = cos(𝑓(𝑡 − 𝜏) + 𝛾(𝑡 − 𝜏)2 + 𝜃)                                        (5-3) 

 

Here, 𝐶 is a positive constant with a predetermined value. The tanh(𝐶𝑡) function equals −𝑖tan(𝑖𝐶𝑡); 

it is a hyperbolic function for approximation of a non-continuous function. Its value is 1 when t>0 and 

-1 when t<0. The 𝛼 (> 0) is the bandwidth factor, 𝛽 ∈ (−1,1) is the asymmetry factor, 𝜏 (> 0) the 

time shift factor, 𝑓 ∈ [0,2𝜋) the center frequency, 𝛾 ∈ [0,2𝜋) the chirp rate, and 𝜃 ∈ [0,2𝜋) the phase 

angle (Sharbati et al., 2020). 

 



 

 61 

5.2.1 Simulation of signals using time-frequency atoms 

      Any signal can be represented using a linear combination of predefined time-frequency atoms. 

The set of all predefined atoms is the dictionary matrix (D), and the atoms form the columns of the 

dictionary matrix. The goal of signal decomposition is to extract a subset of M atoms from the D 

matrix to faithfully represent the signal, subject to accuracy stipulations or other constraints imposed. 

Any signal can be represented as follows (Bruckstein et al., 2009): 

   

𝑦 ≈ 𝑦̂ = ∑ 𝑎𝑚𝑑𝑚

𝑀

𝑚=1

                                                             (5-4) 

 

      In this equation 𝑑𝑚 represents the mth selected atom from the dictionary matrix columns and 𝑎𝑚 

is the weighting factor for the mth selected atom. The selected atoms provide a mathematically 

approximated signal (𝑦̂) of the real signal (𝑦). Because of this approximation, there is always an 

error between the simulated and real signal: 

   

𝑒𝑟𝑟𝑜𝑟(𝑦, 𝑀, 𝐷) = ‖𝑦 − 𝑦̂‖ = ‖𝑦 − ∑ 𝑎𝑚𝑑𝑚
𝑀
𝑚=1 ‖                             (5-5)   

 

      The error equation depends on the number of atoms, M, and the type of atoms. There are different 

sets of atoms for simulation, so the simulated signal is not unique. Therefore, a method based on a 

matching pursuit algorithm (Jabbari et al., 2011; Mallat et al., 1993) and the Newton method is 

developed to reduce the number of selected atoms and error. The chirplet atoms consist of separate 
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envelope and frequency parts. The estimation processes for each part are explained in the following 

sections.   

 

Envelope part 

       Boßmann and Ma (2015) presented an algorithm to estimate the envelope part and amplitude 

coefficient 𝑎𝑚 of a signal. Assuming that the real signal is 𝑦(𝑡) and 𝐺 = {𝑔𝑚, 𝑚 = 1,2, … , 𝑀, 𝑀 ≫

𝐿} is a complete dictionary of AGCM atoms, a signal’s envelope part can be expressed as: 

   

𝐸𝑛𝑣(𝑦)(𝑡) ≈ ∑ 𝑎𝑚𝑔𝑚
𝐿
𝑚=1                                                           (5-6)  

 

      The envelope part is composed of three parameters, 𝑃𝐸 = {𝛼, 𝛽, 𝜏}, and the dictionary G includes 

many envelope atoms, so finding the best sets of AGCM atoms to represent the envelope part of a 

signal is vital. The Orthogonal Matching Pursuit (OMP) approach alone requires a great deal of 

computational work. Hence, in the method presented by Boßmann and Ma (2015), called the Adapted 

Dictionary-free OMP (ADOMP) algorithm, there is no predefined set of atoms and the envelope 

parameters are calculated by iteratively minimizing the following equation (Eq. 5-7): 

   

𝑃𝐸𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑅 − 𝐸𝑃‖2  𝑤𝑖𝑡ℎ    𝐸𝑛𝑣(𝑦)(𝑡) ≈ ∑ 𝑎𝑗𝑔𝑗
𝐽−1
𝑗=1                               (5-7)    
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If 𝜏 = 𝑡, the envelope part 𝐸𝑃(𝑡) will be a maximum. Therefore, we can calculate 𝜏𝑗 and 𝑎𝑗 

considering the residual 𝑅𝑗 as follows: 

   

𝜏𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡  𝑅𝑗(𝑡)                                                                    (5-8)  

𝑎𝑗 = 𝑅𝑗(𝜏𝑗)                                                                           (5-9) 

 

      The residual value 𝑅𝑗(𝑡) can be approximated by considering 𝜀 as a small positive value and 𝑡 ∈

(𝜏𝑗 − 𝜀, 𝜏𝑗 + 𝜀) as follows:  

   

𝑅𝑗(𝑡) ≈ 𝑎𝑗𝑒𝑥𝑝
−𝛼𝑗(1−𝛽𝑗 tanh(𝐶(𝑡−𝜏𝑗)))(𝑡−𝜏𝑗)

2

                                     (5-10)   

 

      The simplified form of this equation is: 

   

log(𝑅𝑗(𝑡) 𝑎𝑗⁄ ) ≈ −𝛼𝑗 (1 − 𝛽𝑗 tanh (𝐶(𝑡 − 𝜏𝑗))) (𝑡 − 𝜏𝑗)
2

                    (5-11)   

 

      The two parameters 𝑎𝑗 and 𝛽𝑗 are calculated by assuming 𝑡1, 𝑡2, … , 𝑡𝑀 points around 𝜏𝑗. 

Therefore, we can estimate the envelope part of AGCM by finding the envelope parameters 𝛼𝑗, 𝛽𝑗, 

and 𝜏𝑗 that generate the best matching envelope atoms in each iteration.  
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Frequency part 

      In this section the optimization method of the frequency parameters 𝑃𝐹𝑗
= (𝑓𝑗, 𝛾𝑗, 𝜃𝑗) is presented. 

The Newton method is used for this optimization. There are two critical issues in the optimization 

using Newton’s method: the initial guess and the step size. Boßmann and Ma (2015) presented a 

method to address these issues. After calculation of the envelope part and the AGCM atom 𝑔𝑗 after J 

iterations, the residual value equals: 

   

𝑅(𝑝𝐹1, 𝑝𝐹2, … , 𝑝𝐹𝑗) = 𝑦 − ∑ 𝑎𝑗𝑔𝑗

𝐽

𝑗=1

                                           (5-12) 

 

      Assume 𝑃 = (𝑝𝐹1, 𝑝𝐹2, … , 𝑝𝐹𝑗) as a frequency parameters dictionary that can be calculated as 

follows: 

   

𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝‖𝑅(𝑃)‖2                                                             (5-13) 

 

      If we define the R Jacobian matrix at point P 𝐽𝑅(𝑃), after a linear operation for each iteration: 

   

𝑅(𝑃′) = 𝑅(𝑃) + 𝐽𝑅(𝑃)(𝑃′ − 𝑃)                                                    (5-14)   

 

      Merging these two equations results in: 
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𝑅(𝑃) = −𝐽𝑅(𝑃)∆𝑃                                                                 (5-15)  

 

      In this step, by considering h as the step size, the parameter dictionary is updated as follows: 

   

𝑃 ← 𝑃 + ℎ∆𝑃                                                                      (5-16)  

 

      With this method, the AGCM atoms parameters can be extracted without any need for a 

predefined AGCM dictionary.  

 

5.3 Probability distributions 

      Probability distributions can express random variables’ properties. Unless there is a strong 

physical reason to suppose a particular distribution, it is appropriate to explore how different common 

distributions “fit” the dispersed data. The method used to find the “best fit” distribution was a 

Probability Paper Plot (PPP) applied to four common probability distributions, Normal, Log-Normal, 

Gamma and Weibull. In the PPP method, the scale of the graph paper leads to a linear relationship for 

the plotted data. Then, one may write the Cumulative Distribution Function (CDF) as a linear 

function and determine the linearity of sample data to find whether the sample data more reliably 

follows a given distribution. This linearity is determined using the direct regression analysis of the 

differences between the values proposed by the probability distribution and the real data. The higher 

the regression value, the better the chosen distribution represents the data. For instance, a random 

variable follows the Log-Normal distribution if the logarithm of the random variable is normally 
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distributed. The CDF of the Log-Normal distribution can be written as (Eq.5-17, Eq.5-18, and 

Eq.5-19): 

   

𝐹(𝑥) = 𝑃𝑖 = Φ (
ln(𝑥𝑖) − 𝜆

𝜁
)                                                     (5-17) 

 

      Where: 

   

𝜁 = √ln (1 +
𝑆𝑇𝐷2

𝑚𝑒𝑎𝑛2)                                                            (5-18) 

   

𝜆 = ln(𝑚𝑒𝑎𝑛) −
1

2
𝜁2                                                            (5-19) 

 

      Therefore, rearranging for the equation of a line gives (Eq.5-20): 

   

ln(𝑥𝑖) = 𝜁Φ−1(𝑃𝑖) + 𝜆                                                         (5-20) 

  



 

 67 

 

EXPERIMENTAL SETUP 

 

      Three samples were assessed using PMI technology, and magnetic flux density datasets were 

collected over eight different predetermined paths along each sample's length (Figure 6-1).  

 

 

 

 

 

(a) (b) (c) 

 

 

Figure 6-1. The three samples used in the experiments: (a) sample 1; (b) sample 2; (c) sample 3. (White solid 

lines show the paths marked for scanning). 

 

      As shown in Figure 6-2, each sample was placed in a non-ferromagnetic environment, inside an 

aluminum frame. Next, the operator moved the box, containing the magnetic sensor, along each 

predetermined path at a constant pace to record three components of magnetic flux density values (in 
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X, Y, and Z directions). The process was repeated for all chosen paths of the three samples. Since the 

datasets were recorded at a constant speed, the time of a recording would represent a sensor's 

location. As an example, Figure 6-3 shows the magnetic flux density versus time of a sensor for 

“above path-1-X,” which refers to the data for sample 1, collected over above path, along X 

coordinate.  

 

 

Figure 6-2. Inspection device for experimental measurements of rail track samples 

 

Laptop (data logger) 
Box containing the magnetic sensor 

Test sample 
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Figure 6-3. Magnetic flux density versus time (Above path-1-X) 
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RESULTS 

 

7.1 Accuracy of simulation 

      PMI results were used as the real signal and simulated with AGCM atoms. Each sensor recorded 

Magnetic Flux Density (MFD) of the rail samples through specific paths at three coordinates of X, Y, 

and Z, which were each simulated separately. The real signal here is a two-dimensional graph of time 

and magnetic flux density. The accuracy of simulation could be defined as the absolute value of 

difference between real signal and simulated signal. However, because the length and the domain of 

the magnetic flux density of samples are not the same, the absolute value of the difference is divided 

by the length of the sample and domain of the MFD. This value is considered as the Simulation Error 

Factor (SEF) of any signal. Each of the samples has 120 recorded magnetic flux density (consist of 40 

three-coordinate data set). Figure 7-1 shows the simulation results and absolute value of difference 

between real and simulated signal of sample 1, for the datasets recorded over Bottom path. Figure 

7-1(b), Figure 7-1(e), and Figure 7-1(h) illustrates the real signal data, and Figure 7-1(a), Figure 7-1(d), 

and Figure 7-1(g) show the simulated signal. In addition, Figure 7-1(c), Figure 7-1(f), and Figure 7-1(i) 

represent the absolute error (i.e., difference between real signal and simulated signal along each 

sample). As seen, the quality of simulation using AGCM atoms is acceptable with no significant 

difference between the real signal and simulated signal. The SEF of X, Y, and Z signals of sample 1, 

bottom path, are 0.0160, 0.0066 and 0.0171 respectively. The lowest SEF value belongs to the results 
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from the Y-axis, and it can also be verified by the comparison of the graph in Figure 7-1(f) with those 

in Figure 7-1(c) and Figure 7-1(i). 

      The accuracy of the simulation is different for any sample. Although the SEF is a non-

dimensional factor and could not show the accuracy of the simulation solely, the comparison of its 

values for three samples illustrates which sample was best simulated. Moreover, the comparison of 

SEF values of X, Y and Z components of samples gains more information about the accuracy 

of the simulation. All 360 recorded magnetic flux density signals (120 signals of each sample) were 

simulated using AGCM and the SEF values were calculated. The next part explains the statistical 

properties of SEF. 
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Figure 7-1. Magnetic flux density versus time - Sample 1: (a) Bottom path X- simulated signal; (b) Bottom path 

X- PMI scanned signal; (c) Bottom path X- absolute error; (d) Bottom path Y- simulated signal; (e) Bottom path 

Y- PMI scanned signal; (f) Bottom path Y- absolute error; (g) Bottom path Z- simulated signal; (h) Bottom path 

Z- PMI scanned signal; (i) Bottom path Z- absolute error. 

 

 

7.2 Statistical properties of SEF 

      SEF is a random variable and its statistical properties reveal useful information. At first the 

comparison of the accuracy of simulation of samples could be done by comparison of the mean and 

standard deviation of SEF values. The lower the mean, the higher the accuracy. Standard deviation 

shows the dispersion of values. The lower standard deviation shows the values are closer to the mean 
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value and vice versa. The standard deviation of SEF values is relatively high. This shows that SEF 

data do not follow a Normal distribution, as in a Normal probability distribution, the data are 

distributed symmetrically with respect to the mean. Table 1 shows the mean and standard deviation of 

SEF values. In this table, the Coefficient of Variation (COV) measures the ratio between mean and 

standard deviation. According to these results, all three samples have approximately the same 

simulation accuracy (because of the similar mean values). However, according to mean values, the S3 

sample has the most accurate simulation results. Considering the X, Y, and Z axis signals simulation, 

S3X shows the most accurate simulation (Figure 7-2). Figure 7-3 shows sample 3 (S3) represents the 

lower standard deviation value which means the lower dispersion of SEF values.  

 

Table 13. Statistical properties of SEF. 

Signal  Mean STD COV 

S1 0.024 0.014 0.601 
S1X 0.022 0.012 0.573 
S1Y 0.026 0.014 0.546 
S1Z 0.023 0.015 0.660 
S2 0.021 0.013 0.606 

S2X 0.021 0.015 0.759 
S2Y 0.020 0.008 0.418 
S2Z 0.022 0.012 0.566 
S3 0.018 0.008 0.453 

S3X 0.017 0.008 0.462 
S3Y 0.018 0.009 0.485 
S3Z 0.020 0.008 0.393 
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7.3 SEF probability distribution 

      Finding the distribution that has more compatibility with SEF data has two important advantages: 

first, finding the outlier data that may be a sign of a problem in the rail track scanning or simulation; 

and second, evaluating the probability of SEF values for any future simulation at any specific 

threshold. As stated before, PPP method was used to find the best fit probability distribution and four 

probability distribution functions (Normal, Log-Normal, Gamma, and Weibull were 

assessed). Results showed that Log-Normal is the best fit distribution for SEF data (Table 14). Log-

Normal paper plot is obtained by plotting the logarithm of the data ln(𝑆𝐸𝐹) against the Standard 

Normal Percentage (Figure 7-4).  

      The Normal distribution, as expected, because of its symmetric function, could not represent the 

SEF data appropriately and shows lower regression values in comparison with those generated from 

other probability distributions.  

 

Figure 7-2. STD of SEF’ samples Figure 7-3. Mean of SEF’ samples 
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Figure 7-5. PPP method-S1-LogNormal distribution 

 

 

Signal 
Regression-

Normal Dist. 

Regression-

LogNormal Dist. 

Regression-

Weibull Dist. 

Regression-

Gumbell Dist. 

S1 0.867 0.995 0.928 0.973 
S1X 0.808 0.976 0.922 0.919 
S1Y 0.947 0.980 0.967 0.990 
S1Z 0.778 0.979 0.898 0.902 
S2 0.890 0.989 0.937 0.974 

S2X 0.761 0.969 0.886 0.860 
S2Y 0.950 0.965 0.975 0.976 
S2Z 0.910 0.969 0.926 0.976 
S3 0.908 0.979 0.908 0.971 

S3X 0.828 0.924 0.808 0.934 
S3Y 0.901 0.990 0.941 0.977 
S3Z 0.956 0.986 0.954 0.984 

Mean 0.875 0.975 0.921 0.953 
 

 

 

 

Φ
−

1
(𝑝

𝑖)
 

Ln (SEF) 

Table 14. Probability distribution regression 
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Part Three  

Conclusions and Future Work 

 

 

CONCLUSIONS 

      The problem of the passive NDT methods is that the magnetic signal is weaker and the 

background field is higher than active methods. The achievement of passive methods, e.g., PMI, 

depends on eliminating this background field, which differs from test to test. This research assessed 

the potential of two methods for simulation the PMI signals of steel rebar and steel rail track 

effectively.        

      In the first part of this thesis, the PMI scanner was used to record magnetic flux density versus 

location of embedded steel reinforcement. Wavelet capability, as a time-frequency function, was 

assessed to simulate the PMI non-stationary signals, and the Haar wavelet decomposition level 3 of 

detail was used as the steel reinforcement corrosion indicator, and the AG method was used to verify 

results. The Haar wavelet detail signals are symmetric with respect to the Y axes. Therefore, for better 

comparison with the AG signal, the positive part of the Haar wavelet detail signal was considered, 

and the similarity between the AG and the Haar wavelet signals was assessed visually and using the 

correlation coefficient.   
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        The Toogood Dam, Markham, Ontario, piers reinforcement was evaluated. Three horizontal and 

two vertical rebars of each ten given areas included two sides of four piers, and two end embankment 

walls were scanned using the PMI scanner. The recorded magnetic data was transferred to the 

computer. Each Haar wavelet signal was scaled with respect to the maximum value of the AG signals, 

and the following results can be extracted according to this specific case study:  

 The number of points identified in the scanned rebar with cross-sectional area loss higher 

than 4% was almost the same in the AG method and the Haar wavelet method. 

 The results of this study shows that the similarity between the AG and the Haar wavelet 

signals increases with increase of the number of points with area loss higher than 4% (i.e., 

higher amplitude above the base “noise” level). The pier two west wall rebars have the most 

points with area loss greater than 4% and also the highest correlation coefficient. 

 The Haar wavelet function up-and-down shape correlates with the corrugated surface of the 

reinforcing rebars and filters other irregularities on the surface of the reinforcement. 

      The corrugated surface of rebar is different from the smooth surface of rail track. Therefore, in the 

second part of this research a new method for assessment of rail track condition using magnetic flux 

density was proposed and the scanned signals were simulated by the Asymmetric Gaussian Chirplet 

Method (AGCM). Magnetic flux density signal is used as a rail condition indicator. There were three 

rail samples scanned using PMI technology and magnetic flux density of the samples through several 

given paths over the length of the samples was recorded. The scanned data was then simulated by 

AGCM. The accuracy of the simulation was evaluated using the Simulation Error Factor (SEF) which 

is the absolute value of difference between the scanned signal and the simulated signal divided by 

length of the rail sample and domain of magnetic flux density of each sample. The results of the 

simulation for three samples were approximately the same and the best simulation results belonged to 
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sample 3. The mean of SEF for all recorded data over sample 1, sample 2, and sample 3, were 0.024, 

0.021, and 0.018 respectively. Moreover, the standard deviation was 0.014, 0.013, and 0.008 for 

sample 1, sample 2, and sample 3 respectively, showed the sample 3 SEF values tend more to be 

close to the mean of SEF values.  

      Four probability distributions, Normal, Log-Normal, Weibull, and Gumbell, were evaluated using 

PPP method and regression values for SEF data, and the Log-Normal distribution shows the best 

compatibility (best regression value) with SEF. Moreover, a Normal distribution showed lower 

compatibility with SEF values, indicating that symmetric probability distributions cannot represent 

SEF values properly. 

 SEF is a non-dimensional, random variable that can be used to assess quality of rail sample 

simulation. There is no specific difference between the SEF values of X, Y, and Z magnetic 

data components. 

 Asymmetric probability distributions (Log-Normal) fit better than symmetric probability 

distributions to SEM values. The Log-Normal distribution regression values are 0.99, 0.99, 

and 0.98 for S1, S2, and S3 samples respectively.  

 PPP graphs (Figure 7-5) help to identify outlier data by finding the points that lie away from 

the general trend of other points. 

 When good quality SEM values are evaluated, expected mean and standard deviation for 

future assessments’ SEM can be predicted.   
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CONTRIBUTIONS 

Mahbaz et al. (2017) modeled actual rebar’s geometry in COMSOL and simulated the magnetized 

defective rebar under a specific value of magnetic field. Then, the magnetic properties of the rebar at 

a certain distance of the rebar were assessed.  

Mosharafi et al. (2020) presented a new Fourier-based method for investigation the patterns of 

magnetic values for different steel rebar defects and categorized the severity of defects according to 

the PMI magnetic values.  

To continue the technical development of PMI, this research presented a wavelet defect detection 

method in steel rebar. Fourier transform, the conventional method for steel rebar data analysis, 

decomposes the signal content into a frequency representation. Therefore, the function transforms 

from the time domain to the frequency domain. The Fourier transform has some limitations. For 

example, the Fourier transform can specify the frequency content, but because this is not a time-

frequency function, it cannot specify when these frequencies occur in time (or where in location). The 

wavelet transform has a solution to overcome this problem. The time-frequency property of the 

wavelet transform specifies the time and frequency content at the same time. 
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Consequently, the newly presented rebar defect detection wavelet method needs less calculating 

effort to detect the severity and location of defects of steel rebar. Moreover, there are different types 

of wavelets, like Haar, Bior, Symlet, etc., each with different properties, that can simulate different 

ferromagnetic materials and surfaces magnetic signals. For instance, in this research the Haar wavelet 

showed considerable capability in steel rebar defect detection. Nonetheless, it has not been proven to 

be the optimal approach. 

Furthermore, as a new investigation subject, the simulation of rail track PMI signals using the 

Asymmetric Gaussian Chirplet Model (AGCM) is studied. In general, PMI technology is used for 

steel rebar defect detection, but this research assessed a signal processing method to simulate the rail 

track PMI signals. Although both the steel rebar and rail track are made up of steel, they have 

different surface shapes and different PMI signals as well. The Haar wavelet and Fourier wavy shape 

tended to correlate with the corrugated surface of the steel rebar. However, the rail has a smooth 

surface and needs another simulation method. 
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FUTURE WORK 

In this thesis, innovative methods for the analysis and interpretation of PMI technology magnetic 

signals were presented. The Haar wavelet decomposition was used for the analysis of magnetic 

signals, and its ability to detect defect points in steel rebars was demonstrated. Wavelet transform is a 

well-known method for decomposing signals, and MATLAB™ software has some useful wavelet 

tools for statistical assessment of decomposing wavelet signals. Moreover, wavelet decomposition 

approaches use different wavelet types like Haar, Symlet, Bior etc., each with different properties. 

The capability of other wavelet decompositions to detect defects in other ferromagnetic materials can 

be assessed in the future. Wavelet function analysis can produce detailed signal representation up to a 

desired resolution level. Selecting the appropriate step (level) of decomposition depends on the type 

of wavelet and the detailed signal application. Although in this thesis decomposition level three of the 

wavelet approximation was used to detect rebar defects, other wavelets and analysis could show 

desired details at other levels of decomposition (level 4, 5, …).   

The calibration of PMI signals affects the rebar assessment results significantly and there is a broad 

field of research on the PMI calibration methods.   

The AGCM capability in the simulation of PMI signals of rail tracks was evaluated in another part 

of this thesis. AGCM chirplet atoms are constructed of envelope and frequency parts. Each of these 
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parts includes some specific parameters that have a given value for any simulated signals. These 

parameters build a data set to extract features for the simulation of particular types of defects in the 

rail tracks. 

Specific defect patterns on rail tracks and their effect on the PMI rail track signals can be studied in 

future research.  
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Appendix A 

AGCM MATLAB™ Code 

 

A few MATLAB™ modulus and submodules codes were run to simulate the PMI signals, that 

should be run together. The code is available upon request if needed.  


