
Submodular Maximization Subject
to Information Constraints

by

Andrew Downie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

©Andrew Downie 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In general, submodular maximization is relevant in many problems in controls, robotics
and machine learning, because it models many computationally di�cult problems. A
simple greedy strategy can provide strong approximation guarantees for many of these
problems. We wish to expand the set of scenarios where submodular maximization can
be applied. More specifically, in this thesis we study submodular maximization problems
where decision-makers are subject to information constraints.

The first type of information constraint we explore is when decision-makers can only
partially observe the submodular objective function. This scenario can arise when an
objective function is expensive to compute or physical constraints prevent the evaluation
of the objective function. We formalize the problem and then show that in general, strong
performance cannot be guaranteed. We then present two di↵erent greedy strategies that
provide strong approximation guarantees when only having limited access to the objective
under additional assumptions about the submodular objective.

The second information constraint we explore is in the context of distributed submod-
ular maximization. In these scenarios, a team of agents wishes to maximize a submodular
objective collaboratively but are constrained to make decisions based on a subset of the
other agents’ actions. We are interested in what types of functions are challenging for
agents to optimize given their information structure. We explore how submodular func-
tions that exhibit worst-case performance can be formulated through a linear program.
This approach provides a means to numerically compute worst-case performance bounds
as well as functions where a team of agents will exhibit their worst-case performance. Us-
ing this technique, we provide theoretical performance bounds based on their information
structure that are tighter than the known bounds in the literature.

iii

Acknowledgements

I would like to thank both my supervisors, Professors Stephen L. Smith and Bahman
Gharesifard for their guidance during my time at the University of Waterloo. I would
also like to thank my colleagues in the Smith Autonomy Lab for the great discussions
and insights. I am grateful for my friends Matt Cann, Daniel Sola and Aidan Keavney,
who I lived with during my time in Waterloo, for keeping me motivated throughout the
pandemic. Finally, I would like to thank my family, for all the support they have provided
me during my journey.

iv

Dedication

This thesis is dedicated to my parents and grandmother.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis Outline . 4

2 Literature Review 5

2.1 Submodular Maximization . 5

2.1.1 Approximate Value Oracles and Surrogate Function Maximization . 5

2.1.2 Time Complexity of Greedy Strategy 5

2.1.3 E↵ects of Curvature on Approximation Performance 6

2.1.4 Information Constrained Greedy Strategies 7

2.2 Applications of Submodular Maximization 7

2.2.1 Classic Submodular Maximization Problems 7

2.2.2 Sensor Placement and Coverage . 8

2.2.3 Data Summarizing and Data Processing 8

2.2.4 Controls and Path planning . 9

3 Background 10

3.1 Preliminaries . 10

3.1.1 Submodular Functions . 10

vi

3.1.2 Linear Programming . 11

3.1.3 Graph Theory . 12

3.2 Submodular Maximization Problem . 12

3.2.1 Basic Problem . 12

3.2.2 The Greedy Algorithm . 13

4 Submodular Maximization with Limited Function Access 16

4.1 Problem Definition . 16

4.2 Inapproximability with k-wise Information 17

4.3 Pairwise Algorithms . 21

4.3.1 Optimistic Algorithm . 21

4.3.2 Approximate Value Oracles . 21

4.3.3 Optimistic Algorithm Approximation Performance 25

4.3.4 Extension to k-wise Information . 29

4.3.5 General Performance Bound for k-wise Optimistic Algorithm 31

4.4 Pairwise Algorithms Utilizing Supermodularity of Conditioning 33

4.4.1 Post-Hoc Approximation Performance Bounds 34

4.4.2 Pessimistic Algorithm . 37

4.4.3 Comparison of Pairwise Algorithms 41

4.5 Time Complexity Analysis . 42

4.6 Simulation Results . 44

4.6.1 Experimental Approximation Performance Results 47

4.6.2 Experimental Time Complexity Results 50

4.7 Summary . 52

5 Linear Programming for Distributed Submodular Maximization 54

5.1 Linear Programming Representation . 54

5.2 Distributed Submodular Maximization Problem 56

vii

5.2.1 Problem Statement . 56

5.2.2 Previous Performance Guarantees 58

5.2.3 Linear Programming Approach . 59

5.3 Worst-Case Studies using Linear Programs 59

5.3.1 Main Results . 60

5.3.2 Comparison To Previous Results 65

5.4 Discussion . 67

5.5 Summary . 69

6 Conclusion 70

6.1 Future Work . 71

6.1.1 Pessimistic Algorithm Generalization 71

6.1.2 Linear Programming Extension to Approximate Value Oracles . . . 72

References 73

viii

List of Figures

4.1 Left: Set of sensor footprints that an algorithm could potentially select.
The objective is to select five sensors that maximize the area covered by
the union of their footprints. Right: A set of 5 sensors that maximize the
objective. 20

4.2 Example sensor coverage configuration where the optimistic algorithm per-
forms better than uninformed greedy strategy. 26

4.3 Geographical visualization of taxi customer data collected on January 1,
2020. There are 263 districts and size of the dots in each districts are
proportional to the number of pick ups that occurred in the district. . . . 45

4.4 Experimental results comparing the performance of the three algorithms.
For each algorithm, the average percentage of total demand covered by the
selected stations was plotted against the number of stations in the set. The
percentage covered was averaged over the 12 experiments. The error bars
enclose one standard deviation above and below the average. 47

4.5 Experimental results comparing the average worst case lower bounds pro-
duced by each algorithm as a function of the number of stations selected
n. The bounds with solid lines were computed using Algorithm 5. The
bound for marked “Pessimistic Theoretical” was computed using Corol-
lary 4.4.8 and line marked “Optimistic Theoretical” was computed using
Corollary 4.3.4.The error bars represent one standard devation above and
below the averages. 48

4.6 Experimental results comparing the demand covered by each algorithm for
each two hour time interval of the day with n = 25. The grey dots repre-
sent to maximum possible demand that could be covered during that time
interval. 49

ix

4.7 Experimental result showing the execution time for each algorithm as the
number of stations selected increases. For each n, the algorithms execution
times were recorded for each of the 12 subsets of data and then average
over 5 trials. The error bars represent one standard deviation around the
averages. 51

4.8 Plot of the ratios of execution times of the greedy strategy to the execution
times of the pairwise algorithms as the number of stations selected increases.
For each n the average execution time of the greedy algorithm was divided
the average execution of each algorithm. 52

5.1 Example complement Turán graph T (n, r) with n = 10 and r = 3. 66

5.2 Maximum and minimum approximation bounds produced by Theorem 5.3.3
and Theorem 5.2.1 over all graphs with a fixed number of edges. 67

x

Chapter 1

Introduction

Submodular maximization has recently generated interest in many decision-making prob-
lems, as it can provide strong performance guarantees for computationally di�cult prob-
lems. Submodular functions are set functions that exhibit the property of diminishing
returns. Submodular optimization is a well-studied subject, as these function model many
real-world problems in controls [32, 41], robotics [42, 26, 55], data processing and machine
learning [45, 44, 40]. It is well known that maximizing a submodular function subject to a
cardinality constraints is NP-hard, but if the function is normalized and monotone, then a
greedy algorithm provides an approximation factor of (1� 1/e) in polynomial time [37]. A
significant portion of the research in this domain involves expanding the set of applications
where submodular maximization can applied to solve hard problems. This work, primarily
focuses on submodular maximization problems where the decision-makers are subject to
information constraints.

One practical di�culty in implementing algorithms for submodular maximization in
complex settings is that the required function evaluations are computationally expensive.
This can be attributed to the large-scale characteristics of the system [1], application-
specific constraints such as communication constraints [5], or the type of data the objective
function is evaluating [27]. In its most common form, a submodular function is treated as
a value oracle, which is repeatedly queried by a greedy strategy to maximize the function.
Therefore, it is inherently assumed that one can evaluate the function for sets of any size.
In practice, however, it may only be possible to evaluate the function on smaller set sizes
due to computational costs or limitations imposed. Consider the setting where a company
is selecting locations for several new retail stores. The total revenue received by a set
of store locations can be modelled as a submodular function: As more stores are added,
the marginal benefit of adding a new store is reduced. In the classical greedy algorithm

1

for submodular maximization, we assume we have access to a value oracle to evaluate
subsets of store locations. Armed with this oracle, we iteratively add a new store sk to
existing set {s1, . . . , sk�1} by selecting the location sk that maximizes the marginal benefit
f(s1, . . . , sk�1, s) � f(s1, . . . , sk�1). To evaluate the quantity, the oracle must accurately
model the revenue of k stores, which can be challenging in practice due to their complex
interactions: for example sk may reduce the revenue at some store si, which then may
a↵ect some other store’s revenue.

Motivated by the lack of access to the full value oracle in practical settings, we seek to
determine how well we can approximate the maximum value of a submodular function when
we have access to a limited set of function values. For the main chapter of this thesis, we
focus on the case where we can access function values for single elements f(si) and for pairs
of elements f(si, sj). We refer to this as pairwise information. In the motivating example,
this corresponds to knowing the total revenue for a single store and the total revenue for
any two stories together and nothing more. Note that this restriction on information is
severe. A submodular function on a base set of N elements can be represented as a look up
table with 2N values. If only pairwise information is available, this means we have access
to only N(N + 1)/2 values. While we focus on pairwise information, we also extend most
results to the case of k-wise information, where we can evaluate the value of any set with
size at most k.

Information constraints also arrive in the context of distributed systems problems.
Suppose there are a team of agents that wish to maximize a collaborative objective. Often,
there are communication constraints, that limit the information available to each of the
agents. We focus on the scenario where the agents’ objective function is submodular. This
problem has been in explored in [12, 15, 16, 5]. The main focus of these works are to
provide performance guarantees for agents executing an adapted greedy strategy. In the
second main contribution of this thesis, we take an alternative approach to this problem.

A large portion of the theoretical research in the domain of submodular maximization is
concerned with providing approximation guarantees. It is common that the greedy strate-
gies for maximization perform better in practice than the theoretical guarantees. With
this in mind, we are interested in answering the following question: Is it possible to find
a submodular function f such that the solution produced by the greedy strategy exhibits
its worst-case approximation ratio? Typically, it is challenging to find such examples, and
we want to know if such examples can be programmatically found. In this work, we estab-
lish a connection between submodular functions and feasible regions of linear constraints.
We use linear programming to find these worst-case function examples. A similar linear
programming technique was used to provide approximation guarantees in the foundational
paper by Nemhauser et. al [37]. The authors upper bound the optimal value of the problem

2

and then find the minimum value of the greedy solution by utilizing a linear program. In
our work, we are interested in generalizing these methods as well as finding the particular
functions that exhibit the worst-case values.

We directly apply this approach to provide performance guarantees to the distributed
submodular maximization problem. To elaborate further on the distributed settings we
have in mind, we consider the problem where each agent must a select an action from their
own set of available actions, to maximize the objective. The agents make choices based
on a subset of actions selected by other agents. Since the agents cannot observe all of
the other agents actions they are forced to make decisions under partial information. The
agents make their choices by greedily maximizing their own marginal objective value given
the information available to them.

This problem is studied in [12, 15], and is analogous to maximizing a submodular
function over the partition matroid, with an additional information constraint. When
the agents share a common action set to select from, the problem becomes analogous to
maximizing over the uniform matroid. For the uniform matroid, the centralized greedy
strategy provides an approximation guarantee of (1�1/e) of optimal compared to the par-
tition matroid, where the same strategy provides an approximation guarantee of 1/2 [25].
In [12, 15], the authors primarily focus on providing guarantees for the scenario where
agents each have their own action set. We are interested in knowing, if the agents share
an action set, can a tighter approximation bound be achieved. We are also interested in
how the performance is characterized in terms of the agents’ information structure.

1.1 Thesis Contributions

The following are the key contributions of this thesis:

• In Chapter 4, we introduce the problem of submodular maximization with limited
function access. We provided inapproximability results for the problem. In light
of this, we propose two main algorithms to provide approximation guarantees to
the problem by leveraging additional assumptions about the underlying objective
function. The work in Chapter 4 is under review for a journal publication and can
be found in [8].

• In Chapter 5, we establish a connection between linear programming and submodular
functions, and apply this connection to provide approximation guarantees for the
distributed submodular maximization problem. The work in Chapter 5 is under
review for a journal publication.

3

1.2 Thesis Outline

The remainder of the thesis is structured as follows:

Chapter 2 reviews the relevant research literature that relates to the contributions
presented in this thesis.

Chapter 3 reviews topics and notation that are used throughout Chapters 4 and 5.

In Chapter 4, we introduce the problem of maximizing a submodular function with
limited function access. During this chapter, we provide inapproximability results for the
problem. We then propose two algorithms which have limited access to the objective, where
under a set of assumptions both provide approximation guarantees for the problem. We
also discuss a method to measure approximation performance using limited information
about the objective. The pairwise algorithm can be computed e�ciently which allow for
design trade-o↵s between approximation performance and time e�ciency. We end the
chapter with an experiment using real-world data, which highlights the e↵ectiveness of the
algorithms.

In Chapter 5, we establish a connection between linear programming and submodular
maximization. We then utilize a linear programming approach to provide performance
guarantees for the distributed submodular maximization problem. We finally, provide
empirical evidence that the new guarantees are stronger than guarantees found in the
previous literature.

Chapter 6 summarizes the work presented in thesis, as well as discusses future work.

4

Chapter 2

Literature Review

2.1 Submodular Maximization

2.1.1 Approximate Value Oracles and Surrogate Function Max-
imization

In some applications it is challenging to compute the submodular objective function. In
these scenarios, the submodular objective function can be substituted with a surrogate
objective, which is maximized instead [53]. The goal would be to select a surrogate func-
tion that can be e�ciently computed. This method can still provide strong approximation
guarantees if the surrogate function su�ciently represents the original objective function.
The surrogate function can be treated as an approximate value oracle. An approximate
value oracle is a black-box that takes as input a set of elements and outputs an approxi-
mation of the original function evaluated on the input set. The ratio between the oracle’s
values for greedily selected elements and the original objective values for the same elements
can be used to derive approximation bounds [14, 53]. The ratios used to derive the bounds
are called approximation factors.

2.1.2 Time Complexity of Greedy Strategy

An important aspect of submodular maximization is the computational e�ciency of the
greedy strategy [35, 1, 57, 36]. Under the assumption that the strategy has access to a
value oracle for the submodular function, that can be computed in constant time, the

5

time complexity of the greedy strategy is O(|X| · n) [35]. Where X is the base set of
elements optimized over and n the number of element selected. Even though the time
complexity is polynomial, for X with large cardinality, the greedy strategy can become
prohibitively expensive to execute. Consequently, alternative implementations are available
for the greedy strategy, which improves computational e�ciency to handle situations where
X is large.

A common technique used to improve e�ciency is utilizing lazy evaluation of the func-
tion combined with sampling of the base set. Together these techniques reduce the overall
number of computations required to execute the greedy strategy [28, 35]. Parallel and
steaming algorithms have been developed for applications where the X is too large to be
stored in memory. The parallel algorithm utilizes a Map-Reduce style computation where
X is split up across multiple machines, and each machine computes a partial solution to
the problem. A central machine then combines the partial solutions to produce the final
solution [36]. The streaming algorithms use elaborate thresholding techniques to select
elements while passing over X once [1, 23]. Alternative algorithms realize the set X as a
tree. Nodes of the tree are then pruned to reduce the number of elements that are opti-
mized over [57]. These techniques come at the cost of reduced approximation performance,
ultimately providing trade-o↵s between performance and e�ciency. In practical applica-
tions, there exist a computational cost in computing the submodular function. Most of
these techniques reduce the search space being optimized over but do not address the
computational cost of computing the objective.

2.1.3 E↵ects of Curvature on Approximation Performance

An important submodular function property for optimization purposes is curvature. The
curvature characterizes the maximum rate at which the marginal returns diminish as the
size of the subset taken with respect to grows. Curvature essentially describes how “sub-
modular” a function is. A foundational result from [4] shows that the greedy strategy
provides stronger approximation guarantees than originally presented in [37] when as-
sumptions about the curvature are made. It was also shown that any algorithm that can
guarantee an approximation bound better than the one found in [4] would require an ex-
ponential number of queries to the submodular function [51]. This means that the best
approximation bound that one can hope for without additional assumptions are the bounds
provided in [51].

In general, the curvature is useful when analyzing the performance bounds of greedy
algorithms in various submodular maximization problems. Curvature is used to provide

6

bounds for maximizing specific submodular objectives as well as in guarantees for more
complex submodular maximization problems. For example, curvature for functions that
arise in sensor selection for Kalman filtering [17] and entropy minimization [44] have been
thoroughly studied. An example of a more complex submodular maximization problem is
robust and sequential submodular maximization [39, 49]. In these problems, a submod-
ular maximization problem is iteratively solved where after each iteration, an adversary
removes a subset of the elements to minimize the value of the solution. The curvature of
the objective has a strong e↵ect on the approximation guarantees for an adapted greedy
strategy in this scenario.

2.1.4 Information Constrained Greedy Strategies

Recently, information constraints are considered in the context of distributed submodular
maximization. In these scenarios, a team of agents are attempting to collaboratively max-
imize a submodular objective function. Each agent has access to their own set of actions
and can observe a limited number of decisions made by other agents [12, 5, 15, 16, 46].
In these settings, the agents sequentially make decisions maximizing their marginal con-
tribution with respect to a subset of decisions made by previous agents. In [12, 15, 5], the
information available to the agents is encoded in a directed acyclic graph which is called the
communication graph. In [12, 15], the team’s performance is bounded by properties of the
communication graph such as the clique number and the fractional independence number.
Alternatively in [5], the team’s performance is characterized by the maximum redundancy
between pairs of agents’ that do not share an edge in the communication graph.

In [16], a similar scenario is explored where agents can also pass a subset of their ob-
servations to agents that appear later in the communication graph. The authors showed
that message passing could be exploited to improve the team’s overall performance. Au-
thors have also explored how the performance is a↵ected when subsets of agents have to
make decisions in parallel [46]. In all of the above distributed scenarios, the approximation
performance of the agents degrade as communication between the agents is reduced.

2.2 Applications of Submodular Maximization

2.2.1 Classic Submodular Maximization Problems

There is a large number of problems that can be modeled by submodular functions. Some
classical submodular functions that have been extensively explored include, graph cut [29],

7

entropy [44], mutual information [25], set cover [9], and facility location [25]. Some com-
mon constraints that are imposed on the problems include, cardinality [37], knapsack [20],
budget [43, 29], and matroid constraints [2, 18, 11]. In many of the following problems
involve combining the above objectives and constraints to solve problems in real-world
applications.

2.2.2 Sensor Placement and Coverage

Submodular objectives arise in many sensing and coverage problems. Given a set of sen-
sors, with each sensor having its own sensing footprint, the goal is to place a set of sensors
such that their combined sensing area is maximized. Area coverage exhibits the dimin-
ishing returns property because when a sensor is placed, its footprint could overlap with
another sensor’s footprint, reducing its marginal gain. Coverage objectives have been used
in planning UAV trajectories for 3D scanning of large structures [42], wireless sensor net-
works [34, 47], video surveillance, and sensor scheduling [52].

Sensing objectives can also be modelled from an information-theoretic perspective [28].
Suppose we have a set of random variables we wish to observe with a finite number of
sensors. For example, suppose we wish to measure temperatures at various locations in a
building with a set of sensors. To choose a set of locations to place sensors, we can select a
configuration that maximizes the mutual information between the random variables at the
locations where the sensors are placed and random variables at locations where sensors are
not placed [28, 24]. This particular mutual information objective exhibits submodularity,
and therefore the greedy strategy can be used to optimize it.

2.2.3 Data Summarizing and Data Processing

Submodular maximization has become useful in data summarization and prepossessing.
When working with large text documents or data sets, it is useful to filter the data into
smaller subsets that are easier to work with [54]. Submodular functions are good models
for summarization and diversity measures [40, 36, 31, 29, 30]. One application of the
summarization objectives is to perform automatic summarization on large text documents
and multi-document libraries [31, 29]. In these problems, the sentences in the documents
are modeled as a graph where the nodes are sentences and the edges represent the similarity
between pairs of sentences. A modified graph cut function is then greedily maximized to
generate a summary of the documents. The modified graph cut function is submodular
and maximizing it produces a subset of sentences that summarize the data set. The graph

8

cut objective measures the similarity between a selected set of sentences and the sentences
that are not selected, which is e↵ectively a measure of summarization.

Similarly, submodular maximization is useful for machine learning applications, espe-
cially when working with large data sets. In [36], the authors want to perform exemplar-
based clustering where they wish to select a subset of the data that is representative of
the entire data set. This objective can be formulated as a submodular function, and as
previously mentioned, the authors proposed a parallel greedy strategy to accomplish their
goal. The greedy strategy is often much more e�cient than other methods which makes
it applicable for problems with massive data sets. The greedy strategy has also been used
in data set prepossessing to select the best data points to train machine learning mod-
els on [54]. Some other machine learning applications of submodular maximization is in
recommender systems [45], image segmentation [40], and clustering [21].

2.2.4 Controls and Path planning

Submodularity has many applications in controls. As shown in [3, 17], the mean squared
error of a Kalman filter is approximately submodular with respect to the set of sensors
observing the system. The marginal gain of adding an individual sensor for state estimation
diminishes as more sensors are added. Even though the mean squared error for Kalman
filtering is only approximately submodular, the authors in [17] provide approximation
guarantees for a greedy sensor selection strategy. In a related problem, the author of [50] use
greedy optimization of a submodular objective to select actuators to ensure controlability
of a system. These greedy techniques have also been extended for robust target tracking
applications [49, 48, 56].

Submodularity has also played a role in informative path planning. As described
in [22, 6], suppose an agent is attempting to plan a path to maximize the information
retrieved from an environment. The authors present strategies where the agents utilize
a submodular objective that describe the information captured by a path to guide path
planning. Submodular functions model these systems well and using greedy optimization
techniques, provide guarantees for the quality of the paths planned.

9

Chapter 3

Background

3.1 Preliminaries

3.1.1 Submodular Functions

Let X be a set of base elements, and let 2X be the power set of the base set X which is
the set containing all of the subsets of X.

Definition 3.1.1 (Submodularity). A set function f : 2X ! R is submodular if for all
A ✓ B ✓ X and x 2 X\B, we have

f(A [{x})� f(A) � f(B [{x})� f(B). (3.1)

An alternative but, equivalent definition of a submodularity is provided in the following
lemma.

Lemma 3.1.2. A set function f : 2X ! R is submodular if and only if 8A,B ✓ X, we
have

f(A) + f(B) � f(A [B) + f(A \ B).

These definitions are used interchangeably in the literature.

For x, y 2 X and A ✓ X, we refer to f(A [{x}) � f(A) as the marginal return of x
given A, denoted by f(x|A). We denote the objective value of a singleton f({x}) by f(x).
We also denote the pairwise marginal return of x given y as f(x|y).

We will also consider submodular functions which possess the two following properties.

10

Definition 3.1.3 (Monotonicity). A set function f : 2X ! R is monotonic if for all
A ✓ B ✓ X, we have

f(A) f(B).

Definition 3.1.4 (Normalized). A set function f : 2X ! R is normalized if we have,

f(;) = 0.

We can write the values of a submodular function in terms of a telescoping sum of the
marginal returns. Let f : 2X ! R and S = {x1, . . . , xn} ⇢ X and Si = {x1, . . . , xi}, then

f(S) =
nX

i=1

f(xi|Si�1).

This identity is a useful when working with submodular functions. We also have the
following inequality for submodular functions,

nX

i=1

f(xi|Si�1)
nX

i=1

f(xi). (3.2)

A set function is consider to be modular if (3.2) holds with equality.

Another property of a submodular function that is relevant to this work is curvature.

Definition 3.1.5 (Curvature). Let f be a submodular function then, the curvature c of f
is defined as

c = 1� min
S✓X,x2X\S

f(x|S)

f(x)
. (3.3)

The curvature of a submodular function reflects how much the marginal values of f(x|S)
can decrease as a function of S.

3.1.2 Linear Programming

Linear programs are optimization problems where the objective function and constraints
are linear. A general linear program in standard form can be expressed as

min
x2Rn

c>x, (3.4)

s.t. Ax b,

x � 0.

11

where c 2 Rn, A 2 Rm⇥n, b 2 Rm. By [7], if the program has an optimal solution with finite
objective value, then x 2 Rn can be found using a polynomial algorithm. Given a linear
program in standard form, a black-box solver can be used to e�ciently find a solution.

3.1.3 Graph Theory

Let G = (V,E) be a directed graph with vertices V and edges E. A directed acyclic graph
(DAG), is a directed graph, where no cycles exist. Every DAG can be topologically sorted
such that there exist a labeling of vertices such that i < j for all (i, j) 2 E. The following
are three definitions that this work will utilize:

Definition 3.1.6 (Complete). A directed acyclic graph G = (V,E) is complete if no edge
can be added to E without introducing a cycle into the graph.

Definition 3.1.7 (Clique). A clique of a graph G = (V,E) is a sub-graph that is complete.

Definition 3.1.8 (Clique Number). Given a graph G = (V,E) the clique number of the
graph !(G) is the size of the largest clique.

In general, finding the maximum clique is di�cult. The decision version of the problem
called the clique problem is NP-complete [7]. Note, the number of cliques in a graph can
be exponential in the number of vertices.

3.2 Submodular Maximization Problem

3.2.1 Basic Problem

Suppose that you have a base set X and a monotone, normalized and submodular function
f : 2X ! R. We wish to solve the following problem.

max
S✓X

f(S) (3.5)

s.t. |S| n

This is the classic problem of maximizing a submodular function subject to a cardinal-
ity constraint. We generalize the constraints using the following definition, which is a
generalization of independence.

12

Definition 3.2.1 (Matroid). Let X be a finite set and I a non-empty collection of subsets
of X called the independent sets. The system M = (X, I) is called a matroid if:

1. A ✓ B ✓ X and B 2 I =) A 2 I

2. 8A,B 2 I and |A| < |B| =) 9 x 2 B\A such that A [{x} 2 I.

Let M = (X, I) be a matroid, then a generalized version of Problem 3.5 can be stated
as follows.

max
S✓I

f(S) (3.6)

s.t. |S| n

Problem 3.5 maximizes f over the uniform matroid. Another common matroid constraint
as seen in [12, 36, 5] is the maximizing over the partition matroid. Let {Xi}

n
i=1 be a

sequence of disjoints sets and X = [ni=1Xi. Then we wish to solve the following program.

max
S✓X

f(S) (3.7)

s.t. |S \Xi| k

8i 2 {1, . . . , n}

In general maximizing a submodular function subject to a cardinality constraint is a NP-
hard problem [33]. On the other hand, minimizing a submodular function can be done in
polynomial time [19].

3.2.2 The Greedy Algorithm

The primary algorithm that this work is based o↵ is the greedy algorithm for submodular
maximization. To produce an approximate solution S = {x1, . . . , xn} ✓ X to Problem 3.5,
we utilized the following algorithm.

13

Algorithm 1: Greedy Algorithm for Submodular Maximization
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 for i 1, . . . , n do
3 xi argmaxx2X\Si�1

f(x|Si�1);

4 Si Si�1 [{xi};
5 end
6 S Sn

This algorithm is basis for much of the research in submodular maximization, including
this work.

Approximation Performance

We recall, the result that we build o↵ throughout this work [37].

Theorem 3.2.2. (Nemhauser et. al 1978) Let f : 2X ! R be a normalized monotone
submodular function, S ✓ X be the solution produced by Algorithm 1 and S⇤

✓ X be the
solution to Problem 3.5, then

f(S) � (1� 1
e)f(S

⇤).

In general, this is the best approximation we can achieve for maximizing an arbitrary
submodular function subject to a cardinality constraint. In fact, the authors in [9] show
that no algorithm that uses a polynomial number of calls to the value oracle f can achieve a
better approximation factor than (1� 1

e) unless P = NP . To achieve tighter approximation
results we must make stronger assumptions about the function f . For example, if we assume
the function f has a curvature c, then we can achieve an approximation ratio of 1

c (1� e�c)
using the greedy strategy [51]. In general, for Problem 3.6 the greedy strategy provides a
1/2 approximation ratio and an approximation ratio of 1/(1 + c) given the curvature of f .

Time Complexity

Assuming that we have a value oracle for the function f which takes O(1) time to compute,
the classical greedy strategy takes O(|X| · n) time to execute. This is because during each
iteration of the algorithm, f(x|Si�1) must be computed for each x 2 X\Si�1 which takes

14

O(|X|) time. This set of operations is done n times to generate the solution, giving an
overall time complexity of O(|X| · n). As described in [28] and [35], the total number of
operations can be reduced by exploiting submodularity and lazy evaluations. Although, it
is faster to run, the algorithm still can have a worst-case time complexity of O(|X| · n) for
particular problem instances.

In practical applications, it is not possible to assume that f is a value oracle and
requires an algorithm to compute. We let Teval : N ! R+ be the cost of computing f on
S ✓ X of size n 2 N. Then, the total worst case time complexity of the greedy strategy is
O(|X| · n · Teval(n)).

15

Chapter 4

Submodular Maximization with
Limited Function Access

In this chapter we introduce the new problem of submodular maximization with limited
function access. We highlight the challenges the problem pose as well as present properties
of submodular functions that can be utilized to make the problem tractable. We purpose
multiple algorithms that prove to be e↵ective from a theoretical and experimental perspec-
tive. The main results for this chapter were submitted for publication and can be found
in [8].

4.1 Problem Definition

A key focus is to understand the limitations of algorithms that only have access to partial
information about the objective function. We make this precise in the next definition.

Definition 4.1.1 (k-wise Information). Given a submodular function f : 2X ! R, the
k-wise information is defined as the set of tuples {(S, f(S))|S ✓ X, |S| k}, where k 2 N
and k |X|. When k = 2, we refer to this set as pairwise information.

An algorithm that has access to k-wise information can use evaluations of f on sets
of size k or less to form decisions. We denote the class of such algorithms by ⇧k-wise, or
⇧pairwise when k = 2. The main objective that we have in mind is to study the Problem 3.5
with such limitations. More formally, we want to solve the following problem.

16

Problem 4.1.2 (k-wise Submodular Maximization Problem). Given a normalized, mono-
tone and submodular function f : 2X ! R, we wish to solve the following program,

max
S✓X

f(S)

s.t. |S| n.

Using an algorithm ⇡ that only has access to k-wise information about the function f , i.e.,
⇡ 2 ⇧k-wise.

For most of this chapter we will be focusing on the pairwise case when k = 2, but we
also show generalized results when k is larger. As previously described in the introduction,
in the case when k is small such as k = 2, the information limitation is severe. Let N = |X|,
then considering that there are 2N subsets that can be evaluated, we are restricting our
algorithms to only have access to evaluations for N(N + 1)/2 of those subsets. When
N = 10, the algorithm only has access to 4.4% of the possible function evaluations.

4.2 Inapproximability with k-wise Information

We begin with a negative result that addresses the inapproximability of Problem 4.1.2.

Theorem 4.2.1 (Inapproximability of Problem 4.1.2). Consider Problem 4.1.2 with k-wise
information. Then for every algorithm ⇡ 2 ⇧k-wise, there exists a normalized, monotone
and submodular function f : 2X ! R such that

f(S⇡)
k

n
f(S⇤),

where S⇡ is the solution constructed by ⇡ and S⇤ is the optimal solution.

Proof. We begin by constructing a normalized, monotone and submodular function f .
Consider a set X partitioned into two disjoint sets X = V [V ⇤, where |V ⇤

| = n and
|V | � n. We define the function f : 2X ! R�0 as:

f(S) = min{|S \ V |, k}+ |S \ V ⇤
|.

This function, given k it assigns a value of k to all sets of size k. The set V can be thought
of as the general set and V ⇤ as a special set where you are guaranteed to get value if you

17

select an element from V ⇤. However, the value for all sets S where |S| k, get mapped
their cardinality.

We now show that f is submodular. Consider any A ✓ B ✓ X and x 2 X\B, we show
that

f(x|A) � f(x|B).

First notice that f(x|A) and f(x|B) are each either 0 or 1, since adding an element can
increase the function by at most one. There are two cases to consider.

Case 1 (x 2 V ⇤): In this case f(x|A) = 1, since A [{x} has one more element in V ⇤

than A. Since f(x|B) 1, the result follows.

Case 2 (x 2 V): We assume that f(x|B) = 1 as otherwise the result holds. Since
f(x|B) = 1 and x 2 V , we must have |B \ V | k. This implies that |A \ V | k since
A ✓ B. Thus f(x|A) = 1 and the result holds.

We now show that f is normalized. If S = ; then

|S \ V | = |S \ V ⇤
| = 0

which implies that f(;) = 0 + 0 and therefore is normalized. Finally, we show that f is
monotone. Let A ⇢ B ✓ X, then

f(B) = f(A) + f(B\A|A) (4.1)

= f(A) +
|B\A|X

i=1

f(xi|A [{xi�1, . . . , x1}). (4.2)

Where B\A = {x1, . . . , x|B\A|}. By our original observation that f(x|S) can only take on
values 0 or 1 implies that

|B\A|X

i=1

f(xi|A [{xi�1, . . . , x1}) � 0.

Therefore we have,

f(A) +
|B\A|X

i=1

f(xi|A [{xi�1, . . . , x1}) � f(A), (4.3)

which proves that f is monotone.

18

Since f is normalized, monotone and submodular it is now a valid function for Prob-
lem 4.1.2. For any set S with |S| k we have that f(S) = |S|, which reveals no information
on which elements of S are in V or V ⇤. Hence, from the perspective of an algorithm in
⇧k-wise, the elements in X are indistinguishable. Given any algorithm ⇡ 2 ⇧k-wise, there
exists an assignment of the elements of X to V and V ⇤ such that f(S⇡) = k. Since
the optimal solution is S⇤ = V ⇤ achieving a value of f(S⇤) = n, we obtain the desired
result.

This result highlights the challenges that arise under k-wise information constraints.
As shown in the proof, there exist functions where their marginal returns with respect to
sets of size k or less, tell you nothing about the marginals with respect to the sets with
sizes greater than k.

19

Figure 4.1: Left: Set of sensor footprints that an algorithm could potentially select. The
objective is to select five sensors that maximize the area covered by the union of their
footprints. Right: A set of 5 sensors that maximize the objective.

The sensor coverage example depicted in Figure 4.1 can provide intuition into scenarios
where given pairwise information, an approximation algorithm could be derived. In Fig-
ure 4.1, the marginal returns of a single sensor given a subset of the other sensors can be
approximated by taking its area and subtracting the pairwise overlaps between itself and
other sensors footprints. The pairwise overlaps can be derived using only pairwise infor-
mation, therefore the pairwise information can be used to infer the values of the higher
order marginals. For example if the pairwise overlaps were large then we should expect
f(x|S) ⇡ 0 but if the pairwise overlaps were small then we should expect f(x|S) ⇡ f(x).
Notice in Figure 4.1, for the subset of sensors that maximize the area covered by their
union, there are no pairwise overlaps between the sensor footprints.

In this work, we focus primarily on the k = 2 case where algorithms only have access to
pairwise information, but we do provide some results for the general case. In the following
sections, we characterize submodular functions where the marginals returns of elements
with respect to sets of size k or smaller are informative of the higher order marginals. We
accomplish this by using new notions of curvature.

20

4.3 Pairwise Algorithms

4.3.1 Optimistic Algorithm

A natural strategy to tackle Problem 4.1.2 with a pairwise information constraint is to
greedily select elements that maximize an estimate of the marginal returns, similarly to [53].
First, note that

min
xj2A

f(x|xj) � f(x|A), (4.4)

which holds by submodularity of f , because for all xj 2 A, we have f(x|xj) � f(x|A). We
define a simple estimate of the marginal returns of f as the left hand side of (4.4)

f̄(x|A) := min
xj2A

f(x|xj). (4.5)

The pairwise marginal for all xj 2 A upper bounds f(x|A) and hence we choose the
minimum as it is the best available estimate of the true value of f(x|A). In a nearly
identical style to classical greedy strategy in Algorithm 1, we now define a new greedy
strategy.

Algorithm 2: Optimistic Greedy Algorithm
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 for i 1, . . . , n do
3 xi argmaxx2X\Si�1

f̄(x|Si�1);

4 Si Si�1 [{xi};
5 end
6 S Sn

Throughout this work we will refer to Algorithm 2 as the optimistic algorithm. In
essence, the optimistic algorithm aims to greedily select elements with the maximum po-
tential marginal returns.

4.3.2 Approximate Value Oracles

To characterize the performance of the optimistic algorithm, we consider the problem
through the lens of maximizing a submodular objective function via a surrogate objective

21

function. Following [53], we will discuss how to determine performance guarantees when
using such surrogates.

Let {x1, . . . , xn} ✓ X be the choices made by some algorithm. We denote the choices
selected after the i-th iteration of the algorithm by Si = {x1, . . . , xi} . Let {x

g
1, . . . , x

g
n} ✓ X

be the such that each xg
i maximize the marginal return of f given Si�1. More formally

defined as:
xg
i = argmax

x2X\Si�1

f(x|Si�1). (4.6)

The set {xg
1, . . . , x

g
n} ✓ X represents the elements that a greedy strategy with full infor-

mation about the objective f would have selected, given that it had previous selected Si�1.
Using these values, we can measure the quality of a given algorithm’s choices compared
to that of an algorithm with full information about the objective. We do this by finding
↵i 2 R+, for i 2 {1, . . . , n} such that

↵if(xi|Si�1) � f(xg
i |Si�1). (4.7)

By the greedy choice property of xg
i , we have that

f(xi|Si�1) f(xg
i |Si�1).

Hence, ↵i � 1 for all i 2 {1, . . . , n}. From this point on, we call each ↵i the approximation
factor associated with xi.

In the general framework proposed in [53], the objective is to greedily maximize multiple
surrogate objective functions to produce approximate solutions. For our problem where we
are constrained to use only pairwise information and we simply greedily maximize using a
single surrogate function f̄(x|S). We provide a simplified version of [53, Theorem 1] as
follows.

Theorem 4.3.1. Suppose that S = {x1, . . . , xn} ✓ X is the set of elements selected by
an algorithm and ↵i for i 2 {1, . . . , n} is the set of approximation factors corresponding S
that satisfy (4.7). Let S⇤ be the optimal solution to Problem 3.5. Then,

f(S) �
⇣
1� e�

1
n

Pn
i=1

1
↵i

⌘
f(S⇤). (4.8)

Given that we only maximize one surrogate function and in order to keep this work self
contained, we provide a simplified proof of this result.

22

Proof. Let S⇤ be the solution to Problem 3.5. Recall Proposition 2.1 from [37] that f is a
monotone submodular set function on X if and only if f(T) f(S)+

P
xj2T\S f(xj|S) for

all S, T ✓ X. If S is empty, then

f(S⇤)
X

x⇤
i2S⇤

f(x⇤
i) nf(x⇤

1) n↵1f(x1). (4.9)

Then if we apply the lemma again with Sj, we have

f(S⇤) f(Sj) +
X

x⇤
j2S⇤\Sj

f(x⇤
j |Sj). (4.10)

We also know that

↵j+1f(xj+1|Sj) � max
x2X\Sj

f(x|Sj) � f(x⇤
j |Sj). (4.11)

We now substitute (4.11) into (4.10) and write f(Sj) as sum of its marginals to get the
following:

f(S⇤) f(Sj) +
X

x⇤
j2S⇤\Sj

↵j+1f(xj+1|Sj)

jX

i=1

f(xi|Si�1) + n↵j+1f(xj+1|Sj). (4.12)

Equation (4.12) holds since |S⇤
\Sj| n. We will now rearrange (4.12) to get,

f(xj+1|Sj) �
1

↵j+1n
f(S⇤)�

1

↵j+1n

jX

i=1

f(xi|Si�1). (4.13)

Now we will add
Pj

i=1 f(xi|Si�1) to both sides of (4.13) and simplify,

j+1X

i=1

f(xi|Si�1) �
1

↵j+1k
f(S⇤) +

↵j+1k � 1

↵j+1k

jX

i=1

f(xi|Si�1). (4.14)

We will now prove by induction on j that

jX

i=1

f(xi|Si�1) �

Qj
i=1(↵in)�

Qj
i=1(↵in� 1)

Qj
i=1(↵in)

f(S⇤).

23

For base case j = 1 we will use (4.9) to get

f(x1) �
1

↵1n
f(S⇤).

Therefore proving the base case. Now assuming the claim holds for j � 1. We will apply
the inductive hypothesis to equation (4.14),

jX

i=1

f(xi|Si�1) �
1

↵jn
f(S⇤) +

↵jn� 1

↵j
·

Qj�1
i=1 (↵in)�

Qj�1
i=1 (↵in� 1)

Qj�1
i=1 (↵in)

f(S⇤). (4.15)

Then after rearranging, we arrive at

f(Sj) �

Qj
i=1(↵in)�

Qj
i=1(↵in� 1)

Qj
i=1(↵in)

f(S⇤),

proving the inductive hypothesis. If we take j = n, we arrive at

f(Sn) �

Qn
i=1(↵in)�

Qn
i=1(↵in� 1)Qn

i=1(↵in)
f(S⇤).

We will now lower bound right coe�cients on f(S⇤) to simplify the bound. We can now
cancel out the denominator of the coe�cient to get,

Qn
i=1(↵in)�

Qn
i=1(↵in� 1)Qn

i=1(↵in)
= 1�

nY

i=1

↵in� 1

↵in
(4.16)

= 1�
nY

i=1

✓
1�

1

↵in

◆
. (4.17)

We can now upper bound each term in the product using 1 + x ex with x = 1
↵in

to get
a lower bound,

1�
nY

i=1

✓
1�

1

↵in

◆
� 1�

nY

i=1

e�
1

↵in (4.18)

= 1� e�
1
n

Pn
i=1

1
↵i . (4.19)

Using this lower bound yields our result.

24

Note that Theorem 4.3.1 relies on f being a normalized, monotone, and submodular
function. This result can be applied to any algorithm for Problem 3.5, not just algorithms
that only have access to pairwise information. An interesting remark about Theorem 4.3.1,
is that the performance depends essentially on the average of the approximation factors.
Some of these factors could be large compared to the others, but as long as most of them
are small, adequate performance is maintained.

4.3.3 Optimistic Algorithm Approximation Performance

We aim to provide approximation guarantees for the optimistic algorithm. To give intuition
for what we are about to present, we consider the following example.

25

Figure 4.2: Example sensor coverage configuration where the optimistic algorithm performs
better than uninformed greedy strategy.

Example 4.3.2. Consider the scenario depicted in Figure 4.2. Here, we wish to select four
sensors that maximize the area of their combined footprints. One of the simplest algorithms
that satisfies the pairwise information constraint is the uninformed greedy strategy which
is described in Algorithm 3.

Algorithm 3: Uninformed Greedy Algorithm
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 for i 1, . . . , n do
3 xi argmaxx2X\Si�1

f(x);

4 Si Si�1 [{xi};
5 end
6 S Sn

We refer to Algorithm 3 as uninformed because it only uses the most basic information
about f , which is its evaluation of single elements. Using the uniformed greedy strategy
in the scenario described in Figure 4.2 could potentially lead to poor performance. This
strategy cannot distinguish between its choices and therefore could select four sensors that
almost perfectly overlap with each other(i.e., in the same pile), resulting in a low objective
value. Alternatively, if we had used the optimistic algorithm, once one element is selected

26

from a pile, the pairwise upper bound (4.5) for the other elements in the same pile would
be low. In later iterations, the optimistic algorithm would avoid selecting elements from
piles where previous elements have been selected from. Interestingly, we see that for each
i, the di↵erence between f(xi|Si�1) and f̄(xi|Si�1) is small for elements selected by the
optimistic algorithm. We notice that in these scenarios, the value of f̄(xi|Si�1) provides
accurate information about the value f(xi|Si�1).

This is the idea we wish to capture in the following result.

Theorem 4.3.3. Let Si�1 = {x1, . . . , xi�1} ✓ X be the partial solution of optimistic
algorithm after (i � 1) iterations, and let xi 2 X be the element selected during the i-th
iteration. Then we have that,

↵opt
i =

(
1 i 2 {1, 2}
f̄(xi|Si�1)
f(xi|Si�1)

i > 2
, (4.20)

satisfy (4.7) for all i n.

Proof. Let xg
i be the true greedy choice at iteration i given Si�1 given by (4.6). For

i 2 {1, 2}, we have that
f̄(x|Si�1) = f(x|Si�1).

Hence, xi = xg
i and therefore, we can let ↵opt

1 = ↵opt
2 = 1. For i > 2, based on from (4.7)

let ↵min
i be the smallest value such that (4.7) holds, which can be written as

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)
. (4.21)

Any approximation factor ↵i such that ↵i � ↵min
i will satisfy (4.7). We will now upper

bound ↵min
i as follows:

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)

f̄(xg

i |Si�1)

f(xi|Si�1)
(4.22)

f̄(xi|Si�1)

f(xi|Si�1)
, (4.23)

where (4.22) holds by definition and (4.23) holds by the greedy choice property of the
optimistic algorithm. Setting ↵opt

i to be the right hand side of (4.23) for i > 2, we conclude
the proof.

27

The following corollary is an immediate consequence of Theorem 4.3.3.

Corollary 4.3.4. Let S ✓ X be the solution produced by the optimistic algorithm and Si�1

be the partial solution after (i� 1) iterations of the optimistic algorithm and let xi 2 X be
the element selected during the i-th iteration, then we have

f(S) �

1� e

� 1
n

✓
2+

Pn
i=3

f(xi|Si�1)

f̄(xi|Si�1)

◆!
f(S⇤), (4.24)

where S⇤ is the solution to Problem 4.1.2 with k = 2.

The result immediately follows combining Theorem 4.3.1 and Theorem 4.3.3 together.

We see that the approximation performance of the algorithm is dictated by the sum in
the exponent of (4.24). We can interpret the exponent as the mean of the set,

⇢
1, 1,

f(x3|S2)

f̄(x3|S2)
, . . . ,

f(xn|Sn�1)

f̄(xn|Sn�1)

�
.

This implies that, to get adequate performance from the optimistic algorithm, we need the
value of f̄(xi|Si�1) to be close to f(xi|Si�1) on average.

We also see that f(xi|Si�1)
f̄(xi|Si�1)

is closely related to the tradition notion of curvature described
in Definition 3.1.5. Let us define a new notion of curvature.

Definition 4.3.5 (k-Marginal Curvature). The k-marginal curvature of a submodular func-
tion f given S ✓ X and x 2 X\S is defined as

ck(x|S) = 1� max
A✓S,|A|<k

f(x|S)

f(x|A)
. (4.25)

To analyze the optimistic algorithm that only has access to pairwise information, we
will work with the 2-marginal curvature, which can be written as

c2(x|S) = 1�
f(x|S)

f̄(x|S)
.

This allows us to rewrite (4.24) as follows,

f(S) �
⇣
1� e�

1
n(2+

Pn
i=3 1�c2(xi|Si�1))

⌘
f(S⇤). (4.26)

We can characterize the worst case performance of the optimistic algorithm in terms of
the average of the 2-marginal curvatures, which capture the intuition in Example 4.3.2. In
Figure 4.2, the elements will have 2-marginal curvatures close to zero, resulting in a strong
approximation bound.

28

Remark 4.3.6. This 2-marginal curvature is similar to the traditional notion of curvature in
Definition 3.1.5, but characterizes the relationship between the values of the pairwise upper
bounds f̄(x|S) and true values of f(x|S). A key di↵erence between the two definitions, is
there exists situations where the values of the 2-marginal curvatures can be close to 0 even
though the value of the traditional curvature is close to 1. The sensor coverage function,
described in Figure 4.2, is an example of a function where the traditional curvature is close
to 1 and the values of the 2-marginal curvatures are close to 0.

4.3.4 Extension to k-wise Information

The analysis from Subsection 4.3.3 can be naturally extended to the problem with k-wise
information. Suppose that we wish to solve Problem 4.1.2 using an algorithm with k-
wise information. We extend the pairwise optimistic algorithm to the k-wise optimistic as
follows. Let us define a new upper bound on the marginal returns using k-wise information.
Let x 2 X and S ✓ X, then we have the following upper bound

min
A✓S,|A|<k

f(x|A) � f(x|S), (4.27)

which holds by submodularity of f . We will denote the left hand side of (4.27) as

f̄k(x|S) := min
A✓S,|A|<k

f(x|A).

Let us define the k-wise optimistic algorithm.

Algorithm 4: k-wise Optimistic Greedy Algorithm
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 for i 1, . . . , n do
3 xi argmaxx2X\Si�1

f̄k(x|Si�1);

4 Si Si�1 [{xi};
5 end
6 S Sn

By submodularity we have that f̄(x|S) � f̄k(x|S) � f(x|S) for k > 1. Our result is
stated next.

29

Theorem 4.3.7. Let Si�1 ✓ X be the partial solution of k-wise optimistic algorithm after
(i � 1) iterations and xi 2 X be the element selected during the i-th iteration. Then, we
have

↵opt,k
i =

(
1 i k
f̄k(xi|Si�1))
f(xi|Si�1)

i > k
, (4.28)

satisfy (4.7) for all i n.

The proof follows similarly to the proof of Theorem 4.3.3.

Proof. Let xg
i be the true greedy choice at iteration i given Si�1. For i k we have that

xi = xg
i by the definition of f̄k(xi|Si�1). Therefore we have, ↵opt,k

1 = · · · = ↵opt,k
k = 1. The

minimum possible approximation factor we have can be written as

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)
. (4.29)

Any approximation factor ↵i such that ↵i � ↵min
i will satisfy equation (4.7). We will now

upper bound ↵min
i as follows,

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)

f̄k(x

g
i |Si�1)

f(xi|Si�1)
(4.30)

f̄k(xi|Si�1)

f(xi|Si�1)
, (4.31)

where (4.30) holds by the definition of the upper bound (4.27). Equation (4.31) holds by
the greedy choice property of the k-wise optimistic algorithm. Therefore the right hand
side of (4.31) is a valid approximation factor. We set ↵opt,k

i to the right hand side of (4.31)
for i > k, we conclude our proof.

The following corollary is an immediate consequence of Theorem 4.3.7.

Corollary 4.3.8. Let S ✓ X be the solution produced by the k-wise optimistic algorithm
and Si�1 ✓ S be the partial solution after (i� 1) iterations of the algorithm and let xi 2 S
be the element selected at the i-th iteration, then we have

f(S) �

1� e

� 1
n

✓
k+

Pn
i=k+1

f(xi|Si�1)

f̄k(xi|Si�1)

◆!
f(S⇤). (4.32)

30

Where S⇤ is the solution to Problem 4.1.2.

Note that using this result and definition 4.3.5, we can write (4.32) as

f(S) �
⇣
1� e�

1
n(k+

Pn
i=k+1 1�ck(xi|Si�1))

⌘
f(S⇤). (4.33)

Comparing this to the scenario with pairwise information, we see that access to more
information improves approximation guarantees. In particular, since c2(x|S) � ck(x|S) for
all S ✓ X and x 2 X\S, we can guarantee that

1

n

k +

nX

i=k+1

1� ck(xi|Si�1)

!
�

1

n

2 +

nX

i=3

1� c2(xi|Si�1)

!
. (4.34)

This implies that the approximation bound in Corollary 4.3.8 is tighter than Corollary 4.3.4.

Having access to k-wise information provide us with stronger approximation bounds,
but we trade-o↵ computation performance. We are required to compute the minimum
marginal over all subsets A ✓ Si�1, where |A| k for each x 2 X during each iteration
of Algorithm 4. When k |Si�1|, we need to search

�|Si�1|
k�1

�
subsets of Si�1 to find the

minimum. This becomes computationally expensive as Si�1 grows larger. If k = 3, the
computation for each marginal estimate is quadratic in |Si�1|. From a practical perspective,
we can actually compute the pairwise optimistic algorithm e�ciently; We will discuss this
in Section 4.5.

4.3.5 General Performance Bound for k-wise Optimistic Algo-
rithm

From the analysis in Sections 4.3.3 and 4.3.4 we notice that for the bound in Corollary 4.3.8
to be computed, the function evaluations of selected elements must be known. This may
not be desirable in some applications due to the fact that the user will have to run the
algorithm (which could potentially be expensive) to know the performance bounds. We
can provide a bound that is potentially weaker but does not require us to know the selected
elements x1, . . . , xn 2 X before computing.

Let us define similar a notion of curvature to the k-marginal curvature but is closer to
the tradition notion in Definition 3.1.5.

31

Definition 4.3.9 (Total k-Marginal Curvature). Let f be a submodular function then, the
curvature c̄k of f is defined as,

c̄k = 1� min
S✓X,x2X\S

f(x|S)

f̄k(x|S)
. (4.35)

Using this definition we can follow a similar process to arrive at a approximation bound
for the k-wise optimistic algorithm.

Theorem 4.3.10. Let S ✓ X be the solution produced by the k-wise optimistic algorithm,
and S⇤

✓ X be the solution to Problem 4.1.2, then we have

f(S) �
⇣
1� e�(1�

n�k
n c̄k)

⌘
f(S⇤) �

�
1� e�(1�c̄k)

�
f(S⇤). (4.36)

Proof. Let S = {x1, . . . , xn} be the solution produced by the k-wise optimistic algorithm,
and Si = {x1, . . . , xi}. Let xg

i be the true greedy choice at iteration i given Si�1. Let
↵1, . . . ,↵n be the approximation factors for the solution S. For i k we have that xi = xg

i

by the definition of f̄k(xi|Si�1). Therefore we have, ↵1 = · · · = ↵k = 1. The minimum
possible approximation factor, can be written as

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)
. (4.37)

Any approximation factor ↵i such that ↵i � ↵min
i will satisfy equation (4.7). We will

now upper bound ↵min
i as follows for i > k,

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)

f̄k(x

g
i |Si�1)

f(xi|Si�1)
(4.38)

f̄k(xi|Si�1)

f(xi|Si�1)
(4.39)

 max
S̄✓X,x2X\S̄

f̄k(x|S̄)

f(x|S̄)
,

where (4.38) holds by the definition of the k-wise upper bound, and (4.39) holds by the
greedy choice property of the k-wise optimistic algorithm. To use Theorem 4.3.1 to produce
an approximation bound we need to use the inverse of the approximation factor,

32

1

↵i
=

1

maxS̄✓X,x2X\S̄
f̄k(x|S̄)
f(x|S̄)

= min
S̄✓X,x2X\S̄

f(x|S̄)

f̄k(x|S̄)
(4.40)

= 1� c̄k, (4.41)

where (4.40) holds since f̄k(x|S̄) � f(x|S̄) for all S̄ ✓ X, x 2 X\S̄ and (4.41) holds by
the definition of total k-marginal curvature. We will now substitute in 1

↵1
, . . . , 1

↵n
into

Theorem 4.3.1 and simplify to arrive at the approximation bound,

f(S) �
⇣
1� e�(1�

n�k
n c̄k)

⌘
f(S⇤)

�
�
1� e�(1�c̄k)

�
f(S⇤), (4.42)

where (4.42) holds since 1� n�k
n c̄k � 1� c̄k, concluding the proof.

Theorem 4.3.10 shows that the k-wise optimistic algorithm provides a constant factor
approximation for Problem 4.1.2 which is dependent on this new notion of curvature. Al-
though, the performance bounds are not as tight as Corollary 4.3.8, it does show that the
fundamental quantity that underlies the performance of the k-wise optimistic algorithm is
the total k-marginal curvature. We do not provide experiments showing the approxima-
tion bounds produced by Theorem 4.3.10 since the bound produced by Corollary 4.3.8 is
stronger.

4.4 Pairwise Algorithms Utilizing Supermodularity of
Conditioning

In this section we introduce an additional property that a submodular function can possess
which is useful when we only have access to pairwise information. The property is called
supermodularity of conditioning and is related to monotonicity and allows us to compute
performance bounds for algorithms “post-hoc” using only pairwise information.

33

4.4.1 Post-Hoc Approximation Performance Bounds

To characterize the approximation performance of an algorithm ⇡ 2 ⇧pairwise using The-
orem 4.3.3, we are required to compute the full marginal of the function f , which may
not be available in practice. Alternatively we can execute an algorithm ⇡ and produce a
solution

S⇡ = {x⇡
1 , . . . , x

⇡
n},

which can be used determine an approximation ratio � 2 [0, 1] such that

f(S⇡) � �f(S⇤),

where S⇤ is the optimal solution to Problem 4.1.2. This is done by bounding ↵i in (4.7)
using only pairwise information and applying Theorem 4.3.1. As described in the proof of
Theorem 4.3.3, the smallest value of ↵i that will satisfy (4.7) is ↵min

i .

Let S⇡
i = {x⇡

1 , . . . , x
⇡
i } ✓ X, be the partial solution of S⇡. Let {xg

1, . . . , x
g
n} ✓ X be the

set of elements defined by (4.6) with Si = S⇡
i . Then, we have that

↵min
i =

f(xg
i |S

⇡
i�1)

f(x⇡
i |S

⇡
i�1)

maxx2X\S⇡
i�1

f̄(x|S⇡
i�1)

f(x⇡
i |S

⇡
i�1)

. (4.43)

By lower bounding f(x⇡
i |S

⇡
i�1) using only pairwise information, we obtain an ↵i that sat-

isfies (4.7), and therefore Theorem 4.3.1 allows us to find an approximation ratio �.

If we impose an additional monotonicity property on f called supermodularity of con-
ditioning, then we are able to find a lower bound on the marginal returns of f using only
pairwise information.

Definition 4.4.1 (Supermodularity of Conditioning). A submodular function f possess the
property of supermodularity of conditioning if for all S ✓ X, A ✓ B ✓ X and C ✓ X\B,
we have that

f(S|A)� f(S|A,C) � f(S|B)� f(S|B,C). (4.44)

Supermodularity of conditioning is a higher order monotonicity property which de-
scribes how the redundancy between two sets are a↵ected by conditioning. Suppose that
A = ;, the redundancy between S and C is f(S) � f(S|C). If both terms are further
conditioned by a set B, then the di↵erence between the terms will be reduced. Meaning
that

f(S)� f(S|C) � f(S|B)� f(S|B,C).

34

Supermodularity of conditioning has been used in the context of distributed submodular
maximization in [5]. Some notable examples of functions that exhibit supermodularity of
conditioning are weighted set coverage, area coverage and probabilistic set coverage. We
recall the following result from [5].

Lemma 4.4.2 (Pairwise Redundancy Bound). Let f : 2X ! R be a submodular function,
that exhibits supermodularity of conditioning and let A,B,C ✓ X be disjoint subsets. Then

f(A|B)� f(A|B,C)
X

c2C

f(c)� f(c|A). (4.45)

We can now state the following result which establishes a lower bound on the marginal
returns of f .

Theorem 4.4.3 (Pairwise Marginal Lower Bound). Let f be a submodular function that
exhibits supermodularity of conditioning. Then for S ✓ X and x 2 X\S, we have

f(x|S) � f(x)�
X

xj2S

f(x)� f(x|xj). (4.46)

Proof. Since f exhibits supermodularity of conditioning, applying Lemma 4.4.2 with A =
{x}, B = ; and C = S, we have

f(x)� f(x|S)
X

xj2S

f(xj)� f(xj|x)

=
X

xj2S

f(x)� f(x|xj), (4.47)

where the last equality hold by the definition of the marginal return, yielding the result.

For x 2 X and S ✓ X we define

f(x|S) := f(x)�
X

xj2S

f(x)� f(x|xj).

We can now directly use the lower bound on the marginal returns to bound ↵min
i . Now we

have that ↵min
i ↵pairwise

i , where

↵pairwise
i =

(
maxx2X\S⇡

i�1
f̄(x|S⇡

i�1)

f(x⇡
i |S⇡

i�1)
f(x⇡

i |S
⇡
i�1) > 0

1 f(x⇡
i |S

⇡
i�1) 0

. (4.48)

35

Now ↵pairwise
i satisfies (4.7) and is computable using only pairwise information. Note

that we need to set ↵pairwise
i =1 when f(x⇡

i |S
⇡
i�1) 0 as otherwise, the resulting ↵pairwise

i

would not upper bound ↵min
i . We now present an Algorithm 5 that given ⇡ 2 ⇧pairwise and

pairwise information about f , produces an approximation bound � such that the solution
S⇡ satisfies f(S⇡) � �f(S⇤).

Algorithm 5: Pairwise Information Post-Hoc Bound
Input: Base set X and S⇡

✓ X
Result: � such that f(S) � �f(S⇤)

1 S⇡
0 ;;

2 for i 1, . . . , n do
3 select x⇡

i from S⇡
\S⇡

i�1;
4 if f(x⇡

i |S
⇡
i�1) > 0 then

5 ↵i
maxx2X\S⇡

i�1
f̄(x|S⇡

i�1)

f(x⇡
i |S⇡

i�1)
;

6 else
7 ↵i 1;
8 S⇡

i S⇡
i�1 [{x⇡

i };
9 end

10 � 1� e�
1
n

Pn
i=1

1
↵i ;

Algorithm 5 provides us a means to find performance bounds for an arbitrary algorithm
⇡ given only pairwise information about f . This does not guarantee the performance before
execution, but it does provide a method to verify performance of an algorithm without
having to explicitly compute f(S⇡) and f(S⇤).

We end this section with a few remarks about supermodularity of conditioning and the
lower bound.

Remark 4.4.4. (On Supermodularity of Conditioning) Note that assuming f possess super-
modularity of conditioning does not a↵ect the hardness results for submodular maximiza-
tion. As shown in [5], the weighted set cover problem objective possesses supermodularity
of conditioning and hardness results still exist for the problem.

Remark 4.4.5. (On Lower Bound Interpretation) We used the intuition from area and set
coverage functions to find the pairwise lower bound. For example, let f be the set coverage
function

f(S) = |[xs2SAxs | .

36

Where | · | denotes the cardinality of a set and each Ax is a set that uniquely correspond
to an element x 2 X. We can interpret the marginal gain of adding x 2 X to S ✓ X as

f(x|S) = |Ax|� |Ax \ ([xs2SAxs)| .

If we expand the last term using the inclusion-exclusion principle and then truncate the
sum to the first order terms, we yield a lower bound [13] as follows,

f(x|S) � |Ax|�

X

xs2S

|Ax \ Axs |.

Which can be rewritten as,

f(x|S) � f(x)�
X

xs2S

f(x)� f(x|xs),

which is the same form as the lower bound in (4.47). We utilized supermodularity of
conditioning to generalize this idea to a larger class of submodular functions that are not
necessarily coverage functions.

4.4.2 Pessimistic Algorithm

Next, we propose another pairwise algorithm which we call the pessimistic algorithm.

Algorithm 6: Pessimistic Greedy Algorithm
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 for i 1, . . . , n do
3 xi argmaxx2X\Si�1

f(x|Si�1);

4 Si Si�1 [{xi};
5 end
6 S Sn

Similar to the optimistic algorithm, we greedily select elements with the highest guaran-
teed value. This is equivalent to greedily minimizing the approximation factors ↵pairwise

i in
Algorithm 5. What di↵ers from the optimistic algorithm is that we require the additional
assumption of supermodularity of conditioning on the objective function. This algorithm

37

enjoys similar guarantees as the optimistic algorithm when curvature assumptions are made
but can outperform in certain scenarios. Later, in our experimental results we show the
e↵ectiveness of the pessimistic algorithm for a probabilistic coverage problem.

Using another alternative definition of curvature, we can produce a similar performance
bound as the optimistic algorithm. Let us define the k-cardinality curvature as follows.

Definition 4.4.6 (k-Cardinality Curvature). We define the k-cardinality curvature ⌧k as

⌧k = 1� min
A✓X,|A|<k,x2X\A

f(x|A)

f(x)
. (4.49)

What di↵ers between this notion of curvature and the k-marginal curvature, is that it
compares the values of the marginal of x with respect to sets with size less than k to the
values of f evaluated on single elements. The 2-cardinality curvature can be written as

⌧2 = 1� min
y2X,x2X\{y}

f(x|y)

f(x)
.

We will use this definition to prove the following result for the pessimistic algorithm.

Theorem 4.4.7. Let f be a normalized, monotone and submodular function that possesses
supermodularity of conditioning. For the solution produced by the pessimistic algorithm the
approximation factors,

↵pes
i =

(
1 i 2

1
1�min{(i�1)⌧2,1} i > 2

, (4.50)

satisfy (4.7) for all i n.

Proof. Let S = {x1, . . . , xn} be the solution produced by the pessimistic algorithm and
Si = {x1, . . . , xi}. Let x

g
i be the true greedy choice at iteration i given Si�1. For i = {1, 2},

we have that
f(x|Si�1) = f(x|Si�1).

Hence, xi = xg
i and therefore, we can let ↵pes

1 = ↵pes
2 = 1. Using the definition of the

2-cardinality curvature we have the following inequalities. First,

⌧2 � 1�
f(x|y)

f(x)
, (4.51)

38

for all x, y 2 X, which holds by definition of ⌧2. Next using the lower bound (4.46), we
have

f(x|S) � f(x)�
X

xj2S

f(x)� f(x|xj)

= f(x)

0

@1�
X

xj2S

1�
f(x|xj)

f(x)

1

A

� f(x)(1� |S|⌧2).

Since we know that f(x|S) � 0, then we have

f(x|S) � max{f(x|S), 0} � f(x)(1�min{|S|⌧2, 1}). (4.52)

Using these inequalities we can bound the minimum achievable approximation factor as
follows:

↵min
i =

f(xg
i |Si�1)

f(xi|Si�1)

f(xg

i |Si�1)

max{f(xi|Si�1), 0}
(4.53)

f(xg

i |Si�1)

max{f(xg
i |Si�1), 0}

(4.54)

f(xg

i |Si�1)

f(xg
i)(1�min{(i� 1)⌧2, 1})

(4.55)

1

1�min{(i� 1)⌧2, 1}
. (4.56)

Where (4.53) holds by the definition of the lower bound, (4.54) holds by the greedy choice
property of the pessimistic strategy and finally (4.55) holds by (4.52). Therefore if we set
↵pes
i to the right hand side of equation (4.56) for i > 2, then ↵pes

i is a valid approximation
factor for Theorem 4.3.1.

The following corollary immediately follows.

Corollary 4.4.8. Let S ✓ X be the solution produced by the pessimistic algorithm, then
we have

f(S) �
⇣
1� e�

1
n(2+

Pn
i=3(1�min{(i�1)⌧2,1}))

⌘
f(S⇤). (4.57)

39

Similar to the optimistic algorithm, we see that if ⌧2 is small, f(x|S) closely represents
the true value of f(x|S). This bound on performance can be loose relative to the bound
produced by Algorithm 5 due to (4.52) being coarse. The post-hoc bound produced by
Algorithm 5 will provide a tighter bound on performance than Corollary 4.4.8.

Remark 4.4.9. The new notions of curvature defined in Definitions 4.3.5 and 4.4.6 are
related to the traditional definition of curvature. Let c be the traditional curvature as
described in Definition 3.1.5, let S ✓ X and x 2 X\S, both the k-marginal and k-
cardinality curvature have similar inequalities.

c � ck(x|S) and c � ⌧k.

There are scenarios where c can be 1 and either c2(x|S) or ⌧2 can be small. In Figure 4.1,
we see that ⌧2 will be small but c(x|S) can be large. In Figure 4.1, let us denote the
disks by their numbers di and let the area of each disk be equal to 1. Let x = d6 and let
S = {d5, d7, d8}. Then c2(x|S) will be large because f̄(x|S) ⇡ 2/3 and f(x|S) ⇡ 0. As
previously described, ⌧2 is small in this example because for the two disks, x = d5 and
y = d6 with the most overlap, we have f(x|y) ⇡ 2/3 and f(x) = 1. Figure 4.2, describes
the opposite case where ⌧2 ⇡ 1 and c2(x|S) ⇡ 0 for any S 2 X and x 2 X\S.

Remark 4.4.10. It turns out that ⌧k and c̄k are closely related. We can rewrite the definition
of ⌧k as follow:

⌧k = 1� min
A✓X,|A|<k,x2X\A

f(x|A)

f(x)

= 1� min
S✓X,x2X\S,A✓S,|A|<k

f(x|A)

f(x)

= 1� min
S✓X,x2X\S

minA✓S,|A|<k f(x|A)

f(x)

= 1� min
S✓X,x2X\S

f̄k(x|S)

f(x)
.

This means that ⌧k and c̄k only di↵er in weather the upper bound on the marginal is in
the numerator or the denominator. The traditional curvature is written as

c = 1� min
S✓X,x2X\S

f(x|S)

f(x)
.

We can interpret both c̄k and ⌧k as truncating the fraction in two di↵erent ways, both of
which result in,

c � c̄k and c � ⌧k.

40

If we truncate the numerator of c we provide performance bounds for the pessimistic
algorithm and if we truncate the denominator we provide performance bounds for the
optimistic algorithm.

4.4.3 Comparison of Pairwise Algorithms

Tightness of Bounds

We can compare the performances of the optimistic and pessimistic algorithms by com-
paring the exponents in (4.26) and (4.57). Note that the algorithms will have the best
approximation bounds if the exponents evaluate to -1. The performance of each algorithm
is dependent on the corresponding notions of curvatures. For the optimistic algorithm,
we wish that the 2-marginal curvatures are close to zero for each xi and Si�1. For the
pessimistic algorithm we instead wish that the 2-cardinality curvature is close to zero.
One downside that the pessimistic algorithm has is that each term of the sum has the
2-cardinality curvature multiplied by (i � 1). This means that when the cardinality con-
straint n is large, the min{(i�1)⌧2, 1} will saturate, resulting in the later terms of the sum
to evaluate to 0, hindering the guaranteed performance of the pessimistic algorithm.

Assumptions Required

It is important to note that the pessimistic algorithm requires that the function f possesses
the property of supermodularity of conditioning. This is a strong assumption on the
function and limits the number of applications where the pessimistic algorithm can be
applied. The optimistic algorithm on the other hand can be applied to any submodular
function. An advantage of the pessimistic algorithm, is that the performance bound is
computable only using pairwise information. The performance bounds of the optimistic
algorithm requires the ability to compute the objective function on sets of arbitrary size.

Empirical Results

As we show in our experimental results Section 4.6, for the particular problem we explore,
the pessimistic algorithm tends to out perform the optimistic algorithm in terms of the ap-
proximation performance. Our experiments by no means show how the algorithms perform
in every situation but highlights the potential performance of the two pairwise algorithms.

41

4.5 Time Complexity Analysis

A practical issue with the classical greedy strategy is that for large problems, it can be
expensive to compute [28, 35]. As previously described, it is a common assumption in the
literature that we have a value oracle for the submodular objective, that is computable in
constant time. This leads to a time complexity that is linear in both the size of X and
magnitude of n. As described in Subsection 3.2.2, the time complexity of the traditional
greedy strategy, is O(|X| · n · Teval(n)), where Teval describes the cost of evaluating f given
a the size of the input set S.

The pairwise algorithms can exploit the evaluations of f(A) on sets A ✓ X where
|A| 2, to achieve significant time complexity improvements. The cost of computing
f(x|y) for x, y 2 X can be considered constant for algorithms in ⇧pairwise. This is because
and algorithm ⇡ 2 ⇧pairwise can only evaluate f on sets of size 1 and 2 which is independent
of the size of the inputs |X| and n.

Although, the optimistic and pessimistic algorithms are able to provide approximation
guarantees based on properties of f , we see that they can present computational challenges.
If they are naively implemented as in Algorithm 2 and 6, the cost of computing each
f̄(x|X) or f(x|S) in the argmax is O(|S|). In optimistic algorithm, for each f̄(x|S), we
are computing the minimum f(x|y) over y 2 S. In the pessimistic algorithm, for each
f(x|S), we are computing a sum of f(x)� f(x|y) for y 2 S. Essentially if we treat f̄(x|S)
and f(x|S) as surrogates for f(x|S), we are executing a greedy strategy with evaluation
cost Teval(|S|) = |S|, resulting in an overall time complexity of O(|X| · n · n) for both
algorithms.

The naive implementation of the optimistic and pessimistic algorithms would only
provide time complexity improvements if, the cost of executing f on sets S had time
complexity larger than O(n). Thankfully, we are able to avoid the linear computation cost
of f̄(x|S) and f(x|S) by utilizing the following two recursive definitions.

Let S = {x1, . . . , xn} ✓ X be the set selected by a pairwise algorithm and Si =
{x1, . . . , xi}. Both f̄(x|S) and f(x|S) have the recursive definitions. For the upper bound
we have that for each x 2 X,

f̄(x|Si) = min
xj2Si

{f(x|xj)}

= min{ min
xj2Si�1

{f(x|xj)}, f(x|xi)}

= min{f̄(x|Si�1), f(x|xi)}. (4.58)

42

Similarly, for the lower bound have that for each x 2 X,

f(x|Si) = f(x)�
X

xj2Si

f(x)� f(x|xj)

= f(x)�
X

xj2Si�1

f(x)� f(x|xj)� (f(x)� f(x|xi))

= f(x|Si�1)� (f(x)� f(x|xi)). (4.59)

We present a generalized pairwise algorithm, which e�ciently implements both the opti-
mistic and pessimistic algorithms.

Algorithm 7: Fast Pairwise Greedy Algorithm
Input: Base set X, submodular function f and cardinality constraint n
Result: Approximate solution S ✓ X

1 Si ; for all i 2 {0, . . . , n};
2 fest(x|S0) f(x) for all x 2 X;
3 for i 1, . . . , n do
4 xi argmaxx2X\Si�1

fest(x|Si�1);

5 Si Si�1 [{xi};
6 fest(x|Si) BOUND(fest(x|Si�1), x, xi) for all x 2 X\Si;
7 end
8 S Sn

In Algorithm 7, fest(x|Si�1) represents the marginal estimate f̄(x|Si�1) or f(x|Si�1)
depending if the optimistic or pessimistic algorithm is executed. BOUND is a subroutine
which updates the current marginal estimate for x given the previous estimate and the
element xi, using (4.58) or (4.59). The updates for the upper and lower bounds take
constant time. We can realize the sets of marginal estimates as a map where x is the key
and the value is the marginal estimate of x given the current set Si�1.

This means the argmax in Line 4, can be computed by iterating over x 2 X which
takes O(|X|). Also, line 6 can be computed in O(|X|) time by iterating over x and
running the BOUND subroutine which take constant time. Therefore, the execution time
of each iteration of the For-Loop is O(|X|) and is executed n times which results in a time
complexity of exactly O(|X| · n).

This is significant because this algorithm essentially removes the cost of computing the
function f , comparatively to the traditional greedy algorithm. Note, that this algorithm,

43

requires a map of size |X| which maintains the values of the marginal estimates. This
may not be feasible for some applications [23, 36, 57]. In these scenarios, other algorithms
would have to be considered to solve the problem.

The e�ciency of the pairwise algorithms introduces new trade-o↵s for practical appli-
cations of submodular maximization. We can trade-o↵ approximation performance guar-
antees for time complexity improvements. This can be useful in scenarios where a user
needs to repeatedly obtain approximate solutions to a submodular maximization problem
quickly, but is not as sensitive to the quality of the solution. This trade-o↵ can be critical
in scenarios where there are real time computing constraints.

For example suppose that f was the set coverage function described in Remark 4.4.5,
then given S then the cost of computing f(S) is O(|S| ⇤ l) where l is the size of the largest
set Ax, assuming that the sets are implemented using hash tables. Given large Ax sets and
large S then f(S) can become computationally expensive. For practical problems such
as contaminant detection in large sensor networks, evaluating the objective can require
parsing though gigabytes of data [27].

As we will show in Section 4.6, the execution time improvements in using the pairwise
algorithms can be significant while simultaneously still providing relatively strong approx-
imation performance. If the function has favourable curvature conditions, then the losses
in the guaranteed performance from using the pairwise algorithms can be minimal.

4.6 Simulation Results

In this section, we benchmark the proposed algorithms in a simulated application of pro-
viding autonomous ride service in New York City utilizing electric vehicles. We focus on
a coverage problem of selecting a set of charging locations for vehicles, for which they
can best respond to customer demand after charging. From a historical data set provided
by the NYC Taxi & Limousine Commission [38], we know that throughout the day the
geographical distribution of customer demand is changing.

44

Figure 4.3: Geographical visualization of taxi customer data collected on January 1, 2020.
There are 263 districts and size of the dots in each districts are proportional to the number
of pick ups that occurred in the district.

New York City is split into 263 Taxi districts and we assume that the charging stations
are located at the centroids of each of theses districts. We wish to select a subset of
charging locations that maximize the expected customer demand that can be e�ciently
serviced from these locations. We say a customer can be e�ciently serviced if it can be
picked up with a delay of at most t minutes. Let E be the set of districts and let X be
the set of stations. Let pex be the probability that a vehicle deployed from station x 2 X
can pick up a passenger in district e 2 E in t-minutes. For simplicity we assume that the
ride requests originate from the centriods of the districts. Finally, let ve be the demand in
district e, which is modeled as the estimated number of pick up requests in district e in a
specified time interval, based on historical data.

45

Let S ✓ X be a set of stations. then the objective we want to maximize which we will
call the hidden objective function fh, is written as follows:

fh(S) =
X

e2E

1�

Y

x2S

(1� pex)

!
ve

!
. (4.60)

The hidden objective function is more formally known as the probabilistic coverage function
and was used for a related sensor coverage problem in [5].

Suppose we do not have access to the entire hidden objective function due to com-
putational and/or modelling challenges, and thus the optimization must be solved using
only pairwise information. Given the pairwise information constraint, we can compute the
expected demand that can be serviced by a single station and a pair of stations as,

f(x) =
X

e2E

pexve

and
f(x, y) =

X

e2E

(1� (1� pex)(1� pey))ve.

We will model pex using a Gaussian Kernel function

pex = e�
d(x,e)2

r2 ,

where d : R2
⇥R2

! R+ is a distance metric, and r is a tune-able parameter that dictates
the range of distances where a vehicle could pick up a passenger in under t-minutes. For
our experiments, we used the Euclidean distance metric for simplicity but the metric could
be changed to better model the real system.

The objective function is a normalized, monotone and submodular function that ex-
hibits supermodularity of conditioning [5], which allows us to apply all of our results. To
decide which stations should be selected during di↵erent time intervals throughout the day,
we estimate ve for each e 2 E from the historical data and then attempt to solve

S⇤
2 argmax

S✓X,|S|n
fh(S).

Under the pairwise information constraint this is exactly an instance of Problem 4.1.2 when
k = 2.

We compare the optimistic and pessimistic algorithms’ ability to maximize fh while
only given access to f(x) and f(x, y) for x, y 2 X, to the full information greedy algorithm
with full access to fh. We compute the hidden objective value fh(S) for solutions S of
the pairwise algorithms to compare against the solutions produced by the full information
greedy algorithm.

46

4.6.1 Experimental Approximation Performance Results

To determine how the strategies of the optimistic and pessimistic strategies perform we
used historical data for ride services in New York City. The data set included the pick-up
times and locations for all the “For Hire Vehicle” rides in the month of January 2020 [38].
We tested the performance of algorithms on varying distributions, we split up the data by
pick-up time. We made twelve sections, each corresponding to a unique two-hour window
of the day. For each of the subsets, we estimate values ve for each district by taking the
average number of rides in each time interval over all the days in the data set. We executed
the three algorithms on each of the twelve sets to test performance, which is summarized
in Figure 4.4.

0 5 10 15 20 25 30 35
n

20

40

60

80

100

T
ot
al

R
id
e
D
em

an
d
C
ov
er
ed

(%
)

Full Information Greedy

Pessimisitic

Optimisitic

Figure 4.4: Experimental results comparing the performance of the three algorithms. For
each algorithm, the average percentage of total demand covered by the selected stations
was plotted against the number of stations in the set. The percentage covered was averaged
over the 12 experiments. The error bars enclose one standard deviation above and below
the average.

Figure 4.4 shows the performance for di↵erent numbers of charging stations selected.
We see that all three algorithms have similar performance for low values of n, but then be-
gin to diverge after 5 stations are selected. The total ride demand covered is computed by
taking the demand covered by a set of station selected by an algorithm fh(S) and dividing
by fh(X) during a two hour time interval. This was done to compare the performance of

47

each time interval as the ride demand changes over the day. The pessimistic algorithm’s
performance is significantly better than the optimistic algorithm’s. The pessimistic algo-
rithm yielded a value no worst than 90% of the full information greedy algorithm’s value
and the optimistic algorithm yielded a value no worst than 67% across all trials.

0 5 10 15 20 25 30 35
n

10

20

30

40

50

60

A
p
p
ro
xi
m
at
io
n
R
at
io

(%
)

Pessimistic Post-Hoc Algo

Optimistic Post-Hoc Algo

Pessimistic Theoretical

Optimitic Theoretical

Figure 4.5: Experimental results comparing the average worst case lower bounds produced
by each algorithm as a function of the number of stations selected n. The bounds with
solid lines were computed using Algorithm 5. The bound for marked “Pessimistic Theo-
retical” was computed using Corollary 4.4.8 and line marked “Optimistic Theoretical” was
computed using Corollary 4.3.4.The error bars represent one standard devation above and
below the averages.

Figure 4.5 compares the worst-case lower bounds of the optimistic and pessimistic
algorithms computed by Algorithm 5 on the same trials as used in Figure 4.4 as well as the
worst case performance bounds produced by Corollaries 4.3.4 and 4.4.8. As the number
of stations increases, the lower bounds on performance degrades in all cases. For the
pessimistic algorithm, this is due to the fact the lower bounds on the marginals also exhibit
diminishing returns and continually selecting elements maximizing the lower bound drives
the denominator of (4.48) down. This causes high values of the estimated ↵1, . . . ,↵n and
decreasing approximation bounds. The optimistic algorithm does not actively minimize
the estimated approximation factors, which are reflected in both the percentage of ride
demand covered and computed approximation bounds.

48

As observed in Figure 4.4, both pairwise algorithms are performing similarly to the full
information greedy strategy even through the lower bounds in Figure 4.5 suggest otherwise.
We also see that the theoretical performance bound for the optimistic algorithm is relatively
close to the bound produced by Algorithm 5 for the pessimistic algorithm. The pessimistic
algorithm’s theoretical bound is much lower than the rest of the bounds, due to the fact
that the average ⌧2 for each trial was near 1 with a value of 0.89. This highlights the
benefits of utilizing Algorithm 5 when computing performance bounds for the pessimistic
algorithm.

This experiment reveals that the bound produced by Algorithm 5 becomes less accurate
as n increases. This is due to the fact that the approximation factors measure the multi-
plicative di↵erence between the true greedy choices and the pairwise algorithms’ choices.
The true marginals for elements selected near the end of execution tend to be smaller.
Thus, the di↵erence in the overall objective values could be small, but the multiplicative
di↵erence could be large which is reflected in a lower bound on performance.

00:00 04:10 08:20 12:30 16:40 20:50

Time

250

500

750

1000

1250

1500

1750

T
ot
al

D
em

an
d
C
ov
er
ed

Total Ride Demand

Full Information Greedy

Pessimistic

Optimistic

Figure 4.6: Experimental results comparing the demand covered by each algorithm for
each two hour time interval of the day with n = 25. The grey dots represent to maximum
possible demand that could be covered during that time interval.

Figure 4.6 looks at the performance of the algorithms over di↵erent subsets of historical
data. We plotted the objective value for 25 stations using each of the algorithms for

49

each of the twelve subsets of data. We also plotted the maximum possible value of the
objective function each of the algorithms could possibly achieve in the time frame. From
Figure 4.6, we see that for each time frame, the pessimistic algorithm is essentially as
e↵ective as the full information greedy algorithm, but the optimistic greedy algorithm is
less e↵ective. The performance of both the optimistic and pessimistic algorithms seem
to be robust to the changing of the demand distribution through a 24-hour period. For
time intervals where there is low total demand, the pairwise algorithms are as e↵ective as
the full information greedy strategy. The gap in performance between the optimistic and
pessimistic algorithms is more apparent when there is higher total ride demand. On the
other hand, the performance of the optimistic algorithm is consistent.

Remark 4.6.1. We can reason why the pessimistic algorithm is out performing the op-
timistic strategy for this problem by comparing the estimates of the marginals they are
maximizing. We can rewrite the optimistic strategy’s objective as,

f̄(x|S) = min
xj2S

f(x|xj) = f(x)�max
xj2S

{f(x)� f(x|xj)}. (4.61)

If we compare this to the objective maximized in the pessimistic strategy,

f(x|S) = f(x)�
X

xj2S

(f(x)� f(x|xj)). (4.62)

We see that the upper bound and lower bound on the marginal return are related
quantities. The f(x) � f(x|xj) term in both (4.61) and (4.62) represents the maximum
decrease of f(x|S) from f(x) contributed by xj. By estimating the marginal returns using
f̄(x|S) we are assuming a single element in S impacts the value of f(x|S). By estimating
the marginal return using f(x|S), we are assuming each element in S independently impacts
the value of f(x|S).

In this scenario, because the elements are spread out geographically, the marginal return
of adding a station, is a↵ected by all previously selected stations that surround the new
station being added. It is unlikely that only a single previously selected station impacts
the marginal return of the newly added station. Therefore, the estimates f(x|S) are likely
more accurate than f̄(x|S), resulting in better performance of the pessimistic algorithm.

4.6.2 Experimental Time Complexity Results

Using the same data used for the performance experiments, we measured the time e�ciency
of the three algorithms. We measured the execution time of the algorithms for each of the 12

50

data subsets and plotted the average execution time in terms of n. Each of the experiments
was computed using Python 3.7 on a 2017 Macbook Pro with a 3.1 GHz Dual-Core Intel
i5 and 8 GB 2133 MHz LPDDR3 RAM.

10 20 30 40 50
n

0

10

20

30

40

50

60

70

E
xe
cu
ti
on

T
im

e
(s
)

Full Information Greedy

Pessimistic

Optimistic

Figure 4.7: Experimental result showing the execution time for each algorithm as the
number of stations selected increases. For each n, the algorithms execution times were
recorded for each of the 12 subsets of data and then average over 5 trials. The error bars
represent one standard deviation around the averages.

Figure 4.7 summarizes the results from the execution time experiment. For each trial,
the size of |X| was the same. The relationship between the execution times of the pairwise
algorithms and the value of n is linear. This relationship is as expected given our time
complexity analysis in Section 4.5. Using the pairwise greedy strategies and the implemen-
tation in Algorithm 7, the time complexity is reduced from quadratic to linear in terms of
n. The pessimistic and optimistic algorithms share similar execution times which resulted
in the two line overlapping.

51

10 20 30 40 50
n

1

2

3

4

5

6

7

E
xe
cu
ti
on

T
im

e
R
at
io

Pessimistic

Optimistic

Figure 4.8: Plot of the ratios of execution times of the greedy strategy to the execution
times of the pairwise algorithms as the number of stations selected increases. For each n
the average execution time of the greedy algorithm was divided the average execution of
each algorithm.

In Figure 4.8, we see that for both pairwise algorithms the ratio of the execution time
of the full information greedy algorithm and the pairwise algorithms is essentially linear.
This verifies that the pairwise algorithms result in a reduction in time complexity by a
factor of n for this particular objective function.

4.7 Summary

In this chapter, we introduced the submodular maximization problem with limited function
access and established inapproximability results for the general problem. We then intro-
duced the optimistic strategy, which provides a constant factor approximation for general
problem given the value of the total k-marginal curvature. With an addition assumption of
submodularity of conditioning on the objective, we provide a method to measure the per-
formance of an arbitrary greedy strategy using only pairwise information. We then provide
an additional pairwise strategy called the pessimistic algorithm. We present performance
bounds for the pessimistic algorithm that are in terms of the k-cardinality curvature. We

52

then show that both optimistic and pessimistic algorithms can be computed e�ciently.
Finally, we present empirical evidence showing the e↵ectiveness of the pairwise algorithm.

53

Chapter 5

Linear Programming for Distributed
Submodular Maximization

In this chapter we will discuss work related to representations of submodular functions and
how these representations can be used in the context of distributed submodular maximiza-
tion. We begin by establishing a connection between submodular functions and feasible
regions of linear constraints. We then formulate a general linear program that can be
used to find these worst-case function examples. We are able to directly apply the linear
programming approach to the distributed submodular maximization problem.

5.1 Linear Programming Representation

We start this chapter by introducing a method to realize submodular functions as vectors in
the feasible region of a set of linear constraints. This bears resemblance with the techniques
used in the original formulation of the submodular maximization problem in the classical
work of [37]. To wit, let X be a base set of elements. We represent a set function defined
on X as a 2N dimensional real-valued vector, where N = |X|. Let v 2 R2N be a vector
(or lookup table) where each component of v gives the function value for a corresponding
subset S ✓ X, we denote this component by vS. The indexing of subsets for the vectors is
fixed i.e., for any two vectors v, v̂ 2 R2N , the values of vS and v̂S are located at the same
index for the two vectors. Given v 2 R2N , we define a set function f : 2X ! R by

f(S) = vS.

54

We can enforce properties on the function f by imposing constraints on v. We can realize
v as

v =

2

666666666666664

f(;)
f(x1)

...
f(xn)

f(x1, x2)
...

f(xN�1, xN)
...

f(x1, . . . , xN)

3

777777777777775

2 R2N . (5.1)

We now define a matrix Asubmodular, which if Asubmodularv � 0 then, the function f
defined by v is submodular. For a function f to be submodular we require that

f(A) + f(B) � f(A \B) + f(A [B), (5.2)

for all A,B ✓ X. Let us rewrite (5.2), in terms of the components of v as

vA + vB � vA\B � vA[B � 0. (5.3)

Let Asubmodular 2 R2N (2N�1)⇥2N where each row corresponds to the constraint in (5.3) for a
pair of subsets A and B.

We now define another matrix to ensure the function represented by v is also monotone.
For f to be monotone we need to ensure that f(x|A) � 0, for all x 2 X and A ✓ X. If we
assume that Asubmodularv � 0 holds, then we can enforce monotonicity on v by adding N
more constraints.

In particular, we ensure that f(x|X\{x}) � 0 for all x 2 X. If f is submodular then
f(x|A) � f(x|X\{x}) for A ✓ X\{x}, then enforcing f(x|X\{x}) � 0 implies f(x|A) � 0.
Written in terms of the components v, we impose the condition

vX � vX\{x} � 0. (5.4)

Let Amonotone 2 RN⇥2N , where each row encodes the monotonicity constraint imposed by
x in (5.4) for all x 2 X. If both

Asubmodularv � 0 and Amonotonev � 0,

55

then the function represented by v will be both monotone and submodular. Finally to
ensure that f is normalized we simply impose an equality constraint v; = 0.

A key fact about these constraints is that they are all linear inequalities in terms of
the components of v. We formulate a linear program in order to search for monotone,
normalized and submodular functions with certain properties:

max
v2R2N

cTv,

s.t.

Asubmodular

Amonotone

�
v � 0,

v; = 0, and Mv � b,

where c 2 R2N is a general cost vector, M 2 Rl⇥2N and b 2 Rl. Here, M and b are general
constraints that can be used to enforce additional properties on the submodular function
produced by the optimal solution v. The cost vector defines which values of the submodular
function should be maximized. In Section 5.3, we specify c,M and b to provide performance
guarantees for the adapted greedy strategy for distributed submodular maximization.

5.2 Distributed Submodular Maximization Problem

5.2.1 Problem Statement

We now introduce the distributed submodular maximization problem [12] and how we can
apply our linear programming approach. Suppose we are given n agents V = {1, . . . , n}.
Each agent i has access to the an action set Xi and must choose one action xi 2 Xi. The
agents follow a greedy strategy and we want study the impact of information on their
performance. We consider the scenario where the agents select their actions sequentially.
Each agent i 2 V has access to a subset of actions chosen by agents {1, . . . , i � 1}. We
encode this information in a directed acyclic graph (DAG) G = (V,E), where the agent
indices form a topological order. There is an edge (i, j) 2 E if agent j has access to the
action of agent i. We refer to this graph as the agents’ communication graph.

The in-neighbor set of agent i in G is defined as

N (i, G) = {j 2 V | (j, i) 2 E}.

The information available to this agent is given by

Xin(i, G) = {xj | j 2 N (i, G)}.

56

We assume the agents select their actions by greedily maximizing their own marginal return
given the information available to them, i.e.,

xi 2 argmax
x2Xi

f(x|Xin(i, G)). (5.5)

A greedy solution SG = {x1, . . . , xn} is one for which each xi satisfies (5.5). We then let
SG be the set of all greedy solutions.

We study the same problem described in [12, 15, 5] and is defined as follows:

max
S✓X,|S|n

f(S) (5.6)

s.t. |S \Xi| 1

for i 2 {1, . . . , n},

where X = [i2nXi and each Xi is disjoint. This is formally known as maximizing a
submodular function over the partition matroid. This is the exactly Problem 3.7, when
k = 1.

Suppose we have a normalized, monotone and submodular function f , a group of agents,
a DAG G, and the strategy given by (5.5). We want to study the worst-case sub-optimality
of the greedy strategy (5.5) for the problem defined in (5.6). Note that this will depend
on the information structure G, and thus we want to study how the performance depends
on G.

As described in [12], if the sets Xi are not disjoint, then any derived bounds for disjoint
sets still hold for non-disjoint action sets. Therefore, we can apply any previously known
performance bounds for greedy strategy (5.5) from [12, 15] to the special case of the problem
where each agent shares the same action set Xi = X. More formally, we are interested in
the following problem:

max
S✓X,|S|n

f(S). (5.7)

This is exactly the Problem 3.5. When the agents share action sets we want to study the
worst-case sub-optimally of the solution produced by greedy strategy (5.5) for the problem
defined in (5.7). As described in the introduction, the centralized greedy strategy provides
a tighter approximation guarantee, when maximizing over the uniform matroid compared
to the partition matroid. We are interested in understanding if the approximation bounds
can be improved for the distributed problem in the same way.

57

5.2.2 Previous Performance Guarantees

We define the competitive ratio for a normalized monotone submodular function f and a
DAG G = (V,E) as

�(f,X,G) = min
SG2SG

f(SG)

f(S⇤)
,

where SG is the set of all greedy solutions given by (5.5), and thus minSG2SG f(SG) is worst
possible greedy solution.

Let us denote the worst-case competitive ratio for a given graph G by

�(X,G) = min
f

�(f,X,G).

Both [12] and [15] provide performance bounds in terms of properties of the graph G.

The tightest known bound for this problem is provided in [15] and is in terms of the
fractional independence number of the graph G = (V,E) denoted by ↵⇤(G). The fractional
independence number is defined as

↵⇤(G) =max
x2Rn

X

v2V

xv, (5.8)

s.t.

xv � 0 8 v 2 V,
X

v2C

xv 1 8 Cliques C ✓ V.

The independence number is the solution to an integer program, and the fractional in-
dependence is the solution obtained by relaxing the integer constraints of the program,
see [15].

Theorem 5.2.1 (Theorem 1 of [15]). Let �(X,G) be the worst case competitive ratio
of (5.6) for agents following (5.5). We have,

�(X,G) �
1

↵⇤(G) + 1
. (5.9)

To best of our knowledge, this is the tightest known bound for problem (5.6) but also
the tightest for the special case when each Xi = X, and comparing to problem (5.7). We
seek to provide a tighter bound for the special case when using the greedy strategy to
approximate the solution to problem (5.7).

58

5.2.3 Linear Programming Approach

We will now present how to incorporate the adapted greedy strategy in (5.5) into our
linear programming model. Suppose we are given a DAG G with n nodes and a set
B = {x1, . . . , xn} that satisfies the partition matroid constraint. We can add constraints
to the linear program such that the feasible set contains all the submodular functions for
which B is a greedy solution from (5.5) i.e, B 2 SG.

Given a fixed set B = {x1, . . . , xn} ✓ X, let

Xin(i, G) = {xj 2 B | j 2 N (i, G)},

for a function f : 2X ! R we need the following inequalities to hold

f(xi|Xin(i, G)) � f(x|Xin(i, G)) for all x 2 Xi,

for each xi 2 B. We can rewrite these in terms of the components of v by

v{xi}[Xin(i,G) � v{x}[Xin(i,G) � 0 for all x 2 Xi.

Let us define a Agreedy,G 2 R(|X1|+···+|Xn|)⇥2N , which encodes each of the greedy constraints
for all xi 2 B. If Agreedy,Gv � 0 then the feasible region of v describes all the set functions
where B is a greedy solution.

5.3 Worst-Case Studies using Linear Programs

We begin this section, with a formulation of a linear program where the solution is a
function with minimum competitive ratio, out of all the submodular functions where SG is
selected by agents following (5.5). Given the sets A,B ✓ X that each satisfy the partition
matroid constraint, the following program produces a submodular function where A is an
optimal solution to (5.6), and B is a greedy solution produced by algorithm (5.5) with
minimum competitive ratio. The constant C fixes the value of f(B) for the resulting
function. We define the following program:

max
v2R2N

vA, (5.10)

s.t.

2

4
Asubmodular

Amonotone

Agreedy,G

3

5 v � 0,

v; = 0 and vB = C.

59

Let f be the function produced by the optimal solution v⇤. The program finds the
maximum value that the set A can take on given f(B) = C and B 2 SG. Since f(B) is
fixed, maximizing f(A) will produce the largest value for f(A), and therefore will produce
the function with minimum competitive ratio.

Using an o↵-the-shelf black box optimizer, linear program (5.10) can be solved numer-
ically to produce the worst-case function examples. However, the drawback is that the
constraints in the linear programs scale exponentially in N . The encoding of the gen-
eral linear program requires O(2N(2N � 1)) space using sparse matrix representations.
For small enough sets X, black-box optimizer are able to solve the linear programs in a
tolerable amount of time.

5.3.1 Main Results

Using the linear programming approach we show that by removing edges from the com-
munication graph, we degrade worst-case performance. The result is suggested by [12]
and [15] but is not explicitly proven.

Theorem 5.3.1. Let f : 2X ! R be a normalized, monotone and submodular function and
G = (V,E) be a DAG. Let Ḡ = (V,E\{e}) where e 2 E. Then, there exists a normalized,
monotone, and submodular function f̄ : 2X ! R with competitive ratio such that,

�(f̄ , X, Ḡ) �(f,X,G).

This theorem essentially states that if we remove edges from G, then the approximation
guarantees for the greedy strategy degrades. We formalized this in the following corollary.

Corollary 5.3.2. Consider two DAGs G = (V,E) and Ḡ = (V, Ē) with Ē ✓ E, Then

�(X,G) � �(X, Ḡ).

We will now present the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. We begin by introducing two linear programs which will compute
functions with the minimum competitive ratio given G and Ḡ.

We define our first linear program, referred to as linear program 1, as an instance of
(5.10), with a fixed set A = {xa

1, . . . , x
a
n} ✓ X and B = {x1, . . . , xn} ✓ X such that

|A \ Xi| = 1, and |B \ Xi| = 1, with greedy constraints defined using G. Let SG be a

60

greedy solution that achieves value minS2SG f(S) and let C = f(SG). Let f̂ be the function
produced by the optimal solution v̂⇤ 2 R2N of linear program 1. The second linear program,
linear program 2, is identical to linear program 1 but we replace the greedy constraints
with the greedy constraints defined by Ḡ. Let f̄ be the function produced by the optimal
solution v̄⇤ 2 R2N of linear program 2. The set B is a greedy solution for both f̂ and f̄ ,
therefore we have that f̂(B) = f̄(B) = f(SG).

We begin by noting that, since Ḡ has one less edge than G, only one agent has less
information when using Ḡ instead of G. Let (j, k) 2 E be the edge that is removed from
G to produce Ḡ. Therefore, we have that Xin(i, G) = Xin(i, Ḡ) for i 2 {1, . . . , n}\{k},
and for agent k we have Xin(k,G) = Xin(k, Ḡ) [{xj}. Note that Xin(i, G) ✓ B and
Xin(i, Ḡ) ✓ B for each i. Let v̂ 2 2N be a vector in the feasible region of the constraints of
linear program 1 and g : 2X ! R be the submodular function corresponding to v̂. Next,
note that the constraints in both linear programs are identical except for the constraints
imposed by the information structure, Agreedy,G and Agreedy,Ḡ. Let v̄ 2 R2N be in the
feasible region of linear program 2. Next we show that the constraints on the value of v̂A
are tighter than v̄A for both the partition matriod and uniform matroid scenarios. The
tightest constraints that we can impose on maximum value of g(A) that involve the greedy
constraints are described as follows:

g(A) g(B) +
X

xa
i 2A

g(xa
i |{x

a
i�1, . . . , x

a
1} [Xin(i, G))

 g(B) +
X

xa
i 2A

g(xa
i |Xin(i, G)),

where the first inequality holds by monotonicity and the second by submodularity. As a
result,

g(A) g(B) +
X

xi2B

g(xi|Xin(i, G)), (5.11)

g(B) +
X

xi2B\{xk}

g(xi|Xin(i, G))

+ g(xk|Xin(k, Ḡ) [{xj}),

where we have used the greedy constraints in the first inequality. Next, note that by
submodularity

g(xk|Xin(k, Ḡ) [{xj}) g(xk|Xin(i, Ḡ)),

61

and hence
g(A) g(B) +

X

xi2B

g(xi|Xin(i, Ḡ)). (5.12)

Here, the tightest constraints imposed by G in (5.11) are upper bounded by the ones
imposed by Ḡ in (5.12). However, for the case when Xi = X, the above constraints
are not the tightest possible constraints on the value of g(A); hence, for the uniform
matroid scenario, we provide a di↵erent set of inequalities. Let Bi = {x1, . . . , xi} for all
i 2 {1, . . . , n} the tightest constraints given G for each Bi are as follows:

g(A) g(Bi) +
X

xa
i 2A

g(xa
i |{x

a
i�1, . . . , x

a
1} [Bi)

 g(Bi) +
X

xa
i 2A

g(xa
i |Xin(i, G))

 g(Bi) + n · g(xi|Xin(i, G)), (5.13)

where (5.13), holds since g(xi|Xin(i, G)) � g(x|Xin(i, G)) for all x 2 X. Since G and Ḡ
di↵er by a single edge, a procedure similar to the one done in (5.12) yields that

g(A) g(Bk) + n · g(xk|Xin(k, Ḡ)).

For both the partition and uniform matroid scenarios, each term in the above line of
inequalities can be represented as constraints on the decision vectors v̂ and v̄. By the
above inequalities, the constraints on v̂A of linear program 1 are upper bounded by the
constraints on v̄A of linear program 2. By the properties of linear programming, the
maximum values v̂⇤A v̄⇤A. Therefore we have that f(S⇤) f̂(A) by construction of linear
program 1, and f̂(A) f̄(A) by our constraints argument, yielding

f(SG)

f(S⇤)
�

f̂(B)

f̂(A)
�

f̄(B)

f̄(A)
.

Since, f̂(B)

f̂(A)
and f̄(B)

f̄(A)
are the minimum competitive ratios given G and Ḡ, we have

�(f,X,G) � �(f̄ , X, Ḡ).

Using this theorem we can immediately prove Corollary 5.3.2.

62

Proof of Corollary 5.3.2. First, we let G1 = G be given by G1 = (V,E1). By definition we
have,

�(X,G1) = min
f

�(f,X,G1).

Let Ē1 = E1\{e} and Ḡ1 = (V, Ē1). Let f̂ = argminf �(f,X,G1). By Theorem

5.3.1, there exist a normalized monotone submodular function f̄ such that �(f̂ , X,G1) �
�(f̄ , X, Ḡ1). By definition of �(X, Ḡ1), we have that �(f̄ , X, Ḡ1) � �(X, Ḡ1). Combining
the two inequalities we arrive at

�(X,G1) � �(f̄ , X, Ḡ1) � �(X, Ḡ1). (5.14)

Let now Ēl = E1\{e1, . . . , el} and Ḡl = (V, Ēl). Let {Ḡi}
|l|
i=1 be a sequence of graphs, where

each Ḡi = (V,E\{e1, . . . , ei})). Here Ḡi has exactly one less edge than Ḡi�1. Therefore,
we can iteratively apply (5.14) on the sequence of graphs to get,

�(X,G1) � �(X, Ḡ1) � · · · � �(X, Ḡl), (5.15)

yielding our result.

The results stated so far, hold for the special case when Xi = X for each i 2 {1, . . . , n},
leading to a result that we present next. For this, let !(G) be the clique number of the
graph G, that is the size of the largest clique.

Theorem 5.3.3. Let �(X,G) be the worst case competitive ratio of (5.7) for agents fol-
lowing (5.5), with Xi = X for all i 2 {1, . . . , n}, then we have,

�(X,G) �
⇣
1�

�
1� 1

n

�!(G)
⌘
�

⇣
1� e�

!(G)
n

⌘
.

Before we begin the proof, we need the following classical result from [37], taken here
from [25]. Let the classical greedy strategy be defined by

Si = Si�1 [{argmax
x2X

f(x|Si�1)}. (5.16)

Theorem 5.3.4 (Theorem 1.5 of [25]). Fix a non-negative monotone submodular function
f : 2X ! R+ and let {Si}i�0 be the greedily selected sets defined by (5.16). Then for all
positive integers n and l, we have

f(Sl) �
⇣
1�

�
1� 1

n

�l⌘
f(S⇤) � (1� e�l/n)f(S⇤), (5.17)

where f(S⇤) is the maximum value of Problem (5.7).

63

We now present the proof of Theorem 5.3.3.

Proof of Theorem 5.3.3. First, we show that f(SG) � (1� e�
p
n)f(S⇤), where G is a graph

that contains a single clique of size p with no additional edges and SG is an arbitrary set
in SG. We combine this result with Corollary 5.3.2 to yield our result.

Let G = (V,E) be a communication graph, such that there is a subset vertices that
form a clique Vclique. Suppose that E contained the minimum number of edges such that
Vclique forms a clique. Let p be the size of the clique. Given the greedy solution SG, let
Sclique ✓ SG be the actions selected by the agents in Vclique. We will now show by induction
that there exists a set Sgreedy,p produced by (5.16) such that Sclique = Sgreedy,p. Let agent
k be the first agent in the clique, Sclique = {xk, . . . , xk+p}, and Sgreedy,p = {xg

1, . . . , x
g
p} be a

set that could be selected by the first p iterations of the traditional greedy strategy (5.16).
Note that E = {(i, j) : i, j 2 Vclique and i < j} and hence, Xin(k+ i, G) = {xk, . . . , xk+i�1},
for i � 0 and k + i 2 Vclique.

Base case ({xk} = Sgreedy,1) : We have that Sgreedy,1 = {xg
1}, by the definition we have

that
xk 2 argmax

x2X
f(x|Xin(k,G)).

Since k is the first agent in the clique, we have that Xin(k,G) = ;. Therefore, this is
exactly the first iteration of the classical greedy strategy, i.e., we can have xk = xg

1.

Inductive step: Let us assume that {xk, . . . , xk+i�1} = Sgreedy,i�1. We have Xin(i, G) =
{xk, . . . , xk+i�1}, and so

xk+i 2 argmax
x2X

f(x|Sgreedy,i�1).

Which implies we can let xk+i = xg
i . As a result we have,

{xk, . . . , xk+i} = Sgreedy,i�1 [{xk+i}

= Sgreedyi�1 [{xg
i } = Sgreedy,i.

Proving the inductive hypothesis.

We now have that Sclique = {xk, . . . , xk+p} = Sgreedy,p, we can apply Theorem 5.3.4. We
hence conclude that

f(Sclique) = f(Sgreedy,p) �
�
1�

�
1� 1

n

�p�
f(S⇤).

64

By monotonicity, we have f(SG) � f(Sclique). We now arrive at

f(SG)

f(S⇤)
�
�
1�

�
1� 1

n

�p�
.

Since this holds for any normalized, monotone and submodular function and for any greedy
solution SG 2 SG, we conclude that

�(X,G) = min
f

�(f,X,G) �
�
1�

�
1� 1

n

�p�
. (5.18)

Finally, we conclude the proof by combining (5.18) with Corollary 5.3.2. Given a graph
G, let Vclique be the set of nodes in the graph that form the largest clique in G. Let
Eclique = {(i, j) : i, j 2 Vclique and i < j}. Let Ĝ = (V,Eclique), which is a sub-graph of G
that only has the edges to form the largest clique. By the definition of Ĝ we have that
p = !(G). Using Corollary 5.3.2 we obtain

�(X,G) � �(X, Ĝ) �
⇣
1�

�
1� 1

n

�!(G)
⌘

(5.19)

�

⇣
1� e�

!(G)
n

⌘
,

where (5.19) holds by Corollary 5.3.2 and (5.18).

Similar to the work in [12], we have the performance guarantees for the case where
Xi = X are dependent on the size of the largest clique.

5.3.2 Comparison To Previous Results

A result from [15] states the graph G that maximizes the performance guarantees for
Theorem 5.2.1, is the complement Turán graph with minimum independence number given
n vertices andm or less edges [15]. A Turán graph is a complete multipartite graph, built by
partitioning n vertices into r subsets that are as evenly sized as possible, the edges connects
each vertex to all the other vertices that are not in its own subset [15]. A property of the
complement Turán graph is the independence number is equal to the number of subsets r.

65

Figure 5.1: Example complement Turán graph T (n, r) with n = 10 and r = 3.

Let T (n, r) be the complement Turán graph with n vertices and independence number
r, see [15]. The graph that maximizes the bound in Theorem 5.2.1 is defined as

T̂ (n,m) := argmin
{T (n,r):|E|m}

r.

We now provide the following result.

Theorem 5.3.5. Let Ĝ = T̂ (n,m). Then

1� e�
!(Ĝ)
n �

1

↵⇤(Ĝ) + 1
.

Proof of Theorem 5.3.5. Let r̂ be the independence number of the graph Ĝ = T̂ (n,m), we
also have the fact that a complement Turán graph with independence number ↵(G) = r
has a maximum clique size of dnr e [15]. Therefore, we have !(Ĝ) = dnr̂ e.

Using this fact we have the following line of inequalities,

1

↵⇤(Ĝ) + 1
=

1

r̂ + 1

d
n
r̂ e

d
n
r̂ e+ n

(5.20)

= 1�
1

1 + !(Ĝ)
n

 1� e�
!(Ĝ)
n ,

where the equality in (5.20) holds by the fact ↵⇤(G) = ↵(G) for compliment Turán
graphs [15].

We compare the performance guarantees provided by Theorem 5.2.1 to Theorem 5.3.3.
In light of Theorem 5.3.5, we know the Turán graph provides a tighter bound in Theo-
rem 5.3.3 than Theorem 5.2.1. Yet it is still unknown if Theorem 5.3.3 is stronger than

66

Theorem 5.2.1 for every graph. To show that for every graph G that our bound is stronger,
we would require an algebraic proof, but to disprove we can find a counter example.

0 2 4 6 8 10 12 14

Number of Edges

20

30

40

50

60

A
p
p
ro
xi
m
at
io
n
R
at
io

(%
)

Min Theorem 5.3.3

Min Theorem 5.2.1

Max Theorem 5.3.3

Max Theorem 5.2.1

Figure 5.2: Maximum and minimum approximation bounds produced by Theorem 5.3.3
and Theorem 5.2.1 over all graphs with a fixed number of edges.

As a simple experiment, for graphs with 6 vertices or less, we computed both !(G) and
↵⇤(G) as well as their corresponding performance bounds. In general, it is not tractable
to compute the values of !(G) or ↵⇤(G) for an arbitrary graph, but for small graphs the
values can be computed in a short period of time. The results from the experiment with 6
vertices is summarized in Figure 5.2. We see that Theorem 5.3.3 had stronger maximum
and minimum approximation ratios than Theorem 5.2.1. During this experiment we did
not find any graphs G such that the bound in Theorem 5.2.1 was tighter than the bound in
Theorem 5.3.3. This does not prove that the bound in Theorem 5.3.3 is tighter in general
but we have yet to find any counter examples.

5.4 Discussion

The submodular function used in the proof of Theorem 4.2, used intuition from a solution
to a similar linear program. We were searching for examples where imposing pairwise

67

information constraints on a decision-makers can lead arbitrarily poor results. We wanted
to find a function such each of the elements were indistinguishable given only pairwise
information, then determine the worst-case approximation ratio that was possible. We
formulated the following linear program:

max
v2R2N

vS⇤ , (5.21)

s.t.

Asubmodular

Amonotone

�
v � 0,

vS = C,

v{xi} = v{xj} 8 xi, xj 2 X,

vA = vB 8 A,B ✓ X, |A| = |B| = 2.

To ensure that the elements were indistinguishable by their pairwise values, we enforced
constraints such that all the values for single elements are equal and all the values of pairs
of elements are equal. We solved this program with X = S [S⇤ and |S| = |S⇤

| = 5. The
function that was produced by the optimal solution, had a structure nearly identical to the
structure of the function found in the proof of Theorem 4.2. The function had the property
that for any x 2 S⇤, f(x|A) = 1 for all subsets A ✓ X\{x}. For all x 2 S marginal return
of f(x|A) = 0 if |A| � 2 and f(x|A) = 1 if |A| < 2. The function also had a maximum
value of 5

2C. Since, all the elements in X are indistinguishable by their pairwise marginals,
a strategy could arbitrary select elements all the elements in S, when the optimal solution
is to selected all the elements in S⇤. This yielded a competitive ratio of f(S)

f(S⇤) = 2/5. Using
the intuition provided by the linear program, we generalized the solution function to prove
Theorem 4.2.

Although, the linear programs are only computable for small base sets X, this method
can be very e↵ective for disproving conjectures about worst case performance bounds for
algorithms executing greedy strategies. One of the caveats though is that the greedy
strategy must be representable by a set of linear constraints like the traditional greedy
strategy or the pessimistic strategy. The optimistic strategy cannot be written as set of
linear constraints. The inequalities we need to encode would have the following form,

f̄(xi|Si�1) = min
xj2Si�1

f(xi|xj) � min
xj2Si�1

f(x|x) for all x 2 X.

Since there are minimums in the expression, we are unable to generate linear constraints.
On the other hand, constraints on the curvature of the function can be encoded into linear
constraints. It is also possible to encode linear constraints on v enforcing that f possesses
supermodularity of conditioning.

68

5.5 Summary

In this chapter we established a relationship between submodular functions and linear pro-
gramming. We apply this technique to the distributed submodular maximization problem.
Using a linear program we show that removing an edge from the agents’ communication
graph degrades their worst-case performance. Using this result, we then provide a new
performance bound for the scenario where agents share a common action set. We show
that the agents’ performance is dictated by the size of the largest clique in the communica-
tion graph. We provide evidence that the new performance bound is tighter than previous
bounds in the literature.

69

Chapter 6

Conclusion

In this thesis, we investigate sub-problems of submodular maximization where decision-
makers are subject to information constraints. In Chapter 4, we explored a submodular
maximization problem in which decision-makers have limited access to the objective func-
tion. We first showed for maximizing a general submodular function, a decision-maker
with k-wise information cannot guarantee a solution with a value greater than k/n of op-
timal. For simplicity we mainly focus on the case where pairwise information is available.
In light of this, we explore di↵erent properties that submodular functions can possess to
allow greedy algorithms to provide approximation guarantees when limited to k-wise in-
formation. We present a simple adapted greedy algorithm called the optimistic algorithm,
which greedy maximizes an upper bound on the marginal returns. We use a new notion of
curvature called the total k-marginal curvature to describe the algorithm’s performance.
The algorithm can be generalized to take advantage of k-wise information and provide
approximation guarantees for the general problem.

We also work with an additional property called supermodularity of conditioning. The
property allows for marginal returns of a submodular function to be lower bounded in
terms of only pairwise information. With the additional assumption, performance bounds
for any greedy algorithm can be computed after execution, using only pairwise information.
This leads to another pairwise algorithm called the pessimistic algorithm. The pessimistic
algorithm greedily maximizes the lower bound on the marginal returns. The performance
bound for the pessimistic algorithm is provided in terms of another curvature notion called
the k-cardinality curvature, which is closely related to the total k-marginal curvature. The
two notions of curvature present unique scenarios where each algorithm performs e↵ectively.
We show that both the pairwise algorithms can be computed faster than the traditional
greedy strategy, which allows for performance trade-o↵s between approximation guarantees

70

and computational e�ciency. Finally, we present an experiment using real-world data that
show the e↵ectiveness of both pairwise algorithm in terms of approximation performance
and time e�ciency.

In Chapter 5, we explore the connection between submodular functions and linear pro-
gramming. We formulate a general linear program to find worst-case submodular function
examples. The we directly apply the formulation to provide performance guarantees for
the distributed submodular maximization problem. We show using the properties of linear
programs, that removing edges from the agents’ communication graph degrades the worst-
case performance of the greedy strategy. We also provide improved bounds for a special
case of the problem where agents share a common action set. The linear programming rep-
resentation, in general, is intractable to solve because of the large number of constraints
imposed to ensure submodularity. For small problems, the programs are solvable and can
provide examples of functions where the worst-case performance of a greedy strategy is
exhibited. These examples are useful for providing intuition into underlying submodular
maximization problems.

6.1 Future Work

6.1.1 Pessimistic Algorithm Generalization

The intuition for the pessimistic algorithm came from coverage functions and utilizing
the inclusion-exclusion principle. In [21], the authors introduce submodular combinatorial
information measures, which generalize mutual information to submodular functions. They
define a measure of mutual information in terms of a submodular function and the inclusion-
exclusion principle. The definition provides a means to write any submodular function in
terms of the submodular mutual information measure. Using this construction we can
generalize the lower bound on the marginal returns of a function defined in Theorem 4.4.3
to utilize k-wise information. If we constrain the submodular functions to be a measure
such as cardinality or area, then we can create bounds on the f(S) using sums of f(A)
where A ✓ X and |A| < k. This method extends the pessimistic algorithm to utilize k-
wise information with stronger performance bounds. From preliminary work, this method
seems to be more e↵ective than the k-wise optimistic algorithm because it is able to better
utilize the information available and estimate the marginal returns more accurately.

71

6.1.2 Linear Programming Extension to Approximate Value Or-
acles

Throughout Chapter 4 we take advantage of results for approximate value oracles for
submodular functions to provide approximation guarantees for our proposed algorithms.
We can encode approximate greedy algorithms into constraints in the same way we do
in Chapter 5. The constraints then can be used to provided performance bounds for
an extension of the distributed submodular maximization problem where the agents only
have an approximate value oracle to make decisions. In a simple experiment using a small
based set X and and a few di↵erent communication graphs with 5 nodes, the worst case
performance bounds were numerically computed using the linear programming formulation.
The results seemed to show that the worst case performance was dictated by the clique
with the smallest set of approximation factors. This type of analysis could potentially act
as a bridge between the results presented in Chapters 4 and 5.

72

References

[1] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas
Krause. Streaming submodular maximization: Massive data summarization on the
fly. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, page 671–680, New York, NY, USA, 2014.
Association for Computing Machinery.

[2] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM Journal on
Computing, 40(6):1740–1766, 2011.

[3] Luiz F. O. Chamon, George J. Pappas, and Alejandro Ribeiro. The mean square error
in kalman filtering sensor selection is approximately supermodular. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pages 343–350, 2017.

[4] Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and
the greedy algorithm: Tight worst-case bounds and some generalizations of the rado-
edmonds theorem. Discrete Applied Mathematics, 7(3):251–274, 1984.

[5] M. Corah and N. Michael. Distributed submodular maximization on partition ma-
troids for planning on large sensor networks. In 2018 IEEE Conference on Decision
and Control (CDC), pages 6792–6799, 2018.

[6] Micah Corah and Nathan Michael. E�cient online multi-robot exploration via dis-
tributed sequential greedy assignment. In Proceedings of Robotics: Science and Sys-
tems, Cambridge, Massachusetts, July 2017.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[8] Andrew Downie, Bahman Gharesifard, and Stephen L. Smith. Submodular maximiza-
tion with limited function access. arXiv preprint arXiv:2201.00724, 2022.

73

[9] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
jul 1998.

[10] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone sub-
modular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

[11] Tobias Friedrich, Andreas Göbel, Frank Neumann, Francesco Quinzan, and Ralf
Rothenberger. Greedy maximization of functions with bounded curvature under par-
tition matroid constraints. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):2272–2279, Jul. 2019.

[12] B. Gharesifard and S. L. Smith. Distributed submodular maximization with limited
information. IEEE Transactions on Control of Network Systems, 5(4):1635–1645,
2018.

[13] Xavier Goaoc, Jǐŕı Matoušek, Pavel Paták, Zuzana Safernová, and Martin Tancer.
Simplifying inclusion–exclusion formulas. Combinatorics, Probability and Computing,
24(2):438–456, 2015.

[14] Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to sub-
modular set function maximization. Optimization online, pages 1–25, 2007.

[15] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden. The impact of information
in distributed submodular maximization. IEEE Transactions on Control of Network
Systems, 6(4):1334–1343, 2019.

[16] D. Grimsman, M. R. Kirchner, J. P. Hespanha, and J. R. Marden. The impact
of message passing in agent-based submodular maximization. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 530–535, 2020.

[17] A. Hashemi, M. Ghasemi, H. Vikalo, and U. Topcu. Randomized greedy sensor se-
lection: Leveraging weak submodularity. IEEE Transactions on Automatic Control,
66(1):199–212, 2021.

[18] Q. Hou and A. Clark. Robust maximization of correlated submodular functions under
cardinality and matroid constraints. IEEE Transactions on Automatic Control, pages
1–1, 2021.

[19] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polyno-
mial algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, July
2001.

74

[20] Rishabh Iyer and Je↵ Bilmes. Submodular optimization with submodular cover and
submodular knapsack constraints. In Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’13, page 2436–2444, Red
Hook, NY, USA, 2013. Curran Associates Inc.

[21] Rishabh Iyer, Ninad Khargoankar, Je↵ Bilmes, and Himanshu Asanani. Submodular
combinatorial information measures with applications in machine learning. In Vitaly
Feldman, Katrina Ligett, and Sivan Sabato, editors, Proceedings of the 32nd Inter-
national Conference on Algorithmic Learning Theory, volume 132 of Proceedings of
Machine Learning Research, pages 722–754. PMLR, 16–19 Mar 2021.

[22] Syed Talha Jawaid and Stephen L. Smith. Informative path planning as a maxi-
mum traveling salesman problem with submodular rewards. Discrete Appl. Math.,
186(C):112–127, may 2015.

[23] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin
Karbasi. Submodular streaming in all its glory: Tight approximation, minimum mem-
ory and low adaptive complexity. In International Conference on Machine Learning,
pages 3311–3320. PMLR, 2019.

[24] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements:
maximizing information while minimizing communication cost. In 2006 5th Interna-
tional Conference on Information Processing in Sensor Networks, pages 2–10, 2006.

[25] Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability,
3:71–104, 2014.

[26] Andreas Krause and Carlos Guestrin. Submodularity and its applications in optimized
information gathering. ACM Trans. Intell. Syst. Technol., 2(4), July 2011.

[27] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos
Faloutsos. E�cient sensor placement optimization for securing large water distribution
networks. Journal of Water Resources Planning and Management, 134(6):516–526,
2008.

[28] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements
in gaussian processes: Theory, e�cient algorithms and empirical studies. J. Mach.
Learn. Res., 9:235–284, June 2008.

75

[29] Hui Lin and Je↵ Bilmes. Multi-document summarization via budgeted maximization
of submodular functions. In Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for Computational Linguistics,
pages 912–920, Los Angeles, California, June 2010. Association for Computational
Linguistics.

[30] Hui Lin and Je↵ Bilmes. A class of submodular functions for document summariza-
tion. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, page 510–520, USA,
2011. Association for Computational Linguistics.

[31] Hui Lin, Je↵ Bilmes, and Shasha Xie. Graph-based submodular selection for ex-
tractive summarization. In 2009 IEEE Workshop on Automatic Speech Recognition
Understanding, pages 381–386, 2009.

[32] Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran. Submodular
optimization for voltage control. IEEE Transactions on Power Systems, 33(1):502–
513, 2018.

[33] L. Lovasz. Submodular functions and convexity, pages 235–257. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1983.

[34] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava. Coverage
problems in wireless ad-hoc sensor networks. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No.01CH37213), volume 3, pages
1380–1387 vol.3, 2001.

[35] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrak,
and Andreas Krause. Lazier than lazy greedy. Proceedings of the AAAI Conference
on Artificial Intelligence, 29(1), Feb. 2015.

[36] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. Journal of Machine Learning Research, 17(235):1–44,
2016.

[37] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294,
1978.

[38] New York Taxi and Limousine Commission. Tlc trip record data, 2020.

76

[39] James B. Orlin, Andreas S. Schulz, and Rajan Udwani. Robust monotone submodular
function maximization. Mathematical Programming, 172(1):505–537, Nov 2018.

[40] Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. Submodular meets structured:
Finding diverse subsets in exponentially-large structured item sets. Advances in Neural
Information Processing Systems, 27:2645–2653, 2014.

[41] J. Qin, I. Yang, and R. Rajagopal. Submodularity of storage placement optimization
in power networks. IEEE Transactions on Automatic Control, 64(8):3268–3283, 2019.

[42] M. Roberts, S. Shah, D. Dey, A. Truong, S. Sinha, A. Kapoor, P. Hanrahan, and
N. Joshi. Submodular trajectory optimization for aerial 3d scanning. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 5334–5343, 2017.

[43] Omid Sadeghi and Maryam Fazel. Online continuous dr-submodular maximization
with long-term budget constraints. In International Conference on Artificial Intelli-
gence and Statistics, pages 4410–4419. PMLR, 2020.

[44] Dravyansh Sharma, Ashish Kapoor, and Amit Deshpande. On greedy maximization
of entropy. In International Conference on Machine Learning, pages 1330–1338, 2015.

[45] Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Proba-
bilistic submodular maximization in sub-linear time. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 3241–3250, Interna-
tional Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[46] H. Sun, D. Grimsman, and J. R. Marden. Distributed submodular maximization with
parallel execution. In 2020 American Control Conference (ACC), pages 1477–1482,
2020.

[47] Xinmiao Sun, Christos G. Cassandras, and Xiangyu Meng. A submodularity-based
approach for multi-agent optimal coverage problems. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 4082–4087, 2017.

[48] V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas. Resilient monotone sub-
modular function maximization. In 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 1362–1367, 2017.

[49] V. Tzoumas, A. Jadbabaie, and G. J. Pappas. Robust and adaptive sequential sub-
modular optimization. IEEE Transactions on Automatic Control, pages 1–1, 2020.

77

[50] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie. Minimal actuator
placement with bounds on control e↵ort. IEEE Transactions on Control of Network
Systems, 3(1):67–78, 2016.

[51] Jan Vondrak. Submodularity and curvature: the optimal algorithm. RIMS Kôkyûroku
Bessatsu, 01 2010.

[52] Bang Wang. Coverage problems in sensor networks: A survey. ACM Comput. Surv.,
43(4), oct 2011.

[53] Kai Wei, Rishabh Iyer, and Je↵ Bilmes. Fast multi-stage submodular maximization.
In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, ICML’14, page II–1494–II–1502. JMLR.org, 2014.

[54] Kai Wei, Rishabh Iyer, and Je↵ Bilmes. Submodularity in data subset selection and
active learning. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 1954–1963, Lille, France, 07–09 Jul 2015. PMLR.

[55] Ji-Jie Wu and Kuo-Shih Tseng. Adaptive submodular inverse reinforcement learning
for spatial search and map exploration. Autonomous Robots, 46(2):321–347, 2022.

[56] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar. Distributed attack-robust sub-
modular maximization for multi-robot planning. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2479–2485, 2020.

[57] Tianyi Zhou, Hua Ouyang, Je↵ Bilmes, Yi Chang, and Carlos Guestrin. Scaling Sub-
modular Maximization via Pruned Submodularity Graphs. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International Conference on Artificial Intelli-
gence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages
316–324, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

78

