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INTRODUCTION 27 

 28 

Hierarchical or nested design methodology helps engineers to identify different sources of 29 

variation within their data. Essentially, the methodology can be viewed as a variance 30 

decomposition technique, where the overall variance is separated into several components; the 31 

goal is to locate the most significant sources of variance. For any process with multiple steps or 32 

stages, it can be useful to know whether the variance is equally a result of all operating stages, or 33 

if select process steps are contributing most of the variance.  34 

 35 

The hierarchical design methodology and subsequent analysis is very general, and can be applied 36 

to many fields of study. However, it is often overlooked in the chemical engineering undergraduate 37 

curriculum. We would suggest that it is a valuable tool for students to add to their background, and 38 

that it can be taught alongside other chemical engineering concepts to make good use of precious 39 

teaching time. In addition to expanding their knowledge base, students can also develop improved 40 

problem analysis and investigation skills, gain laboratory experience, and advance their 41 

communication skills. 42 

 43 

The general concept can be introduced to students with a straightforward thought experiment: 44 

consider synthesizing some material and then analyzing the material using a property 45 

characterization technique in the lab. If we replicate the synthesis process and the characterization 46 

technique several times, we will not always obtain exactly the same outcome! Common sense 47 

dictates that there will be variability observed between genuine, independent replicates. Variability 48 

can be imparted to the measured property from several possible sources of error; students can 49 
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likely identify most of these themselves. Sources of error may include random fluctuations in the 50 

operating conditions between batches/reactors, heterogeneity in the reactor as samples are 51 

collected, inconsistencies in the analytical technique, and so on.   52 

 53 

The original motivation for integrating chemical engineering concepts (specifically polymer 54 

reaction engineering concepts) and the hierarchical design methodology came about during 55 

experimental design and data analysis in graduate student research. Each experimental stage of 56 

polymer synthesis and characterization can introduce new sources of error, and this provides a 57 

very tangible way for students to identify and quantify potential variability. Gradually and 58 

progressively, the same methodology was introduced in other settings including undergraduate 59 

student research projects, senior design projects, and lab data analysis in statistics courses. The 60 

most recent iteration of this approach was in the context of an independent research project course. 61 

As such, the instructor team and the participants had the flexibility of shifting between the 62 

academic/theoretical side and the experimental/laboratory side of the project. 63 

 64 

This background is intended to provide some historical context, but the approaches used thus far 65 

should by no means be seen as the only methods of delivery. In fact, the methodology that is 66 

described in what follows is very versatile; it could be used as part of an undergraduate laboratory 67 

course, a lecture-based statistics course, a senior undergraduate research project, or in different 68 

stages of graduate student research. In order to ensure that readers see potential to use this approach 69 

in a variety of settings, we have kept the contextual details rather general. Of course, individual 70 

instructors could adapt the project at their discretion, especially given the diversity of student 71 

backgrounds, laboratory capabilities and course timelines. 72 
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 73 

As instructors and/or researchers, we could encourage students to explore the power of hierarchical 74 

design methodology through statistical design of experiments, synthesis of polymeric materials, 75 

and/or subsequent characterization steps. The real-world application of a seemingly complicated 76 

statistical analysis methodology can help students to understand the relevance of the approach, to 77 

recognize the methodical simplicity of the analysis steps, and (more importantly) to appreciate 78 

inherent variability in experimental work. It is our hope that the description of the methodology 79 

and the examples that follow will provide instructors with the tools that they need to integrate these 80 

important topics into undergraduate (and graduate) chemical engineering courses. 81 

 82 

PROJECT DESCRIPTION 83 

 84 

Hierarchical experimental designs published by Dubé et al.[1] and D’Agnillo et al.[2] have 85 

investigated the reliable measurement of error at different steps of polymer synthesis and 86 

characterization. Their studies demonstrated that important sources of error in such investigations 87 

include the polymerization process, sample heterogeneity, and inconsistencies in characterization 88 

(specifically gel permeation chromatography, GPC). Polymerizations do not necessarily occur 89 

homogeneously in a reactor; depending on which part of the reactor the sample is taken from, there 90 

may be variability. For example, a different viscosity distribution may occur due to heterogeneous 91 

mixing distribution. Furthermore, identical measurements from GPC are not expected, even for 92 

identical samples, due to random variability from test to test. Fortunately, using a hierarchical 93 

experimental design, it is possible to quantify different sources of variance by taking replicate 94 

measurements at each nested level. 95 
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 96 

The main project described herein and further illustrated in Example 1 involves the synthesis of 97 

polymeric materials and the subsequent determination of polymer molecular weight averages. The 98 

investigation includes four different experimental steps (or four “levels”) where error might be 99 

introduced. See also Figure 1:  100 

(1) The preparation of concentrated “stock solutions”, which are pre-established formulations with 101 

monomers in solution. 102 

(2) The adjustment of each “pre-polymer solution” to achieve desirable reaction conditions (pH 103 

modification, for example) and the subsequent polymerization. 104 

(3) The collection of several samples from each polymerization. 105 

(4) The preparation of polymer samples for molecular weight analysis via dissolution and the 106 

characterization process itself via GPC.  107 

 108 

By convention, the lower levels are said to be nested in the higher levels. Thus, the lowest level in 109 

a nested design is usually the measurement itself; in this case it refers to the GPC analysis. As 110 

shown in Figure 1, the GPC analysis results (tests) in this study are nested within the samples, 111 

which are nested within the solution and synthesis step, which are in turn nested within the 112 

different formulations (monomer composition in the initial stock solution). 113 

 114 

For each stock solution, at least two independent replicates are required at each step; note that 115 

Figure 1 shows three independent replicates at the GPC level. In theory, the number and nature of 116 

experimental steps (“levels”) could vary as well, but the process is described here to give a sense 117 

of the project’s scale. In any case, once the specific experimental steps are identified, students need 118 
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to become familiar with each process so that they can hypothesize the potential sources of error. 119 

Familiarization can be accomplished through a combination of literature searches and in-lab 120 

training; helpful resources include these references[1-4] for the statistical background and these 121 

references[5,6] for the experimental synthesis and characterization background.  122 

Level 1 Level 2 Level 3 Level 4 

 

Figure 1: Example hierarchical design for the synthesis and analysis of polymeric materials. 123 
 124 

In step 1, for example, students are assigned a particular stock solution formulation. They are able 125 

to prepare the solution using straightforward lab procedures including using molar concentrations 126 

and volumes to determine mass, weighing monomers, transferring monomers to volumetric flasks, 127 

and dissolving monomers in a pre-specified volume of water. Most students recognize that 128 

intentional variation may occur with varying stock solution recipes, but that unintentional, inherent 129 

error may also be introduced during the weighing and transferring of monomers into the volumetric 130 

flasks. In this case, terpolymers of 2-acrylamido-2-methylpropane sulfonic acid, acrylamide and 131 

acrylic acid are the product of choice,[5] and the monomer quantities in the stock solution are 132 
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intentionally varied between investigations; more details will be provided in Example 1. However, 133 

the same approach could be applied to any number of other polymerization studies. 134 

 135 

Similarly, students identify sources of variation in preparing their stock solutions for synthesis 136 

(step 2), as they adjust the reaction conditions, add initiator, separate the solution into smaller 137 

aliquots, and place their samples in a warm shaker bath. Separation into several smaller aliquots 138 

allows for the synthesis of the same polymer product to occur in several different vials 139 

simultaneously. More experimental details have been provided elsewhere.[5,6] Step 3 requires 140 

students to remove samples from the water bath at pre-specified times and to stop the 141 

polymerization reaction using ice and/or an inhibitor injection. As they isolate the samples and 142 

allow them to dry, they are tasked with identifying additional sources of error in the experimental 143 

process. This step is intended to establish the consistency of the polymerization, including the 144 

equal distribution of pre-polymerization solution components and the repeatability of the polymer 145 

isolation process, across several simultaneously synthesized polymer samples. 146 

 147 

Finally, in step 4, polymers are prepared for molecular weight analysis via gel permeation 148 

chromatography (GPC). Since the polymeric material obtained is in powder form, small quantities 149 

of the polymer must be dissolved in a pH 7 buffer liquid (mobile phase), filtered, and injected into 150 

the GPC.[6] At this final stage, students may identify long dissolution times, difficult sample 151 

filtration, randomized sampling order, and day-to-day variability as some of the potential sources 152 

of error. 153 

 154 



8 
 

Depending on time allotted for the project or lab session, students may collect experimental data 155 

themselves or the data collection may be divvied up and assigned to smaller groups. For example, 156 

instructors might consider one formulation per group, or even one “level” per group, where one 157 

group of students focuses on stock solution preparation while other students focus on GPC. Or, if 158 

time is extremely limited, students may even evaluate pre-existing data sets (see Example 3 in 159 

what follows). However, it is important for students to understand where all of the experimental 160 

information comes from, even if they do not collect the data themselves. Inevitably, if students are 161 

not solely responsible for collecting experimental data, they may try to identify the primary source 162 

of error as “group-to-group variability” or “operator error”. While this is a relevant source of error, 163 

it is by no means the only contributing factor. Thus, to ensure that students fully explore the 164 

potential sources of error, a related group brainstorming activity is recommended. This discussion 165 

would best be placed after data collection (or, at least, after reviewing the experimental procedure 166 

in a case study) and before data analysis, so that sources of variability are informed by physical 167 

observations. Of course, it would also be beneficial to revisit the brainstorming activity after 168 

analysis, as time allows, to ensure that the results make physico-chemical sense. 169 

 170 

Statistical Background 171 

 172 

Any instructor wanting to introduce this type of project will need some background in statistics. 173 

The basic analysis steps are presented herein, but interested readers may want to refer to standard 174 

statistics textbooks[3,4] for additional information. In this section, generalized equations are 175 

provided for context, but the examples shown in what follows provide more concrete applications 176 

of the statistical analysis procedure. 177 
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 178 

In order to keep track of the experimental levels, it can be helpful to refer to each level generally 179 

from highest to lowest in alphabetical order (i.e., as per Figure 1, formulation = A, synthesis = B, 180 

sample = C and GPC = D). We can decompose or partition the total variability into the parts 181 

assignable to the various sources of error by calculating a sum of squares for each level of nesting. 182 

The variances associated with each level/step/part/component are designated herein as mA, mB, 183 

mC, and mD. Each observation is defined as yabc1, yabc2, …, yabcd, where there are D replicated 184 

analytical tests made on the Cth sample, Bth synthesis and Ath formulation. The mean squared error 185 

at the lowest level of a nested design, mD in this case, is defined as the pure error mean square, [2] 186 

and it should be calculated first (as per Eq. 1).  187 

 188 

 
mD=����

�yabcd-y�abc�
2

ABC(D-1)

D

d=1

C

c=1

B

b=1

A

a=1

 (1) 

 189 

In Eq. 1, y�abc is an average of all analytical tests at the Cth level. That is, y�abc is the average of GPC 190 

outputs (measurements) for a specific sample, which was in turn prepared from a specific stock 191 

solution and synthesis process. Since mD is the lowest level of the design, it is an unbiased estimate 192 

of σ�D
2 , which is the component variance due to the GPC step alone.  σ�D

2  has ABC(D-1) degrees of 193 

freedom and is used in conjunction with a level of significance (related to statistical confidence), 194 

α, to obtain an error band for the instrument. As long as the data points are normally distributed, 195 

the instrument error can be expressed as ±1.96√mD at 95% confidence within the range of the 196 

experiment. 197 

 198 
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The purpose of doing a nested experiment is to obtain a measurement of the variance at every level 199 

where error can be introduced. To solve for the variance in the samples, the mean square must be 200 

calculated for the next level, mC, which is expressed according to Eq. 2. 201 

 202 

 
mC=���

C�y�abc-y�ab�
2

AB(C-1)

C

c=1

B

b=1

A

a=1

 (2) 

 203 

In Eq. 2, y�ab is the average of all measurements at the Bth level, for any independent synthesis. 204 

Using Figure 1 as a general example, y�abwould be the average of all GPC measurements taken for 205 

sample 1 and sample 2 from a specific synthesis. Due to the nested nature of the experiment, mC 206 

is not an estimator of σ�C
2  alone but needs to be corrected according to Eq. 3. 207 

 208 

 σ�C
2 =

mC-mD

D
 (3) 

 209 

The variance associated with the polymer synthesis step is the next (higher) level in the hierarchical 210 

design. To solve for the variance at this level (σ�B
2 ), mB can be calculated as per Eq. 4. 211 

 212 

 
mB=��

BC�y�ab-y�a�
2

A(B-1)

B

b=1

A

a=1

 (4) 

 213 

In Eq. 4, y�a is the average of all replicates for each formulation. It then follows that the component 214 

variance of the solution level is expressed according to Eq. 5. 215 

 216 
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 σ�B
2 =

mB-mC

CD
 (5) 

 217 

The highest level of variability in this experiment is quantified by the mean squared error of the 218 

formulation, mA, which is calculated according to Eq. 6. 219 

 220 

 
mA=�

ABC�y�a-y̅�
2

(A-1)

A

a=1

 (6) 

 221 

Here, y� is the grand average, or the average of all observations. To correct for σ�A
2  we use Eq. 7. 222 

 223 

 σ�A
2 =

mA-mB

BCD
 (7) 

 224 

In principle, this approach could continue to “N” levels. However, 3 to 4 levels or stages are 225 

typical. The patterns are summarized in a generalized ANOVA table for clarity; see Table 1. 226 
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TABLE 1 
Generalized ANOVA Table for a Nested Design with Four Levels 

Source Sum of Squares 
Degrees of 
Freedom 

MS 
Expected Value of Mean 

Square (MS) 

Component 
Variance 
Estimates 

Average ABCD�y�2� 1 
  

 

Formulation ABC��y�a-y̅�
2

A

a=1

 A-1 mA BCDσ�A
2 + CDσ�B

2 +Dσ�C
2 +σ�D

2  σ�A
2 =

mA-mB

BCD
 

Solution BC���y�ab-y�a�
2

B

b=1

A

a=1

 A(B-1) mB CDσ�B
2 +Dσ�C

2 +σ�D
2  σ�B

2 =
mB-mC

CD
 

Sample C����y�abc-y�ab�
2

C

c=1

B

b=1

A

a=1

 AB(C-1) mC Dσ�C
2 +σ�D

2  σ�C
2 =

mC-mD

D
 

GPC �����yabcd-y�abc�
2

D

d=1

C

c=1

B

b=1

A

a=1

 ABC(D-1) mD σ�D
2  σ�D

2 =mD 

Total �����yabcd�
2

D

d=1

C

c=1

B

b=1

A

a=1

 ABCD  
 

 

 227 

After building an ANOVA table, the next step is to determine whether or not the variance is 228 

significant at each level. A series of sequential F-tests can establish the validity of the null 229 

hypothesis, on the basis of 95% confidence, to determine whether or not the error value at a given 230 

level might be zero.   231 

 232 

The null hypothesis for the F-test is that the ratio of two variances (as in Eq. 8) is unity, or that the 233 

variance component (σ� i
2) at the higher level does not provide a significant contribution to the 234 

overall variability. Therefore, if the Fobs < Fcrit, where Fobs may be FA/B, FB/C, FC/D, etc. as shown 235 

below, we fail to reject the null hypothesis. Thus, we can conclude that σ� i
2 = 0 and that the error 236 

associated with the level being evaluated is not significant. 237 
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 238 

The alternate hypothesis is that mi > mi+1 (mC > mD, for example). If the variance at a higher design 239 

level is significantly larger than the next lowest level (if mC is significantly larger than mD, for 240 

example), then the variance component at that upper design level provides a significant 241 

contribution to the overall variability, and σ� i
2 > 0.  242 

 243 

 FA/B=
mA

mB
 (8a) 

 FB/C=
mB

mC
 (8b) 

 FC/D=
mC

mD
 (8c) 

 244 

The F-probes (or Fobs values) shown in Eq. 8 all have degrees of freedom in the numerator (ν1) 245 

and denominator (ν2) according to their mean squared values; recall Table 1. If, for any level, Fi/i+1 246 

is larger than the critical Fν1,ν2 distribution, then level i is identified as a significant source of 247 

variability.  248 

 249 

It is important to note that these hypothesis tests represent an overall analysis. F-testing cannot be 250 

used to determine whether a certain subset of replicates is statistically similar. For example, if GPC 251 

analysis was performed on “D” separate days and the data on a specific day was believed to be 252 

compromised, F-testing would only show that the “D” level showed significant variability; it could 253 

not be used to identify which day was introducing bias. In such cases, it may be of interest to 254 

remove all the data from that day, i.e., changing from a “A×B×C×D” to a “A×B×C×(D-1)” 255 

resolution experiment, and repeat the analysis. Alternatively, one might consider re-evaluating the 256 



14 
 

data using blocking; all data collected on a particular day could be subdivided into a block. In such 257 

a case, variability between days could be evaluated. However, by focusing on day-to-day 258 

variability, it would not be as straightforward to quantify variability due to formulations, solutions, 259 

and samples. Therefore, there are several “what-if” scenarios that one can investigate based on a 260 

specific dataset, depending on the intended outcome. 261 

 262 

CASE STUDIES 263 

 264 

To demonstrate the application of this project, three specific examples are presented in different 265 

levels of detail in what follows. These case studies are intended to clarify the analysis steps, and 266 

will give instructors some additional background if they would like to incorporate such a project 267 

into their courses. 268 

 269 

The polymerization processes described herein are relevant to a variety of important applications; 270 

the complexity of each case is representative of a real-world problem. These cases are intentionally 271 

non-trivial, and should be appropriate for upper year undergraduate students. We have highlighted 272 

multi-component polymers and polyelectrolytes (Example 1), crosslinked polymers (Example 2), 273 

and high-temperature GPC for polyolefin characterization (Example 3). Exploring such processes 274 

promotes critical thinking and provides valuable troubleshooting opportunities for students. These 275 

complications make the analysis more realistic, which we believe increases students’ motivation 276 

and enhances their ability to apply these concepts in real-world situations.  277 

 278 
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Example 1 279 

 280 

The first example highlights the terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid 281 

(AMPS), acrylamide (AAm) and acrylic acid (AAc). AMPS/AAm/AAc is a water-soluble polymer 282 

that can be used as a viscosity modifier in chemical enhanced oil recovery, and the effectiveness 283 

of the viscosity modification is dependent on the molecular weight averages of the polymeric 284 

material. Thus, there is real-world motivation to obtain accurate molecular weight averages for the 285 

materials produced; it is important to know which steps of the synthesis and characterization 286 

process are introducing the most error. 287 

 288 

As described generally earlier, the polymerization of AMPS/AAm/AAc can be broken down into 289 

four main steps: stock solution preparation for a pre-specified formulation, pre-polymerization 290 

solution preparation and synthesis, sampling, and characterization (GPC). As shown in Figure 2, 291 

the project included three unique formulations, which are arbitrarily labeled J, K and L. The 292 

synthesis of each formulation was independently replicated (synthesis replicates are designated by 293 

“R”), and two samples were taken from each synthesis. Finally, the molecular weight average of 294 

each sample was characterized via GPC three times. For each GPC characterization, an aliquot 295 

was dissolved in the mobile phase (pH 7 buffer) over several days, filtered, and transferred into a 296 

single GPC vial. The entire sample preparation process, from taking an aliquot to filling the GPC 297 

vial, was repeated for each test. Thus, each GPC injection was from a unique GPC vial; three GPC 298 

vials were used for each sample, and twelve vials were used for each formulation. Characterization 299 

occurred in random order over the course of three days, with daily recalibration of the system using 300 

well-characterized standards. 301 
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 302 

 303 
Figure 2: Four-stage nested design for the terpolymerization of AMPS/AAm/AAc. 304 

 305 

For this investigation, the formulations (at the highest level) were intentionally varied, as shown 306 

in Table 2. Varying formulations provided information about how the initial concentrations of 307 

component monomers might affect the molecular weight (or other properties not discussed herein) 308 

of the resultant terpolymer. However, all subsequent steps, namely synthesis, sampling and GPC, 309 

were kept consistent to the extent possible. Experimental details have been provided elsewhere.[5,7] 310 

TABLE 2 
Experimental Conditions for Terpolymerization Formulations 

Formulation fAMPS,0/fAAm,0/fAAc,0 [M] (mol/L) [I] (mol/L) 
J 0.20/0.40/0.40 1.0 0.004 
K 0.21/0.69/0.10 1.5 0.009 
L 0.10/0.75/0.15 1.5 0.009 

fi,0 = initial mole fraction of monomer i, [M] = overall monomer concentration, [I] = initiator 
(4,4'-azobis(4-cyanopentanoic acid)) concentration 

Formulation J

Solution Prep & 
Synthesis - J

Sample J-1

Characterization 
(GPC) a

Characterization 
(GPC) b

Characterization 
(GPC) c

Sample J-2 Characterization 
(GPC) x3 (a, b, c)

Solution Prep & 
Synthesis - J-R

Sample J-R-1 Characterization 
(GPC) x3 (a, b, c)

Sample J-R-2 Characterization 
(GPC) x3 (a, b, c)

Formulation K

Solution Prep & 
Synthesis - K

Sample K-1 Characterization 
(GPC) x3 (a, b, c)

Sample K-2 Characterization 
(GPC) x3 (a, b, c)

Solution Prep & 
Synthesis - K-R

Sample K-R-1 Characterization 
(GPC) x3 (a, b, c)

Sample K-R-2 Characterization 
(GPC) x3 (a, b, c)

Formulation L

Solution Prep & 
Synthesis - L

Sample L-1 Characterization 
(GPC) x3 (a, b, c)

Sample L-2 Characterization 
(GPC) x3 (a, b, c)

Solution Prep & 
Synthesis - L-R

Sample L-R-1 Characterization 
(GPC) x3 (a, b, c)

Sample L-R-2 Characterization 
(GPC) x3 (a, b, c)
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 311 
Once the synthesis of all samples and the subsequent characterization was completed, students 312 

were tasked with selecting which dataset or datasets to work with. Unlike typical chemicals whose 313 

molecules all have the same molecular weight, the molecular weights of polymers are typically 314 

not uniform; polymerization reactions create chains which generally have different lengths and 315 

configurations leading to different molecular weights. Thus, GPC analysis provides the 316 

determination of several molecular weight averages, including number-average molecular weight 317 

(M� n), weight-average molecular weight (M� w), and peak molecular weight (Mp), as well as the 318 

polydispersity index (PDI) and the bulk intrinsic viscosity. Therefore, students investigated the 319 

relevance of each variable before selecting which dataset to work with. 320 

 321 

One student justified their decision to analyze Mp as follows:  322 

“The terpolymer AMPS/AAm/AAc is known to have a relatively broad molecular weight 323 

distribution. The molecules in the very high molecular weight tail of the distribution may not 324 

even elute from the column, thus leading to an underestimation of M� w and PDI. [The 325 

underestimation] is due to electrostatic interactions between polyelectrolytes and GPC column 326 

internals, which were also observed for the copolymer AAm/AAc.[8] Since M� n emphasises the 327 

number of molecules in the injected samples (which is not changing), it is not the most reliable 328 

average. Hence, the most trusted representation was the peak molecular weight, Mp.”  329 

 330 

In general, most students recognized that Mp would provide the most useful data in this case, 331 

especially based on prior work in the area.[6-8] However, the same statistical analysis could be 332 
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performed on any of the other variables. A sample data set for Mp is used for the remainder of this 333 

example, but results would of course vary from one project/group to the next. 334 

 335 

The next step was to evaluate the data from the 3×2×2×3 hierarchical characterisation of Mp, as 336 

per Figure 2. As described in the discussion surrounding Table 1, the generalized ANOVA table 337 

and related F-tests were employed. As shown in Tables 3 and 4, significant differences in variances 338 

were detected only at the formulation level. 339 

TABLE 3 
ANOVA Table for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3) 

Source of Variation Sum of Squares Degrees of Freedom Mean Square 
Average 9.11×1013 1 

 

Formulation 5.03×1010 2 2.51×1010 
Solution 3.26×109 3 1.09×109 
Sample 3.47×1010 6 5.79×109 

GPC 1.52×1011 24 6.35×109 
Total 9.13×1013 36 

 

 340 
TABLE 4 

F-Testing Results for AMPS/AAm/AAc Study (A×B×C×D = 3×2×2×3) 
Type of Test F𝐨𝐨𝐨𝐨𝐨𝐨 Fcrit Reject null? 
Sample/GPC 0.91 2.51 Fail to reject 

Solution/Sample 0.19 4.76 Fail to reject 
Formulation/Solution 23.13 9.55 Reject 

 341 

The F-testing results in Table 4 provided initial evidence that significant differences in the polymer 342 

molecular weight were only caused/determined by the formulation recipe; this was as 343 

expected/predicted, since formulations J, K and L were intentionally varied.  344 

 345 

The pure error variance, which is estimated by the mean squared error at the lowest level, was 346 

estimated here to be 6.35×109 for the GPC instrument; see Table 3. Since replicate GPC 347 
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measurements of the same sample are assumed to be normally distributed, the pure error variance 348 

corresponds to an error for aqueous GPC of ±156,186 g/mol at 95% confidence in this experiment.  349 

 350 

The polymer formulations K and L were more similar to each other than to formulation J, which 351 

was richer in acrylic acid. Also, formulation J had a lower total monomer molarity and initiator 352 

molarity; recall Table 2. In order to determine if smaller formulation differences could still be 353 

detected and to see if the solution and sample levels remained insignificant, students chose to 354 

repeat the analysis using a 2×2×2×3 experiment (with formulation J removed). Tables 5 and 6 355 

show the ANOVA and F-testing for the reduced data set to detect the variation of Mp across 356 

experimental levels.  357 

TABLE 5 
ANOVA Table for AMPS/AAm/AAc Study (A×B×C×D = 2×2×2×3; Formulation J Removed) 
Source of Variation Sum of Squares Degrees of Freedom Mean Square 

Average 6.11×1013 1 
 

Formulation 4.82×1010 1 4.82×1010 

Solution 2.75×109 2 1.37×109 

Sample 1.39×1010 4 3.47×109 

GPC 9.31×1010 16 5.82×109 

Total 6.13×1013 24 
 

 358 
TABLE 6 

F-Testing Results for AMPS/AAm/AAc Study (A×B×C×D = 2×2×2×3; Formulation J Removed) 
Type of Test F𝐨𝐨𝐨𝐨𝐨𝐨 Fcrit Reject null? 
Sample/GPC 0.60 3.01 Fail to reject 

Solution/Sample 0.40 6.94 Fail to reject 

Formulation/Solution 35.07 18.51 Reject 

 359 

The results shown in Table 6 indicate that when similar formulations were being compared, there 360 

were still significant differences at the formulation level, but not in the solution/synthesis or the 361 

sample levels. The analysis results suggest that the initial monomer composition (i.e., the quantity 362 
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of each comonomer in the initial recipe) was a significant factor, since formulations K and L had 363 

the same total monomer concentration and the same initiator concentration (see Table 2). 364 

 365 

As demonstrated in Tables 3 and 5, the mean squared error was fairly high at the GPC level. Thus, 366 

students hypothesized that the high GPC error may have masked the error in the solution and 367 

sample levels. Therefore, to further investigate error at the GPC level, calibration constants were 368 

revisited. 369 

 370 

To account for any stochastic drift during characterization, the GPC had been recalibrated daily 371 

using well-characterized standards. While the calibration constants were similar from day to day, 372 

some fluctuation was observed. Therefore, as an alternative to applying different calibration 373 

constants each day (as had been done for the results reported thus far), all calibration constants 374 

measured over the course of about three days were averaged to allow for a more consistent 375 

calibration from day to day. The pooled calibration reduced the day-to-day variability that would 376 

be hidden within the GPC replicates.  377 

 378 

With the new pooled calibration data, ANOVA tables were reproduced and F-testing was revisited. 379 

The full 3×2×2×3 experiment (recall Tables 3 and 4) and the reduced data set (where formulation 380 

J was excluded to leave a 2×2×2×3 resolution design; recall Tables 5 and 6) were both re-evaluated 381 

using the pooled calibration dataset.  382 

 383 

The results of the analysis are not included herein for the sake of brevity, but students found that 384 

repeating their ANOVA table calculations using pooled calibration data for both the full 3×2×2×3 385 
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experimental design and the reduced 2×2×2×3 experimental design led to a large reduction of error 386 

at the GPC level (GPC mean square). Using the pure error variance from the GPC level, the error 387 

band for aqueous GPC was determined to be ±138,737 g/mol at 95% confidence, which was 388 

approximately 10% less than the error band obtained with the daily recalibrated (original) data set. 389 

The decrease in variance obtained using pooled calibration data suggests that recalibrating the 390 

GPC daily introduced error; daily calibration may have been overcorrecting for day-to-day 391 

variation, since there should not have been any considerable drift in the laboratory at that time. 392 

The analysis of pooled calibration data still confirmed the results obtained earlier, as the only 393 

significant variance was observed between formulations. 394 

 395 

Potential Extension: Sensitivity Analyses 396 

 397 

An interesting extension would be to use the collected data to confirm that hierarchical design 398 

strategies are capable of detecting differences in molecular weight for different experimental 399 

levels, not just the formulation level that was observed from the AMPS/AAm/AAc experimental 400 

data. Therefore, one might add a range of biases to a subset of the experimental data. For 401 

demonstration purposes, a molecular weight bias was added to all data stemming from the first 402 

solution/synthesis of formulation L (recall Figure 2). The goal here was to determine at which 403 

point our hierarchical design would be able to detect a significant difference at the 404 

solution/synthesis level when experimental data from all three formulations were included.  405 

 406 

As shown in Figure 3, it is possible to compare the calculated F-probe (Fobs) with different 407 

molecular weight biases, constantly comparing the resulting values to the critical F value (recall 408 
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Eq. 8); this analysis was first performed using the original, daily recalibrated data from the full 409 

3×2×2×3 experiment. Figure 3 shows that if data coming from the first solution/synthesis of the L 410 

formulation had peak molecular weights approximately 150,000 g/mol higher than what was 411 

observed experimentally, there would be statistically significant differences at the 412 

solution/synthesis level. Such a molecular weight difference could easily occur experimentally, 413 

especially if the solution preparation process and subsequent synthesis are not carefully handled. 414 

Consider, for example, the impact of a miscalculated reaction time or an incorrectly set temperature 415 

controller. The simulation confirms that the hierarchical design of experiments would identify such 416 

sources of error if they impacted the peak molecular weight by at least 150,000 g/mol. 417 

 418 

 419 
Figure 3: Sensitivity analysis where the first solution preparation/synthesis data of formulation L are intentionally 420 

biased (3×2×2×3). 421 
 422 

The point at which the solution/synthesis level becomes significant at 95% confidence is 150 423 

kg/mol (150,000 g/mol). Graphically, this is the crossover point. Interestingly, this value is almost 424 
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exactly the same as the instrumental error (at 95% confidence) that we obtained for the GPC step, 425 

which was ±156,186 g/mol. The result may be coincidental, but the fact that it is of the same order 426 

of magnitude as the instrument error is further evidence that hierarchical design strategies not only 427 

handle noise extremely robustly, but also detect true changes very efficiently. This type of 428 

extension allows students to think about their results in a meaningful way, and encourages 429 

brainstorming among students. A similar analysis could be performed for the other subsets of data 430 

described herein. Students might choose to look only at formulations K and L, or at the dataset 431 

obtained from the pooled calibration. Alternatively, the same type of sensitivity analysis could be 432 

applied to other data from the literature. Open-ended extensions like the ones described herein give 433 

students some additional autonomy over their work, which should further motivate their 434 

investigation. 435 

 436 

The sensitivity analysis illustrated here has shown that even though the differences between the 437 

solution preparation/synthesis steps were insignificant for these AMPS/AAm/AAc syntheses, they 438 

could very quickly become significant factors. Had we not been able to see solution/synthesis level 439 

significance until we increased the molecular weight averages by several million (knowing that 440 

this polymer is not likely to experience that magnitude of variation in the lab), we may have drawn 441 

conclusions about the high error in the GPC and its ability to mask other sources of variability. 442 

However, this was not the case. Error at the GPC level was low enough to allow for detection of 443 

reasonable variation in the solution and synthesis level; however, these differences were simply 444 

not observed experimentally. 445 

 446 
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Example 2 447 

 448 

Experiments conducted in this second study involved the nitroxide-mediated radical 449 

copolymerization of styrene (STY) and divinyl benzene (DVB) using N-tert-butyl-N-(2-methyl)-450 

1-phenylpropyl)-O-(1-phenylethyl) hydroxylamine (TIPNO) as a unimolecular initiator; 451 

experimental details are provided elsewhere.[9] It is well-known that systems involving DVB are 452 

prone to crosslinking, involving the formation of gel materials that are difficult to deal with in the 453 

laboratory. Crosslinking and gelation could introduce a considerable amount of error in subsequent 454 

property characterization techniques.  455 

 456 

As part of a systematic and comprehensive polymerization kinetic study, number- and weight-457 

average molecular weights of the produced polymers were measured at various conversion levels 458 

using GPC. In this case, the hierarchical design was used to investigate the total variation in the 459 

molecular weight measurement from three important sources: error associated with the GPC 460 

measurement itself (analytical error), error related to the polymerization (reactor or process, 461 

carried out under identical conditions), and the variability in the measurements corresponding to 462 

different sampling times. In general, the same nested design approach was applied as in Example 463 

1, but with three levels rather than four, and with said levels defined differently. Using a single 464 

formulation and focusing instead on sampling time, which is related to conversion level and hence 465 

to gel formation, allowed for a somewhat reduced experimental load for students. 466 

 467 

Take, for example, the 3×2×2 experiment illustrated in Figure 4. Three samples taken out at 60 468 

minutes, 420 minutes and 480 minutes (A = 3) were reproduced in a replicated polymerization/ 469 
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synthesis (B = 2). For a sample from each polymerization, two independent GPC measurements 470 

were carried out (C = 2).  471 

 472 

 473 

 

Time 

Polymerization 
(Synthesis) 

GPC 

Figure 4: Three-stage nested design for the copolymerization of STY/DVB. 474 
  475 

As with Example 1, students were tasked with learning about the experimental steps and 476 

identifying potential sources of error, then collecting the data themselves. In this case, since 477 

organic solvent-based GPC was used for the characterization (with tetrahydrofuran as solvent), 478 

both number-average molecular weight (M� n) and weight-average molecular weight (M� w) data 479 

were of interest; students could choose to analyze one or both of the data sets.  480 

 481 

As shown in Tables 7 and 8, the pure error variance associated with only the GPC measurements 482 

was estimated to be 1.21×108 for M� n and 8.32×109 for M� w. On the basis of a 95% confidence 483 

interval, this translates into an analytical error of ±21,553 g/mol for M� n and an error of ±178,815 484 

g/mol for M� w. This is the error solely based on the GPC measurements.  485 

  486 
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TABLE 7 
ANOVA Table for STY/DVB Study (using M� 𝐧𝐧 data) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square Component 
Variance 

Average 2.64×1010 1     
Time 1.26×1010 2 6.30×109 1.37×109 

Polymerization 2.46×109 3 8.20×108 3.49×108 
GPC 7.26×108 6 1.21×108 1.21×108 
Total 4.22×1010 12     

 487 

TABLE 8 
ANOVA Table for STY/DVB Study (using M� w data) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square Component 
Variance 

Average 2.59×1012 1   
Time 2.60×1012 2 1.30×1012 2.59×1011 

Polymerization 7.92×1011 3 2.64×1011 1.28×1011 
GPC 4.99×1010 6 8.32×109 8.32×109 
Total 6.03×1012 12   

 488 

Similarly, the error related to polymerization was found to be 3.49×108 and 1.28×1011 for the 489 

number- and weight-average molecular weights, respectively. These results are indicative of the 490 

variability in the two polymers that were prepared, and thus, reflects the degree of inconsistency 491 

in the preparation techniques. Finally, the error in the molecular weight measurements 492 

corresponding to different times or conversion levels was 1.37×109 and 2.59×1011 for number-and 493 

weight-average molecular weights, respectively.  494 

 495 

From this hierarchical analysis, it was clear that error caused by the GPC (lower level) was of the 496 

lowest magnitude when compared to the other variables. Hypothesis testing was also conducted to 497 

determine the impact of the different variables using an F-test. As described previously, the null 498 

hypotheses were used to check if  𝜎𝜎𝐴𝐴2 (related to sampling time) and 𝜎𝜎𝐵𝐵2 (related to polymerization 499 

replicates) were equal to zero. In this case, the hypothesis testing on  𝜎𝜎𝐴𝐴2 failed to reject the null 500 

hypothesis of  𝜎𝜎𝐴𝐴2 = 0 for both M� n and M�w. The hypothesis test outcome suggests that the error 501 
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associated with the different reaction times does not significantly contribute to overall variability. 502 

On the other hand, the null hypothesis of 𝜎𝜎𝐵𝐵2 = 0 was rejected for both M� n and M�w. Therefore, 503 

there is strong evidence to conclude that the polymerization error contributes significantly to the 504 

overall error. 505 

 506 

These results suggest that synthesis steps and/or conditions may be introducing variability. For the 507 

copolymerization of STY/DVB, crosslinking and gelation are known to introduce inaccuracies in 508 

molecular weight determination; this may have contributed to the error. Although the samples are 509 

drawn at the same times during polymerization, the conversion may have varied from run to run, 510 

and the synthesized polymer characteristics may vary considerably as a result. This would be of 511 

particular concern if samples were collected at/near the gel point.  512 

 513 

In any case, students must be called upon to think critically about their results, reconciling physico-514 

chemical explanations with their analysis results. The physico-chemical piece is an important 515 

aspect of the project; students should enhance their statistical background as well as improve their 516 

understanding of polymerization processes and related characterization steps. 517 

 518 
Example 3 519 

 520 

Our final example uses data from the literature, originally reported by D’Agnillo et al.[2] This type 521 

of case study, as illustrated in Figure 5, may be used in one of two ways. When instructors have 522 

dedicated ample time to this type of project, the data may be analyzed as a “first step” to confirm 523 

that the statistical analysis approach is well-understood; this can be done in parallel to experimental 524 

work for another study. Alternatively, if time is more limited, the case study alone would be 525 
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sufficient to introduce the concept of hierarchical data analysis and polymer characterization. 526 

However, to ensure that students can appreciate sources of experimental error, some exposure to 527 

laboratory techniques would still be extremely beneficial. 528 

 529 

 

Polymerization 
(Synthesis) 

Samples 

GPC 

Figure 5: Three-stage nested design for the polymerization of ethylene (adapted from D’Agnillo et al.[2])  530 
 531 
The M�w data from D’Agnillo et al.[2] could be given to students for a preliminary analysis, and 532 

then students could compare their analysis results to the published ANOVA table, F-testing results, 533 

and so on. The analysis was recently confirmed by one of our students, and results were in excellent 534 

agreement with the original publication. For the sake of brevity, the interested reader can consult 535 

the specific reference.[2] 536 

 537 

LESSONS LEARNED 538 

 539 

The hierarchical design methodology described herein, along with the examples and experiences 540 

we cite, has been shared with graduate and undergraduate students. The graduate students used the 541 

methodology as part of their research, primarily as a tool to analyze data and gain significant 542 

insights into the process behaviour from which they were collecting data. The undergraduate 543 

students used the methodology to complement what they had learned in their Applied Statistics 544 

course (2nd year) and their Design of Experiments course (3rd or 4th year); it was a helpful tool 545 

as they analyzed the data collected during group design projects or individual research projects in 546 
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their senior year. Although typical course evaluations were not solicited from these students, we 547 

have compiled several comments and anecdotal information. These remarks were received from 548 

students who participated in these design/research projects over the past couple of years and have 549 

since made use of the statistical tools in other settings. 550 

 551 

From a student who graduated and is currently gainfully employed: 552 

“…You won’t be surprised to hear that hierarchical designs had immediate application in the 553 

workplace! There is a [company name and process description] production facility in [location 554 

in USA], which sent us two samples of … powder from the top of the reactor and two from the 555 

bottom. I made three [specimens] with each sample. We will soon be running [tests] for 556 

determining specific properties. This is a 2×2×3 hierarchical design, as you taught us! If we 557 

didn’t take the replicates from different locations in the reactor and it was just natural 558 

heterogeneity, we could spin our wheels for months developing mechanistic theories based on 559 

artifacts of statistical variance...”. 560 

 561 

Another comment:  562 

“For me it is difficult to talk about hierarchical experiments without using examples to explain, 563 

but it is clear that as a student in this design project group I have grasped the concept to a degree 564 

that it is now natural for me to always consider not only the measurement error, but also the 565 

steps along the way. This is no trivial thing and actually I have noticed that very few people 566 

(even within ChE BASc, MASc/MEng or PhDs!) think like this. To be fair, neither did I before 567 

taking on this project, which demonstrates that I have in fact learned a great deal. Perhaps…the 568 
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reactor example that we did is the best and most natural place to start for chemical engineering 569 

students…”. 570 

 571 

Another student provided the following comment:  572 

“At [company name] we made [specimens] and ran conductivity tests on the outlet flow with 573 

different inlet solution concentrations. The issue we had was evaluating the performance based 574 

on these different inlet concentrations. It is true that one [specimen] may have performed better 575 

with one solution over another but these units were all handmade (even the inlet solutions were 576 

mixed by us) so it was very difficult to say if it was performing better or not due to these lurking 577 

variables. A hierarchical design strategy could be used to control for these variables perhaps 578 

using different solution recipes at the top level, then pooling solution mixing and [specimen] 579 

number for the second level and measurement variance of the conductivity at the bottom. 580 

Hierarchical design can basically be used whenever there is a measurement and a true change 581 

affected by lurking variables, which is quite often the case...”. 582 

 583 

And another student had this to say:  584 

“At [company name] we varied powder formulations for creating different plastics. These were 585 

batch processes so there were many entry points of error for new runs. In one instance, we used 586 

an additive to try to achieve tailored properties which were manifest in the [specific property] 587 

testing of the finished product; however, without replicates, we were in the dark about the error. 588 

After hearing about this strategy, we should have taken replicates at two levels: making multiple 589 

plastic sheets for each run and fusing multiple identical sheets to different plaques. Doing this 590 
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would not only have incidentally given valuable information about the error in our process but 591 

also definitively established the significance of adding said additive...”. 592 

 593 

And finally, we received insight from a previous co-op student experience:  594 

“…we were extracting DNA, RNA and protein from mouse liver and the amounts of the specific 595 

protein were quantified with [various characterization techniques]. So in this case, hierarchical 596 

design could have been used by taking replicates from the same piece of mouse tissue, then on 597 

the extraction process and the test. This would have helped a lot in determining if the results 598 

were significant…”. 599 

 600 

The comments here speak for themselves; the project was of value to students and 601 

confirmed/solidified key concepts that had been targeted. Not only did students learn about the 602 

technical aspects of polymer characterization and statistical hierarchical design and analysis, but 603 

they were also able to articulate the importance of the analysis technique and reflect on its potential 604 

application in industry. There is an inherent mindset shift that has occurred for these students, and 605 

they have become much more aware of error sources in each step of the process that they are 606 

evaluating. As one student wrote, “…The beauty of the methodology is that it teaches you a certain 607 

way of thinking. This way of thinking, where we can easily assess entry points of error and 608 

quantitatively state that, for example, the top of the reactor or resin bin produces better product 609 

than the bottom (or mid-point) and then attack why this is the case, is so valuable…”.  610 

 611 

While we prefer to emphasize the lessons learned by students, we should also comment on the 612 

insights gained by the instructional team; this will ensure that the implementation becomes even 613 
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more effective in future course offerings. Overall, we felt that the relationships between statistical 614 

design of experiments, polymer synthesis and polymer characterization were well-established, and 615 

that the subsequent analyses were at a suitable level of difficulty for students. As with any group 616 

project, it is important to ensure equitable distribution of work; this is critical in both the laboratory 617 

setting and during the statistical analysis steps. To ensure that all students are motivated to 618 

contribute, it may be beneficial to assign a “lab participation” grade and/or assign a “group 619 

reflection” piece near the end of the project. 620 

 621 

One additional comment is related to the selection of polymerization processes described herein. 622 

The first two examples, polyelectrolyte terpolymerization and crosslinking copolymerization, 623 

were both fairly complex processes. As such, both materials presented some challenges during the 624 

experimental steps. The synthesis of the AMPS/AAm/AAc terpolymer was difficult for some 625 

students, especially in terms of pH adjustment prior to synthesis. Occasionally, the exothermic 626 

titration increased the temperature of the pre-polymerization solution too substantially, which 627 

resulted in some premature polymerization. Also, for both the AMPS/AAm/AAc terpolymer and 628 

the STY/DVB copolymer, there were some issues with sample preparation prior to GPC analysis. 629 

AMPS/AAm/AAc can take a very long time to dissolve completely in the mobile phase, and 630 

undissolved material may be inadvertently filtered out prior to analysis if students are impatient. 631 

Similarly, the STY/DVB copolymer crosslinked under some conditions, leading to the formation 632 

of insoluble gel. Given the limitations of GPC characterization, the molecular weight averages of 633 

these insoluble portions could not be accurately measured. 634 

 635 
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However, as mentioned earlier, the case studies selected were intentionally complicated, as they 636 

mirror real-world situations that students may face. Exploring properties of polyelectrolytes and 637 

crosslinked polymers provide important troubleshooting opportunities for future chemical 638 

engineers. That said, this paper is intended to provide instructors with the tools needed to develop 639 

a similar project in their own courses; each instructor will inevitably choose their own 640 

polymerization processes to work with. For instructors with limited polymerization background, a 641 

homopolymerization process may be more suitable. Consider, for example, the synthesis of 642 

polystyrene (in either solution or emulsion): it is a fairly straightforward process, but one might 643 

still vary the recipe and/or the sampling time before characterization via GPC. Thus, it could be 644 

an interesting and relatively simple study based on the prescriptions described herein. 645 

 646 

CLOSING REMARKS 647 

 648 

Using polymer property characterization studies to teach hierarchical design statistics provides 649 

students with exposure to several topics that they may not otherwise discover. This type of project 650 

can be used to integrate general principles related to polymer science (understanding 651 

polymerization processes and molecular weight distributions, for example) with advanced 652 

laboratory skills (including sample preparation, instrument operation and data collection), while 653 

simultaneously ensuring that students are able to identify relevant sources of error and are able to 654 

quantify them using hierarchical data analysis techniques. 655 

  656 

From the students’ perspective, this type of project provides them with more opportunities to 657 

appreciate experimental design principles, complementary to their lab sessions and/or to their 658 
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senior design projects. They are also encouraged to spend time in the lab, gaining valuable hands-659 

on experience. While they will immediately see how sources of error persist in polymer synthesis 660 

and characterization, they will also be able to carry the statistical methodology with them to other 661 

aspects of chemical engineering. Undergraduate course work in chemical engineering programs 662 

can often seem far removed from industrial applications. Technical courses can be very theoretical 663 

in nature, and it can be difficult for students to appreciate the real-world relevance. This type of 664 

project gives students the opportunity to see how technical concepts apply to industrial problem-665 

solving (designing experiments, identifying sources of error, troubleshooting, etc.). Creating links 666 

between the classroom and the workplace will ultimately strengthen the skills that students will 667 

require in industry.  668 

 669 

From an instructor’s perspective, this intersection of several relevant topics makes it possible to 670 

achieve a wide range of learning outcomes. Students will not only expand their technical 671 

knowledge base, but they will also gain experience handling complex, open-ended problems. The 672 

project might also include a review of relevant literature, collaboration with classmates, and 673 

communication of results. Thus, students will benefit immensely from this type of project. 674 

 675 
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