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A B S T R A C T

Neurons in the inhibitory network of the striatum display cell assembly firing patterns which recent results
suggest may consist of spatially compact neural clusters. Previous computational modeling of striatal neural
networks has indicated that non-monotonic, distance-dependent coupling may promote spatially localized
cluster firing. Here, we identify conditions for the existence and stability of cluster firing solutions in
which clusters consist of spatially adjacent neurons in inhibitory neural networks. We consider simple non-
monotonic, distance-dependent connectivity schemes in weakly coupled 1-D networks where cells make
stronger connections with their 𝑘th nearest neighbors on each side and weaker connections with closer
neighbors. Using the phase model reduction of the network system, we prove the existence of cluster solutions
where neurons that are spatially close together are also synchronized in the same cluster, and find stability
conditions for these solutions. Our analysis predicts the long-term behavior for networks of neurons, and we
confirm our results by numerical simulations of biophysical neuron network models. Our results demonstrate
that an inhibitory network with non-monotonic, distance-dependent connectivity can exhibit cluster solutions
where adjacent cells fire together.
1. Introduction

Many types of brain activity are characterized by coordinated activ-
ity of neural assemblies, in which neuron firing is synchronized within
an individual assembly but not between different assemblies [1–6].
Neural assemblies have been observed between neurons in different
cortical columns [3], within regions of the hippocampus [2,4], the
dentate gyrus [6], and between cells in the striatum [1,7,8] and the
olfactory bulb [5]. Neural assemblies may involve neurons which are
widespread across one or more brain regions [3,4] or may involve
spatially localized neurons [1,6]. Understanding the dynamics and for-
mation of neuronal assemblies within larger neural networks has gained
increasing importance in neuroscience [9] and has been studied both
experimentally [1,4–6,10] and using computational modeling [11–18].

In neural network models, the formation of neural assemblies has
been analyzed by identifying cluster solutions in networks of intrinsi-
cally oscillating neurons [10,14–17,19,20]. Clustering defines a type
of solution where the network of oscillators breaks into subgroups.
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Within each subgroup, the phases of the oscillators are the same, while
oscillators in different subgroups are phase-locked with some nonzero
phase difference. A useful mathematical framework for studying clus-
ter solutions is the phase model reduction [21,22]. This framework
has been used to study synchronization and clustering in a variety
of coupled oscillator networks [23–27]. Another useful approach is
to consider a continuum model representing the limit of an infinite
number of oscillators [28,29]. Such models are represented as partial
differential equations and cluster solutions correspond to wave-like
solutions, sometimes called twisted states [28,30–33].

Cluster solutions have been extensively studied in models with all-
to-all identical coupling [23,24,29,34–36]. In particular, the existence
and stability of two cluster states where there can be a different number
of neurons in each cluster has been studied in depth for the all-to-all
coupling case [35,36].

A limited number of papers have studied cluster solutions in models
with structured connectivity. These papers primarily focus on net-
works with neurons arranged in a 1-dimensional ring, of arbitrary
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size. In [31,36] a phase model representing a system with all-to-all
identical synaptic coupling and local (nearest neighbor) gap-junctional
coupling is formulated. They study how the gap-junctional coupling
can induce a shift from synchronous or two cluster solutions to the
splay state (𝑁 -cluster solution). In [30,32] the existence and stability of
cluster solutions is studied in a continuum model where each oscillator
has identical coupling to a subset of its nearest neighbors. In [33] a
continuum model with local excitation and lateral inhibition is used
to show the transition from stable synchrony with no inhibition to
traveling wave solution with large inhibition. Both 1-dimensional and
2-dimensional models are studied. In our previous work [19,20], we
used the phase model approach to determine existence and stability
conditions for cluster solutions in networks with various connectivity
schemes. As in many other studies [23,24], all of the work cited above
focused on cluster solutions where the phase difference between any
two adjacent neurons in the network is the same. Thus, cells in the
same cluster were dispersed throughout the network.

Neural assembly firing has been identified in the striatum, a sparsely
connected, inhibitory network that is part of the basal ganglia cir-
cuit [1,7,8,37,38]. Recent experimental imaging of inhibitory medium
spiny neuron firing in the striatum has suggested that assemblies can
be spatially compact [1]. While computational modeling of inhibitory
striatal networks has primarily investigated the formation of neural
assemblies in which the assembly cells are spatially dispersed in the net-
work [12,18], a recent study found that spatially compact cluster firing
patterns can result from non-monotonic, distance-dependent connectiv-
ity in which cells made stronger synaptic connections with their more
spatially distant neighbors compared to their nearest neighbors [39].
This result suggests that in inhibitory networks neurons located near
one another should be able to be a part of the same cluster when they
are more strongly connected to neighbors farther away.

In this work, motivated by the results in [39], we study 1-D ring,
inhibitory networks with simple non-monotonic, distance-dependent
connectivity schemes. Specifically, we consider networks in which
neurons are connected to only their 𝑘th nearest neighbors and identify
conditions for the existence and stability of solutions which exhibit
spatially localized cluster firing. We additionally consider connectiv-
ity schemes with connections between the first to (𝑘 − 1)th nearest
neighbors that are weaker than connections to 𝑘th nearest neighbors,
and analyze how this additional local coupling between cells affects
the existence and stability of spatially localized cluster solutions. We
employ a phase model reduction of the network to obtain analytical
conditions and then test the conditions with numerical simulations of
biophysical neural network models.

Our paper is structured as follows: Section 2 provides the de-
scription of the methodology we employ, including the phase model
reduction (Section 2.1) for analysis and the biophysical neuron model
(Section 2.2) for numerical simulations. Section 3 describes our analy-
is. Section 4 describes our numerical simulations. We conclude with a
iscussion of our results in Section 5.

. Methodology

We begin by reviewing the phase reduction method that reduces a
eakly coupled neural network model to a phase model. This phase
odel is used to conduct our analysis. We then introduce the specific
eural network model that we use for numerical simulations and
nclude the parameter values for our simulations.

.1. Phase reduction method

Consider a general network model consisting of 𝑁 identical, weakly
oupled oscillators on a ring with circulant coupling

𝑑𝑋𝑖
𝑑𝑡

= 𝐹 (𝑋𝑖(𝑡)) + 𝜖
𝑁
∑

𝑊𝑖𝑗𝐺(𝑋𝑖, 𝑋𝑗 ), 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑁, (1)

𝑗=1

2

where 𝜖 is the coupling strength with 0 < 𝜖 ≪ 1, 𝐹 is the vector field
of the isolated neuron, 𝐺 is the coupling function and 𝑊 = (𝑊𝑖𝑗 ) is the
coupling matrix with 𝑊𝑖𝑗 = 𝑔𝑗−𝑖 (mod 𝑁) and𝑊𝑖𝑖 = 0 for 𝑖, 𝑗 = 1, 2,… , 𝑁 .

We assume that when isolated from the network each neuron ex-
hibits an exponentially asymptotically stable 𝑇 -periodic orbit, denoted
as 𝑋̂(𝑡), for 0 ≤ 𝑡 ≤ 𝑇 = 2𝜋

𝛺 , which is a solution of

𝑑𝑋
𝑑𝑡

= 𝐹 (𝑋(𝑡)), 𝑋 ∈ R𝑛. (2)

Applying the theory of weakly coupled oscillators [21,22,40], the com-
plete state of each neuron in the network can be approximated by its
phase on its 𝑇 -periodic limit cycle, 𝜃𝑖(𝑡) = 𝛺𝑡+𝜑𝑖(𝑡) ∈ [0, 2𝜋), where 𝜑𝑖(𝑡)
s the relative phase of the 𝑖th neuron. Hence, this theory enables us to
ignificantly reduce the number of equations that describe a neuronal
etwork from 𝑛 equations to one per neuron.
The dynamics of the relative phase of the 𝑖th neuronal oscillator is

lowly varying and governed by the equation

𝑑𝜑𝑖
𝑑𝑡

= 𝜖
𝑁
∑

𝑗=1
𝑊𝑖𝑗𝐻(𝜃𝑗 (𝑡) − 𝜃𝑖(𝑡)). (3)

Here 𝐻 is known as the interaction function and is given by

𝐻(𝜃𝑗 − 𝜃𝑖) =
1
𝑇 ∫

𝑇

0
𝑍(𝑡)𝐺[𝑋̂(𝑡), 𝑋̂(𝑡 + (𝜃𝑗 − 𝜃𝑖)∕𝛺)]𝑑𝑡. (4)

𝐻 captures the modulation of the instantaneous phase of the 𝑖th oscil-
lator due to the coupling. 𝑍 is referred to as the phase response curve
of the unperturbed oscillator, which is the unique periodic solution of
the linearized adjoint system
𝑑𝑍
𝑑𝑡

= −[𝐷𝐹 (𝑋̂(𝑡))]𝑇𝑍,

subject to the normalization condition

1
𝑇 ∫

𝑇

0
𝑍(𝑡) ⋅ 𝐹 (𝑋̂(𝑡))𝑑𝑡 = 1.

Thus, the corresponding phase model is given by

𝑑𝜃𝑖
𝑑𝑡

= 𝛺 + 𝜖
𝑁
∑

𝑗=1
𝑊𝑖𝑗𝐻(𝜃𝑗 (𝑡) − 𝜃𝑖(𝑡)), 1 ≤ 𝑖 ≤ 𝑁. (5)

In view of circulant coupling (𝑊𝑖𝑗 = 𝑔𝑗−𝑖 (mod 𝑁) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁)
and no self-coupling (𝑊𝑖𝑖 = 𝑔0 = 0, 1 ≤ 𝑖 ≤ 𝑁), the phase model (5) can
be written as

𝑑𝜃𝑖
𝑑𝑡

= 𝛺 + 𝜖
𝑁−1
∑

𝑘=1
𝑔𝑘𝐻(𝜃(𝑖+𝑘)mod 𝑁 − 𝜃𝑖), 1 ≤ 𝑖 ≤ 𝑁. (6)

We will use this phase model to determine the existence and stabil-
ity of certain cluster solutions and how this depends on the connections
𝑔𝑘, focusing on results that can be applied to any neural model (1). We
then use these results to predict which cluster solutions will be stable
in the neural network model described below.

2.2. Neural network model

To verify our analysis results, we numerically simulate networks
of neurons modeled by the conductance-based Wang and Buzsáki in-
hibitory interneuron model [41]. This model uses the classic Hodgkin–
Huxley formalism [42] with parameters adjusted to match the action
potential shape and spiking properties of fast-spiking interneurons. The
membrane voltage 𝑉 of each individual neuron is governed by the
following equations:

𝐶 𝑑𝑉
𝑑𝑡

= 𝐼𝑎𝑝𝑝 − 𝑔𝑁𝑎𝑚3
∞(𝑉 )ℎ(𝑉 − 𝑉𝑁𝑎) − 𝑔𝐾𝑛4(𝑉 − 𝑉𝐾 ) − 𝑔𝐿(𝑉 − 𝑉𝐿)

= 𝐼𝑎𝑝𝑝 − 𝐼𝑖𝑜𝑛(𝑉 , ℎ, 𝑛) = 𝑓𝑉 (𝑉 , ℎ, 𝑛),
𝑑ℎ
𝑑𝑡

= 𝛾(𝛼ℎ(𝑉 )(1 − ℎ) − 𝛽ℎ(𝑉 )ℎ) = 𝑓ℎ(𝑉 , ℎ),
𝑑𝑛 = 𝛾(𝛼 (𝑉 )(1 − 𝑛) − 𝛽 (𝑉 )𝑛) = 𝑓 𝑛(𝑉 , 𝑛),

(7)
𝑑𝑡 𝑛 𝑛



H. Ryu, J. Miller, Z. Teymuroglu et al. Mathematical Biosciences 336 (2021) 108591

T
s
s
s

−
W
a
𝐼

t

𝐶

o
o
c
W
n
s

f
r
t
T
(
i
c
1
t
e
n
c
n
c
i

𝑚
(

𝑚
o

l

Table 1
Description of parameters and the values used for the neuron model in (8).
Parameter Description Value

𝛾 Adjusts reaction rates for temperature 5
𝑔𝑁𝑎 Maximal sodium conductance 35 mS/cm2

𝑔𝐾 Maximal potassium conductance 9 mS/cm2

𝑔𝐿 Maximal leak conductance 0.1 mS/cm2

𝑉𝑁𝑎 Sodium reversal potential 55 mV
𝑉𝐾 Potassium reversal potential −90 mV
𝑉𝐿 Leak reversal potential −65 mV
𝐶 Membrane capacitance 1 μF/cm2

𝐼𝑎𝑝𝑝 Applied current 0.4 μA/cm2

𝑉𝑠𝑦𝑛 Synapse reversal potential −75 mV
𝑔𝑠𝑦𝑛 Maximal synaptic conductance 0.05 mS/cm2

𝛼0 Synaptic maximal activation rate 4 ms−1
𝜏𝑖𝑛ℎ Synaptic decay time 2 ms

where 𝑡 is time in mS and 𝑉 is the cell membrane potential in mV.
he variables ℎ and 𝑛 are, respectively, the inactivation gating of the
odium current and the activation gating of the potassium current. The
odium current is assumed to instantaneously activate according to the
teady state activation function 𝑚∞(𝑉 ) = 𝛼𝑚(𝑉 )∕(𝛼𝑚(𝑉 )+𝛽𝑚(𝑉 )), where
𝛼𝑚(𝑉 ) = −0.1(𝑉 +35)∕(exp(−0.1(𝑉 +35))−1), 𝛽𝑚(𝑉 ) = 4 exp(−(𝑉 +60)∕18)
are the voltage dependent reaction rates associated with the activation
gate with units ms−1. The reaction rates for the inactivation of the
sodium channel and activation of the potassium channel are given by:
𝛼ℎ(𝑉 ) = 0.07 exp(−(𝑉 +58)∕20), 𝛽ℎ(𝑉 ) = 1∕(exp(−0.1(𝑉 +28))+1), 𝛼𝑛(𝑉 ) =
0.01(𝑉 + 34)∕(exp(−0.1(𝑉 + 34)) − 1), 𝛽𝑛(𝑉 ) = 0.125 exp(−(𝑉 + 44)∕80).
e model the situation where each neuron is intrinsically firing at
biologically reasonable rate of less than 60 Hz [41,43] by setting

𝑎𝑝𝑝 < 1 μA/cm2.
In the network, neurons are coupled with fast inhibitory synapses

hat are modeled using first order kinetics following [44]:

𝑑𝑉𝑖
𝑑𝑡

= 𝑓𝑉 (𝑉𝑖, ℎ𝑖, 𝑛𝑖) − 𝑔𝑠𝑦𝑛(𝑉𝑖 − 𝑉𝑠𝑦𝑛)
𝑁
∑

𝑗=1
𝑊𝑖𝑗𝑠𝑗 ,

𝑑ℎ𝑖
𝑑𝑡

= 𝑓ℎ(𝑉𝑖, ℎ𝑖),
𝑑𝑛𝑖
𝑑𝑡

= 𝑓 𝑛(𝑉𝑖, 𝑛𝑖),
𝑑𝑠𝑖
𝑑𝑡

= −
𝑠𝑖
𝜏𝑖𝑛ℎ

+ 𝛼𝑖𝑛ℎ(𝑉𝑖)(1 − 𝑠𝑖) = 𝑓 𝑠(𝑉𝑖, 𝑠𝑖),

(8)

where 𝑔𝑠𝑦𝑛 is the maximal synaptic strength and 𝑊𝑖𝑗 scales the strength
of the synaptic current from cell 𝑗 to cell 𝑖. The synaptic gating variable
𝑠𝑖 for presynaptic cell 𝑖 depends on membrane voltage 𝑉𝑖 according to

𝛼𝑖𝑛ℎ(𝑉 ) = 𝛼0∕(1 + exp(−𝑉 ∕5)).

Descriptions of the parameters and values used in our numerical simu-
lations are given in Table 1.

Comparison of numerical results of this interneuron network model
with the predictions given by the phase reduction model requires the
interaction function 𝐻 in Eq. (6). The model (8) can be put in the
form given in (1) if we identify 𝜖 = 𝑔𝑠𝑦𝑛, 𝑋𝑖 = (𝑉𝑖, ℎ𝑖, 𝑛𝑖, 𝑠𝑖)𝑇 , 𝐹 =
(𝑓𝑉 , 𝑓ℎ, 𝑓 𝑛, 𝑓 𝑠)𝑇 and 𝐺(𝑋𝑖, 𝑋𝑗 ) =

(

(𝑉𝑠𝑦𝑛 − 𝑉𝑖)𝑠𝑗 , 0, 0, 0
)𝑇 . Then the func-

tion 𝐻 can be computed from (4). For any neural network, 𝐻 rarely
has a closed-form expression and one usually has to resort to numerical
evaluation. In this paper, we use XPPAUT [45] to numerically compute
𝐻 for the Wang–Buzsáki inhibitory network (8).

3. Analysis

We look for solutions of (6) that consist of 𝑚 clusters with 𝑘 (1 < 𝑘 <
𝑁) adjacent neurons synchronized; hence we assume that 𝑁 = 𝑚𝑘𝑝 for
some 1 ≤ 𝑝 < 𝑁 . We ignore the case 𝑘 = 1, which corresponds to the
case where synchronized cells in a cluster are distributed throughout
the network. This case is very well studied and not relevant to the type
of solutions we focus on here. To be more precise, define the phase
3

difference 𝜙𝑖 = 𝜃(𝑖+1)mod 𝑁 − 𝜃𝑖, 𝑖 = 1,… , 𝑁 . We look for solutions of
(6) of the form

𝜃̄𝑖 = (𝛺 + 𝜖𝜔)𝑡 + 𝜃𝑖0, (9)

where

𝜃10 = 0, 𝜃𝑖0 =
𝑖−1
∑

𝑗=1
𝜙𝑗 , 2 ≤ 𝑖 ≤ 𝑁, (10)

and
𝜙𝑘𝑞+1 = 𝜙𝑘𝑞+2 = ⋯ = 𝜙𝑘𝑞+(𝑘−1) = 0, 𝑞 = 0, 1,… , 𝑚𝑝 − 1,

𝜙𝑘𝑞+𝑘 =
2𝜋𝑙
𝑚

∶= 𝜓𝑚,𝑙 ∶= 𝜓𝑚,
(11)

with 𝑔𝑐𝑑(𝑙, 𝑚) = 1 and 𝑙 < 𝑚. Note that 𝜓𝑚 is the phase difference
between adjacent clusters.

As shown in [28, Lemma 3.2], if this 𝑚-cluster solution exists,
sufficient conditions for it to be asymptotically stable are as follows

𝐻 ′(0),𝐻 ′(𝜓𝑚),𝐻 ′(2𝜓𝑚),… ,𝐻 ′((𝑚 − 1)𝜓𝑚) > 0, (12)
The graph of the matrix 𝑊 = circ[0, 𝑔1, 𝑔2,… , 𝑔𝑁−1] is connected.

Our focus will be on determining conditions for existence, and neces-
sary and sufficient conditions for stability.

3.1. Short discussion of a simple case: Decoupled networks

A simple case when the 𝑚-cluster solutions given by (9)–(11) can
ccur is when cells are only connected to their 𝑘th nearest neighbor
n either side and the network decouples into 𝑘 subnetworks. In this
ase, each subnetwork has 𝑚𝑝 cells with nearest neighbor coupling.
e briefly discuss this case to provide context for our analysis and
umerical simulations of other network structures that admit cluster
olutions of this type.
To illustrate 𝑚−cluster solutions in this case, we show two examples

or 𝑁 = 12 in Fig. 1. In Fig. 1(a), there are 𝑚 = 2 clusters (cells
epresented by circular nodes all fire together as one cluster, and
hose represented by rectangular nodes fire together as the second).
he cells have reciprocal, second nearest neighbor coupling, 𝑘 = 2
e.g., cell 1 is coupled to cells 3 and 11). There are 𝑝 = 3 subgroups
n each cluster (e.g., the cluster of cells represented by circular nodes
ontains three spatially separated subgroups: 1 & 2, 5 & 6, and 9 &
0). The second nearest neighbor coupling causes the network to have
wo disjoint subnetworks, shown on the right, i.e., odd-numbered vs.
ven-numbered cells. Fig. 1(b) shows a network solution with the same
umber of cells but with different connectivity. Each neuron is only
oupled to its third nearest neighbor (𝑘 = 3) on each side and the
etwork of 𝑁 = 12 decomposes into 3 disjoint subnetworks, each
ontaining 4 neurons. In general, 𝑘th nearest neighbor coupling results
n 𝑘 disjoint subnetworks with 𝑚𝑝 neurons in each subnetwork.
To analyze existence of 𝑚-cluster solutions in networks with 𝑁 =

𝑘𝑝 neurons and 𝑔𝑘 > 0, 𝑔𝑁−𝑘 > 0, and 𝑔𝑖 = 0 otherwise, we substitute
9)–(11) into (6) to obtain
𝑑𝜃̄𝑖
𝑑𝑡

= 𝛺 + 𝜖𝜔 = 𝛺 + 𝜖
(

𝑔𝑘𝐻(𝜃𝑖+𝑘,0 − 𝜃𝑖0) + 𝑔𝑁−𝑘𝐻(𝜃𝑖+𝑁−𝑘,0 − 𝜃𝑖0)
)

= 𝛺 + 𝜖
(

𝑔𝑘𝐻(𝜓𝑚) + 𝑔𝑁−𝑘𝐻(−𝜓𝑚)
)

.

Thus, 𝜔 = 𝑔𝑘𝐻(𝜓𝑚) + 𝑔𝑁−𝑘𝐻(−𝜓𝑚). It is clear that in (11)
∑𝑁
𝑖=1 𝜙𝑖 =

𝜓𝑚 = 0mod 2𝜋, which leads to an 𝑚-cluster solution in the network
f size 𝑁 = 𝑚𝑘𝑝.
To analyze stability of this 𝑚-cluster solution, we consider the

inearization of (6) about the solution 𝜃̄𝑖(𝑡) given by

𝑑𝑢
𝑑𝑡

= 𝜖𝐴𝑢,

where 𝐴 = 𝑐𝑖𝑟𝑐(𝑎1, 𝑎2,… , 𝑎𝑁 ) with

𝑎1 = −
(

𝑔𝑘𝐻 ′(𝜓𝑚) + 𝑔𝑁−𝑘𝐻 ′(−𝜓𝑚)
)

, 𝑎𝑘+1 = 𝑔𝑘𝐻 ′(𝜓𝑚),
′
𝑎𝑁−𝑘+1 = 𝑔𝑁−𝑘𝐻 (−𝜓𝑚), 𝑎𝑖 = 0 otherwise.



H. Ryu, J. Miller, Z. Teymuroglu et al. Mathematical Biosciences 336 (2021) 108591
Fig. 1. (a) Top: the full network for 𝑁 = 12, 𝑚 = 2, 𝑘 = 2, 𝑝 = 3, which can be
decomposed into the two disjoint networks of 6 cells each, i.e., odd-numbered vs.
even-numbered cells; (b) Bottom: the network of 𝑁 = 12, 𝑚 = 2, 𝑘 = 3, 𝑝 = 2.

Let 𝜌𝑗 = 𝑒2𝜋𝑗
√

−1∕𝑁 for 1 ≤ 𝑗 ≤ 𝑁 . Because 𝐴 is circulant and 𝜌𝑁𝑗 = 1,
the eigenvalues of 𝐴 are given by

𝜆𝐴𝑗 = 𝑎1 + 𝑎𝑘+1𝜌𝑘𝑗 + 𝑎𝑁−𝑘+1𝜌
𝑁−𝑘
𝑗

= −
(

𝑔𝑘𝐻
′(𝜓𝑚) + 𝑔𝑁−𝑘𝐻

′(−𝜓𝑚)
)

+ 𝑔𝑘𝐻 ′(𝜓𝑚)𝜌𝑘𝑗 + 𝑔𝑁−𝑘𝐻
′(−𝜓𝑚)𝜌−𝑘𝑗 ,

Hence, the real part of the eigenvalues is

ℜ(𝜆𝐴𝑗 ) = −
(

𝑔𝑘𝐻
′(𝜓𝑚) + 𝑔𝑁−𝑘𝐻

′(−𝜓𝑚)
)

(

1 − cos
2𝜋𝑘𝑗
𝑁

)

, 1 ≤ 𝑗 ≤ 𝑁.

Note that ℜ(𝜆𝐴𝑗 ) = 0 whenever 𝑘𝑗
𝑁 is an integer. Thus there are 𝑘 zero

eigenvalues. Therefore, the 𝑚-cluster solution defined by (9)–(11) is
stable if and only if the following condition is satisfied:

𝑔𝑘𝐻
′(𝜓𝑚) + 𝑔𝑁−𝑘𝐻

′(−𝜓𝑚) > 0. (13)

When 𝑔𝑘 = 𝑔𝑁−𝑘, then

ℜ(𝜆𝐴𝑗 ) = −2𝑔𝑘𝐻 ′
𝑜𝑑𝑑 (𝜓𝑚)

(

1 − cos
2𝜋𝑘𝑗
𝑁

)

, 1 ≤ 𝑗 ≤ 𝑁.

It follows that this 𝑚-cluster solution is stable if and only if 𝐻 ′
𝑜𝑑𝑑 (𝜓𝑚) >

0.
We note that the existence of 𝑚-cluster solutions is determined only

by the network structure. Additionally, given symmetric connection
weights, the stability of the solutions is independent of the network
size.

In fact, solutions of the form (9)–(11) correspond to each subnet-
work having an 𝑚-cluster solution where adjacent neurons have a phase
difference of 2𝜋∕𝑚. Comparison with prior work [20,30] shows that
the eigenvalues described above correspond to the eigenvalues of the
4

linearization about this 𝑚-cluster solution in a network of 𝑚𝑝 neurons
with first nearest neighbor coupling. Each eigenvalue has multiplicity
𝑘 as there are 𝑘 subnetworks. The zero eigenvalues correspond to
motion along the solutions [19,28]. These eigenvalues mean that small
perturbations to the 𝑚-cluster solutions may lead to other solutions as
we now describe.

The solutions discussed above focus on the case where the 𝑘 disjoint
subnetworks are synchronized, namely when cells within each cluster
have the same phases (or spike at the same time) or, equivalently,
have a zero time shift between them. However, other solutions, where
the disjoint subnetworks are not synchronized, will also exist. Such
solutions would have phase differences

𝜙𝑘𝑞+1, 𝜙𝑘𝑞+2,… , 𝜙𝑘𝑞+(𝑘−1), 𝜙𝑘𝑞+𝑘 ≥ 0, 𝑞 = 0, 1,… , 𝑚𝑝 − 1. (14)

For example, consider the situation with 𝑘 = 2, so the network
decouples into 2 subnetworks, and assume each subnetwork has a 2-
cluster solution. In this case, adjacent cells within the same subnetwork
fire in anti-phase, i.e., 𝜃𝑖+2−𝜃𝑖 = 𝜋. Then for any 𝛼 one can find solutions
𝜙𝑘𝑞+1 = 𝜃𝑘𝑞+2 − 𝜃𝑘𝑞+1 = 𝛼 and 𝜙𝑘𝑞+2 = 𝜃𝑘𝑞+3 − 𝜃𝑘𝑞+2 = 𝜋 − 𝛼 for
𝑞 = 0, 1,… , 𝑚𝑝−1. The value of 𝛼 is determined by the initial conditions,
but the eigenvalues of these solutions are the same as described above.

3.2. Effect of other connections

Now we consider the 𝑚-cluster solutions given by (9)–(11) when
cells are connected to their first to 𝑘th nearest neighbors on either side.
We consider different possible strengths of the additional first through
(𝑘−1)st nearest neighbor coupling, 𝑔𝑘−𝑗 , 𝑔𝑁−𝑗 , 𝑗 = 1,… , 𝑘−1, relative
to the stronger 𝑘th nearest neighbor coupling, 𝑔𝑘, 𝑔𝑁−𝑘.

First we consider the case when all connections which exist are of
equal strength, i.e., 𝑂(1) with respect to 𝜖. In this situation we give
sufficient conditions for the existence of cluster solutions.

Theorem 3.1 (Strong Additional Coupling). Consider the system (6) with
𝑁 = 𝑚𝑘𝑝 and coupling matrix defined by

circ[0, 𝑔1, 𝑔2,… , 𝑔𝑘, 0,… , 0, 𝑔𝑁−𝑘,… , 𝑔𝑁−1], (15)

where 𝑔𝑗 = 𝑂(1) with respect to 𝜖. The only possible model-independent
phase-locked solution with 𝑘 adjacent neurons synchronized is the 2-cluster
solution. This solution exists if 𝑁 is even and the coupling strengths satisfy

𝑔𝑘−𝑗 = 𝑔𝑁−𝑗 , 𝑗 = 1,… , 𝑘 − 1. (16)

Proof. Using the same setup as in the previous section, we look for
solution of the form (9)–(11). We assume 𝑁 = 𝑚𝑘𝑝 and that coupling
occurs between all neighbors from nearest to 𝑘th, i.e., the coupling
matrix is defined by (15).

We consider an 𝑚-cluster solution as described by Eq. (11). Substi-
tuting this into Eq. (6) with the coupling matrix (15) gives

𝜔 = 𝑔1𝐻(𝜃𝑖+1,0 − 𝜃𝑖0) + 𝑔2𝐻(𝜃𝑖+2,0 − 𝜃𝑖0) +⋯ + 𝑔𝑘𝐻(𝜃𝑖+𝑘,0 − 𝜃𝑖0)

+ 𝑔𝑁−𝑘𝐻(𝜃𝑖+𝑁−𝑘,0 − 𝜃𝑖0) +⋯ + 𝑔𝑁−2𝐻(𝜃𝑖+𝑁−2,0 − 𝜃𝑖0)

+ 𝑔𝑁−1𝐻(𝜃𝑖+𝑁−1,0 − 𝜃𝑖0)

= 𝑔1𝐻(𝜙𝑖) + 𝑔2𝐻(𝜙𝑖+1 + 𝜙𝑖) +⋯ + 𝑔𝑘𝐻

(𝑘−1
∑

𝑗=0
𝜙𝑖+𝑗

)

+ 𝑔𝑁−𝑘𝐻

(

−
𝑘
∑

𝑗=1
𝜙𝑖−𝑗

)

+⋯ + 𝑔𝑁−2𝐻(−(𝜙𝑖−2 + 𝜙𝑖−1))

+ 𝑔𝑁−1𝐻(−𝜙𝑖−1).

There are 𝑘 cases to consider for the values of 𝜙𝑖, corresponding to
𝑖 = 𝑘𝑞 + 1, 𝑘𝑞 + 2,… , 𝑘𝑞 + 𝑘. All must yield the same value of 𝜔 for the
solution to exist. Thus we have

𝜔 = 𝑔1𝐻(0) +⋯ + 𝑔𝑘−1𝐻(0) + 𝑔𝑘𝐻(𝜓𝑚) + 𝑔𝑁−𝑘𝐻(−𝜓𝑚)
+ 𝑔𝑁−𝑘+1𝐻(−𝜓𝑚) +⋯ + 𝑔𝑁−1𝐻(−𝜓𝑚) (17)
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= 𝑔1𝐻(0) +⋯ + 𝑔𝑘−2𝐻(0) + 𝑔𝑘−1𝐻(𝜓𝑚) + 𝑔𝑘𝐻(𝜓𝑚) + 𝑔𝑁−𝑘𝐻(−𝜓𝑚)

+ 𝑔𝑁−𝑘+1𝐻(−𝜓𝑚) +⋯ + 𝑔𝑁−2𝐻(−𝜓𝑚) + 𝑔𝑁−1𝐻(0) (18)
⋮

= 𝑔1𝐻(𝜓𝑚) +⋯ + 𝑔𝑘−1𝐻(𝜓𝑚) + 𝑔𝑘𝐻(𝜓𝑚) + 𝑔𝑁−𝑘𝐻(−𝜓𝑚)

+ 𝑔𝑁−𝑘+1𝐻(0) +⋯ + 𝑔𝑁−1𝐻(0). (19)

To proceed further, take the difference of Eqs. (17)–(18) to find the
ondition

𝐻(0) −𝐻(𝜓𝑚)]𝑔𝑘−1 + [𝐻(−𝜓𝑚) −𝐻(0)]𝑔𝑁−1 = 0.

his will be satisfied for any 𝐻 if

𝑚 = 𝜋 and 𝑔𝑘−1 = 𝑔𝑁−1.

epeating this with other pairs of equations leads to the same constraint
n 𝜓𝑚 and the conditions (16). The result follows. □

emark 3.1. It follows from the proof of Theorem 3.1 that under the
onditions (16) the 𝑚-cluster solution will exist if 𝐻𝑜𝑑𝑑 (𝜓𝑚) = 0. Thus,
e do not expect any 𝑚-cluster solution with 𝑚 > 2 to exist for every 𝐻 ;
owever, solutions for specific 𝑚 may exist for a particular 𝐻 . Further,
ther model-dependent solutions may exist under different conditions
n the connection weights.

emark 3.2. It follows from Eqs. (17)–(18) that the synchronous solu-
ion exists for any choice of coupling strengths. This is consistent with
he results of [30]. Other types of model-independent cluster solutions,
hose where the cells in a cluster are not adjacent but dispersed through
he network, may also exist [20,30].

According to (12), sufficient conditions for the 2-cluster solution de-
cribed above to be asymptotically stable are 𝐻 ′(0) > 0, 𝐻 ′(𝜋) > 0 and
hat the connectivity matrix 𝑊 defines a connected graph. To find nec-
ssary and sufficient conditions for stability, we consider an in-between
ase, where the additional connections 𝑔1,… , 𝑔𝑘−1, 𝑔𝑁−𝑘+1,… , 𝑔𝑁−1 are
eaker than 𝑔𝑘 and 𝑔𝑁−𝑘. We need to be careful that the weaker
onnections are not so weak that they are of similar strength to the
eglected terms. Keeping in mind the conditions for existence of solu-
ions derived above, we consider 2-cluster solutions (𝑚 = 2, 𝜓𝑚 = 𝜋)
nd assume the coupling matrix defined by (15) satisfies the additional
ondition 𝑔1,… , 𝑔𝑘−1, 𝑔𝑁−𝑘+1,… , 𝑔𝑁−1 = 𝑠 𝛿, while 𝑔𝑘, 𝑔𝑁−𝑘 = 𝑂(1) with
espect to 𝜖 and 0 < 𝜖 ≪ 𝛿 ≪ 1. We show two examples in Fig. 2:

= 8 with 𝑘 = 2 (Fig. 2(a)) and 𝑁 = 12 with 𝑘 = 2 (Fig. 2(b)).
or the example with 𝑁 = 12, the 𝑂(1) couplings are the same as in
ig. 1(a) (represented by solid lines) with weaker couplings between
earest neighbors (represented by dashed lines).
We have the following result.

heorem 3.2 (Balanced Additional Coupling). Consider the model (6) with
= 2𝑘𝑝. Suppose the coupling matrix is defined by

irc[0, 𝛿𝑠,… , 𝛿𝑠, 𝑔𝑘, 0,… , 0, 𝑔𝑁−𝑘, 𝛿𝑠,… , 𝛿𝑠], (20)

here 𝑠, 𝑔𝑗 are positive, 𝑔𝑘, 𝑔𝑁−𝑘 = 𝑂(1) with respect to 𝜖 and 𝑠 = 𝑂(1)
ith respect to 𝛿 and 0 < 𝜖 ≪ 𝛿 ≪ 1. Then there is a 2-cluster solution
here each cluster consists of 𝑝 subgroups of 𝑘 neurons. Each subgroup is
ynchronized and adjacent groups have phase difference 𝜋. This solution is
ocally asymptotically stable if and only if𝐻 ′(𝜋) > 0 and𝐻 ′(0)+𝐻 ′(𝜋) > 0.

roof. Existence. The existence of solutions follows from Theorem 3.1
ince the given 𝑁 and coupling strengths satisfy the conditions of that
heorem.
tability. A simple calculation shows that the Jacobian matrix for the
inearization of the model (6) with the coupling matrix (20) about the
olution (9)–(11) can be written as

𝜖(𝐴 + 𝑠𝛿𝐵),
5

where 𝐴 is the Jacobian matrix for the situation with no additional cou-
pling (𝛿 = 0). It follows from the discussion in Section 3.1 that 𝐴 has 𝑘
zero eigenvalues and the rest of the eigenvalues are proportional (with
positive constant) to −𝐻 ′(𝜋). Further, the eigenvalue 0 has geometric
multiplicity 𝑘 with linearly independent eigenvectors 𝐯0,… , 𝐯𝑘−1. We
take 𝐯0 = [1, 1,… , 1]𝑇 .

Consideration of Eq. (6) shows that each row sum of 𝐴 + 𝑠𝛿𝐵 is 0.
Thus, when 𝛿 ≠ 0, one zero eigenvalue persists since [𝐴 + 𝑠𝛿𝐵]𝐯0 = 𝟎.

Now let 𝜆𝑗 be a nonzero eigenvalue of 𝐴 with eigenvector 𝐯𝑗 . Then

𝐴 + 𝑠𝛿𝐵)𝐯𝑗 = 𝜆𝑗𝐯𝑗 + 𝑠𝛿𝐵𝐯𝑗 = 𝜆𝑗𝐯𝑗 + 𝑂(𝛿).

hus, to order 𝛿, 𝜆𝑗 remains an eigenvalue for the solution. If 𝜆𝑗 = 0,
owever, we have

𝐴 + 𝑠𝛿𝐵]𝐯𝑗 = 𝑠𝛿𝐵𝐯𝑗 , 𝑗 = 1,… , 𝑘 − 1.

hus the other zero eigenvalues may not persist.
For simplicity, in the rest of the proof we will take 𝑘 = 2. The proof

or other values of 𝑘 is similar. In this case

= circ[−(𝑔2 + 𝑔𝑁−2)𝐻 ′(𝜋), 0, 𝑔2𝐻 ′(𝜋), 0, … , 0, 𝑔𝑁−2𝐻
′(𝜋), 0],

nd a second, linearly independent eigenvector of the eigenvalue 0 of
is 𝐯1 = [1,−1, 1,−1,… , 1,−1]𝑇 . Further, 𝐵 is a banded matrix with
𝑖𝑖 = −(𝐻 ′(0) +𝐻 ′(𝜋)) and

𝑖,(𝑖−1)mod𝑁 = 𝐻 ′(𝜋), 𝐵𝑖,(𝑖+1)mod𝑁 = 𝐻 ′(0), if 𝑖 even,

𝑖,(𝑖−1)mod𝑁 = 𝐻 ′(0), 𝐵𝑖,(𝑖+1)mod𝑁 = 𝐻 ′(𝜋), if 𝑖 odd.

t then follows that with 𝛿 > 0 the second zero eigenvalue becomes
2𝑠𝛿[𝐻 ′(0)+𝐻 ′(𝜋)] since [𝐴+𝑠𝛿𝐵]𝐯1 = 𝑠𝛿𝐵𝐯1 = −2𝑠𝛿[𝐻 ′(0)+𝐻 ′(𝜋)]𝐯1.
In summary, all eigenvalues except the one zero eigenvalue that

ersists satisfy ℜ(𝜆𝑗 ) < 0 if and only if 𝐻 ′(𝜋) > 0 and 𝐻 ′(0)+𝐻 ′(𝜋) > 0.
Recall that the solutions we study are of the form 𝜃̄𝑖 = (𝛺+𝜖𝜔)𝑡+𝜃𝑖0.

Thus the solutions correspond to lines

𝜃(𝑖+1)𝑚𝑜𝑑𝑁 − 𝜃𝑖 = 𝜙𝑖,

with 𝜙𝑖 given by (11). The zero eigenvalue that persists corresponds to
motion along these lines and hence does not affect the stability of the
solutions. The result follows. □

Remark 3.3. The key point of the proof is that if the additional
couplings are of the appropriate strength 0 < 𝜖 ≪ 𝛿 ≪ 1, then some of
the eigenvalue structure in the case 𝛿 = 0 is preserved. This enables us
to obtain necessary and sufficient conditions for stability. If 𝛿 is larger
this structure is lost, and necessary conditions are difficult to obtain.

Remark 3.4. Note that the necessary and sufficient conditions of
Theorem 3.2 are more precise than the sufficient condition in (12) at
the expense of the additional constraint on the coupling strengths as
discussed above. In particular Theorem 3.2 shows that asymptotically
stable 2-cluster solutions are possible if 𝐻 ′(0) < 0 but are not possible
if 𝐻 ′(𝜋) < 0.

Remark 3.5. It follows from Remark 3.1, that under the conditions
of Theorem 3.2 other cluster solutions may exist for particular models.
The proof of Theorem 3.2 shows that if these solutions are unstable
for the case 𝛿 = 0, then they will be unstable for the case 𝛿 > 0 and
sufficiently small.

3.2.1. Application to the model network
For comparison with the numerical simulations in the next section,

we now apply the phase model results to the model network (8) with
parameters as in Table 1 and symmetric coupling matrix defined by

circ[0, 𝑔1, 𝑔2,… , 𝑔𝑘, 0,… , 0, 𝑔𝑘,… , 𝑔1]. (21)

We assume that 𝑔𝑘 = 𝑂(1) with respect to 𝜖. We consider some examples
with specific values for the total number of neurons 𝑁 , with 𝑁 = 𝑚𝑘𝑝
for some integers 𝑚, 𝑘, 𝑝 with 𝑚 > 1.
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Fig. 2. (a) Left: The network of 𝑁 = 8 with additional coupling (in dashed lines) between nearest neighbors; (b) Right: The network of 𝑁 = 12 with additional coupling between
nearest neighbors.
Fig. 3. Graphs of the interaction function 𝐻 for the phase model (6) corresponding to the neural model (8). All parameter values are given in Table 1 except the parameter 𝛾
which is indicated.
o
c
t
a

To begin, we used XPPAUT [45] to numerically compute the func-
tions 𝐻 and 𝐻𝑜𝑑𝑑 for the model (8) with parameters given in Table 1
and two different values of the parameter 𝛾. The results are shown in
Fig. 3.

In [19] it is shown that the synchronous (1-cluster) solution exists
for all values of 𝑁 and any circulant coupling matrix, and that this
solution is asymptotically stable if 𝐻 ′(0) > 0 and unstable if 𝐻 ′(0) < 0.
Thus from Fig. 3 we predict that, for the specific neural model we
consider, given in Eq. (8), with any circulant coupling matrix, the
synchronous solution is asymptotically stable if 𝛾 = 5 and unstable if
𝛾 = 1.

Now consider the case of decoupled networks. Given 𝑁 and 𝑘,
the discussion of Section 3.1 gives the stability condition for any
appropriate 𝑚-cluster solution. In the numerical simulations below we
use symmetric coupling, 𝑔𝑘 = 𝑔𝑁−𝑘 > 0, so the stability condition
in Eq. (13) reduces to 𝐻 ′

𝑜𝑑𝑑 (𝜓𝑚) > 0, where 𝐻𝑜𝑑𝑑 is the odd part of
𝐻 and 𝜓𝑚 is the phase difference between clusters as defined in the
theorem. Thus to find the stability of an 𝑚-cluster solution, we need
only calculate 𝜓𝑚 and determine the sign of 𝐻 ′

𝑜𝑑𝑑 (𝜓𝑚). For example,
consider 𝑁 = 8 and 𝑘 = 2. Then the possible 𝑚-cluster solutions with
2 adjacent neighbors synchronized correspond to 𝑚 = 2 or 𝑚 = 4. For
𝑚 = 2, 𝜓𝑚 = 𝜋 and for 𝑚 = 4, 𝜓𝑚 = 𝜋∕2 or 𝜓𝑚 = 3𝜋∕2. From Fig. 3
it is clear that (for both values of 𝛾) 𝐻 ′

𝑜𝑑𝑑 (𝜋) > 0, 𝐻 ′
𝑜𝑑𝑑 (𝜋∕2) < 0 and

𝐻 ′
𝑜𝑑𝑑 (3𝜋∕2) < 0. Thus, for 𝑁 = 8 with only second nearest neighbor

coupling, the prediction is that the only stable solution with 2 adjacent
neighbors synchronized is the 2-cluster solution. We summarize the
predictions for other values of 𝑁 in the second last column of Table 2.

Finally, consider the case where the additional couplings are equal

and of order 𝛿, 𝑔1 = 𝑔2 = ⋯ = 𝑔𝑘−1 = 𝑠𝛿, where 𝛿 and 𝑠 are as

6

Table 2
Existence and stability predictions from phase model analysis for 𝑚-cluster solutions
with 𝑘 nearest neighbors synchronized in the network (8) with parameters given in
Table 1.
𝑁 𝑘 𝑚 𝑝 𝜓𝑚 Coupling

𝑘 only 1,… , 𝑘

8 2 2 2 𝜋 Stable Stable
4 1 𝜋∕2, 3𝜋∕2 Unstable DNE

4 2 1 𝜋 Stable Stable

12
2

2 3 𝜋 Stable Stable
3 2 2𝜋∕3, 4𝜋∕3 Stable DNE
6 1 𝜋∕3, 5𝜋∕3 Unstable Unstable

3 2 2 𝜋 Stable Stable
4 1 𝜋∕2, 3𝜋∕2 Unstable DNE

18

2
3 3 2𝜋∕3, 4𝜋∕3 Stable DNE

9 1 2𝜋∕9, 4𝜋∕9, 14𝜋∕9, 16𝜋∕9 Unstable DNE
8𝜋∕9, 10𝜋∕9 Stable DNE

3
2 3 𝜋 Stable Stable
3 2 2𝜋∕3, 4𝜋∕3 Stable DNE
6 1 𝜋∕3, 5𝜋∕3 Unstable DNE

in Theorem 3.2. (See Fig. 2 for examples with 𝑁 = 8 or 𝑁 = 12
and 𝑘 = 2.) It follows from Theorem 3.1, that for 𝑁 = 𝑚𝑘𝑝, the
nly cluster solutions with 𝑘 neighbors synchronized that will exist
orrespond to 𝑚 = 2. Further, it follows from Theorem 3.2 if 𝑁 = 2𝑘𝑝
he 2-cluster solution with 𝑘 nearest neighbors synchronized will exist
nd will be stable for both 𝛾 = 1, 5 since in both cases 𝐻 ′(𝜋) > 0
and 𝐻 ′(0) + 𝐻 ′(𝜋) > 0 from Fig. 3. These results are summarized in
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Fig. 4. (a) and (b): Time series (left) and its raster plot (right) to show a transition from cluster solutions consisting of non-spatially adjacent cells in each cluster to 2-cluster
solutions with spatially adjacent cells in each cluster when additional coupling(s) are applied to be in the balanced regime as defined in Theorem 3.2. There are no additional
coupling(s) for 0 ≤ 𝑡 ≤ 1500 ms, which is then set to 0.1 for 𝑡 > 1500 ms; (c): the same transition shown as in (b) except the value of 𝛾 = 1 compared to 𝛾 = 5 in (b).
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the last column of Table 2. Finally, note that in Fig. 3 for 𝛾 = 5 we
have 𝐻𝑜𝑑𝑑 (𝜙) = 0 at 𝜙 ≈ 𝜋∕3, 5𝜋∕3. Thus from Remark 3.1, we predict
that the 6-cluster solution may exist if 𝑁 = 6𝑘𝑝. Since this solution
is unstable for the case with no additional couplings (see second last
column of Table 2), from Remark 3.5 we expect that it will be unstable
with the additional couplings.

3.2.2. Existence of non-spatially adjacent cluster solutions
In this section, we consider the existence (or non-existence) of

solutions of (6), with non-zero coupling between the first to 𝑘th nearest
neighbors, that do not display synchronized firing between spatially
adjacent cells. In particular, we consider the case when (11) is not
atisfied but instead there are non-zero phase differences between spa-
ially adjacent cells given by (14). With 𝑔1, 𝑔2,… , 𝑔𝑘 ≠ 0, the evolution
quation for the phase differences 𝜙𝑖 derived from (6) becomes

𝑑𝜙𝑖
𝑑𝑡

= 𝜖
𝑘
∑

𝑗=1
𝑔𝑗

[

𝐻

(𝑗−1
∑

𝑠=0
𝜙𝑖+𝑠+1

)

−𝐻

(𝑗−1
∑

𝑠=0
𝜙𝑖+𝑠

)

+𝐻

(

−
𝑗−1
∑

𝜙𝑖−𝑠

)

−𝐻

(

−
𝑗−1
∑

𝜙𝑖−𝑠−1

)]

.

(22)
𝑠=0 𝑠=0 (

7

For simplicity, we consider the case 𝑘 = 2. In this case, any equilibrium
olution must satisfy the following equation:

= 𝜖𝑔1
[

𝐻
(

𝜙𝑖+1
)

−𝐻
(

𝜙𝑖
)

+𝐻
(

−𝜙𝑖
)

−𝐻
(

−𝜙𝑖−1
)]

+ 𝜖𝑔2
[

𝐻
(

𝜙𝑖+1 + 𝜙𝑖+2
)

−𝐻
(

𝜙𝑖 + 𝜙𝑖+1
)

+𝐻
(

−𝜙𝑖 − 𝜙𝑖−1
)

− 𝐻
(

−𝜙𝑖−1 − 𝜙𝑖−2
)]

,

here 1 ≤ 𝑖 ≤ 𝑁 . As described in Section 3.1, the solutions we consider
atisfy 𝜙2𝑞+1 = 𝛼 and 𝜙2𝑞+2 = 𝜋 − 𝛼 for 𝑞 = 0, 1,… , 𝑁2 − 1 where 𝛼 > 0.
Since this implies that 𝜙𝑖 + 𝜙𝑖+1 = 𝜋 for any 𝑖 mod 𝑁 , it follows that
the second term on the right-hand side will be zero. Thus, for existence,
the first term must be zero, which reduces to

0 = 𝜖𝑔1[𝐻 (𝜋 − 𝛼) −𝐻 (𝛼) +𝐻 (−𝛼) −𝐻 (−(𝜋 − 𝛼))], 𝑖 = 2𝑞 + 1,
= 𝜖𝑔1[𝐻 (𝛼) −𝐻 (𝜋 − 𝛼) +𝐻 (−(𝜋 − 𝛼)) −𝐻 (−𝛼)], 𝑖 = 2𝑞 + 2,

(23)

or 𝑞 = 0, 1,… , 𝑁2 − 1. Two conditions for which these equations are
atisfied are: (i) for any time shift 𝛼 if the function 𝐻 is even; and (ii)
for 𝛼 = 𝜋∕2 with any 𝐻 . For most neural network models, 𝐻 is not an
ven function suggesting that the only time-shifted solution that may
obustly exist has an 𝛼 = 𝜋∕2 shift between cells 2𝑞 + 1 and 2𝑞 + 2
𝑞 = 0, 1,… , 𝑁 − 1) resulting in a 4-cluster solution with 𝜙 = 𝜋∕2 for
2 𝑖
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Fig. 5. Time series (left) and its raster plot (right) to show a transition from 9-cluster solution (top row) for a network of 𝑁 = 18 with the second nearest coupling only (𝑘 = 2)
consisting of spatially adjacent cells in each cluster to 18-cluster solution (bottom row) with the additional first nearest coupling. Additional coupling was applied at 𝑡 = 1500.
all 𝑖. This is a cluster solution of the type studied in [19,20] where
the neurons in a given cluster are not adjacent. Results in those papers
show that this solution will be stable if and only if

𝑔1𝐻
′
𝑜𝑑𝑑 (𝜋∕2) + 2𝑔2𝐻 ′

𝑜𝑑𝑑 (𝜋)(1 + cos(2𝑗𝜋∕𝑁)) > 0, 𝑗 = 1, 2,… , 𝑁∕2. (24)

We note that since we always consider circulant coupling matrices,
the system with 𝑘th nearest neighbor and additional coupling will
admit 𝑚-cluster solutions of the type studied by [19,20,30]. Conditions
for the stability of these solutions can be found in those papers.

Finally, for solutions with an arbitrary 𝛼, existence will depend on
the particular 𝐻 function for the model. As shown below, numerical
results suggest that in model system (8) when 𝑔𝑗 = 𝑂(𝜖) (𝑗 = 1,… , 𝑘−1)
and 𝑔𝑘 = 𝑂(1) then solutions with 0 < 𝛼 ≤ 𝜋∕2 can exist. Intuitively, we
may expect these solutions to exist and be stable since, to leading order
in 𝜖, the system consists of decoupled subnetworks as in Section 3.1.

4. Numerical simulations

Here, we numerically explore the existence and stability of cluster
solutions in networks of Wang–Buzsáki model neurons given by the
system (8) with 𝑂(𝜖) coupling strength between 𝑘th nearest neighbor
cells and additional coupling between first to (𝑘−1)st nearest neighbors.
To vary the strength of additional coupling(s) relative to the primary
𝑘th nearest neighbor coupling, 𝑔𝑠𝑦𝑛, we introduce the scaling factor 𝑤̂𝑖𝑗
(0 < 𝑤̂𝑖𝑗 ≤ 1) for |𝑖 − 𝑗| ≤ 𝑘 − 1, 𝑖 ≠ 𝑗 to multiply 𝑊𝑖𝑗 in the system (8).

We first verify the existence and stability of clustered solutions
with non-zero phase differences between adjacent cells, as given by
(14), in networks when there is no additional coupling between first
to (𝑘 − 1)st nearest neighbors except the primary 𝑘th nearest neighbor
coupling. We then show that the stability of the spatially adjacent
cluster solutions is robust when the additional coupling is applied to
be in the balanced regime, as considered in Theorem 3.2. In Fig. 4(a),
we simulate a network of 𝑁 = 8 neurons with second nearest coupling
(𝑘 = 2) and varied values of the additional coupling between first
nearest neighbors, as depicted in Fig. 2(a). We set the scaling factor
𝑤̂𝑖𝑗 (|𝑖 − 𝑗| = 1) for the first nearest neighbor coupling strength to zero
until 𝑡 = 1500 ms in the top row of Fig. 4(a). The resulting solution
before 𝑡 = 1500 ms shows a 4-cluster solution consisting of non-spatially
adjacent cells in each cluster. In particular, the solution has similar
phase differences (𝜙𝑖 ≈ 𝜋∕2, for 𝑖 = 1, 2, 3, 4) between nearest neighbor
cells. To test its existence and stability in the presence of balanced
additional coupling(s), we set the scaling factor 𝑤̂𝑖𝑗 for the first nearest
neighbor coupling strength from zero (Fig. 4(a), top row) to 0.1 at
𝑡 = 1500 ms. Our results show that the solution eventually transitions to
the stable 2-cluster solution with spatially adjacent cells in the clusters
(𝜙2𝑞+1 = 0, 𝑞 = 0, 1, 2, 3) (bottom row) which is predicted to be stable
by Theorem 3.2.

As another example, we consider a network of 𝑁 = 12 neurons with
third nearest neighbor coupling (𝑘 = 3) and ‘‘balanced’’ first and second
nearest neighbor couplings. Initially, the scaling factor 𝑤̂ (|𝑖 − 𝑗| ≤ 2)
𝑖𝑗
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for the additional coupling is set to zero until 𝑡 = 1500 ms. Results
show a 6-cluster solution where clusters do not contain adjacent cells
(Fig. 4(b), top row). However, when the scaling factor is increased to
𝑤̂𝑖𝑗 = 0.1 (|𝑖 − 𝑗| ≤ 2) at 𝑡 = 1500 ms, results show that the solution
transitions to the stable 2-cluster solution (shown in bottom row) with
clusters containing adjacent cells (𝜙3𝑞+1 = 𝜙3𝑞+2 = 0, 𝑞 = 0, 1, 2, 3) that
is shown to be stable in Theorem 3.2.

Recall that Theorem 3.2 gives necessary and sufficient conditions
for stability of the 2-cluster solution: 𝐻 ′(𝜋) > 0 and 𝐻 ′(0) + 𝐻 ′(𝜋) >
0, in contrast to the sufficient conditions for stability due to [28]:
𝐻 ′(𝜋) > 0 and 𝐻 ′(0) > 0. The interaction function for our model
with the standard parameters (black curves in Fig. 3) satisfies both
conditions as 𝐻 ′(0) > 0. Changing the parameter 𝛾 in Eq. (7) from 5
to 1, however, gives a function with 𝐻 ′(0) < 0 that still satisfies the
condition 𝐻 ′(0) + 𝐻 ′(𝜋) > 0 (blue curves in Fig. 3). Fig. 4(c) shows
the same simulations as in Fig. 4(b) but with 𝛾 = 1. The results are
the same as with 𝛾 = 5, agreeing with the results of Theorem 3.2 and
highlighting the usefulness of the necessary and sufficient conditions.

We next show simulations suggesting that the 9-cluster solution for
𝑁 = 18 which exists with only second nearest coupling (𝑘 = 2), shown
in the top row of Fig. 5, no longer exists when the additional first
nearest neighbor coupling is added. After 𝑡 = 1500 ms, when the first
nearest coupling is turned on, the 9-cluster solution transitions to the
18-cluster solution with equal phase difference between adjacent cells
(𝜙𝑖 = 𝜋∕9, for 𝑖 = 1,… , 18, bottom row of Fig. 5). These simulation
results agree with the result of Theorem 3.1, which states that the only
𝑚-cluster solution, with 𝑘 adjacent neurons synchronized, that can exist
with additional nearest neighbor coupling is that for 𝑚 = 2. Since for
𝑁 = 18 and 𝑘 = 2 the 2-cluster solution is never possible, no 𝑚-cluster
solution with adjacent cells synchronized can occur. The network thus
evolves to another solution type, namely the 18-cluster solution studied
in [20] with equal phase differences between adjacent neurons. We
have verified that this solution is predicted to be stable by phase model
analysis [19,20].

Finally, we note that through our simulations we have found that
other cluster solutions with synchronized neighbors that are not pre-
dicted by Theorem 3.1 may occur. Fig. 6 shows an example for a
network with 𝑁 = 12 where each neuron is connected to three of its
neighbors (𝑘 = 3) in the strong coupling regime, 𝑤̂𝑖𝑗 = 1 (|𝑖 − 𝑗| ≤ 2).
This simulation shows a stable 2-cluster solution consisting of 3 groups
of 2 synchronized adjacent neighbors.

5. Discussion

In this paper, we study 1-D, weakly coupled inhibitory neuron net-
works to investigate the existence and stability of 𝑚-cluster solutions,
in which clusters consist of groups of adjacent cells in the network that
fire together. To simply describe non-monotonic, distance-dependent
connectivity [39], we first consider 𝑘th nearest neighbor symmetric
coupling such that each neuron in the 1-D ring is connected with
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Fig. 6. Time series (left) and its raster plot (right) to show a 2-cluster solution for a network of 𝑁 = 12 with 𝑘 = 3 and strong additional first and second nearest couplings. The
luster solution consists of 3 groups of 2 synchronized adjacent cells in each cluster.
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ts 𝑘th nearest neighbors only. This connectivity scheme results in
he decomposition of the network into 𝑘 disjoint subnetworks, and
xistence and stability conditions of 𝑚-cluster solutions depends on
xistence and stability of 𝑚-cluster solutions in each subnetwork where
djacent neurons have a phase difference of 2𝜋∕𝑚. These solutions,
owever, are not asymptotically stable as small perturbations disrupt
ynchrony among the subnetworks.
To study more generalized distance-dependent coupling, we con-

ider the case where the network has coupling between the first to
th nearest neighbors. For strong enough additional coupling (first
o (𝑘 − 1)st nearest neighbor), only two of the spatially localized 𝑚-
luster solutions are guaranteed to persist for any model network. The
ynchronous (1-cluster) solution exists for any size of network and the
-cluster solution exists if the network has an even number of neurons.
e provide stability conditions for these two solutions. These results
re confirmed with numerical simulations.
When the additional coupling is in a balanced regime (greater than

(𝜖) but less than 𝑂(1) relative to the 𝑘th nearest neighbor coupling),
e provide a new necessary and sufficient condition for stability of
patially localized, 𝑚-cluster solutions. We confirm these results with
umerical simulations that highlight the dependence on the strength
f the additional coupling for stability of these solutions. Specifically,
umerical results show that with no or very weak additional coupling
closer to 𝑂(𝜖)), solutions with more clusters exist but cells in the same
luster are spatially dispersed in the network. These solutions corre-
pond to non-zero time-shifted solutions that are found in networks
ith only 𝑘th nearest neighbor coupling due to the decomposition of
he network into disjoint subnetworks. In these solutions, the disjoint
ubnetworks are not synchronized so their cells fire with a non-zero
ime shift. However, when the additional balanced coupling is intro-
uced to the network, solutions transition to the spatially localized
-cluster solutions.
This study extends our previous work [20] in that the existence and

tability conditions of 𝑚-cluster solutions include 𝑘th nearest neighbor
oupling with asymmetric weights. Previously, we only worked with a
ymmetric connectivity matrix for neurons that are coupled to their first
nd/or second nearest neighbors on both sides. Here, we also perform
perturbation analysis to discuss the existence and stability conditions
ith additional coupling(s) to the 𝑘th nearest coupling. Moreover, we
xtend our previous work by considering nonuniform phase differences
etween nearest neighbors.

Model limitations and future directions. Despite the richness of
ur analytical and numerical results, our results are based on the phase
odel reduction of an inhibitory network which explicitly assumes
hat neurons are weakly coupled to each other. Phase models have
imitations even for studying networks of oscillatory neurons [46,47].
Synchronization in inhibitory networks can also be obtained by

mechanisms known as Interneuron Network Gamma (ING) or Pyra-
midal Interneuron Network Gamma (PING) [48–52]. In these mech-
anisms, synchronization of inhibitory neurons results due to gating of
 e

9

the timing of firing by synaptic inhibition such that cells are suppressed
while inhibitory synaptic currents are active and are able to fire when
synaptic currents decay. Thus, this mechanism assumes sufficiently
strong synaptic coupling between cells so as to prevent firing. Our
results apply to the case of weak coupling in the inhibitory network
where synaptic interactions perturb the timing of cell firing without
suppression of firing.

Our results focus on 1-D networks whereas the recent study [39]
on non-monotonic distance-dependent connectivity considered a 2-
D network. Thus, our future study would extend the 1-D network
model to investigate the 2-D network behaviors. In the 2-D setting, the
diagonal neighbor coupling is a feature which could not be considered
in our 1-D model. Thus we will consider its effects on cluster forma-
tion in 2-D inhibitory networks in conjunction with non-monotonic
distance-dependent network connectivity.

Conclusions. Our work may help understand cluster formation in
the striatum [1,38]. Note that the striatum has sparse, weak, unidirec-
tional coupling [12]. Our results show that spatially localized clusters
can occur when there are very few connections in the network. There
has been some dispute as to whether clusters in the striatum are truly
spatially compact, that is, involve only nearby neurons [38]. Our work
shows that spatially compact clusters may occur, but that clusters
which involve multiple groups of nearby neurons may also occur. Such
solutions could correspond to clusters that involve both localized and
longer range correlations between neurons as observed in [38]. Here we
use reciprocal coupling in our simulations, but the mathematical results
would apply to unidirectional coupling by setting some connections to
zero. For example, in the decoupled networks case, clustered solutions
can be found if 𝑔𝑘 > 0 and 𝑔𝑁−𝑘 = 0. Since we use a general interaction
unction 𝐻 , the mathematical results also apply to excitatory neurons
o could be used to study cluster formation in the dentate gyrus [6].

RediT authorship contribution statement

Hwayeon Ryu: Conceptualization, Methodology, Writing - original
raft, Writing - review & editing, Implemented and conducted nu-
erical simulations. Jennifer Miller: Conceptualization, Methodology,

Writing - original draft, Writing - review & editing, Conducted the phase
model analyses. Zeynep Teymuroglu: Conceptualization, Methodol-
ogy, Writing - original draft, Writing - review & editing, Conducted the
phase model analyses. Xueying Wang: Conceptualization, Methodol-
ogy, Writing - original draft, Writing - review & editing, Conducted the
phase model analyses. Victoria Booth: Conceptualization, Methodol-
ogy, Writing - original draft, Writing - review & editing, Implemented
and conducted numerical simulations. Sue Ann Campbell: Conceptu-
lization, Methodology, Writing - original draft, Writing - review &

diting, Conducted the phase model analyses.



H. Ryu, J. Miller, Z. Teymuroglu et al. Mathematical Biosciences 336 (2021) 108591
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the American Institute of Mathematics for providing sup-
port through its Structured Quartet Research Ensembles program, from
which this work was first initiated. Sue Ann Campbell acknowledges
the support of the Natural Sciences and Engineering Research Council
of Canada. The authors also thank the anonymous reviewers for helpful
suggestions.

References

[1] G. Barbera, B. Liang, L. Zhang, C.R. Gerfen, E. Culurciello, R. Chen, Y. Li, D.-T.
Lin, Spatially compact neural clusters in the dorsal striatum encode locomotion
relevant information, Neuron 92 (1) (2016) 202–213.

[2] G. Dragoi, G. Buzsáki, Temporal encoding of place sequences by hippocampal
cell assemblies, Neuron 50 (1) (2006) 145–157.

[3] C.M. Gray, P. Koening, G. Engel, W. Singer, Oscillatory responses in cat visual
cortex exhibit inter-columnar synchronization which reflects global stimulus
properties, Nature 338 (6213) (1989) 334–337.

[4] K. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Organization of cell
assemblies in the hippocampus, Nature 424 (6948) (2003) 552–556.

[5] G. Laurent, H. Davidowitz, Encoding of olfactory information with oscillating
neural assemblies, Science 265 (5180) (1994) 1872–1875.

[6] S.F. Muldoon, I. Soltesz, R. Cossart, Spatially clustered neuronal assemblies
comprise the microstructure of synchrony in chronically epileptic networks, Proc.
Natl. Acad. Sci. 110 (9) (2013) 3567–3572.

[7] A. Adler, I. Finkes, S. Katabi, Y. Prut, H. Bergman, Encoding by synchronization
in the primate striatum, J. Neurosci. 33 (11) (2013) 4854–4866.

[8] L. Carrillo-Reid, F. Tecuapetla, D. Tapia, A. Hernández-Cruz, E. Galarraga, R.
Drucker-Colin, J. Bargas, Encoding network states by striatal cell assemblies, J.
Neurophysiol. 99 (3) (2008) 1435–1450.

[9] A.K. Engel, P. Fries, W. Singer, Dynamic predictions: oscillations and synchrony
in top-down processing, Nat. Rev. Neurosci. 2 (10) (2001) 704–716.

[10] R.F. Galán, G.B. Ermentrout, N.N. Urban, Predicting synchronized neural assem-
blies from experimentally estimated phase-resetting curves, Neurocomputing 69
(10) (2006) 1112–1115.

[11] S. Achuthan, C.C. Canavier, Phase-resetting curves determine synchronization,
phase locking, and clustering in networks of neural oscillators, J. Neurosci. 29
(16) (2009) 5218–5233.

[12] D. Angulo-Garcia, J.D. Berke, A. Torcini, Cell assembly dynamics of sparsely-
connected inhibitory networks: a simple model for the collective activity of
striatal projection neurons, PLoS Comput. Biol. 12 (2) (2016) e1004778.

[13] C.C. Canavier, F.G. Kazanci, A.A. Prinz, Phase resetting curves allow for simple
and accurate prediction of robust n: 1 phase locking for strongly coupled neural
oscillators, Biophys. J. 97 (1) (2009) 59–73.

[14] D. Golomb, D. Hansel, B. Shraiman, H. Sompolinsky, Clustering in globally
coupled phase oscillators, Phys. Rev. A 45 (6) (1992) 3516.

[15] D. Golomb, J. Rinzel, Clustering in globally coupled inhibitory neurons, Physica
D 72 (3) (1994) 259–282.

[16] Z.P. Kilpatrick, B. Ermentrout, Sparse gamma rhythms arising through clustering
in adapting neuronal networks, PLoS Comput. Biol. 7 (11) (2011) e1002281.

[17] Y.-X. Li, Y.-Q. Wang, R. Miura, Clustering in small networks of excitatory neurons
with heterogeneous coupling strengths, J. Comput. Neurosci. 14 (2003) 139–159.

[18] A. Ponzi, J. Wickens, Sequentially switching cell assemblies in random inhibitory
networks of spiking neurons in the striatum, J. Neurosci. 30 (17) (2010)
5894–5911.

[19] S.A. Campbell, Z. Wang, Phase models and clustering in networks of oscillators
with delayed coupling, Physica D 363 (2018) 44–55.

[20] J. Miller, H. Ryu, Z. Teymuroglu, X. Wang, V. Booth, S.A. Campbell, Clustering
in inhibitory neural networks with nearest neighbor coupling, in: T. Jackson, A.
Radunskaya (Eds.), Applications of Dynamical Systems in Biology and Medicine,
Springer, New York, 2015, pp. 99–121.

[21] F. Hoppensteadt, E. Izhikevich, Weakly Connected Neural Networks, Springer–
Verlag, New York, 1997.

[22] M. Schwemmer, T. Lewis, The theory of weakly coupled oscillators, in: N.
Schultheiss, A. Prinz, R. Butera (Eds.), Phase Response Curves in Neuroscience,
Springer, New York, NY, 2012, pp. 3–31.
10
[23] P. Ashwin, J.W. Swift, The dynamics of n weakly coupled identical oscillators,
J. Nonlinear Sci. 2 (1992) 69–108.

[24] K. Okuda, Variety and generality of clustering in globally coupled oscillators,
Physica D 63 (1993) 424–436.

[25] N. Kopell, G. Ermentrout, Mechanisms of phase–locking and frequency control in
pairs of coupled neural oscillators, in: B. Fiedler (Ed.), Handbook of Dynamical
Systems, Vol 2: Toward Applications, Elsevier, Amsterdam, 2002, pp. 3–54.

[26] F. Saraga, L. Ng, F.K. Skinner, Distal gap junctions and active dendrites can tune
network dynamics, J. Neurophysiol. 95 (3) (2006) 1669–1682.

[27] J.G. Mancilla, T.J. Lewis, D.J. Pinto, J. Rinzel, B.W. Connors, Synchronization
of electrically coupled pairs of inhibitory interneurons in neocortex, J. Neurosci.
27 (8) (2007) 2058–2073.

[28] G.B. Ermentrout, Stable periodic solutions to discrete and continuum arrays
of weakly coupled nonlinear oscillators, SIAM J. Appl. Math. 52 (6) (1992)
1665–1687.

[29] S.H. Strogatz, From kuramoto to crawford: exploring the onset of synchronization
in populations of coupled oscillators, Physica D 143 (1–4) (2000) 1–20.

[30] D.A. Wiley, S.H. Strogatz, M. Girvan, The size of the sync basin, Chaos 16 (1)
(2006) 015103.

[31] F.G. Kazanci, B. Ermentrout, Pattern formation in an array of oscillators with
electrical and chemical coupling, SIAM J. Appl. Math. 67 (2) (2007) 512–529.

[32] T. Girnyk, M. Hasler, Y. Maistrenko, Multistability of twisted states in non-locally
coupled kuramoto-type models, Chaos 22 (1) (2012) 013114.

[33] S. Heitmann, G.B. Ermentrout, Synchrony, waves and ripple in spatially coupled
kuramoto oscillators with mexican hat connectivity, Biol. Cybern. 109 (3) (2015)
333–347.

[34] H. Sakaguchi, Y. Kuramoto, A soluble active rotater model showing phase
transitions via mutual entertainment, Progr. Theoret. Phys. 76 (3) (1986)
576–581.

[35] D. Hansel, G. Mato, C. Meunier, Clustering and slow switching in globally
coupled phase oscillators, Phys. Rev. E 48 (5) (1993) 3470.

[36] F.G. Kazanci, B. Ermentrout, Wave formation through the interactions between
clustered states and local coupling in arrays of neural oscillators, SIAM J. Appl.
Dyn. Syst. 7 (2) (2008) 491–509.

[37] B. Miller, A. Walker, A. Shah, S. Barton, G. Rebec, Dysregulated information
processing by medium spiny neurons in striatum of freely behaving mouse
models of huntington’s disease, J. Neurophysiol. 100 (2008) 2205–2216.

[38] A. Klaus, G.J. Martins, V.B. Paixao, P. Zhou, L. Paninski, R.M. Costa, The
spatiotemporal organization of the striatum encodes action space, Neuron 95
(5) (2017) 1171–1180.

[39] S. Spreizer, M. Angelhuber, J. Bahuguna, A. Aertsen, A. Kumar, Activity dynamics
and signal representation in a striatal network model with distance-dependent
connectivity, Eneuro 4 (4) (2017).

[40] G. Ermentrout, D. Terman, Mathematical Foundations of Neuroscience, Springer,
New York, NY, 2010.

[41] X.-J. Wang, G. Buzsáki, Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model, J. Neurosci. 16 (1996) 6402–6413.

[42] A. Hodgkin, A. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve, J. Physiol. 117 (1952)
500–544.

[43] J.-C. Lacaille, S. Williams, Membrane properties of interneurons in stratum
oriens-alveus of the CA1 region of rat hippocampus in vitro, Neuroscience 36
(2) (1990) 349–359.

[44] A. Destexhe, Z. Mainen, T. Sejnowski, Kinetic models of synaptic transmission,
in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling: From Synapses to
Networks, MIT Press, Cambridge, MA, 1998, pp. 1–25.

[45] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: a
Guide to XPPAUT for Researchers and Students, Vol. 14, SIAM, 2002.

[46] K.C. Wedgwood, K.K. Lin, R. Thul, S. Coombes, Phase-amplitude descriptions of
neural oscillator models, J. Math. Neurosci. 3 (1) (2013) 2.

[47] P. Ashwin, S. Coombes, R. Nicks, Mathematical frameworks for oscillatory
network dynamics in neuroscience, J. Math. Neurosci. 6 (1) (2016) 2.

[48] M. Whittington, R.D. Traub, N. Kopell, B. Ermentrout, E. Buhl, Inhibition-based
rhythms: experimental and mathematical observations on network dynamics, Int.
J. Psychophysiol. 38 (3) (2000) 315–336.

[49] N. Kopell, D. Borgers, P. Malerba, A. Tort, Gamma and theta rhythms in
biophysical models of hippocampal circuits, in: V. Cutsuridis, B. Graham, S.
Cobb, I. Vida (Eds.), Microcircuits, a Computational Modeler’S Resource Book,
Springer, New York, NY, 2010, pp. 423–457.

[50] P. Tiesinga, T.J. Sejnowski, Cortical enlightenment: Are attentional gamma
oscillations driven by ING or PING?, Neuron 63 (6) (2009) 727–732.

[51] X.-J. Wang, Neurophysiological and computational principles of cortical rhythms
in cognition, Physiol. Rev. 90 (3) (2010) 1195–1268.

[52] S. Rich, V. Booth, M. Zochowski, Intrinsic cellular properties and connectivity
density determine variable clustering patterns in randomly connected inhibitory
neural networks, Front. Neural Circuits 10 (2016) 82.

http://refhub.elsevier.com/S0025-5564(21)00040-7/sb1
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb1
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb1
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb1
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb1
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb2
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb2
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb2
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb3
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb3
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb3
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb3
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb3
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb4
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb4
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb4
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb5
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb5
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb5
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb6
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb6
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb6
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb6
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb6
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb7
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb7
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb7
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb8
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb8
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb8
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb8
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb8
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb9
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb9
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb9
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb10
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb10
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb10
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb10
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb10
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb11
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb11
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb11
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb11
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb11
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb12
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb12
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb12
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb12
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb12
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb13
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb13
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb13
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb13
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb13
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb14
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb14
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb14
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb15
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb15
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb15
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb16
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb16
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb16
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb17
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb17
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb17
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb18
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb18
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb18
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb18
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb18
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb19
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb19
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb19
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb20
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb21
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb21
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb21
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb22
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb22
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb22
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb22
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb22
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb23
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb23
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb23
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb24
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb24
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb24
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb25
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb25
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb25
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb25
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb25
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb26
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb26
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb26
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb27
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb27
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb27
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb27
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb27
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb28
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb28
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb28
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb28
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb28
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb29
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb29
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb29
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb30
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb30
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb30
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb31
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb31
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb31
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb32
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb32
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb32
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb33
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb33
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb33
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb33
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb33
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb34
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb34
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb34
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb34
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb34
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb35
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb35
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb35
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb36
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb36
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb36
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb36
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb36
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb37
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb37
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb37
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb37
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb37
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb38
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb38
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb38
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb38
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb38
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb39
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb39
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb39
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb39
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb39
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb40
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb40
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb40
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb41
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb41
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb41
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb42
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb42
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb42
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb42
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb42
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb43
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb43
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb43
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb43
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb43
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb44
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb44
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb44
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb44
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb44
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb45
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb45
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb45
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb46
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb46
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb46
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb47
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb47
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb47
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb48
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb48
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb48
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb48
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb48
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb49
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb50
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb50
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb50
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb51
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb51
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb51
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb52
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb52
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb52
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb52
http://refhub.elsevier.com/S0025-5564(21)00040-7/sb52

	Spatially localized cluster solutions in inhibitory neural networks
	Introduction
	Methodology
	Phase reduction method
	Neural network model

	Analysis
	Short discussion of a simple case: Decoupled networks
	Effect of other connections
	Application to the model network
	Existence of non-spatially adjacent cluster solutions


	Numerical simulations
	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




