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Abstract

This thesis mainly focus on complexity results of the generalized version of the r-
Coloring Problem, the r-Pre-Coloring Extension Problem and the List r-
Coloring Problem restricted to hypergraphs and ordered graphs with forbidden sub-
structures.

In the context of forbidding non-induced substructure in hypergraphs, we obtain com-
plete complexity dichotomies of the r-Coloring Problem and the r-Pre-Coloring
Extension Problem in hypergraphs with bounded edge size and bounded matching
number, as well as the r-Pre-Coloring Extension Problem in hypergraphs with uni-
form edge size and bounded matching number. We also get partial complexity result of
the r-Coloring Problem in hypergraphs with uniform edge size and bounded matching
number. Additionally, we study the Maximum Stable Set Problem and the Maxi-
mum Weight Stable Set Problem in hypergraphs. We obtain complexity dichotomies
of these problems in hypergraphs with uniform edge size and bounded matching number.

We then give a polynomial-time algorithm of the 2-Coloring Problem restricted to
the class of 3-uniform hypergraphs excluding a fixed one-edge induced subhypergraph. We
also consider linear hypergraphs and show that 3-Coloring in linear 3-uniform hyper-
graphs with either bounded matching size or bounded induced matching size is NP-hard
if the bound is a large enough constant.

This thesis also contains a near-dichotomy of complexity results for ordered graphs. We
prove that the List-3-Coloring Problem in ordered graphs with a forbidden induced
ordered subgraph is polynomial-time solvable if the ordered subgraph contains only one
edge, or it is isomorphic to some fixed ordered 3-vertex path plus isolated vertices. On the
other hand, it is NP-hard if the ordered subgraph contains at least three edges, or contains
a vertex of degree two and does not satisfy the polynomial-time case mentioned before,
or contains two non-adjacent edges with a specific ordering. The complexity result when
forbidding a few ordered subgraphs with exactly two edges is still unknown.
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Chapter 1

Introduction

Graph coloring is one of the fundamental topics in graph theory. A graph is a pair (V,E)
where V is a finite set and E ⊆

(
V
2

)
. The set V is called the set of vertices and E is called

the set of edges. The r-Coloring Problem is, given a graph, to decide whether there
is an assignment of r colors to the vertex set of this graph, such that two vertices receive
different colors if there is an edge joining them.

Graph coloring is a useful tool to solve some real-life problems. The idea of graph
coloring first came from coloring a map and was discussed by many early graph theorists,
see [9] for example. Later it turned to a well-known theorem: the Four Color Theorem [1]
[2], which is also known as the first computer-assisted proof.

Though with the assistance of computer, we may be able to find an optimal coloring
of some graphs of small size, in general, it is not guaranteed unless we restrict the input
graphs. This is because the r-Coloring Problem is a well-known NP-hard problem.

Theorem 1.0.1 (Karp [29]). For every fixed integer r with r ≥ 3, the r-Coloring
Problem is NP-complete.

Because of this result, people then ask whether adding some restrictions on the input
graphs makes the coloring problem easier. In this thesis, we mainly focus on the complexity
results of different variations of the coloring problems restricted to different generalizations
of graphs with forbidden structures.
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1.1 Definitions

Hypergraphs are a generalization of graphs. A hypergraph G is a pair (V,E) where V is a
finite set, and E ⊆ 2V \{∅}. V is called the set of vertices and E is called the set of edges.
For a hypergraph G = (V,E), we define V (G) = V and E(G) = E. For k ∈ N, we say
that G is k-uniform if |e| = k for all edges e ∈ E, and G is k-bounded if |e| ≤ k for all
edges e ∈ E. A 2-uniform hypergraph is simply called a graph. An induced subhypergraph
H of G is a hypergraph with V (H) ⊆ V (G) and E(H) = {e ∈ E(G) : e ⊆ V (H)}, and we
denote this induced subhypergraph by G[V (H)]. Given a hypergraph H, the hypergraph
G is called H-free if H is not an induced subhypergraph of G.

Figure 1.1: A 3-uniform hypergraph.

A matching of G is a set of pairwise disjoint edges. A maximal matching of G is a
matching which is maximal with respect to inclusion. For a hypergraph G, we denote by
ν(G) the maximum integer s such that G contains a matching of size s. A set S ⊆ V (G) of
G is stable if e ∩ S 6= e for every e ∈ E(G). We say a k-uniform hypergraph is complete if
its edge set is the set of all k-vertex subsets of its vertex set. A set S ⊆ V (G) is a clique if
G[S] is complete. The clique number of G, denoted ω(G), is the maximum size of a clique
S in G.

We use [r] to denote the set {1, . . . , r}. Given a hypergraph G and a positive integer r,
a function c : V (G)→ [r] is an r-coloring of G if for all i ∈ [r], c−1(i) is a stable set in G.
G is r-colorable if there exists an r-coloring of G. The chromatic number of G, denoted
χ(G), is the minimum integer r such that G is r-colorable.

A function c : X → [r] for some X ⊆ V (G) is a partial r-coloring of G if c is an
r-coloring of G[X]. For convenience, we also denote a partial coloring as (X, c). Given a
partial r-coloring (X, c) of G, an r-precoloring extension of (X, c) is a partial r-coloring
(X ′, c′) with c′(v) = c(v) for all v ∈ X, and X ⊂ X ′. We say that a partial coloring (X, c)
r-extends to G if there is an r-precoloring extension (V (G), c′) of (X, c).

2



For a fixed integer r, the Hypergraph r-Coloring Problem is to decide whether
a given hypergraph G is r-colorable, and the Hypergraph r-Precoloring Extension
Problem is to decide given a hypergraph G and a partial r-coloring (X, c), whether (X, c)
r-extends to G. When restricting to the class of graphs, it is simply called the r-Coloring
Problem and the r-Precoloring Extension Problem.

Let G be a graph and let k be a positive integer. A function c : V (G) → [k] is a
k-coloring of G if for any uv ∈ E(G), c(u) 6= c(v). A k-list-assignment of G is a function
L : V (G) → 2[k]. Given a k-list-assignment L of G, a k-coloring c is an L-coloring if
c(v) ∈ L(v) for all v ∈ V (G). G is L-colorable if G has an L-coloring. For a fixed positive
integer k, the List-k-Coloring Problem is to decide, given an instance (G,L) consisting
of a graph G and a k-list-assignment L of G, whether G has an L-coloring or not.

An ordered graph G is a triple (V,E, ϕ) such that (V,E) is a graph with vertex set V
and edge set E, and ϕ : V → R is an injective function. We say ϕ is the ordering of G.
For an ordered graph G = (V,E, ϕ), we define V (G) = V , E(G) = E, and ϕG = ϕ. For
convenience, we also write the ordered graph (V,E, ϕ) as (G′, ϕ) where G′ = (V,E) is a
graph.

Given an ordered graph G = (V,E, ϕ), an ordered graph G′ = (V ′, E ′, ϕ′) is isomorphic
to G if there exists a bijective function f : V ′ → V such that for any two vertices v and
w in V ′, ϕ′(v) < ϕ′(w) if and only if ϕ(f(v)) < ϕ(f(w)), and vw ∈ E ′ if and only if
f(v)f(w) ∈ E. We denote this as G′ ∼= G. An ordered graph H is an ordered induced
subgraph of G if there exists a set X ⊆ V (G) such that H ∼= G[X]; otherwise G is called
H-free.

The Ordered Graph List-k-Coloring Problem is the same as coloring the cor-
responding unordered graph of the input instance.

1.2 Background and Contributions

1.2.1 Graphs

Let Pk denote a path with k vertices. Given graphs G and H, let G+H denote the disjoint
union of G and H, and rH denote the disjoint union of r copies of H.

The coloring problem with forbidden induced subgraphs is well studied for graphs. For
connected graphs H, the only open case of the complexity of the k-Coloring Problem
restricted to H-free graphs is when k = 3 and H = Pt for t ≥ 8. Here are some results
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about when the k-Coloring Problem and List-k-Coloring Problem with forbidden
induced subgraphs are easy.

Theorem 1.2.1. The k-Coloring Problem restricted to H-free graphs can be solved
in polynomial time if:

• H = P6 for k = 4 [Chudnovsky, Spirkl and Zhong [13]];

• H = rP2 for all fixed k, r ∈ N [Golovach, Johnson, Paulusma and Song [21]; Balas
and Yu [5]; Tsukiyama, Ide, Ariyoshi and Shirakawa [39]];

• H = rP3 for k = 3 and all fixed r ∈ N [Broersma, Golovach, Paulusma and Song
[7]];

and the List-k-Coloring Problem restricted to H-free graphs can be solved in polyno-
mial time if:

• H = P5 for all fixed k ∈ N [Hoàng, Kamiński, Lozin, Sawada and Shu [25]];

• H = P7 for k = 3 [Bonomo, Chudnovsky, Maceli, Schaudt, Stein and Zhong [6]];

• H = P6 + rP3 for k = 3 and all fixed r ∈ N [Chudnovsky, Huang, Spirkl and Zhong
[12]];

• H = P5 + rP1 for all fixed k, r ∈ N [Couturier, Golovach, Kratsch and Paulusma
[14]];

In particular, we will refer to this result several times later.

Theorem 1.2.2 (Golovach, Johnson, Paulusma and Song [21]; Balas and Yu [5]; Tsukiyama,
Ide, Ariyoshi and Shirakawa [39]). For fixed positive integers k and r, the k-Coloring
Problem restricted to rP2-free graphs is polynomial-time solvable.

On the other hand, the following hardness results are known.

Theorem 1.2.3. The k-Coloring Problem restricted to H-free graphs is NP-complete
if:

• H contains a cycle for all k ≥ 3 [Kamiński and Lozin [28]];

4



• H contains a K1,3 (a vertex with three non-adjacent neighbors) for all k ≥ 3 [Holyer
[26]];

• H = P6 for k = 5, or H = P7 for k = 4 [Huang [27]];

• H = P5 + P2 for k = 5 [Chudnovsky, Huang, Spirkl and Zhong [12]];

and the List-k-Coloring Problem restricted to H-free graphs is NP-complete if:

• H = P6 for k = 4 [Golovach, Paulusma and Song [20]] ;

• H = P4 + P2 for k = 5 [Couturier, Golovach, Kratsch and Paulusma [14]] .

Our contribution is, in [24], we have proved the following theorems:

Theorem 1.2.4. For every r ∈ N, the List-5-Coloring Problem restricted to rP3-free
graphs can be solved in polynomial time.

With Theorem 1.2.1 and 1.2.3, our result (Theorem 1.2.4) completes the following
complexity dichotomy.

Theorem 1.2.5. Let H be a graph. Assuming P 6=NP, the List-5-Coloring Problem
restricted to H-free graphs can be solved in polynomial time if and only if H is an induced
subgraph of rP3 or P5 + rP1 for some r ∈ N.

In this thesis, we will include the proof of the following theorem from [24]:

Theorem 1.2.6. The k-Coloring Problem restricted to rP4-free graphs is NP-complete
for all k ≥ 5 and r ≥ 2.

1.2.2 Hypergraphs

The hypergraph coloring problem is a natural extension of the graph coloring problem. In
the past few decades, it has already attracted many people’s attention; see the survey [8]
for previous results.

In general, the Hypergraph r-Coloring Problem is harder than the r-Coloring
Problem. For example, the Hypergraph 2-Coloring Problem is NP-hard, while the
2-Coloring Problem is polynomial-time solvable. The following result shows the Hy-
pergraph r-Coloring Problem is NP-hard, even restriced to k-uniform hypergraphs
with some fixed positive integer k.
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Theorem 1.2.7 (Lovász [32]; Phelps and Rödl [36]). For all k ≥ 3 and r ≥ 2, the k-
Uniform Hypergraph r-Coloring Problem is NP-complete.

We then focus on bounded or uniform hypergraphs. It is natural to ask whether adding
restrictions on the input hypergraphs can still make (some variations of) the coloring prob-
lem easier. If so, does a similar condition as used in graph colorings make the hypergraph
coloring problem polynomial-time solvable?

We notice that some graphs H have the property that r-coloring H-free graphs can be
solved in polynomial time for all r, for example, graphs of the form H = sP2, as shown in
Theorem 1.2.2. When turning to hypergraphs, it seems that excluding an induced hyper
matching would be one of the potential options. But unfortunately, we will show later that
even bounding the maximum size of a matching (a much stronger condition than excluding
an induced matching) does not always lead to a polynomial-time algorithm.

In this thesis, we will show the following dichotomies:

Theorem 1.2.8. Let k, r and s be positive integers with k, r ≥ 2. The k-Bounded
Hypergraph r-Coloring Problem, the k-Bounded Hypergraph r-Precoloring
Extension Problem as well as the k-Uniform Hypergraph r-Precoloring Ex-
tension Problem, restricted to hypergraphs G with ν(G) ≤ s, are polynomial-time solv-
able if

• s ≤ r − 1, or

• k = 3 and r = 2, or

• k = 2,

and NP-complete otherwise.

We will also show the following result:

Theorem 1.2.9. Let k, r and s be positive integers with k, r ≥ 2. The k-Uniform Hyper-
graph r-Coloring Problem restricted to hypergraphs G with ν(G) ≤ s is polynomial-
time solvable if

• s ≤ r − 1, or

• k = 3 and r = 2, or

6



• k = 2,

and is NP-complete if

• s ≥ (r − 1)k + 1, and

• k ≥ 4 or r ≥ 3.

Theorem 1.2.2 is based on a result of [5] that sP2-free graphs have only polynomially
many maximal (with respect to inclusion) stable sets. Using this, [39] gave a polynomial-
time algorithm for finding a maximum (weight) stable set in an sP2-free graph. We ask an
analogous question in hypergraphs with bounded maximum matching size. We will prove:

Theorem 1.2.10. For fixed positive integers k and s with k ≥ 3, the k-Uniform Hy-
pergraph Maximum Stable Set Problem restricted to hypergraphs with ν(G) ≤ s is
polynomial-time solvable, and the k-Uniform Hypergraph Maximum Weight Sta-
ble Set Problem restricted to hypergraphs with ν(G) ≤ s is NP-complete.

We also give a first result for excluding an induced subhypergraph:

Theorem 1.2.11. Let t ∈ N be fixed, and let H be the 3-uniform hypergraph with t + 3
vertices and one edge. Then there is a polynomial-time algorithm for the 3-Bounded
Hypergraph 2-Coloring Problem restricted to H-free hypergraphs.

Finally, we will prove results about linear hypergraphs. A hypergraph G is linear if
|e ∩ e′| ≤ 1 for every two distinct e, e′ ∈ E(G). The restriction to linear hypergraphs does
not affect NP-hardness:

Theorem 1.2.12 (Phelps and Rödl [36]). For every r ≥ 2, the 3-Uniform Hypergraph
r-Coloring Problem restricted to linear hypergraphs is NP-complete.

The following result gives an algorithm for 2-coloring certain linear hypergraphs:

Theorem 1.2.13 (Chattopadhyay and Reed [10]). There is a polynomial-time algorithm
for the k-Uniform Hypergraph 2-Coloring Problem restricted to linear hypergraphs
with maximum degree bounded by a function of k.

We ask how our results extend to linear 3-uniform hypergraphs. For s ∈ N, we let
Ms denote the 3-uniform hypergraph with 3s vertices and s pairwise disjoint edges. We
will show that in linear hypergraphs, excluding a fixed induced matching implies bounded
matching number, which immediately implies (assuming Theorems 1.2.8 and 1.2.10):

7



Theorem 1.2.14. Let s ∈ N. The 3-Uniform Hypergraph 2-Coloring Prob-
lem, the 3-Uniform Hypergraph 2-Precoloring Extension Problem, and the
3-Uniform Hypergraph Maximum Stable Set Problem restricted to linear Ms-
free hypergraphs are polynomial-time solvable.

We will also prove:

Theorem 1.2.15. The 3-Uniform Hypergraph 3-Coloring Problem restricted to
linear hypergraphs G with ν(G) ≤ 532 is NP-complete.

1.2.3 Ordered Graphs

Motivated by the fact that excluding some induced subgraphs makes the graph coloring
problems easier, another idea comes to our mind is the ordered graph. The idea of ordered
graphs first came from Ramsey-type questions (see [38] and [34] for example). In many
Ramsey-type questions, it is convenient or necessary to give an ordering to the vertex set
of a graph. Later in recent years, some other graph theory questions, such as the Turan-
type questions (see [35]) and the chromatic number (see [4]) were also studied for ordered
graphs.

Part of the idea of ordered graph coloring comes from tournament coloring. When col-
oring tournaments, backedge graphs are used to represent tournaments, which are actually
ordered graphs. In fact, we are the first group of people to study the complexity of coloring
with forbidden ordered induced subgraphs.

We notice that coloring an ordered graph is actually the same as coloring the corre-
sponding unordered graph. But the difference comes when excluding some induced sub-
graphs. Even though the ordered graph coloring itself is the same as the graph coloring,
we still use “ordered graph coloring”to avoid confusion when talking about induced sub-
graphs. Under the ordered graph setting, we can break the symmetry and only exclude
“a part of”the induced subgraph. In fact, the symmetry is often vital to make the graph
coloring problem easier. One interesting result we will show later is, there are two differ-
ent ordered P3 such that the Ordered Graph List-3-Coloring Problem is NP-hard
if forbidding one ordered induced subgraph, while forbidding the other one allows us to
construct a polynomial-time coloring algorithm.

In order to state our main results, let us define some ordered graphs first. The re-
maining ordered graphs are defined later when proving the main results. Let U ′ =
{u1, u2, u3, u4, u5} and U = U ′\{u5}, the ordering ϕ′ : U ′ → R with ui 7→ i for i ∈ [5]. Let
V = {v1, v2, v3, v4, v5, v6} and ϕ : V → R with vi 7→ i for i ∈ [6].

8



Figure 1.2: Two non-isomorphic orderings of the unordered graph P3.

• Let J9 = (U, {u1u2, u3u4}, ϕ′|U).

• Let J16 = (U\{u4}, {u1u2, u1u3}, ϕ′|U\{u4}).

• Let M1 = (V, {v1v6, v2v5}, ϕ).

• Let M5 = (V \{v6}, {v1v5, v2v3}, ϕ|V \{v6}).

• Let M6 = (V \{v5, v6}, {v1v3, v2v4}, ϕ|V \{v5,v6}).

• Let M7 = (V \{v5, v6}, {v1v4, v2v3}, ϕ|V \{v5,v6}).

• Let M8 = (V \{v6}, {v1v5, v2v4}, ϕ|V \{v6}).

Given an ordered graph H = (V,E, ϕ) and two positive integers k and l, let H(k, l)
denote the ordered graph obtained by adding k isolated vertices with ordering minϕ(V )−
k, ...,minϕ(V ) − 1, and l isolated vertices with ordering maxϕ(V ) + 1, ...,maxϕ(V ) + l.
We denote −H = (V,E, v 7→ −ϕH(v)).

J16(k, l) −J16(k, l)

Figure 1.3: The ordered graphs J16(k, l) and −J16(k, l) with k = 3 and l = 2.

In our paper [23], we proved the following result, which is not included in this thesis.

Theorem 1.2.16. The Ordered Graph List-3-Coloring Problem restricted to
(H,ϕ)-free ordered graphs is polynomial-time solvable if H contains at most one edge.

In this thesis, we will prove the following theorems from [23]:

Theorem 1.2.17. For all k, l ∈ N, the Ordered Graph List-3-Coloring Problem
restricted to J16(k, l)-free ordered graphs is polynomial-time solvable.

Theorem 1.2.18. If H is an ordered graph such that at least one of the following holds:

9



• H has at least three edges;

• H has a vertex of degree at least 2 and is not isomorphic to J16(k, l) or −J16(k, l) for
any k, l ∈ N;

• H contains J9, M1 or M5 as induced ordered subgraph;

then the Ordered Graph List-3-Coloring Problem restricted to H-free ordered
graphs is NP-hard.

In summary, Theorem 1.2.18 covers all graphs H except:

• graphs H with at most one edge (polynomial-time by Theorem 1.2.16);

• graphs H isomorphic to J16(k, l) or −J16(k, l) (polynomial-time by Theorem 1.2.17);

• graphs H containing M1 (NP-hard by Theorem 3.2.2);

• graphs H containing M5 (NP-hard by Theorem 3.2.2);

• graphs H containing M6 plus isolated vertices (open);

• graphs H isomorphic to M7(k, l) or M8(k, l) (open).

The cases are shown in Figures 1.4 and 1.5, where gray vertices represent an arbitrary
number of isolated vertices.

u1 u2

u1 u2 u3

Figure 1.4: The cases of H which are polynomial-time solvable.
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v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4 v5

Figure 1.5: The cases of H which are still open.

1.3 Tools

In this section, we will introduce some tools and complexity results that are used later in
our proofs.

The hypergraph Ramsey number, Rk(n1, . . . , nt), is the smallest integer N such that for
every function f : E(G) → [t] for a complete k-uniform hypergraph G with at least N
vertices, there exists i ∈ [t] and a set S ⊆ V (G) with |S| ≥ ni such that all edges e ⊆ S
satisfy f(e) = i.

Theorem 1.3.1 (Ramsey [37]). For all positive integers k, n1, . . . , nt, the hypergraph
Ramsey number Rk(n1, . . . , nt) exists.

Given an instance I consisting of n Boolean variables and m clauses, each of which
contains 2 literals, the 2-Satisfiability Problem (2-SAT) is to decide whether there
exists a truth assignment for every variable such that every clause contains at least one
true literal. We say I is satisfiable if it admits such an assignment.

Theorem 1.3.2 (Krom [30]; Aspvall, Plass and Tarjan [3]). The 2-SAT Problem can
be solved in time O(n + m), where n is the number of variables and m is the number of
clauses.

Given an instance I consisting of n Boolean variables and m clauses, each of which
contains 3 literals, the Not-All-Equal-3-Satisfiability Problem (NAE3SAT) is
to decide whether there exists a truth assignment for every variable such that every clause
contains at least one true literal and one false literal. We say I is satisfiable if it admits
such an assignment. A monotone NAE3SAT is a NAE3SAT restricted to instances with
no negated literals.

11



Theorem 1.3.3 (Garey and Johnson [18]). Monotone NAE3SAT is NP-complete.

Similar to vertex coloring, an k-edge-coloring of a graph G is a function f : E(G)→ [k]
such that two edges e1, e2 ∈ E(G) receive different colors if they have a common endpoint.

Theorem 1.3.4 (Vizing [40], Misra and Gries [33]). There is a O(mn)-algorithm for edge-
coloring a graph G with D + 1 colors, where D is the maximum degree of G, m is the
number of edges and n is the number of vertices.

A graph G is chordal if in G, every cycle of length at least 4 has an edge connecting
two vertices of the cycle but not in the cycle. Equivalently, every induced cycle in G is a
triangle.

There is an old known result derived from [15] that, the treewidth of a chordal graph
can be computed in polynomial-time. Indeed, the treewidth of a chordal graph is bounded
by its clique number minus 1, and what we compute is the clique number. We also know
that the List-k-Coloring Problem restricted to graphs with bounded treewidth is
polynomial-time solvable with respect to the input size and the treewidth [17]. Thus, we
have the following:

Theorem 1.3.5. The List-3-Coloring Problem restricted to chordal graphs with
bounded clique number is polynomial-time solvable.

We will also use the following results later.

Theorem 1.3.6 (Edwards [16]). The List-2-Coloring Problem can be solved in time
O(n2), where n is the number of vertices of the input graph.

Theorem 1.3.7 (Garey and Johnson [18]). The Maximum Stable Set Problem is
NP-complete.

Theorem 1.3.8 (Garey, Johnson and Stockmeyer [19]). The 3-Coloring Problem
restricted to graphs with maximum degree at most 4 is NP-complete.

Theorem 1.3.9 (Chleb́ık and Chleb́ıková [11]). The List-3-Coloring Problem re-
stricted to bipartite graphs is NP-complete.
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1.4 Outline

Chapter 2 is about hypergraphs. We will give two polynomial-time algorithms for hyper-
graphs in Section 2.1 and Section 2.2 respectively. In Section 2.3, we will talk about some
NP-hard cases and complete the results about hypergraphs with bounded matching size.
In Section 2.4, we will talk about the k-Uniform Hypergraph Maximum Stable Set
Problem and the k-Uniform Hypergraph Maximum Weight Stable Set Prob-
lem. In Section 2.5, we will give a first result for excluding an induced subhypergraph.
Finally, in Section 2.6, we will prove results about linear hypergraphs.

Chapter 3 is about ordered graphs. In Section 3.1, we will talk about one of the
polynomial-time solvable case as mentioned above. In Section 3.2, we will define some
ordered graphs and show that the Ordered Graph List-3-Coloring Problem re-
stricted to the class of ordered graphs forbidding these ordered graphs as an induced
subgraph remains NP-complete.

In Chapter 4, we will cover the hardness result of the k-Coloring Problem restricted
to rP4-free graphs for all k ≥ 5 and r ≥ 2.
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Chapter 2

Hypergraphs

In this chapter, we will focus on bounded or uniform hypergraphs.

One of the main ideas used in this chapter is “guessing the coloring of a small set”.
To describe it more carefully, “small”means the size of this set is upper bounded by some
constant, and “guessing”means we enumerate and go through all possible choices for such
a set. The key point here is the constant bound, which means we can afford going through
all choices of the potential set, and for each choice go through all possible colorings of the
vertices of this set. This method is used frequently for this kind of problem, for example,
in [6] and [24].

Given two partial r-coloring collections C, C ′ of a hypergraph G, we say C and C ′ are
r-equivalent if C contains a partial r-coloring c1 which r-extends to G if and only if C ′
contains a partial r-coloring c2 which r-extends to G. We say (X, c) is r-equivalent to C
if the collection {(X, c)} is r-equivalent to C. We say that C is r-equivalent to G if G is
r-colorable if and only if C contains a partial r-coloring which r-extends to G.

2.1 Algorithm for the case k = 3 and r = 2

In this section, we will prove:

Theorem 2.1.1. For every fixed positive integer s, the 3-Bounded Hypergraph 2-
Coloring Problem restricted to hypergraphs with ν(G) ≤ s is polynomial-time solvable.

A common strategy for coloring algorithms is using an algorithm for 2-SAT as a sub-
routine.
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Proof of Theorem 2.1.1. Let G be a 3-bounded hypergraph with ν(G) ≤ s. First, we create
a collection C of partial 2-colorings as follows. We fix a maximal matching F of G. We
define the set XF = ∪e∈F e. Let C be the set of all partial 2-colorings (XF , c : XF → [2])
of G.

We claim that the collection C has the following three properties. The theorem follows
immediately from these properties.

(1) C is 2-equivalent to G.

It suffices to show that if G has a 2-coloring c, then there is a partial 2-coloring in
C which has a 2-precoloring extension. Let c be a 2-coloring of G. Consider the partial
2-coloring (XF , c|XF ) ∈ C. Then c is a 2-precoloring extension of c|XF . Thus we have
proved (1).

(2) C can be computed in time O(n3).

Let |V (G)| = n. Since G is 3-bounded, |E(G)| ≤ O(n3). We can go through all edges
and construct a maximal matching F in time O(n3). Checking whether (X, c) is a partial
2-coloring takes time O(1), as the size of X is bounded. Since |F | ≤ ν(G) ≤ s, we have
|C| ≤ 23s = O(1). Thus, C can be constructed from F in time O(n3).

(3) For every partial 2-coloring c′ in C, whether c′ has a 2-precoloring extension (V (G), c)
can be decided in polynomial time.

Let (XF , c′) ∈ C. Since F is a maximal matching and G is 3-bounded, for every edge
e ∈ E(G) \ F , |e \XF | ≤ 2.

We define a 2-precoloring extension (X, c) of c′ as follows. We define the sets X0, X1, . . .
iteratively. Let X0 = XF . Let c(v) = c′(v) for all v ∈ XF . Suppose that we have defined
Xi. If there exists an edge e ∈ E(G) such that e ⊆ Xi and e is monochromatic, then c′

does not have a 2-precoloring extension and we return this determination. If there exists
an edge e ∈ E(G) such that |e \ Xi| = 1 and c(e ∩ Xi) = {j} for some j ∈ [2], we define
c(w) to be the unique element of [2] \ {j} for w ∈ e \ Xi, and define Xi+1 = Xi ∪ {w}.
Otherwise we stop and let X = Xi. This terminates within at most O(n3) steps. From
the construction, clearly {(Xi, c)} is equivalent to {(Xi+1, c)} at every step; and it follows
that {(X, c)} is equivalent to {(XF , c′)}, and that if this step returns a determination that
(XF , c′) does not 2-extend to G, then this determination is correct.

We define a 2-SAT instance as follows. For every v ∈ V (G) \X, we have a variable xv.
Let E ′ ⊆ E(G) be the set of edges such that |e \ X| = 2 for all e ∈ E ′. For every edge
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e ∈ E ′, we create a clause Ce. Let e = {v, u, w} with v ∈ X and u,w ∈ V (G) \ X. If
c(v) = 1, we set Ce = xu ∨ xw. Otherwise, let Ce = xu ∨ xw.

If the 2-SAT instance has a solution x, where “true”and “false” are represented by 1
and 0 respectively, then we set c(v) = xv + 1 for every v ∈ V (G) \ X. Take an edge
e ∈ E(G). If |e \X| ≤ 1, by the construction of X, e is not monochromatic. If |e \X| = 2,
the clause Ce of 2-SAT instance and the construction of c guarantees that at least one
of the vertices in e \ X receives the opposite color from the vertex in e ∩ X. Since F is
maximal, there is no edge e in E(G) with |e \X| = 3. Thus, c is a 2-precoloring extension
of (X, c′).

If there is a 2-precoloring extension d of (X, c), then we set xv = d(v) − 1 for every
v ∈ V (G) \ X. For every edge e = {v, u, w} ∈ E ′ with e ∩ X = {v}, if d(v) = 1, then
Ce = xu ∨ xw. Since e is not monochromatic, without loss of generality we may assume
d(u) = 2, and so xu = d(v) − 1 = 1. Thus, the clause Ce is satisfied. A similar argument
applies for d(v) = 2. From the construction of clauses of this 2-SAT instance, we conclude
that x is a solution to the 2-SAT instance.

Therefore, deciding whether (X, c) has a 2-coloring extension is equivalent to solving
the 2-SAT instance defined above.

It remains to show that this can be done in polynomial-time. Let n be the number
of vertices of G. Constructing the set X takes time O(n3). Constructing the equivalent
2-SAT instance takes time O(n3). Solving this 2-SAT instance takes time O(n). So the
total running time is O(n3).

This immediately implies, for fixed r, a polynomial-time algorithm for 2-coloring tour-
naments with no r vertex-disjoint cyclic triangles, which was first proved by Hajebi [22].

2.2 Algorithm for the case s ≤ r − 1

In this section, we will prove:

Theorem 2.2.1. For fixed positive integers r, k, s with s ≤ r−1, the k-Bounded Hyper-
graph r-Precoloring Extension Problem restricted to hypergraphs G with ν(G) ≤ s
is polynomial-time solvable.

The key idea is to precolor a set of vertices, and in each step, carefully adding vertices to
our set such that there will be some color j with the property that edges which only contain
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vertices precolored j will now contain more precolored vertices than before. Eventually,
either all vertices in an edge will be precolored j (and so this precoloring does not lead to
a valid coloring) or for some color j, every edge contains a vertex precolored with a color
other than j (and so it is safe to color all remaining vertices with color j).

Lemma 2.2.2. Let r, k, s ∈ N with s ≤ r − 1. Let G be a k-bounded hypergraph with
ν(G) ≤ s. Given a partial r-coloring (X, c) of G, we define Ei = {e ∈ E(G) : e ∩ X ⊆
c−1(i)}. If Ei 6= ∅ for all i ∈ [r], then there is a vertex set X ′ ⊃ X and a collection of
partial r-colorings C such that

• For every (X∗, c∗) ∈ C, X∗ = X ′;

• |C| ≤ rks = O(1), and C can be computed from (X, c) in time O(n3);

• There is a color j ∈ [r] such that for every edge e ∈ Ej, |e ∩X ′| ≥ |e ∩X|+ 1; and

• C is r-equivalent to (X, c).

Proof. Let S be a matching in G such that S ⊆
⋃

i∈[r]Ei, and S is maximal with respect

to this condition. Let XS = ∪e∈Se. Let X ′ = X ∪ XS. Let C be the set of all partial
r-colorings (X ′, c′ : X ′ → [r]) such that c′|X = c. The first property follows immediately
from the construction. Since |S| ≤ s, |XS| ≤ ks, and we have |C| ≤ rks = O(1). Finding
S takes time O(n3), and thus, C can be computed from (X, c) in time O(n3). This proves
the second property.

For every e ∈ S, there exists i ∈ [r] such that e ∈ Ei, and therefore we have that
c(v) = i for all v ∈ e ∩ X. Since |S| ≤ s ≤ r − 1, there exists a color j ∈ [r] such that
c(v) 6= j for all v ∈ X ∩ XS. Let e be an edge in Ej. We know that e ∩ X ⊆ c−1(j), so
e ∩XS ∩X = ∅. But from the definition of S, we have e ∩XS 6= ∅, as otherwise S is not
maximal. Thus, e ∩ (XS \X) 6= ∅. This proves the third property.

Suppose that there is a partial r-coloring (X ′, c′) ∈ C which r-extends to G. Then by
the construction of C, c′|X = c. Thus, every r-precoloring extension of (X ′, c′) is also an
r-precoloring extension of (X, c). Now suppose (X, c) r-extends to V (G), that is, there is
a coloring c′ : V (G) → [r] with c′|X = c. Then by the construction of C, (X ′, c′|X′) ∈ C.
Therefore, the last property holds.

Theorem 2.2.3. For fixed positive integers r, k, s with s ≤ r − 1, there is an algorithm
with the following specifications:

• Input: A k-bounded hypergraph G with ν(G) ≤ s, and an r-precoloring (X, c).
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• Output: one of

– an r-precoloring extension of (X, c) to V (G);

– a determination that (X, c) does not r-extend to G.

• Running time: O(|V (G)|3).

Proof. We will define a sequence C0, . . . of collections of partial r-colorings iteratively, as
follows. Let C0 = {(X, c)}.

Suppose that we have defined Ct. Given a partial r-coloring (Y, d) ∈ Ct, let EY,d
t,i = {e ∈

E(G) : e ∩ Y ⊆ d−1(i)}. If EY,d
t,i = ∅ for some i ∈ [r] and (Y, d) ∈ Ct, then we define d′

by setting d′|Y = d|Y and d′(v) = i for all v ∈ V (G) \ Y and return d′. Note that d′ is
an r-coloring of G: Since (Y, d) is a partial r-coloring, it follows that no edge of G[Y ] is
monochromatic. Therefore, if G contains an edge e which is monochromatic with respect
to d′, then e \ Y 6= ∅. It follows that e \ Y 6= ∅, and since d′(v) = i for all v ∈ V (G) \ Y , it
follows that every vertex of e is colored i by d′. But then e ∩ Y ⊆ d−1(i), a contradiction.
This shows that d′ is an r-coloring of G.

Otherwise, for every (Y, d) ∈ Ct, we have that EY,d
t,i 6= ∅ for all i ∈ [r], and so there is a

collection of partial r-colorings CY,dt+1 which satisfies the properties in Lemma 2.2.2 applied

to G and (Y, d). Let Ct+1 = ∪(Y,d)∈CtC
Y,d
t+1. By Lemma 2.2.2, Ct+1 is r-equivalent to Ct; and

inductively, Ct+1 is equivalent to C0 = {(X, c)}. Thus, if Ct+1 = ∅, then (X, c) does not
r-extend to G and we return this.

It remains to show that this algorithm terminates in polynomial time. To prove this,
we define a potential function ψ((Y, d)) =

∑
i∈[r] max({0}∪ {|e \Y | : e∩Y ⊆ d−1(i)}). We

have ψ((X, c)) ≤ rk since each summand is at most k. We will prove by induction on t
that for every (Y, d) ∈ Ct, we have ψ((Y, d)) ≤ rk − t.

It suffices to show that if (Y, d) ∈ Ct and (Y ′, d′) ∈ CY,dt+1 then ψ((Y ′, d′)) ≤ ψ((Y, d))−1.
By the third property of Lemma 2.2.2, there is a color j ∈ [r] such that for every edge
e ∈ EY,d

t,j , |e∩Y ′| ≥ |e∩Y |+ 1, which means that max({0}∪{|e\Y ′| : e∩Y ′ ⊆ d′−1(j)}) ≤
max({|e \ Y | : e∩ Y ⊆ d−1(j)})− 1. It follows that ψ((Y ′, d′)) ≤ ψ((Y, d))− 1, as claimed.

Since ψ((Y, d)) ≥ 0 for every partial r-coloring (Y, d) of G, it follows that this algorithm
terminates in t′ steps for some t′ ≤ rk. Since there are O(1) iterations, and by Lemma
2.2.2, we have |Ct| = O(1) for all t ≤ t′. Moreover, the set Ct+1 can be computed from Ct
in time |Ct| ·O(n3) = O(n3). Thus, each step takes time O(n3). So the total running time
is O(n3).
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2.3 NP-hardness results for bounded matching num-

ber

Let G and H be two hypergraphs. We define an operation, n, via G n H := (V (G) ∪
V (H), E(G) ∪ {e ∪ {x} : e ∈ E(H), x ∈ V (G)}).

G H ⇒ GnH

Figure 2.1: An example of GnH.

We have the following properties.

Lemma 2.3.1. Let G and H be hypergraphs. Then ν(GnH) ≤ |V (G)|.

Proof. This follows immediately from the fact that every edge in GnH contains at least
one vertex in V (G).

Lemma 2.3.2. Let H be a hypergraph. If G is a hypergraph with χ(G) = r, then G nH
is r-colorable if and only if H is r-colorable.

Proof. Suppose for a contradiction that GnH has an r-coloring c and H is not r-colorable.
Since c|V (H) is not an r-coloring of H, there exists an edge e ∈ E(H) such that e is
monochromatic with respect to c|V (H). Since χ(G) = r and (G n H)[V (G)] = G, there
exist vertices v1, . . . , vr ∈ V (G) such that c(vi) = i for all i ∈ [r]. But then one of the edges
e ∪ {v1}, . . . , e ∪ {vr} is monochromatic, which contradicts the fact that c is an r-coloring
of GnH.

Now suppose that H has an r-coloring d. Since χ(G) = r, G has an r-coloring d′.
We define a new function d∗ : V (G n H) → [r] with d∗(v) = d(v) if v ∈ V (H) and
d∗(v) = d′(v) otherwise. For every edge e ∈ E(G n H), if e ∈ E(G), then d∗|e = d′|e.
So e is not monochromatic. Otherwise e = e′ ∪ {v} for some e′ ∈ E(H) and v ∈ V (G).
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Then d∗|e′ = d|e′ , and since the edge e′ is not monochromatic, it follows that e is not
monochromatic. Thus d∗ is an r-coloring of GnH.

Theorem 2.3.3. Given fixed integers k and r with k, r ≥ 2, if the k-Bounded Hyper-
graph r-Coloring Problem is NP-complete, then the (k+1)-Bounded Hypergraph
r-Coloring Problem restricted to hypergraphs with ν(G) ≤ r is NP-complete.

Proof. Let H be a k-bounded hypergraph. We set the hypergraph G = Kr, a complete
graph on r vertices. We have χ(G) = r. The hypergraph G n H can be constructed
from G and H in time O(nk+1), where n = |V (G n H)|. By the construction, G n H is
(k+ 1)-bounded. The remaining part of the proof follows immediately from Lemmas 2.3.1
and 2.3.2.

Theorem 2.3.4. Given fixed integers k and r with k, r ≥ 2, if the k-Uniform Hyper-
graph r-Coloring Problem is NP-complete, then the (k+1)-Uniform Hypergraph
r-Coloring Problem restricted to hypergraphs with ν(G) ≤ (r−1)k+1 is NP-complete.

Proof. Let H be a k-uniform hypergraph and let G be the complete (k+1)-uniform hyper-
graph with (r − 1)k + 1 vertices. The hypergraph GnH can be constructed from G and
H in time O(nk+1), where n = |V (GnH)|. By the construction, GnH is (k+ 1)-uniform.

We want to show that χ(G) = r. We choose k vertices to color i for every i ∈ [r−1], and
color the remaining vertex r. Since G is (k + 1)-uniform, every edge of G receives at least
two colors. Thus, χ(G) ≤ r. Suppose for a contradiction that χ(G) ≤ r− 1. Then take an

(r−1)-coloring c ofG. There exists one color i with |c−1(i)| ≥ d (r−1)k+1
r−1 e ≥ dk+ 1

r−1e = k+1.
This means that there is a monochromatic edge in G, which contradicts the fact that c is
an (r − 1)-coloring of G.

The remaining part of the proof follows immediately from Lemmas 2.3.1 and 2.3.2.

Theorem 2.3.5. Given fixed integers k and r with k, r ≥ 2, if the k-Uniform Hyper-
graph r-Coloring Problem is NP-complete, then the (k+1)-Uniform Hypergraph
r-Precoloring Extension Problem restricted to hypergraphs with ν(G) ≤ r is NP-
complete.

Proof. Let H be a k-uniform hypergraph and let G be a graph with a set of vertices
{v1, . . . , vr} and no edges. Define the precoloring ofGnH to be (V (G), c′) with c′(vi) = i for
all i ∈ [r]. The hypergraph GnH can be constructed from G and H in time O(nk+1), and
the precoloring (V (G), c′) of GnH can be constructed in time O(n), where n = |V (GnH)|.
The graph H is k-uniform and E(G) = ∅, so GnH is (k + 1)-uniform.
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It remains to show that G n H has an r-precoloring extension with respect to the
precoloring (V (G), c′) if and only if H is r-colorable.

Suppose GnH has an r-precoloring extension c. Assume for a contradiction that H is
not r-colorable. Since c|V (H) is not an r-coloring of G, there exists an edge e ∈ E(H) such
that e is monochromatic. By the definition of c′, one of the vertices v1, . . . , vr receives the
same color as e, which contradicts the fact that c is an r-precoloring extension of G nH
and (V (G), c′).

Now suppose that H has an r-coloring d. We define a new function d∗ : V (GnH)→ [r]
with d∗(v) = d(v) if v ∈ V (H) and d∗(v) = c′(v) otherwise. For every edge e ∈ E(GnH),
e = e′ ∪ {v} for some e′ ∈ E(H) and v ∈ V (G). Then d∗|e′ = d|e′ . The edge e′ is not
monochromatic, so e is not monochromatic. Thus d∗ is an r-coloring of G n H which
r-extends (V (G), c′).

Theorem 2.3.6. Given fixed integers k and r with k, r ≥ 2, the k-Uniform Hypergraph
r-Coloring Problem is NP-complete if k + r ≥ 5.

Proof. The statement holds for the cases k = 3 and r = 2 by Theorem 1.2.7, and k =
2 and r ≥ 3 by Theorem 1.0.1. By Theorem 2.3.4, if the k-Uniform Hypergraph
r-Coloring Problem is NP-complete, then the (k + 1)-Uniform Hypergraph r-
Coloring Problem is NP-complete.

Now we are ready to prove our main results.

Theorem 1.2.8. Let k, r and s be positive integers with k, r ≥ 2. The k-Bounded
Hypergraph r-Coloring Problem, the k-Bounded Hypergraph r-Precoloring
Extension Problem as well as the k-Uniform Hypergraph r-Precoloring Ex-
tension Problem, restricted to hypergraphs G with ν(G) ≤ s, are polynomial-time solv-
able if

• s ≤ r − 1, or

• k = 3 and r = 2, or

• k = 2,

and NP-complete otherwise.
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Proof of Theorem 1.2.8. The first and second polynomial-time solvable cases follow from
Theorem 2.2.1 and Theorem 2.1.1 respectively. The third polynomial-time solvable case
follows from Theorem 1.2.2, as a graph G with ν(G) ≤ s is guaranteed to be (s+1)P2-free.
Combining Theorem 2.3.6 with either Theorem 2.3.3 or Theorem 2.3.5, we have completed
the dichotomies.

Theorem 1.2.9. Let k, r and s be positive integers with k, r ≥ 2. The k-Uniform Hyper-
graph r-Coloring Problem restricted to hypergraphs G with ν(G) ≤ s is polynomial-
time solvable if

• s ≤ r − 1, or

• k = 3 and r = 2, or

• k = 2,

and is NP-complete if

• s ≥ (r − 1)k + 1, and

• k ≥ 4 or r ≥ 3.

Proof of Theorem 1.2.9. The first and second polynomial-time solvable cases follow from
Theorem 2.2.1 and Theorem 2.1.1 respectively. The third polynomial-time solvable case
follows from Theorem 1.2.2, as a graph G with ν(G) ≤ s is guaranteed to be (s+1)P2-free.
The NP-completeness result comes from Theorems 2.3.6 and 2.3.4.

2.4 Stable Set

In this section, we consider the complexity of stable set problems in hypergraphs with
bounded matching number. We recall that a set S ⊆ V (G) of G is stable if e ∩ S 6= e
for every e ∈ E(G). A stable set is maximal if it is maximal with respect to inclusion.
A stable set is maximum if it is a stable set of maximum cardinality. The k-Uniform
Hypergraph Maximum Weight Stable Set Problem is the following: Given a
k-uniform hypergraph G and a weight function w : V (G) → R≥0, compute a stable set
S ⊆ V (G) with w(S) maximized. When all weights are 1, this is called the k-Uniform
Hypergraph Maximum Stable Set Problem.

For graphs, the Graph Maximum Weight Stable Set Problem can be solved in
polynomial time if the maximum size of an induced matching is bounded:
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Figure 2.2: A stable set in a 3-uniform hypergraph (blue vertices).

Theorem 2.4.1 (Balas and Yu [5]). For a fixed positive integer s, the Graph Maximum
Weight Stable Set Problem restricted to sP2-free graphs can be solved polynomial
time.

For hypergraphs, we notice that:

Theorem 2.4.2. For fixed positive integers k and s, the k-Uniform Hypergraph Max-
imum Stable Set Problem restricted to hypergraphs with ν(G) ≤ s is polynomial-time
solvable.

Proof. Let G be a k-uniform hypergraph with ν(G) ≤ s, and let n be the number of vertices
of G. Let F ⊆ E(G) be a maximal matching. We have |F | ≤ s. The set V (G) \ (∪e∈F e)
is stable as F is maximal, and |V (G) \ (∪e∈F e)| ≥ n− ks. Thus, a maximum stable set of
G is of size at least n− ks.

Therefore, to find a maximum stable set, we can simply enumerate all choices of a set
U ⊆ V (G) with |U | ≤ ks, and check if the set V (G) \ U is stable, and return the largest
stable set found this way. There are nks choices of the set U , and for each U , it takes time
O(nk) to verify stability. Thus, the total running time is O(nks+k).

In contrast, we will show the following result for the weighted version of the problem:

Theorem 2.4.3. For a fixed positive integer k ≥ 3, the k-Uniform Hypergraph Max-
imum Weight Stable Set Problem restricted to hypergraphs with ν(G) ≤ 1 is NP-
complete.

In order to prove Theorem 2.4.3, we need the following results. Recall the theorem:

Theorem 1.3.7. The Maximum Stable Set Problem is NP-complete.
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Lemma 2.4.4. For a fixed positive integers k ≥ 3, if the (k−1)-Uniform Hypergraph
Maximum Weight Stable Set Problem is NP-complete, then the k-Uniform Hy-
pergraph Maximum Weight Stable Set Problem restricted to hypergraphs with
ν(G) ≤ 1 is NP-complete.

Proof. Suppose the (k − 1)-Uniform Hypergraph Maximum Weight Stable Set
Problem is NP-complete. Let G be a (k − 1)-uniform hypergraph with weight function
w. We construct a new k-uniform hypergraph H with V (H) = {v} ∪ V (G) and E(H) =
{{v} ∪ e : e ∈ E(G)}. We define the weight function w′ : V (G) → R≥0 such that
w′(u) = w(u) for each u ∈ V (G) and w′(v) =

∑
u∈V (G)w(u) + 1. From the construction,

since v is contained in every edge of H, it follows that the hypergraph H satisfies ν(H) ≤ 1.

For a set T ⊆ V (G), T is a stable set of G if and only if T ∪ {v} is a stable set of H.
Let S be a maximum weight stable set of H with respect to the weight function w′. By the
construction, the vertex v is in S. It follows that S \ {v} is a maximum weight stable set
of G, and thus, to find a maximum weight stable set of G, it suffices to find a maximum
weight stable set of H.

Since the construction can be done in polynomial time, we have proved this lemma.

Proof of Theorem 2.4.3. We prove this by induction on k. When k = 2, by Theorem
1.3.7, the Graph Maximum Stable Set Problem is NP-complete. Thus, the Graph
Maximum Weight Stable Set Problem is NP-complete.

Suppose that the k-Uniform Hypergraph Maximum Weight Stable Set Prob-
lem is NP-complete. By Lemma 2.4.4, the (k + 1)-Uniform Hypergraph Maximum
Weight Stable Set Problem restricted to hypergraphs with ν(G) ≤ 1 is NP-complete.
Moreover, the (k+ 1)-Uniform Hypergraph Maximum Weight Stable Set Prob-
lem is NP-complete.

2.5 Excluding an induced subhypergraph with one

edge

For t ∈ N with t ≥ 3, let Ht be the 3-uniform hypergraph with t+ 3 vertices and one edge.
In this section, we will give a polynomial-time algorithm for 2-coloring 3-bounded Ht-free
hypergraphs.
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Lemma 2.5.1. Let t ∈ N, and let G be a 3-bounded Ht-free hypergraph. There is a
polynomial-time algorithm to test if G has a 2-coloring with at least t vertices of each
color.

Proof. We may assume that |e| ≥ 2 for all e ∈ E(G), since G is not 2-colorable otherwise.
Let C be a partial 2-coloring collection containing all partial 2-colorings (X∪Y, c′) for every
pair of disjoint sets X, Y ⊆ V (G) with |X| = |Y | = t and X, Y stable, and c′ : X∪Y → [2]
with c′(v) = 1 for all v ∈ X and c′(v) = 2 otherwise. It suffices to show that C has the
following three properties.

(1) C is 2-equivalent to the collection of all 2-colorings of G with at least t vertices of each
color.

We only need to show that if G has a 2-coloring c with at least t vertices of each color,
then there exists a partial 2-coloring in C which 2-extends to G. Let c be a 2-coloring
of G such that |c−1(i)| ≥ t for all i ∈ [2]. Let X and Y be subsets of c−1(1) and c−1(2)
respectively, with |X| = |Y | = t. We have (X ∪ Y, c|X∪Y ) ∈ C, and c is a 2-precoloring
extension of (X ∪ Y, c|X∪Y ) to V (G). This proves (1).

(2) C can be computed in time O(n2t+3), where n = |V (G)|.

Since G is 3-bounded, |E(G)| ≤ O(n3). By construction, we have |C| ≤ O(n2t). Con-
structing the sets X, Y and the corresponding partial 2-coloring c takes time O(n2t).
Checking whether (X ∪ Y, c) is a partial 2-coloring takes time O(n3). Thus, C can be
constructed in time O(n2t+3). This proves (2).

(3) For every partial 2-coloring (X ∪ Y, c) in C, whether c 2-extends to G can be decided
in polynomial time.

For convenienve, let us denote S = X ∪ Y . We define a 2-SAT instance as follows. For
every v ∈ V (G) \ S, we have a variable xv. Let E ′ ⊆ E(G) be the set of edges e ∈ E(G)
with |c(e ∩ S)| = 1. Note that for every edge e ∈ E ′, we have e ∩ S 6= ∅ and e \ S 6= ∅
(since (S, c) is a partial 2-coloring). Thus, |e \ S| ∈ {1, 2}. For every edge e ∈ E ′, we
create a clause Ce. Let u,w ∈ e \ S with u 6= w with |e \ S| = 2. If c(e ∩ S) = {1}, we set
Ce = xu∨xw. Otherwise, let Ce = xu∨xw. Next, let E ′′ be the set of edges e ∈ E(G) with
|e| = 2 and e ∩ S = ∅. For every e ∈ E ′′, say e = {u,w}, we add two clauses C ′e = xu ∨ xw
and C ′′e = xu ∨ xw.

If the 2-SAT instance has a solution (sv)v∈V (G)\S, where “true”and “false”are repre-
sented by 1 and 0 respectively, then we set d(v) = sv + 1 for every v ∈ V (G) \ S, and
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d(v) = c(v) for all v ∈ S. We claim that d is a 2-coloring of G. Consider an edge e ∈ E(G).
If |c(e ∩ S)| > 1, then e is not monochromatic. If |c(e ∩ S)| = 1, then e ∈ E ′. It follows
that the clause Ce of 2-SAT instance and the construction of d guarantees that at least
one vertex in e \ S receives the opposite color from the vertices in e ∩ S. Since both sets
are non-empty, it follows that e is not monochromatic. It remains to consider the case
that e ∩ S = ∅. If |e| = 2, then the clauses C ′e and C ′′e guarantee that the two vertices
of e receive different colors. Therefore, we may assume that |e| = |e \ S| = 3. Suppose
for a contradiction that e is monochromatic. Without loss of generality, assume d(v) = 1
for all v ∈ e. Let X = (S ∩ c−1(1)), and consider the set X ∪ e. Since all edges with a
non-empty intersection with S and all edges of size 2 are non-monochromatic, there is no
edge e′ ∈ E(G) with e′ ⊆ X ∪ e and e′ 6= e. Thus, G[X ∪ e] is an induced copy of Ht in
G, which contradicts the fact that G is Ht-free. Therefore, d is a 2-precoloring extension
of (S, c).

If there is a 2-precoloring extension d of (S, c), then we set xv = d(v) − 1 for every
v ∈ V (G) \ S. For every edge e ∈ E ′, if Ce = xu ∨ xw, then e ∩ S contains only vertices
colored 1, and so d(u) = 2 or d(w) = 2; it follows that Ce is satisfied. If Ce = xu ∨ xw,
then e ∩ S contains only vertices colored 2, and so d(u) = 1 or d(w) = 1; it follows that
Ce is satisfied. For every edge e = {u,w} ∈ E ′′, it follows that d(u) 6= d(w), and hence
one of xu, xw is ”true” and the other is ”false.” It follows that C ′e and C ′′e are satisfies.
From the construction of clauses of this 2-SAT instance, we conclude that this assignment
is a solution to the 2-SAT instance. Therefore, deciding whether (S, c) has a 2-coloring
extension is equivalent to solving the 2-SAT instance defined above.

It remains to show that this can be done in polynomial time. Constructing the 2-SAT
instance takes time O(n3). Solving this 2-SAT instance takes time O(n3). So the total
running time is O(n3). This proves (3) and concludes the proof.

Theorem 2.5.2. Let t ∈ N, and let G be a 3-bounded Ht-free hypergraph. There is a
polynomial-time algorithm which takes G as input, and outputs either a 2-coloring of G,
or a determination that G is not 2-colorable.

Proof. If G satisfies the conditions of Lemma 2.5.1, then we are done. Otherwise we can
go through every possible coloring such that less than t vertices receive color i for some
i ∈ [2], and check whether it is a 2-coloring, in time O(nt+3).

Note that the proof of Lemma 2.5.1 can be modified to work for the precoloring exten-
sion version of the problem, and so can Theorem 2.5.2.
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2.6 Linear Hypergraphs

2.6.1 The polynomial-time algorithm

In this subsection, we will use the hypergraph Ramsey number. Recall the theorem:

Theorem 1.3.1. For all positive integers k, n1, . . . , nt, the hypergraph Ramsey number
Rk(n1, . . . , nt) exists.

Lemma 2.6.1. For every positive integer s, there exists a positive integer s′ such that every
3-uniform linear hypergraph G which contains a matching of size s′ contains an induced
matching of size s.

Proof. We may assume that s ≥ 4. Let X = {G1, . . . , Gt} be the set of all linear 3-uniform

hypergraphs with vertex set {x1, . . . , x9}. Since there at most 2(9
3) distinct 3-uniform

(labelled) hypergraphs on 9 vertices, it follows that t ≤ 2(9
3). Let s′ = R3(n1, . . . , nt) with

n1 = · · · = nt = s.

Let {e1, . . . , es′} be a matching of size s′ in G. For i ∈ [s′], let ei = {ui, vi, wi}. Let
H be a complete 3-uniform hypergraph V (H) = {1, . . . , s′}. We define f : E(H) → [t]
as follows. For e = {i, j, k} ⊆ [s′] with i < j < k, we define f(e) =m if G[ei ∪ ej ∪ ek] is
isomorphic to Gm via the isomorphism ui 7→ x1, vi 7→ x2, wi 7→ x3, uj 7→ x4, vj 7→ x5,
wj 7→ x6, uk 7→ x7, vk 7→ x8 and wk 7→ x9.

From Theorem 1.3.1, it follows that there is a set S ⊆ [s′] with |S| = s and m ∈ [t]
such that f(e) = m for all e ⊆ S. We claim that

E(Gm) = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}}.

Let i, j, k, l ∈ S with i < j < k < l. Since G[ei, ej, ek] contains the edges ei, ej, ek, it
follows that {{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}} ⊆ E(Gm). Suppose for a contradiction
that E(Gm) contains a fourth edge {xa, xb, xc}. Then, since Gm is linear, we may assume
that a ∈ {1, 2, 3}, b ∈ {4, 5, 6}, and c ∈ {7, 8, 9}. The graphs G[ei ∪ ej ∪ ek] and G[ei ∪
ej ∪ el] are isomorphic to Gm via isomorphisms ϕ, ϕ′, say; and from the definition of f
it follows that ϕ−1(xa) = ϕ′−1(xa), ϕ

−1(xb) = ϕ′−1(xb), and ϕ−1(xc) 6= ϕ′−1(xc) (since
ϕ−1(xc) ∈ ek and ϕ′−1(xc) ∈ el and ek ∩ el = ∅). But this implies that G contains the
edges ϕ−1({xa, xb, xc}) and ϕ′−1({xa, xb, xc}) which have exactly two vertices in common,
contrary to the assumption that G is linear. This proves our claim.

It follows that G
[⋃

s∈S es
]

is an induced matching of size s in G.
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Theorem 2.6.2. For all s, the 2-Precolouring Extension Problem restricted to
3-uniform linear hypergraphs with no induced matching of size at least s can be solved in
polynomial time.

Proof. By Theorem 2.2.1 and Lemma 2.6.1.

2.6.2 NP-hardness of 3-coloring with bounded matching number

In this section, we will prove the following result.

Theorem 1.2.15. The 3-Uniform Hypergraph 3-Coloring Problem restricted to
linear hypergraphs G with ν(G) ≤ 532 is NP-complete.

We will use the following theorems.

Theorem 1.3.8. The 3-Coloring Problem restricted to graphs with maximum degree
at most 4, is NP-complete.

Theorem 1.3.4. There is a O(mn)-algorithm for edge-coloring a graph G with D + 1
colors, where D is the maximum degree of G, m is the number of edges and n is the
number of vertices.

Let us introduce a new way to describe 3-uniform hypergraphs. Instead of using edges
with three vertices, we use 2-edges labeled with vertices. Given a graph G, we say a
function l : E(G) → V (G) with l(e) /∈ e for all e ∈ E(G) is a labeling of G. The vertex
l(e) is called the label of e, and the edge e is a labeled edge.

For a linear 3-uniform hypergraph G, let l : E(G)→ V (G) be a function with l(e) ∈ e
for all e ∈ E(G). Let G′ be the graph with vertex set V (G) and edge set {{e \ {l(e)} : e ∈
E(G)}, and let l′(e \ {l(e)}) = l(e). Since G is linear, each edge of G′ corresponds to a
unique edge ofG, and thus l′ is well-defined. We call (G′, l′) a labeled graph representation of
G. Notice that with a labeled graph representation, we can reconstruct the corresponding
linear 3-uniform hypergraph.

In this section, all of the pictures of 3-uniform hypergraphs are drawn using the labeled
graph representation.

The following two lemmas give constructions for gadgets we will use in our NP-hardness
reduction. The existence of similar gadgets in 3-uniform linear hypergraphs was first proved
in [36]. Here we give an explicit construction to obtain a precise bound for the matching
number. The construction is shown in Figure 2.3.
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Lemma 2.6.3. There is a linear 3-uniform hypergraph G1 with three specified vertices
a, b, c with the following properties:

• For every 3-coloring f of G1, either f(a), f(b), f(c) are all distinct, or f(a) = f(b) =
f(c).

• There is a 3-coloring f ′ of G1 with f(a), f(b), f(c) all distinct.

• There is a set Z ⊆ V (G1) with |Z| ≤ 19 such that G1\Z has no edges, and a, b, c ∈ Z.

• No edge e of G1 contains more than one of the vertices a, b, c.

Proof. We want to define G1 using the labeled graph representation (G′1, l) (see Figure 2.3).
First, we create three vertices a, b, c. Then we create 4 copies of K4, say H1, H2, H3, H4.
For i ∈ [4], let V (Hi) = {si, ti, ui, vi}. We define the labeling l(siti) = l(uivi) = a,
l(siui) = l(tivi) = b, and l(sivi) = l(tiui) = c.

Let S = V (H1) × V (H2) × V (H3) × V (H4). For every 4-tuple T = (x, y, z, w) ∈ S,
we create 5 new copies of K4, say HT

0 , H
T
1 , H

T
2 , H

T
3 , H

T
4 . Let V (HT

i ) = {sTi , tTi , uTi , vTi }
for i ∈ [4], and V (HT

0 ) = {rT1 , rT2 , rT3 , rT4 }. We define the labeling l(sTi t
T
i ) = l(uTi v

T
i ) = a,

l(sTi u
T
i ) = l(tTi v

T
i ) = b and l(sTi v

T
i ) = l(tTi u

T
i ) = c for i ∈ [4], and l(rT1 r

T
2 ) = l(rT3 r

T
4 ) = a,

l(rT1 r
T
3 ) = l(rT2 r

T
4 ) = b and l(rT1 r

T
4 ) = l(rT2 r

T
3 ) = c. For each i ∈ [4], we add edges sTi r

T
i with

l(sTi r
T
i ) = x, tTi r

T
i with l(tTi r

T
i ) = y, uTi r

T
i with l(uTi r

T
i ) = z and vTi r

T
i with l(vTi r

T
i ) = w.

Let V (G′1) = {a, b, c} ∪ (∪i∈[4]V (Hi))∪ (∪T∈S ∪4i=0 V (HT
i )), and E(G′1) be the set of all

labeled edges defined above. By the construction, the function l defined above is a labeling
of G′1. Notice that there is no edge incident to more than one of the vertices a, b, c, and
l(V (G′1)) = {a, b, c} ∪ (∪i∈[4]V (Hi)). Thus, by taking Z = l(V (G′1)), we have |Z| ≤ 19
and a, b, c ∈ Z; so Z satisfies the third property of the lemma. We now prove the other
properties.

(1) The 3-uniform hypergraph G1 is linear.

Let X1 = {a, b, c}, X2 = (∪i∈[4]V (Hi)) and X3 = (∪T∈S ∪4i=0 V (HT
i )). From the

construction, it follows that for every edge e of G1, there exist i, j ∈ [3] with i < j such
that e contains one vertex of Xi and two vertices of Xj and with e ∩ Xj ∈ E(G′1) (and
therefore, {l(e ∩Xj)} = e ∩Xi).

Suppose for a contradiction that there exist distinct e, e′ ∈ E(G1) with |e∩ e′| = 2. Let
j, j′ ∈ [3] such that |e ∩ Xj| = 2 and |e′ ∩ Xj′| = 2. It follows that j = j′. Since G′1 is
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a

b

c

s1 t1

u1 v1

s2 t2

u2 v2

s3 t3

u3 v3

s4 t4

u4 v4

sT1 tT1

uT1 vT1

sT2 tT2

uT2 vT2

sT3 tT3

uT3 vT3

sT4 tT4

uT4 vT4

rT1 rT2

rT3 rT4

x y

z w

x y

z w

x y

z w

x y

z w

Figure 2.3: The construction from Lemma 2.6.3. The colored edge means the label of this
edge is the vertex of the corresponding color. The right-hand side shows HT

0 , . . . , H
T
4 for

T = (x, y, z, w).
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simple, we have e ∩ Xj 6= e′ ∩ Xj, and so e \ Xj = e′ \ Xj = {l(e ∩ Xj)} = {l(e′ ∩ Xj)}.
But in G′1, every two edges with the same label are not incident to a common vertex, a
contradiction. We conclude that G1 is linear. This proves (1).

(2) There is a 3-coloring f ′ of G1 with f ′(a), f ′(b), f ′(c) all distinct.

We define a function f ′ : (V (G1)) → [3] as follows. Let f ′(a) = 1, f ′(b) = 2 and
f ′(c) = 3. For each i ∈ [4], let f ′(si) = f ′(ti) = 2 and f ′(ui) = f ′(vi) = 3. Since
l(siti) = l(uivi) = a, the edges of G1 corresponding to labeled edges in G′1[V (Hi)] are not
monochromatic.

For each T ∈ S and each i ∈ [4], let f ′(sTi ) = f ′(uTi ) = 1, f ′(tTi ) = f ′(vTi ) = 3,
f ′(rT1 ) = f ′(rT4 ) = 1, and f ′(rT2 ) = f ′(rT3 ) = 2. For i ∈ [4], no vertex v ∈ V (HT

i )
has f ′(v) = 2, and no edge between V (HT

i ) and V (HT
0 ) is labeled a. So there is no

monochromatic edge e in G1 with e ∩ ∪4
i=0V (HT

i ) 6= ∅. Therefore, the function f ′ is a
3-coloring of G1. This proves (2).

(3) For each 3-coloring f of G1, either f(a), f(b), f(c) are all distinct, or f(a) = f(b) =
f(c).

Assume for a contradiction that, without loss of generality, there is a 3-coloring f of G1

such that f(a) = f(b). Without loss of generality, we may assume that f(a) = f(b) = 1
and f(c) = 2.

We claim that there exists x0 ∈ V (H1) such that f(x0) = 3. Assume for a contradiction
that every vertex v ∈ V (H1) has f(v) 6= 3. Since l(s1v1) = c and f(c) = 2, without loss of
generality let f(s1) 6= 2. So f(s1) = 1. Since l(s1t1) = a, l(s1u1) = b and f(a) = f(b) = 1,
we have f(t1) = f(u1) = 2. But the edge t1u1 is labeled c and f(c) = 2, the corresponding
edge {t1, u1, c} of G1 is monochromatic, which violates the condition that f is a 3-coloring
of G1.

A similar argument holds for every Hi with i ∈ {2, 3, 4}, and HT
j with T ∈ S and

j ∈ {0, 1, . . . , 4}. There exist vertices y0 ∈ V (H2), z0 ∈ V (H3), w0 ∈ V (H4) such that
f(y0) = f(z0) = f(w0) = 3. Let T = (x0, y0, z0, w0). By the argument above, there is a j ∈
[4] such that f(rj) = 3. Since there is a vertex v ∈ V (HT

j ) with f(v) = 3, and f(l(vrj)) = 3
(because l(vrj) ∈ {x0, y0, z0, w0}), the edge {v, rj, l(vrj)} of G1 is monochromatic, which
contradicts the condition that f is a 3-coloring of G1. This proves (3).

Lemma 2.6.4. There is a linear 3-uniform hypergraph G2 with specified vertices a, b, c
with the following properties:
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• For every 3-coloring f of G2, we have f(a), f(b), f(c) all distinct.

• G2 is 3-colorable.

• There is a set Z ⊆ V (G2) with |Z| ≤ 19 such that G2\Z has no edges, and a, b, c ∈ Z.

• At most one edge of G2 contains more than one of the vertices a, b, c.

Proof. Let G2 be obtained from G1 defined in Lemma 2.6.3 by adding the edge {a, b, c}.
The result follows immediately from Lemma 2.6.3.

Now we are ready to prove Theorem 1.2.15.

x y

sxy1 txy1

uxy1 vxy1

a22k−1

a22k

a32k−1 a32k−1
a32k a32k

a12k−1

a12k

a12k−1

a12k

sxy2 txy2

uxy2 vxy2

a32k−1

a32k

a12k−1 a12k−1
a12k a12k

a22k−1

a22k

a22k−1

a22k

sxy3 txy3

uxy3 vxy3

a12k−1

a12k

a22k−1 a22k−1
a22k a22ka32k−1

a32k

a32k−1

a32k

Figure 2.4: The construction of Hxy
3 , Hxy

2 , Hxy
1 (top to bottom) for an edge xy with

f ′(xy) = k.

Proof of Theorem 1.2.15. We give an NP-hardness reduction from the Graph 3-Coloring
Problem restricted to graphs with maximum degree at most 4, which is NP-hard by The-
orem 1.3.8.
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Let G∗ be a graph with maximum degree at most 4. Let f ′ : E(G∗)→ [5] be an edge-
coloring of G∗. We construct a labeled graph representation (G′, l) of a 3-uniform linear
hypergraph G as follows (see Figure 2.4).

We create three sets of verticesA = {a11, . . . , a110}, B = {a21, . . . , a210} and C = {a31, . . . , a310}.
For the vertices a11, a

2
1, a

3
1, we create a new copy of G2 as defined in Lemma 2.6.4, denoted

G1, with a11, a
2
1, a

3
1 as its specified vertices. For every i ∈ {2, . . . , 10}, we create three new

copies of G1 as defined in Lemma 2.6.3, one with specified vertices a1i , a
2
1, a

3
1, one with spec-

ified vertices a11, a
2
i , a

3
1 and one with specified vertices a11, a

2
1, a

3
i , respectively. We denote

these three hypergraphs Gi,1, Gi,2 and Gi,3 respectively. For convenience, we also define
G1,1 = G1,2 = G1,3 = G1.

Next, for all k ∈ [5] and for each edge e = xy ∈ E(G∗) with f ′(xy) = k, we create three
copies of K4, say He

1 , H
e
2 , H

e
3 ; see Figure 2.4 for a picture of the construction described

below. Let V (He
i ) = {sei , tei , uei , vei } for i ∈ [3]. Let l(sei t

e
i ) = a

(i+1)
2k−1 , l(seiu

e
i ) = l(teiv

e
i ) =

a
(i+2)
2k−1 , l(ueiv

e
i ) = a

(i+1)
2k and l(seiv

e
i ) = l(teiu

e
i ) = a

(i+2)
2k for all i ∈ [3], where superscripts are

read modulo 3, so a4j = a1j and a5j = a2j for all j ∈ [10]. We also add edges xsei , yt
e
i with

l(xsei ) = l(ytei ) = ai2k−1, and edges xuei , yv
e
i with l(xuei ) = l(yvei ) = ai2k for all i ∈ [3].

Let G = {G1} ∪ {Gi,j : i ∈ {2, . . . , 10}, j ∈ [3]}. Let U = (∪G′′∈GV (G′′)) \ (A ∪B ∪ C),
W = ∪e∈E(G∗) ∪i∈[3] V (He

i ). Let V (G′) = A∪B ∪C ∪U ∪W ∪V (G∗) and let E(G′) be the
set of all labeled edges defined above. By the construction, the function l defined above is
a labeling of G′. Let G be the corresponding 3-uniform hypergraph of (G′, l).

Notice that from the construction, there is no other edge e ∈ E(G) with e ∩ U 6= ∅
and e ∩ (W ∪ V (G∗)) 6= ∅. Furthermore, except for the edge {a11, a21, a31}, there is no edge
e ∈ E(G) with e ⊆ A ∪ B ∪ C ∪ V (G∗). Moreover, for every edge e ∈ E(G) \ {a11, a21, a31},
we have |e ∩ (A ∪B ∪ C)| ≤ 1. Thus, for each edge e ∈ E(G) \ {a11, a21, a31}, exactly one of
the conditions |e ∩ U | ≥ 2 and |e ∩ (W ∪ V (G∗))| = 2 holds. Moreover, for all e ∈ E(G),
we have that |e ∩ V (G∗)| ≤ 1.

(1) The 3-uniform hypergraph G is linear.

We take two edges e, e′ ∈ E(G) with e 6= e′. Assume for a contradiction that |e∩e′| = 2.
It follows that e, e′ 6= {a11, a21, a31}, since no edge except {a11, a21, a31} contains more than one
vertex of A ∪B ∪ C.

If |e ∩ U | ≥ 2, then e ⊆ Ga,b for some a ∈ [10] and b ∈ [3]. Since |e ∩ e′| = 2, we have
that e′ ∩U 6= ∅, and so |e′ ∩U | ≥ 2. It follows that e′ ⊆ V (Gc,d) for some c ∈ [{2, . . . , 10}]
and d ∈ [3]. By Lemma 2.6.3, (a, b) 6= (c, d). But then V (Ga,b)∩V (Gc,d) ⊆ {a11, a21, a31} and
so e ∩ e′ ⊆ {a11, a21, a31}. But |e ∩ {a11, a21, a31}| ≤ 1, so |e ∩ e′| ≤ 1, which is a contradiction.
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If |e ∩ (W ∪ V (G∗))| = 2, then |e ∩ (A ∪ B ∪ C)| = 1. Since |e ∩ e′| = 2 and exactly
one of e′ ∩ U 6= ∅ and e′ ∩ (W ∪ V (G∗)) 6= ∅ holds, we have e′ ∩ (W ∪ V (G∗)) 6= ∅. It
follows that |e′ ∩ (W ∪ V (G∗))| = 2. Consider the labeled graph G′. Notice that by the
construction above, for each e∗ ∈ E(G∗), no two edges of G′[e∗ ∪ (∪i∈[3]V (He∗

i ))] with
the same label are incident to one common vertex. Thus e and e′ are both incident to a
common vertex x ∈ V (G∗). For every xy1, xy2 ∈ E(G∗), since f ′ is an edge coloring of G∗,
f ′(xy1) 6= f ′(xy2). Thus, for every two edges e1, e2 of G′ incident to x, |e1∩e2| = 1. Hence,
we have proved |e ∩ e′| ≤ 1, which leads to a contradiction. This proves (1).

(2) We have ν(G) ≤ 532.

By Lemmas 2.6.3 and 2.6.4, for every graph G′′ = Gi,j ∈ G, there is a set SG′′ of size at
most 19 which contains aji such that G′′ \ SG′′ has no edges; for G1, the set SG1 contains
all of a11, a

2
1, a

3
1. Each edge which is not a subset of A ∪ B ∪ C ∪ U contains a vertex in

A ∪ B ∪ C. Thus, the set X = ∪G′′∈GSG′′ meets all edges of G, and |X| ≤ 19 · 28. So
ν(G) ≤ 19 · 28 = 532. This proves (2).

(3) The graph G∗ is 3-colorable if and only if G is 3-colorable.

Let c′ be a 3-coloring of G. By Lemma 2.6.4, c′(a11), c
′(a21) and c′(a31) are all distinct.

Without loss of generality let c′(a11) = 1, c′(a21) = 2 and c′(a31) = 3. From the construction,
by Lemma 2.6.3, c′(a1i ) = 1, c′(a2i ) = 2 and c′(a3i ) = 3 for all i ∈ [10]. We want to prove
that c′|V (G∗) is a 3-coloring of G∗.

Suppose for a contradiction that there exists an edge xy ∈ E(G∗) with c′(x) = c′(y).
Let k = f ′(xy). Without loss of generality, let c′(x) = c′(y) = 1. Then consider the graph
Hxy

1 . Because of the edges {x, sxy1 , a12k−1}, {x, u
xy
1 , a

1
2k}, {y, t

xy
1 , a

1
2k−1} and {y, vxy1 , a12k},

all of the vertices sxy1 , t
xy
1 , u

xy
1 , v

xy
1 are colored 2 or 3. Since c′(a32k−1) = 3, from the edge

{sxy1 , u
xy
1 , a

3
2k−1}, it follows that one of the vertices sxy1 , u

xy
1 is not colored 3. Without loss

of generality let c′(sxy1 ) = 2. Because of the edge {sxy1 , t
xy
1 , a

2
2k−1}, we have c′(txy1 ) = 3.

Consider the edges {txy1 , u
xy
1 , a

3
2k} and {txy1 , v

xy
1 , a

3
2k−1}. Since c′(a32k) = c′(a32k−1) = 3, we

have c′(uxy1 ) = c′(vxy1 ) = 2. But then the edge {uxy1 , v
xy
1 , a

2
2k} is monochromatic, which

contradicts the fact that c′ is a 3-coloring of G. This proves that if G is 3-colorable, then
so is G∗.

For the converse direction, let c be a 3-coloring of G∗. We want to define a 3-coloring
d of G. Let d(v) = 1 for all v ∈ A, d(v) = 2 for all v ∈ B, and d(v) = 3 for all v ∈ C. By
Lemmas 2.6.3 and 2.6.4, there is a way to extend d to G[A ∪B ∪ C ∪ U ].

Let d(v) = c(v) for all v ∈ V (G∗). For each edge xy ∈ E(G∗) and each i ∈ [3], since c
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is a 3-coloring of G∗, one of the vertices x, y is not colored i. If c(x) 6= i, then for the set
V (Hxy

i ), we set d(sxyi ) = d(uxyi ) = i and d(txyi ) = d(vxyi ) = i + 1, reading colors modulo 3
(so if this would assign color 4, we assign color 1 instead). If c(x) = i, then c(y) 6= i, and
for the set V (Hxy

i ), we set d(sxyi ) = d(uxyi ) = i + 1, again reading colors modulo 3; and
d(txyi ) = d(vxyi ) = i. Thus, we have defined the function d for all vertices of G.

We then want to show that d is a 3-coloring of G. From the construction, all edges e
with e∩U 6= ∅ are contained in G[A∪B∪C∪U ] and hence not monochromatic. It remains
to consider edges e ∈ E(G) with e ∩W 6= ∅. It follows that there is an edge xy ∈ E(G∗)
and i ∈ [3] such that ∅ 6= e ∩ V (Hxy

i ) = e ∩W . If x ∈ e, then either sxyi ∈ e or txyi ∈ e and
from the construction of d, we have that d(e ∩ (A ∪ B ∪ C)) = {i}, and either d(x) 6= i
or d(sxyi ), d(txyi ) 6= i. The case y ∈ e follows analogously. Therefore, we may assume that
|e ∩ V (Hxy

i )| = 2. Now either the two vertices in e ∩ V (Hxy
i ) receive different colors, or

they receive the same color in {i, i+ 1} and d(e ∩ (A ∪B ∪C)) = {i+ 2}. Thus, the edge
e is not monochromatic. This proves (3).

(4) The 3-hypergraph G can be constructed from G∗ in time O(n3), where n = |V (G∗)|.

Since |V (G1)| = O(1) and |E(G1)| = O(1), the 3-uniform hypergraph G1 can be con-
structed in time O(1). Similarly, the 3-uniform hypergraph G2 can be constructed in time
O(1). We create 3 · 10− 2 = 28 copies of the gadgets G1 or G2. This step can be done in
time O(1).

Let n = |V (G∗)|, and m = |E(G∗)|. The edge coloring f ′ of G∗ can be computed in
time O(mn) ≤ O(n3) by Theorem 1.3.4. For each edge e ∈ E(G∗), we create 12 new
vertices and 30 edges. Thus, constructing the vertex set W and all edges incident to W
takes time O(n2).
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Chapter 3

Ordered Graphs

In this chapter, we turn to ordered graphs. We recall that an ordered graph G is a triple
(V,E, ϕ) such that (V,E) is a graph with vertex set V and edge set E, and ϕ : V → Z is
an injective function. For convenience, we also write the ordered graph (V,E, ϕ) as (G′, ϕ)
where G′ = (V,E) is a graph.

As promised in Introduction, we now give the full list of all ordered graphs we will use.
Let U ′ = {u1, u2, u3, u4, u5} and U = U ′\{u5}, the ordering ϕ′ : U ′ → R with ui 7→ i for
i ∈ [5].

• Let J1 = (U, {u1u2, u2u3, u3u4}, ϕ′|U).

• Let J2 = (U, {u1u2, u2u4, u3u4}, ϕ′|U).

• Let J3 = (U, {u1u3, u2u3, u2u4}, ϕ′|U).

• Let J4 = (U, {u1u3, u2u4, u3u4}, ϕ′|U).

• Let J5 = (U, {u1u4, u2u3, u2u4}, ϕ′|U).

• Let J6 = (U, {u1u4, u2u3, u3u4}, ϕ′|U).

• Let J7 = (U, {u1u2, u1u4, u3u4}, ϕ′|U).

• Let J8 = (U, {u1u3, u1u4, u2u4}, ϕ′|U).

• Let J9 = (U, {u1u2, u3u4}, ϕ′|U).
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• Let J10 = (U, {u1u2, u1u4}, ϕ′|U).

• Let J11 = (U, {u1u3, u1u4}, ϕ′|U).

• Let J12 = (U, {u1u2, u2u4}, ϕ′|U).

• Let J13 = (U ′, {u1u5, u2u3, u3u4}, ϕ′).

• Let J14 = (U ′, {u1u5, u2u3, u2u4}, ϕ′).

• Let J15 = (U\{u4}, {u1u2, u2u3}, ϕ′|U\{u4}).

• Let J16 = (U\{u4}, {u1u2, u1u3}, ϕ′|U\{u4}).

J1

u1 u2 u3 u4

J2

u1 u2 u3 u4

J3

u1 u2 u3 u4

J4

u1 u2 u3 u4

J5

u1 u2 u3 u4

J6

u1 u2 u3 u4

J7

u1 u2 u3 u4

J8

u1 u2 u3 u4

J9

u1 u2 u3 u4

J10

u1 u2 u3 u4

J11

u1 u2 u3 u4

J12

u1 u2 u3 u4

J13

u1 u2 u3 u4 u5

J14

u1 u2 u3 u4 u5

J15

u1 u2 u3

J16

u1 u2 u3

Figure 3.1: The ordered graphs Ji for i ∈ [16].

Let V = {v1, v2, v3, v4, v5, v6} and ϕ : V → R with vi 7→ i for i ∈ [6].

• Let M1 = (V, {v1v6, v2v5}, ϕ).

• Let M2 = (V, {v1v6, v2v5, v3v4}, ϕ).
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• Let M3 = (V, {v1v4, v2v5, v3v6}, ϕ).

• Let M4 = (V, {v1v5, v2v4, v3v6}, ϕ).

• Let M5 = (V \{v6}, {v1v5, v2v3}, ϕ|V \{v6}).

• Let M6 = (V \{v5, v6}, {v1v3, v2v4}, ϕ|V \{v5,v6}).

• Let M7 = (V \{v5, v6}, {v1v4, v2v3}, ϕ|V \{v5,v6}).

• Let M8 = (V \{v6}, {v1v5, v2v4}, ϕ|V \{v6}).

M1

v1 v2 v3 v4 v5 v6

M2

v1 v2 v3 v4 v5 v6

M3

v1 v2 v3 v4 v5 v6

M4

v1 v2 v3 v4 v5 v6

M5

v1 v2 v3 v4 v5

M6

v1 v2 v3 v4

M7

v1 v2 v3 v4

M8

v1 v2 v3 v4 v5

Figure 3.2: The ordered graphs Mi for i ∈ [8].

Here are some terms and notations we will use in this chapter. Let G be an ordered
graph. For X ⊆ V , we denote G[X] = (X, {e ∈ E : e ⊆ X}, ϕ|X). For x, y ∈ Z with x < y,
we denote G[x : y] = G[{v ∈ V : x ≤ ϕG(v) ≤ y}], and −G = (V,E, v 7→ −ϕG(v)). For a
vertex v ∈ V , the set of forward neighbors of v is defined as N+(v) = {u ∈ N(v) : ϕ(v) <
ϕ(u)}, and the set of backward neighbors of v is N−(v) = {u ∈ N(v) : ϕ(v) > ϕ(u)}. We
say two disjoint sets U,W ⊆ V is anticomplete if no vertex in U has a neighbor in W .

In section 3.1, we will give a polynomial-time algorithm for list-3-coloring J16(k, l)-free
graphs. In section 3.2, we will prove except for the open cases, forbidding other ordered
graphs from the list is still NP-hard.

3.1 Algorithm for J16(k, l)-free ordered graphs

We noticed that a J16-free ordered graph is chordal. Given a J16(k, l)-free ordered graph
G, if we can find a way to get rid of these k+ l isolated vertices and get a J16-free ordered
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graph G′, then we only need to consider coloring a chordal graph. Indeed, this is the main
idea of the coloring algorithm in this section. What we do is, first we “guess”the set of first
k and last l vertices colored i for each color i ∈ [3]. For those remaining vertices which are
not adjacent to these “guessed”vertices, we then use some properties and known results of
chordal graphs to finish the coloring.

We start by introducing some terminology. Let (G,L) be an instance of the Ordered
Graph List-3-Coloring Problem. An instance (G′, L′) is a (G,L)-refinement if G′ is
an induced subgraph of G and for all v ∈ V (G′), L′(v) ⊆ L(v). A (G,L)-refinement (G′, L′)
is spanning if G′ = G. A (G,L)-profile L is a set of (G,L)-refinements. A (G,L)-profile is
spanning if all its elements are spanning. Two list assignments L and L′ are equivalent for
G if every coloring c of G is an L-coloring if and only if it is an L′-coloring.

Let (G,L) be an instance of the Ordered Graph List-3-Coloring Problem.

Lemma 3.1.1. There exists a spanning (G,L)-refinement (G,L′) such that for all uv ∈
E(G) with |L(v)| = 1, L(u) ∩ L(v) = ∅, and L and L′ are equivalent for G. Moreover, L′

can be computed from L in time O(n3).

Proof. We define a sequence of lists recursively. Let L0 = L. Suppose that we have
defined Li. If there is an edge uv ∈ E(G) with |Li(v)| = 1 and Li(u) ∩ Li(v) 6= ∅, let
Li+1(u) = Li(u)\Li(v), and Li+1(w) = Li(w) for all w ∈ V (G)\{u}. Otherwise stop and
let L′ = Li.

This terminates within at most 3n steps, as
∑

w∈V (G) |Li+1(w)| ≤
∑

w∈V (G) |Li(w)| − 1,

and
∑

w∈V (G) |L0(w)| ≤ 3n. In each step, finding an edge uv ∈ E(G) with |L(v)| = 1 and

L(u) ∩ L(v) 6= ∅ takes time at most O(n2) and constructing a new list Li+1 takes time
O(n). Thus L′ can be computed from L in time O(n3).

Since L0 = L, G has an L-coloring if and only if G has an L0-coloring. For all Li-
colorings c of G and for all edges uv ∈ E(G), c(v) ∈ Li(v) and c(u) 6= c(v). Thus c is an
Li+1-coloring of G. For all Li+1-colorings c′ of G, since Li+1(w) ⊆ Li(w) for all w ∈ V (G),
c′ is an Li-coloring of G. Thus, L and L′ are equivalent for G.

Lemma 3.1.2. Let k, l ∈ N be fixed positive integers, and (G,L) be an instance of the
Ordered Graph List-3-Coloring Problem restricted to J16(k, l)-free ordered graphs.
There is a spanning (G,L)-profile L′1 such that:

• |L′1| ≤ O(n3(k+l)), and L′1 can be constructed from L in time O(n3(k+l)+4).

• For all (G,L′) ∈ L′1, let X ′ = {v ∈ V (G) : |L′(v)| ≥ 2}. Then in the graph G[X ′],
every vertex has at most 2 forward neighbors.
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• If there is an L-coloring c of G with |c−1(i)| ≥ k + l for all i ∈ [3], then there exists
(G,L′) ∈ L′1 such that c is an L′-coloring.

Proof. Let Q be the set of all 6-tuples Q = (A1, A2, A3, B1, B2, B3) of disjoint subsets of
V (G) such that for all i ∈ [3], |Ai| = k and |Bi| = l, i ∈ L(v) for all v ∈ Ai ∪ Bi, and
Ai ∪Bi are stable. For each q ∈ Q, we construct a (G,L)-refinement (G,LQ) as follows.

The list LQ
0 is defined as follows. For each vertex v ∈ V (G), we let L

′Q
0 (v) = {i}

if v ∈ Ai ∪ Bi for some i ∈ [3], otherwise let L
′Q
0 (v) = L(v). For each i ∈ [3], let

mi = max{ϕG(a) : a ∈ Ai}, ni = min{ϕG(b) : b ∈ Bi}. Then, for all i ∈ [3], remove i

from L
′Q
0 (v) for every v ∈ V (G[−∞ : mi])\Ai and every v ∈ V (G[ni :∞])\Bi. By Lemma

3.1.1, the list LQ
0 such that for all uv ∈ E(G) with |LQ

0 (v)| = 1, LQ
0 (u)∩LQ

0 (v) = ∅, can be

constructed from L
′Q
0 in polynomial time.

The list LQ is constructed recursively. Starting from the list LQ
0 , we construct a sequence

of equivalent list assignments LQ
1 , L

Q
2 , ... until some LQ

s satisfies the second property of
this lemma. For convenience, every time we define LQ

t for 0 ≤ t ≤ s, we also define
the following sets. For {i, j} ⊆ [3], let X ij

t = {v ∈ V (G) : LQ
t (v) = {i, j}}, and let

X123
t = {v ∈ V (G) : LQ

t (v) = {1, 2, 3}}. Let Xt = X12
t ∪X13

t ∪X23
t ∪X123

t .

If in the graph G[Xt], every vertex has at most 2 forward neighbors, then let LQ = LQ
t .

Otherwise, there is a vertex v with at least 3 forward neighbors in the graph G[Xt]. Notice
that if G contains K4 as a subgraph, then G is not L′-colorable for any L′ : V (G) → 2[3].
We return L′1 = ∅ in this case. Thus, we may assume that G contains no K4 from now on.

Also, we may assume that

(1) The vertex v does not have two distinct non-adjacent forward neighbors u,w such that
LQ
t (v) ∩ LQ

t (u) ∩ LQ
t (w) 6= ∅.

As otherwise consider a color i ∈ LQ
t (v)∩LQ

t (u)∩LQ
t (w). From the construction of LQ

t ,
we know that v, u, w are not adjacent to any vertex from Ai ∪ Bi. Ai and Bi are disjoint
and Ai ∪ Bi is a stable set. The vertices u,w are non-adjacent forward neighbors of v.
For every x ∈ Ai, y ∈ {u, v, w} and z ∈ Bi, ϕ(x) < ϕ(y) < ϕ(z). From the constructions
of LQ

0 , we have G[Ai ∪ Bi ∪ {u, v, w}] ∼= J16(k, l), which contradicts to the fact that G is
J16(k, l)-free. This proves (1).

If v ∈ X123
t , then for every two forward neighbors u,w of v in Xt, L

Q
t (v) ∩ LQ

t (u) ∩
LQ
t (w) 6= ∅. So by (1), u and w are adjacent. But then, since v has at least 3 forward

neighbors, there exists a K4 as a subgraph of G, which is a contradiction. Thus, this case
is impossible.
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It remains to consider the case v ∈ X ij
t . Let u,w, x be three distinct forward neighbors

of v in Xt. Since G has no K4, by symmetry, we may assume that uw /∈ E. By (1), it follows
that LQ

t (u) ∩ LQ
t (v) ∩ LQ

t (w) = ∅. By symmetry, we may assume that LQ
t (u) = {i,m},

LQ
t (w) = {j,m} where {i, j,m} = [3]. We have the following subcases.

• LQ
t (x) ⊇ {i, j}.

Then ux,wx ∈ E(G) by (1). Since u and w have two adjacent neighbors in common,

it follows that c(u) = c(w) for every 3-coloring of G. We let L
′Q
t+1(u) = L

′Q
t+1(w) =

{m}, L
′Q
t+1(y) = LQ

t (y)\{m} for y ∈ N(u) ∪ N(w), and L
′Q
t+1(y) = LQ

t (y) for all
y ∈ V (G)\(N [u] ∪N [w]).

• LQ
t (x) = {i,m}. (The case {j,m} follows from symmetry.)

By (1), we have ux ∈ E(G). But now v has two adjacent neighbors with list {i,m}.
So in every LQ

t -coloring c of G, we have c(v) = j. We let L
′Q
t+1(v) = {j}, L

′Q
t+1(y) =

Lt(y)\{j} for y ∈ N(v), and L
′Q
t+1(y) = Lt(y) for all y ∈ V (G)\N [v].

At the end of each step, by applying Lemma 3.1.1, we replace the list L
′Q
t+1 by an

equivalent list LQ
t+1 such that for all uv ∈ E(G) with |LQ

t+1(v)| = 1, we have LQ
t+1(u) ∩

LQ
t+1(v) = ∅, in time O(n3).

For all t, |Xt+1| ≤ |Xt| − 1, and |X0| ≤ n. Thus the algorithm above terminates in at
most n steps. In each step t, finding the vertex v with at least 3 forward neighbors in G[Xt]

takes time O(n), constructing the list L
′Q
t+1 takes time O(n), and constructing the list LQ

t+1

takes time O(n3). So LQ can be constructed in time O(n4). We let L′1 = {LQ : Q ∈ Q}.
There are at most

(
n
k

)
·
(
n−k
k

)
·
(
n−2k

k

)
= O(n3k) different choices of the triple (A1, A2, A3),

and at most O(n3l) different choices of the triple (B1, B2, B3). For each 6-tuple Q we add
at most one list to L′1. Thus, |L′1| ≤ O(n3(k+l)). Therefore, L1 can be constructed from L
in time O(n3(k+l)+4).

Finally, let c be an L-coloring of G with |c−1(i)| ≥ k+l for all i ∈ [3]. Define A′i ⊆ c−1(i)
to be the set of vertices such that |A′i| = k, and ϕ(v) > ϕ(u) for all v ∈ c−1(i)\A′i and
u ∈ A′i, that is, A′i is the set of first k vertices colored i in c. Similarly, for all i ∈ [3],
define B′i ⊆ c−1(i) to be the set of vertices such that |B′i| = l, and ϕ(v) < ϕ(u) for any
v ∈ c−1(i)\B′i and u ∈ B′i. Let Q′ = (A′1, A

′
2, A

′
3, B

′
1, B

′
2, B

′
3). It follows that Q′ ∈ Q. Thus,

the corresponding (G,L)-refinement (G,LQ′) is in L′1.

We want to show that c is also an LQ′-coloring. We will prove this by induction on
t. For every vertex v ∈ V (G), we have c(v) ∈ LQ′

0 (v) from the choice of Q′. Thus, c
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is an LQ′

0 -coloring. Suppose c is an LQ′

t -coloring. Then for t + 1, from our construction,

c(v) ∈ L
′Q′

t+1(v) for all vertex v. So c is an L
′Q′

t+1-coloring of G. By Lemma 3.1.1, c is also an

LQ′

t+1-coloring. Thus, the L-coloring c is an LQ′-coloring of G.

Lemma 3.1.3. Let k, l ∈ N be fixed positive integers, and (G,L) be an instance of the
Ordered Graph List-3-Coloring Problem restricted to J16(k, l)-free ordered graphs.
There is a spanning (G,L)-profile L′2 such that:

• |L′2| ≤ 3 · nk+l, and L′2 can be constructed from L in time O(nk+l+1).

• For all (G,L′) ∈ L′2, let X = {v ∈ V (G) : |L′(v)| ≥ 2}. Then |L′(v)| = 2 and
L′(u) = L′(v) for all u, v ∈ X.

• If c is an L-coloring of G with |c−1(i)| < k + l for some i ∈ [3], then there exists
(G,L′) ∈ L′2 such that c is an L′-coloring.

Proof. Let P be a set of all pairs P = (i, Ai) such that i ∈ [3] and Ai ⊆ V (G) with
|Ai| < k + l, Ai stable and i ∈ L(v) for all v ∈ Ai. For each P ∈ P , we construct a
(G,L)-refinement (G,LP ) as follows.

Let LP (v) = {i} for all v ∈ Ai, and LP (v) = L(v)\{i} otherwise. It follows that
LP (v) = [3]\{i} for all v ∈ V (G) with |LP (v)| ≥ 2.

The set P is of size at most 3 ·nk+l. For each pair P ∈ P we add at most one refinement
to L′2. Thus, |L′2| ≤ 3 · nk+l. Constructing the list LP takes time O(n). Thus, L′2 can be
constructed from L in time O(nk+l+1).

Let c be an L-coloring of G with |c−1(i)| < k+l for some i ∈ [3]. The pair P ′ = (i, c−1(i))
satisfies the property that |c−1(i)| < k + l, c−1(i) is stable and i ∈ L(v) for all v ∈ c−1(i).
Thus, the corresponding (G,L)-refinement (G,LP ′) is in L′2. By the construction of LP ′ , c
is an LP ′-coloring.

A graph G is chordal if in G, every cycle of length at least 4 has an edge connecting
two vertices of the cycle but not in the cycle. Equivalently, every induced cycle in G is a
triangle.

Lemma 3.1.4. Let k, l ∈ N be fixed positive integers, and (G,L) be an instance of the
Ordered Graph List-3-Coloring Problem restricted to J16(k, l)-free ordered graphs.
Let X = {v ∈ V (G) : |L(v)| ≥ 2} and let us assume that every vertex in X has at most two
forward neighbors in G[X] and that |X| ≥ 3k + 3l + 6. There is a spanning (G,L)-profile
L1 such that:
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• |L1| = O(1), and L1 can be constructed in time O(n3).

• For all (G,L∗) ∈ L1, let X∗ = {v ∈ V (G) : |L∗(v)| ≥ 2}. Then the graph G[X∗] is
chordal.

• If c is an L-coloring of G, then there exists (G,L∗) ∈ L1 such that c is an L∗-coloring
of G.

Proof. First, we define two sets C ′ ⊆ C ⊆ X as follows. We start with C ′ = C = ∅. In
each step, we take the vertex v ∈ X\C with the smallest ϕ(v). Add v and its forward
neighbors in G[X] to C, and add v to C ′. We repeat this k times. Since every vertex in
X has at most two forward neighbors in G[X], |C| ≤ 3k. By construction, C ′ is a stable
set of size k. Moreover, no vertex in C ′ is adjacent to a vertex in X\C. Define D ⊆ X
to be the set of vertices such that |D| = 3l + 6, and ϕ(v) < ϕ(u) for all v ∈ X\(C ∪ D)
and u ∈ D, that is, D is the set of last 3l + 6 vertices in X\C. Since |X| ≥ 3k + 3l + 6, it
follows that C, C ′ and D are well-defined.

Let F be the set of all functions f : C∪D → [3] such that f is an L-coloring of G[C∪D].
For every f ∈ F , we construct a (G,L)-refinement (G,L

′f ) such that L
′f (v) = {f(v)}

if v ∈ C ∪ D, and L
′f (v) = L(v) otherwise. By Lemma 3.1.1, there is an equivalent

list Lf of L
′f such that for all uv ∈ E(G) with |Lf (v)| = 1, Lf (u) ∩ Lf (v) = ∅. Let

L1 = {(G,Lf ) : f ∈ F}. There are at most 33k+3l+6 = O(1) possible choices of f . Thus,
|L1| = O(1). Constructing the set C and D takes time O(1). Each L

′f can be constructed
in time O(n). Each Lf can be constructed in time O(n3). So L1 can be constructed in
time O(n3).

Now let (G,L∗) ∈ L1. Every non-chordal ordered graph contains a vertex with two
non-adjacent forward neighbors. To be more precise, the vertex with the smallest order in
an induced cycle of size at least 4 is a desired vertex. Now we want to show that G[X∗] is
chordal using this property. Suppose for a contradiction that in G[X∗], there is a vertex
v1 with two non-adjacent forward neighbors v2, v3. There is a stable set D′ ⊆ D of size
at least l such that D′ is anticomplete to {v1, v2, v3}. That is because X∗ ⊆ X and every
vertex in X has at most 2 forward neighbors in G[X], so D\N({v1, v2, v3}) is of size at least
3l. Since D has a 3-coloring by construction, there is a stable set D′ ⊆ D\N({v1, v2, v3})
of size at least l and which is anticomplete to {v1, v2, v3}. From the construction above,
the sets {v1, v2, v3}, C ′ and D′ are disjoint. Moreover, for every x ∈ C ′, y ∈ {v1, v2, v3}
and z ∈ D′, ϕ(x) < ϕ(y) < ϕ(z). So G[C ′ ∪ D′ ∪ {v1, v2, v3}] ∼= J16(k, l), which is a
contradiction. Therefore, G[X∗] is chordal.

Finally, let c be an L-coloring of G. Take the coloring c′ = c|C∪D and consider the
corresponding (G,L)-refinement (G,L

′c′) and (G,Lc′) defined above. Since we have covered
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all possible colorings f of G[C ∪D], (G,Lc′) is in L1. We can verify that c(v) ∈ L′c′(v) for
all vertices v ∈ V (G). Thus c is also an Lc′-coloring.

Lemma 3.1.5. Let k, l ∈ N be fixed positive integers, and (G,L) be an instance of the
Ordered Graph List-3-Coloring Problem restricted to J16(k, l)-free ordered graphs.
Let X = {v ∈ V (G) : |L(v)| ≥ 2} and let us assume that |X| < 3k + 3l + 6. There is a
spanning (G,L)-profile L2 such that:

• |L2| = O(1), and L2 can be constructed in time O(n3).

• For any (G,L∗) ∈ L2, |L∗(v)| ≤ 1 for all v ∈ V (G).

• If c is an L-coloring of G, then there exists (G,L∗) ∈ L2 such that c is an L∗-coloring
of G.

Proof. Let F be the set of all functions f : X → [3] such that f is an L-coloring of G[X].
For every possible function f ∈ F , we construct a list Lf such that Lf (v) = {f(v)} for all
v ∈ X, and Lf (v) = L(v) otherwise. Let L2 = {(G,Lf ) : f ∈ F}.

For every (G,Lf ) ∈ L2 and for every v ∈ V (G), if v ∈ X then |Lf (v)| ≤ 1; otherwise
by the definition of X, we have |Lf (v)| ≤ |L′f (v)| ≤ 1. Thus |Lf (v)| ≤ 1 for all v ∈ V (G).

Since there are at most 33k+3l+6 = O(1) possible choices of f , |L2| = O(1). Each L
′f

can be constructed in time O(n), and Lf can be constructed from L
′f in time O(n3). So

L2 can be constructed in time O(n3).

Finally, let c be an L-coloring of G. Let c′ = c|X and consider the corresponding
(G,L)-refinements (G,L

′c′) and (G,Lc′) defined above. Since we have covered all possible
L-colorings f : X → [3], (G,Lc′) ∈ L2. By the construction of c′ and L

′c′ , c is an L
′c′-

coloring thus is an Lc′-coloring.

Recall the theorems:

Theorem 1.3.5. The List-3-Coloring Problem restricted to chordal graphs with
bounded clique number is polynomial-time solvable.

Theorem 1.3.6. The List-2-Coloring Problem can be solved in time O(n2), where
n is the number of vertices of the input graph.

Theorem 3.1.6. For fixed k, l ∈ N, there is an algorithm with the following specifications:
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• Input: (G,L), which is an instance of the Ordered Graph List-3-Coloring
Problem and G is J16(k, l)-free.

• Output: one of

– an L-coloring of G;

– a determination that G is not L-colorable;

– a spanning (G,L)-profile L with |L| ≤ O(n3(k+l)) such that for every (G,L∗) ∈
L, if XL∗ = {v ∈ V (G) : |L∗(v)| ≥ 2}, then G[XL∗ ] is chordal.

• Running time: O(n3(k+l+1)).

Proof. Let L′1 be as in Lemma 3.1.2. Let L′2 be as in Lemma 3.1.3. By Theorem 1.3.6, every
(G,L)-refinement (G,L′) ∈ L′2 can be solved in time O(n2). If this finds an L-coloring of
G, we just output the coloring instead of processing with the other things.

For every (G,L)-refinement (G,L′) ∈ L′1, let X = {v ∈ V (G) : |L′(v)| ≥ 2}. If
|X| ≥ 3k+3l+6, then there is a spanning (G,L)-profile LL′ which satisfies the properties in
Lemma 3.1.4. If |X| < 3k+3l+6, then there is a spanning (G,L)-profile LL′ which satisfies
the properties in Lemma 3.1.5. Finally, let L = ∪(G,L′)∈L′1L

L′ . From the constructions,

for every (G,L∗) ∈ L, G[XL∗ ] is chordal. Since |LL′| = O(1) and |L′1| ≤ O(n3(k+l)),
|L| ≤ O(n3(k+l)). The collection LL′ can be constructed from L′ in time O(n3), and
|L′1| ≤ O(n3(k+l)). Thus, L can be constructed from L in time O(n3(k+l+1)).

Proof of Theorem 1.2.17. Let G be a J16(k, l)-free ordered graph and L be a 3-list-assignment
for G. We check in polynomial time if G contains a clique of size 4. If so, then G is not
L-colorable and we are done. We apply the algorithm from Theorem 3.1.6 to (G,L). If
the output is an L-coloring of G or a determination that G is not L-colorable, then we are
done; so we may assume that the output is a (G,L)-profile L. For each (G,L∗) ∈ L, we let
XL∗ = {v ∈ V (G) : |L∗(v)| ≥ 2} as in Theorem 3.1.6. By Lemma 3.1.1, we may assume
that L∗(u) ∩ L∗(v) = ∅ for all uv ∈ E(G) such that |L∗(u)| = 1. If L∗(u) = ∅ for some
u ∈ V (G), then G has no L∗-coloring and we continue. Otherwise, since Theorem 3.1.6
guarantees that G[XL∗ ] is chordal, and since G contains no clique of size 4, we can check
in polynomial time if G[XL∗ ] is L∗-colorable. If this returns a coloring f , then by Lemma
3.1.1, we obtain an L-coloring of G as follows:

• for x ∈ XL∗ , let c(x) = f(x);

• for all other x ∈ V (G), let c(x) be the unique color in L∗(x).
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If there is no (G,L∗) ∈ L such that this returns a coloring of G, then, from the definition
of a (G,L)-profile, it follow that G is not L-colorable. This concludes the proof.

3.2 NP-hardness results

In this section, we will prove the following theorem.

Theorem 1.2.18. If H is an ordered graph such that at least one of the following holds:

• H has at least three edges;

• H has a vertex of degree at least 2 and is not isomorphic to J16(k, l) or −J16(k, l) for
any k, l;

• H contains J9, M1 or M5 as induced ordered subgraph;

then the Ordered Graph List-3-Coloring Problem restricted to (H,ϕ)-free ordered
graphs is NP-complete.

In ordered to show Theorem 1.2.18, we will show the following two theorems.

Theorem 3.2.1. Let H be a graph and ϕ : V (H) → Z. The Ordered Graph List-3-
Coloring Problem restricted to (H,ϕ)-free ordered graphs is NP-complete if H contains
a copy of P4 or P3 + P2 as an induced subgraph.

Theorem 3.2.2. The Ordered Graph List-3-Coloring Problem is NP-complete
when restricted to the class of Mj-free ordered graphs, for j ∈ [5].

We will use three constructions to show the Ordered Graph List-3-Coloring
Problem is NP-complete when restricted to the class of Ji-free ordered graphs, for every
i ∈ [15]. Then with these proofs, we will show Theorem 3.2.1.

The first two constructions reduce from NAE3SAT. Notice that we will prove a stronger
result: In the following two theorems, we actually prove the NP-hardness of the Ordered
Graph 3-Coloring Problem instead of the Ordered Graph List-3-Coloring
Problem within specific classes of graphs.

Theorem 3.2.3. Given a monotone NAE3SAT instance I, there is a graph H1 such that:
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1. The graph H1 can be computed from I in time O(m+ n), where m is the number of
clauses of I and n is the number of variables of I;

2. The graph H1 is 3-colorable if and only if I is satisfiable;

3. There is an injective function τ1 : V (H1) → Z such that (H1, τ1) is J3, J6 and
−J11-free, and τ1 can be computed from H1 in time O(m+ n);

4. There is an injective function τ2 : V (H1) → Z such that (H1, τ2) is J1, J2, −J4, J5,
J8 and J12-free, and τ2 can be computed from H1 in time O(m+ n);

5. There is an injective function τ3 : V (H1) → Z such that (H1, τ3) is J10-free, and τ3
can be computed from H1 in time O(m+ n).

Therefore, the Ordered Graph 3-Coloring Problem is NP-complete when restricted
to the class of J1, J2, J3, −J4, J5, J6, J8, J10, −J11 or J12-free ordered graphs.

x

M

m1

mi1

mi2

mi3

mn

T

tj,1
tj,2

tj,3

Figure 3.3: The construction of H1 from Theorem 3.2.3, with M corresponding to variables
and T corresponding to clauses.

Proof. The construction of H1 is shown in Figure 3.3. First we create a vertex x. For every
variable xi of I, we create a vertex mi, and denote the set of such vertices as M . For every
clause Cj of I, we create three vertices tj,k for k ∈ [3], and denote the set of such vertices
as T . Let V (H1) = {x} ∪M ∪ T .
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For every vertex mi ∈M , we add an edge xmi. For every clause Cj of I, if the variables
in Cj are xi1 , xi2 , xi3 with 1 ≤ i1 < i2 < i3 ≤ n, we add edges miktj,k for k ∈ [3] and edges
tj,1tj,2, tj,2tj,3, tj,1tj,3. Let E(H1) be the set of all defined edges.

(1) H1[m] is stable and H1[T ] is disjoint union of triangles.

It follows from the construction of H1.

(2) The graph H1 can be computed from I in time O(m+ n).

It takes time O(m+ n) to compute both the set V (H1) and E(H1).

(3) The graph H1 is 3-colorable if and only if I is satisfiable.

Let f : V (H1) → [3] be a 3-coloring of H1. Without loss of generality, we assume
f(x) = 1. Since every vertex in M is adjacent to x, we have f(mi) ∈ {2, 3} for every
i ∈ [n]. We claim that if the variables in Cj are xi1 , xi2 , xi3 with 1 ≤ i1 < i2 < i3 ≤ n,
then at least one of f(mi1), f(mi2) and f(mi3) has value 2 and at least one of them has
value 3. Suppose for a contradiction, without loss of generality, that f(mik) = 2 for every
k ∈ [3]. Then f(tj,k) ∈ {1, 3} for every k ∈ [3], at least two of the three vertices receive
the same color. But by (1), the vertices tj,1, tj,2 and tj,3 form a triangle. which leads to a
contradiction as desired. Thus, by assigning true to the variable xi if f(mi) = 2 and false
otherwise, we get a valid truth assignment to the monotone NAE3SAT instance I.

If there is a valid truth assignment to I, we define a 3-coloring g : V (H1) → [3] as
follows. For every i ∈ [n], let g(mi) = 2 if the variable vi is true in this truth assignment,
otherwise let g(mi) = 3. Let g(x) = 1. For each clause Cj, we denote the variables
in Cj as xi1 , xi2 , xi3 with 1 ≤ i1 < i2 < i3 ≤ n. Let g(tj,1) ∈ {2, 3}\{g(mi1)}. Since
g|M is constructed from a valid truth assignment of I, at least one of the g(mi1), g(mi2)
and g(mi3) has value 2 and at least one of them has value 3. If g(mi2) 6= g(mi1), then
let g(tj,2) ∈ {2, 3}\{g(mi2)} and g(tj,3) = 1, otherwise let g(tj,3) ∈ {2, 3}\{g(mi3)} and
g(tj,2) = 1. To verify this is a valid 3-coloring, we simply go through and check every edge
in E(H1).

(4) There is an injective function τ1 : V (H1)→ Z such that (H1, τ1) is J3, J6 and −J11-free,
and τ1 can be computed from H1 in time O(m+ n).

The function τ1 : V (H1) → Z is defined as follows. Let τ1(x) = 1. Let τ1(mi) = i + 1
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for every i ∈ [n]. For every j ∈ [m] and k ∈ [3], let τ1(tj,k) = n+ 3j + k − 2. The function
τ1 can be constructed in time O(m+ n) as we go through every vertex once.

From the construction we have τ1|M and τ1|T are injective, and τ1(x) < τ1(mi) <
τ1(tj,k) for every i ∈ [n], j ∈ [m] and k ∈ [3]. So the function τ1 is injective.

Suppose for a contradiction that (H1, τ1) contains an induced path w1w3w2w4 with
τ1(w1) < τ1(w2) < τ1(w3) < τ1(w4). Since the vertex x does not have any backward
neighbor and every mi ∈ M has only one backward neighbor x, we have w3 ∈ T . At
most one of w1 and w2 is in T as w1, w2 ∈ N(w3) and w1w2 /∈ E(H1). Thus we have
w1 ∈ M , w2 ∈ T ∪ M and w4 ∈ T . If w2 ∈ T , then w3 is also adjacent to w4 since
w3, w4 ∈ N(w2), which is a contradiction. If w2 ∈ M , then w3 has two neighbors in M ,
which is a contradiction. Thus, we have proved (H1, τ1) is J3-free.

Suppose for a contradiction that (H1, τ1) contains an induced path w1w4w3w2 with
τ1(w1) < τ1(w2) < τ1(w3) < τ1(w4). Since w4 has two backward neighbors, we have w4 ∈ T .
For the two backward neighbors w1, w3 of w4, since w1w3 /∈ E(H1) and τ1(w1) < τ1(w3), we
have w1 ∈ M and w3 ∈ T . The vertex w2 is not in the set T as otherwise w2w4 ∈ E(H1),
so w2 ∈M . From the construction of τ1, there exist i1, i2 ∈ [n] with i1 < i2 and w1 = mi1 ,
w2 = mi2 . But then we have τ1(w4) < τ1(w3), which is a contradiction. Thus, we have
proved (H1, τ1) is J6-free.

Suppose (H1, τ1) contains an induced subgraph ({w1, w2, w3, w4}, {w1w4, w2w4}) with
τ1(w1) < τ1(w2) < τ1(w3) < τ1(w4). Since w4 has two backward neighbors, we have w4 ∈ T .
For the two backward neighbors w1, w2 of w4, since w1w2 /∈ E(H1) and τ1(w1) < τ1(w2), we
have w1 ∈M and w2 ∈ T . From the construction of τ1, since w2w4 ∈ E(H1) and τ1(w2) <
τ1(w3) < τ1(w4), we have w3 ∈ T and w2w3, w3w4 ∈ E(H1), which is a contradiction. Thus,
we have proved (H1, τ1) is −J11-free.

(5) There is an injective function τ2 : V (H1)→ Z such that (H1, τ2) is J1, J2, −J4, J5, J8
and J12-free, and τ2 can be computed from I in time O(m+ n).

The function τ2 : V (H1)→ Z is defined as follows. Let τ2(mi) = i for every i ∈ [n]. Let
τ2(x) = n+ 1. For every j ∈ [m] and k ∈ [3], let τ2(tj,k) = n+ 3j + k − 2. The function τ2
can be constructed in time O(m+ n) as we go through every vertex once.

From the construction we have τ2|M and τ2|T are injective, and τ2(mi) < τ2(x) <
τ2(tj,k) for every i ∈ [n], j ∈ [m] and k ∈ [3]. So the function τ2 is injective.

Suppose for a contradiction that (H1, τ2) contains an induced path w1w2w3w4 with
τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward neighbor,
we have w1, w2, w3 6= x. Since every vertex in M has no backward neighbor, we have
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w2, w3, w4 /∈ M . So w2, w3 ∈ T . Then we have w4 ∈ T as τ2(w4) > τ2(w3). But from the
construction of H1 and τ2, we also have w2w4 ∈ E(H1) as w2w3, w3w4 ∈ E(H1), which is a
contradiction. Thus, we have proved (H1, τ2) is J1-free.

Suppose for a contradiction that (H1, τ2) contains an induced path w1w2w4w3 with
τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward neighbor,
we have w1, w2, w3 6= x. Since every vertex in M has no backward neighbor, we have
w2, w4 /∈M . So w2 ∈ T . Then we have w3, w4 ∈ T as τ2(w2) < τ2(w3) < τ2(w4). But from
the construction of H1 and τ2, we also have w2w3 ∈ E(H1) as w2w4 ∈ E(H1), which is a
contradiction. Thus, we have proved (H1, τ2) is J2-free.

Suppose for a contradiction that (H1, τ2) contains an induced path w3w1w2w4 with
τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward neigh-
bor, we have w1, w2 6= x. Since every vertex in M has no backward neighbor, we have
w2, w3, w4 /∈ M . So w2 ∈ T . Then we have w3, w4 ∈ T as τ2(w2) < τ2(w3) < τ2(w4). But
from the construction of H1 and τ2, we also have w2w3 ∈ E(H1) as w2w4 ∈ E(H1), which
is a contradiction. Thus, we have proved (H1, τ2) is −J4-free.

Suppose for a contradiction that (H1, τ2) contains an induced path w1w4w2w3 with
τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward neighbor,
we have w1, w2 6= x. Since every vertex in M has no backward neighbor, we have w3, w4 /∈
M . If w2 ∈ T , then we have w3, w4 ∈ T as τ2(w2) < τ2(w3) < τ2(w4). But from the
construction of H1 and τ2, we also have w3w4 ∈ E(H1) as w2w4 ∈ E(H1), which is a
contradiction. Thus we have w2 ∈ M , which implies w1 ∈ M . Also since w2 has two
forward neighbors and τ2(x) < τ2(tj,k) for every j ∈ [m] and k ∈ [3], we have w4 ∈ T . But
then w4 has two neighbors w1, w2 ∈ M , which is a contradiction. Thus, we have proved
(H1, τ2) is J5-free.

Suppose for a contradiction that (H1, τ2) contains an induced path w3w1w4w2 with
τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward neighbor,
we have w1, w2 6= x. Since every vertex in M has no backward neighbor, we have w3, w4 /∈
M . Since w1 has two non-adjacent forward neighbors w2, w4 with τ2(w2) < τ2(w4), we have
w1 ∈ M and w4 ∈ T . Thus we have w2 ∈ T , as w4 has exactly one neighbor in M . But
from the construction of H1 and τ2, we also have w3 ∈ T and so w2w3, w3w4 ∈ E(H1) as
w2w4 ∈ E(H1) and τ2(w2) < τ2(w3) < τ2(w4), which is a contradiction. Thus, we have
proved (H1, τ2) is J8-free.

Suppose that (H1, τ2) contains an induced subgraph ({w1, w2, w3, w4}, {w1w2, w2w4})
with τ2(w1) < τ2(w2) < τ2(w3) < τ2(w4). Since the vertex x does not have any forward
neighbor, we have w1, w2 6= x. Since every vertex in M has no backward neighbor, we have
w2, w4 /∈M . So w2 ∈ T . Then we have w3, w4 ∈ T as τ2(w2) < τ2(w3) < τ2(w4). But from
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the construction of H1 and τ2, we also have w2w3, w3w4 ∈ E(H1) as w2w4 ∈ E(H1), which
is a contradiction. Thus, we have proved (H1, τ2) is J12-free.

(6) There is an injective function τ3 : V (H1)→ Z such that (H1, τ3) is J10-free, and τ3 can
be computed from H1 in time O(m+ n).

The function τ3 : V (H1) → Z is defined as follows. Let τ3(x) = 1. Let τ1(mi) = i + 1
for every i ∈ [n]. For every j ∈ [m] and k ∈ [3], let mi ∈ M be the vertex such that
tj,k ∈ N(mi), then we set τ3(tj,k) = n+2+

∑i−1
i′=1(deg(mi′)−1)+ |{tj′,k′ ∈ N(mi) : j′ < j}|.

The function τ1 can be constructed in time O(m+ n) as we go through every vertex once.

From the construction we have τ3|M and τ3|T are injective, and τ3(x) < τ3(mi) <
τ3(tj,k) for every i ∈ [n], j ∈ [m] and k ∈ [3]. So the function τ3 is injective.

Suppose that (H1, τ3) contains an induced subgraph ({w1, w2, w3, w4}, {w1w2, w1w4})
with τ3(w1) < τ3(w2) < τ3(w3) < τ3(w4). Now we consider the vertex w1. Since w1 = x
implies w1w3 ∈ E(H1) as w2, w4 ∈ N(w1), and w1 ∈ T implies w2w4 ∈ E(H1), we have
w1 ∈ M . But from the construction of τ3, we also have w1w3 ∈ E(H1), which is a
contradiction. Thus, we have proved (H1, τ2) is J10-free.

Theorem 3.2.4. Given a monotone NAE3SAT instance I, there is an ordered graph
(H2, τ4) such that

1. The ordered graph (H2, τ4) can be computed from I in time O(m+ n);

2. The graph H2 is 3-colorable if and only if I is satisfiable;

3. The ordered graph (H2, τ4) is J7, J13 and J14-free.

Therefore, the Ordered Graph 3-Coloring Problem is NP-complete when restricted
to the class of J7, J13 or J14-free ordered graphs.

Proof. The construction of H2 is shown in Figure 3.4. First we create a vertex x. For
every variable xi of I, we create a vertex mi and add edge xmi. We denote the set of
such vertices mi as M . For every clause Cj of I, if the variables in Cj are xi1 , xi2 , xi3 with
1 ≤ i1 < i2 < i3 ≤ n, we create six vertices tj,ik and sik,j for k ∈ [3]. We add edges tj,iktj,ik′
for {k, k′} ⊆ [3], and xsik,j, miksik,j and sik,jtj,ik for k ∈ [3]. We denote the set of vertices
tj,ik as T , and the set of vertices sik,j as S. Finally, let V (H2) = {x} ∪M ∪ S ∪ T and
E(H2) be the set of all edges defined above.
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tj,i2

tj,i3

Figure 3.4: The construction of H2 from Theorem 3.2.4.

The function τ4 : V (H2) → Z is defined as follows. Let τ4(x) = 1 and τ1(mi) = i + 1
for every i ∈ [n]. For every si,j ∈ S, let τ4(si,j) = n + 2 +

∑i−1
i′=1(deg(mi′) − 1) + |{si,j′ ∈

N(mi) : j′ < j}|. For every tj,i ∈ T , let τ4(tj,i) = τ4(si,j) + 3m.

(1) The ordered graph (H2, τ4) can be computed from I in time O(m+ n).

It takes time O(m + n) to compute both the set V (H2) and E(H2). The function τ4
can be constructed in time O(m+n), since |V (H2)| = n+ 6m+ 1 and we go through every
vertex once.

(2) The graph H2 is 3-colorable if and only if I is satisfiable.

Let f : V (H2) → [3] be a 3-coloring of H2. Without loss of generality, we assume
f(x) = 1. Since every vertex in M ∪ S is adjacent to x, we have f(y) ∈ {2, 3} for every
y ∈M ∪ S.

We claim that if the variables in Cj are xi1 , xi2 , xi3 with 1 ≤ i1 < i2 < i3 ≤ n, then at
least one of f(mi1), f(mi2) and f(mi3) has value 2 and at least one of them has value 3.
Suppose for a contradiction, without loss of generality, that f(mik) = 2 for every k ∈ [3].
We have f(sik,j) = 3 for every k ∈ [3]. Then f(tj,ik) ∈ {1, 2} for every k ∈ [3], at least two
of the three vertices receive the same color. But from the construction, the vertices tj,i1 ,
tj,i2 and tj,i3 form a triangle, which leads to a contradiction as desired. Thus, by assigning
true to the variable xi if f(mi) = 2 and false otherwise, we get a valid truth assignment to
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the monotone NAE3SAT instance I.

If there is a valid truth assignment to I, we define a 3-coloring g : V (H2)→ [3] as follows.
For every i ∈ [n], let g(mi) = 2 if the variable vi is true in this truth assignment, otherwise
let g(mi) = 3. Let g(x) = 1. For every vertex si,j ∈ S, we define g(si,j) ∈ {2, 3}\{g(mi)}.

For each clause Cj, we denote the variables in Cj as xi1 , xi2 , xi3 with 1 ≤ i1 < i2 < i3 ≤
n. Let g(tj,i1) ∈ {2, 3}\{g(si1,j)}. Since g|M is constructed from a valid truth assignment
of I, at least one of the g(mi1), g(mi2) and g(mi3) has value 2 and at least one of them has
value 3. If g(mi2) 6= g(mi1), then let g(tj,2) ∈ {2, 3}\{g(si2,j)} and g(tj,3) = 1, otherwise
let g(tj,3) ∈ {2, 3}\{g(si3,j)} and g(tj,2) = 1.

To verify this is a valid 3-coloring, we simply go through every edge yz in E(H1). If
without loss of generality y = x and z ∈ M ∪ S, then g(y) = 1 and g(z) ∈ {2, 3}. So
g(y) 6= g(z). If y ∈ M and z ∈ S, then from the construction g(z) ∈ {2, 3}\{g(y)},
so g(z) 6= g(y). If y ∈ S and z ∈ T , then from the construction either g(z) = 1 or
g(z) ∈ {2, 3}\{g(y)}, so g(y) 6= g(z). If y, z ∈ T , we have g(y) 6= g(z) as we use all three
colors to color the vertices whose corresponding variables are in the same clause.

(3) The ordered graph (H2, τ4) is J7, J13 and J14-free.

Suppose for a contradiction that (H2, τ4) contains an induced path w2w1w4w3 with
τ4(w1) < τ4(w2) < τ4(w3) < τ4(w4). Now we consider the vertex w1. Since w1 has two
non-adjacent forward neighbors, we know that w1 /∈ S∪T . If w1 = x, then w2, w4 ∈M ∪S.
But from the construction of τ4, we also have w3 ∈ M ∪ S, which implies w3 ∈ S and so
w1w3 ∈ E(H2) as a contradiction. If w1 ∈ M , then w2, w4 ∈ S, which implies w1w3 ∈
E(H2) as a contradiction. Thus, we have proved (H2, τ4) is J7-free.

Suppose (H2, τ4) contains an induced subgraph ({w1, w2, w3, w4, w5}, {w1w5, w2w3, w3w4})
with τ4(w1) < τ4(w2) < τ4(w3) < τ4(w4) < τ4(w5). Now we consider the vertex w1. Since
w1w5 ∈ E(H2) and w1w2 /∈ E(H2), we have w1 /∈ {x}. If w1 ∈ M , we have w5 ∈ S,
which causes w2 ∈ M and w3 ∈ S. But then w4 has no place to go, which is a contra-
diction. If w1 ∈ T , we know that w2, w3, w4 ∈ T . But then from the construction of H2

and τ4, we have w2w4 ∈ E(H2), which is a contradiction. If w1 ∈ S, then w5 ∈ T . Since
w2w4 /∈ E(H2), at least one of w2, w3, w4 is in S. From the construction of τ4, we know
that w2 ∈ S. So the forward neighbor w3 of w2 is in T . But from the construction of τ4,
the inequality τ4(w1) < τ4(w2) implies τ4(w5) < τ4(w3), which is a contradiction. Thus, we
have proved (H2, τ4) is J13-free.

A similar argument holds for the case that (H2, τ4) is J14-free.
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In the third construction, we will use the following result.

Theorem 1.3.9. The List-3-Coloring Problem restricted to bipartite graphs is NP-
complete.

Theorem 3.2.5. The Ordered Graph List-3-Coloring Problem restricted to J9
or J15-free ordered graphs is NP-complete.

Proof. Given a bipartite graph G with bipartition (X, Y ) and its list assignment L, we
construct an ordered graph (G, τ5) as follows. We enumerate the set X = {x1, ..., xs}
and Y = {y1, ..., yt}. Let τ5 : V (G) → Z be a function with τ5(xi) = i for i ∈ [s] and
τ5(yj) = s+ j for j ∈ [t].

Clearly, the ordered graph (G, τ5) can be computed in time O(n), and (G, τ5) is list-3-
colorable if and only if G is list-3-colorable. The ordered graph (G, τ5) is J9 and J15-free,
as for every edge zw ∈ E(G), without loss of generality, we have z ∈ X and w ∈ Y .

Corollary 3.2.6. If the Ordered Graph List-3-Coloring Problem restricted to
H-free ordered graphs is NP-complete, then the Ordered Graph List-3-Coloring
Problem restricted to −H-free ordered graphs is NP-complete.

Now we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let (H,ϕ) be an ordered graph. If H contains a copy of P4, say
Q1, then since (Q1, ϕ|Q1) ∈ {Ji : i ∈ [8]} ∪ {−Ji : i ∈ [8]}, by Theorems 3.2.3, 3.2.4,
3.2.5 and Corollary 3.2.6, we have the Ordered Graph List-3-Coloring Problem
restricted (Q1, ϕ|Q1)-free ordered graphs is NP-complete.

If H contains a copy of P3+P2, we denote it Q2 = ({v1, v2, v3, v4, v5}, {v1v2, v2v3, v4v5}).
By symmetry, we assume without loss of generality that ϕ(v4) < ϕ(v5). Then we con-
sider min{ϕ(v1), ϕ(v2), ϕ(v3)} and max{ϕ(v1), ϕ(v2), ϕ(v3)}. If max{ϕ(v1), ϕ(v2), ϕ(v3)} <
ϕ(v4) or min{ϕ(v1), ϕ(v2), ϕ(v3)} > ϕ(v5), then Theorem 3.2.5 indicates the Ordered
Graph List-3-Coloring Problem restricted (Q2, ϕ|Q2)-free ordered graphs is NP-
complete.

If ϕ(v4) < min{ϕ(v1), ϕ(v2), ϕ(v3)} and max{ϕ(v1), ϕ(v2), ϕ(v3)} < ϕ(v5), then Q2

either contains a copy of J13 or −J13 as induced subgraph, or a copy of J14 or −J14. By
Theorem 3.2.4, the Ordered Graph List-3-Coloring Problem restricted (Q2, ϕ|Q2)-
free ordered graphs is NP-complete.

If min{ϕ(v1), ϕ(v2), ϕ(v3)} < ϕ(vi) < max{ϕ(v1), ϕ(v2), ϕ(v3)} for some i ∈ {4, 5}, then
Q2 either contains a copy of J10 as induced subgraph, or a copy of J11, or a copy of J12, or
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−J10, −J11, −J12. By Theorem 3.2.3 and Corollary 3.2.6, the Ordered Graph List-3-
Coloring Problem restricted (Q2, ϕ|Q2)-free ordered graphs is NP-complete.

Before we start proving Theorem 3.2.2, let us prove the following lemma:

Lemma 3.2.7. Given a graph G, if a graph H satisfies the following conditions:

1. V (G) ⊆ V (H).

2. For every edge uv ∈ E(G), we have uv /∈ E(H) and there are three vertex disjoint
uv-paths P uv

1 , P uv
2 and P uv

3 of length at least 3. Moreover, for all edges uv, st ∈ E(G)
and i, j ∈ [3], we have V (P uv

i ) ∩ V (P st
j ) = {u, v} ∩ {s, t}.

3. The correspondence between every edge uv ∈ E(G) and its paths P uv
1 , P uv

2 and P uv
3

in H is given.

4. Every edge in H is contained in some P e
i , for i ∈ [3] and e ∈ E(G).

Then there is a list assignment L : V (H)→ 2[3] such that:

1. The list assignment L can be computed from H in time O(|E(H)|).

2. For every vertex u ∈ V (G), we have L(u) = [3].

3. For every L-coloring f of H, the function f |V (G) is a 3-coloring of G.

4. For every 3-coloring g of G, there is a corresponding L-coloring g′ of H with g′|V (G) =
g.

Note:

• We say a pair (H,L) as in Lemma 3.2.7 a realization of G.

• As the 3-Coloring Problem is NP-hard, to decide whether H is L-colorable is
also NP-hard.
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{3, 1} {3, 1} {3, 1} {3, 1}

u v

G

H

P uv
1

P uv
2

P uv
3

Figure 3.5: An example of a realization (H,L) of G. Each vertex is labeled with its list.

Proof. For every edge uv ∈ E(G), let the three vertex disjoint uv-paths be P uv
1 , P uv

2 and
P uv
3 of length at least 4. For convenience, in this proof, we read every color modulo 3

(so if this would assign color 4, we assign color 1 instead). We define the list assignment
L : V (H) → 2[3] as follows. Let L(u) = [3] for every vertex u ∈ V (G). Then we take a
path P uv

i , i ∈ [3] and denote P uv
i = uw1w2...wtv. If t is even, we set L(wj) = {i, i+ 1} for

all i ∈ [t]. If t is odd, we set L(wj) = {i + j − 1, i + j} for j ∈ [3], and L(wj) = {i, i + 1}
for i ∈ {4, ..., t}.

(1) The list assignment L can be computed from H in time O(|E(H)|), if given the corre-
spondence between every edge uv ∈ E(G) and its paths P uv

1 , P uv
2 and P uv

3 in H.

For a given path P e
i , defining L|V (P e

i )
takes time |E(P e

i )|. So the running time is∑
e∈E(G)

∑3
i=1 |E(P e

i )| = |E(H)|.

(2) For every vertex u ∈ V (G), we have L(u) = [3].

This holds immediately from the construction.

(3) For every L-coloring f of H, the function f |V (G) is a 3-coloring of G.

Suppose not, then there is an L-coloring f of H such that there is an edge uv ∈ E(G)
with f(u) = f(v) = i for some i ∈ [3]. We consider the path P uv

i = uw1w2...wtv in H. If t
is even, then from the construction we have that f(wj) = i+ 1 if j is odd, and f(wj) = i if
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j is even. But then we have f(wt) = f(v), which leads to a contradiction. If t is odd, then
from the construction we have f(w1) = i+1, f(w2) = i+2, f(w3) = i, and for j ∈ {4, ..., t},
f(wj) = i+ 1 if j is even and f(wj) = i if j is odd. But then f(wt) = f(v) = i, which is a
contradiction. Thus f |V (G) is a 3-coloring of G.

(4) For every 3-coloring g of G, there is a corresponding L-coloring g′ of H with g′|V (G) = g.

For every u ∈ V (G), let g′(u) = g(u). For every edge uv ∈ V (G), we denote g(u) = a
and g(v) = b, {a, b} ⊆ [3]. Then we consider the path P uv

i = uw1w2...wtv. We may assume
that a ∈ L(w1) and b ∈ L(wt), for otherwise P uv

i is L-colorable.

If t is even, let g′(w1) ∈ L(w1)\{a} 6= ∅, g′(w2) = a, and g′(wj) = g′(w1) if j ∈ {3, ..., t}
is odd, and g′(wj) = g′(w2) if j ∈ {3, ..., t} is even. Notice that we have g′(wt) = g′(w2) = a.
Since a 6= b, we have g′(v) 6= g′(wt).

So let us assume t is odd. If a = i, or a = i+2 and b = i+1, then we set g′(w1) = i+1,
g′(w2) = i+ 2, g′(w3) = i, and g′(wj) = i if j ∈ {4, ..., t} odd, g′(wj) = i+ 1 if j ∈ {4, ..., t}
even. Thus g′(wt) = i 6= b = g′(v). If a = i + 1, or a = i + 2 and b = i, then we set
g′(w1) = i, g′(w2) = i + 1, g′(w3) = i + 2, and g′(wj) = i + 1 if j ∈ {4, ..., t} is odd,
g′(wj) = i if j ∈ {4, ..., t} is even. Thus g′(wt) = i+ 1 6= b = g′(v).

Therefore, we have defined an L-coloring g′ of H with g′|V (G) = g.

The proof of Theorem 3.2.2 is divided into three constructions, all of which use Lemma
3.2.7 as a helper method.

Theorem 3.2.8. Given a graph G, there is a graph H3 and two injective functions τ5, τ6 :
V (G)→ R such that:

1. There is a list assignment L1 : V (H3)→ 2[3] such that the pair (H3, L1) is a realization
of G.

2. The ordered graphs (H3, τ5) and (H3, τ6) can be constructed from G in time O(m2),
where m = |E(G)|.

3. The ordered graph (H3, τ5) is M1 and M2-free.

4. The ordered graph (H3, τ6) is M3-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when re-
stricted to the class of M1, M2 or M3-free ordered graphs.
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V (G)

w1(u, v, i) w1(v, u, i)

W1

w2(u, v, i) w2(v, u, i)

W2

wi(u, v, i) w2(v, u, i)

Wi

Zi

Figure 3.6: The construction of (H3, τ5) from Theorem 3.2.8.

u v

V (G)

w1(u, v, i)w1(v, u, i)

W1

w2(u, v, i) w2(v, u, i)

W2

wi(u, v, i)wi(v, u, i)

Wi, i odd

Zi

Figure 3.7: The construction of (H3, τ6) from Theorem 3.2.8.

Proof. We denote |V (G)| = n and |E(G)| = m. Let f : E(G) → [m] be an ordering of
E(G), and g : V (G) → [n] be an ordering of V (G). We construct the ordered graphs
(H3, τ5) and (H3, τ6) as follows (see Figures 3.6 and 3.7).

For every edge uv ∈ E(G), we create 6 vertices w1(u, v, j) and w1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}, and add edges uw1(u, v, j) and vw1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}. Let W1 be the set of such vertices w1(u, v, j). Sup-
pose now Wi−1 has been defined. We create a new vertex wi(u, v, j) if wi−1(u, v, j) ∈ Wi−1
and j ≥ i, and add an edge wi−1(u, v, j)wi(u, v, j). Let Wi be the set of such vertices
wi(u, v, j). For convenience, we also denote W0 = V (G).

We define τ5(v) = τ6(v) = g(v) for every v ∈ V (G). For every i ∈ {1, ..., 3m}, we define
τ5(wi(u, v, j)) = n+ (

∑i−1
i′=1 |Wi′|) + |{wi(x, y, k) ∈ Wi : g(x) < g(u)}|+ |{wi(u, y, k) ∈ Wi :

g(y) < g(v)}|+ j + 3− 3f(uv) for every wi(u, v, j) ∈ Wi.

Let us consider the vertices wi(u
′, v′, i) and wi(v

′, u′, i) in Wi. Without loss of generality
we may assume that τ5(wi(u

′, v′, i)) < τ5(wi(v
′, u′, i)). For every vertex wi(u, v, j) ∈ Wi

with τ5(wi(u
′, v′, i)) < τ5(wi(u, v, j)) < τ5(wi(v

′, u′, i)), we add one new vertex zi(u, v, j).
Let Zi be the set of such vertices zi(u, v, j). Let τ5(zi(u, v, j)) = τ5(wi(u, v, j)) + 1

2
. For

every zi(u, v, j), zi(u
∗, v∗, j∗) ∈ Zi with τ5(zi(u, v, j)) < τ5(zi(u

∗, v∗, j∗)), we add edges
zi(u, v, j)zi(u

∗, v∗, j∗) if τ5(zi(u, v, j)) = τ5(zi(u
∗, v∗, j∗))−1, and edges wi(u

′, v′, i)zi(u, v, j)
if τ5(zi(u, v, j)) = τ5(wi(u

′, v′, i)) + 3
2
, and wi(v

′, u′, i)zi(u
∗, v∗, j∗) if τ5(zi(u

∗, v∗, j∗)) =
τ5(wi(v

′, u′, i))− 1
2
.
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We define τ6(v) as follows. Let τ6(v) = τ5(v) for every v ∈ V (G). For every i ∈
{1, ..., 3m} and wi(u, v, j) ∈ Wi, we define τ6(wi(u, v, j)) = τ5(wi(u, v, j)) if i is even, and
τ6(wi(u, v, j)) = n + (

∑i−1
i′=1 |Wi′|) + |Wi| + 1 − (|{wi(x, y, k) ∈ Wi : g(x) < g(u)}| +

|{wi(u, y, k) ∈ Wi : g(y) < g(v)}| + j + 3 − 3f(uv)) if i is odd. For every i ∈ {1, ..., 3m}
and zi(u, v, j) ∈ Zi, let τ6(zi(u, v, j)) = τ6(wi(u, v, j)) + 1

2
if i odd, and τ6(zi(u, v, j)) =

τ6(wi(u, v, j))− 1
2

if i is even.

Let V (H3) = V (G) ∪
⋃3m

i=1(Wi ∪ Zi) and E(H3) be the set of all edges defined above.
From the construction, the functions τ5 and τ6 are orderings of H3.

We then let P uv
i consist of vertices u, v, w1(u, v, 3f(uv)+ i−3), w2(u, v, 3f(uv)+ i−3),

..., w3f(uv)+i−3(u, v, 3f(uv) + i − 3), w1(v, u, 3f(uv) + i − 3), w2(v, u, 3f(uv) + i − 3), ...,
w3f(uv)+i−3(v, u, 3f(uv) + i − 3) and all vertices in Z3f(uv)+i−3, for uv ∈ E(G) and i ∈ [3].
The graph H3 and the paths P uv

i satisfy the condition of Lemma 3.2.7. Thus, letting L1

be as in Lemma 3.2.7, we have:

(1) The pair (H3, L1) is a realization of G.

(2) The ordered graphs (H3, τ5) and (H3, τ6) can be computed from G in time O(m2).

It takes time O(m) and O(n) to get the functions f and g, respectively. The set W1 can
be computed from G and f in time O(m). For i ∈ {2, ..., 3m}, the set Wi can be com-
puted from Wi−1 in time O(m). And the function τ5|Wi

can be computed in time O(m) for
i ∈ [3m]. The set Zi and the function τ5|Zi

can be computed from Wi and τ5|Wi
in time

O(m). Finally, the function τ6 can be computed in time O(m2). Thus, the ordered graphs
(H3, τ5) and (H3, τ6) can be computed from G in time O(m2).

From the construction defined above, we notice that:

(3) Given k ∈ {5, 6}, for each edge uv ∈ E(H3) with τk(u) < τk(v) and u ∈ Zi or v ∈ Zi

for some i ∈ {1, ..., 3m}, there is at most one vertex w with τk(u) < τk(w) < τk(v).

With this observation, we are ready to prove the remaining two properties.

(4) The ordered graph (H3, τ5) is M1 and M2-free.

Suppose (H3, τ5) contains a copy of M1 or M2 as ordered induced subgraph. Let us
consider the vertex v1. Because of the vertices v3, v4, by (3) we have v1, v2, v5, v6 /∈ Zi for
every i ∈ [3m]. If v1 ∈ V (G), then we have v6 ∈ W1. So v2 ∈ V (G) and v5 ∈ W1. But then
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either τ5(v2) < τ5(v1) or τ5(v5) > τ5(v6), both of which cause a contradiction. If v1 ∈ Wi

for some i ∈ [3m], then v6 ∈ Wi+1, and v2 ∈ Wi, v5 ∈ Wi+1, which is a contradiction. Thus,
we have proved (H3, τ5) is M1-free and M2-free.

(5) The ordered graph (H3, τ6) is M3-free.

Suppose (H3, τ6) contains a copy of M3 as ordered induced subgraph. Let us consider
the vertex v1. Because of the vertices v2, v3, by (3) we have v1, v4 /∈ Zi for every i ∈ [3m].
Similarly, we have vt /∈ Zi for every t ∈ [6] and i ∈ [3m]. Let v1 ∈ Wi for some i ∈
{0, 1, ..., 3m}, then v4 ∈ Wi+1. Then let us consider the vertex v2. For every vertex x ∈ Wi

with τ6(x) > τ6(v1) and for every vertex y ∈ N(x) with τ6(y) > τ6(x) and y /∈ Zi, we have
τ6(y) < τ6(v4). Thus, the vertex v2 is in Wi+1. But then for every vertex x ∈ Wi+1 with
τ6(v2) < τ6(x) < τ6(v4) and for every vertex y ∈ N(x) with τ6(y) > τ6(x) and y /∈ Zi, we
have τ6(y) < τ6(v5), which means the vertex v3 has nowhere to go. Thus, we have proved
(H3, τ6) is M3-free.

Theorem 3.2.9. Given a graph G, there is an ordered graph (H4, τ7) and a list assignment
L2 : V (H4)→ 2[3] such that:

1. The pair (H4, L2) is a realization of G.

2. The ordered graph (H4, τ7) can be constructed from G in time O(m2).

3. The ordered graph (H4, τ7) is M4-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when re-
stricted to the class of M4-free ordered graphs.

u v

V (G)

w1(u, v, i) w1(v, u, i)

W1

wi(u, v, i) wi(v, u, i)

Wi

zi

Z

Figure 3.8: The construction of (H4, τ7) from Theorem 3.2.9.

Proof. We denote |V (G)| = n and |E(G)| = m. Let f : E(G) → [m] be an ordering
of E(G), and g : V (G) → [n] be an ordering of V (G). We construct the ordered graph
(H4, τ7) as follows.
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For every edge uv ∈ E(G), we create 6 vertices w1(u, v, j) and w1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}, and add edges uw1(u, v, j) and vw1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}. Let W1 be the set of such vertices w1(u, v, j). Sup-
pose now Wi−1 has been defined. We create a new vertex wi(u, v, j) if wi−1(u, v, j) ∈ Wi−1
and j ≥ i, and add an edge wi−1(u, v, j)wi(u, v, j). Let Wi be the set of such vertices
wi(u, v, j). For convenience, we also denote W0 = V (G).

We define τ7(v) = g(v) for every v ∈ V (G). For every i ∈ {1, ..., 3m}, we define
τ7(wi(u, v, j)) = n +

∑i−1
i′=1 |Wi′ | + |{wi(x, y, k) ∈ Wi : g(x) < g(u)}| + |{wi(u, y, k) ∈ Wi :

g(y) < g(v)}|+ j + 3− 3f(uv) for every wi(u, v, j) ∈ Wi.

Let us consider the vertices wi(u
′, v′, i) and wi(v

′, u′, i) in Wi. For every i ∈ {1, ..., 3m},
we add one new vertex zi and edges wi(u

′, v′, i)zi and wi(v
′, u′, i)zi, and let τ7(zi) = n +

3m(3m+ 1) + (3m− i+ 1).

Let V (H4) = V (G)∪ (
⋃3m

i=1Wi ∪ {zi}) and E(H4) be the set of all edges defined above.
From the construction, the function τ7 : V (H4)→ R is an ordering of H4.

We then let P uv
i consist of vertices u, v, w1(u, v, 3f(uv)+ i−3), w2(u, v, 3f(uv)+ i−3),

..., w3f(uv)+i−3(u, v, 3f(uv) + i − 3), w1(v, u, 3f(uv) + i − 3), w2(v, u, 3f(uv) + i − 3), ...,
w3f(uv)+i−3(v, u, 3f(uv) + i− 3) and z3f(uv)+i−3, for uv ∈ E(G) and i ∈ [3]. The graph H4

and the paths P uv
i satisfy the condition of Lemma 3.2.7. Thus, letting L2 be as in Lemma

3.2.7, we have:

(1) The pair (H4, L2) is a realization of G.

(2) The ordered graph (H4, τ7) can be computed from G in time O(m2).

It takes time O(m) and O(n) to get the functions f and g, respectively. The set W1

can be computed from G and f in time O(m). For i ∈ {2, ..., 3m}, the set Wi can be
computed from Wi−1 in time O(m). And the function τ7|Wi

can be computed in time
O(m) for i ∈ [3m]. Thus, the ordered graph (H4, τ7) can be computed from G in time
O(m2).

(3) The ordered graph (H2, τ7) is M4-free.

Suppose that (H4, τ7) contains a copy of M4 as ordered induced subgraph. Because of
the edges of M4, we have v1, v2, v3 /∈ {z1, ..., z3m}, and v1, v2 /∈ W3m. Let v1 ∈ Wi for some
i ∈ {0, ..., 3m− 1}. If v5 ∈ Wi+1, then we have v4 /∈ {z1, ..., z3m}. For every vertex x with
τ7(v1) < τ7(x) < τ7(v5) and for every vertex y ∈ N(x)\{z1, ..., z3m} with τ7(y) > τ7(x), we
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have τ7(y) > τ7(v5). Thus, we conclude that v5 ∈ {z1, ..., z3m}. But then for every vertex
x ∈ {z1, ..., z3m} with τ7(x) > τ7(v5) and for every vertex y ∈ N(x), we have τ7(y) < τ7(v1),
which is a contradiction. Thus, we have proved (H4, τ7) is M4-free.

Theorem 3.2.10. Given a graph G, there is an ordered graph (H5, τ8) and a list assignment
L3 : V (H5)→ 2[3] such that:

1. The pair (H5, L3) is a realization of G.

2. The ordered graph (H5, τ8) can be constructed from G in time O(m3).

3. The ordered graph (H5, τ8) is M5-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when re-
stricted to the class of M5-free ordered graphs.

xik(u, v, i) xik(v, u, i)
X i

k

xik+1(u, v, i) xik+1(v, u, i)
X i

k+1
xik+2(v, u, i)

xik+2(v, u, i)

X i
k+2

Figure 3.9: The construction of X i
k, X i

k+1 and X i
k+2 in (H5, τ8) from Theorem 3.2.10.

Proof. We denote |V (G)| = m and |E(G)| = n. Let f : E(G) → [m] be an ordering
of E(G), and g : V (G) → [n] be an ordering of V (G). We construct the ordered graph
(H5, τ8) as follows.

For every edge uv ∈ E(G), we create 6 vertices w1(u, v, j) and w1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}, and add edges uw1(u, v, j) and vw1(v, u, j) for j ∈
{3f(uv) − 2, 3f(uv) − 1, 3f(uv)}. Let W1 be the set of such vertices w1(u, v, j). Sup-
pose now Wi−1 has been defined. We create a new vertex wi(u, v, j) if wi−1(u, v, j) ∈ Wi−1
and j ≥ i. Let Wi be the set of such vertices wi(u, v, j). For convenience, we also denote
W0 = V (G).

We define τ8(v) = g(v) for every v ∈ V (G). For every i ∈ {1, ..., 3m}, we define
τ8(wi(u, v, j)) = 36m2(i − 1) + n +

∑i−1
i′=1 |Wi′ | + |{wi(x, y, k) ∈ Wi : g(x) < g(u)}| +

|{wi(u, y, k) ∈ Wi : g(y) < g(v)}|+ j + 3− 3f(uv) for every wi(u, v, j) ∈ Wi.
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Let us consider the vertices wi(u
′, v′, i) and wi(v

′, u′, i) in Wi. Without loss of generality
we may assume that τ8(wi(u

′, v′, i)) = τ8(wi(v
′, u′, i)) − ai for some ai ∈ N. We create a

sequence of sets X i
k = {xik(u, v, j) : wi(u, v, j) ∈ Wi}, for k ∈ [ai − 1]. For convenience, we

also denote X i
ai

= Wi+1 = X i+1
0 . For every i ∈ [3m], we add edges xik(u, v, j)xik+1(u, v, j)

for every k ∈ {0, ..., ai − 1} and xik+1(u, v, j) ∈ X i
k+1, and edge xiai−1(u

′, v′, i)xiai−1(v
′, u′, i).

For every k ∈ [ai − 1], let τ8(x
i
k(v′, u′, i)) = τ8(wi(v

′, u′, i)) + 6mk − k − 1
2
, and

τ8(x
i
k(u, v, j)) = τ8(wi(u, v, j))+6mk otherwise. Notice that this implies τ8(x

i
k+1(v

′, u′, i))−
τ8(x

i
k(v′, u′, i)) = τ8(x

i
k+1(u, v, j)) − τ8(x

i
k(u, v, j)) − 1 for every k ∈ {0, ..., ai − 1} and

{u, v} 6= {u′, v′} and xik+1(u, v, j) ∈ X i
k+1.

Let V (H5) = V (G) ∪ (
⋃3m

i=1Wi ∪ (
⋃ai−1

k=1 X
i
k)) and E(H5) be the set of all edges defined

above. From the construction, the function τ8 : V (H5)→ R is an ordering of H5.

For uv ∈ E(G) and i ∈ [3], we then let P uv
i consist of vertices u, v, w1(u, v, 3f(uv) +

i− 3), w2(u, v, 3f(uv) + i− 3), ..., w3f(uv)+i−3(u, v, 3f(uv) + i− 3), w1(v, u, 3f(uv) + i− 3),

w2(v, u, 3f(uv)+ i−3), ..., w3f(uv)+i−3(v, u, 3f(uv)+ i−3) and all vertices xjk(u, v, 3f(uv)+

i− 3) and xjk(v, u, 3f(uv) + i− 3) for j ∈ [3f(uv) + i− 3] and k ∈ [aj − 1]. The graph H5

and the paths P uv
i satisfy the conditions of Lemma 3.2.7. Thus, letting L3 be as in Lemma

3.2.7, we have:

(1) The pair (H5, L3) is a realization of G.

(2) The ordered graph (H5, τ8) can be computed from G in time O(m3).

The set W1 can be computed from G and f in time O(m). For i ∈ {2, ..., 3m}, the set
Wi can be computed from Wi−1 in time O(m). And the function τ8|Wi

can be computed in
time O(m) for i ∈ [3m]. The set X i

k and the function τ8|Xi
k

can be computed from Wi and

τ8|Wi
in time O(m) for k ∈ [ai − 1]. And ai ≤ |Wi| = O(m), |X i

k| = |Wi| for k ∈ [ai − 1].
Thus, the ordered graph (H5, τ8) can be computed from G in time O(m3).

(3) The ordered graph (H5, τ8) is M5-free.

Suppose (H5, τ8) contains a copy of M5 as ordered induced subgraph. Let us consider
the edges v1v5 and v2v3. We claim that v2 = xik(v′, u′, i) and v3 = xik+1(v

′, u′, i) for some
i ∈ [3m] and k ∈ [ai− 1], and u′ and v′ being the vertices in V (H5) such that g(u′) < g(v′)
and f(u′v′) = d i

3
e. This is because otherwise from the construction of τ8, the condition

τ8(v1) < τ8(v2) implies τ8(y) < τ8(z) for every y ∈ N+(v1) and z ∈ N+(v2).
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Since v1v5 is an edge, we have v1 ∈ X i
k and v5 ∈ X i

k+1. Moreover, from the construction
of τ8, for every two distinct x, x′ ∈ X i

k+1\{xik(v′, u′, i)}, we have |τ8(x)− τ8(x′)| ≥ 1. Since
τ8(x

i
k+1(v

′, u′, i))− τ8(xik(v′, u′, i)) = τ8(x
i
k+1(u, v, i))− τ8(xik(u, v, i))− 1, there is no vertex

in X i
k+1 which could be v4, which gives a contradiction. Thus, we have proved (H5, τ8) is

M5-free.

Thus, we have proved Theorem 3.2.2. Combining Theorems 3.2.1, 3.2.2, 1.2.17 and
1.2.3, we have proved Theorem 1.2.18.
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Chapter 4

An NP-hardness result of k-Coloring

In this chapter, we prove Theorem 1.2.6 by reducing from the monotone NAE3SAT prob-
lem. Recall the theorem:

Theorem 1.2.6. The k-Colouring Problem restricted to rP4-free graphs is NP-complete
for all k ≥ 5 and r ≥ 2.

Let I be a monotone NAE3SAT instance with variables x1, x2, ...xn and clauses C1, C2, ..., Cm.
Now let us construct a graph G = (V,E). The set of vertices V is defined as follows:

• There are five vertices c1, c2, ..., c5 representing colors.

• For each variable xi, i ∈ [n], there is a corresponding vertex xi in V .

• For each clause Cj, j ∈ [m], there are two corresponding vertices yj and zj in V .

• For each clause Cj and each k ∈ [3], there are two vertices ukj and wk
j corresponding

to each literal.

and the set of edges E is defined as follows:

• For each i, j ∈ [5] with i 6= j, add edges cicj to E.

• For each i ∈ [n], add edges c3xi, c4xi and c5xi.

• For each j ∈ [m], add edges c1yj, c2yj, c1zj, c2zj.

65



• For each j ∈ [m] and k ∈ [3], add edges c1u
k
j and c2w

k
j .

• For each j ∈ [m], add edges ciu
k
j and ciw

k
j for all pairs (i, k) with i ∈ {3, 4, 5},

k ∈ {1, 2, 3}, and i 6= k + 2.

• For each i ∈ [n] and j ∈ [m], add edges xiyj and xizj.

• For each j ∈ [m], add edges yju
k
j and zjw

k
j for all k ∈ [3].

• For each j ∈ [m], if Cj contains xi1 , xi2 , xi3 , then we add edges xiku
k
j and xikw

k
j for

all k ∈ [3].

x1

x2

x3

x4 c1

c2c3

c5

c4

yj

zj

u1j

u2j

u3j

w1
j

w2
j

w3
j

Figure 4.1: The graph G, given a monotone NAE3SAT instance with variables x1, x2, x3, x4
and a clause Cj containing variables x1, x2, x4.
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x1

x2

x3

x4

{1, 2}

{1, 2}

{1, 2}

{1, 2}

c1

c2

c3

c4

c5

yj

zj

{3, 4, 5}

{3, 4, 5}

u1j

u2j

u3j

{2, 3}

{2, 4}

{2, 5}

w1
j

w2
j

w3
j

{1, 3}

{1, 4}

{1, 5}

Figure 4.2: The graph G omitting edges incident to ci for all i ∈ [5]. Each vertex is labeled
with its list assuming the vertex ci receives color i for i ∈ [5].
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From the construction, we have |V | = n + 8m + 5 and |E| = 3n + 34m + 2mn + 10.
Thus the construction has polynomial size and can be done in polynomial time.

For convenience, let us denote C = {ci ∈ V : i ∈ [5]}, X = {xi ∈ V : i ∈ [n]},
U = {ukj ∈ V : j ∈ [m], k ∈ [3]} ∪ {wk

j ∈ V : j ∈ [m], k ∈ [3]} and Y = {yj ∈ V : j ∈
[m]} ∪ {zj ∈ V : j ∈ [m]}.

Theorem 4.0.1. A monotone NAE3SAT instance I is satisfiable if and only if G is 5-
colorable.

Proof. Suppose f : V → [5] is a 5-coloring of G. Since the set {ci : i ∈ [5]} forms a clique,
we may assume that f(ci) = i for every i ∈ [5]. Thus f(xi) ∈ {1, 2} for every vertex xi.

Now take a clause Cj, and let xi1 , xi2 , xi3 be the literals in C. We know that at least
one of f(xi1), f(xi2) and f(xi3) is equal to 1. The reason is, if f(xi1), f(xi2) and f(xi3)
are all equal to 2, then f(u1j) = 3, f(u2j) = 4 and f(u3j) = 5 hold at the same time. But
then the vertex yj has one neighbour of each color, which is a contradiction. Similarly, by
considering the vertices wk

j for k ∈ {1, 2, 3}, we deduce at least one of f(xi1), f(xi2) and
f(xi3) is 2. Thus, by setting xi to be True if f(xi) = 1 and False if f(xi) = 2, we get a
solution to I as desired.

Now suppose we have a truth assignment to all variables x1, x2, . . . , xn, and we want
to define a coloring f : V → [5] of G. Let f(ci) = i for every i ∈ [5]. Let f(xi) = 1 if
xi is assigned True, f(xi) = 2 otherwise. For each clause Cj with literals xi1 , xi2 , xi3 , we
set f(ukj ) = k + 2 and f(wk

j ) = 1 if f(xik) = 2; we set f(ukj ) = 2 and f(wk
j ) = k + 2

if f(xik) = 1. Since for each clause Cj, at least one literal is assigned True and at least
one literal is assigned False, we know that there exists k1, k2 ∈ [3] with k1 6= k2 such that
f(uk1j ) = 2 and f(wk2

j ) = 1. So we can set f(yj) = k1 + 2 and f(zj) = k2 + 2. Therefore,
we have defined a 5-coloring f of G.

Next, let us show that G is 2P4 free.

Lemma 4.0.2. Every induced P4 in G either contains one vertex from C, or one vertex
from X and one vertex from Y .

Proof. Let P = v1v2v3v4 be an induced path in G which contains no vertex from C.

If the vertex v2 is in U , then without loss of generality, we have v1 ∈ X and v3 ∈ Y . But
then v1v3 is an edge of G, which contradicts the fact that P is an induced P4. Similarly,
v3 /∈ U . So we conclude that v2 and v3 can only be in X ∪ Y .

Since the set X and Y are two independent sets while v2v3 ∈ E, v2 and v3 cannot be
both in X or both in Y . Thus, one of the two vertices is in X and the other is in Y .
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Lemma 4.0.3. G is 2P4-free.

Proof. Assume G contains two paths P 1 and P 2 of length 4, such that P 1 ∪ P 2 ' 2P4.
From the definition, we have that P 1 and P 2 are vertex disjoint and non-adjacent to each
other. From 4.0.2, each of P 1 and P 2 either contains one vertex from C, or one vertex
from X and one vertex from Y .

Suppose P 1 has a vertex ci ∈ C, and P 2 has a vertex cj ∈ C. Since P 1 and P 2 are
vertex disjoint, ci 6= cj. But then cicj ∈ E, and thus there is an edge between P 1 and P 2,
a contradiction.

Suppose P 1 has a vertex xi1 ∈ X and yi2 ∈ Y , and P 2 has a vertex xj1 ∈ X and yj2 ∈ Y .
Since P 1 and P 2 are vertex disjoint, xi1 6= xj1 , yi2 6= yj2 . Then from the construction of G,
we know that xi1yj2 and xj1yi2 are edges of G, which contradicts to fact that P 1 and P 2

have no edges between them.

Suppose without loss of generality that P 1 has a vertex ci ∈ C, and P 2 has a vertex
xj1 ∈ X and yj2 ∈ Y . If i ∈ {1, 2} then ciyj2 ∈ E, otherwise cixj1 ∈ E. Both contradict
the fact that there are no edges between P 1 and P 2.

Thus, G is 2P4-free.

Therefore, we have proved Theorem 1.2.6.
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[36] K. Phelps and V. Rödl. On the algorithmic complexity of coloring simple hypergraphs
and Steiner triple systems. Combinatorica, 4:79–88, 03 1984.

72



[37] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, 2(1):264–286, 1930.

[38] V. Rodl and P. Winkler. A ramsey-type theorem for orderings of a graph. SIAM
Journal on Discrete Mathematics, 2(3):402–5, 08 1989.

[39] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing, 6:505–517, 1977.

[40] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz,
(3):25–30, 1964.

73


	List of Figures
	Introduction
	Definitions
	Background and Contributions
	Graphs
	Hypergraphs
	Ordered Graphs

	Tools
	Outline

	Hypergraphs
	Algorithm for the case k=3 and r=2
	Algorithm for the case sr-1
	NP-hardness results for bounded matching number
	Stable Set
	Excluding an induced subhypergraph with one edge
	Linear Hypergraphs
	The polynomial-time algorithm
	NP-hardness of 3-coloring with bounded matching number


	Ordered Graphs
	Algorithm for J16(k,l)-free ordered graphs
	NP-hardness results

	An NP-hardness result of k-Coloring
	References

