Coloring Algorithms for Graphs and Hypergraphs with Forbidden Substructures

by

Yanjia Li

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2022
(c) Yanjia Li 2022

Author's Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Statement of Contributions

This thesis is based on the following papers. I am a major contributor to all the results included in this thesis.

- The r-coloring and maximum stable set problem in hypergraphs with bounded matching number and edge size, joint work with Sophie Spirkl [31].
- Complexity dichotomy for List-5-Coloring with a forbidden induced subgraph, joint work with Sepehr Hajebi and Sophie Spirkl [24].
- List-3-coloring ordered graphs with a forbidden induced subgraph, joint work with Sepehr Hajebi and Sophie Spirkl [23].

Abstract

This thesis mainly focus on complexity results of the generalized version of the r Coloring Problem, the r-Pre-Coloring Extension Problem and the List r Coloring Problem restricted to hypergraphs and ordered graphs with forbidden substructures.

In the context of forbidding non-induced substructure in hypergraphs, we obtain complete complexity dichotomies of the r-Coloring Problem and the r-Pre-Coloring Extension Problem in hypergraphs with bounded edge size and bounded matching number, as well as the r-Pre-Coloring Extension Problem in hypergraphs with uniform edge size and bounded matching number. We also get partial complexity result of the r-Coloring Problem in hypergraphs with uniform edge size and bounded matching number. Additionally, we study the Maximum Stable Set Problem and the Maximum Weight Stable Set Problem in hypergraphs. We obtain complexity dichotomies of these problems in hypergraphs with uniform edge size and bounded matching number.

We then give a polynomial-time algorithm of the 2 -Coloring Problem restricted to the class of 3 -uniform hypergraphs excluding a fixed one-edge induced subhypergraph. We also consider linear hypergraphs and show that 3-Coloring in linear 3-uniform hypergraphs with either bounded matching size or bounded induced matching size is NP-hard if the bound is a large enough constant.

This thesis also contains a near-dichotomy of complexity results for ordered graphs. We prove that the List-3-Coloring Problem in ordered graphs with a forbidden induced ordered subgraph is polynomial-time solvable if the ordered subgraph contains only one edge, or it is isomorphic to some fixed ordered 3-vertex path plus isolated vertices. On the other hand, it is NP-hard if the ordered subgraph contains at least three edges, or contains a vertex of degree two and does not satisfy the polynomial-time case mentioned before, or contains two non-adjacent edges with a specific ordering. The complexity result when forbidding a few ordered subgraphs with exactly two edges is still unknown.

Acknowledgements

I would like to express my deepest appreciation to my supervisor Sophie Spirkl for her help and guidance. I am extremely grateful for the time we worked together, the valuable feedback and suggestions related to research and writing, and all the support and encouragement I received.

I would like to thank my readers Jane Gao and Joseph Cheriyan for reading my thesis.
Finally, I would like to thank my parents for their unconditional love and support.

Table of Contents

List of Figures viii
1 Introduction 1
1.1 Definitions 2
1.2 Background and Contributions 3
1.2.1 Graphs 3
1.2.2 Hypergraphs 5
1.2.3 Ordered Graphs 8
1.3 Tools 11
1.4 Outline 13
2 Hypergraphs 14
2.1 Algorithm for the case $k=3$ and $r=2$ 14
2.2 Algorithm for the case $s \leq r-1$ 16
2.3 NP-hardness results for bounded matching number 19
2.4 Stable Set 22
2.5 Excluding an induced subhypergraph with one edge 24
2.6 Linear Hypergraphs 27
2.6.1 The polynomial-time algorithm 27
2.6.2 NP-hardness of 3-coloring with bounded matching number 28
3 Ordered Graphs 36
3.1 Algorithm for $J_{16}(k, l)$-free ordered graphs 38
3.2 NP-hardness results 46
4 An NP-hardness result of k-Coloring 65
References 70

List of Figures

1.1 A 3-uniform hypergraph. 2
1.2 Two non-isomorphic orderings of the unordered graph P_{3}. 9
1.3 The ordered graphs $J_{16}(k, l)$ and $-J_{16}(k, l)$ with $k=3$ and $l=2$. 9
1.4 The cases of H which are polynomial-time solvable. 10
1.5 The cases of H which are still open. 11
2.1 An example of $G \ltimes H$. 19
2.2 A stable set in a 3-uniform hypergraph (blue vertices). 23
2.3 The construction from Lemma 2.6.3. The colored edge means the label of this edge is the vertex of the corresponding color. The right-hand side shows $H_{0}^{T}, \ldots, H_{4}^{T}$ for $T=(x, y, z, w)$. 30
2.4 The construction of $H_{3}^{x y}, H_{2}^{x y}, H_{1}^{x y}$ (top to bottom) for an edge $x y$ with $f^{\prime}(x y)=k$. 32
3.1 The ordered graphs J_{i} for $i \in[16]$. 37
3.2 The ordered graphs M_{i} for $i \in[8]$. 38
3.3 The construction of H_{1} from Theorem 3.2.3, with M corresponding to vari- ables and T corresponding to clauses. 47
3.4 The construction of H_{2} from Theorem 3.2.4. 52
3.5 An example of a realization (H, L) of G. Each vertex is labeled with its list. 56
3.6 The construction of $\left(H_{3}, \tau_{5}\right)$ from Theorem 3.2.8. 58
3.7 The construction of $\left(H_{3}, \tau_{6}\right)$ from Theorem 3.2.8. 58
3.8 The construction of $\left(H_{4}, \tau_{7}\right)$ from Theorem 3.2.9. 60
3.9 The construction of X_{k}^{i}, X_{k+1}^{i} and X_{k+2}^{i} in $\left(H_{5}, \tau_{8}\right)$ from Theorem 3.2.10. 62
4.1 The graph G, given a monotone NAE3SAT instance with variables $x_{1}, x_{2}, x_{3}, x_{4}$and a clause C_{j} containing variables $x_{1}, x_{2}, x_{4}66$
4.2 The graph G omitting edges incident to c_{i} for all $i \in$ [5]. Each vertex islabeled with its list assuming the vertex c_{i} receives color i for $i \in[5]$.67

Chapter 1

Introduction

Graph coloring is one of the fundamental topics in graph theory. A graph is a pair (V, E) where V is a finite set and $E \subseteq\binom{V}{2}$. The set V is called the set of vertices and E is called the set of edges. The r-Coloring Problem is, given a graph, to decide whether there is an assignment of r colors to the vertex set of this graph, such that two vertices receive different colors if there is an edge joining them.

Graph coloring is a useful tool to solve some real-life problems. The idea of graph coloring first came from coloring a map and was discussed by many early graph theorists, see [9] for example. Later it turned to a well-known theorem: the Four Color Theorem [1] [2], which is also known as the first computer-assisted proof.

Though with the assistance of computer, we may be able to find an optimal coloring of some graphs of small size, in general, it is not guaranteed unless we restrict the input graphs. This is because the r-Coloring Problem is a well-known NP-hard problem.

Theorem 1.0.1 (Karp [29]). For every fixed integer r with $r \geq 3$, the r-Coloring Problem is $N P$-complete.

Because of this result, people then ask whether adding some restrictions on the input graphs makes the coloring problem easier. In this thesis, we mainly focus on the complexity results of different variations of the coloring problems restricted to different generalizations of graphs with forbidden structures.

1.1 Definitions

Hypergraphs are a generalization of graphs. A hypergraph G is a pair (V, E) where V is a finite set, and $E \subseteq 2^{V} \backslash\{\emptyset\} . V$ is called the set of vertices and E is called the set of edges. For a hypergraph $G=(V, E)$, we define $V(G)=V$ and $E(G)=E$. For $k \in \mathbb{N}$, we say that G is k-uniform if $|e|=k$ for all edges $e \in E$, and G is k-bounded if $|e| \leq k$ for all edges $e \in E$. A 2-uniform hypergraph is simply called a graph. An induced subhypergraph H of G is a hypergraph with $V(H) \subseteq V(G)$ and $E(H)=\{e \in E(G): e \subseteq V(H)\}$, and we denote this induced subhypergraph by $G[V(H)]$. Given a hypergraph H, the hypergraph G is called H-free if H is not an induced subhypergraph of G.

Figure 1.1: A 3-uniform hypergraph.
A matching of G is a set of pairwise disjoint edges. A maximal matching of G is a matching which is maximal with respect to inclusion. For a hypergraph G, we denote by $\nu(G)$ the maximum integer s such that G contains a matching of size s. A set $S \subseteq V(G)$ of G is stable if $e \cap S \neq e$ for every $e \in E(G)$. We say a k-uniform hypergraph is complete if its edge set is the set of all k-vertex subsets of its vertex set. A set $S \subseteq V(G)$ is a clique if $G[S]$ is complete. The clique number of G, denoted $\omega(G)$, is the maximum size of a clique S in G.

We use $[r]$ to denote the set $\{1, \ldots, r\}$. Given a hypergraph G and a positive integer r, a function $c: V(G) \rightarrow[r]$ is an r-coloring of G if for all $i \in[r], c^{-1}(i)$ is a stable set in G. G is r-colorable if there exists an r-coloring of G. The chromatic number of G, denoted $\chi(G)$, is the minimum integer r such that G is r-colorable.

A function $c: X \rightarrow[r]$ for some $X \subseteq V(G)$ is a partial r-coloring of G if c is an r-coloring of $G[X]$. For convenience, we also denote a partial coloring as (X, c). Given a partial r-coloring (X, c) of G, an r-precoloring extension of (X, c) is a partial r-coloring $\left(X^{\prime}, c^{\prime}\right)$ with $c^{\prime}(v)=c(v)$ for all $v \in X$, and $X \subset X^{\prime}$. We say that a partial coloring (X, c) r-extends to G if there is an r-precoloring extension $\left(V(G), c^{\prime}\right)$ of (X, c).

For a fixed integer r, the Hypergraph r-Coloring Problem is to decide whether a given hypergraph G is r-colorable, and the Hypergraph r-Precoloring Extension Problem is to decide given a hypergraph G and a partial r-coloring (X, c), whether (X, c) r-extends to G. When restricting to the class of graphs, it is simply called the r-Coloring Problem and the r-Precoloring Extension Problem.

Let G be a graph and let k be a positive integer. A function $c: V(G) \rightarrow[k]$ is a k-coloring of G if for any $u v \in E(G), c(u) \neq c(v)$. A k-list-assignment of G is a function $L: V(G) \rightarrow 2^{[k]}$. Given a k-list-assignment L of G, a k-coloring c is an L-coloring if $c(v) \in L(v)$ for all $v \in V(G) . G$ is L-colorable if G has an L-coloring. For a fixed positive integer k, the List- k-Coloring Problem is to decide, given an instance (G, L) consisting of a graph G and a k-list-assignment L of G, whether G has an L-coloring or not.

An ordered graph G is a triple (V, E, φ) such that (V, E) is a graph with vertex set V and edge set E, and $\varphi: V \rightarrow \mathbb{R}$ is an injective function. We say φ is the ordering of G. For an ordered graph $G=(V, E, \varphi)$, we define $V(G)=V, E(G)=E$, and $\varphi_{G}=\varphi$. For convenience, we also write the ordered graph (V, E, φ) as $\left(G^{\prime}, \varphi\right)$ where $G^{\prime}=(V, E)$ is a graph.

Given an ordered graph $G=(V, E, \varphi)$, an ordered graph $G^{\prime}=\left(V^{\prime}, E^{\prime}, \varphi^{\prime}\right)$ is isomorphic to G if there exists a bijective function $f: V^{\prime} \rightarrow V$ such that for any two vertices v and w in $V^{\prime}, \varphi^{\prime}(v)<\varphi^{\prime}(w)$ if and only if $\varphi(f(v))<\varphi(f(w))$, and $v w \in E^{\prime}$ if and only if $f(v) f(w) \in E$. We denote this as $G^{\prime} \cong G$. An ordered graph H is an ordered induced subgraph of G if there exists a set $X \subseteq V(G)$ such that $H \cong G[X]$; otherwise G is called H-free.

The Ordered Graph List- k-Coloring Problem is the same as coloring the corresponding unordered graph of the input instance.

1.2 Background and Contributions

1.2.1 Graphs

Let P_{k} denote a path with k vertices. Given graphs G and H, let $G+H$ denote the disjoint union of G and H, and $r H$ denote the disjoint union of r copies of H.

The coloring problem with forbidden induced subgraphs is well studied for graphs. For connected graphs H, the only open case of the complexity of the k-Coloring Problem restricted to H-free graphs is when $k=3$ and $H=P_{t}$ for $t \geq 8$. Here are some results
about when the k-Coloring Problem and List- k-Coloring Problem with forbidden induced subgraphs are easy.

Theorem 1.2.1. The k-Coloring Problem restricted to H-free graphs can be solved in polynomial time if:

- $H=P_{6}$ for $k=4$ [Chudnovsky, Spirkl and Zhong [13]];
- $H=r P_{2}$ for all fixed $k, r \in \mathbb{N}$ [Golovach, Johnson, Paulusma and Song [21]; Balas and Yu [5]; Tsukiyama, Ide, Ariyoshi and Shirakawa [39]];
- $H=r P_{3}$ for $k=3$ and all fixed $r \in \mathbb{N}$ [Broersma, Golovach, Paulusma and Song [7]];
and the List- k-Coloring Problem restricted to H-free graphs can be solved in polynomial time if:
- $H=P_{5}$ for all fixed $k \in \mathbb{N}$ [Hoàng, Kamiński, Lozin, Sawada and Shu [25]];
- $H=P_{7}$ for $k=3$ [Bonomo, Chudnovsky, Maceli, Schaudt, Stein and Zhong [6]];
- $H=P_{6}+r P_{3}$ for $k=3$ and all fixed $r \in \mathbb{N}$ [Chudnovsky, Huang, Spirkl and Zhong [12]];
- $H=P_{5}+r P_{1}$ for all fixed $k, r \in \mathbb{N}$ [Couturier, Golovach, Kratsch and Paulusma [14]];

In particular, we will refer to this result several times later.
Theorem 1.2.2 (Golovach, Johnson, Paulusma and Song [21]; Balas and Yu [5]; Tsukiyama, Ide, Ariyoshi and Shirakawa [39]). For fixed positive integers k and r, the k-Coloring Problem restricted to $r P_{2}$-free graphs is polynomial-time solvable.

On the other hand, the following hardness results are known.
Theorem 1.2.3. The k-Coloring Problem restricted to H-free graphs is $N P$-complete $i f$:

- H contains a cycle for all $k \geq 3$ [Kamiński and Lozin [28]];
- H contains a $K_{1,3}$ (a vertex with three non-adjacent neighbors) for all $k \geq 3$ [Holyer [26]];
- $H=P_{6}$ for $k=5$, or $H=P_{7}$ for $k=4$ [Huang [27]];
- $H=P_{5}+P_{2}$ for $k=5$ [Chudnovsky, Huang, Spirkl and Zhong [12]];
and the List- k-Coloring Problem restricted to H-free graphs is NP-complete if:
- $H=P_{6}$ for $k=4$ [Golovach, Paulusma and Song [20]] ;
- $H=P_{4}+P_{2}$ for $k=5$ [Couturier, Golovach, Kratsch and Paulusma [14]] .

Our contribution is, in [24], we have proved the following theorems:
Theorem 1.2.4. For every $r \in \mathbb{N}$, the List-5-Coloring Problem restricted to $r P_{3}$-free graphs can be solved in polynomial time.

With Theorem 1.2.1 and 1.2.3, our result (Theorem 1.2.4) completes the following complexity dichotomy.

Theorem 1.2.5. Let H be a graph. Assuming $P \neq N P$, the List-5-Coloring Problem restricted to H-free graphs can be solved in polynomial time if and only if H is an induced subgraph of $r P_{3}$ or $P_{5}+r P_{1}$ for some $r \in \mathbb{N}$.

In this thesis, we will include the proof of the following theorem from [24]:
Theorem 1.2.6. The k-Coloring Problem restricted to $r P_{4}$-free graphs is $N P$-complete for all $k \geq 5$ and $r \geq 2$.

1.2.2 Hypergraphs

The hypergraph coloring problem is a natural extension of the graph coloring problem. In the past few decades, it has already attracted many people's attention; see the survey [8] for previous results.

In general, the Hypergraph r-Coloring Problem is harder than the r-Coloring Problem. For example, the Hypergraph 2-Coloring Problem is NP-hard, while the 2-Coloring Problem is polynomial-time solvable. The following result shows the Hypergraph r-Coloring Problem is NP-hard, even restriced to k-uniform hypergraphs with some fixed positive integer k.

Theorem 1.2.7 (Lovász [32]; Phelps and Rödl [36]). For all $k \geq 3$ and $r \geq 2$, the k Uniform Hypergraph r-Coloring Problem is NP-complete.

We then focus on bounded or uniform hypergraphs. It is natural to ask whether adding restrictions on the input hypergraphs can still make (some variations of) the coloring problem easier. If so, does a similar condition as used in graph colorings make the hypergraph coloring problem polynomial-time solvable?

We notice that some graphs H have the property that r-coloring H-free graphs can be solved in polynomial time for all r, for example, graphs of the form $H=s P_{2}$, as shown in Theorem 1.2.2. When turning to hypergraphs, it seems that excluding an induced hyper matching would be one of the potential options. But unfortunately, we will show later that even bounding the maximum size of a matching (a much stronger condition than excluding an induced matching) does not always lead to a polynomial-time algorithm.

In this thesis, we will show the following dichotomies:
Theorem 1.2.8. Let k, r and s be positive integers with $k, r \geq 2$. The k-Bounded Hypergraph r-Coloring Problem, the k-Bounded Hypergraph r-Precoloring Extension Problem as well as the k-Uniform Hypergraph r-Precoloring Extension Problem, restricted to hypergraphs G with $\nu(G) \leq s$, are polynomial-time solvable if

- $s \leq r-1$, or
- $k=3$ and $r=2$, or
- $k=2$,
and NP-complete otherwise.
We will also show the following result:
Theorem 1.2.9. Let k, r and s be positive integers with $k, r \geq 2$. The k-Uniform Hypergraph r-Coloring Problem restricted to hypergraphs G with $\nu(G) \leq s$ is polynomialtime solvable if
- $s \leq r-1$, or
- $k=3$ and $r=2$, or
- $k=2$,
and is NP-complete if
- $s \geq(r-1) k+1$, and
- $k \geq 4$ or $r \geq 3$.

Theorem 1.2.2 is based on a result of [5] that $s P_{2}$-free graphs have only polynomially many maximal (with respect to inclusion) stable sets. Using this, [39] gave a polynomialtime algorithm for finding a maximum (weight) stable set in an $s P_{2}$-free graph. We ask an analogous question in hypergraphs with bounded maximum matching size. We will prove:

Theorem 1.2.10. For fixed positive integers k and s with $k \geq 3$, the k-Uniform Hypergraph Maximum Stable Set Problem restricted to hypergraphs with $\nu(G) \leq s$ is polynomial-time solvable, and the k-Uniform Hypergraph Maximum Weight Stable Set Problem restricted to hypergraphs with $\nu(G) \leq s$ is NP-complete.

We also give a first result for excluding an induced subhypergraph:
Theorem 1.2.11. Let $t \in \mathbb{N}$ be fixed, and let H be the 3-uniform hypergraph with $t+3$ vertices and one edge. Then there is a polynomial-time algorithm for the 3-BOUNDED Hypergraph 2-Coloring Problem restricted to H-free hypergraphs.

Finally, we will prove results about linear hypergraphs. A hypergraph G is linear if $\left|e \cap e^{\prime}\right| \leq 1$ for every two distinct $e, e^{\prime} \in E(G)$. The restriction to linear hypergraphs does not affect NP-hardness:

Theorem 1.2.12 (Phelps and Rödl [36]). For every $r \geq 2$, the 3 -Uniform Hypergraph r-Coloring Problem restricted to linear hypergraphs is NP-complete.

The following result gives an algorithm for 2-coloring certain linear hypergraphs:
Theorem 1.2.13 (Chattopadhyay and Reed [10]). There is a polynomial-time algorithm for the k-Uniform Hypergraph 2-Coloring Problem restricted to linear hypergraphs with maximum degree bounded by a function of k.

We ask how our results extend to linear 3 -uniform hypergraphs. For $s \in \mathbb{N}$, we let M_{s} denote the 3 -uniform hypergraph with $3 s$ vertices and s pairwise disjoint edges. We will show that in linear hypergraphs, excluding a fixed induced matching implies bounded matching number, which immediately implies (assuming Theorems 1.2.8 and 1.2.10):

Theorem 1.2.14. Let $s \in \mathbb{N}$. The 3-Uniform Hypergraph 2-Coloring Problem, the 3-Uniform Hypergraph 2-Precoloring Extension Problem, and the 3-Uniform Hypergraph Maximum Stable Set Problem restricted to linear $M_{s^{-}}$ free hypergraphs are polynomial-time solvable.

We will also prove:
Theorem 1.2.15. The 3 -Uniform Hypergraph 3-Coloring Problem restricted to linear hypergraphs G with $\nu(G) \leq 532$ is $N P$-complete.

1.2.3 Ordered Graphs

Motivated by the fact that excluding some induced subgraphs makes the graph coloring problems easier, another idea comes to our mind is the ordered graph. The idea of ordered graphs first came from Ramsey-type questions (see [38] and [34] for example). In many Ramsey-type questions, it is convenient or necessary to give an ordering to the vertex set of a graph. Later in recent years, some other graph theory questions, such as the Turantype questions (see [35]) and the chromatic number (see [4]) were also studied for ordered graphs.

Part of the idea of ordered graph coloring comes from tournament coloring. When coloring tournaments, backedge graphs are used to represent tournaments, which are actually ordered graphs. In fact, we are the first group of people to study the complexity of coloring with forbidden ordered induced subgraphs.

We notice that coloring an ordered graph is actually the same as coloring the corresponding unordered graph. But the difference comes when excluding some induced subgraphs. Even though the ordered graph coloring itself is the same as the graph coloring, we still use "ordered graph coloring" to avoid confusion when talking about induced subgraphs. Under the ordered graph setting, we can break the symmetry and only exclude "a part of" the induced subgraph. In fact, the symmetry is often vital to make the graph coloring problem easier. One interesting result we will show later is, there are two different ordered P_{3} such that the Ordered Graph List-3-Coloring Problem is NP-hard if forbidding one ordered induced subgraph, while forbidding the other one allows us to construct a polynomial-time coloring algorithm.

In order to state our main results, let us define some ordered graphs first. The remaining ordered graphs are defined later when proving the main results. Let $U^{\prime}=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $U=U^{\prime} \backslash\left\{u_{5}\right\}$, the ordering $\varphi^{\prime}: U^{\prime} \rightarrow \mathbb{R}$ with $u_{i} \mapsto i$ for $i \in[5]$. Let $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $\varphi: V \rightarrow \mathbb{R}$ with $v_{i} \mapsto i$ for $i \in[6]$.

Figure 1.2: Two non-isomorphic orderings of the unordered graph P_{3}.

- Let $J_{9}=\left(U,\left\{u_{1} u_{2}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{16}=\left(U \backslash\left\{u_{4}\right\},\left\{u_{1} u_{2}, u_{1} u_{3}\right\},\left.\varphi^{\prime}\right|_{U \backslash\left\{u_{4}\right\}}\right)$.
- Let $M_{1}=\left(V,\left\{v_{1} v_{6}, v_{2} v_{5}\right\}, \varphi\right)$.
- Let $M_{5}=\left(V \backslash\left\{v_{6}\right\},\left\{v_{1} v_{5}, v_{2} v_{3}\right\},\left.\varphi\right|_{V \backslash\left\{v_{6}\right\}}\right)$.
- Let $M_{6}=\left(V \backslash\left\{v_{5}, v_{6}\right\},\left\{v_{1} v_{3}, v_{2} v_{4}\right\},\left.\varphi\right|_{V \backslash\left\{v_{5}, v_{6}\right\}}\right)$.
- Let $M_{7}=\left(V \backslash\left\{v_{5}, v_{6}\right\},\left\{v_{1} v_{4}, v_{2} v_{3}\right\},\left.\varphi\right|_{V \backslash\left\{v_{5}, v_{6}\right\}}\right)$.
- Let $M_{8}=\left(V \backslash\left\{v_{6}\right\},\left\{v_{1} v_{5}, v_{2} v_{4}\right\},\left.\varphi\right|_{V \backslash\left\{v_{6}\right\}}\right)$.

Given an ordered graph $H=(V, E, \varphi)$ and two positive integers k and l, let $H(k, l)$ denote the ordered graph obtained by adding k isolated vertices with ordering $\min \varphi(V)-$ $k, \ldots, \min \varphi(V)-1$, and l isolated vertices with ordering $\max \varphi(V)+1, \ldots, \max \varphi(V)+l$. We denote $-H=\left(V, E, v \mapsto-\varphi_{H}(v)\right)$.

Figure 1.3: The ordered graphs $J_{16}(k, l)$ and $-J_{16}(k, l)$ with $k=3$ and $l=2$.
In our paper [23], we proved the following result, which is not included in this thesis.
Theorem 1.2.16. The Ordered Graph List-3-Coloring Problem restricted to (H, φ)-free ordered graphs is polynomial-time solvable if H contains at most one edge.

In this thesis, we will prove the following theorems from [23]:
Theorem 1.2.17. For all $k, l \in \mathbb{N}$, the Ordered Graph List-3-Coloring Problem restricted to $J_{16}(k, l)$-free ordered graphs is polynomial-time solvable.

Theorem 1.2.18. If H is an ordered graph such that at least one of the following holds:

- H has at least three edges;
- H has a vertex of degree at least 2 and is not isomorphic to $J_{16}(k, l)$ or $-J_{16}(k, l)$ for any $k, l \in \mathbb{N}$;
- H contains J_{9}, M_{1} or M_{5} as induced ordered subgraph;
then the Ordered Graph List-3-Coloring Problem restricted to H-free ordered graphs is NP-hard.

In summary, Theorem 1.2.18 covers all graphs H except:

- graphs H with at most one edge (polynomial-time by Theorem 1.2.16);
- graphs H isomorphic to $J_{16}(k, l)$ or $-J_{16}(k, l)$ (polynomial-time by Theorem 1.2.17);
- graphs H containing M_{1} (NP-hard by Theorem 3.2.2);
- graphs H containing M_{5} (NP-hard by Theorem 3.2.2);
- graphs H containing M_{6} plus isolated vertices (open);
- graphs H isomorphic to $M_{7}(k, l)$ or $M_{8}(k, l)$ (open).

The cases are shown in Figures 1.4 and 1.5, where gray vertices represent an arbitrary number of isolated vertices.

Figure 1.4: The cases of H which are polynomial-time solvable.

Figure 1.5: The cases of H which are still open.

1.3 Tools

In this section, we will introduce some tools and complexity results that are used later in our proofs.

The hypergraph Ramsey number, $R_{k}\left(n_{1}, \ldots, n_{t}\right)$, is the smallest integer N such that for every function $f: E(G) \rightarrow[t]$ for a complete k-uniform hypergraph G with at least N vertices, there exists $i \in[t]$ and a set $S \subseteq V(G)$ with $|S| \geq n_{i}$ such that all edges $e \subseteq S$ satisfy $f(e)=i$.
Theorem 1.3.1 (Ramsey [37]). For all positive integers k, n_{1}, \ldots, n_{t}, the hypergraph Ramsey number $R_{k}\left(n_{1}, \ldots, n_{t}\right)$ exists.

Given an instance I consisting of n Boolean variables and m clauses, each of which contains 2 literals, the 2-SAtisfiability Problem (2-SAT) is to decide whether there exists a truth assignment for every variable such that every clause contains at least one true literal. We say I is satisfiable if it admits such an assignment.

Theorem 1.3.2 (Krom [30]; Aspvall, Plass and Tarjan [3]). The 2-SAT Problem can be solved in time $O(n+m)$, where n is the number of variables and m is the number of clauses.

Given an instance I consisting of n Boolean variables and m clauses, each of which contains 3 literals, the Not-All-Equal-3-Satisfiability Problem (NAE3SAT) is to decide whether there exists a truth assignment for every variable such that every clause contains at least one true literal and one false literal. We say I is satisfiable if it admits such an assignment. A monotone NAE3SAT is a NAE3SAT restricted to instances with no negated literals.

Theorem 1.3.3 (Garey and Johnson [18]). Monotone NAE3SAT is NP-complete.
Similar to vertex coloring, an k-edge-coloring of a graph G is a function $f: E(G) \rightarrow[k]$ such that two edges $e_{1}, e_{2} \in E(G)$ receive different colors if they have a common endpoint.

Theorem 1.3.4 (Vizing [40], Misra and Gries [33]). There is a $O(m n)$-algorithm for edgecoloring a graph G with $D+1$ colors, where D is the maximum degree of G, m is the number of edges and n is the number of vertices.

A graph G is chordal if in G, every cycle of length at least 4 has an edge connecting two vertices of the cycle but not in the cycle. Equivalently, every induced cycle in G is a triangle.

There is an old known result derived from [15] that, the treewidth of a chordal graph can be computed in polynomial-time. Indeed, the treewidth of a chordal graph is bounded by its clique number minus 1 , and what we compute is the clique number. We also know that the List- k-Coloring Problem restricted to graphs with bounded treewidth is polynomial-time solvable with respect to the input size and the treewidth [17]. Thus, we have the following:

Theorem 1.3.5. The List-3-Coloring Problem restricted to chordal graphs with bounded clique number is polynomial-time solvable.

We will also use the following results later.
Theorem 1.3.6 (Edwards [16]). The List-2-Coloring Problem can be solved in time $O\left(n^{2}\right)$, where n is the number of vertices of the input graph.

Theorem 1.3.7 (Garey and Johnson [18]). The Maximum Stable Set Problem is $N P$-complete.

Theorem 1.3.8 (Garey, Johnson and Stockmeyer [19]). The 3-Coloring Problem restricted to graphs with maximum degree at most 4 is NP-complete.

Theorem 1.3.9 (Chlebík and Chlebíková [11]). The List-3-Coloring Problem restricted to bipartite graphs is NP-complete.

1.4 Outline

Chapter 2 is about hypergraphs. We will give two polynomial-time algorithms for hypergraphs in Section 2.1 and Section 2.2 respectively. In Section 2.3, we will talk about some NP-hard cases and complete the results about hypergraphs with bounded matching size. In Section 2.4, we will talk about the k-Uniform Hypergraph Maximum Stable Set Problem and the k-Uniform Hypergraph Maximum Weight Stable Set ProbLem. In Section 2.5, we will give a first result for excluding an induced subhypergraph. Finally, in Section 2.6, we will prove results about linear hypergraphs.

Chapter 3 is about ordered graphs. In Section 3.1, we will talk about one of the polynomial-time solvable case as mentioned above. In Section 3.2, we will define some ordered graphs and show that the Ordered Graph List-3-Coloring Problem restricted to the class of ordered graphs forbidding these ordered graphs as an induced subgraph remains NP-complete.

In Chapter 4, we will cover the hardness result of the k-Coloring Problem restricted to $r P_{4}$-free graphs for all $k \geq 5$ and $r \geq 2$.

Chapter 2

Hypergraphs

In this chapter, we will focus on bounded or uniform hypergraphs.
One of the main ideas used in this chapter is "guessing the coloring of a small set". To describe it more carefully, "small" means the size of this set is upper bounded by some constant, and "guessing" means we enumerate and go through all possible choices for such a set. The key point here is the constant bound, which means we can afford going through all choices of the potential set, and for each choice go through all possible colorings of the vertices of this set. This method is used frequently for this kind of problem, for example, in [6] and [24].

Given two partial r-coloring collections $\mathcal{C}, \mathcal{C}^{\prime}$ of a hypergraph G, we say \mathcal{C} and \mathcal{C}^{\prime} are r-equivalent if \mathcal{C} contains a partial r-coloring c_{1} which r-extends to G if and only if \mathcal{C}^{\prime} contains a partial r-coloring c_{2} which r-extends to G. We say (X, c) is r-equivalent to \mathcal{C} if the collection $\{(X, c)\}$ is r-equivalent to \mathcal{C}. We say that \mathcal{C} is r-equivalent to G if G is r-colorable if and only if \mathcal{C} contains a partial r-coloring which r-extends to G.

2.1 Algorithm for the case $k=3$ and $r=2$

In this section, we will prove:
Theorem 2.1.1. For every fixed positive integer s, the 3 -Bounded Hypergraph 2Coloring Problem restricted to hypergraphs with $\nu(G) \leq s$ is polynomial-time solvable.

A common strategy for coloring algorithms is using an algorithm for 2-SAT as a subroutine.

Proof of Theorem 2.1.1. Let G be a 3 -bounded hypergraph with $\nu(G) \leq s$. First, we create a collection \mathcal{C} of partial 2-colorings as follows. We fix a maximal matching F of G. We define the set $X^{F}=\cup_{e \in F} e$. Let \mathcal{C} be the set of all partial 2-colorings ($X^{F}, c: X^{F} \rightarrow[2]$) of G.

We claim that the collection \mathcal{C} has the following three properties. The theorem follows immediately from these properties.
(1) \mathcal{C} is 2-equivalent to G.

It suffices to show that if G has a 2 -coloring c, then there is a partial 2-coloring in \mathcal{C} which has a 2-precoloring extension. Let c be a 2 -coloring of G. Consider the partial 2-coloring $\left(X^{F},\left.c\right|_{X^{F}}\right) \in \mathcal{C}$. Then c is a 2-precoloring extension of $\left.c\right|_{X^{F}}$. Thus we have proved (1).

(2) \mathcal{C} can be computed in time $O\left(n^{3}\right)$.

Let $|V(G)|=n$. Since G is 3-bounded, $|E(G)| \leq O\left(n^{3}\right)$. We can go through all edges and construct a maximal matching F in time $O\left(n^{3}\right)$. Checking whether (X, c) is a partial 2-coloring takes time $O(1)$, as the size of X is bounded. Since $|F| \leq \nu(G) \leq s$, we have $|\mathcal{C}| \leq 2^{3 s}=O(1)$. Thus, \mathcal{C} can be constructed from F in time $O\left(n^{3}\right)$.
(3) For every partial 2-coloring c^{\prime} in \mathcal{C}, whether c^{\prime} has a 2-precoloring extension $(V(G), c)$ can be decided in polynomial time.

Let $\left(X^{F}, c^{\prime}\right) \in \mathcal{C}$. Since F is a maximal matching and G is 3-bounded, for every edge $e \in E(G) \backslash F,\left|e \backslash X^{F}\right| \leq 2$.

We define a 2-precoloring extension (X, c) of c^{\prime} as follows. We define the sets X_{0}, X_{1}, \ldots iteratively. Let $X_{0}=X^{F}$. Let $c(v)=c^{\prime}(v)$ for all $v \in X^{F}$. Suppose that we have defined X_{i}. If there exists an edge $e \in E(G)$ such that $e \subseteq X_{i}$ and e is monochromatic, then c^{\prime} does not have a 2 -precoloring extension and we return this determination. If there exists an edge $e \in E(G)$ such that $\left|e \backslash X_{i}\right|=1$ and $c\left(e \cap X_{i}\right)=\{j\}$ for some $j \in[2]$, we define $c(w)$ to be the unique element of $[2] \backslash\{j\}$ for $w \in e \backslash X_{i}$, and define $X_{i+1}=X_{i} \cup\{w\}$. Otherwise we stop and let $X=X_{i}$. This terminates within at most $O\left(n^{3}\right)$ steps. From the construction, clearly $\left\{\left(X_{i}, c\right)\right\}$ is equivalent to $\left\{\left(X_{i+1}, c\right)\right\}$ at every step; and it follows that $\{(X, c)\}$ is equivalent to $\left\{\left(X^{F}, c^{\prime}\right)\right\}$, and that if this step returns a determination that (X^{F}, c^{\prime}) does not 2-extend to G, then this determination is correct.

We define a 2-SAT instance as follows. For every $v \in V(G) \backslash X$, we have a variable x_{v}. Let $E^{\prime} \subseteq E(G)$ be the set of edges such that $|e \backslash X|=2$ for all $e \in E^{\prime}$. For every edge
$e \in E^{\prime}$, we create a clause C_{e}. Let $e=\{v, u, w\}$ with $v \in X$ and $u, w \in V(G) \backslash X$. If $c(v)=1$, we set $C_{e}=x_{u} \vee x_{w}$. Otherwise, let $C_{e}=\overline{x_{u}} \vee \overline{x_{w}}$.

If the 2-SAT instance has a solution x, where "true" and "false" are represented by 1 and 0 respectively, then we set $c(v)=x_{v}+1$ for every $v \in V(G) \backslash X$. Take an edge $e \in E(G)$. If $|e \backslash X| \leq 1$, by the construction of X, e is not monochromatic. If $|e \backslash X|=2$, the clause C_{e} of 2-SAT instance and the construction of c guarantees that at least one of the vertices in $e \backslash X$ receives the opposite color from the vertex in $e \cap X$. Since F is maximal, there is no edge e in $E(G)$ with $|e \backslash X|=3$. Thus, c is a 2-precoloring extension of $\left(X, c^{\prime}\right)$.

If there is a 2-precoloring extension d of (X, c), then we set $x_{v}=d(v)-1$ for every $v \in V(G) \backslash X$. For every edge $e=\{v, u, w\} \in E^{\prime}$ with $e \cap X=\{v\}$, if $d(v)=1$, then $C_{e}=x_{u} \vee x_{w}$. Since e is not monochromatic, without loss of generality we may assume $d(u)=2$, and so $x_{u}=d(v)-1=1$. Thus, the clause C_{e} is satisfied. A similar argument applies for $d(v)=2$. From the construction of clauses of this 2-SAT instance, we conclude that x is a solution to the 2-SAT instance.

Therefore, deciding whether (X, c) has a 2-coloring extension is equivalent to solving the 2-SAT instance defined above.

It remains to show that this can be done in polynomial-time. Let n be the number of vertices of G. Constructing the set X takes time $O\left(n^{3}\right)$. Constructing the equivalent 2-SAT instance takes time $O\left(n^{3}\right)$. Solving this 2-SAT instance takes time $O(n)$. So the total running time is $O\left(n^{3}\right)$.

This immediately implies, for fixed r, a polynomial-time algorithm for 2-coloring tournaments with no r vertex-disjoint cyclic triangles, which was first proved by Hajebi [22].

2.2 Algorithm for the case $s \leq r-1$

In this section, we will prove:
Theorem 2.2.1. For fixed positive integers r, k, with $s \leq r-1$, the k-Bounded Hypergraph r-Precoloring Extension Problem restricted to hypergraphs G with $\nu(G) \leq s$ is polynomial-time solvable.

The key idea is to precolor a set of vertices, and in each step, carefully adding vertices to our set such that there will be some color j with the property that edges which only contain
vertices precolored j will now contain more precolored vertices than before. Eventually, either all vertices in an edge will be precolored j (and so this precoloring does not lead to a valid coloring) or for some color j, every edge contains a vertex precolored with a color other than j (and so it is safe to color all remaining vertices with color j).

Lemma 2.2.2. Let $r, k, s \in \mathbb{N}$ with $s \leq r-1$. Let G be a k-bounded hypergraph with $\nu(G) \leq s$. Given a partial r-coloring (X, c) of G, we define $E_{i}=\{e \in E(G): e \cap X \subseteq$ $\left.c^{-1}(i)\right\}$. If $E_{i} \neq \emptyset$ for all $i \in[r]$, then there is a vertex set $X^{\prime} \supset X$ and a collection of partial r-colorings \mathcal{C} such that

- For every $\left(X^{*}, c^{*}\right) \in \mathcal{C}, X^{*}=X^{\prime}$;
- $|\mathcal{C}| \leq r^{k s}=O(1)$, and \mathcal{C} can be computed from (X, c) in time $O\left(n^{3}\right)$;
- There is a color $j \in[r]$ such that for every edge $e \in E_{j},\left|e \cap X^{\prime}\right| \geq|e \cap X|+1$; and
- \mathcal{C} is r-equivalent to (X, c).

Proof. Let S be a matching in G such that $S \subseteq \bigcup_{i \in[r]} E_{i}$, and S is maximal with respect to this condition. Let $X^{S}=\cup_{e \in S} e$. Let $X^{\prime}=X \cup X^{S}$. Let \mathcal{C} be the set of all partial r-colorings $\left(X^{\prime}, c^{\prime}: X^{\prime} \rightarrow[r]\right)$ such that $\left.c^{\prime}\right|_{X}=c$. The first property follows immediately from the construction. Since $|S| \leq s,\left|X^{S}\right| \leq k s$, and we have $|\mathcal{C}| \leq r^{k s}=O(1)$. Finding S takes time $O\left(n^{3}\right)$, and thus, \mathcal{C} can be computed from (X, c) in time $O\left(n^{3}\right)$. This proves the second property.

For every $e \in S$, there exists $i \in[r]$ such that $e \in E_{i}$, and therefore we have that $c(v)=i$ for all $v \in e \cap X$. Since $|S| \leq s \leq r-1$, there exists a color $j \in[r]$ such that $c(v) \neq j$ for all $v \in X \cap X^{S}$. Let e be an edge in E_{j}. We know that $e \cap X \subseteq c^{-1}(j)$, so $e \cap X^{S} \cap X=\emptyset$. But from the definition of S, we have $e \cap X^{S} \neq \emptyset$, as otherwise S is not maximal. Thus, $e \cap\left(X^{S} \backslash X\right) \neq \emptyset$. This proves the third property.

Suppose that there is a partial r-coloring $\left(X^{\prime}, c^{\prime}\right) \in \mathcal{C}$ which r-extends to G. Then by the construction of $\mathcal{C},\left.c^{\prime}\right|_{X}=c$. Thus, every r-precoloring extension of $\left(X^{\prime}, c^{\prime}\right)$ is also an r-precoloring extension of (X, c). Now suppose $(X, c) r$-extends to $V(G)$, that is, there is a coloring $c^{\prime}: V(G) \rightarrow[r]$ with $\left.c^{\prime}\right|_{X}=c$. Then by the construction of $\mathcal{C},\left(X^{\prime},\left.c^{\prime}\right|_{X^{\prime}}\right) \in \mathcal{C}$. Therefore, the last property holds.

Theorem 2.2.3. For fixed positive integers r, k, s with $s \leq r-1$, there is an algorithm with the following specifications:

- Input: A k-bounded hypergraph G with $\nu(G) \leq s$, and an r-precoloring (X, c).
- Output: one of
- an r-precoloring extension of (X, c) to $V(G)$;
- a determination that (X, c) does not r-extend to G.
- Running time: $O\left(|V(G)|^{3}\right)$.

Proof. We will define a sequence \mathcal{C}_{0}, \ldots of collections of partial r-colorings iteratively, as follows. Let $\mathcal{C}_{0}=\{(X, c)\}$.

Suppose that we have defined \mathcal{C}_{t}. Given a partial r-coloring $(Y, d) \in \mathcal{C}_{t}$, let $E_{t, i}^{Y, d}=\{e \in$ $\left.E(G): e \cap Y \subseteq d^{-1}(i)\right\}$. If $E_{t, i}^{Y, d}=\emptyset$ for some $i \in[r]$ and $(Y, d) \in \mathcal{C}_{t}$, then we define d^{\prime} by setting $\left.d^{\prime}\right|_{Y}=\left.d\right|_{Y}$ and $d^{\prime}(v)=i$ for all $v \in V(G) \backslash Y$ and return d^{\prime}. Note that d^{\prime} is an r-coloring of G : Since (Y, d) is a partial r-coloring, it follows that no edge of $G[Y]$ is monochromatic. Therefore, if G contains an edge e which is monochromatic with respect to d^{\prime}, then $e \backslash Y \neq \emptyset$. It follows that $e \backslash Y \neq \emptyset$, and since $d^{\prime}(v)=i$ for all $v \in V(G) \backslash Y$, it follows that every vertex of e is colored i by d^{\prime}. But then $e \cap Y \subseteq d^{-1}(i)$, a contradiction. This shows that d^{\prime} is an r-coloring of G.

Otherwise, for every $(Y, d) \in \mathcal{C}_{t}$, we have that $E_{t, i}^{Y, d} \neq \emptyset$ for all $i \in[r]$, and so there is a collection of partial r-colorings $\mathcal{C}_{t+1}^{Y, d}$ which satisfies the properties in Lemma 2.2.2 applied to G and (Y, d). Let $\mathcal{C}_{t+1}=\cup_{(Y, d) \in \mathcal{C}_{t}} \mathcal{C}_{t+1}^{Y, d}$. By Lemma 2.2.2, \mathcal{C}_{t+1} is r-equivalent to \mathcal{C}_{t}; and inductively, \mathcal{C}_{t+1} is equivalent to $\mathcal{C}_{0}=\{(X, c)\}$. Thus, if $\mathcal{C}_{t+1}=\emptyset$, then (X, c) does not r-extend to G and we return this.

It remains to show that this algorithm terminates in polynomial time. To prove this, we define a potential function $\psi((Y, d))=\sum_{i \in[r]} \max \left(\{0\} \cup\left\{|e \backslash Y|: e \cap Y \subseteq d^{-1}(i)\right\}\right)$. We have $\psi((X, c)) \leq r k$ since each summand is at most k. We will prove by induction on t that for every $(Y, d) \in \mathcal{C}_{t}$, we have $\psi((Y, d)) \leq r k-t$.

It suffices to show that if $(Y, d) \in \mathcal{C}_{t}$ and $\left(Y^{\prime}, d^{\prime}\right) \in \mathcal{C}_{t+1}^{Y, d}$ then $\psi\left(\left(Y^{\prime}, d^{\prime}\right)\right) \leq \psi((Y, d))-1$. By the third property of Lemma 2.2.2, there is a color $j \in[r]$ such that for every edge $e \in E_{t, j}^{Y, d},\left|e \cap Y^{\prime}\right| \geq|e \cap Y|+1$, which means that $\max \left(\{0\} \cup\left\{\left|e \backslash Y^{\prime}\right|: e \cap Y^{\prime} \subseteq d^{\prime-1}(j)\right\}\right) \leq$ $\max \left(\left\{|e \backslash Y|: e \cap Y \subseteq d^{-1}(j)\right\}\right)-1$. It follows that $\psi\left(\left(Y^{\prime}, d^{\prime}\right)\right) \leq \psi((Y, d))-1$, as claimed.

Since $\psi((Y, d)) \geq 0$ for every partial r-coloring (Y, d) of G, it follows that this algorithm terminates in t^{\prime} steps for some $t^{\prime} \leq r k$. Since there are $O(1)$ iterations, and by Lemma 2.2.2, we have $\left|\mathcal{C}_{t}\right|=O(1)$ for all $t \leq t^{\prime}$. Moreover, the set \mathcal{C}_{t+1} can be computed from \mathcal{C}_{t} in time $\left|\mathcal{C}_{t}\right| \cdot O\left(n^{3}\right)=O\left(n^{3}\right)$. Thus, each step takes time $O\left(n^{3}\right)$. So the total running time is $O\left(n^{3}\right)$.

2.3 NP-hardness results for bounded matching number

Let G and H be two hypergraphs. We define an operation, \ltimes, via $G \ltimes H:=(V(G) \cup$ $V(H), E(G) \cup\{e \cup\{x\}: e \in E(H), x \in V(G)\})$.

Figure 2.1: An example of $G \ltimes H$.
We have the following properties.
Lemma 2.3.1. Let G and H be hypergraphs. Then $\nu(G \ltimes H) \leq|V(G)|$.
Proof. This follows immediately from the fact that every edge in $G \ltimes H$ contains at least one vertex in $V(G)$.

Lemma 2.3.2. Let H be a hypergraph. If G is a hypergraph with $\chi(G)=r$, then $G \ltimes H$ is r-colorable if and only if H is r-colorable.

Proof. Suppose for a contradiction that $G \ltimes H$ has an r-coloring c and H is not r-colorable. Since $\left.c\right|_{V(H)}$ is not an r-coloring of H, there exists an edge $e \in E(H)$ such that e is monochromatic with respect to $\left.c\right|_{V(H)}$. Since $\chi(G)=r$ and $(G \ltimes H)[V(G)]=G$, there exist vertices $v_{1}, \ldots, v_{r} \in V(G)$ such that $c\left(v_{i}\right)=i$ for all $i \in[r]$. But then one of the edges $e \cup\left\{v_{1}\right\}, \ldots, e \cup\left\{v_{r}\right\}$ is monochromatic, which contradicts the fact that c is an r-coloring of $G \ltimes H$.

Now suppose that H has an r-coloring d. Since $\chi(G)=r, G$ has an r-coloring d^{\prime}. We define a new function $d^{*}: V(G \ltimes H) \rightarrow[r]$ with $d^{*}(v)=d(v)$ if $v \in V(H)$ and $d^{*}(v)=d^{\prime}(v)$ otherwise. For every edge $e \in E(G \ltimes H)$, if $e \in E(G)$, then $\left.d^{*}\right|_{e}=\left.d^{\prime}\right|_{e}$. So e is not monochromatic. Otherwise $e=e^{\prime} \cup\{v\}$ for some $e^{\prime} \in E(H)$ and $v \in V(G)$.

Then $\left.d^{*}\right|_{e^{\prime}}=\left.d\right|_{e^{\prime}}$, and since the edge e^{\prime} is not monochromatic, it follows that e is not monochromatic. Thus d^{*} is an r-coloring of $G \ltimes H$.

Theorem 2.3.3. Given fixed integers k and r with $k, r \geq 2$, if the k-Bounded Hypergraph r-Coloring Problem is $N P$-complete, then the $(k+1)$-Bounded Hypergraph r-Coloring Problem restricted to hypergraphs with $\nu(G) \leq r$ is NP-complete.

Proof. Let H be a k-bounded hypergraph. We set the hypergraph $G=K_{r}$, a complete graph on r vertices. We have $\chi(G)=r$. The hypergraph $G \ltimes H$ can be constructed from G and H in time $O\left(n^{k+1}\right)$, where $n=|V(G \ltimes H)|$. By the construction, $G \ltimes H$ is $(k+1)$-bounded. The remaining part of the proof follows immediately from Lemmas 2.3.1 and 2.3.2.

Theorem 2.3.4. Given fixed integers k and r with $k, r \geq 2$, if the k-Uniform Hypergraph r-Coloring Problem is $N P$-complete, then the $(k+1)$-Uniform Hypergraph r-Coloring Problem restricted to hypergraphs with $\nu(G) \leq(r-1) k+1$ is NP-complete.

Proof. Let H be a k-uniform hypergraph and let G be the complete $(k+1)$-uniform hypergraph with $(r-1) k+1$ vertices. The hypergraph $G \ltimes H$ can be constructed from G and H in time $O\left(n^{k+1}\right)$, where $n=|V(G \ltimes H)|$. By the construction, $G \ltimes H$ is $(k+1)$-uniform.

We want to show that $\chi(G)=r$. We choose k vertices to color i for every $i \in[r-1]$, and color the remaining vertex r. Since G is $(k+1)$-uniform, every edge of G receives at least two colors. Thus, $\chi(G) \leq r$. Suppose for a contradiction that $\chi(G) \leq r-1$. Then take an $(r-1)$-coloring c of G. There exists one color i with $\left|c^{-1}(i)\right| \geq\left\lceil\frac{(r-1) k+1}{r-1}\right\rceil \geq\left\lceil k+\frac{1}{r-1}\right\rceil=k+1$. This means that there is a monochromatic edge in G, which contradicts the fact that c is an $(r-1)$-coloring of G.

The remaining part of the proof follows immediately from Lemmas 2.3.1 and 2.3.2.
Theorem 2.3.5. Given fixed integers k and r with $k, r \geq 2$, if the k-Uniform Hypergraph r-Coloring Problem is $N P$-complete, then the $(k+1)$-Uniform Hypergraph r-Precoloring Extension Problem restricted to hypergraphs with $\nu(G) \leq r$ is NPcomplete.

Proof. Let H be a k-uniform hypergraph and let G be a graph with a set of vertices $\left\{v_{1}, \ldots, v_{r}\right\}$ and no edges. Define the precoloring of $G \ltimes H$ to be $\left(V(G), c^{\prime}\right)$ with $c^{\prime}\left(v_{i}\right)=i$ for all $i \in[r]$. The hypergraph $G \ltimes H$ can be constructed from G and H in time $O\left(n^{k+1}\right)$, and the precoloring $\left(V(G), c^{\prime}\right)$ of $G \ltimes H$ can be constructed in time $O(n)$, where $n=|V(G \ltimes H)|$. The graph H is k-uniform and $E(G)=\emptyset$, so $G \ltimes H$ is $(k+1)$-uniform.

It remains to show that $G \ltimes H$ has an r-precoloring extension with respect to the precoloring $\left(V(G), c^{\prime}\right)$ if and only if H is r-colorable.

Suppose $G \ltimes H$ has an r-precoloring extension c. Assume for a contradiction that H is not r-colorable. Since $\left.c\right|_{V(H)}$ is not an r-coloring of G, there exists an edge $e \in E(H)$ such that e is monochromatic. By the definition of c^{\prime}, one of the vertices v_{1}, \ldots, v_{r} receives the same color as e, which contradicts the fact that c is an r-precoloring extension of $G \ltimes H$ and $\left(V(G), c^{\prime}\right)$.

Now suppose that H has an r-coloring d. We define a new function $d^{*}: V(G \ltimes H) \rightarrow[r]$ with $d^{*}(v)=d(v)$ if $v \in V(H)$ and $d^{*}(v)=c^{\prime}(v)$ otherwise. For every edge $e \in E(G \ltimes H)$, $e=e^{\prime} \cup\{v\}$ for some $e^{\prime} \in E(H)$ and $v \in V(G)$. Then $\left.d^{*}\right|_{e^{\prime}}=\left.d\right|_{e^{\prime}}$. The edge e^{\prime} is not monochromatic, so e is not monochromatic. Thus d^{*} is an r-coloring of $G \ltimes H$ which r-extends $\left(V(G), c^{\prime}\right)$.

Theorem 2.3.6. Given fixed integers k and r with $k, r \geq 2$, the k-Uniform Hypergraph r-Coloring Problem is NP-complete if $k+r \geq 5$.

Proof. The statement holds for the cases $k=3$ and $r=2$ by Theorem 1.2.7, and $k=$ 2 and $r \geq 3$ by Theorem 1.0.1. By Theorem 2.3.4, if the k-Uniform Hypergraph r-Coloring Problem is NP-complete, then the $(k+1)$-Uniform Hypergraph r Coloring Problem is NP-complete.

Now we are ready to prove our main results.
Theorem 1.2.8. Let k, r and s be positive integers with $k, r \geq 2$. The k-Bounded Hypergraph r-Coloring Problem, the k-Bounded Hypergraph r-Precoloring Extension Problem as well as the k-Uniform Hypergraph r-Precoloring Extension Problem, restricted to hypergraphs G with $\nu(G) \leq s$, are polynomial-time solvable if

- $s \leq r-1$, or
- $k=3$ and $r=2$, or
- $k=2$,
and $N P$-complete otherwise.

Proof of Theorem 1.2.8. The first and second polynomial-time solvable cases follow from Theorem 2.2.1 and Theorem 2.1.1 respectively. The third polynomial-time solvable case follows from Theorem 1.2.2, as a graph G with $\nu(G) \leq s$ is guaranteed to be $(s+1) P_{2}$-free. Combining Theorem 2.3.6 with either Theorem 2.3.3 or Theorem 2.3.5, we have completed the dichotomies.

Theorem 1.2.9. Let k, r and s be positive integers with $k, r \geq 2$. The k-Uniform HyperGraph r-Coloring Problem restricted to hypergraphs G with $\nu(G) \leq s$ is polynomialtime solvable if

- $s \leq r-1$, or
- $k=3$ and $r=2$, or
- $k=2$,
and is NP-complete if
- $s \geq(r-1) k+1$, and
- $k \geq 4$ or $r \geq 3$.

Proof of Theorem 1.2.9. The first and second polynomial-time solvable cases follow from Theorem 2.2.1 and Theorem 2.1.1 respectively. The third polynomial-time solvable case follows from Theorem 1.2.2, as a graph G with $\nu(G) \leq s$ is guaranteed to be $(s+1) P_{2}$-free. The NP-completeness result comes from Theorems 2.3.6 and 2.3.4.

2.4 Stable Set

In this section, we consider the complexity of stable set problems in hypergraphs with bounded matching number. We recall that a set $S \subseteq V(G)$ of G is stable if $e \cap S \neq e$ for every $e \in E(G)$. A stable set is maximal if it is maximal with respect to inclusion. A stable set is maximum if it is a stable set of maximum cardinality. The k-Uniform Hypergraph Maximum Weight Stable Set Problem is the following: Given a k-uniform hypergraph G and a weight function $w: V(G) \rightarrow \mathbb{R}_{\geq 0}$, compute a stable set $S \subseteq V(G)$ with $w(S)$ maximized. When all weights are 1 , this is called the k-Uniform Hypergraph Maximum Stable Set Problem.

For graphs, the Graph Maximum Weight Stable Set Problem can be solved in polynomial time if the maximum size of an induced matching is bounded:

Figure 2.2: A stable set in a 3-uniform hypergraph (blue vertices).

Theorem 2.4.1 (Balas and Yu [5]). For a fixed positive integer s, the Graph Maximum Weight Stable Set Problem restricted to $s P_{2}$-free graphs can be solved polynomial time.

For hypergraphs, we notice that:
Theorem 2.4.2. For fixed positive integers k and s, the k-Uniform Hypergraph Maximum Stable Set Problem restricted to hypergraphs with $\nu(G) \leq s$ is polynomial-time solvable.

Proof. Let G be a k-uniform hypergraph with $\nu(G) \leq s$, and let n be the number of vertices of G. Let $F \subseteq E(G)$ be a maximal matching. We have $|F| \leq s$. The set $V(G) \backslash\left(\cup_{e \in F} e\right)$ is stable as F is maximal, and $\left|V(G) \backslash\left(\cup_{e \in F} e\right)\right| \geq n-k s$. Thus, a maximum stable set of G is of size at least $n-k s$.

Therefore, to find a maximum stable set, we can simply enumerate all choices of a set $U \subseteq V(G)$ with $|U| \leq k s$, and check if the set $V(G) \backslash U$ is stable, and return the largest stable set found this way. There are $n^{k s}$ choices of the set U, and for each U, it takes time $O\left(n^{k}\right)$ to verify stability. Thus, the total running time is $O\left(n^{k s+k}\right)$.

In contrast, we will show the following result for the weighted version of the problem:
Theorem 2.4.3. For a fixed positive integer $k \geq 3$, the k-Uniform Hypergraph Maximum Weight Stable Set Problem restricted to hypergraphs with $\nu(G) \leq 1$ is NPcomplete.

In order to prove Theorem 2.4.3, we need the following results. Recall the theorem:
Theorem 1.3.7. The Maximum Stable Set Problem is NP-complete.

Lemma 2.4.4. For a fixed positive integers $k \geq 3$, if the $(k-1)$-Uniform Hypergraph Maximum Weight Stable Set Problem is NP-complete, then the k-Uniform Hypergraph Maximum Weight Stable Set Problem restricted to hypergraphs with $\nu(G) \leq 1$ is $N P$-complete.

Proof. Suppose the ($k-1$)-Uniform Hypergraph Maximum Weight Stable Set Problem is NP-complete. Let G be a $(k-1)$-uniform hypergraph with weight function w. We construct a new k-uniform hypergraph H with $V(H)=\{v\} \cup V(G)$ and $E(H)=$ $\{\{v\} \cup e: e \in E(G)\}$. We define the weight function $w^{\prime}: V(G) \rightarrow \mathbb{R}_{\geq 0}$ such that $w^{\prime}(u)=w(u)$ for each $u \in V(G)$ and $w^{\prime}(v)=\sum_{u \in V(G)} w(u)+1$. From the construction, since v is contained in every edge of H, it follows that the hypergraph H satisfies $\nu(H) \leq 1$.

For a set $T \subseteq V(G), T$ is a stable set of G if and only if $T \cup\{v\}$ is a stable set of H. Let S be a maximum weight stable set of H with respect to the weight function w^{\prime}. By the construction, the vertex v is in S. It follows that $S \backslash\{v\}$ is a maximum weight stable set of G, and thus, to find a maximum weight stable set of G, it suffices to find a maximum weight stable set of H.

Since the construction can be done in polynomial time, we have proved this lemma.

Proof of Theorem 2.4.3. We prove this by induction on k. When $k=2$, by Theorem 1.3.7, the Graph Maximum Stable Set Problem is NP-complete. Thus, the Graph Maximum Weight Stable Set Problem is NP-complete.

Suppose that the k-Uniform Hypergraph Maximum Weight Stable Set Problem is NP-complete. By Lemma 2.4.4, the $(k+1)$-Uniform Hypergraph Maximum Weight Stable Set Problem restricted to hypergraphs with $\nu(G) \leq 1$ is NP-complete. Moreover, the $(k+1)$-Uniform Hypergraph Maximum Weight Stable Set ProbLEM is NP-complete.

2.5 Excluding an induced subhypergraph with one edge

For $t \in \mathbb{N}$ with $t \geq 3$, let H_{t} be the 3-uniform hypergraph with $t+3$ vertices and one edge. In this section, we will give a polynomial-time algorithm for 2-coloring 3-bounded H_{t}-free hypergraphs.

Lemma 2.5.1. Let $t \in \mathbb{N}$, and let G be a 3-bounded H_{t}-free hypergraph. There is a polynomial-time algorithm to test if G has a 2-coloring with at least t vertices of each color.

Proof. We may assume that $|e| \geq 2$ for all $e \in E(G)$, since G is not 2-colorable otherwise. Let \mathcal{C} be a partial 2-coloring collection containing all partial 2-colorings ($X \cup Y, c^{\prime}$) for every pair of disjoint sets $X, Y \subseteq V(G)$ with $|X|=|Y|=t$ and X, Y stable, and $c^{\prime}: X \cup Y \rightarrow[2]$ with $c^{\prime}(v)=1$ for all $v \in X$ and $c^{\prime}(v)=2$ otherwise. It suffices to show that \mathcal{C} has the following three properties.
(1) \mathcal{C} is 2-equivalent to the collection of all 2-colorings of G with at least t vertices of each color.

We only need to show that if G has a 2-coloring c with at least t vertices of each color, then there exists a partial 2 -coloring in \mathcal{C} which 2 -extends to G. Let c be a 2 -coloring of G such that $\left|c^{-1}(i)\right| \geq t$ for all $i \in[2]$. Let X and Y be subsets of $c^{-1}(1)$ and $c^{-1}(2)$ respectively, with $|X|=|Y|=t$. We have $\left(X \cup Y,\left.c\right|_{X \cup Y}\right) \in \mathcal{C}$, and c is a 2-precoloring extension of $\left(X \cup Y,\left.c\right|_{X \cup Y}\right)$ to $V(G)$. This proves (1).
(2) \mathcal{C} can be computed in time $O\left(n^{2 t+3}\right)$, where $n=|V(G)|$.

Since G is 3 -bounded, $|E(G)| \leq O\left(n^{3}\right)$. By construction, we have $|\mathcal{C}| \leq O\left(n^{2 t}\right)$. Constructing the sets X, Y and the corresponding partial 2-coloring c takes time $O\left(n^{2 t}\right)$. Checking whether $(X \cup Y, c)$ is a partial 2-coloring takes time $O\left(n^{3}\right)$. Thus, \mathcal{C} can be constructed in time $O\left(n^{2 t+3}\right)$. This proves (2).
(3) For every partial 2-coloring $(X \cup Y, c)$ in \mathcal{C}, whether c 2-extends to G can be decided in polynomial time.

For convenienve, let us denote $S=X \cup Y$. We define a 2-SAT instance as follows. For every $v \in V(G) \backslash S$, we have a variable x_{v}. Let $E^{\prime} \subseteq E(G)$ be the set of edges $e \in E(G)$ with $|c(e \cap S)|=1$. Note that for every edge $e \in E^{\prime}$, we have $e \cap S \neq \emptyset$ and $e \backslash S \neq \emptyset$ (since (S, c) is a partial 2-coloring). Thus, $|e \backslash S| \in\{1,2\}$. For every edge $e \in E^{\prime}$, we create a clause C_{e}. Let $u, w \in e \backslash S$ with $u \neq w$ with $|e \backslash S|=2$. If $c(e \cap S)=\{1\}$, we set $C_{e}=x_{u} \vee x_{w}$. Otherwise, let $C_{e}=\overline{x_{u}} \vee \overline{x_{w}}$. Next, let $E^{\prime \prime}$ be the set of edges $e \in E(G)$ with $|e|=2$ and $e \cap S=\emptyset$. For every $e \in E^{\prime \prime}$, say $e=\{u, w\}$, we add two clauses $C_{e}^{\prime}=x_{u} \vee x_{w}$ and $C_{e}^{\prime \prime}=\overline{x_{u}} \vee \overline{x_{w}}$.

If the 2-SAT instance has a solution $\left(s_{v}\right)_{v \in V(G) \backslash S}$, where "true" and "false" are represented by 1 and 0 respectively, then we set $d(v)=s_{v}+1$ for every $v \in V(G) \backslash S$, and
$d(v)=c(v)$ for all $v \in S$. We claim that d is a 2-coloring of G. Consider an edge $e \in E(G)$. If $|c(e \cap S)|>1$, then e is not monochromatic. If $|c(e \cap S)|=1$, then $e \in E^{\prime}$. It follows that the clause C_{e} of 2-SAT instance and the construction of d guarantees that at least one vertex in $e \backslash S$ receives the opposite color from the vertices in $e \cap S$. Since both sets are non-empty, it follows that e is not monochromatic. It remains to consider the case that $e \cap S=\emptyset$. If $|e|=2$, then the clauses C_{e}^{\prime} and $C_{e}^{\prime \prime}$ guarantee that the two vertices of e receive different colors. Therefore, we may assume that $|e|=|e \backslash S|=3$. Suppose for a contradiction that e is monochromatic. Without loss of generality, assume $d(v)=1$ for all $v \in e$. Let $X=\left(S \cap c^{-1}(1)\right)$, and consider the set $X \cup e$. Since all edges with a non-empty intersection with S and all edges of size 2 are non-monochromatic, there is no edge $e^{\prime} \in E(G)$ with $e^{\prime} \subseteq X \cup e$ and $e^{\prime} \neq e$. Thus, $G[X \cup e]$ is an induced copy of H_{t} in G, which contradicts the fact that G is H_{t}-free. Therefore, d is a 2-precoloring extension of (S, c).

If there is a 2-precoloring extension d of (S, c), then we set $x_{v}=d(v)-1$ for every $v \in V(G) \backslash S$. For every edge $e \in E^{\prime}$, if $C_{e}=x_{u} \vee x_{w}$, then $e \cap S$ contains only vertices colored 1, and so $d(u)=2$ or $d(w)=2$; it follows that C_{e} is satisfied. If $C_{e}=\overline{x_{u}} \vee \overline{x_{w}}$, then $e \cap S$ contains only vertices colored 2 , and so $d(u)=1$ or $d(w)=1$; it follows that C_{e} is satisfied. For every edge $e=\{u, w\} \in E^{\prime \prime}$, it follows that $d(u) \neq d(w)$, and hence one of x_{u}, x_{w} is "true" and the other is "false." It follows that C_{e}^{\prime} and $C_{e}^{\prime \prime}$ are satisfies. From the construction of clauses of this 2-SAT instance, we conclude that this assignment is a solution to the 2-SAT instance. Therefore, deciding whether (S, c) has a 2 -coloring extension is equivalent to solving the 2-SAT instance defined above.

It remains to show that this can be done in polynomial time. Constructing the 2-SAT instance takes time $O\left(n^{3}\right)$. Solving this 2-SAT instance takes time $O\left(n^{3}\right)$. So the total running time is $O\left(n^{3}\right)$. This proves (3) and concludes the proof.

Theorem 2.5.2. Let $t \in \mathbb{N}$, and let G be a 3 -bounded H_{t}-free hypergraph. There is a polynomial-time algorithm which takes G as input, and outputs either a 2-coloring of G, or a determination that G is not 2-colorable.

Proof. If G satisfies the conditions of Lemma 2.5.1, then we are done. Otherwise we can go through every possible coloring such that less than t vertices receive color i for some $i \in[2]$, and check whether it is a 2 -coloring, in time $O\left(n^{t+3}\right)$.

Note that the proof of Lemma 2.5.1 can be modified to work for the precoloring extension version of the problem, and so can Theorem 2.5.2.

2.6 Linear Hypergraphs

2.6.1 The polynomial-time algorithm

In this subsection, we will use the hypergraph Ramsey number. Recall the theorem:
Theorem 1.3.1. For all positive integers k, n_{1}, \ldots, n_{t}, the hypergraph Ramsey number $R_{k}\left(n_{1}, \ldots, n_{t}\right)$ exists.

Lemma 2.6.1. For every positive integer s, there exists a positive integer s^{\prime} such that every 3-uniform linear hypergraph G which contains a matching of size s' contains an induced matching of size s.

Proof. We may assume that $s \geq 4$. Let $X=\left\{G_{1}, \ldots, G_{t}\right\}$ be the set of all linear 3-uniform hypergraphs with vertex set $\left\{x_{1}, \ldots, x_{9}\right\}$. Since there at most $2\left({ }_{3}{ }_{3}^{9}\right)$ distinct 3 -uniform (labelled) hypergraphs on 9 vertices, it follows that $t \leq 2\left(\begin{array}{c}\left({ }_{3}{ }^{9}\right)\end{array}\right.$. Let $s^{\prime}=R_{3}\left(n_{1}, \ldots, n_{t}\right)$ with $n_{1}=\cdots=n_{t}=s$.

Let $\left\{e_{1}, \ldots, e_{s^{\prime}}\right\}$ be a matching of size s^{\prime} in G. For $i \in\left[s^{\prime}\right]$, let $e_{i}=\left\{u_{i}, v_{i}, w_{i}\right\}$. Let H be a complete 3-uniform hypergraph $V(H)=\left\{1, \ldots, s^{\prime}\right\}$. We define $f: E(H) \rightarrow[t]$ as follows. For $e=\{i, j, k\} \subseteq\left[s^{\prime}\right]$ with $i<j<k$, we define $f(e)=\mathrm{m}$ if $G\left[e_{i} \cup e_{j} \cup e_{k}\right]$ is isomorphic to G_{m} via the isomorphism $u_{i} \mapsto x_{1}, v_{i} \mapsto x_{2}, w_{i} \mapsto x_{3}, u_{j} \mapsto x_{4}, v_{j} \mapsto x_{5}$, $w_{j} \mapsto x_{6}, u_{k} \mapsto x_{7}, v_{k} \mapsto x_{8}$ and $w_{k} \mapsto x_{9}$.

From Theorem 1.3.1, it follows that there is a set $S \subseteq\left[s^{\prime}\right]$ with $|S|=s$ and $m \in[t]$ such that $f(e)=m$ for all $e \subseteq S$. We claim that

$$
E\left(G_{m}\right)=\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}, x_{9}\right\}\right\}
$$

Let $i, j, k, l \in S$ with $i<j<k<l$. Since $G\left[e_{i}, e_{j}, e_{k}\right]$ contains the edges e_{i}, e_{j}, e_{k}, it follows that $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}, x_{9}\right\}\right\} \subseteq E\left(G_{m}\right)$. Suppose for a contradiction that $E\left(G_{m}\right)$ contains a fourth edge $\left\{x_{a}, x_{b}, x_{c}\right\}$. Then, since G_{m} is linear, we may assume that $a \in\{1,2,3\}, b \in\{4,5,6\}$, and $c \in\{7,8,9\}$. The graphs $G\left[e_{i} \cup e_{j} \cup e_{k}\right]$ and $G\left[e_{i} \cup\right.$ $\left.e_{j} \cup e_{l}\right]$ are isomorphic to G_{m} via isomorphisms $\varphi, \varphi^{\prime}$, say; and from the definition of f it follows that $\varphi^{-1}\left(x_{a}\right)=\varphi^{\prime-1}\left(x_{a}\right), \varphi^{-1}\left(x_{b}\right)=\varphi^{\prime-1}\left(x_{b}\right)$, and $\varphi^{-1}\left(x_{c}\right) \neq \varphi^{\prime-1}\left(x_{c}\right)$ (since $\varphi^{-1}\left(x_{c}\right) \in e_{k}$ and $\varphi^{\prime-1}\left(x_{c}\right) \in e_{l}$ and $e_{k} \cap e_{l}=\emptyset$). But this implies that G contains the edges $\varphi^{-1}\left(\left\{x_{a}, x_{b}, x_{c}\right\}\right)$ and $\varphi^{\prime-1}\left(\left\{x_{a}, x_{b}, x_{c}\right\}\right)$ which have exactly two vertices in common, contrary to the assumption that G is linear. This proves our claim.

It follows that $G\left[\bigcup_{s \in S} e_{s}\right]$ is an induced matching of size s in G.

Theorem 2.6.2. For all s, the 2-Precolouring Extension Problem restricted to 3-uniform linear hypergraphs with no induced matching of size at least s can be solved in polynomial time.

Proof. By Theorem 2.2.1 and Lemma 2.6.1.

2.6.2 NP-hardness of 3-coloring with bounded matching number

In this section, we will prove the following result.
Theorem 1.2.15. The 3 -Uniform Hypergraph 3-Coloring Problem restricted to linear hypergraphs G with $\nu(G) \leq 532$ is $N P$-complete.

We will use the following theorems.
Theorem 1.3.8. The 3 -Coloring Problem restricted to graphs with maximum degree at most 4, is NP-complete.

Theorem 1.3.4. There is a $O(m n)$-algorithm for edge-coloring a graph G with $D+1$ colors, where D is the maximum degree of G, m is the number of edges and n is the number of vertices.

Let us introduce a new way to describe 3-uniform hypergraphs. Instead of using edges with three vertices, we use 2 -edges labeled with vertices. Given a graph G, we say a function $l: E(G) \rightarrow V(G)$ with $l(e) \notin e$ for all $e \in E(G)$ is a labeling of G. The vertex $l(e)$ is called the label of e, and the edge e is a labeled edge.

For a linear 3-uniform hypergraph G, let $l: E(G) \rightarrow V(G)$ be a function with $l(e) \in e$ for all $e \in E(G)$. Let G^{\prime} be the graph with vertex set $V(G)$ and edge set $\{\{e \backslash\{l(e)\}: e \in$ $E(G)\}$, and let $l^{\prime}(e \backslash\{l(e)\})=l(e)$. Since G is linear, each edge of G^{\prime} corresponds to a unique edge of G, and thus l^{\prime} is well-defined. We call $\left(G^{\prime}, l^{\prime}\right)$ a labeled graph representation of G. Notice that with a labeled graph representation, we can reconstruct the corresponding linear 3 -uniform hypergraph.

In this section, all of the pictures of 3 -uniform hypergraphs are drawn using the labeled graph representation.

The following two lemmas give constructions for gadgets we will use in our NP-hardness reduction. The existence of similar gadgets in 3-uniform linear hypergraphs was first proved in [36]. Here we give an explicit construction to obtain a precise bound for the matching number. The construction is shown in Figure 2.3.

Lemma 2.6.3. There is a linear 3-uniform hypergraph G_{1} with three specified vertices a, b, c with the following properties:

- For every 3-coloring f of G_{1}, either $f(a), f(b), f(c)$ are all distinct, or $f(a)=f(b)=$ $f(c)$.
- There is a 3-coloring f^{\prime} of G_{1} with $f(a), f(b), f(c)$ all distinct.
- There is a set $Z \subseteq V\left(G_{1}\right)$ with $|Z| \leq 19$ such that $G_{1} \backslash Z$ has no edges, and a, b, $c \in Z$.
- No edge e of G_{1} contains more than one of the vertices a, b, c.

Proof. We want to define G_{1} using the labeled graph representation (G_{1}^{\prime}, l) (see Figure 2.3). First, we create three vertices a, b, c. Then we create 4 copies of K_{4}, say $H_{1}, H_{2}, H_{3}, H_{4}$. For $i \in[4]$, let $V\left(H_{i}\right)=\left\{s_{i}, t_{i}, u_{i}, v_{i}\right\}$. We define the labeling $l\left(s_{i} t_{i}\right)=l\left(u_{i} v_{i}\right)=a$, $l\left(s_{i} u_{i}\right)=l\left(t_{i} v_{i}\right)=b$, and $l\left(s_{i} v_{i}\right)=l\left(t_{i} u_{i}\right)=c$.

Let $S=V\left(H_{1}\right) \times V\left(H_{2}\right) \times V\left(H_{3}\right) \times V\left(H_{4}\right)$. For every 4-tuple $T=(x, y, z, w) \in S$, we create 5 new copies of K_{4}, say $H_{0}^{T}, H_{1}^{T}, H_{2}^{T}, H_{3}^{T}, H_{4}^{T}$. Let $V\left(H_{i}^{T}\right)=\left\{s_{i}^{T}, t_{i}^{T}, u_{i}^{T}, v_{i}^{T}\right\}$ for $i \in[4]$, and $V\left(H_{0}^{T}\right)=\left\{r_{1}^{T}, r_{2}^{T}, r_{3}^{T}, r_{4}^{T}\right\}$. We define the labeling $l\left(s_{i}^{T} t_{i}^{T}\right)=l\left(u_{i}^{T} v_{i}^{T}\right)=a$, $l\left(s_{i}^{T} u_{i}^{T}\right)=l\left(t_{i}^{T} v_{i}^{T}\right)=b$ and $l\left(s_{i}^{T} v_{i}^{T}\right)=l\left(t_{i}^{T} u_{i}^{T}\right)=c$ for $i \in[4]$, and $l\left(r_{1}^{T} r_{2}^{T}\right)=l\left(r_{3}^{T} r_{4}^{T}\right)=a$, $l\left(r_{1}^{T} r_{3}^{T}\right)=l\left(r_{2}^{T} r_{4}^{T}\right)=b$ and $l\left(r_{1}^{T} r_{4}^{T}\right)=l\left(r_{2}^{T} r_{3}^{T}\right)=c$. For each $i \in[4]$, we add edges $s_{i}^{T} r_{i}^{T}$ with $l\left(s_{i}^{T} r_{i}^{T}\right)=x, t_{i}^{T} r_{i}^{T}$ with $l\left(t_{i}^{T} r_{i}^{T}\right)=y, u_{i}^{T} r_{i}^{T}$ with $l\left(u_{i}^{T} r_{i}^{T}\right)=z$ and $v_{i}^{T} r_{i}^{T}$ with $l\left(v_{i}^{T} r_{i}^{T}\right)=w$.

Let $V\left(G_{1}^{\prime}\right)=\{a, b, c\} \cup\left(\cup_{i \in[4]} V\left(H_{i}\right)\right) \cup\left(\cup_{T \in S} \cup_{i=0}^{4} V\left(H_{i}^{T}\right)\right)$, and $E\left(G_{1}^{\prime}\right)$ be the set of all labeled edges defined above. By the construction, the function l defined above is a labeling of G_{1}^{\prime}. Notice that there is no edge incident to more than one of the vertices a, b, c, and $l\left(V\left(G_{1}^{\prime}\right)\right)=\{a, b, c\} \cup\left(\cup_{i \in[4]} V\left(H_{i}\right)\right)$. Thus, by taking $Z=l\left(V\left(G_{1}^{\prime}\right)\right)$, we have $|Z| \leq 19$ and $a, b, c \in Z$; so Z satisfies the third property of the lemma. We now prove the other properties.
(1) The 3-uniform hypergraph G_{1} is linear.

Let $X_{1}=\{a, b, c\}, X_{2}=\left(\cup_{i \in[4]} V\left(H_{i}\right)\right)$ and $X_{3}=\left(\cup_{T \in S} \cup_{i=0}^{4} V\left(H_{i}^{T}\right)\right)$. From the construction, it follows that for every edge e of G_{1}, there exist $i, j \in[3]$ with $i<j$ such that e contains one vertex of X_{i} and two vertices of X_{j} and with $e \cap X_{j} \in E\left(G_{1}^{\prime}\right)$ (and therefore, $\left.\left\{l\left(e \cap X_{j}\right)\right\}=e \cap X_{i}\right)$.

Suppose for a contradiction that there exist distinct e, $e^{\prime} \in E\left(G_{1}\right)$ with $\left|e \cap e^{\prime}\right|=2$. Let $j, j^{\prime} \in[3]$ such that $\left|e \cap X_{j}\right|=2$ and $\left|e^{\prime} \cap X_{j^{\prime}}\right|=2$. It follows that $j=j^{\prime}$. Since G_{1}^{\prime} is

Figure 2.3: The construction from Lemma 2.6.3. The colored edge means the label of this edge is the vertex of the corresponding color. The right-hand side shows $H_{0}^{T}, \ldots, H_{4}^{T}$ for $T=(x, y, z, w)$.
simple, we have $e \cap X_{j} \neq e^{\prime} \cap X_{j}$, and so $e \backslash X_{j}=e^{\prime} \backslash X_{j}=\left\{l\left(e \cap X_{j}\right)\right\}=\left\{l\left(e^{\prime} \cap X_{j}\right)\right\}$. But in G_{1}^{\prime}, every two edges with the same label are not incident to a common vertex, a contradiction. We conclude that G_{1} is linear. This proves (1).
(2) There is a 3-coloring f^{\prime} of G_{1} with $f^{\prime}(a), f^{\prime}(b), f^{\prime}(c)$ all distinct.

We define a function $f^{\prime}:\left(V\left(G_{1}\right)\right) \rightarrow[3]$ as follows. Let $f^{\prime}(a)=1, f^{\prime}(b)=2$ and $f^{\prime}(c)=3$. For each $i \in$ [4], let $f^{\prime}\left(s_{i}\right)=f^{\prime}\left(t_{i}\right)=2$ and $f^{\prime}\left(u_{i}\right)=f^{\prime}\left(v_{i}\right)=3$. Since $l\left(s_{i} t_{i}\right)=l\left(u_{i} v_{i}\right)=a$, the edges of G_{1} corresponding to labeled edges in $G_{1}^{\prime}\left[V\left(H_{i}\right)\right]$ are not monochromatic.

For each $T \in S$ and each $i \in[4]$, let $f^{\prime}\left(s_{i}^{T}\right)=f^{\prime}\left(u_{i}^{T}\right)=1, f^{\prime}\left(t_{i}^{T}\right)=f^{\prime}\left(v_{i}^{T}\right)=3$, $f^{\prime}\left(r_{1}^{T}\right)=f^{\prime}\left(r_{4}^{T}\right)=1$, and $f^{\prime}\left(r_{2}^{T}\right)=f^{\prime}\left(r_{3}^{T}\right)=2$. For $i \in[4]$, no vertex $v \in V\left(H_{i}^{T}\right)$ has $f^{\prime}(v)=2$, and no edge between $V\left(H_{i}^{T}\right)$ and $V\left(H_{0}^{T}\right)$ is labeled a. So there is no monochromatic edge e in G_{1} with $e \cap \cup_{i=0}^{4} V\left(H_{i}^{T}\right) \neq \emptyset$. Therefore, the function f^{\prime} is a 3 -coloring of G_{1}. This proves (2).
(3) For each 3-coloring f of G_{1}, either $f(a), f(b), f(c)$ are all distinct, or $f(a)=f(b)=$ $f(c)$.

Assume for a contradiction that, without loss of generality, there is a 3-coloring f of G_{1} such that $f(a)=f(b)$. Without loss of generality, we may assume that $f(a)=f(b)=1$ and $f(c)=2$.

We claim that there exists $x_{0} \in V\left(H_{1}\right)$ such that $f\left(x_{0}\right)=3$. Assume for a contradiction that every vertex $v \in V\left(H_{1}\right)$ has $f(v) \neq 3$. Since $l\left(s_{1} v_{1}\right)=c$ and $f(c)=2$, without loss of generality let $f\left(s_{1}\right) \neq 2$. So $f\left(s_{1}\right)=1$. Since $l\left(s_{1} t_{1}\right)=a, l\left(s_{1} u_{1}\right)=b$ and $f(a)=f(b)=1$, we have $f\left(t_{1}\right)=f\left(u_{1}\right)=2$. But the edge $t_{1} u_{1}$ is labeled c and $f(c)=2$, the corresponding edge $\left\{t_{1}, u_{1}, c\right\}$ of G_{1} is monochromatic, which violates the condition that f is a 3 -coloring of G_{1}.

A similar argument holds for every H_{i} with $i \in\{2,3,4\}$, and H_{j}^{T} with $T \in S$ and $j \in\{0,1, \ldots, 4\}$. There exist vertices $y_{0} \in V\left(H_{2}\right), z_{0} \in V\left(H_{3}\right), w_{0} \in V\left(H_{4}\right)$ such that $f\left(y_{0}\right)=f\left(z_{0}\right)=f\left(w_{0}\right)=3$. Let $T=\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$. By the argument above, there is a $j \in$ [4] such that $f\left(r_{j}\right)=3$. Since there is a vertex $v \in V\left(H_{j}^{T}\right)$ with $f(v)=3$, and $f\left(l\left(v r_{j}\right)\right)=3$ (because $\left.l\left(v r_{j}\right) \in\left\{x_{0}, y_{0}, z_{0}, w_{0}\right\}\right)$, the edge $\left\{v, r_{j}, l\left(v r_{j}\right)\right\}$ of G_{1} is monochromatic, which contradicts the condition that f is a 3 -coloring of G_{1}. This proves (3).

Lemma 2.6.4. There is a linear 3-uniform hypergraph G_{2} with specified vertices a, b, c with the following properties:

- For every 3-coloring f of G_{2}, we have $f(a), f(b), f(c)$ all distinct.
- G_{2} is 3-colorable.
- There is a set $Z \subseteq V\left(G_{2}\right)$ with $|Z| \leq 19$ such that $G_{2} \backslash Z$ has no edges, and $a, b, c \in Z$.
- At most one edge of G_{2} contains more than one of the vertices a, b, c.

Proof. Let G_{2} be obtained from G_{1} defined in Lemma 2.6.3 by adding the edge $\{a, b, c\}$. The result follows immediately from Lemma 2.6.3.

Now we are ready to prove Theorem 1.2.15.

Figure 2.4: The construction of $H_{3}^{x y}, H_{2}^{x y}, H_{1}^{x y}$ (top to bottom) for an edge $x y$ with $f^{\prime}(x y)=k$.

Proof of Theorem 1.2.15. We give an NP-hardness reduction from the Graph 3-Coloring Problem restricted to graphs with maximum degree at most 4, which is NP-hard by Theorem 1.3.8.

Let G^{*} be a graph with maximum degree at most 4. Let $f^{\prime}: E\left(G^{*}\right) \rightarrow[5]$ be an edgecoloring of G^{*}. We construct a labeled graph representation $\left(G^{\prime}, l\right)$ of a 3 -uniform linear hypergraph G as follows (see Figure 2.4).

We create three sets of vertices $A=\left\{a_{1}^{1}, \ldots, a_{10}^{1}\right\}, B=\left\{a_{1}^{2}, \ldots, a_{10}^{2}\right\}$ and $C=\left\{a_{1}^{3}, \ldots, a_{10}^{3}\right\}$. For the vertices $a_{1}^{1}, a_{1}^{2}, a_{1}^{3}$, we create a new copy of G_{2} as defined in Lemma 2.6.4, denoted G^{1}, with $a_{1}^{1}, a_{1}^{2}, a_{1}^{3}$ as its specified vertices. For every $i \in\{2, \ldots, 10\}$, we create three new copies of G_{1} as defined in Lemma 2.6.3, one with specified vertices $a_{i}^{1}, a_{1}^{2}, a_{1}^{3}$, one with specified vertices $a_{1}^{1}, a_{i}^{2}, a_{1}^{3}$ and one with specified vertices $a_{1}^{1}, a_{1}^{2}, a_{i}^{3}$, respectively. We denote these three hypergraphs $G^{i, 1}, G^{i, 2}$ and $G^{i, 3}$ respectively. For convenience, we also define $G^{1,1}=G^{1,2}=G^{1,3}=G^{1}$.

Next, for all $k \in[5]$ and for each edge $e=x y \in E\left(G^{*}\right)$ with $f^{\prime}(x y)=k$, we create three copies of K_{4}, say $H_{1}^{e}, H_{2}^{e}, H_{3}^{e}$; see Figure 2.4 for a picture of the construction described below. Let $V\left(H_{i}^{e}\right)=\left\{s_{i}^{e}, t_{i}^{e}, u_{i}^{e}, v_{i}^{e}\right\}$ for $i \in[3]$. Let $l\left(s_{i}^{e} t_{i}^{e}\right)=a_{2 k-1}^{(i+1)}, l\left(s_{i}^{e} u_{i}^{e}\right)=l\left(t_{i}^{e} v_{i}^{e}\right)=$ $a_{2 k-1}^{(i+2)}, l\left(u_{i}^{e} v_{i}^{e}\right)=a_{2 k}^{(i+1)}$ and $l\left(s_{i}^{e} v_{i}^{e}\right)=l\left(t_{i}^{e} u_{i}^{e}\right)=a_{2 k}^{(i+2)}$ for all $i \in[3]$, where superscripts are read modulo 3 , so $a_{j}^{4}=a_{j}^{1}$ and $a_{j}^{5}=a_{j}^{2}$ for all $j \in[10]$. We also add edges $x s_{i}^{e}$, yt t_{i}^{e} with $l\left(x s_{i}^{e}\right)=l\left(y t_{i}^{e}\right)=a_{2 k-1}^{i}$, and edges $x u_{i}^{e}, y v_{i}^{e}$ with $l\left(x u_{i}^{e}\right)=l\left(y v_{i}^{e}\right)=a_{2 k}^{i}$ for all $i \in[3]$.

Let $\mathcal{G}=\left\{G^{1}\right\} \cup\left\{G^{i, j}: i \in\{2, \ldots, 10\}, j \in[3]\right\}$. Let $U=\left(\cup_{G^{\prime \prime} \in \mathcal{G}} V\left(G^{\prime \prime}\right)\right) \backslash(A \cup B \cup C)$, $W=\cup_{e \in E\left(G^{*}\right)} \cup_{i \in[3]} V\left(H_{i}^{e}\right)$. Let $V\left(G^{\prime}\right)=A \cup B \cup C \cup U \cup W \cup V\left(G^{*}\right)$ and let $E\left(G^{\prime}\right)$ be the set of all labeled edges defined above. By the construction, the function l defined above is a labeling of G^{\prime}. Let G be the corresponding 3-uniform hypergraph of $\left(G^{\prime}, l\right)$.

Notice that from the construction, there is no other edge $e \in E(G)$ with $e \cap U \neq \emptyset$ and $e \cap\left(W \cup V\left(G^{*}\right)\right) \neq \emptyset$. Furthermore, except for the edge $\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$, there is no edge $e \in E(G)$ with $e \subseteq A \cup B \cup C \cup V\left(G^{*}\right)$. Moreover, for every edge $e \in E(G) \backslash\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$, we have $|e \cap(A \cup B \cup C)| \leq 1$. Thus, for each edge $e \in E(G) \backslash\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$, exactly one of the conditions $|e \cap U| \geq 2$ and $\left|e \cap\left(W \cup V\left(G^{*}\right)\right)\right|=2$ holds. Moreover, for all $e \in E(G)$, we have that $\left|e \cap V\left(G^{*}\right)\right| \leq 1$.

(1) The 3-uniform hypergraph G is linear.

We take two edges $e, e^{\prime} \in E(G)$ with $e \neq e^{\prime}$. Assume for a contradiction that $\left|e \cap e^{\prime}\right|=2$. It follows that e, $e^{\prime} \neq\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$, since no edge except $\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$ contains more than one vertex of $A \cup B \cup C$.

If $|e \cap U| \geq 2$, then $e \subseteq G^{a, b}$ for some $a \in[10]$ and $b \in[3]$. Since $\left|e \cap e^{\prime}\right|=2$, we have that $e^{\prime} \cap U \neq \emptyset$, and so $\left|e^{\prime} \cap U\right| \geq 2$. It follows that $e^{\prime} \subseteq V\left(G^{c, d}\right)$ for some $c \in[\{2, \ldots, 10\}]$ and $d \in[3]$. By Lemma 2.6.3, $(a, b) \neq(c, d)$. But then $V\left(G^{a, b}\right) \cap V\left(G^{c, d}\right) \subseteq\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$ and so $e \cap e^{\prime} \subseteq\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$. But $\left|e \cap\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right| \leq 1$, so $\left|e \cap e^{\prime}\right| \leq 1$, which is a contradiction.

If $\left|e \cap\left(W \cup V\left(G^{*}\right)\right)\right|=2$, then $|e \cap(A \cup B \cup C)|=1$. Since $\left|e \cap e^{\prime}\right|=2$ and exactly one of $e^{\prime} \cap U \neq \emptyset$ and $e^{\prime} \cap\left(W \cup V\left(G^{*}\right)\right) \neq \emptyset$ holds, we have $e^{\prime} \cap\left(W \cup V\left(G^{*}\right)\right) \neq \emptyset$. It follows that $\left|e^{\prime} \cap\left(W \cup V\left(G^{*}\right)\right)\right|=2$. Consider the labeled graph G^{\prime}. Notice that by the construction above, for each $e^{*} \in E\left(G^{*}\right)$, no two edges of $G^{\prime}\left[e^{*} \cup\left(\cup_{i \in[3]} V\left(H_{i}^{e^{*}}\right)\right)\right]$ with the same label are incident to one common vertex. Thus e and e^{\prime} are both incident to a common vertex $x \in V\left(G^{*}\right)$. For every $x y_{1}, x y_{2} \in E\left(G^{*}\right)$, since f^{\prime} is an edge coloring of G^{*}, $f^{\prime}\left(x y_{1}\right) \neq f^{\prime}\left(x y_{2}\right)$. Thus, for every two edges e_{1}, e_{2} of G^{\prime} incident to $x,\left|e_{1} \cap e_{2}\right|=1$. Hence, we have proved $\left|e \cap e^{\prime}\right| \leq 1$, which leads to a contradiction. This proves (1).
(2) We have $\nu(G) \leq 532$.

By Lemmas 2.6.3 and 2.6.4, for every graph $G^{\prime \prime}=G^{i, j} \in \mathcal{G}$, there is a set $S_{G^{\prime \prime}}$ of size at most 19 which contains a_{i}^{j} such that $G^{\prime \prime} \backslash S_{G^{\prime \prime}}$ has no edges; for G^{1}, the set $S_{G^{1}}$ contains all of $a_{1}^{1}, a_{1}^{2}, a_{1}^{3}$. Each edge which is not a subset of $A \cup B \cup C \cup U$ contains a vertex in $A \cup B \cup C$. Thus, the set $X=\cup_{G^{\prime \prime} \in \mathcal{G}} S_{G^{\prime \prime}}$ meets all edges of G, and $|X| \leq 19 \cdot 28$. So $\nu(G) \leq 19 \cdot 28=532$. This proves (2).

(3) The graph G^{*} is 3-colorable if and only if G is 3-colorable.

Let c^{\prime} be a 3 -coloring of G. By Lemma 2.6.4, $c^{\prime}\left(a_{1}^{1}\right), c^{\prime}\left(a_{1}^{2}\right)$ and $c^{\prime}\left(a_{1}^{3}\right)$ are all distinct. Without loss of generality let $c^{\prime}\left(a_{1}^{1}\right)=1, c^{\prime}\left(a_{1}^{2}\right)=2$ and $c^{\prime}\left(a_{1}^{3}\right)=3$. From the construction, by Lemma 2.6.3, $c^{\prime}\left(a_{i}^{1}\right)=1, c^{\prime}\left(a_{i}^{2}\right)=2$ and $c^{\prime}\left(a_{i}^{3}\right)=3$ for all $i \in[10]$. We want to prove that $\left.c^{\prime}\right|_{V\left(G^{*}\right)}$ is a 3-coloring of G^{*}.

Suppose for a contradiction that there exists an edge $x y \in E\left(G^{*}\right)$ with $c^{\prime}(x)=c^{\prime}(y)$. Let $k=f^{\prime}(x y)$. Without loss of generality, let $c^{\prime}(x)=c^{\prime}(y)=1$. Then consider the graph $H_{1}^{x y}$. Because of the edges $\left\{x, s_{1}^{x y}, a_{2 k-1}^{1}\right\},\left\{x, u_{1}^{x y}, a_{2 k}^{1}\right\},\left\{y, t_{1}^{x y}, a_{2 k-1}^{1}\right\}$ and $\left\{y, v_{1}^{x y}, a_{2 k}^{1}\right\}$, all of the vertices $s_{1}^{x y}, t_{1}^{x y}, u_{1}^{x y}, v_{1}^{x y}$ are colored 2 or 3 . Since $c^{\prime}\left(a_{2 k-1}^{3}\right)=3$, from the edge $\left\{s_{1}^{x y}, u_{1}^{x y}, a_{2 k-1}^{3}\right\}$, it follows that one of the vertices $s_{1}^{x y}, u_{1}^{x y}$ is not colored 3. Without loss of generality let $c^{\prime}\left(s_{1}^{x y}\right)=2$. Because of the edge $\left\{s_{1}^{x y}, t_{1}^{x y}, a_{2 k-1}^{2}\right\}$, we have $c^{\prime}\left(t_{1}^{x y}\right)=3$. Consider the edges $\left\{t_{1}^{x y}, u_{1}^{x y}, a_{2 k}^{3}\right\}$ and $\left\{t_{1}^{x y}, v_{1}^{x y}, a_{2 k-1}^{3}\right\}$. Since $c^{\prime}\left(a_{2 k}^{3}\right)=c^{\prime}\left(a_{2 k-1}^{3}\right)=3$, we have $c^{\prime}\left(u_{1}^{x y}\right)=c^{\prime}\left(v_{1}^{x y}\right)=2$. But then the edge $\left\{u_{1}^{x y}, v_{1}^{x y}, a_{2 k}^{2}\right\}$ is monochromatic, which contradicts the fact that c^{\prime} is a 3 -coloring of G. This proves that if G is 3-colorable, then so is G^{*}.

For the converse direction, let c be a 3 -coloring of G^{*}. We want to define a 3 -coloring d of G. Let $d(v)=1$ for all $v \in A, d(v)=2$ for all $v \in B$, and $d(v)=3$ for all $v \in C$. By Lemmas 2.6.3 and 2.6.4, there is a way to extend d to $G[A \cup B \cup C \cup U]$.

Let $d(v)=c(v)$ for all $v \in V\left(G^{*}\right)$. For each edge $x y \in E\left(G^{*}\right)$ and each $i \in[3]$, since c
is a 3 -coloring of G^{*}, one of the vertices x, y is not colored i. If $c(x) \neq i$, then for the set $V\left(H_{i}^{x y}\right)$, we set $d\left(s_{i}^{x y}\right)=d\left(u_{i}^{x y}\right)=i$ and $d\left(t_{i}^{x y}\right)=d\left(v_{i}^{x y}\right)=i+1$, reading colors modulo 3 (so if this would assign color 4, we assign color 1 instead). If $c(x)=i$, then $c(y) \neq i$, and for the set $V\left(H_{i}^{x y}\right)$, we set $d\left(s_{i}^{x y}\right)=d\left(u_{i}^{x y}\right)=i+1$, again reading colors modulo 3; and $d\left(t_{i}^{x y}\right)=d\left(v_{i}^{x y}\right)=i$. Thus, we have defined the function d for all vertices of G.

We then want to show that d is a 3 -coloring of G. From the construction, all edges e with $e \cap U \neq \emptyset$ are contained in $G[A \cup B \cup C \cup U]$ and hence not monochromatic. It remains to consider edges $e \in E(G)$ with $e \cap W \neq \emptyset$. It follows that there is an edge $x y \in E\left(G^{*}\right)$ and $i \in[3]$ such that $\emptyset \neq e \cap V\left(H_{i}^{x y}\right)=e \cap W$. If $x \in e$, then either $s_{i}^{x y} \in e$ or $t_{i}^{x y} \in e$ and from the construction of d, we have that $d(e \cap(A \cup B \cup C))=\{i\}$, and either $d(x) \neq i$ or $d\left(s_{i}^{x y}\right), d\left(t_{i}^{x y}\right) \neq i$. The case $y \in e$ follows analogously. Therefore, we may assume that $\left|e \cap V\left(H_{i}^{x y}\right)\right|=2$. Now either the two vertices in $e \cap V\left(H_{i}^{x y}\right)$ receive different colors, or they receive the same color in $\{i, i+1\}$ and $d(e \cap(A \cup B \cup C))=\{i+2\}$. Thus, the edge e is not monochromatic. This proves (3).
(4) The 3-hypergraph G can be constructed from G^{*} in time $O\left(n^{3}\right)$, where $n=\left|V\left(G^{*}\right)\right|$.

Since $\left|V\left(G_{1}\right)\right|=O(1)$ and $\left|E\left(G_{1}\right)\right|=O(1)$, the 3-uniform hypergraph G_{1} can be constructed in time $O(1)$. Similarly, the 3 -uniform hypergraph G_{2} can be constructed in time $O(1)$. We create $3 \cdot 10-2=28$ copies of the gadgets G_{1} or G_{2}. This step can be done in time $O(1)$.

Let $n=\left|V\left(G^{*}\right)\right|$, and $m=\left|E\left(G^{*}\right)\right|$. The edge coloring f^{\prime} of G^{*} can be computed in time $O(m n) \leq O\left(n^{3}\right)$ by Theorem 1.3.4. For each edge $e \in E\left(G^{*}\right)$, we create 12 new vertices and 30 edges. Thus, constructing the vertex set W and all edges incident to W takes time $O\left(n^{2}\right)$.

Chapter 3

Ordered Graphs

In this chapter, we turn to ordered graphs. We recall that an ordered graph G is a triple (V, E, φ) such that (V, E) is a graph with vertex set V and edge set E, and $\varphi: V \rightarrow \mathbb{Z}$ is an injective function. For convenience, we also write the ordered graph (V, E, φ) as $\left(G^{\prime}, \varphi\right)$ where $G^{\prime}=(V, E)$ is a graph.

As promised in Introduction, we now give the full list of all ordered graphs we will use. Let $U^{\prime}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $U=U^{\prime} \backslash\left\{u_{5}\right\}$, the ordering $\varphi^{\prime}: U^{\prime} \rightarrow \mathbb{R}$ with $u_{i} \mapsto i$ for $i \in[5]$.

- Let $J_{1}=\left(U,\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{2}=\left(U,\left\{u_{1} u_{2}, u_{2} u_{4}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{3}=\left(U,\left\{u_{1} u_{3}, u_{2} u_{3}, u_{2} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{4}=\left(U,\left\{u_{1} u_{3}, u_{2} u_{4}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{5}=\left(U,\left\{u_{1} u_{4}, u_{2} u_{3}, u_{2} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{6}=\left(U,\left\{u_{1} u_{4}, u_{2} u_{3}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{7}=\left(U,\left\{u_{1} u_{2}, u_{1} u_{4}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{8}=\left(U,\left\{u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{9}=\left(U,\left\{u_{1} u_{2}, u_{3} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{10}=\left(U,\left\{u_{1} u_{2}, u_{1} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{11}=\left(U,\left\{u_{1} u_{3}, u_{1} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{12}=\left(U,\left\{u_{1} u_{2}, u_{2} u_{4}\right\},\left.\varphi^{\prime}\right|_{U}\right)$.
- Let $J_{13}=\left(U^{\prime},\left\{u_{1} u_{5}, u_{2} u_{3}, u_{3} u_{4}\right\}, \varphi^{\prime}\right)$.
- Let $J_{14}=\left(U^{\prime},\left\{u_{1} u_{5}, u_{2} u_{3}, u_{2} u_{4}\right\}, \varphi^{\prime}\right)$.
- Let $J_{15}=\left(U \backslash\left\{u_{4}\right\},\left\{u_{1} u_{2}, u_{2} u_{3}\right\},\left.\varphi^{\prime}\right|_{U \backslash\left\{u_{4}\right\}}\right)$.
- Let $J_{16}=\left(U \backslash\left\{u_{4}\right\},\left\{u_{1} u_{2}, u_{1} u_{3}\right\},\left.\varphi^{\prime}\right|_{U \backslash\left\{u_{4}\right\}}\right)$.

Figure 3.1: The ordered graphs J_{i} for $i \in[16]$.
Let $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $\varphi: V \rightarrow \mathbb{R}$ with $v_{i} \mapsto i$ for $i \in[6]$.

- Let $M_{1}=\left(V,\left\{v_{1} v_{6}, v_{2} v_{5}\right\}, \varphi\right)$.
- Let $M_{2}=\left(V,\left\{v_{1} v_{6}, v_{2} v_{5}, v_{3} v_{4}\right\}, \varphi\right)$.
- Let $M_{3}=\left(V,\left\{v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}\right\}, \varphi\right)$.
- Let $M_{4}=\left(V,\left\{v_{1} v_{5}, v_{2} v_{4}, v_{3} v_{6}\right\}, \varphi\right)$.
- Let $M_{5}=\left(V \backslash\left\{v_{6}\right\},\left\{v_{1} v_{5}, v_{2} v_{3}\right\},\left.\varphi\right|_{V \backslash\left\{v_{6}\right\}}\right)$.
- Let $M_{6}=\left(V \backslash\left\{v_{5}, v_{6}\right\},\left\{v_{1} v_{3}, v_{2} v_{4}\right\},\left.\varphi\right|_{V \backslash\left\{v_{5}, v_{6}\right\}}\right)$.
- Let $M_{7}=\left(V \backslash\left\{v_{5}, v_{6}\right\},\left\{v_{1} v_{4}, v_{2} v_{3}\right\},\left.\varphi\right|_{V \backslash\left\{v_{5}, v_{6}\right\}}\right)$.
- Let $M_{8}=\left(V \backslash\left\{v_{6}\right\},\left\{v_{1} v_{5}, v_{2} v_{4}\right\},\left.\varphi\right|_{V \backslash\left\{v_{6}\right\}}\right)$.

Figure 3.2: The ordered graphs M_{i} for $i \in[8]$.
Here are some terms and notations we will use in this chapter. Let G be an ordered graph. For $X \subseteq V$, we denote $G[X]=\left(X,\{e \in E: e \subseteq X\},\left.\varphi\right|_{X}\right)$. For $x, y \in \mathbb{Z}$ with $x<y$, we denote $G[x: y]=G\left[\left\{v \in V: x \leq \varphi_{G}(v) \leq y\right\}\right]$, and $-G=\left(V, E, v \mapsto-\varphi_{G}(v)\right)$. For a vertex $v \in V$, the set of forward neighbors of v is defined as $N^{+}(v)=\{u \in N(v): \varphi(v)<$ $\varphi(u)\}$, and the set of backward neighbors of v is $N^{-}(v)=\{u \in N(v): \varphi(v)>\varphi(u)\}$. We say two disjoint sets $U, W \subseteq V$ is anticomplete if no vertex in U has a neighbor in W.

In section 3.1, we will give a polynomial-time algorithm for list-3-coloring $J_{16}(k, l)$-free graphs. In section 3.2, we will prove except for the open cases, forbidding other ordered graphs from the list is still NP-hard.

3.1 Algorithm for $J_{16}(k, l)$-free ordered graphs

We noticed that a J_{16}-free ordered graph is chordal. Given a $J_{16}(k, l)$-free ordered graph G, if we can find a way to get rid of these $k+l$ isolated vertices and get a J_{16}-free ordered
graph G^{\prime}, then we only need to consider coloring a chordal graph. Indeed, this is the main idea of the coloring algorithm in this section. What we do is, first we "guess" the set of first k and last l vertices colored i for each color $i \in[3]$. For those remaining vertices which are not adjacent to these "guessed" vertices, we then use some properties and known results of chordal graphs to finish the coloring.

We start by introducing some terminology. Let (G, L) be an instance of the Ordered Graph List-3-Coloring Problem. An instance $\left(G^{\prime}, L^{\prime}\right)$ is a (G, L)-refinement if G^{\prime} is an induced subgraph of G and for all $v \in V\left(G^{\prime}\right), L^{\prime}(v) \subseteq L(v)$. A (G, L)-refinement $\left(G^{\prime}, L^{\prime}\right)$ is spanning if $G^{\prime}=G$. A (G, L)-profile \mathcal{L} is a set of (G, L)-refinements. A (G, L)-profile is spanning if all its elements are spanning. Two list assignments L and L^{\prime} are equivalent for G if every coloring c of G is an L-coloring if and only if it is an L^{\prime}-coloring.

Let (G, L) be an instance of the Ordered Graph List-3-Coloring Problem.
Lemma 3.1.1. There exists a spanning (G, L)-refinement $\left(G, L^{\prime}\right)$ such that for all $u v \in$ $E(G)$ with $|L(v)|=1, L(u) \cap L(v)=\emptyset$, and L and L^{\prime} are equivalent for G. Moreover, L^{\prime} can be computed from L in time $O\left(n^{3}\right)$.

Proof. We define a sequence of lists recursively. Let $L_{0}=L$. Suppose that we have defined L_{i}. If there is an edge $u v \in E(G)$ with $\left|L_{i}(v)\right|=1$ and $L_{i}(u) \cap L_{i}(v) \neq \emptyset$, let $L_{i+1}(u)=L_{i}(u) \backslash L_{i}(v)$, and $L_{i+1}(w)=L_{i}(w)$ for all $w \in V(G) \backslash\{u\}$. Otherwise stop and let $L^{\prime}=L_{i}$.

This terminates within at most $3 n$ steps, as $\sum_{w \in V(G)}\left|L_{i+1}(w)\right| \leq \sum_{w \in V(G)}\left|L_{i}(w)\right|-1$, and $\sum_{w \in V(G)}\left|L_{0}(w)\right| \leq 3 n$. In each step, finding an edge $u v \in E(G)$ with $|L(v)|=1$ and $L(u) \cap L(v) \neq \emptyset$ takes time at most $O\left(n^{2}\right)$ and constructing a new list L_{i+1} takes time $O(n)$. Thus L^{\prime} can be computed from L in time $O\left(n^{3}\right)$.

Since $L_{0}=L, G$ has an L-coloring if and only if G has an L_{0}-coloring. For all $L_{i^{-}}$ colorings c of G and for all edges $u v \in E(G), c(v) \in L_{i}(v)$ and $c(u) \neq c(v)$. Thus c is an L_{i+1}-coloring of G. For all L_{i+1}-colorings c^{\prime} of G, since $L_{i+1}(w) \subseteq L_{i}(w)$ for all $w \in V(G)$, c^{\prime} is an L_{i}-coloring of G. Thus, L and L^{\prime} are equivalent for G.

Lemma 3.1.2. Let $k, l \in \mathbb{N}$ be fixed positive integers, and (G, L) be an instance of the Ordered Graph List-3-Coloring Problem restricted to $J_{16}(k, l)$-free ordered graphs. There is a spanning (G, L)-profile \mathcal{L}_{1}^{\prime} such that:

- $\left|\mathcal{L}_{1}^{\prime}\right| \leq O\left(n^{3(k+l)}\right)$, and \mathcal{L}_{1}^{\prime} can be constructed from L in time $O\left(n^{3(k+l)+4}\right)$.
- For all $\left(G, L^{\prime}\right) \in \mathcal{L}_{1}^{\prime}$, let $X^{\prime}=\left\{v \in V(G):\left|L^{\prime}(v)\right| \geq 2\right\}$. Then in the graph $G\left[X^{\prime}\right]$, every vertex has at most 2 forward neighbors.
- If there is an L-coloring c of G with $\left|c^{-1}(i)\right| \geq k+l$ for all $i \in[3]$, then there exists $\left(G, L^{\prime}\right) \in \mathcal{L}_{1}^{\prime}$ such that c is an L^{\prime}-coloring.

Proof. Let \mathcal{Q} be the set of all 6-tuples $Q=\left(A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}\right)$ of disjoint subsets of $V(G)$ such that for all $i \in[3],\left|A_{i}\right|=k$ and $\left|B_{i}\right|=l, i \in L(v)$ for all $v \in A_{i} \cup B_{i}$, and $A_{i} \cup B_{i}$ are stable. For each $q \in \mathcal{Q}$, we construct a (G, L)-refinement $\left(G, L^{Q}\right)$ as follows.

The list L_{0}^{Q} is defined as follows. For each vertex $v \in V(G)$, we let $L_{0}^{\prime Q}(v)=\{i\}$ if $v \in A_{i} \cup B_{i}$ for some $i \in[3]$, otherwise let $L_{0}^{\prime Q}(v)=L(v)$. For each $i \in$ [3], let $m_{i}=\max \left\{\varphi_{G}(a): a \in A_{i}\right\}, n_{i}=\min \left\{\varphi_{G}(b): b \in B_{i}\right\}$. Then, for all $i \in[3]$, remove i from $L_{0}^{\prime}(v)$ for every $v \in V\left(G\left[-\infty: m_{i}\right]\right) \backslash A_{i}$ and every $v \in V\left(G\left[n_{i}: \infty\right]\right) \backslash B_{i}$. By Lemma 3.1.1, the list L_{0}^{Q} such that for all $u v \in E(G)$ with $\left|L_{0}^{Q}(v)\right|=1, L_{0}^{Q}(u) \cap L_{0}^{Q}(v)=\emptyset$, can be constructed from $L_{0}^{\prime Q}$ in polynomial time.

The list L^{Q} is constructed recursively. Starting from the list L_{0}^{Q}, we construct a sequence of equivalent list assignments $L_{1}^{Q}, L_{2}^{Q}, \ldots$ until some L_{s}^{Q} satisfies the second property of this lemma. For convenience, every time we define L_{t}^{Q} for $0 \leq t \leq s$, we also define the following sets. For $\{i, j\} \subseteq[3]$, let $X_{t}^{i j}=\left\{v \in V(G): L_{t}^{Q}(v)=\{i, j\}\right\}$, and let $X_{t}^{123}=\left\{v \in V(G): L_{t}^{Q}(v)=\{1,2,3\}\right\}$. Let $X_{t}=X_{t}^{12} \cup X_{t}^{13} \cup X_{t}^{23} \cup X_{t}^{123}$.

If in the graph $G\left[X_{t}\right]$, every vertex has at most 2 forward neighbors, then let $L^{Q}=L_{t}^{Q}$. Otherwise, there is a vertex v with at least 3 forward neighbors in the graph $G\left[X_{t}\right]$. Notice that if G contains K_{4} as a subgraph, then G is not L^{\prime}-colorable for any $L^{\prime}: V(G) \rightarrow 2^{[3]}$. We return $\mathcal{L}_{1}^{\prime}=\emptyset$ in this case. Thus, we may assume that G contains no K_{4} from now on.

Also, we may assume that
(1) The vertex v does not have two distinct non-adjacent forward neighbors u, w such that $L_{t}^{Q}(v) \cap L_{t}^{Q}(u) \cap L_{t}^{Q}(w) \neq \emptyset$.

As otherwise consider a color $i \in L_{t}^{Q}(v) \cap L_{t}^{Q}(u) \cap L_{t}^{Q}(w)$. From the construction of L_{t}^{Q}, we know that v, u, w are not adjacent to any vertex from $A_{i} \cup B_{i} . A_{i}$ and B_{i} are disjoint and $A_{i} \cup B_{i}$ is a stable set. The vertices u, w are non-adjacent forward neighbors of v. For every $x \in A_{i}, y \in\{u, v, w\}$ and $z \in B_{i}, \varphi(x)<\varphi(y)<\varphi(z)$. From the constructions of L_{0}^{Q}, we have $G\left[A_{i} \cup B_{i} \cup\{u, v, w\}\right] \cong J_{16}(k, l)$, which contradicts to the fact that G is $J_{16}(k, l)$-free. This proves (1).

If $v \in X_{t}^{123}$, then for every two forward neighbors u, w of v in $X_{t}, L_{t}^{Q}(v) \cap L_{t}^{Q}(u) \cap$ $L_{t}^{Q}(w) \neq \emptyset$. So by (1), u and w are adjacent. But then, since v has at least 3 forward neighbors, there exists a K_{4} as a subgraph of G, which is a contradiction. Thus, this case is impossible.

It remains to consider the case $v \in X_{t}^{i j}$. Let u, w, x be three distinct forward neighbors of v in X_{t}. Since G has no K_{4}, by symmetry, we may assume that $u w \notin E$. By (1), it follows that $L_{t}^{Q}(u) \cap L_{t}^{Q}(v) \cap L_{t}^{Q}(w)=\emptyset$. By symmetry, we may assume that $L_{t}^{Q}(u)=\{i, m\}$, $L_{t}^{Q}(w)=\{j, m\}$ where $\{i, j, m\}=[3]$. We have the following subcases.

- $L_{t}^{Q}(x) \supseteq\{i, j\}$.

Then $u x, w x \in E(G)$ by (1). Since u and w have two adjacent neighbors in common, it follows that $c(u)=c(w)$ for every 3-coloring of G. We let $L_{t+1}^{\prime Q}(u)=L_{t+1}^{\prime Q}(w)=$ $\{m\}, L_{t+1}^{\prime Q}(y)=L_{t}^{Q}(y) \backslash\{m\}$ for $y \in N(u) \cup N(w)$, and $L_{t+1}^{\prime Q}(y)=L_{t}^{Q}(y)$ for all $y \in V(G) \backslash(N[u] \cup N[w])$.

- $L_{t}^{Q}(x)=\{i, m\}$. (The case $\{j, m\}$ follows from symmetry.)

By (1), we have $u x \in E(G)$. But now v has two adjacent neighbors with list $\{i, m\}$. So in every L_{t}^{Q}-coloring c of G, we have $c(v)=j$. We let $L_{t+1}^{\prime Q}(v)=\{j\}, L_{t+1}^{\prime Q}(y)=$ $L_{t}(y) \backslash\{j\}$ for $y \in N(v)$, and $L_{t+1}^{\prime Q}(y)=L_{t}(y)$ for all $y \in V(G) \backslash N[v]$.

At the end of each step, by applying Lemma 3.1.1, we replace the list $L_{t+1}^{\prime Q}$ by an equivalent list L_{t+1}^{Q} such that for all $u v \in E(G)$ with $\left|L_{t+1}^{Q}(v)\right|=1$, we have $L_{t+1}^{Q}(u) \cap$ $L_{t+1}^{Q}(v)=\emptyset$, in time $O\left(n^{3}\right)$.

For all $t,\left|X_{t+1}\right| \leq\left|X_{t}\right|-1$, and $\left|X_{0}\right| \leq n$. Thus the algorithm above terminates in at most n steps. In each step t, finding the vertex v with at least 3 forward neighbors in $G\left[X_{t}\right]$ takes time $O(n)$, constructing the list $L_{t+1}^{\prime Q}$ takes time $O(n)$, and constructing the list L_{t+1}^{Q} takes time $O\left(n^{3}\right)$. So L^{Q} can be constructed in time $O\left(n^{4}\right)$. We let $\mathcal{L}_{1}^{\prime}=\left\{L^{Q}: Q \in \mathcal{Q}\right\}$. There are at most $\binom{n}{k} \cdot\binom{n-k}{k} \cdot\binom{n-2 k}{k}=O\left(n^{3 k}\right)$ different choices of the triple $\left(A_{1}, A_{2}, A_{3}\right)$, and at most $O\left(n^{3 l}\right)$ different choices of the triple (B_{1}, B_{2}, B_{3}). For each 6 -tuple Q we add at most one list to \mathcal{L}_{1}^{\prime}. Thus, $\left|\mathcal{L}_{1}^{\prime}\right| \leq O\left(n^{3(k+l)}\right)$. Therefore, \mathcal{L}_{1} can be constructed from L in time $O\left(n^{3(k+l)+4}\right)$.

Finally, let c be an L-coloring of G with $\left|c^{-1}(i)\right| \geq k+l$ for all $i \in[3]$. Define $A_{i}^{\prime} \subseteq c^{-1}(i)$ to be the set of vertices such that $\left|A_{i}^{\prime}\right|=k$, and $\varphi(v)>\varphi(u)$ for all $v \in c^{-1}(i) \backslash A_{i}^{\prime}$ and $u \in A_{i}^{\prime}$, that is, A_{i}^{\prime} is the set of first k vertices colored i in c. Similarly, for all $i \in[3]$, define $B_{i}^{\prime} \subseteq c^{-1}(i)$ to be the set of vertices such that $\left|B_{i}^{\prime}\right|=l$, and $\varphi(v)<\varphi(u)$ for any $v \in c^{-1}(i) \backslash B_{i}^{\prime}$ and $u \in B_{i}^{\prime}$. Let $Q^{\prime}=\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}\right)$. It follows that $Q^{\prime} \in \mathcal{Q}$. Thus, the corresponding (G, L)-refinement $\left(G, L^{Q^{\prime}}\right)$ is in \mathcal{L}_{1}^{\prime}.

We want to show that c is also an $L^{Q^{\prime}}$-coloring. We will prove this by induction on t. For every vertex $v \in V(G)$, we have $c(v) \in L_{0}^{Q^{\prime}}(v)$ from the choice of Q^{\prime}. Thus, c
is an $L_{0}^{Q^{\prime}}$-coloring. Suppose c is an $L_{t}^{Q^{\prime}}$-coloring. Then for $t+1$, from our construction, $c(v) \in L_{t+1}^{\prime Q^{\prime}}(v)$ for all vertex v. So c is an $L_{t+1}^{\prime Q^{\prime}}$-coloring of G. By Lemma 3.1.1, c is also an $L_{t+1}^{Q^{\prime}}$-coloring. Thus, the L-coloring c is an $L^{Q^{\prime}}$-coloring of G.

Lemma 3.1.3. Let $k, l \in \mathbb{N}$ be fixed positive integers, and (G, L) be an instance of the Ordered Graph List-3-Coloring Problem restricted to $J_{16}(k, l)$-free ordered graphs. There is a spanning (G, L)-profile \mathcal{L}_{2}^{\prime} such that:

- $\left|\mathcal{L}_{2}^{\prime}\right| \leq 3 \cdot n^{k+l}$, and \mathcal{L}_{2}^{\prime} can be constructed from L in time $O\left(n^{k+l+1}\right)$.
- For all $\left(G, L^{\prime}\right) \in \mathcal{L}_{2}^{\prime}$, let $X=\left\{v \in V(G):\left|L^{\prime}(v)\right| \geq 2\right\}$. Then $\left|L^{\prime}(v)\right|=2$ and $L^{\prime}(u)=L^{\prime}(v)$ for all $u, v \in X$.
- If c is an L-coloring of G with $\left|c^{-1}(i)\right|<k+l$ for some $i \in[3]$, then there exists $\left(G, L^{\prime}\right) \in \mathcal{L}_{2}^{\prime}$ such that c is an L^{\prime}-coloring.

Proof. Let \mathcal{P} be a set of all pairs $P=\left(i, A_{i}\right)$ such that $i \in[3]$ and $A_{i} \subseteq V(G)$ with $\left|A_{i}\right|<k+l, A_{i}$ stable and $i \in L(v)$ for all $v \in A_{i}$. For each $P \in \mathcal{P}$, we construct a (G, L)-refinement $\left(G, L^{P}\right)$ as follows.

Let $L^{P}(v)=\{i\}$ for all $v \in A_{i}$, and $L^{P}(v)=L(v) \backslash\{i\}$ otherwise. It follows that $L^{P}(v)=[3] \backslash\{i\}$ for all $v \in V(G)$ with $\left|L^{P}(v)\right| \geq 2$.

The set \mathcal{P} is of size at most $3 \cdot n^{k+l}$. For each pair $P \in \mathcal{P}$ we add at most one refinement to \mathcal{L}_{2}^{\prime}. Thus, $\left|\mathcal{L}_{2}^{\prime}\right| \leq 3 \cdot n^{k+l}$. Constructing the list L^{P} takes time $O(n)$. Thus, \mathcal{L}_{2}^{\prime} can be constructed from L in time $O\left(n^{k+l+1}\right)$.

Let c be an L-coloring of G with $\left|c^{-1}(i)\right|<k+l$ for some $i \in[3]$. The pair $P^{\prime}=\left(i, c^{-1}(i)\right)$ satisfies the property that $\left|c^{-1}(i)\right|<k+l, c^{-1}(i)$ is stable and $i \in L(v)$ for all $v \in c^{-1}(i)$. Thus, the corresponding (G, L)-refinement $\left(G, L^{P^{\prime}}\right)$ is in \mathcal{L}_{2}^{\prime}. By the construction of $L^{P^{\prime}}, c$ is an $L^{P^{\prime}}$-coloring.

A graph G is chordal if in G, every cycle of length at least 4 has an edge connecting two vertices of the cycle but not in the cycle. Equivalently, every induced cycle in G is a triangle.

Lemma 3.1.4. Let $k, l \in \mathbb{N}$ be fixed positive integers, and (G, L) be an instance of the Ordered Graph List-3-Coloring Problem restricted to $J_{16}(k, l)$-free ordered graphs. Let $X=\{v \in V(G):|L(v)| \geq 2\}$ and let us assume that every vertex in X has at most two forward neighbors in $G[X]$ and that $|X| \geq 3 k+3 l+6$. There is a spanning (G, L)-profile \mathcal{L}_{1} such that:

- $\left|\mathcal{L}_{1}\right|=O(1)$, and \mathcal{L}_{1} can be constructed in time $O\left(n^{3}\right)$.
- For all $\left(G, L^{*}\right) \in \mathcal{L}_{1}$, let $X^{*}=\left\{v \in V(G):\left|L^{*}(v)\right| \geq 2\right\}$. Then the graph $G\left[X^{*}\right]$ is chordal.
- If c is an L-coloring of G, then there exists $\left(G, L^{*}\right) \in \mathcal{L}_{1}$ such that c is an L^{*}-coloring of G.

Proof. First, we define two sets $C^{\prime} \subseteq C \subseteq X$ as follows. We start with $C^{\prime}=C=\emptyset$. In each step, we take the vertex $v \in X \backslash C$ with the smallest $\varphi(v)$. Add v and its forward neighbors in $G[X]$ to C, and add v to C^{\prime}. We repeat this k times. Since every vertex in X has at most two forward neighbors in $G[X],|C| \leq 3 k$. By construction, C^{\prime} is a stable set of size k. Moreover, no vertex in C^{\prime} is adjacent to a vertex in $X \backslash C$. Define $D \subseteq X$ to be the set of vertices such that $|D|=3 l+6$, and $\varphi(v)<\varphi(u)$ for all $v \in X \backslash(C \cup D)$ and $u \in D$, that is, D is the set of last $3 l+6$ vertices in $X \backslash C$. Since $|X| \geq 3 k+3 l+6$, it follows that C, C^{\prime} and D are well-defined.

Let \mathcal{F} be the set of all functions $f: C \cup D \rightarrow[3]$ such that f is an L-coloring of $G[C \cup D]$. For every $f \in \mathcal{F}$, we construct a (G, L)-refinement $\left(G, L^{\prime \prime}\right)$ such that $L^{\prime f}(v)=\{f(v)\}$ if $v \in C \cup D$, and $L^{\prime f}(v)=L(v)$ otherwise. By Lemma 3.1.1, there is an equivalent list L^{f} of $L^{\prime f}$ such that for all $u v \in E(G)$ with $\left|L^{f}(v)\right|=1, L^{f}(u) \cap L^{f}(v)=\emptyset$. Let $\mathcal{L}_{1}=\left\{\left(G, L^{f}\right): f \in \mathcal{F}\right\}$. There are at most $3^{3 k+3 l+6}=O(1)$ possible choices of f. Thus, $\left|\mathcal{L}_{1}\right|=O(1)$. Constructing the set C and D takes time $O(1)$. Each $L^{\prime f}$ can be constructed in time $O(n)$. Each L^{f} can be constructed in time $O\left(n^{3}\right)$. So \mathcal{L}_{1} can be constructed in time $O\left(n^{3}\right)$.

Now let $\left(G, L^{*}\right) \in \mathcal{L}_{1}$. Every non-chordal ordered graph contains a vertex with two non-adjacent forward neighbors. To be more precise, the vertex with the smallest order in an induced cycle of size at least 4 is a desired vertex. Now we want to show that $G\left[X^{*}\right]$ is chordal using this property. Suppose for a contradiction that in $G\left[X^{*}\right]$, there is a vertex v_{1} with two non-adjacent forward neighbors v_{2}, v_{3}. There is a stable set $D^{\prime} \subseteq D$ of size at least l such that D^{\prime} is anticomplete to $\left\{v_{1}, v_{2}, v_{3}\right\}$. That is because $X^{*} \subseteq X$ and every vertex in X has at most 2 forward neighbors in $G[X]$, so $D \backslash N\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ is of size at least 3l. Since D has a 3 -coloring by construction, there is a stable set $D^{\prime} \subseteq D \backslash N\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ of size at least l and which is anticomplete to $\left\{v_{1}, v_{2}, v_{3}\right\}$. From the construction above, the sets $\left\{v_{1}, v_{2}, v_{3}\right\}, C^{\prime}$ and D^{\prime} are disjoint. Moreover, for every $x \in C^{\prime}, y \in\left\{v_{1}, v_{2}, v_{3}\right\}$ and $z \in D^{\prime}, \varphi(x)<\varphi(y)<\varphi(z)$. So $G\left[C^{\prime} \cup D^{\prime} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right] \cong J_{16}(k, l)$, which is a contradiction. Therefore, $G\left[X^{*}\right]$ is chordal.

Finally, let c be an L-coloring of G. Take the coloring $c^{\prime}=\left.c\right|_{C \cup D}$ and consider the corresponding (G, L)-refinement $\left(G, L^{\prime} c^{\prime}\right)$ and $\left(G, L^{c^{\prime}}\right)$ defined above. Since we have covered
all possible colorings f of $G[C \cup D],\left(G, L^{c^{\prime}}\right)$ is in \mathcal{L}_{1}. We can verify that $c(v) \in L^{\prime c^{\prime}}(v)$ for all vertices $v \in V(G)$. Thus c is also an $L^{c^{\prime}}$-coloring.

Lemma 3.1.5. Let $k, l \in \mathbb{N}$ be fixed positive integers, and (G, L) be an instance of the Ordered Graph List-3-Coloring Problem restricted to $J_{16}(k, l)$-free ordered graphs. Let $X=\{v \in V(G):|L(v)| \geq 2\}$ and let us assume that $|X|<3 k+3 l+6$. There is a spanning (G, L)-profile \mathcal{L}_{2} such that:

- $\left|\mathcal{L}_{2}\right|=O(1)$, and \mathcal{L}_{2} can be constructed in time $O\left(n^{3}\right)$.
- For any $\left(G, L^{*}\right) \in \mathcal{L}_{2},\left|L^{*}(v)\right| \leq 1$ for all $v \in V(G)$.
- If c is an L-coloring of G, then there exists $\left(G, L^{*}\right) \in \mathcal{L}_{2}$ such that c is an L^{*}-coloring of G.

Proof. Let \mathcal{F} be the set of all functions $f: X \rightarrow[3]$ such that f is an L-coloring of $G[X]$. For every possible function $f \in \mathcal{F}$, we construct a list L^{f} such that $L^{f}(v)=\{f(v)\}$ for all $v \in X$, and $L^{f}(v)=L(v)$ otherwise. Let $\mathcal{L}_{2}=\left\{\left(G, L^{f}\right): f \in \mathcal{F}\right\}$.

For every $\left(G, L^{f}\right) \in \mathcal{L}_{2}$ and for every $v \in V(G)$, if $v \in X$ then $\left|L^{f}(v)\right| \leq 1$; otherwise by the definition of X, we have $\left|L^{f}(v)\right| \leq\left|L^{\prime f}(v)\right| \leq 1$. Thus $\left|L^{f}(v)\right| \leq 1$ for all $v \in V(G)$.

Since there are at most $3^{3 k+3 l+6}=O(1)$ possible choices of $f,\left|\mathcal{L}_{2}\right|=O(1)$. Each $L^{\prime f}$ can be constructed in time $O(n)$, and L^{f} can be constructed from $L^{\prime f}$ in time $O\left(n^{3}\right)$. So \mathcal{L}_{2} can be constructed in time $O\left(n^{3}\right)$.

Finally, let c be an L-coloring of G. Let $c^{\prime}=\left.c\right|_{X}$ and consider the corresponding (G, L)-refinements $\left(G, L^{\prime} c^{\prime}\right)$ and $\left(G, L^{c^{\prime}}\right)$ defined above. Since we have covered all possible L-colorings $f: X \rightarrow[3],\left(G, L^{c^{\prime}}\right) \in \mathcal{L}_{2}$. By the construction of c^{\prime} and $L^{\prime c^{\prime}}, c$ is an $L^{\prime c^{\prime}}$ coloring thus is an $L^{c^{\prime}}$-coloring.

Recall the theorems:
Theorem 1.3.5. The List-3-Coloring Problem restricted to chordal graphs with bounded clique number is polynomial-time solvable.

Theorem 1.3.6. The List-2-Coloring Problem can be solved in time $O\left(n^{2}\right)$, where n is the number of vertices of the input graph.

Theorem 3.1.6. For fixed $k, l \in \mathbb{N}$, there is an algorithm with the following specifications:

- Input: (G, L), which is an instance of the Ordered Graph List-3-Coloring Problem and G is $J_{16}(k, l)$-free.
- Output: one of
- an L-coloring of G;
- a determination that G is not L-colorable;
- a spanning (G, L)-profile \mathcal{L} with $|\mathcal{L}| \leq O\left(n^{3(k+l)}\right)$ such that for every $\left(G, L^{*}\right) \in$ \mathcal{L}, if $X^{L^{*}}=\left\{v \in V(G):\left|L^{*}(v)\right| \geq 2\right\}$, then $G\left[X^{L^{*}}\right]$ is chordal.
- Running time: $O\left(n^{3(k+l+1)}\right)$.

Proof. Let \mathcal{L}_{1}^{\prime} be as in Lemma 3.1.2. Let \mathcal{L}_{2}^{\prime} be as in Lemma 3.1.3. By Theorem 1.3.6, every (G, L)-refinement $\left(G, L^{\prime}\right) \in \mathcal{L}_{2}^{\prime}$ can be solved in time $O\left(n^{2}\right)$. If this finds an L-coloring of G, we just output the coloring instead of processing with the other things.

For every (G, L)-refinement $\left(G, L^{\prime}\right) \in \mathcal{L}_{1}^{\prime}$, let $X=\left\{v \in V(G):\left|L^{\prime}(v)\right| \geq 2\right\}$. If $|X| \geq 3 k+3 l+6$, then there is a spanning (G, L)-profile $\mathcal{L}^{L^{\prime}}$ which satisfies the properties in Lemma 3.1.4. If $|X|<3 k+3 l+6$, then there is a spanning (G, L)-profile $\mathcal{L}^{L^{\prime}}$ which satisfies the properties in Lemma 3.1.5. Finally, let $\mathcal{L}=\cup_{\left(G, L^{\prime}\right) \in \mathcal{L}_{1}^{\prime}} \mathcal{L}^{L^{\prime}}$. From the constructions, for every $\left(G, L^{*}\right) \in \mathcal{L}, G\left[X^{L^{*}}\right]$ is chordal. Since $\left|\mathcal{L}^{L^{\prime}}\right|=O(1)$ and $\left|\mathcal{L}_{1}^{\prime}\right| \leq O\left(n^{3(k+l)}\right)$, $|\mathcal{L}| \leq O\left(n^{3(k+l)}\right)$. The collection $\mathcal{L}^{L^{\prime}}$ can be constructed from L^{\prime} in time $O\left(n^{3}\right)$, and $\left|\mathcal{L}_{1}^{\prime}\right| \leq O\left(n^{3(k+l)}\right)$. Thus, \mathcal{L} can be constructed from L in time $O\left(n^{3(k+l+1)}\right)$.

Proof of Theorem 1.2.17. Let G be a $J_{16}(k, l)$-free ordered graph and L be a 3 -list-assignment for G. We check in polynomial time if G contains a clique of size 4 . If so, then G is not L-colorable and we are done. We apply the algorithm from Theorem 3.1.6 to (G, L). If the output is an L-coloring of G or a determination that G is not L-colorable, then we are done; so we may assume that the output is a (G, L)-profile \mathcal{L}. For each $\left(G, L^{*}\right) \in \mathcal{L}$, we let $X^{L^{*}}=\left\{v \in V(G):\left|L^{*}(v)\right| \geq 2\right\}$ as in Theorem 3.1.6. By Lemma 3.1.1, we may assume that $L^{*}(u) \cap L^{*}(v)=\emptyset$ for all $u v \in E(G)$ such that $\left|L^{*}(u)\right|=1$. If $L^{*}(u)=\emptyset$ for some $u \in V(G)$, then G has no L^{*}-coloring and we continue. Otherwise, since Theorem 3.1.6 guarantees that $G\left[X^{L^{*}}\right]$ is chordal, and since G contains no clique of size 4, we can check in polynomial time if $G\left[X^{L^{*}}\right]$ is L^{*}-colorable. If this returns a coloring f, then by Lemma 3.1.1, we obtain an L-coloring of G as follows:

- for $x \in X^{L^{*}}$, let $c(x)=f(x)$;
- for all other $x \in V(G)$, let $c(x)$ be the unique color in $L^{*}(x)$.

If there is no $\left(G, L^{*}\right) \in \mathcal{L}$ such that this returns a coloring of G, then, from the definition of a (G, L)-profile, it follow that G is not L-colorable. This concludes the proof.

3.2 NP-hardness results

In this section, we will prove the following theorem.
Theorem 1.2.18. If H is an ordered graph such that at least one of the following holds:

- H has at least three edges;
- H has a vertex of degree at least 2 and is not isomorphic to $J_{16}(k, l)$ or $-J_{16}(k, l)$ for any k, l;
- H contains J_{9}, M_{1} or M_{5} as induced ordered subgraph;
then the Ordered Graph List-3-Coloring Problem restricted to (H, φ)-free ordered graphs is NP-complete.

In ordered to show Theorem 1.2.18, we will show the following two theorems.
Theorem 3.2.1. Let H be a graph and $\varphi: V(H) \rightarrow \mathbb{Z}$. The Ordered Graph List-3Coloring Problem restricted to (H, φ)-free ordered graphs is $N P$-complete if H contains a copy of P_{4} or $P_{3}+P_{2}$ as an induced subgraph.

Theorem 3.2.2. The Ordered Graph List-3-Coloring Problem is $N P$-complete when restricted to the class of M_{j}-free ordered graphs, for $j \in[5]$.

We will use three constructions to show the Ordered Graph List-3-Coloring Problem is NP-complete when restricted to the class of J_{i}-free ordered graphs, for every $i \in[15]$. Then with these proofs, we will show Theorem 3.2.1.

The first two constructions reduce from NAE3SAT. Notice that we will prove a stronger result: In the following two theorems, we actually prove the NP-hardness of the Ordered Graph 3-Coloring Problem instead of the Ordered Graph List-3-Coloring Problem within specific classes of graphs.

Theorem 3.2.3. Given a monotone NAE3SAT instance I, there is a graph H_{1} such that:

1. The graph H_{1} can be computed from I in time $O(m+n)$, where m is the number of clauses of I and n is the number of variables of I;
2. The graph H_{1} is 3-colorable if and only if I is satisfiable;
3. There is an injective function $\tau_{1}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{1}\right)$ is J_{3}, J_{6} and - J_{11}-free, and τ_{1} can be computed from H_{1} in time $O(m+n)$;
4. There is an injective function $\tau_{2}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{2}\right)$ is $J_{1}, J_{2},-J_{4}, J_{5}$, J_{8} and J_{12}-free, and τ_{2} can be computed from H_{1} in time $O(m+n)$;
5. There is an injective function $\tau_{3}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{3}\right)$ is J_{10}-free, and τ_{3} can be computed from H_{1} in time $O(m+n)$.

Therefore, the Ordered Graph 3-Coloring Problem is NP-complete when restricted to the class of $J_{1}, J_{2}, J_{3},-J_{4}, J_{5}, J_{6}, J_{8}, J_{10},-J_{11}$ or J_{12}-free ordered graphs.

M T

Figure 3.3: The construction of H_{1} from Theorem 3.2.3, with M corresponding to variables and T corresponding to clauses.

Proof. The construction of H_{1} is shown in Figure 3.3. First we create a vertex x. For every variable x_{i} of I, we create a vertex m_{i}, and denote the set of such vertices as M. For every clause C_{j} of I, we create three vertices $t_{j, k}$ for $k \in[3]$, and denote the set of such vertices as T. Let $V\left(H_{1}\right)=\{x\} \cup M \cup T$.

For every vertex $m_{i} \in M$, we add an edge $x m_{i}$. For every clause C_{j} of I, if the variables in C_{j} are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq n$, we add edges $m_{i_{k}} t_{j, k}$ for $k \in[3]$ and edges $t_{j, 1} t_{j, 2}, t_{j, 2} t_{j, 3}, t_{j, 1} t_{j, 3}$. Let $E\left(H_{1}\right)$ be the set of all defined edges.
(1) $H_{1}[m]$ is stable and $H_{1}[T]$ is disjoint union of triangles.

It follows from the construction of H_{1}.
(2) The graph H_{1} can be computed from I in time $O(m+n)$.

It takes time $O(m+n)$ to compute both the set $V\left(H_{1}\right)$ and $E\left(H_{1}\right)$.
(3) The graph H_{1} is 3-colorable if and only if I is satisfiable.

Let $f: V\left(H_{1}\right) \rightarrow[3]$ be a 3 -coloring of H_{1}. Without loss of generality, we assume $f(x)=1$. Since every vertex in M is adjacent to x, we have $f\left(m_{i}\right) \in\{2,3\}$ for every $i \in[n]$. We claim that if the variables in C_{j} are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq n$, then at least one of $f\left(m_{i_{1}}\right), f\left(m_{i_{2}}\right)$ and $f\left(m_{i_{3}}\right)$ has value 2 and at least one of them has value 3. Suppose for a contradiction, without loss of generality, that $f\left(m_{i_{k}}\right)=2$ for every $k \in[3]$. Then $f\left(t_{j, k}\right) \in\{1,3\}$ for every $k \in[3]$, at least two of the three vertices receive the same color. But by (1), the vertices $t_{j, 1}, t_{j, 2}$ and $t_{j, 3}$ form a triangle. which leads to a contradiction as desired. Thus, by assigning true to the variable x_{i} if $f\left(m_{i}\right)=2$ and false otherwise, we get a valid truth assignment to the monotone NAE3SAT instance I.

If there is a valid truth assignment to I, we define a 3-coloring $g: V\left(H_{1}\right) \rightarrow[3]$ as follows. For every $i \in[n]$, let $g\left(m_{i}\right)=2$ if the variable v_{i} is true in this truth assignment, otherwise let $g\left(m_{i}\right)=3$. Let $g(x)=1$. For each clause C_{j}, we denote the variables in C_{j} as $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq n$. Let $g\left(t_{j, 1}\right) \in\{2,3\} \backslash\left\{g\left(m_{i_{1}}\right)\right\}$. Since $\left.g\right|_{M}$ is constructed from a valid truth assignment of I, at least one of the $g\left(m_{i_{1}}\right), g\left(m_{i_{2}}\right)$ and $g\left(m_{i_{3}}\right)$ has value 2 and at least one of them has value 3. If $g\left(m_{i_{2}}\right) \neq g\left(m_{i_{1}}\right)$, then let $g\left(t_{j, 2}\right) \in\{2,3\} \backslash\left\{g\left(m_{i_{2}}\right)\right\}$ and $g\left(t_{j, 3}\right)=1$, otherwise let $g\left(t_{j, 3}\right) \in\{2,3\} \backslash\left\{g\left(m_{i_{3}}\right)\right\}$ and $g\left(t_{j, 2}\right)=1$. To verify this is a valid 3 -coloring, we simply go through and check every edge in $E\left(H_{1}\right)$.
(4) There is an injective function $\tau_{1}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{1}\right)$ is J_{3}, J_{6} and $-J_{11}$-free, and τ_{1} can be computed from H_{1} in time $O(m+n)$.

The function $\tau_{1}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ is defined as follows. Let $\tau_{1}(x)=1$. Let $\tau_{1}\left(m_{i}\right)=i+1$
for every $i \in[n]$. For every $j \in[m]$ and $k \in[3]$, let $\tau_{1}\left(t_{j, k}\right)=n+3 j+k-2$. The function τ_{1} can be constructed in time $O(m+n)$ as we go through every vertex once.

From the construction we have $\tau_{1} \mid M$ and $\tau_{1} \mid T$ are injective, and $\tau_{1}(x)<\tau_{1}\left(m_{i}\right)<$ $\tau_{1}\left(t_{j, k}\right)$ for every $i \in[n], j \in[m]$ and $k \in[3]$. So the function τ_{1} is injective.

Suppose for a contradiction that $\left(H_{1}, \tau_{1}\right)$ contains an induced path $w_{1} w_{3} w_{2} w_{4}$ with $\tau_{1}\left(w_{1}\right)<\tau_{1}\left(w_{2}\right)<\tau_{1}\left(w_{3}\right)<\tau_{1}\left(w_{4}\right)$. Since the vertex x does not have any backward neighbor and every $m_{i} \in M$ has only one backward neighbor x, we have $w_{3} \in T$. At most one of w_{1} and w_{2} is in T as $w_{1}, w_{2} \in N\left(w_{3}\right)$ and $w_{1} w_{2} \notin E\left(H_{1}\right)$. Thus we have $w_{1} \in M, w_{2} \in T \cup M$ and $w_{4} \in T$. If $w_{2} \in T$, then w_{3} is also adjacent to w_{4} since $w_{3}, w_{4} \in N\left(w_{2}\right)$, which is a contradiction. If $w_{2} \in M$, then w_{3} has two neighbors in M, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{1}\right)$ is J_{3}-free.

Suppose for a contradiction that $\left(H_{1}, \tau_{1}\right)$ contains an induced path $w_{1} w_{4} w_{3} w_{2}$ with $\tau_{1}\left(w_{1}\right)<\tau_{1}\left(w_{2}\right)<\tau_{1}\left(w_{3}\right)<\tau_{1}\left(w_{4}\right)$. Since w_{4} has two backward neighbors, we have $w_{4} \in T$. For the two backward neighbors w_{1}, w_{3} of w_{4}, since $w_{1} w_{3} \notin E\left(H_{1}\right)$ and $\tau_{1}\left(w_{1}\right)<\tau_{1}\left(w_{3}\right)$, we have $w_{1} \in M$ and $w_{3} \in T$. The vertex w_{2} is not in the set T as otherwise $w_{2} w_{4} \in E\left(H_{1}\right)$, so $w_{2} \in M$. From the construction of τ_{1}, there exist $i_{1}, i_{2} \in[n]$ with $i_{1}<i_{2}$ and $w_{1}=m_{i_{1}}$, $w_{2}=m_{i_{2}}$. But then we have $\tau_{1}\left(w_{4}\right)<\tau_{1}\left(w_{3}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{1}\right)$ is J_{6}-free.

Suppose $\left(H_{1}, \tau_{1}\right)$ contains an induced subgraph $\left(\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\},\left\{w_{1} w_{4}, w_{2} w_{4}\right\}\right)$ with $\tau_{1}\left(w_{1}\right)<\tau_{1}\left(w_{2}\right)<\tau_{1}\left(w_{3}\right)<\tau_{1}\left(w_{4}\right)$. Since w_{4} has two backward neighbors, we have $w_{4} \in T$. For the two backward neighbors w_{1}, w_{2} of w_{4}, since $w_{1} w_{2} \notin E\left(H_{1}\right)$ and $\tau_{1}\left(w_{1}\right)<\tau_{1}\left(w_{2}\right)$, we have $w_{1} \in M$ and $w_{2} \in T$. From the construction of τ_{1}, since $w_{2} w_{4} \in E\left(H_{1}\right)$ and $\tau_{1}\left(w_{2}\right)<$ $\tau_{1}\left(w_{3}\right)<\tau_{1}\left(w_{4}\right)$, we have $w_{3} \in T$ and $w_{2} w_{3}, w_{3} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{1}\right)$ is $-J_{11}$-free.
(5) There is an injective function $\tau_{2}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{2}\right)$ is $J_{1}, J_{2},-J_{4}, J_{5}, J_{8}$ and J_{12}-free, and τ_{2} can be computed from I in time $O(m+n)$.

The function $\tau_{2}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ is defined as follows. Let $\tau_{2}\left(m_{i}\right)=i$ for every $i \in[n]$. Let $\tau_{2}(x)=n+1$. For every $j \in[m]$ and $k \in[3]$, let $\tau_{2}\left(t_{j, k}\right)=n+3 j+k-2$. The function τ_{2} can be constructed in time $O(m+n)$ as we go through every vertex once.

From the construction we have $\tau_{2} \mid M$ and $\tau_{2} \mid T$ are injective, and $\tau_{2}\left(m_{i}\right)<\tau_{2}(x)<$ $\tau_{2}\left(t_{j, k}\right)$ for every $i \in[n], j \in[m]$ and $k \in[3]$. So the function τ_{2} is injective.

Suppose for a contradiction that $\left(H_{1}, \tau_{2}\right)$ contains an induced path $w_{1} w_{2} w_{3} w_{4}$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2}, w_{3} \neq x$. Since every vertex in M has no backward neighbor, we have
$w_{2}, w_{3}, w_{4} \notin M$. So $w_{2}, w_{3} \in T$. Then we have $w_{4} \in T$ as $\tau_{2}\left(w_{4}\right)>\tau_{2}\left(w_{3}\right)$. But from the construction of H_{1} and τ_{2}, we also have $w_{2} w_{4} \in E\left(H_{1}\right)$ as $w_{2} w_{3}, w_{3} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{1}-free.

Suppose for a contradiction that $\left(H_{1}, \tau_{2}\right)$ contains an induced path $w_{1} w_{2} w_{4} w_{3}$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2}, w_{3} \neq x$. Since every vertex in M has no backward neighbor, we have $w_{2}, w_{4} \notin M$. So $w_{2} \in T$. Then we have $w_{3}, w_{4} \in T$ as $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. But from the construction of H_{1} and τ_{2}, we also have $w_{2} w_{3} \in E\left(H_{1}\right)$ as $w_{2} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{2}-free.

Suppose for a contradiction that $\left(H_{1}, \tau_{2}\right)$ contains an induced path $w_{3} w_{1} w_{2} w_{4}$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2} \neq x$. Since every vertex in M has no backward neighbor, we have $w_{2}, w_{3}, w_{4} \notin M$. So $w_{2} \in T$. Then we have $w_{3}, w_{4} \in T$ as $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. But from the construction of H_{1} and τ_{2}, we also have $w_{2} w_{3} \in E\left(H_{1}\right)$ as $w_{2} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is $-J_{4}$-free.

Suppose for a contradiction that $\left(H_{1}, \tau_{2}\right)$ contains an induced path $w_{1} w_{4} w_{2} w_{3}$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2} \neq x$. Since every vertex in M has no backward neighbor, we have $w_{3}, w_{4} \notin$ M. If $w_{2} \in T$, then we have $w_{3}, w_{4} \in T$ as $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. But from the construction of H_{1} and τ_{2}, we also have $w_{3} w_{4} \in E\left(H_{1}\right)$ as $w_{2} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus we have $w_{2} \in M$, which implies $w_{1} \in M$. Also since w_{2} has two forward neighbors and $\tau_{2}(x)<\tau_{2}\left(t_{j, k}\right)$ for every $j \in[m]$ and $k \in[3]$, we have $w_{4} \in T$. But then w_{4} has two neighbors $w_{1}, w_{2} \in M$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{5}-free.

Suppose for a contradiction that $\left(H_{1}, \tau_{2}\right)$ contains an induced path $w_{3} w_{1} w_{4} w_{2}$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2} \neq x$. Since every vertex in M has no backward neighbor, we have $w_{3}, w_{4} \notin$ M. Since w_{1} has two non-adjacent forward neighbors w_{2}, w_{4} with $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{4}\right)$, we have $w_{1} \in M$ and $w_{4} \in T$. Thus we have $w_{2} \in T$, as w_{4} has exactly one neighbor in M. But from the construction of H_{1} and τ_{2}, we also have $w_{3} \in T$ and so $w_{2} w_{3}, w_{3} w_{4} \in E\left(H_{1}\right)$ as $w_{2} w_{4} \in E\left(H_{1}\right)$ and $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{8}-free.

Suppose that $\left(H_{1}, \tau_{2}\right)$ contains an induced subgraph $\left(\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\},\left\{w_{1} w_{2}, w_{2} w_{4}\right\}\right)$ with $\tau_{2}\left(w_{1}\right)<\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. Since the vertex x does not have any forward neighbor, we have $w_{1}, w_{2} \neq x$. Since every vertex in M has no backward neighbor, we have $w_{2}, w_{4} \notin M$. So $w_{2} \in T$. Then we have $w_{3}, w_{4} \in T$ as $\tau_{2}\left(w_{2}\right)<\tau_{2}\left(w_{3}\right)<\tau_{2}\left(w_{4}\right)$. But from
the construction of H_{1} and τ_{2}, we also have $w_{2} w_{3}, w_{3} w_{4} \in E\left(H_{1}\right)$ as $w_{2} w_{4} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{12}-free.
(6) There is an injective function $\tau_{3}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ such that $\left(H_{1}, \tau_{3}\right)$ is J_{10}-free, and τ_{3} can be computed from H_{1} in time $O(m+n)$.

The function $\tau_{3}: V\left(H_{1}\right) \rightarrow \mathbb{Z}$ is defined as follows. Let $\tau_{3}(x)=1$. Let $\tau_{1}\left(m_{i}\right)=i+1$ for every $i \in[n]$. For every $j \in[m]$ and $k \in[3]$, let $m_{i} \in M$ be the vertex such that $t_{j, k} \in N\left(m_{i}\right)$, then we set $\tau_{3}\left(t_{j, k}\right)=n+2+\sum_{i^{\prime}=1}^{i-1}\left(\operatorname{deg}\left(m_{i^{\prime}}\right)-1\right)+\left|\left\{t_{j^{\prime}, k^{\prime}} \in N\left(m_{i}\right): j^{\prime}<j\right\}\right|$. The function τ_{1} can be constructed in time $O(m+n)$ as we go through every vertex once.

From the construction we have $\tau_{3} \mid M$ and $\tau_{3} \mid T$ are injective, and $\tau_{3}(x)<\tau_{3}\left(m_{i}\right)<$ $\tau_{3}\left(t_{j, k}\right)$ for every $i \in[n], j \in[m]$ and $k \in[3]$. So the function τ_{3} is injective.

Suppose that $\left(H_{1}, \tau_{3}\right)$ contains an induced subgraph $\left(\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\},\left\{w_{1} w_{2}, w_{1} w_{4}\right\}\right)$ with $\tau_{3}\left(w_{1}\right)<\tau_{3}\left(w_{2}\right)<\tau_{3}\left(w_{3}\right)<\tau_{3}\left(w_{4}\right)$. Now we consider the vertex w_{1}. Since $w_{1}=x$ implies $w_{1} w_{3} \in E\left(H_{1}\right)$ as $w_{2}, w_{4} \in N\left(w_{1}\right)$, and $w_{1} \in T$ implies $w_{2} w_{4} \in E\left(H_{1}\right)$, we have $w_{1} \in M$. But from the construction of τ_{3}, we also have $w_{1} w_{3} \in E\left(H_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{1}, \tau_{2}\right)$ is J_{10}-free.

Theorem 3.2.4. Given a monotone NAE3SAT instance I, there is an ordered graph $\left(H_{2}, \tau_{4}\right)$ such that

1. The ordered graph $\left(H_{2}, \tau_{4}\right)$ can be computed from I in time $O(m+n)$;
2. The graph H_{2} is 3-colorable if and only if I is satisfiable;
3. The ordered graph $\left(H_{2}, \tau_{4}\right)$ is J_{7}, J_{13} and $J_{14}-f r e e$.

Therefore, the Ordered Graph 3-Coloring Problem is NP-complete when restricted to the class of J_{7}, J_{13} or J_{14}-free ordered graphs.

Proof. The construction of H_{2} is shown in Figure 3.4. First we create a vertex x. For every variable x_{i} of I, we create a vertex m_{i} and add edge $x m_{i}$. We denote the set of such vertices m_{i} as M. For every clause C_{j} of I, if the variables in C_{j} are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq n$, we create six vertices $t_{j, i_{k}}$ and $s_{i_{k}, j}$ for $k \in[3]$. We add edges $t_{j, i_{k}} t_{j, i_{k^{\prime}}}$ for $\left\{k, k^{\prime}\right\} \subseteq[3]$, and $x s_{i_{k}, j}, m_{i_{k}} s_{i_{k}, j}$ and $s_{i_{k}, j} t_{j, i_{k}}$ for $k \in[3]$. We denote the set of vertices $t_{j, i_{k}}$ as T, and the set of vertices $s_{i_{k}, j}$ as S. Finally, let $V\left(H_{2}\right)=\{x\} \cup M \cup S \cup T$ and $E\left(H_{2}\right)$ be the set of all edges defined above.

Figure 3.4: The construction of H_{2} from Theorem 3.2.4.

The function $\tau_{4}: V\left(H_{2}\right) \rightarrow \mathbb{Z}$ is defined as follows. Let $\tau_{4}(x)=1$ and $\tau_{1}\left(m_{i}\right)=i+1$ for every $i \in[n]$. For every $s_{i, j} \in S$, let $\tau_{4}\left(s_{i, j}\right)=n+2+\sum_{i^{\prime}=1}^{i-1}\left(\operatorname{deg}\left(m_{i^{\prime}}\right)-1\right)+\mid\left\{s_{i, j^{\prime}} \in\right.$ $\left.N\left(m_{i}\right): j^{\prime}<j\right\} \mid$. For every $t_{j, i} \in T$, let $\tau_{4}\left(t_{j, i}\right)=\tau_{4}\left(s_{i, j}\right)+3 m$.
(1) The ordered graph $\left(H_{2}, \tau_{4}\right)$ can be computed from I in time $O(m+n)$.

It takes time $O(m+n)$ to compute both the set $V\left(H_{2}\right)$ and $E\left(H_{2}\right)$. The function τ_{4} can be constructed in time $O(m+n)$, since $\left|V\left(H_{2}\right)\right|=n+6 m+1$ and we go through every vertex once.
(2) The graph H_{2} is 3-colorable if and only if I is satisfiable.

Let $f: V\left(H_{2}\right) \rightarrow[3]$ be a 3 -coloring of H_{2}. Without loss of generality, we assume $f(x)=1$. Since every vertex in $M \cup S$ is adjacent to x, we have $f(y) \in\{2,3\}$ for every $y \in M \cup S$.

We claim that if the variables in C_{j} are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq n$, then at least one of $f\left(m_{i_{1}}\right), f\left(m_{i_{2}}\right)$ and $f\left(m_{i_{3}}\right)$ has value 2 and at least one of them has value 3 . Suppose for a contradiction, without loss of generality, that $f\left(m_{i_{k}}\right)=2$ for every $k \in[3]$. We have $f\left(s_{i_{k}, j}\right)=3$ for every $k \in[3]$. Then $f\left(t_{j, i_{k}}\right) \in\{1,2\}$ for every $k \in[3]$, at least two of the three vertices receive the same color. But from the construction, the vertices $t_{j, i_{1}}$, $t_{j, i_{2}}$ and $t_{j, i_{3}}$ form a triangle, which leads to a contradiction as desired. Thus, by assigning true to the variable x_{i} if $f\left(m_{i}\right)=2$ and false otherwise, we get a valid truth assignment to
the monotone NAE3SAT instance I.
If there is a valid truth assignment to I, we define a 3-coloring $g: V\left(H_{2}\right) \rightarrow[3]$ as follows. For every $i \in[n]$, let $g\left(m_{i}\right)=2$ if the variable v_{i} is true in this truth assignment, otherwise let $g\left(m_{i}\right)=3$. Let $g(x)=1$. For every vertex $s_{i, j} \in S$, we define $g\left(s_{i, j}\right) \in\{2,3\} \backslash\left\{g\left(m_{i}\right)\right\}$.

For each clause C_{j}, we denote the variables in C_{j} as $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq$ n. Let $g\left(t_{j, i_{1}}\right) \in\{2,3\} \backslash\left\{g\left(s_{i_{1}, j}\right)\right\}$. Since $\left.g\right|_{M}$ is constructed from a valid truth assignment of I, at least one of the $g\left(m_{i_{1}}\right), g\left(m_{i_{2}}\right)$ and $g\left(m_{i_{3}}\right)$ has value 2 and at least one of them has value 3. If $g\left(m_{i_{2}}\right) \neq g\left(m_{i_{1}}\right)$, then let $g\left(t_{j, 2}\right) \in\{2,3\} \backslash\left\{g\left(s_{i_{2}, j}\right)\right\}$ and $g\left(t_{j, 3}\right)=1$, otherwise let $g\left(t_{j, 3}\right) \in\{2,3\} \backslash\left\{g\left(s_{i_{3}, j}\right)\right\}$ and $g\left(t_{j, 2}\right)=1$.

To verify this is a valid 3 -coloring, we simply go through every edge $y z$ in $E\left(H_{1}\right)$. If without loss of generality $y=x$ and $z \in M \cup S$, then $g(y)=1$ and $g(z) \in\{2,3\}$. So $g(y) \neq g(z)$. If $y \in M$ and $z \in S$, then from the construction $g(z) \in\{2,3\} \backslash\{g(y)\}$, so $g(z) \neq g(y)$. If $y \in S$ and $z \in T$, then from the construction either $g(z)=1$ or $g(z) \in\{2,3\} \backslash\{g(y)\}$, so $g(y) \neq g(z)$. If $y, z \in T$, we have $g(y) \neq g(z)$ as we use all three colors to color the vertices whose corresponding variables are in the same clause.
(3) The ordered graph $\left(H_{2}, \tau_{4}\right)$ is J_{7}, J_{13} and J_{14}-free.

Suppose for a contradiction that $\left(H_{2}, \tau_{4}\right)$ contains an induced path $w_{2} w_{1} w_{4} w_{3}$ with $\tau_{4}\left(w_{1}\right)<\tau_{4}\left(w_{2}\right)<\tau_{4}\left(w_{3}\right)<\tau_{4}\left(w_{4}\right)$. Now we consider the vertex w_{1}. Since w_{1} has two non-adjacent forward neighbors, we know that $w_{1} \notin S \cup T$. If $w_{1}=x$, then $w_{2}, w_{4} \in M \cup S$. But from the construction of τ_{4}, we also have $w_{3} \in M \cup S$, which implies $w_{3} \in S$ and so $w_{1} w_{3} \in E\left(H_{2}\right)$ as a contradiction. If $w_{1} \in M$, then $w_{2}, w_{4} \in S$, which implies $w_{1} w_{3} \in$ $E\left(H_{2}\right)$ as a contradiction. Thus, we have proved $\left(H_{2}, \tau_{4}\right)$ is J_{7}-free.

Suppose $\left(H_{2}, \tau_{4}\right)$ contains an induced subgraph $\left(\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\},\left\{w_{1} w_{5}, w_{2} w_{3}, w_{3} w_{4}\right\}\right)$ with $\tau_{4}\left(w_{1}\right)<\tau_{4}\left(w_{2}\right)<\tau_{4}\left(w_{3}\right)<\tau_{4}\left(w_{4}\right)<\tau_{4}\left(w_{5}\right)$. Now we consider the vertex w_{1}. Since $w_{1} w_{5} \in E\left(H_{2}\right)$ and $w_{1} w_{2} \notin E\left(H_{2}\right)$, we have $w_{1} \notin\{x\}$. If $w_{1} \in M$, we have $w_{5} \in S$, which causes $w_{2} \in M$ and $w_{3} \in S$. But then w_{4} has no place to go, which is a contradiction. If $w_{1} \in T$, we know that $w_{2}, w_{3}, w_{4} \in T$. But then from the construction of H_{2} and τ_{4}, we have $w_{2} w_{4} \in E\left(H_{2}\right)$, which is a contradiction. If $w_{1} \in S$, then $w_{5} \in T$. Since $w_{2} w_{4} \notin E\left(H_{2}\right)$, at least one of w_{2}, w_{3}, w_{4} is in S. From the construction of τ_{4}, we know that $w_{2} \in S$. So the forward neighbor w_{3} of w_{2} is in T. But from the construction of τ_{4}, the inequality $\tau_{4}\left(w_{1}\right)<\tau_{4}\left(w_{2}\right)$ implies $\tau_{4}\left(w_{5}\right)<\tau_{4}\left(w_{3}\right)$, which is a contradiction. Thus, we have proved $\left(H_{2}, \tau_{4}\right)$ is J_{13}-free.

A similar argument holds for the case that $\left(H_{2}, \tau_{4}\right)$ is J_{14}-free.

In the third construction, we will use the following result.
Theorem 1.3.9. The List-3-Coloring Problem restricted to bipartite graphs is NPcomplete.

Theorem 3.2.5. The Ordered Graph List-3-Coloring Problem restricted to J_{9} or J_{15}-free ordered graphs is NP-complete.

Proof. Given a bipartite graph G with bipartition (X, Y) and its list assignment L, we construct an ordered graph $\left(G, \tau_{5}\right)$ as follows. We enumerate the set $X=\left\{x_{1}, \ldots, x_{s}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{t}\right\}$. Let $\tau_{5}: V(G) \rightarrow \mathbb{Z}$ be a function with $\tau_{5}\left(x_{i}\right)=i$ for $i \in[s]$ and $\tau_{5}\left(y_{j}\right)=s+j$ for $j \in[t]$.

Clearly, the ordered graph $\left(G, \tau_{5}\right)$ can be computed in time $O(n)$, and $\left(G, \tau_{5}\right)$ is list-3colorable if and only if G is list-3-colorable. The ordered graph $\left(G, \tau_{5}\right)$ is J_{9} and J_{15}-free, as for every edge $z w \in E(G)$, without loss of generality, we have $z \in X$ and $w \in Y$.

Corollary 3.2.6. If the Ordered Graph List-3-Coloring Problem restricted to H-free ordered graphs is NP-complete, then the Ordered Graph List-3-Coloring Problem restricted to $-H$-free ordered graphs is $N P$-complete.

Now we are ready to prove Theorem 3.2.1.
Proof of Theorem 3.2.1. Let (H, φ) be an ordered graph. If H contains a copy of P_{4}, say Q_{1}, then since $\left(Q_{1},\left.\varphi\right|_{Q_{1}}\right) \in\left\{J_{i}: i \in[8]\right\} \cup\left\{-J_{i}: i \in[8]\right\}$, by Theorems 3.2.3, 3.2.4, 3.2.5 and Corollary 3.2.6, we have the Ordered Graph List-3-Coloring Problem restricted $\left(Q_{1},\left.\varphi\right|_{Q_{1}}\right)$-free ordered graphs is NP-complete.

If H contains a copy of $P_{3}+P_{2}$, we denote it $Q_{2}=\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}\right\}\right)$. By symmetry, we assume without loss of generality that $\varphi\left(v_{4}\right)<\varphi\left(v_{5}\right)$. Then we consider $\min \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}$ and $\max \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}$. If $\max \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}<$ $\varphi\left(v_{4}\right)$ or $\min \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}>\varphi\left(v_{5}\right)$, then Theorem 3.2.5 indicates the Ordered Graph List-3-Coloring Problem restricted $\left(Q_{2},\left.\varphi\right|_{Q_{2}}\right)$-free ordered graphs is NPcomplete.

If $\varphi\left(v_{4}\right)<\min \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}$ and $\max \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}<\varphi\left(v_{5}\right)$, then Q_{2} either contains a copy of J_{13} or $-J_{13}$ as induced subgraph, or a copy of J_{14} or $-J_{14}$. By Theorem 3.2.4, the Ordered Graph List-3-Coloring Problem restricted $\left(Q_{2},\left.\varphi\right|_{Q_{2}}\right)$ free ordered graphs is NP-complete.

If $\min \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}<\varphi\left(v_{i}\right)<\max \left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}$ for some $i \in\{4,5\}$, then Q_{2} either contains a copy of J_{10} as induced subgraph, or a copy of J_{11}, or a copy of J_{12}, or
$-J_{10},-J_{11},-J_{12}$. By Theorem 3.2.3 and Corollary 3.2.6, the Ordered Graph List-3Coloring Problem restricted $\left(Q_{2},\left.\varphi\right|_{Q_{2}}\right)$-free ordered graphs is NP-complete.

Before we start proving Theorem 3.2.2, let us prove the following lemma:
Lemma 3.2.7. Given a graph G, if a graph H satisfies the following conditions:

1. $V(G) \subseteq V(H)$.
2. For every edge $u v \in E(G)$, we have $u v \notin E(H)$ and there are three vertex disjoint uv-paths $P_{1}^{u v}, P_{2}^{u v}$ and $P_{3}^{u v}$ of length at least 3. Moreover, for all edges uv, st $\in E(G)$ and $i, j \in[3]$, we have $V\left(P_{i}^{u v}\right) \cap V\left(P_{j}^{s t}\right)=\{u, v\} \cap\{s, t\}$.
3. The correspondence between every edge $u v \in E(G)$ and its paths $P_{1}^{u v}, P_{2}^{u v}$ and $P_{3}^{u v}$ in H is given.
4. Every edge in H is contained in some P_{i}^{e}, for $i \in[3]$ and $e \in E(G)$.

Then there is a list assignment $L: V(H) \rightarrow 2^{[3]}$ such that:

1. The list assignment L can be computed from H in time $O(|E(H)|)$.
2. For every vertex $u \in V(G)$, we have $L(u)=[3]$.
3. For every L-coloring f of H, the function $\left.f\right|_{V(G)}$ is a 3-coloring of G.
4. For every 3-coloring g of G, there is a corresponding L-coloring g^{\prime} of H with $\left.g^{\prime}\right|_{V(G)}=$ g.

Note:

- We say a pair (H, L) as in Lemma 3.2.7 a realization of G.
- As the 3-Coloring Problem is NP-hard, to decide whether H is L-colorable is also NP-hard.

Figure 3.5: An example of a realization (H, L) of G. Each vertex is labeled with its list.

Proof. For every edge $u v \in E(G)$, let the three vertex disjoint $u v$-paths be $P_{1}^{u v}, P_{2}^{u v}$ and $P_{3}^{u v}$ of length at least 4 . For convenience, in this proof, we read every color modulo 3 (so if this would assign color 4, we assign color 1 instead). We define the list assignment $L: V(H) \rightarrow 2^{[3]}$ as follows. Let $L(u)=[3]$ for every vertex $u \in V(G)$. Then we take a path $P_{i}^{u v}, i \in[3]$ and denote $P_{i}^{u v}=u w_{1} w_{2} \ldots w_{t} v$. If t is even, we set $L\left(w_{j}\right)=\{i, i+1\}$ for all $i \in[t]$. If t is odd, we set $L\left(w_{j}\right)=\{i+j-1, i+j\}$ for $j \in[3]$, and $L\left(w_{j}\right)=\{i, i+1\}$ for $i \in\{4, \ldots, t\}$.
(1) The list assignment L can be computed from H in time $O(|E(H)|)$, if given the correspondence between every edge uv $\in E(G)$ and its paths $P_{1}^{u v}, P_{2}^{u v}$ and $P_{3}^{u v}$ in H.

For a given path P_{i}^{e}, defining $\left.L\right|_{V\left(P_{i}^{e}\right)}$ takes time $\left|E\left(P_{i}^{e}\right)\right|$. So the running time is $\sum_{e \in E(G)} \sum_{i=1}^{3}\left|E\left(P_{i}^{e}\right)\right|=|E(H)|$.
(2) For every vertex $u \in V(G)$, we have $L(u)=[3]$.

This holds immediately from the construction.
(3) For every L-coloring f of H, the function $\left.f\right|_{V(G)}$ is a 3-coloring of G.

Suppose not, then there is an L-coloring f of H such that there is an edge $u v \in E(G)$ with $f(u)=f(v)=i$ for some $i \in[3]$. We consider the path $P_{i}^{u v}=u w_{1} w_{2} \ldots w_{t} v$ in H. If t is even, then from the construction we have that $f\left(w_{j}\right)=i+1$ if j is odd, and $f\left(w_{j}\right)=i$ if
j is even. But then we have $f\left(w_{t}\right)=f(v)$, which leads to a contradiction. If t is odd, then from the construction we have $f\left(w_{1}\right)=i+1, f\left(w_{2}\right)=i+2, f\left(w_{3}\right)=i$, and for $j \in\{4, \ldots, t\}$, $f\left(w_{j}\right)=i+1$ if j is even and $f\left(w_{j}\right)=i$ if j is odd. But then $f\left(w_{t}\right)=f(v)=i$, which is a contradiction. Thus $\left.f\right|_{V(G)}$ is a 3 -coloring of G.
(4) For every 3-coloring g of G, there is a corresponding L-coloring g^{\prime} of H with $\left.g^{\prime}\right|_{V(G)}=g$.

For every $u \in V(G)$, let $g^{\prime}(u)=g(u)$. For every edge $u v \in V(G)$, we denote $g(u)=a$ and $g(v)=b,\{a, b\} \subseteq[3]$. Then we consider the path $P_{i}^{u v}=u w_{1} w_{2} \ldots w_{t} v$. We may assume that $a \in L\left(w_{1}\right)$ and $b \in L\left(w_{t}\right)$, for otherwise $P_{i}^{u v}$ is L-colorable.

If t is even, let $g^{\prime}\left(w_{1}\right) \in L\left(w_{1}\right) \backslash\{a\} \neq \emptyset, g^{\prime}\left(w_{2}\right)=a$, and $g^{\prime}\left(w_{j}\right)=g^{\prime}\left(w_{1}\right)$ if $j \in\{3, \ldots, t\}$ is odd, and $g^{\prime}\left(w_{j}\right)=g^{\prime}\left(w_{2}\right)$ if $j \in\{3, \ldots, t\}$ is even. Notice that we have $g^{\prime}\left(w_{t}\right)=g^{\prime}\left(w_{2}\right)=a$. Since $a \neq b$, we have $g^{\prime}(v) \neq g^{\prime}\left(w_{t}\right)$.

So let us assume t is odd. If $a=i$, or $a=i+2$ and $b=i+1$, then we set $g^{\prime}\left(w_{1}\right)=i+1$, $g^{\prime}\left(w_{2}\right)=i+2, g^{\prime}\left(w_{3}\right)=i$, and $g^{\prime}\left(w_{j}\right)=i$ if $j \in\{4, \ldots, t\}$ odd, $g^{\prime}\left(w_{j}\right)=i+1$ if $j \in\{4, \ldots, t\}$ even. Thus $g^{\prime}\left(w_{t}\right)=i \neq b=g^{\prime}(v)$. If $a=i+1$, or $a=i+2$ and $b=i$, then we set $g^{\prime}\left(w_{1}\right)=i, g^{\prime}\left(w_{2}\right)=i+1, g^{\prime}\left(w_{3}\right)=i+2$, and $g^{\prime}\left(w_{j}\right)=i+1$ if $j \in\{4, \ldots, t\}$ is odd, $g^{\prime}\left(w_{j}\right)=i$ if $j \in\{4, \ldots, t\}$ is even. Thus $g^{\prime}\left(w_{t}\right)=i+1 \neq b=g^{\prime}(v)$.

Therefore, we have defined an L-coloring g^{\prime} of H with $\left.g^{\prime}\right|_{V(G)}=g$.
The proof of Theorem 3.2.2 is divided into three constructions, all of which use Lemma 3.2.7 as a helper method.

Theorem 3.2.8. Given a graph G, there is a graph H_{3} and two injective functions τ_{5}, τ_{6} : $V(G) \rightarrow \mathbb{R}$ such that:

1. There is a list assignment $L_{1}: V\left(H_{3}\right) \rightarrow 2^{[3]}$ such that the pair $\left(H_{3}, L_{1}\right)$ is a realization of G.
2. The ordered graphs $\left(H_{3}, \tau_{5}\right)$ and $\left(H_{3}, \tau_{6}\right)$ can be constructed from G in time $O\left(m^{2}\right)$, where $m=|E(G)|$.
3. The ordered graph $\left(H_{3}, \tau_{5}\right)$ is M_{1} and M_{2}-free.
4. The ordered graph $\left(H_{3}, \tau_{6}\right)$ is M_{3}-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when restricted to the class of M_{1}, M_{2} or M_{3}-free ordered graphs.

Figure 3.6: The construction of $\left(H_{3}, \tau_{5}\right)$ from Theorem 3.2.8.

Figure 3.7: The construction of $\left(H_{3}, \tau_{6}\right)$ from Theorem 3.2.8.

Proof. We denote $|V(G)|=n$ and $|E(G)|=m$. Let $f: E(G) \rightarrow[m]$ be an ordering of $E(G)$, and $g: V(G) \rightarrow[n]$ be an ordering of $V(G)$. We construct the ordered graphs $\left(H_{3}, \tau_{5}\right)$ and $\left(H_{3}, \tau_{6}\right)$ as follows (see Figures 3.6 and 3.7).

For every edge $u v \in E(G)$, we create 6 vertices $w_{1}(u, v, j)$ and $w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$, and add edges $u w_{1}(u, v, j)$ and $v w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$. Let W_{1} be the set of such vertices $w_{1}(u, v, j)$. Suppose now W_{i-1} has been defined. We create a new vertex $w_{i}(u, v, j)$ if $w_{i-1}(u, v, j) \in W_{i-1}$ and $j \geq i$, and add an edge $w_{i-1}(u, v, j) w_{i}(u, v, j)$. Let W_{i} be the set of such vertices $w_{i}(u, v, j)$. For convenience, we also denote $W_{0}=V(G)$.

We define $\tau_{5}(v)=\tau_{6}(v)=g(v)$ for every $v \in V(G)$. For every $i \in\{1, \ldots, 3 m\}$, we define $\tau_{5}\left(w_{i}(u, v, j)\right)=n+\left(\sum_{i^{\prime}=1}^{i-1}\left|W_{i^{\prime}}\right|\right)+\left|\left\{w_{i}(x, y, k) \in W_{i}: g(x)<g(u)\right\}\right|+\mid\left\{w_{i}(u, y, k) \in W_{i}:\right.$ $g(y)<g(v)\} \mid+j+3-3 f(u v)$ for every $w_{i}(u, v, j) \in W_{i}$.

Let us consider the vertices $w_{i}\left(u^{\prime}, v^{\prime}, i\right)$ and $w_{i}\left(v^{\prime}, u^{\prime}, i\right)$ in W_{i}. Without loss of generality we may assume that $\tau_{5}\left(w_{i}\left(u^{\prime}, v^{\prime}, i\right)\right)<\tau_{5}\left(w_{i}\left(v^{\prime}, u^{\prime}, i\right)\right)$. For every vertex $w_{i}(u, v, j) \in W_{i}$ with $\tau_{5}\left(w_{i}\left(u^{\prime}, v^{\prime}, i\right)\right)<\tau_{5}\left(w_{i}(u, v, j)\right)<\tau_{5}\left(w_{i}\left(v^{\prime}, u^{\prime}, i\right)\right)$, we add one new vertex $z_{i}(u, v, j)$. Let Z_{i} be the set of such vertices $z_{i}(u, v, j)$. Let $\tau_{5}\left(z_{i}(u, v, j)\right)=\tau_{5}\left(w_{i}(u, v, j)\right)+\frac{1}{2}$. For every $z_{i}(u, v, j), z_{i}\left(u^{*}, v^{*}, j^{*}\right) \in Z_{i}$ with $\tau_{5}\left(z_{i}(u, v, j)\right)<\tau_{5}\left(z_{i}\left(u^{*}, v^{*}, j^{*}\right)\right)$, we add edges $z_{i}(u, v, j) z_{i}\left(u^{*}, v^{*}, j^{*}\right)$ if $\tau_{5}\left(z_{i}(u, v, j)\right)=\tau_{5}\left(z_{i}\left(u^{*}, v^{*}, j^{*}\right)\right)-1$, and edges $w_{i}\left(u^{\prime}, v^{\prime}, i\right) z_{i}(u, v, j)$ if $\tau_{5}\left(z_{i}(u, v, j)\right)=\tau_{5}\left(w_{i}\left(u^{\prime}, v^{\prime}, i\right)\right)+\frac{3}{2}$, and $w_{i}\left(v^{\prime}, u^{\prime}, i\right) z_{i}\left(u^{*}, v^{*}, j^{*}\right)$ if $\tau_{5}\left(z_{i}\left(u^{*}, v^{*}, j^{*}\right)\right)=$ $\tau_{5}\left(w_{i}\left(v^{\prime}, u^{\prime}, i\right)\right)-\frac{1}{2}$.

We define $\tau_{6}(v)$ as follows. Let $\tau_{6}(v)=\tau_{5}(v)$ for every $v \in V(G)$. For every $i \in$ $\{1, \ldots, 3 m\}$ and $w_{i}(u, v, j) \in W_{i}$, we define $\tau_{6}\left(w_{i}(u, v, j)\right)=\tau_{5}\left(w_{i}(u, v, j)\right)$ if i is even, and $\tau_{6}\left(w_{i}(u, v, j)\right)=n+\left(\sum_{i^{\prime}=1}^{i-1}\left|W_{i^{\prime}}\right|\right)+\left|W_{i}\right|+1-\left(\left|\left\{w_{i}(x, y, k) \in W_{i}: g(x)<g(u)\right\}\right|+\right.$ $\left.\left|\left\{w_{i}(u, y, k) \in W_{i}: g(y)<g(v)\right\}\right|+j+3-3 f(u v)\right)$ if i is odd. For every $i \in\{1, \ldots, 3 m\}$ and $z_{i}(u, v, j) \in Z_{i}$, let $\tau_{6}\left(z_{i}(u, v, j)\right)=\tau_{6}\left(w_{i}(u, v, j)\right)+\frac{1}{2}$ if i odd, and $\tau_{6}\left(z_{i}(u, v, j)\right)=$ $\tau_{6}\left(w_{i}(u, v, j)\right)-\frac{1}{2}$ if i is even.

Let $V\left(H_{3}\right)=V(G) \cup \bigcup_{i=1}^{3 m}\left(W_{i} \cup Z_{i}\right)$ and $E\left(H_{3}\right)$ be the set of all edges defined above. From the construction, the functions τ_{5} and τ_{6} are orderings of H_{3}.

We then let $P_{i}^{u v}$ consist of vertices $u, v, w_{1}(u, v, 3 f(u v)+i-3), w_{2}(u, v, 3 f(u v)+i-3)$, $\ldots, w_{3 f(u v)+i-3}(u, v, 3 f(u v)+i-3), w_{1}(v, u, 3 f(u v)+i-3), w_{2}(v, u, 3 f(u v)+i-3), \ldots$, $w_{3 f(u v)+i-3}(v, u, 3 f(u v)+i-3)$ and all vertices in $Z_{3 f(u v)+i-3}$, for $u v \in E(G)$ and $i \in[3]$. The graph H_{3} and the paths $P_{i}^{u v}$ satisfy the condition of Lemma 3.2.7. Thus, letting L_{1} be as in Lemma 3.2.7, we have:
(1) The pair $\left(H_{3}, L_{1}\right)$ is a realization of G.
(2) The ordered graphs $\left(H_{3}, \tau_{5}\right)$ and $\left(H_{3}, \tau_{6}\right)$ can be computed from G in time $O\left(m^{2}\right)$.

It takes time $O(m)$ and $O(n)$ to get the functions f and g, respectively. The set W_{1} can be computed from G and f in time $O(m)$. For $i \in\{2, \ldots, 3 m\}$, the set W_{i} can be computed from W_{i-1} in time $O(m)$. And the function $\left.\tau_{5}\right|_{W_{i}}$ can be computed in time $O(m)$ for $i \in[3 m]$. The set Z_{i} and the function $\left.\tau_{5}\right|_{Z_{i}}$ can be computed from W_{i} and $\left.\tau_{5}\right|_{W_{i}}$ in time $O(m)$. Finally, the function τ_{6} can be computed in time $O\left(m^{2}\right)$. Thus, the ordered graphs $\left(H_{3}, \tau_{5}\right)$ and $\left(H_{3}, \tau_{6}\right)$ can be computed from G in time $O\left(m^{2}\right)$.

From the construction defined above, we notice that:
(3) Given $k \in\{5,6\}$, for each edge $u v \in E\left(H_{3}\right)$ with $\tau_{k}(u)<\tau_{k}(v)$ and $u \in Z_{i}$ or $v \in Z_{i}$ for some $i \in\{1, \ldots, 3 m\}$, there is at most one vertex w with $\tau_{k}(u)<\tau_{k}(w)<\tau_{k}(v)$.

With this observation, we are ready to prove the remaining two properties.
(4) The ordered graph $\left(H_{3}, \tau_{5}\right)$ is M_{1} and M_{2}-free.

Suppose $\left(H_{3}, \tau_{5}\right)$ contains a copy of M_{1} or M_{2} as ordered induced subgraph. Let us consider the vertex v_{1}. Because of the vertices v_{3}, v_{4}, by (3) we have $v_{1}, v_{2}, v_{5}, v_{6} \notin Z_{i}$ for every $i \in[3 \mathrm{~m}]$. If $v_{1} \in V(G)$, then we have $v_{6} \in W_{1}$. So $v_{2} \in V(G)$ and $v_{5} \in W_{1}$. But then
either $\tau_{5}\left(v_{2}\right)<\tau_{5}\left(v_{1}\right)$ or $\tau_{5}\left(v_{5}\right)>\tau_{5}\left(v_{6}\right)$, both of which cause a contradiction. If $v_{1} \in W_{i}$ for some $i \in[3 m]$, then $v_{6} \in W_{i+1}$, and $v_{2} \in W_{i}, v_{5} \in W_{i+1}$, which is a contradiction. Thus, we have proved $\left(H_{3}, \tau_{5}\right)$ is M_{1}-free and M_{2}-free.
(5) The ordered graph $\left(H_{3}, \tau_{6}\right)$ is M_{3}-free.

Suppose $\left(H_{3}, \tau_{6}\right)$ contains a copy of M_{3} as ordered induced subgraph. Let us consider the vertex v_{1}. Because of the vertices v_{2}, v_{3}, by (3) we have $v_{1}, v_{4} \notin Z_{i}$ for every $i \in[3 \mathrm{~m}]$. Similarly, we have $v_{t} \notin Z_{i}$ for every $t \in[6]$ and $i \in[3 m]$. Let $v_{1} \in W_{i}$ for some $i \in$ $\{0,1, \ldots, 3 m\}$, then $v_{4} \in W_{i+1}$. Then let us consider the vertex v_{2}. For every vertex $x \in W_{i}$ with $\tau_{6}(x)>\tau_{6}\left(v_{1}\right)$ and for every vertex $y \in N(x)$ with $\tau_{6}(y)>\tau_{6}(x)$ and $y \notin Z_{i}$, we have $\tau_{6}(y)<\tau_{6}\left(v_{4}\right)$. Thus, the vertex v_{2} is in W_{i+1}. But then for every vertex $x \in W_{i+1}$ with $\tau_{6}\left(v_{2}\right)<\tau_{6}(x)<\tau_{6}\left(v_{4}\right)$ and for every vertex $y \in N(x)$ with $\tau_{6}(y)>\tau_{6}(x)$ and $y \notin Z_{i}$, we have $\tau_{6}(y)<\tau_{6}\left(v_{5}\right)$, which means the vertex v_{3} has nowhere to go. Thus, we have proved $\left(H_{3}, \tau_{6}\right)$ is M_{3}-free.

Theorem 3.2.9. Given a graph G, there is an ordered graph $\left(H_{4}, \tau_{7}\right)$ and a list assignment $L_{2}: V\left(H_{4}\right) \rightarrow 2^{[3]}$ such that:

1. The pair $\left(H_{4}, L_{2}\right)$ is a realization of G.
2. The ordered graph $\left(H_{4}, \tau_{7}\right)$ can be constructed from G in time $O\left(m^{2}\right)$.
3. The ordered graph $\left(H_{4}, \tau_{7}\right)$ is M_{4}-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when restricted to the class of M_{4}-free ordered graphs.

Figure 3.8: The construction of $\left(H_{4}, \tau_{7}\right)$ from Theorem 3.2.9.

Proof. We denote $|V(G)|=n$ and $|E(G)|=m$. Let $f: E(G) \rightarrow[m]$ be an ordering of $E(G)$, and $g: V(G) \rightarrow[n]$ be an ordering of $V(G)$. We construct the ordered graph $\left(H_{4}, \tau_{7}\right)$ as follows.

For every edge $u v \in E(G)$, we create 6 vertices $w_{1}(u, v, j)$ and $w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$, and add edges $u w_{1}(u, v, j)$ and $v w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$. Let W_{1} be the set of such vertices $w_{1}(u, v, j)$. Suppose now W_{i-1} has been defined. We create a new vertex $w_{i}(u, v, j)$ if $w_{i-1}(u, v, j) \in W_{i-1}$ and $j \geq i$, and add an edge $w_{i-1}(u, v, j) w_{i}(u, v, j)$. Let W_{i} be the set of such vertices $w_{i}(u, v, j)$. For convenience, we also denote $W_{0}=V(G)$.

We define $\tau_{7}(v)=g(v)$ for every $v \in V(G)$. For every $i \in\{1, \ldots, 3 m\}$, we define $\tau_{7}\left(w_{i}(u, v, j)\right)=n+\sum_{i^{\prime}=1}^{i-1}\left|W_{i^{\prime}}\right|+\left|\left\{w_{i}(x, y, k) \in W_{i}: g(x)<g(u)\right\}\right|+\mid\left\{w_{i}(u, y, k) \in W_{i}:\right.$ $g(y)<g(v)\} \mid+j+3-3 f(u v)$ for every $w_{i}(u, v, j) \in W_{i}$.

Let us consider the vertices $w_{i}\left(u^{\prime}, v^{\prime}, i\right)$ and $w_{i}\left(v^{\prime}, u^{\prime}, i\right)$ in W_{i}. For every $i \in\{1, \ldots, 3 m\}$, we add one new vertex z_{i} and edges $w_{i}\left(u^{\prime}, v^{\prime}, i\right) z_{i}$ and $w_{i}\left(v^{\prime}, u^{\prime}, i\right) z_{i}$, and let $\tau_{7}\left(z_{i}\right)=n+$ $3 m(3 m+1)+(3 m-i+1)$.

Let $V\left(H_{4}\right)=V(G) \cup\left(\bigcup_{i=1}^{3 m} W_{i} \cup\left\{z_{i}\right\}\right)$ and $E\left(H_{4}\right)$ be the set of all edges defined above. From the construction, the function $\tau_{7}: V\left(H_{4}\right) \rightarrow \mathbb{R}$ is an ordering of H_{4}.

We then let $P_{i}^{u v}$ consist of vertices $u, v, w_{1}(u, v, 3 f(u v)+i-3), w_{2}(u, v, 3 f(u v)+i-3)$, $\ldots, w_{3 f(u v)+i-3}(u, v, 3 f(u v)+i-3), w_{1}(v, u, 3 f(u v)+i-3), w_{2}(v, u, 3 f(u v)+i-3), \ldots$, $w_{3 f(u v)+i-3}(v, u, 3 f(u v)+i-3)$ and $z_{3 f(u v)+i-3}$, for $u v \in E(G)$ and $i \in[3]$. The graph H_{4} and the paths $P_{i}^{u v}$ satisfy the condition of Lemma 3.2.7. Thus, letting L_{2} be as in Lemma 3.2.7, we have:
(1) The pair $\left(H_{4}, L_{2}\right)$ is a realization of G.
(2) The ordered graph $\left(H_{4}, \tau_{7}\right)$ can be computed from G in time $O\left(m^{2}\right)$.

It takes time $O(m)$ and $O(n)$ to get the functions f and g, respectively. The set W_{1} can be computed from G and f in time $O(m)$. For $i \in\{2, \ldots, 3 m\}$, the set W_{i} can be computed from W_{i-1} in time $O(m)$. And the function $\tau_{7} \mid W_{i}$ can be computed in time $O(m)$ for $i \in[3 m]$. Thus, the ordered graph $\left(H_{4}, \tau_{7}\right)$ can be computed from G in time $O\left(m^{2}\right)$.
(3) The ordered graph $\left(H_{2}, \tau_{7}\right)$ is M_{4}-free.

Suppose that $\left(H_{4}, \tau_{7}\right)$ contains a copy of M_{4} as ordered induced subgraph. Because of the edges of M_{4}, we have $v_{1}, v_{2}, v_{3} \notin\left\{z_{1}, \ldots, z_{3 m}\right\}$, and $v_{1}, v_{2} \notin W_{3 m}$. Let $v_{1} \in W_{i}$ for some $i \in\{0, \ldots, 3 m-1\}$. If $v_{5} \in W_{i+1}$, then we have $v_{4} \notin\left\{z_{1}, \ldots, z_{3 m}\right\}$. For every vertex x with $\tau_{7}\left(v_{1}\right)<\tau_{7}(x)<\tau_{7}\left(v_{5}\right)$ and for every vertex $y \in N(x) \backslash\left\{z_{1}, \ldots, z_{3 m}\right\}$ with $\tau_{7}(y)>\tau_{7}(x)$, we
have $\tau_{7}(y)>\tau_{7}\left(v_{5}\right)$. Thus, we conclude that $v_{5} \in\left\{z_{1}, \ldots, z_{3 m}\right\}$. But then for every vertex $x \in\left\{z_{1}, \ldots, z_{3 m}\right\}$ with $\tau_{7}(x)>\tau_{7}\left(v_{5}\right)$ and for every vertex $y \in N(x)$, we have $\tau_{7}(y)<\tau_{7}\left(v_{1}\right)$, which is a contradiction. Thus, we have proved $\left(H_{4}, \tau_{7}\right)$ is M_{4}-free.

Theorem 3.2.10. Given a graph G, there is an ordered graph $\left(H_{5}, \tau_{8}\right)$ and a list assignment $L_{3}: V\left(H_{5}\right) \rightarrow 2^{[3]}$ such that:

1. The pair $\left(H_{5}, L_{3}\right)$ is a realization of G.
2. The ordered graph $\left(H_{5}, \tau_{8}\right)$ can be constructed from G in time $O\left(m^{3}\right)$.
3. The ordered graph $\left(H_{5}, \tau_{8}\right)$ is M_{5}-free.

Therefore, the Ordered Graph List-3-Coloring Problem is NP-complete when restricted to the class of M_{5}-free ordered graphs.

Figure 3.9: The construction of X_{k}^{i}, X_{k+1}^{i} and X_{k+2}^{i} in $\left(H_{5}, \tau_{8}\right)$ from Theorem 3.2.10.

Proof. We denote $|V(G)|=m$ and $|E(G)|=n$. Let $f: E(G) \rightarrow[m]$ be an ordering of $E(G)$, and $g: V(G) \rightarrow[n]$ be an ordering of $V(G)$. We construct the ordered graph $\left(H_{5}, \tau_{8}\right)$ as follows.

For every edge $u v \in E(G)$, we create 6 vertices $w_{1}(u, v, j)$ and $w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$, and add edges $u w_{1}(u, v, j)$ and $v w_{1}(v, u, j)$ for $j \in$ $\{3 f(u v)-2,3 f(u v)-1,3 f(u v)\}$. Let W_{1} be the set of such vertices $w_{1}(u, v, j)$. Suppose now W_{i-1} has been defined. We create a new vertex $w_{i}(u, v, j)$ if $w_{i-1}(u, v, j) \in W_{i-1}$ and $j \geq i$. Let W_{i} be the set of such vertices $w_{i}(u, v, j)$. For convenience, we also denote $W_{0}=V(G)$.

We define $\tau_{8}(v)=g(v)$ for every $v \in V(G)$. For every $i \in\{1, \ldots, 3 m\}$, we define $\tau_{8}\left(w_{i}(u, v, j)\right)=36 m^{2}(i-1)+n+\sum_{i^{\prime}=1}^{i-1}\left|W_{i^{\prime}}\right|+\left|\left\{w_{i}(x, y, k) \in W_{i}: g(x)<g(u)\right\}\right|+$ $\left|\left\{w_{i}(u, y, k) \in W_{i}: g(y)<g(v)\right\}\right|+j+3-3 f(u v)$ for every $w_{i}(u, v, j) \in W_{i}$.

Let us consider the vertices $w_{i}\left(u^{\prime}, v^{\prime}, i\right)$ and $w_{i}\left(v^{\prime}, u^{\prime}, i\right)$ in W_{i}. Without loss of generality we may assume that $\tau_{8}\left(w_{i}\left(u^{\prime}, v^{\prime}, i\right)\right)=\tau_{8}\left(w_{i}\left(v^{\prime}, u^{\prime}, i\right)\right)-a_{i}$ for some $a_{i} \in \mathbb{N}$. We create a sequence of sets $X_{k}^{i}=\left\{x_{k}^{i}(u, v, j): w_{i}(u, v, j) \in W_{i}\right\}$, for $k \in\left[a_{i}-1\right]$. For convenience, we also denote $X_{a_{i}}^{i}=W_{i+1}=X_{0}^{i+1}$. For every $i \in[3 m]$, we add edges $x_{k}^{i}(u, v, j) x_{k+1}^{i}(u, v, j)$ for every $k \in\left\{0, \ldots, a_{i}-1\right\}$ and $x_{k+1}^{i}(u, v, j) \in X_{k+1}^{i}$, and edge $x_{a_{i}-1}^{i}\left(u^{\prime}, v^{\prime}, i\right) x_{a_{i}-1}^{i}\left(v^{\prime}, u^{\prime}, i\right)$.

For every $k \in\left[a_{i}-1\right]$, let $\tau_{8}\left(x_{k}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right)=\tau_{8}\left(w_{i}\left(v^{\prime}, u^{\prime}, i\right)\right)+6 m k-k-\frac{1}{2}$, and $\tau_{8}\left(x_{k}^{i}(u, v, j)\right)=\tau_{8}\left(w_{i}(u, v, j)\right)+6 m k$ otherwise. Notice that this implies $\tau_{8}\left(x_{k+1}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right)-$ $\tau_{8}\left(x_{k}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right)=\tau_{8}\left(x_{k+1}^{i}(u, v, j)\right)-\tau_{8}\left(x_{k}^{i}(u, v, j)\right)-1$ for every $k \in\left\{0, \ldots, a_{i}-1\right\}$ and $\{u, v\} \neq\left\{u^{\prime}, v^{\prime}\right\}$ and $x_{k+1}^{i}(u, v, j) \in X_{k+1}^{i}$.

Let $V\left(H_{5}\right)=V(G) \cup\left(\bigcup_{i=1}^{3 m} W_{i} \cup\left(\bigcup_{k=1}^{a_{i}-1} X_{k}^{i}\right)\right)$ and $E\left(H_{5}\right)$ be the set of all edges defined above. From the construction, the function $\tau_{8}: V\left(H_{5}\right) \rightarrow \mathbb{R}$ is an ordering of H_{5}.

For $u v \in E(G)$ and $i \in[3]$, we then let $P_{i}^{u v}$ consist of vertices $u, v, w_{1}(u, v, 3 f(u v)+$ $i-3), w_{2}(u, v, 3 f(u v)+i-3), \ldots, w_{3 f(u v)+i-3}(u, v, 3 f(u v)+i-3), w_{1}(v, u, 3 f(u v)+i-3)$, $w_{2}(v, u, 3 f(u v)+i-3), \ldots, w_{3 f(u v)+i-3}(v, u, 3 f(u v)+i-3)$ and all vertices $x_{k}^{j}(u, v, 3 f(u v)+$ $i-3)$ and $x_{k}^{j}(v, u, 3 f(u v)+i-3)$ for $j \in[3 f(u v)+i-3]$ and $k \in\left[a_{j}-1\right]$. The graph H_{5} and the paths $P_{i}^{u v}$ satisfy the conditions of Lemma 3.2.7. Thus, letting L_{3} be as in Lemma 3.2.7, we have:

(1) The pair $\left(H_{5}, L_{3}\right)$ is a realization of G.

(2) The ordered graph $\left(H_{5}, \tau_{8}\right)$ can be computed from G in time $O\left(m^{3}\right)$.

The set W_{1} can be computed from G and f in time $O(m)$. For $i \in\{2, \ldots, 3 m\}$, the set W_{i} can be computed from W_{i-1} in time $O(m)$. And the function $\left.\tau_{8}\right|_{W_{i}}$ can be computed in time $O(m)$ for $i \in[3 m]$. The set X_{k}^{i} and the function $\left.\tau_{8}\right|_{X_{k}^{i}}$ can be computed from W_{i} and $\left.\tau_{8}\right|_{W_{i}}$ in time $O(m)$ for $k \in\left[a_{i}-1\right]$. And $a_{i} \leq\left|W_{i}\right|=O(m),\left|X_{k}^{i}\right|=\left|W_{i}\right|$ for $k \in\left[a_{i}-1\right]$. Thus, the ordered graph $\left(H_{5}, \tau_{8}\right)$ can be computed from G in time $O\left(m^{3}\right)$.
(3) The ordered graph $\left(H_{5}, \tau_{8}\right)$ is M_{5}-free.

Suppose $\left(H_{5}, \tau_{8}\right)$ contains a copy of M_{5} as ordered induced subgraph. Let us consider the edges $v_{1} v_{5}$ and $v_{2} v_{3}$. We claim that $v_{2}=x_{k}^{i}\left(v^{\prime}, u^{\prime}, i\right)$ and $v_{3}=x_{k+1}^{i}\left(v^{\prime}, u^{\prime}, i\right)$ for some $i \in[3 m]$ and $k \in\left[a_{i}-1\right]$, and u^{\prime} and v^{\prime} being the vertices in $V\left(H_{5}\right)$ such that $g\left(u^{\prime}\right)<g\left(v^{\prime}\right)$ and $f\left(u^{\prime} v^{\prime}\right)=\left\lceil\frac{i}{3}\right\rceil$. This is because otherwise from the construction of τ_{8}, the condition $\tau_{8}\left(v_{1}\right)<\tau_{8}\left(v_{2}\right)$ implies $\tau_{8}(y)<\tau_{8}(z)$ for every $y \in N^{+}\left(v_{1}\right)$ and $z \in N^{+}\left(v_{2}\right)$.

Since $v_{1} v_{5}$ is an edge, we have $v_{1} \in X_{k}^{i}$ and $v_{5} \in X_{k+1}^{i}$. Moreover, from the construction of τ_{8}, for every two distinct $x, x^{\prime} \in X_{k+1}^{i} \backslash\left\{x_{k}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right\}$, we have $\left|\tau_{8}(x)-\tau_{8}\left(x^{\prime}\right)\right| \geq 1$. Since $\tau_{8}\left(x_{k+1}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right)-\tau_{8}\left(x_{k}^{i}\left(v^{\prime}, u^{\prime}, i\right)\right)=\tau_{8}\left(x_{k+1}^{i}(u, v, i)\right)-\tau_{8}\left(x_{k}^{i}(u, v, i)\right)-1$, there is no vertex in X_{k+1}^{i} which could be v_{4}, which gives a contradiction. Thus, we have proved $\left(H_{5}, \tau_{8}\right)$ is M_{5}-free.

Thus, we have proved Theorem 3.2.2. Combining Theorems 3.2.1, 3.2.2, 1.2.17 and 1.2.3, we have proved Theorem 1.2.18.

Chapter 4

An NP-hardness result of k-Coloring

In this chapter, we prove Theorem 1.2 .6 by reducing from the monotone NAE3SAT problem. Recall the theorem:

Theorem 1.2.6. The k-Colouring Problem restricted to $r P_{4}$-free graphs is $N P$-complete for all $k \geq 5$ and $r \geq 2$.

Let I be a monotone NAE3SAT instance with variables $x_{1}, x_{2}, \ldots x_{n}$ and clauses $C_{1}, C_{2}, \ldots, C_{m}$. Now let us construct a graph $G=(V, E)$. The set of vertices V is defined as follows:

- There are five vertices $c_{1}, c_{2}, \ldots, c_{5}$ representing colors.
- For each variable $x_{i}, i \in[n]$, there is a corresponding vertex x_{i} in V.
- For each clause $C_{j}, j \in[m]$, there are two corresponding vertices y_{j} and z_{j} in V.
- For each clause C_{j} and each $k \in[3]$, there are two vertices u_{j}^{k} and w_{j}^{k} corresponding to each literal.
and the set of edges E is defined as follows:
- For each $i, j \in[5]$ with $i \neq j$, add edges $c_{i} c_{j}$ to E.
- For each $i \in[n]$, add edges $c_{3} x_{i}, c_{4} x_{i}$ and $c_{5} x_{i}$.
- For each $j \in[m]$, add edges $c_{1} y_{j}, c_{2} y_{j}, c_{1} z_{j}, c_{2} z_{j}$.
- For each $j \in[m]$ and $k \in[3]$, add edges $c_{1} u_{j}^{k}$ and $c_{2} w_{j}^{k}$.
- For each $j \in[m]$, add edges $c_{i} u_{j}^{k}$ and $c_{i} w_{j}^{k}$ for all pairs (i, k) with $i \in\{3,4,5\}$, $k \in\{1,2,3\}$, and $i \neq k+2$.
- For each $i \in[n]$ and $j \in[m]$, add edges $x_{i} y_{j}$ and $x_{i} z_{j}$.
- For each $j \in[m]$, add edges $y_{j} u_{j}^{k}$ and $z_{j} w_{j}^{k}$ for all $k \in[3]$.
- For each $j \in[m]$, if C_{j} contains $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$, then we add edges $x_{i_{k}} u_{j}^{k}$ and $x_{i_{k}} w_{j}^{k}$ for all $k \in[3]$.

Figure 4.1: The graph G, given a monotone NAE3SAT instance with variables $x_{1}, x_{2}, x_{3}, x_{4}$ and a clause C_{j} containing variables x_{1}, x_{2}, x_{4}.

Figure 4.2: The graph G omitting edges incident to c_{i} for all $i \in[5]$. Each vertex is labeled with its list assuming the vertex c_{i} receives color i for $i \in[5]$.

From the construction, we have $|V|=n+8 m+5$ and $|E|=3 n+34 m+2 m n+10$. Thus the construction has polynomial size and can be done in polynomial time.

For convenience, let us denote $C=\left\{c_{i} \in V: i \in[5]\right\}, X=\left\{x_{i} \in V: i \in[n]\right\}$, $U=\left\{u_{j}^{k} \in V: j \in[m], k \in[3]\right\} \cup\left\{w_{j}^{k} \in V: j \in[m], k \in[3]\right\}$ and $Y=\left\{y_{j} \in V: j \in\right.$ $[m]\} \cup\left\{z_{j} \in V: j \in[m]\right\}$.
Theorem 4.0.1. A monotone NAE3SAT instance I is satisfiable if and only if G is 5colorable.

Proof. Suppose $f: V \rightarrow[5]$ is a 5-coloring of G. Since the set $\left\{c_{i}: i \in[5]\right\}$ forms a clique, we may assume that $f\left(c_{i}\right)=i$ for every $i \in[5]$. Thus $f\left(x_{i}\right) \in\{1,2\}$ for every vertex x_{i}.

Now take a clause C_{j}, and let $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ be the literals in C. We know that at least one of $f\left(x_{i_{1}}\right), f\left(x_{i_{2}}\right)$ and $f\left(x_{i_{3}}\right)$ is equal to 1 . The reason is, if $f\left(x_{i_{1}}\right), f\left(x_{i_{2}}\right)$ and $f\left(x_{i_{3}}\right)$ are all equal to 2 , then $f\left(u_{j}^{1}\right)=3, f\left(u_{j}^{2}\right)=4$ and $f\left(u_{j}^{3}\right)=5$ hold at the same time. But then the vertex y_{j} has one neighbour of each color, which is a contradiction. Similarly, by considering the vertices w_{j}^{k} for $k \in\{1,2,3\}$, we deduce at least one of $f\left(x_{i_{1}}\right), f\left(x_{i_{2}}\right)$ and $f\left(x_{i_{3}}\right)$ is 2 . Thus, by setting x_{i} to be True if $f\left(x_{i}\right)=1$ and False if $f\left(x_{i}\right)=2$, we get a solution to I as desired.

Now suppose we have a truth assignment to all variables $x_{1}, x_{2}, \ldots, x_{n}$, and we want to define a coloring $f: V \rightarrow[5]$ of G. Let $f\left(c_{i}\right)=i$ for every $i \in[5]$. Let $f\left(x_{i}\right)=1$ if x_{i} is assigned True, $f\left(x_{i}\right)=2$ otherwise. For each clause C_{j} with literals $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$, we set $f\left(u_{j}^{k}\right)=k+2$ and $f\left(w_{j}^{k}\right)=1$ if $f\left(x_{i_{k}}\right)=2$; we set $f\left(u_{j}^{k}\right)=2$ and $f\left(w_{j}^{k}\right)=k+2$ if $f\left(x_{i_{k}}\right)=1$. Since for each clause C_{j}, at least one literal is assigned True and at least one literal is assigned False, we know that there exists $k_{1}, k_{2} \in[3]$ with $k_{1} \neq k_{2}$ such that $f\left(u_{j}^{k_{1}}\right)=2$ and $f\left(w_{j}^{k_{2}}\right)=1$. So we can set $f\left(y_{j}\right)=k_{1}+2$ and $f\left(z_{j}\right)=k_{2}+2$. Therefore, we have defined a 5 -coloring f of G.

Next, let us show that G is $2 P_{4}$ free.
Lemma 4.0.2. Every induced P_{4} in G either contains one vertex from C, or one vertex from X and one vertex from Y.

Proof. Let $P=v_{1} v_{2} v_{3} v_{4}$ be an induced path in G which contains no vertex from C.
If the vertex v_{2} is in U, then without loss of generality, we have $v_{1} \in X$ and $v_{3} \in Y$. But then $v_{1} v_{3}$ is an edge of G, which contradicts the fact that P is an induced P_{4}. Similarly, $v_{3} \notin U$. So we conclude that v_{2} and v_{3} can only be in $X \cup Y$.

Since the set X and Y are two independent sets while $v_{2} v_{3} \in E, v_{2}$ and v_{3} cannot be both in X or both in Y. Thus, one of the two vertices is in X and the other is in Y.

Lemma 4.0.3. G is $2 P_{4}$-free.
Proof. Assume G contains two paths P^{1} and P^{2} of length 4 , such that $P^{1} \cup P^{2} \simeq 2 P_{4}$. From the definition, we have that P^{1} and P^{2} are vertex disjoint and non-adjacent to each other. From 4.0.2, each of P^{1} and P^{2} either contains one vertex from C, or one vertex from X and one vertex from Y.

Suppose P^{1} has a vertex $c_{i} \in C$, and P^{2} has a vertex $c_{j} \in C$. Since P^{1} and P^{2} are vertex disjoint, $c_{i} \neq c_{j}$. But then $c_{i} c_{j} \in E$, and thus there is an edge between P^{1} and P^{2}, a contradiction.

Suppose P^{1} has a vertex $x_{i_{1}} \in X$ and $y_{i_{2}} \in Y$, and P^{2} has a vertex $x_{j_{1}} \in X$ and $y_{j_{2}} \in Y$. Since P^{1} and P^{2} are vertex disjoint, $x_{i_{1}} \neq x_{j_{1}}, y_{i_{2}} \neq y_{j_{2}}$. Then from the construction of G, we know that $x_{i_{1}} y_{j_{2}}$ and $x_{j_{1}} y_{i_{2}}$ are edges of G, which contradicts to fact that P^{1} and P^{2} have no edges between them.

Suppose without loss of generality that P^{1} has a vertex $c_{i} \in C$, and P^{2} has a vertex $x_{j_{1}} \in X$ and $y_{j_{2}} \in Y$. If $i \in\{1,2\}$ then $c_{i} y_{j_{2}} \in E$, otherwise $c_{i} x_{j_{1}} \in E$. Both contradict the fact that there are no edges between P^{1} and P^{2}.

Thus, G is $2 P_{4}$-free.
Therefore, we have proved Theorem 1.2.6.

References

[1] K. Appel and W. Haken. Every planar map is four colorable. part I: Discharging. Illinois Journal of Mathematics, 21(3):429-490, 1977.
[2] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. part II: Reducibility. Illinois Journal of Mathematics, 21(3):491-567, 1977.
[3] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121-123, 1979.
[4] M. Axenovich, J. Rollin, and T. Ueckerdt. Chromatic number of ordered graphs with forbidden ordered subgraphs. Combinatorica, 38:1021-1043, 2018.
[5] E. Balas and C. S. Yu. On graphs with polynomially solvable maximum-weight clique problem. Networks, 19:247-253, 1989.
[6] F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong. Threecoloring and list three-coloring of graphs without induced paths on seven vertices. Combinatorica, 38(4):779-801, 2018.
[7] H. Broersma, P. A. Golovach, D. Paulusma, and J. Song. Updating the complexity status of coloring graphs without a fixed induced linear forest. Theor. Comput. Sci., 414(1):9-19, Jan. 2012.
[8] C. Bujtás, Z. Tuza, and V. Voloshin. Hypergraph colouring. In Topics in Chromatic Graph Theory, pages 230-254. Cambridge University Press, 052015.
[9] A. Cayley. On the colouring of maps. Proceedings of the Royal Geographical Society and Monthly Record of Geography, 1(4):259-261, 1879.
[10] A. Chattopadhyay and B. A. Reed. Properly 2-colouring linear hypergraphs. In M. Charikar, K. Jansen, O. Reingold, and J. D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 395-408, Berlin, Heidelberg, 2007. Springer.
[11] M. Chlebík and J. Chlebíková. Hard coloring problems in low degree planar bipartite graphs. Discret. Appl. Math., 154:1960-1965, 2006.
[12] M. Chudnovsky, S. Huang, S. Spirkl, and M. Zhong. List 3-coloring graphs with no induced $P_{6}+r P_{3}$. Algorithmica, 83:216-251, 012021.
[13] M. Chudnovsky, S. Spirkl, and M. Zhong. Four-coloring P_{6}-free graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 12391256. SIAM, 2019.
[14] J.-F. Couturier, P. Golovach, D. Kratsch, and D. Paulusma. List coloring in the absence of a linear forest. Algorithmica, 71(1):21-35, January 2015.
[15] G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 25:71-76, 1961.
[16] K. Edwards. The complexity of colouring problems on dense graphs. Theoretical Computer Science, 43:337-343, 1986.
[17] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. Rosamond, S. Saurabh, S. Szeider, and C. Thomassen. On the complexity of some colorful problems parameterized by treewidth. Information and Computation, 209(2):143-153, 2011.
[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, USA, 1979.
[19] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1(3):237-267, 1976.
[20] P. Golovach, D. Paulusma, and J. Song. Closing complexity gaps for coloring problems on H-free graphs. Information and Computation, 237, 102014.
[21] P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph Theory, 84(4):331-363, 2017.
[22] S. Hajebi. Private communication. 2020.
[23] S. Hajebi, Y. Li, and S. Spirkl. List-3-coloring ordered graphs with a forbidden induced subgraph. in preparation.
[24] S. Hajebi, Y. Li, and S. Spirkl. Complexity dichotomy for list-5-coloring with a forbidden induced subgraph. arXiv:2105.01787.
[25] C. T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu. Deciding k-colorability of P_{5}-free graphs in polynomial time. Algorithmica, 57(1):74-81, 2010.
[26] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10:718-720, 1981.
[27] S. Huang. Improved complexity results on k-coloring P_{t}-free graphs. European Journal of Combinatorics, 51:336-346, 012016.
[28] M. Kamiński and V. Lozin. Coloring edges and vertices of graphs without short or long cycles. Contributions Discret. Math., 2, 2007.
[29] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. Springer, 1972.
[30] M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are binary. Mathematical Logic Quarterly, 13:15-20, 1967.
[31] Y. Li and S. Spirkl. The r-coloring and maximum stable set problem in hypergraphs with bounded matching number and edge size. arXiv:2111.10393.
[32] L. Lovász. On chromatic number of finite set-systems. Acta Mathematica Academiae Scientiarum Hungaricae, 19:59-67, 031968.
[33] J. Misra and D. Gries. A constructive proof of Vizing's theorem. Information Processing Letters, 41(3):131-133, 1992.
[34] J. Nešetřil. On ordered graphs and graph orderings. Discrete Appl. Math., 51(1-2):113-116, jun 1994.
[35] J. Pach and G. Tardos. Forbidden paths and cycles in ordered graphs and matrices. Israel Journal of Mathematics, 155:359-380, 2006.
[36] K. Phelps and V. Rödl. On the algorithmic complexity of coloring simple hypergraphs and Steiner triple systems. Combinatorica, 4:79-88, 031984.
[37] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society, 2(1):264-286, 1930.
[38] V. Rodl and P. Winkler. A ramsey-type theorem for orderings of a graph. SIAM Journal on Discrete Mathematics, 2(3):402-5, 081989.
[39] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing, 6:505-517, 1977.
[40] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, (3):25-30, 1964.

