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Abstract

In genetics, the term “epistasis” refers to the phenomenon that the effect of one gene

or single-nucleotide polymorphism (SNP) is dependent on the presence of others. Various

possibilities of epistasis exist, and the understanding of them is limited. In recent years,

failure of replication for single-locus effects in genome-wide association studies (GWAS)

motivates the exploration of epistasis for human complex disease.

This thesis is thus dedicated to the study of computational approaches for two-way

compositional epistasis (SNP-SNP interaction) detection. Epistasis of this sort is best

described by disease models, which can be simply understood as disease probability patterns

associated with the genotype combinations of SNP-pairs. Because the epistasis detection

problem requires determination of proper disease models to capture the compositional epistasis

effect, it is more complicated than a typical variable selection task.

Three projects are pursued in this thesis. The first two target epistasis that is characterized

by a set of “two-locus, two-allele, two-phenotype and complete-penetrance” (TTTC) disease

model, and the third one extends to more general epistasis.

There are theoretically 29 = 512 TTTC disease models. For a given SNP-pair, the first step

of the problem is to find a proper TTTC model to capture its epistasis effect. It is found that

existing methods that use data to determine best-fitting disease models prior to screening

may be too greedy. Motivated by this, the first project proposes a less greedy strategy by

limiting the search of disease models to a set of prototypes. The prototypes are determined a

priori. Specifically, a distance metric is defined and used to cluster all disease models, and

then a “representative” from each cluster is selected to form the prototypes. Compared to

the existing approaches, the proposed method provides a more satisfying balance between

precision and recall in epistasis detection.

If one uses data to determine a best-fitting disease model for a pair of SNPs, the nominal

statistical evidence of association between the SNP-pair and the disease outcome is inflated.

Therefore, the second project aims to directly correct inflation of this type. To make it feasible
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for genome-wide studies, a first-order correction method is proposed that can be applied in

practice with no additional computational cost. Simulation studies are performed on two

popular existing methods, which show that the correction is quite effective in improving an

overall epistasis detection.

The TTTC disease models can be viewed as coding two risk levels, i.e., high and low risk.

Compared to them, some other disease models code multiple risk levels, which capture more

general epistasis patterns. Two methods are proposed in the third project, which are centered

on epistasis detection using multi-level risk disease models. One method is inspired by the

fused lasso under a regression-based framework, and adopts the post-model selection test to

account for inflation incurred during disease model searching. The other one makes sequential

split of the genotype combinations of a SNP-pair and uses a stopping criterion to determine

the final disease model; after that, it also applies a first-order correction to the testing

statistic to effectively account for inflation. It is shown that the two methods with totally

different starting framework are equivalent in terms of the disease model searching process.

Subsequent simulation studies show that use of multi-level disease models achieves better

detection efficiency in terms of a balance between precision and recall than the two-level ones.

In summary, it is a rather complicated task to uncover the underlying mechanism of locus

interaction effects, and endeavours are only beginning to be made. The epistasis detection

methods in this thesis are practically useful at genome-wide level, which complements the

single SNP screening in genome-wide association studies. What’s more, the method of

first-order correction for inflation is simple and effective, which is practically valuable for the

epistasis detection methods involving inflated testing statistics.
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Chapter 1

Introduction

Single-nucleotide polymorphisms (SNPs) (Box 1.1) are the most common variations in the

human genome. They underlie individual differences in their susceptibilities to complex

disease, and studying them is of fundamental importance in modern medical and health

research.

For many years, scientists have tried to identify single-nucleotide polymorphisms (SNPs)

associated with various diseases. Among all efforts, genome-wide association studies (GWAs)

have been most popular since their inception at around 2005. In a typical GWA study,

tagging SNPs are genotyped across the whole human genome and analyzed by comparing the

relative frequencies of an allele or genotype between the cases and controls for each SNP [1].

Although GWAS for various complex diseases have been carried out extensively and the

findings have been abundant, it is becoming apparent that single genetic variations can

explain only very little heritability. This has come to be known as the so-called “missing

heritability problem” [2–4]. Various conjectures for the missing heritability exist, such as

rare variant effects and interactions between SNPs. In particular, many scientists believe

that perhaps SNP-SNP interactions are more prevalent than one had previously thought [5].

Motivated by this, this thesis dedicates effort to the detection of SNP-SNP interactions.

The work mainly consists of three parts: the first one is a proposal on using representative
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genetic disease models for the so-called “compositional epistasis ” detection that is of practical

value; the second one is a simple and easy-to-use first-order p-value correction method that

can effectively improve the epistasis detection efficiency of popular existing methods such

as MDR [6] and Wan et al.’s method [7]; the third one consists of proposed algorithms for

SNP-SNP interaction detection that places no restriction on the interaction patterns. The

three parts are presented in chapters 2 - 4, respectively.

Before presenting the work, some background information is given in this chapter. The

following sections start by introducing the definition, prevalence and types of epistasis, followed

by a group of genetic disease models (i.e., “two-locus, two-allele, two-phenotype and complete

penetrance” disease models) that can be used to represent the so-called “compositional

epistasis ”. After that, some existing methods that achieve the same or similar epistasis

detection are reviewed. Lastly, the ideas of the thesis pursuit are persented based on the

understanding of the problems and drawbacks of existing methods.

1.1 Epistasis

In genetics, the term “epistasis” refers to the phenomenon that the effect of one gene (or

SNP) is dependent on the presence of others. Epistasis was recognized long before the search

for disease-associated loci. It goes back about 100 years when Mendel’s laws were being

rediscovered, and interactions between genes were observed [8]. Recently, some systematic

searches for genetic interactions affecting fitness and quantitative traits in model organisms

such as yeast have been done, which confirm that epistasis is extremely prevalent [9–12].

Moore et al. (2003) [13] formulates epistasis as a ubiquitous component of the genetic

architecture of human complex disease based on four aspects of reasoning. First, numerous

observations of deviations from Mendelian ratios are due to interactions between genes, as

have been evidenced since nearly 100 years ago; second, ubiquitous biomolecular interactions

occurr in gene regulation, biochemical and metabolic systems, which indicate that interactions

between genetic variants are likely to exist; third, the missing heritability problem could
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Box 1.1 Glossary

� Genetic Association Studies: methods used to identify correlations between
genetic polymorphisms and phenotypes such as diseases.

� Single-nucleotide Polymorphism (SNP): a genetic variant that consists of a single
DNA base-pair change.

� Minor Allele Frequency (MAF): the frequency of the allele of a SNP that appears
less often in the population.

� Penetrance: the probability of getting the disease for carrying the disease-
associated genotype.

– Complete Penetrance: carrying the disease-associated genotype leads to a
100% chance of developing the condition.

– Incomplete Penetrance: carrying the disease-associated genotype leads to a
<100% chance of developing the condition.

� Disease Model: a model used to map genotypes to the phenotype, could be
represented by the penetrance values of each genotype under consideration.

– Additive: each risk allele increases the risk of disease by one fold.

– Recessive: two copies of the risk allele required to increase the risk.

– Dominant: only one copy of the risk allele is required to increase the risk;
the additional allele does not increase the risk further.

� Hardy-Weinberg Equilibrium (HWE): allele and genotype frequencies remain
constant from generation to generation in a large, randomly mating and ho-
mogenous population. E.g., if the allele frequency of a SNP is α and the SNP
satisfies HWE, then its genotype frequencies are expected to be α2, 2α(1− α)
and (1− α)2.

� Linkage Disequilibrium (LD): two (usually nearby) SNPs on the same chromo-
some being inherited together more often than expected by chance. In other
words, two SNPs are not independent of each if in LD.

� Quantitative Trait Locus (QTL): genetic loci that contribute to variability in
complex quantitative traits, as identified by statistical analysis.
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be explained by epistasis effects of some sort; lastly, emerging methods have been yielding

findings of gene-gene interaction effects. These reasons imply that epistasis is widespread

and rather complex.

Over the years, the term “epistasis” has accumulated a broad range of meanings. In

biochemical genetics, the term “functional epistasis” is sometimes used to refer to molecular

interactions among proteins (and/or other genetic elements). In population and/or quantita-

tive genetics, the terms “statistical epistasis” and “compositional epistasis” are more often

used. Use of “statistical epistasis” is due to Fisher [14] and usually taken to mean deviation

from additive genetic effects. “Compositional epistasis” emphasizes the notion of having

a masking effect, as such, some researchers [15–17] believe it to be closer to the original

meaning of the word “epistasis” when Bateson [8] first coined it in 1909. As Phillips [16]

wrote, “compositional epistasis measures the effects of allele substitution against a particular

fixed genetic background, while statistical epistasis measures the average effect of allele

substitution against the population average genetic background.”

In existing literature, epistasis detection methods mainly aimed at “statistical epistasis”.

As indicated by Phillips’ comment above, statistical epistasis is not invariant to study

populations due to possible changes in the genetic background. Therefore, researchers have

come to realize that its ability to uncover the biological mechanism is probably limited [18, 19].

A very limited amount of research exists that target epistasis more relevant to its biological

meaning [7, 20–24]. Nevertheless, compositional epistasis, i.e., epistasis measured in Bateson’s

sense, captures the aspects of epistasis relevant to selection dynamics and adaptation [25].

This thesis thus pursues compositonal epistasis detection. Disease models are introduced

to conveniently characterize the compositional epistasis.

1.2 Disease Models

A genetic disease model (also called genetic model or disease model, see Box 1.1) is usually

used to model an inheritance pattern, which describes how a disease is transmitted among
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generations. For instance, genetic dominant (only one copy of the allele inherited from either

parent would cause the offspring to manifest the phenotype) and recessive models (two copies

of the same allele are needed for the offspring to manifest the phenotype) are two common

inheritance patterns for simple Mendelian disorders.

In this thesis, disease models concerning two-SNPs are of interest. Two sorts of disease

models are introduced. The first one consists of a special group that is simple in form and

practically usedful, and the second one is in the most general form and meant for flexible

epistasis detection.

1.2.1 TTTC Models

To characterize different compositional epistatic effects, various researchers [17, 21, 26–29]

have studied this problem and focused on a set of “two-locus, two-allele, two-phenotype, and

complete-penetrance” (TTTC) disease models [30].

Table 1.1 shows a few examples. Often, these disease models can be interpreted as one

SNP having a certain masking effect on the other. For instance, the recessive-recessive disease

model (see model (c) in Table 1.1) can be viewed as the major allele “A” from one SNP

having a masking effect on the causal genotype “bb” from the other SNP, or as the major

allele “B” having a similar masking effect on the causal genotype “aa”.

In practice, researchers have studied the joint two-locus effect utilizing particular epistatic

models such as jointly recessive-recessive, recessive-dominant, dominant-dominant and

modifying-effects models [6, 26, 28, 31, 32]. For instance, model (d) in Table 1.1 is known as

the “XOR” model and shown to predict human handedness.

Clearly, the TTTC disease models can describe only two-way interactions between two

SNPs, and the notion of epistasis itself certainly does not preclude higher-order interactions

formed by more than two SNPs. Nonetheless, screening for higher-order interactions is still

largely impractical at the genome-wide level. For example, even with 100,000 SNPs, there

would be
(
100,000

2

)
≈ 5.0×109 or about 5 billion SNP-pairs to screen already if limiting to 2-way
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Table 1.1. Examples of TTTC disease models. A “1” means the corresponding
genotype combination, e.g., “aabb” in (c), would cause the disease, whereas a “0” means it
would not.

(a) (b)
AA Aa aa AA Aa aa

BB 1 1 0 BB 0 1 0
Bb 1 1 0 Bb 1 0 1
bb 0 0 0 bb 0 1 0

(c) (d)
AA Aa aa AA Aa aa

BB 0 0 0 BB 0 0 1
Bb 0 0 0 Bb 0 0 1
bb 0 0 1 bb 1 1 0

interactions only, and
(
100,000

3

)
≈ 1.7× 1014 SNP-triplets to screen if 3-way interactions were

to be considered. Therefore, in this thesis, a “narrow” point of view is taken by restricting

the consideration to only two-way interactions.

What’s more, TTTC models (TTT models to be exact, or disease models with two different

risk-levels) are practically useful, especially when the minor allele frequency (MAF) is low. A

TTTC model has two degrees of freedom, which corresponds to two penetrance levels (Box

1.1) that are denoted by “1” and “0” respectively as shown in Table 1.1; whereas a “full

model” will have 9 degrees of freedom, one for each of the nine genotype combinations. When

the MAF is low, there can be insufficient data for some of the rare genotype combinations,

making it hard to obtain reliable parameter estimates. In the extreme case, there may be

no data in the sample for a particular genotype combination. Under such circumstances, it

is beneficial to reduce the number of parameters or the degree of freedom. Using a TTTC

model, one only has to estimate two parameters. By limiting the degree of freedom in this

way, the power of the statistical test is expected to be improved.

Thus, when the word “epistasis” is used in this thesis (Chapter 2 & 3 especially, which is

dedidated to use of TTTC disease models for epistasis detection), it is largely referring to

these TTTC disease models only. Even so, there are still 29 possible TTTC disease models in

theory [30] for each pair of SNPs, and it is generally not possible to screen them all. But a

bad choice of the disease model can be detrimental in that a pair of SNPs may appear highly
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associated with an outcome under one disease model and not associated under another. For

example, studies on single-locus effects have generally confirmed that the power (of detecting

an existing effect) is largest when the correct genetic model such as recessive, dominant and

additive is specified [33–35], so it is reasonable to expect that the same conclusion will hold

for detecting epistatic effects between two SNPs.

Note that, just like some existing methods such as MDR and RS (see Section 1.3), the

TTTC models are only used to capture the type of SNP-SNP interaction being considered

(sometimes used to approximate a more complicated, non-TTTC model), but it does not

mean the proposed method (again, method presented in Chapter 2 especially) in this thesis is

only intended for TTTC models. In this regard, use of (or reliance on) these TTTC models

is identical to MDR and RS.

1.2.2 General Disease Models

Epistasis effect does not necessarily have to be in the form as represented by a “TTTC”

model. Therefore, general disease models are introduced with the aim of more general and

flexible epistasis detection.

It is convenient to represent a general disease model by penetrance values. Penetrance is

an important notion in genetic studies and refers to the probability of getting the disease for

having a particular genotype (Box 1.1). Take dominant or recessive inheritance in simple

Mendelian disorders as an example, the penetrance is 1 for the causal genotype(s) and 0

otherwise. A penetrance value of 1 is called complete or full penetrance, whereas reduced

or incomplete penetrance refers to the situation in which possessing the disease-associated

genotype(s) does not lead to a 100% chance of getting the disease. Reduced penetrance is

more common in human complex genetic disorders.

Research on the missing heritability problem shows that small to medium single SNP

effects are very probable. Therefore one plausible scenario would be that two SNPs contribute

to the disease jointly through both marginal and interaction effects, where the marginal

effects are only small to medium in size.
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An extreme case is a type of two-locus disease models that code only pure interaction

effects. In other words, SNPs that contribute to the disease under such an interaction model

have no marginal effects. Previously, researchers have utilized techniques such as genetic

programming to discover examples of such type of disease models [36, 37].

Examples of pure interaction disease models are shown in Table 1.2. Take Model (a) as an

example. Assume it codes the true underlying interaction mechanism, then for the first SNP,

its marginal penetrances are calculated as:

AA : 0.558× 0.82 + 0.632× 2× 0.2× 0.8 + 0.546× 0.22 = 0.58

Aa : 0.616× 0.82 + 0.499× 2× 0.2× 0.8 + 0.674× 0.22 = 0.58

aa : 0.674× 0.82 + 0.418× 2× 0.2× 0.8 + 0.395× 0.22 = 0.58

This shows that different genotypes of the first SNP have the same probabilities of getting

the disease, i.e., the marginal effect of the first SNP is zero. A similar argument could be

made for the second SNP.

Table 1.2. Examples of disease models without main effects. The values are the
penetrances for the genotype combinations, i.e., probabilities of getting the disease for
having that particular genotype combination.

(a) h2=0.01 MAF=0.2 (b) h2=0.01 MAF=0.4
AA Aa aa AA Aa aa

BB 0.558 0.616 0.674 BB 0.095 0.122 0.127
Bb 0.632 0.499 0.418 Bb 0.097 0.129 0.010
bb 0.546 0.674 0.395 bb 0.201 0.044 0.122
(c) h2=0.1 MAF=0.2 (d)h2=0.1 MAF=0.4

AA Aa aa AA Aa aa
BB 0.332 0.562 0.573 BB 0.539 0.120 0.258
Bb 0.583 0.112 0.147 Bb 0.165 0.378 0.325
bb 0.399 0.496 0.033 bb 0.123 0.426 0.276

1.3 Existing Methods

Among methods available for choosing a TTTC disease model for each pair of SNPs prior to

screening, two popular ones are: the multi-factor dimensionality reduction (MDR) method by
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Ritchie et al. [6], and the method by Wan et al. [7], which is simply referred as the “ratio split”

(RS) method throughout. Both of these methods rely on the case-control ratios of different

genotype combinations (i.e., AABB, AABb, and so on) in order to decide on a particular

disease model to use for a given pair of SNPs.

Specifically, for a given SNP-pair (i, j), the MDR method determines a disease model

(DM) Mi,j by thresholding the case-control ratios; typically, genotype combinations with

ratios ≥ 1 (on a balanced case-control sample) are regarded as high risk. The RS method,

on the other hand, first sorts the case-to-control ratios in descending order and evaluates 8

different disease models by sequentially considering the top x genotype combinations as high

risk, for x = 1, 2, ..., 8. Then, it chooses the one that best predicts the outcome (e.g., disease).

After the DM Mi,j is determined, it is refitted by forming a 2× 2 cross table

Risky Non-Risky

Case n11 n10 n1·

Control n01 n00 n0·

n·1 n·0 n

according to how it separates the 9 genotype combinations into two groups: high and low

risk.

For k, ℓ = {0, 1}, let

n̂kℓ = (n)
(nk·

n

)(n·ℓ

n

)
denote the expected count of cell-(k, ℓ) under the null hypothesis that the SNP-pair is

independent of the outcome. The commonly used chi-squared statistic for testing the null

hypothesis is computed as

χ̂2
i,j =

1∑
k=0

1∑
ℓ=0

(nkℓ − n̂kℓ)
2

n̂kℓ

; (1.1)
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and the SNP-pair is then ranked (against other SNP-pairs) by the nominal p-value,

porig(i, j) = Pr
(
χ2
(1) > χ̂2

i,j

)
. (1.2)

More details on the two methods are reviewed in Sections 1.3.1 and 1.3.2 below.

In addition to TTTC disease models, there are methods that use more general ones to

model two-way epistasis effects. Among these, some assume 3 different levels of risk (i.e.,

3 different penetrance values for the disease model), while others use flexible levels. Use of

more general disease models may improve the SNP-pair detection in cases where the actual

underlying epistasis involve more than two different risk levels. These are reviewed in Section

1.3.3.

1.3.1 MDR

Multifactor-Dimensionality Reduction (MDR) [6, 38] has been popular in detecting interaction

effects since its first appearance in 2001, where it was used to detect high-order interaction

effects for Sporadic Breast Cancer. There it successfully identified four-locus interactions

that were marginally insignificant. For relatively small samples, MDR enjoys advantages

such as being nonparametric and model-free. It could be viewed as a constructive induction

learning method, because it converts high-dimensional interactions into a single-dimension

factor with only two levels.

Application of MDR has detected interactions in a wide range of complex human disease,

examples include breast cancer [6], Alzheimer disease [39], hypertension [38], autism [40,

41], asthma [42, 43], type 2 diabetes [44], bladder cancer [45, 46], prostate cancer [47],

schizophrenia [48]. Due to its usefulness for binary traits, extensions exist for data samples of

imbalanced designs [49] and for quantitative phenotypes and incorporation of environmental

factors [50]. Additionally, in [51], the authors discuss the performance of MDR as a filter

method for large-scale epistasis detection, where only the first step of the MDR but no

cross-validation is applied.
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The idea of MDR is relatively simple and can be viewed as having two major parts, i.e.,

new factor construction and testing, and cross-validation. Assume there are p SNPs in total.

For the first part, MDR in principal explores each k-order (k ≤ p) interactions up to a

possible maximum. The following steps depict the finding of a best-fitting k-order interaction.

Step 1 Form all possible k−order combinations of SNPs, the total number of which is
(
p
k

)
. For

each one of them, there are 3k different genotype combinations. The effect is assessed

by the following procedure.

– Find out the number of people in cases and controls for each genotype combination

formed by the k SNPs;

– Calculate the cases to controls ratios for each genotype combination;

– Assign the genotypes with ratios exceeding a threshold (e.g., for a balanced case-

control sample, the threshold is usually 1 to be ‘High Risk’; and the ones with

ratios not exceeding the threshold as ‘Low Risk’).

– Use the assigned status as a classifier for the outcome status. Calculate the

misclassification error.

Step 2 Select the combination of SNPs that has the smallest misclassification error as the final

model.

An example of the procedure for k = 2 is illustrated in figure 1.1.
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Fig 1.1. Steps of MDR without Cross-Validation.
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The original version of MDR employs a 10-fold cross-validation procedure, i.e., the

procedure shown above is carried out 10 times and prediction errors are calculated on the

corresponding testing data sets for model selection. To reduce the possibility of poor prediction

error estimates due to chance divisions of the data set, the 10-fold cross-validation is repeated

ten times, and the prediction errors are averaged. The best model of k-order interaction

is selected based on the averaged prediction errors. Lastly, for all selected best k-order

(k = 1, 2, ...) interactions, the final model is decided based on their prediction errors and

selection consistencies, i.e., the number of times the same k−order combination is selected in

the 10-fold cross-validation. After the final disease model is determined, statistical inference

on the significance of a SNP-pair is conducted by refitting the disease model and calculating

a p-value from permutation test.

Despite its various advantages, researchers have found that MDR tends to miss the correct

interactions and select the wrong ones when the cases to controls ratios are close to that in

the whole data, e.g., 1 for a balanced case-control sample, and also for situations in which

very few observations exist for some combinations of genotypes. Ritchie et al. (2003) provided

detailed studies on the power of MDR in the presence of missing data, genotyping error,

phenocopy and genetic heterogeneity [52]. It was found out that MDR was not so affected by

the first two factors, was slightly affected by 50% phenocopy and is greatly affected by 50%

genetic heterogeneity.

Another significant drawback of MDR is the computational burden. As it explores

interactions from order two up to a specified maximum or even the highest order, the

procedure is exhaustive in nature. The original and widely used versions of MDR rely heavily

on cross-validation procedures (i.e., 10-fold cross-validation) in model building, which adds

up to the computation greatly. In addition, permutation for hypothesis testing carried out on

the final selected models can also be computationally intensive. For this reason, alternative

cross-validation and testing procedures exist, for example, a 5-fold cross-validation procedure

was shown to be comparable in power to the original 10-fold one [53], and an extreme

value distribution was shown to provide better computational efficacy than the permutation
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procedure for hypothesis testing [54].

1.3.2 Ratio Split Method

In Wan et al. (2013) [7], the authors have successfully implemented a computationally

efficient procedure that applies to the GWAS scale for exact two-way compositional epistasis

detection. They have followed Li and Reich (2001)’s 50 unique disease models [30] to guide

the search.

Two-stage testing is carried out: the first stage screens out candidate SNP-pairs by testing

a limited number of disease models; the second stage tests out the complete compositional

epistasis models for selected SNP-pairs from the first stage.

The first stage screening is done by the following steps:

1. Get the frequency distributions of the nine genotypes formed by the pair in the cases

and controls sample.

2. Calculate the frequency ratios of cases to controls.

3. Arrange the ratios in an ascending order. Split the ratios into two parts following the

order. Generally, this yields eight different splits.

4. For each split, define a new covariate in the way that the genotypes with higher values

of ratios are assigned ‘High Risk’, and those with lower ratios are assigned ‘Low Risk’.

5. Test the effect of the new covariate by χ2
(1) (χ

2-statistic with one degree of freedom). Out

of the 8 splits, the one with the highest significance is selected and the corresponding

epistasis model is used to capture the effect of the SNP-pair.

6. Candidate SNP-pairs are selected based on a user-specified significance level.

The authors borrow theories from classification trees to show that one of the splits from

above minimizes the classification error for a two-class problem (Theorem 1.3.1). Theoretically
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there are 29 = 512 two-way compositional epistasis models, the above procedure tests only 8,

which is a huge reduction.

Theorem 1.3.1. Suppose there is a categorical variable X taking categorical values from

1, 2, ...,M in two classes, class Y = 0 and class Y = 1. The categories are arranged in

the ascending order of P (Y = 1|X = i). Then one of M − 1 splits, L = 1, ...,m and

R = m+ 1, ...,M where 1 ≤ m < M , minimize the misclassification rate.

An example illustrating the procedure is given below:

AABb aaBB aaBb Aabb AaBb AAbb AABB aabb AaBB

Cases 82 13 9 9 29 5 30 1 22

Controls 38 7 6 6 37 7 52 2 45

Ratios 2.16 1.86 1.50 1.50 0.78 0.71 0.58 0.50 0.49

⇓

Split 1 1 0 0 0 0 0 0 0 0

Split 2 1 1 0 0 0 0 0 0 0

... ... ... ... ... ... ... ... ... ...

Split 8 1 1 1 1 1 1 1 1 0

⇓

1 0 χ2 Statistic

Split 1 Cases 82 118

Controls 38 162 22.012

... ... ... ...

Split 4 Cases 113 87

Controls 57 143 30.946

... ... ... ...
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After the first stage screening, the authors propose a second stage testing of all non-

redundant two-way compositional epistasis models (Li and Reich (2001)’s 50 disease models)

on the selected SNP-pairs. The disease models with test statistics passing a given significance

threshold are considered as the possible interaction patterns.

1.3.3 Multi-level Epistasis Models

Theoretically, two-locus epistasis can be represented by a general disease model with arbitrary

penetrances levels. Among existing two-locus epistasis detection methods, different ones

assume different levels of risk on the genotype combinations. Regression-based methods

essentially assume 9 levels when the variables are treated as categorical, with both main and

interaction effects included. MDR, RS and the proposed PTY method in this thesis assume

two risk-levels.

A variation of MDR called the model-based MDR [55] assumes three risk-levels: “high”,

“low” and “no evidence”, which was proved to help improve the power of the original MDR

considerably. The risk groups are determined by both case-to-control ratios and the χ2-test

of independence. For each genotype of a SNP-pair, the test is performed by comparing its

relative frequency of cases and controls to those of the rest genotypes as a whole. Genotypes

with the case-to-control ratios larger than 1 and test p-values smaller than a pre-specified

threshold are assigned to the high-risk category; genotypes with ratios lower than 1 and

p-values smaller than the threshold are assigned to the low-risk category; and the rest ones

are assigned to “no evidence”. In this way, only those exhibiting significant evidence of

high or low risk are identified to be so, whereas the ones with insignificant association or

insufficient data samples are treated as “no evidence”. As a result, the SNP-pair detection

may be improved for better capturing or approximating the epistasis effects.

The “EDCF” (Epistasis Detector based on the Clustering of relatively Frequent items)

method [56] also adopts three levels of risk. Unlike model-based MDR that uses the χ2-test,

“EDCF” conducts statistical tests by use of the Binomial distribution to differentiate genotype

combinations that more excessively appear in the cases or controls. In more detail, assume
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“nc” and “nu” denotes the number of cases and controls for a given genotype, “NC” and

“NU” the number of total cases and controls in the whole sample, and “p = NC

NC+NU
” the

sample prevalence. The null hypothesis is: the penetrance of each genotype is equal to

the global sample mean (e.g., 1/2 for a balanced case-to-control sample). Under the null

hypothesis, the number of cases should follow a Binomial distribution, i.e., nc ∼ B(nt =

nc + nu, pa =
NC

NC+NU
), therefore, a critical value corresponding to a given significance level α

is {Ta : Pr(X > Ta|nt, pa)}. Based on this, the genotype is classified as a relatively frequent

item in cases if na > Ta. In a similar way, a genotype can also be assessed for whether it is a

frequent item in controls. If a genotype is not classified as either, it is assigned to the third

group of “not enough evidence”.

Pan et al. [57] proposed the “DCHE” (Dynamic Clustering for High-order Genome-wide

Epistatic Interactions Detecting) method that models epistasis effects by disease models with

three to six different levels of risk. The method determines a disease model for a SNP-pair by

use of dynamic clustering in the following steps. First, a 2× 9 cross-table is created for the

distribution of cases and controls across the nine genotype combinations. Second, Pearson’s

χ2
(1)-test is carried out for all pairs of the genotype combinations based on the correponding

2× 2 sub-tables; the pair showing the largest p-value is chosen, and if the p-value is larger

than a pre-specified threshold, the two genotype combinations are merged and treated as a

new group. The second step is repeated until no merges could be made or that there are

only three genotype combination groups left. Lastly, all disease model patterns that have

appeared in the merging process and have between three to six levels of risks are refitted

against the outcome; p-values by Pearson’s χ2-test are calculated and the disease model with

the most significant p-value is selected to model the epistasis effect.

1.4 Discussions and Research Proposals

For either MDR or RS, the DM Mi,j that drives the 2×2 table as mentioned at the beginning

of Section 1.3 is not just any DM, but one deemed to be “best-fitting” for the underlying
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SNP-pair (i, j). Though the concept of “best-fitting” differs for MDR and RS, a post-hoc

test of independence based on such a pre-selected Mi,j will necessarily bias the test result

toward being significant.

In fact, both the MDR and RS methods are essentially greedy and use the disease outcome

data twice: first, to determine the disease model for each pair of SNPs; then, to determine

whether each pair of SNPs is associated with the outcome. As such, they can be overly

adaptive to data, and have a tendency to produce many false positives. The cost of using

the data twice is especially pronounced if the sample size is relatively small (which is almost

always the case for genome-wide association studies), and/or if the data quality is not so

good.

This kind of concern has been reported in the literature [51]. Though extra out-of-sample

validation can help mitigate such problems, in the context of genome-wide studies it is

computationally prohibitive. For this reason, this thesis does not pursue such kind of

validation. In designing the methods, the focus is on performing large-scale epistasis screening

similar to what is done for single SNPs in GWAS. Therefore, when using MDR or R-S as

comparison methods, only their core ideas in disease model determination and epistasis

testing are applied.

1.4.1 Proposal for Prototype Disease Model

To address the problem of tendencies to produce false positives by MDR and RS, the first

proposed method is to use a set of pre-selected disease models for epistasis testing. By doing

so, it is expected that the problem of being overly adaptive to data is avoided.

The main idea for disease models selection is acquired from observing that some of the

TTTC disease models are more similar than others. In Table 1.1, for example, arguably model

(a) and (c) are quite different from each other, whereas model (b) and (d) are somewhat

similar to each other.

More specifics on how to measure the similarity between two disease models will be
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explained later (Section 2.4.1). For now, it is observed that all possible disease models can be

grouped into a few clusters, and a representative prototype can be selected from each cluster

for screening purposes. The set of prototype models can be viewed to place a constraint

on the search space, in the sense that only disease models in the prototype set are now

“permitted”. This allows the proposed method to be less data-adaptive, while still ensuring

that important parts of the search space are not missed out because a prototype from each

cluster is included. In what follows, the acronym “PTY” (for “prototype”) is used to refer

to the proposed method, especially in tables and figures. All details of PTY, including the

similarity measure and selection of disease models, simulation and real data application are

given in Chapter 2.

It is worth mentioning that a cluster analysis of all disease models is beneficial in its

own right. For example, it may allow people to better understand and characterize different

epistatic effects (more on this in Section 2.6), for which there have been a few previous

endeavours [27, 29, 30, 58].

1.4.2 Proposal for P-value Adjustment

In the MDR and RS methods, because the testing statistic in Eq. 1.1 are inflated, the p-value

calculated through Eq. 1.2 tends to produce false positive discoveries under the usual choice

of significance level. With this understanding, the second proposed method aims to derive

a more accurate estimation on the distribution of the statistic (i.e., Eq. 1.1) for statistical

testing.

Solutions could be to derive the exact distribution for the testing statistic, or to simulate

the null distribution and compute an empirical p-value for each SNP-pair. While the former

can be mathematically challenging and the distributions differ for different disease model

determination procedures, the latter requires too large a number of simulations to be carried

out at a genome-wide level. Therefore, a shortcut is proposed and the idea is to use a first-

order correction that can be applied in practice with essentially no additional computational

cost.
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Specifically, the statistic is assumed to still follow χ2-distribution, but with an elevated

degree of freedom. Under this assumption, an empirical approach can be taken to estimate

the effective degree of freedom (EDF). In practice, the EDF is found to be different for

different SNP-pairs and sample size. Therefore, the aim is to express the EDF as a function

of the MAFs of the SNPs and sample size. In this way, the computational cost associated

with these “extra” steps to calculate a degree-of-freedom correction is almost negligible.

Despite the assumption that the test statistic still has a chi-squared null distribution,

various simulation results have indicated that the proposed first-order correction to the

p-value is quite effective at improving the performance of popular methods such as the MDR

and the RS for screening pairwise SNP-SNP interactions. The details of this method and

results are presented in Chapter 3.

1.4.3 Proposal for Multiple-Level Disease Model

Because the true epistasis may contain multiple risk levels, and that a more accurate

specification of the disease model is expected to improve epistasis detection, a natural

extension on use of TTTC models is to test the epistasis effect according to its actual number

of risk levels. Existing methods reviewed in Section 1.3.3 only provide partial solutions, e.g.,

the disease models are fixed or still restricted in some way, which are not completely flexible.

Motivated by this, this thesis proposes two methods that can determine a disease model of

flexible risk levels.

The first idea to achieve this is inspired by fused lasso [59], which can give identical

coefficient estimates for neighbour variables. When the problem is formulated in a regression

model with indicator variables for the genotypes, a set of cofficient estimates (with some

being identical) can be translated to a disease model of multiple levels. To assess the effect

of a SNP-pair, the determined disease model is refit and Pearson’s χ2-statistic is calculated.

Due to disease model selection in the process, this statistic is inflated if evaluated by the

“nominal” degree of freedom of a χ2-distribution. Therefore, the recent post-model selection

test is adopted for the evaluation, which is able to account for the selection.
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The second method is inspired by the RS method, which is to continue the splitting till

a desirable disease model level is obtained. For a SNP-pair with 9 genotype combinations,

theoretically there are 29 − 2 = 510 and 39 − 3× (29) + 3× 19 = 18150 two- and three-level

disease models. Foreseeably, there are many more of the four and five-level diease models.

Due to the large number of possibilities, it is impossible to perform an exhaustive search in

the whole model space for the best fitting one. Therefore a greedy algorithm is adopted, which

performs the split in a sequential way, i.e., each additional split is built on the existing ones.

Alternatively, instead of splitting, a merging procedure can be carried out. Starting with 9

genotypes, the two most similar ones are found by comparing their distribution differences

between the cases and controls. Then they are merged to be a new group and the merging

procedure continues in this fasion till a desirable disease model level is obtained.

The split and merge procedures require two types of criteria and an evaluation method: 1)

criteria to determine the best split or merge place during the sequential search process; 2)

stopping criteria to determine the levels of the disease model; 3) and an evaluation method

to assess the effects of SNP-pairs. For the evaluation method, the determined disease model

is refitted and Pearson’s χ2-statistic is adopted. Due to the searching of disease model in the

process, the testing statistics suffer from inflation. Therefore, similar p-value adjustments to

that introduced in Section 1.4.2 are carried out.

The details with simulation results are presented in Chapter 4.
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Chapter 2

Prototype Disease Model

This chapter presents compositional epistasis detection using TTTC-type models. Specifically,

a method called “prototype disease models” (PTY) is proposed. Before the method is

presented, an empirical protocal used through out this chapter for SNP-pair screening is given.

The method presentation then starts with an introduction on some motivation examples for

the PTY method, followed by proposal of a similarity metric used to cluster disease models.

After that, the clustering algorithm is introduced with PTY selection. Lastly, simulation

studies and real data application are carried out. The work in this chapter has been written

as a journal paper and published in Plos One [60].

2.1 Marginal versus sequential screening

Throughout the chapter, the following empirical protocol is used repeatedly to compare

different methods. Specifically, either marginal or sequential screening is applied for SNP-pair

detection. While the former simply ranks the SNP-pairs, the latter provides a procedure

to model aggregated epistasis effects. In the paragraphs below, the TTTC models are used

as examples to illustrate the two procedures, which also directly apply to general epistasis

models.
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For any given pair of SNPs, e.g., (i, j), each method has its own way of determining a

“best-fitting” disease model—call it Mi,j. The ways by MDR and RS are given in 1.3, and

the way by PTY is selecting the best-fitting one out of the candidate “prototype” disease

models (more on this in 2.6.3). A nominal measure of association between the (i, j)-pair and

the outcome is then computed as the χ2
(1)-statistic for testing whether the risky/non-risky

assignment by Mi,j is statistically independent of the outcome (i.e., diseased or non-diseased),

which is simply denoted as χ̂2
i,j . (Explanation why the adjective “nominal” is used to describe

these association measures is given later in Section 2.2.3 in more detail.) The pair (i, j) can

then be ranked according to χ̂2
i,j or considered having been “selected” or “detected” by the

method if χ̂2
i,j exceed a certain significance threshold (Two threholds are adopted in this

chapter, which are expained in Section 2.7.3.). This is referred as the “marginal screening

procedure”. (One can also use only part of the data to determine Mi,j, and compute an

out-of-sample measure of association by testing Mi,j against the outcome on the remaining

data. For example, MDR is usually applied in this manner when the number of candidate

SNPs being studied is relatively small. To reduce variation caused by chance division of

the data, however, such a process often needs to be repeated a few times and the resulting

measures averaged, thus making it computationally prohibitive for genome-wide screening [51,

61].)

Alternatively, the effects of multiple SNP-pairs can also be combined sequentially. For

example, after having selected the top pair—call it (i1, j1), each remaining pair (i, j) can be

re-assessed by testing whether the combined high/low risk assignment by

Mi1,j1 or Mi,j (2.1)

is independent of the outcome. χ̂2
i,j|H is used to denote the corresponding test statistic, where

H means the entire history of pairs already selected so far(After the top pair has been selected,

H = {Mi1,j1}; after two pairs have been selected, H = {Mi1,j1 ,Mi2,j2}; and so on.). The pair

to be selected next is

argmax
Mi,j ̸∈H

χ̂2
i,j|H, (2.2)
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rather than

argmax
Mi,j ̸∈H

χ̂2
i,j. (2.3)

This is referred to as the “sequential screening procedure”.

2.2 Motivating Examples

An effort needs to be made in determining proper disease models to test for genotype to

phenotype mapping. This task could be viewed as a selection of disease models, a prerequisite

for selection of SNPs in epistasis detection. Moore et al. (2006) [62] propose a flexible

computational framework for detecting and characterizing epistasis, in which a key step is to

construct new attributes that capture interaction information.

Both the MDR and RS methods use case-to-control ratios to estimate a proper TTTC-type

disease model for the current SNPs under investigation. As discussed in the introduction

chapter, these methods may suffer from inflation due to the use of data twice. In this section,

some motivating examples are provided which demonstrate weaknesses of existing methods.

It needs to be emphasized that these are merely some examples of scenarios in which PTY

can be seen to have certain advantages over MDR and RS. They are by no means the only or

even necessarily the main scenarios. The reason why they are being presented, rather than

others, is that they are still relatively easy to describe with a reasonable amount of clarity,

whether algebraically (Section 2.2.1), verbally (Section 2.2.2), or both (Section 2.2.3).

2.2.1 A pathological scenario

A pathological scenario is considered here for an easy illustration purpose. Suppose that two

pairs of SNPs (e.g., {A/a, B/b}, {C/c, D/d}) are independent (Table 2.1). For i = 1, 2, ..., 9,

let wi be the relative frequency of the i-th genotype combination in the first pair, and likewise

vj for the second pair. For simplicity, suppose each genotype combination is either risky (∈ R)

or non-risky (∈ N). For k, ℓ ∈ {0, 1}, let pkℓ (Box 1.1) be the penetrance level for individuals
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having risky combinations from both pairs (k = ℓ = 1), the first pair only (k = 1, ℓ = 0), the

second pair only (k = 0, ℓ = 1), or neither (k = ℓ = 0). Then it can be shown that if

p11
∑
j∈R

vj + p10
∑
j∈N

vj = p01
∑
j∈R

vj + p00
∑
j∈N

vj (2.4)

holds, then the case-control ratios of the first pair are all the same for all its genotype

combinations i = 1, 2, ..., 9, regardless of whether i ∈ R or i ∈ N . It is thus a pathological

case, in which it would be impossible to rely on the case-control ratios to determine the

disease model.

Proof. When the SNPs are not in linkage disequilibrium (Box 1.1, or simply understood as

being independent), the population is distributed as:

Genotype Combination

Pair 1/Pair 2 Diseased Non-diseased

Risky/Risky p11
∑
i∈R

wi

∑
j∈R

vj (1− p11)
∑
i∈R

wi

∑
j∈R

vj

Risky/Non-risky p10
∑
i∈R

wi

∑
j∈N

vj (1− p10)
∑
i∈R

wi

∑
j∈N

vj

Non-risky/Risky p01
∑
i∈N

wi

∑
j∈R

vj (1− p01)
∑
i∈N

wi

∑
j∈R

vj

Non-risky/Non-risky p00
∑
i∈N

wi

∑
j∈N

vj (1− p00)
∑
i∈N

wi

∑
j∈N

vj

Consider the i-th genotype combination in the first pair, {A/a, B/b}. From the table

above, it can seen that, if it is risky (i ∈ R), then its (marginal) case-control ratio is

rR =

p11wi

∑
j∈R

vj + p10wi

∑
j∈N

vj

(1− p11)wi

∑
j∈R

vj + (1− p10)wi

∑
j∈N

vj
=

p11
∑
j∈R

vj + p10
∑
j∈N

vj

1− (p11
∑
j∈R

vj + p10
∑
j∈N

vj)
;
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whereas if it is non-risky (i ∈ N), the ratio is

rN =

p01wi

∑
j∈R

vj + p00wi

∑
j∈N

vj

(1− p01)wi

∑
j∈R

vj + (1− p00)wi

∑
j∈N

vj
=

p01
∑
j∈R

vj + p00
∑
j∈N

vj

1− (p01
∑
j∈R

vj + p00
∑
j∈N

vj)
.

It is easy to see that if Eq. (2.4) holds, then rR = rN ; that is, the case-control ratio will

be the same for the i-th genotype combination in the first pair, regardless of whether i ∈ R

or i ∈ N .

Since both MDR and RS rely on the case-control ratios to determine disease models, their

powers (of detecting the relevant pair) can be expected to be greatly affected if Eq. (2.4)

holds, even if only approximately.

Remark

For case-control data, both rR and rN would be inflated by a factor of [1 − P(D)]/P(D),

where P(D) is the disease prevalence. However, this would not affect the previous conclusion.

Simulation Examples

To offer a more concrete illustration, two examples (see Table 2.2) are simulated. In the

first one, the true disease models are the same for the two relevant SNP-pairs; in the second,

they are different. The penetrance parameters p10, p01 and p00 are predetermined, and a few

different values are explored for the last penetrance parameter, p11, around the value implied

by Eq. (2.4). Note that only when p11 is equal to the value implied by Eq. (2.4), there would

be no signal left; otherwise there is still some weak signal left for the pair to be detectable by

using the case-to-control ratios. The simulation was repeated 100 times, with a total of 100

SNPs and a sample size of n = 800.

26



Table 2.1. Analytic framework for Section 2.2.1. Two SNP-pairs (where each wi, vj
denotes the relative frequency of the respective genotypes) and four penetrance levels (pkℓ,
k, ℓ ∈ {0, 1}). Certain relationships among the four penetrance parameters, e.g., Eq. (2.4),
can make it impossible to determine an appropriate disease model for the underlying pair
based on the case-to-control ratios.

Pair 1 Pair 2 Penetrance

BB Bb bb DD Dd dd Pair1\Pair2 R N

AA w1 w2 w3 CC v1 v2 v3 R p11 p10

Aa w4 w5 w6 Cc v4 v5 v6 N p01 p00

aa w7 w8 w9 cc v7 v8 v9

Simulation Results

The results are assessed by looking at the number of times each pair is successfully detected

by each method. Note the sequential screening procedure is adopted to consider the joint

effect of two pairs at the same time, and a relevant pair is considered to have been successfully

detected if it is among the top two pairs selected by the method.

The results are shown in Fig. 2.1. Note all three methods have detected the second pair

({C/c, D/d}) perfectly (i.e., 100 times out of 100 replications). This is probably because the

effect of the second pair is stronger than that of the first ({A/a, B/b}), e.g., p01 > p10. For

the first pair, the proposed method, PTY, generally has a better detection rate on it than

MDR and RS. In particular, as the parameter p11 drops (from a value quite different from

that implied by Eq. (2.4) to the exact value implied by Eq. (2.4)), both MDR and RS start to

deteriorate in their ability to detect the first pair, whereas PTY remains largely unaffected.

Discussion

To better understand Eq. (2.4), notice that it can be rearranged slightly as

p11 = p01 −
∑

j∈R vj∑
j∈N vj

(p10 − p00). (2.5)
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Table 2.2. Simulated examples for Section 2.2.1. Disease models for the two
pairs of SNPs that contribute to the simulated outcome. The penetrance
parameters, (p00, p01, p10, p11), are chosen so that the case-control ratio is the same for all
genotype combinations i = 1, 2, ..., 9 in the first pair, {A/a, B/b}.

Example 1: Two SNP-pairs, identical disease models (MAF=0.3).
BB Bb bb DD Dd dd

AA 0 0 1 CC 0 0 1
Aa 0 1 0 Cc 0 1 0
aa 1 0 0 cc 1 0 0

(p10 = 0.1, p01 = 0.28, p00 = 0.01
Eq. (2.4)⇒ p11 = 0.03.)

Example 2: Two SNP-pairs, different disease models (MAF=0.2).
BB Bb bb DD Dd dd

AA 0 0 0 CC 0 1 1
Aa 0 1 1 Cc 1 0 0
aa 0 1 1 cc 1 0 0

(p10 = 0.09, p01 = 0.12, p00 = 0.001
Eq. (2.4)⇒ p11 = 0.016.)

Fig 2.1. Simulated examples for Section 2.2.1. Number of times the first pair, {A/a,
B/b}, is successfully detected (out of 100 repetitions) as the parameter p11 varied.

Notice it can be typically expected that p10 > p00, i.e., having a risky genotype in the first

pair increases the probability of disease. Hence, Eq. (2.5) implies that p11 < p01, or that

having risky genotypes from both pairs will actually lead to a reduced probability of disease

than having risky genotype(s) only from the second pair. This is analogous to the logical
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operator, “exclusive or” (XOR) (Refer to disease model (d) in Table 1.1 for an example of an

“XOR”-type disease model formed by two SNPs. There the genotype “aa” and “bb” are risky

for the first and second pair marginally, but “aabb” is non-risky.).

While one can certainly argue that this may be a totally hypothetical scenario that is

not likely to occur in real world, it is nonetheless a theoretical possibility against which the

proposed method, PTY, is robust.

Remark

Of course, the aforementioned XOR-type relationship means the two pairs, {A/a, B/b} and

{C/c, D/d}, are interacting with each other, so there is actually a four-way interaction across

the four SNPs involved. Such a high-order interaction still could be detectable by methods

such as the MDR or the RS if four-way disease models were considered and screened; but, as

stated earlier (Section 1.2.1), this study takes a “narrow” point of view by restricting the

consideration to only two-way interactions. Indeed, there is nothing “pathological” about

having a high-order interaction; it is only “pathological” when one is restricted to consider

only two-way interactions.

2.2.2 Detection of spurious effects

It is also observed that being overly adaptive to data can cause a method to be more easily

tricked into detecting spurious epistatic effects, e.g., by SNPs with large individual effects.

To demonstrate this, 100 SNPs are simulated on a case-control sample of size n = 200.

Two pairs of SNPs, i.e., {A/a, B/b} and {C/c, D/d}, contribute to the simulated outcome

independently, each according to an additive disease model (see Table 2.3). The SNPs A/a

and C/c are simulated to have higher minor allele frequencies (MAFs) than B/c and D/d

so that they have larger marginal individual effects than the other two according to the

underlying additive disease model.

The simulation is repeated 100 times. The pairs most frequently ranked by each method
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to be among the top two using the sequential screening procedure (Table 2.4) are counted.

Results show that both MDR and RS are more likely to select a spurious pair, {A/a, C/c},

due to the large marginal effects of both of these SNPs. They are much less effective than

the proposed method, PTY, in identifying the truly relevant pairs.

Table 2.3. Simulated examples for Section 2.2.2. Disease models for the two pairs of
SNPs that contribute to the simulated outcome. Numeric values (e.g., 0.1, 0.2) are
penetrance parameters for the corresponding genotype combinations. (MAF=0.5 and 0.3,
respectively, for the two SNPs in each pair.)

BB Bb bb DD Dd dd
AA 0 0 0.1 CC 0 0 0.1
Aa 0 0 0.1 Cc 0 0 0.1
aa 0.1 0.1 0.2 cc 0.1 0.1 0.2

Table 2.4. Simulated examples for Section 2.2.2. The number of times different pairs
of SNPs were among the top two pairs detected, out of 100 replications. The truly relevant
pairs are emboldened.

MDR RS PTY
{A/a, C/c} 75 {A/a, C/c} 74 {A/a, B/b} 43
{B/b, D/d} 32 {B/b, D/d} 51 {C/c, D/d} 42
{C/c, D/d} 13 {A/a, D/d} 12 {A/a, C/c} 32
{A/a, D/d} 13 {B/b, C/c} 9 {A/a, D/d} 23
{A/a, B/b} 10 {C/c, D/d} 8 {B/b, C/c} 9
{B/b, C/c} 10 {A/a, B/b} 7 {B/b, D/d} 6
Other Pairs ≤ 9 Other Pairs ≤ 6 Other Pairs ≤ 5

2.2.3 Exaggeration of effects and false positives

In previous sections, it is already stated that both MDR and RS tend to produce many false

positives. To demonstrate this point more concretely, another experiment is conducted. 100

SNPs are simulated on a case-control sample of size n = 400, except that, this time, none of

the SNPs is related to the simulated outcome. Then, all three methods, i.e., MDR, RS, and

PTY, are followed to assess the resulting
(
100
2

)
= 4, 950 pairs of SNPs. The distributional

properties of the resulting association measures (see Section 2.1) produced by each method

for all pairs, {χ̂2
i,j : 1 ≤ i, j ≤ 100}, are examined.
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Fig. 2.2 shows various Q-Q plots of these association measures, produced by different

methods under different MAF settings, against the theoretical quantiles of the χ2
(1)-distribution.

It can be seen that all methods produced inflated association measures, which would lead

to false discoveries if they are assessed against the χ2
(1)-distribution. This is not surprising

though. After all, Mi,j was not just any disease model but the one deemed “best-fitting”

for the underlying pair (i, j). Though the meaning of “best-fitting” differed for the three

methods, a post-hoc test of independence based on Mi,j was clearly biased toward being

significant. This is why the adjective “nominal” is used earlier in Section 2.1 to describe

these association measures.

However, the main point here is that PTY suffers the least from this tendency to produce

false positives. As the MAF increases, the tendency to produce false positives also becomes

more pronounced for both MDR and RS, but not for PTY. To further illustrate this point,

the aforementioned “null simulation” is repeated 400 times. For each repetition, the mean

value of the (nominal) association measure is computed,

1

4950

∑
i,j

χ̂2
i,j, (2.6)

across all 4,950 SNP-pairs. The average of these mean values and its standard error over

the 400 repetitions are shown in Table 2.5 for each method under different MAF settings.

Clearly, this value is more inflated for MDR and especially for RS than it is for PTY.

Table 2.5. Results from simulation study (Section 2.2.3). Average values of the
nominal association measures {χ̂2

i,j : 1 ≤ i, j ≤ 100} across all 4,950 SNP-pairs, together with
their standard errors, over 400 repetitions.

MAF MDR RS PTY

0.05 1.837 (0.229) 2.115 (0.233) 1.792 (0.214)

0.10 2.457 (0.239) 2.975 (0.230) 2.202 (0.200)

0.40 4.748 (0.289) 5.101 (0.303) 3.033 (0.221)
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Fig 2.2. Results from simulation study (Section 2.2.3). Q-Q plots of nominal
association measures {χ̂2

i,j : 1 ≤ i, j ≤ 100} against their theoretical quantiles.
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2.3 Overview

Examples in the previous section show that there are situations in which disease models

based on the case-to-control ratios lead to reduced power in epistasis detection. Cases include

a pathological example in which the case-to-control ratios become non-informative, and an

example demonstrating the inclination to false positive selections when large marginal effects

of single SNPs are present.

To overcome the problems, an approach without using the case-to-control ratios is proposed,

and the idea is to use disease model clustering to select a few prototypes as representatives.

Clustering the disease models is natural for characterization when they are similar to each

other. Besides, after clustering, those closest to the centers are natural prototype examples

that could be used for epistasis testing. Approaching it this way, the disease models to be

used are not affected by the disease outcome data, so the epistasis detection is less likely to

suffer from a power loss.

Intuitively, if two different disease models have many genotypes with the same or close

penetrance values, then they could indeed be viewed as being “similar”. Nonetheless, note

that taking the genotype frequencies into account is necessary considering that the eventual

goal is to do SNP-pair selection using proxy disease models. To understand this, consider

the models in Table 2.6. Suppose that DM0 is the true disease model, and DM1 and DM2

are two candidate proxy models. If using DM1 as the proxy model, then individuals with

the high-risk genotype of AaBb would be predicted as being low-risk; whereas if using DM2

as the proxy model, the ones with aabb would be predicted as low-risk. Given a MAF of

0.1, there is expected to be more individuals with AaBb. In other words, using DM1 as the

proxy model would lead to more incorrect predictions than that of DM2. From this sense, it

is more reasonable not only to consider the disease model penetrance values for all genotypes,

but also the corresponding genotype frequencies.

Based on the above consideration, “similarity” can be defined in such a way that two

disease models are regarded as “similar” if they lead to similar results when used to predict

the disease outcomes. That is, the numbers of “identical” predictions two disease models
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Table 2.6. Disease model examples that are candidate proxy ones for the true
model. Assume the SNP pair under study has MAF of 0.1, then the genotype frequency for
aabb is lower than that of AaBb, i.e., there would be more individuals who are correctly
predicted as having a high-risk genotype by DM2 than that by DM1.)

DM0 DM1 DM2
BB Bb bb DD Dd dd FF Ff ff

AA 0 0 0 CC 0 0 0 EE 0 0 0
Aa 0 1 0 Cc 0 0 0 Ee 0 1 0
aa 0 0 1 cc 0 0 1 ee 0 0 0

would make across the study subjects are counted to assess their “similarity”. In particular,

given two disease models, it is assumed that one of them is the true model, and the other

one is used to make the prediction. Then the predictions of disease status for all individuals

under the proxy model are obtained. The concordance between the proxy prediction and the

true disease status, e.g., the ϕ coefficient [63], is a natural measure of “similarity” between

two disease models.

In real-world situations, case-control samples are commonly used. Therefore, it is of

interest to derive the measure of disease model distance based on the specific sample to

improve the accuracy of using proxy disease models. For example, a disease model that

predicts the disease outcome similarly to another one for the population data may not be so

for a case-control sample. For instance, for a rare disease, the disease to non-disease ratio is

quite small in the population data, whereas it is 1 under a balanced case-control design. To

help increase the final epistasis detection, it is desirable to have the proxy model predicting

as many individuals the same as possible for the sample instead of for the population.

In the following sections, the approach of prototype disease models are described in more

detail. First, a metric is derived to measure the similarity (or equivalently, difference) between

two disease models. Then, all disease models are clustered into a few groups and a prototype

model is selected from each group. Finally, each pair of SNPs are screened against the set of

prototype models. The set of prototype models is decided a priori, without considering the

disease status of individuals in the data set. This is what makes the proposed approach less

greedy, and less data-adaptive, than existing methods such as MDR and RS.
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2.4 Similarity measure

2.4.1 Introduction

In the introduction chapter, some intuition has been given that some disease models appear

to be more similar than others (E.g., in Table 1.1, model (a) and (c) appear to be quite

different from each other, whereas model (b) and (d) are somewhat similar to each other).

Such intuition can be formalized in many different ways; for instance, some researchers have

used a geometric approach to categorize them [27]. For this study, a more pragmatic approach

is taken, as discussed in the previous section.

Suppose the similarity of two disease models denoted by M and M ′ needs to be measured.

It is assessed according to how much they agree in terms of their assignment of individuals

into high- and low-risk groups.

Assume there is a group of n·· individuals. According to their genotypes for the SNP-pair

under study, M and M ′ would classify them either as high or low risk.

For k, ℓ = {0, 1}, let nkℓ denote the number of individuals classified to be high-risk by

both models (k = ℓ = 1), by M only (k = 0, ℓ = 1), by M ′ only (k = 1, ℓ = 0), or by neither

model (k = ℓ = 0) (Table 2.7).

Then the Φ-coefficient [63], defined as

Φ =
(n11)(n00)− (n10)(n01)√

(n1·)(n0·)(n·1)(n·0)
, (2.7)

is a natural quantity to measure the concordance between M and M ′. The Φ-coefficient is

equal to the Pearson’s Correlation Coefficient estimated for two binary variables. As can be

seen from the form, high (low) values of n11 and n00, and low (high) values of n10 and n01

lead to high values of Φ, which means that the two models classify many (few) individuals to

be in the same high- or low-risk group.
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Table 2.7. Assignment of individuals into high- and low-risk groups by two
disease models, M and M ′.

M ′\M High Risk Low Risk Total
High Risk n11 n10 n1·
Low Risk n01 n00 n0·
Total n·1 n·0 n··

2.4.2 Φ-coefficient

For i = 1, 2, ..., 9, let Gi denote a genotype combination formed by a pair of SNPs; and let

P(D|Gi) denote the penetrance (or probability of trait/disease) of the particular combination

Gi. Suppose that M is the true disease model with penetrance levels denoted below.

P(D|Gi) =

P1, M(Gi) = 1,

P0, M(Gi) = 0;

(2.8)

whereas M ′ is a different disease model used to approximate the true model M .

Then, it could be shown that the Φ-coefficient between M and M ′ can be expressed as

Φ(M ′,M) =
(W11)(W00)− (W10)(W01)√(

U

V
W11 +W01

)(
W10 +

V

U
W00

)
(W1·) (W0·)

, (2.9)

where

Wkℓ =
∑

M(Gi)=k
M ′(Gi)=ℓ

P(Gi) for k, ℓ ∈ {0, 1}; (2.10)

U = rP1[1− P(D)] + (1− P1)P(D); (2.11)

V = rP0[1− P(D)] + (1− P0)P(D); (2.12)

r is the case-control ratio of the sample, and P(D) is the prevalence of the trait/disease, i.e.,

P(D) = P1(W11 +W10) + P0(W01 +W00).
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Eq. 2.9 shows that

d(M ′,M) = 1− Φ(M ′,M) (2.13)

can be used as a distance metric for two disease models.

Proof. The derivation of Eq. (2.9) are divided into a few steps as shown below.

Step 1

For a pair of SNPs assumed to be truly associated with the disease, suppose that M is the

true, while M ′ is another (e.g., prototype), disease model.

Under the true model M , a randomly selected individual can be stratified into 4 different

groups with probabilities given by the 2× 2 table below.

M(Gi) = 1 M(Gi) = 0 All

D P1W1· P0W0· P(D)

Dc (1− P1)W1· (1− P0)W0· 1− P(D)

All W1· W0· 1

Notice that W1· = W11 +W10, W0· = W01 +W00, and

P(D) =
∑
i

P(D|Gi)P(Gi)

=
∑

M(Gi)=1

P1 × P(Gi) +
∑

M(Gi)=0

P0 × P(Gi)

= P1W1· + P0W0·.

However, under a different disease model, M ′, individuals would be stratified differently—in

particular, according to the following table.
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M ′(Gi) = 1 M ′(Gi) = 0 All

D P1W11 + P0W01 P1W10 + P0W00 P(D)

Dc (1− P1)W11 + (1− P0)W01 (1− P1)W10 + (1− P0)W00 1− P(D)

All W·1 W·0 1

This is because

P(D and M ′ = 1)

= P(D|M ′ = 1)× P(M ′ = 1)

=

P(D|M ′ = 1,M = 1)︸ ︷︷ ︸
P1

P(M = 1) + P(D|M ′ = 1,M = 0)︸ ︷︷ ︸
P0

P(M = 0)

× P(M ′ = 1)

= P1 × P(M = 1 and M ′ = 1) + P0 × P(M = 0 and M ′ = 1)

= P1W11 + P0W01,

where, for notational convenience, the disease models have been simply written as M ′ = 1 or

M = 1 rather than M ′(Gi) = 1 or M(Gi) = 1. The other three cells in the table above can

be derived in a similar fashion.

Step 2

For a case-control study, the row margins are fixed. Thus for every r case-units and 1

control-unit, respectively, the probabilities in each corresponding row of the previous tables

are rescaled, as shown below.

M(Gi) = 1 M(Gi) = 0 All

Cases
r(P1W11 + P1W10)

P(D)

r(P0W01 + P0W00)

P(D)
r

Controls
(1− P1)W11 + (1− P1)W10

1− P(D)

(1− P0)W01 + (1− P0)W00

1− P(D)
1
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M ′(Gi) = 1 M ′(Gi) = 0 All

Cases
r(P1W11 + P0W01)

P(D)

r(P1W10 + P0W00)

P(D)
r

Controls
(1− P1)W11 + (1− P0)W01

1− P(D)

(1− P1)W10 + (1− P0)W00

1− P(D)
1

Step 3

The tables in Step 2 can now be rearranged according to how the two disease models, M and

M ′, have stratified the r + 1 case-control units, by summing over W11, W10, W01, and W00,

respectively. This gives

M(Gi) = 1 M(Gi) = 0

M ′(Gi) = 1
rP1W11

P(D)
+

(1− P1)W11

1− P(D)

rP0W01

P(D)
+

(1− P0)W01

1− P(D)

M ′(Gi) = 0
rP1W10

P(D)
+

(1− P1)W10

1− P(D)

rP0W00

P(D)
+

(1− P0)W00

1− P(D)

Note that each cell contains two terms corresponding to the cases and controls respectively,

e.g., there are expected to be rP1W11

P(D)
units of cases and (1−P1)W11

1−P(D)
units of controls for which

both M and M ′ would predict as high risk.

The above table can be algebraically simplified to

M(Gi) = 1 M(Gi) = 0

M ′(Gi) = 1
UW11

P(D)[1− P(D)]

VW01

P(D)[1− P(D)]

M ′(Gi) = 0
UW10

P(D)[1− P(D)]

VW00

P(D)[1− P(D)]

where

U = rP1 + P(D)− (r + 1)P1P(D) = rP1[1− P(D)] + (1− P1)P(D),

and

V = rP0 + P(D)− (r + 1)P0P(D) = rP0[1− P(D)] + (1− P0)P(D).

Calculating the Φ-coefficient of the final 2× 2 contingency table above gives Equation 2.9,
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i.e.,

Φ =

UW11

p(D)(1−p(D))
VW00

p(D)(1−p(D))
− UW10

p(D)(1−p(D))
VW01

p(D)(1−p(D))√
U(W11+W10)
p(D)(1−p(D))

V (W00+W01)
p(D)(1−p(D))

UW11+VW01

p(D)(1−p(D))
UW10+VW00

p(D)(1−p(D))

=
UVW11W00 − UVW10W01√

UVW1·W0·(UW11 + VW01)(UW10 + VW00)

=
W11W00 −W10W01√

(U
V
W11 +W01)(W10 +

V
U
W11)W1·W0·

2.5 Parameters

Some details are given below about how values of various parameters can be obtained in

order to compute the expression on the right-hand side of Eq. (2.9).

Wkℓ: Assuming Hardy-Weinberg equilibrium (Box 1.1), the MAFs of the two SNPs can be

estimated from the control sample as commonly done in GWAS, and used to determine P(Gi)

for each genotype combination Gi and hence Wkℓ as well for k, ℓ ∈ {0, 1}.

r: For any given data set, the case-control ratio r is known, e.g., r = 1 for a balanced

case-control data set.

P(D): The prevalence, P(D), of a particular trait/disease can often be obtained from

external sources, e.g., published studies and/or expert opinions. (More on this below in

Sections 2.6 and 2.7.5.)

P1, P0: To determine the value of these parameters, a convenient assumption is made that

the underlying pair of SNPs is the actual pair associated with the outcome. Then, the
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prevalence is simply

P(D) =
9∑

i=1

P(D|Gi)P(Gi) (2.14)

and the heritability (the amount of genetic contribution to overall phenotype variation [64])

is given by

h2 =
1

[P(D)][1− P(D)]

9∑
i=1

[P(D|Gi)− P(D)]2P(Gi). (2.15)

Since it has been assumed in Eq. (2.8) that M only has two unique penetrance levels, i.e., each

P(D|Gi) is either P1 and P0; they can be uniquely determined from the two equations, (2.14)

and (2.15), provided that information about the heritability parameter, h2, is available . This

can often be obtained from external sources as well, the same as the prevalence parameter

(More on this below in Sections 2.6 and 2.7.5.). The functional forms are given in Eqs. (2.16).



P0 = p(D)− h
√

p(D)(1− p(D))

√√√√√√√
∑

M(Gi)=1

P(Gi)∑
M(Gi)=0

P(Gi)

P1 = p(D) + h
√

p(D)(1− p(D))

√√√√√√√
∑

M(Gi)=0

P(Gi)∑
M(Gi)=1

P(Gi)

(2.16)

2.6 Clustering

2.6.1 Preparation

There are altogether 29− 2 = 510 non-trivial TTTC disease models (the trivial ones are those

such that M(Gi) = 1 or M(Gi) = 0 for all Gi). For clustering purposes, there is no need to

consider disease models that are symmetric with respect to (i) the exchange of locus, i.e.,
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swapping the two SNPs, or (ii) the exchange of disease status, i.e., flipping the binary values

of each M(Gi) from a zero to a one, and vice versa.

There are 23 × 23 = 64 disease models that are invariant under the exchange of locus,

an example of which is given in (a) of Table 2.8. This can be seen by considering that

there are 23 possible combinations of high- and low-risk genotypes along the diagonal cells

(e.g., genotypes of AABB, AaBb, aabb ), and 23 possible ones that are symmetric about the

diagonal; therefore, there are 23 × 23 = 64 ones in total. For the rest 512− 64 = 448 models,

half of them are the same with respect to the exchange of locus, examples of which are models

(b) and (c) in Table 2.8. This means that there are 448/2 = 224 disease models that do

not need to be considered for clustering purposes. Excluding these ones, 510− 224 = 286

models remain. Among them, half are symmetric under the exchange of disease status. After

excluding those, there are 143 disease models to be considered for clustering. The set of

models that remain, which are denoted asM, is listed in Appendix A.

Table 2.8. Examples of TTTC disease models that are symmetric about the
diagonal and invariant under the exchange of locus.

(a) (b) (c)
AA Aa aa AA Aa aa AA Aa aa

BB 0 0 0 BB 0 1 0 BB 0 0 1
Bb 0 0 1 Bb 0 0 1 Bb 1 0 0
bb 0 1 0 bb 1 0 0 bb 0 1 0

It is worth emphasizing that the reduction of disease models to the setM, due to the

symmetry considerations mentioned above, is only applicable to the clustering and prototype

selection stage. When screening each candidate SNP-pair, prototype disease models that are

asymmetric with respect to the exchange of locus, such as M∗
1 in Fig. 2.4, are always tested

both for {A/a,B/b} and for {B/b,A/a}.

Prototype disease models that are asymmetric with respect to the affection status may

or may not need to be tested in both ways, depending on the screening procedure. For

instance, for marginal screening (Section 2.1), it is not necessary to test a SNP-pair twice

by the prototype disease model itself and its symmetric counterparty because the effect size

is the same under the two models. However, for the sequential screening procedure, it is
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necessary because the direction of effect needs to be considered for each SNP-pair. When

testing the SNP-pairs, the reduction has been accounted for to ensure that all models are

properly represented in that stage.

2.6.2 Algorithm

In principle, any distance-based clustering algorithm could be used. For this project, the

“global K-means” algorithm [65] is adopted. It is an incremental deterministic algorithm that

employs k-means as a local search procedure, and is proposed to deal with the initialization

problem with the original k-means algorithm. It is directly defined on the distances, so it

could be conveniently applied for use here.

Notice that the disease model distances are asymmetric, i.e., in the derivation of the

distances, one has been assumed to be the true model and the other one to be the substitute

model. Therefore, whenever a distance needs to be assessed, the directional distance of a

disease model to the potential prototype one is calculated. In this way, the prototype disease

models being selected would be the ones to which all the other models within the same

clusters are closest.

The global k-means algorithm starts with one cluster, finds the optimal cluster center, and

then runs the k-means algorithm to find the second optimal cluster center while keeping the

first one fixed. The detailed steps of the algorithm are given in Table 2.9.

2.6.3 Results

Multidimensional scaling (MDS) is used to transform the distances back to data points with

coordinates for an illustration of the disease model clusters. Given pairwise distances, the

MDS technique could produce variables whose pairwise distances are as close as the original

distance matrix.

While the directional distance metric is used for prototype identification (see Table 2.9

below), a symmetrized distance metric, ds(Mi,Mj) ≡ [d(Mi,Mj) + d(Mj,Mi)]/2, is used

43



Table 2.9. The global K-means algorithm for identifying prototype disease
models.

1. LetM be the set of all disease models andM∗, the prototype set (initially empty).

2. Evaluate each Mi ∈M\M∗ as a potential new prototype, as follows:

a. For each Mk ∈ M\{M∗ ∪ Mi}, calculate the distances d(Mi,Mk), and
d(M∗

j ,Mk) for all M
∗
j ∈M∗ ifM∗ is not empty.

b. Assign Mk either to an existing cluster—e.g., C∗
j , with center M∗

j — or to
a potentially new cluster—say Ci, with center Mi—depending on which of
d(Mi,Mk) and d(M∗

j ,Mk) is the shortest.

c. After all Mk ∈M\{M∗ ∪Mi} are assigned, calculate the total within-cluster
distances,

D(Mi) ≡
∑

Mk∈Ci

d(Mi,Mk) +
∑

M∗
j ∈M∗

∑
Mk∈C∗

j

d(M∗
j ,Mk),

as a result of using Mi as an additional cluster center.

3. Identify a new prototype model as the one that minimizes the total within-cluster
distances, i.e.,

M∗ = argmin
Mi∈M\M∗

D(Mi),

and insert it into the setM∗ ←M∗ ∪M∗.

4. Repeat steps 2-3 until a certain number of prototypes are identified.

for performing MDS so that the resulting 2-dimensional coordinate-map (Fig. 2.3) is more

meaningful.

Fig. 2.3 shows the 2-dimensional coordinates of all models ∈ M as estimated by the

MDS from their pairwise distances, assuming that the MAFs of both SNPs are equal to

0.1, 0.2, 0.3, and 0.4, respectively, while fixing the prevalence and heritability parameters at

P(D) = h2 = 0.02. It is clear from Fig. 2.3 that these disease models form several clusters.

Note that the multivariate technique MDS merely finds the best 2D map that preserves

the pairwise distances as much as possible, but the resulting 2D map still does not fully
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capture the pairwise distances. In fact, for the presented ones, they usually account for only

about 50%− 70% of the total variance in the pairwise distances. Therefore, models that are

actually closer to each other may appear farther apart in this 2D map, and vice versa, i.e.,

there is definitely some loss of information here in the figure.
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Fig 2.3. A two-dimensional map of disease models in M. The coordinates are
estimated by applying the multi-dimensional scaling (MDS) technique to the symmetrized
pairwise distances, ds(Mi,Mj) ≡ [d(Mi,Mj) + d(Mj,Mi)]/2, for all i ̸= j. Models clustered
into the same group are depicted by the same symbol (e.g., ‘+’, ‘◦’, ‘×’). These
two-dimensional coordinates explain about 50-70% of the variation in ds(·, ·), so there is
some loss of information—in particular, some disease models may be closer to (or farther
apart from) each other than how they appear in this map.
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From Eq. (2.9) it can be expected that the distance metric will be affected by the MAFs of

the underlying SNPs, but Fig. 2.3 shows that the resulting clusters do not change significantly.

Therefore, it is not necessary to repeat the prototype selection step for every individual

SNP-pair. Instead, the MAF-scale are simply discretized into 6 bins, {0.05, 0.1, 0.2, 0.3, 0.4,

0.45}, and 36 different sets of prototypes are created for all 6× 6 pairwise combinations. For

example, when screening a SNP-pair (i, j) with (MAFi,MAFj) = (0.068, 0.182), the set of

prototypes for (MAFi,MAFj) = (0.05, 0.2) could be used, and so on.

Based on Fig. 2.3, 7 prototypes are selected for each MAF combination. As an illustration,

the prototypes for SNP-pairs with (MAFi,MAFj) = (0.2, 0.2) are displayed in Fig. 2.4 with

manual annotations to reveal their relationships with one another. This figure may be

interpreted in the follwoing way. For a pair of SNPs that have MAFs around 0.2, these are the

primary epistatic effects to consider, and their structural relationships; any other will likely

be very similar to one of these—in terms of how they would classify individuals into high-

versus low-risk groups. This is also a unique piece of insight from the overall methodology

that is not otherwise available from MDR or RS.

Similar plots produced with different values of P(D) and h2 have also been examined.

While these parameters also affected the distance metric, they did not produce any substantial

changes to the clustering. Intuitively, this is because there has to be a fairly drastic warping

of the relative distances between objects in order to alter their grouping. This point will be

discussed more later in Section 2.7.5. Hence, for this project P(D) = h2 = 0.02 are simply

used.
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Fig 2.4. The set of prototype disease models selected by the global K-means
algorithm (K = 7) for SNP-pairs (i, j) with (MAFi,MAFj) ≈ (0.2, 0.2). The
structural relationships between the seven prototypes are manually annotated; the clustering
algorithm itself is not capable of making this type of discoveries.

2.7 Simulation

To motivate the proposed method, a few simulated examples in Section 2.2 have already been

presented, where the concentration is on evidence that the proposed approach appears to

overcome various weaknesses of existing approaches. In this section, the proposed approach is

assessed more generally with a number of simulated examples that are commonly examined

in the literature.

Note the simulation set-ups, including performance measures and disease model examples,

apply commonly throughout this thesis unless otherwise stated.

2.7.1 Set-up and Performance Measure

In each simulation, 100 SNPs are generated, but only the first two determined the simulated

outcome according to a particular disease model (more details below in Section 2.7.2).
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For each pair of SNPs, the PTY determines a disease model for it by testing out its

corresponding “prototype” disease model set and selects the best-fitting one. More specifically,

the MAFs of the two SNPs are estimated based on the control sample, and used to map

to the MAF bins described in the previous section to obtain the pair’s prototypes. After

the best-fitting disease model is determined, it is refitted to the SNP-pair by calculating the

Pearson’s χ2-statistic and a p-value against the χ2
(1)-distribution for further evaluation (Note

that the steps after determining the best-fitting disease model for a SNP-pair is the same for

PTY as that for MDR and RS.).

To evaluate the performance of a method, a metric known as the F-measure is used, which

is defined as

F-measure ≡ 2× (precision)× (recall)

(precision) + (recall)
, (2.17)

where

precision =


1

#(pairs detected)
, if the true pair was detected,

0, otherwise;

(2.18)

and

recall =

1, if the true pair was detected,

0, otherwise.

(2.19)

Each simulation is repeated for 400 times, and the average F-measure and its standard

error are recorded. To avoid excessive computation, the marginal screening procedure for all

methods are used; see Section 2.1.

Note that the size of the simulation data set (100 SNPs) is quite different from that in the

real data application (around 400,000 SNPs) in terms of the number of SNPs to screen. This

is mainly due to computational consideration. It needs to be emphasized here that, while most

GWA studies have focused on screening individual SNPs, this study is focusing on pairwise

screening rather than individual screening, so 400,000 SNPs would mean “400,000-choose-2

=79,999,800,000 pairs in the real data application. For simulation studies, each simulation is

repeated 400 times, so the computational cost is 400 times the “usual amount”. That’s why
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a relatively small settings have been used.

Remark

The following are some thoughts that helped the decision making on the choice of the

F-measure for evalution.

The F-measure is a widely used criterion in the field of information retrieval, and it is a

single numeric metric that balances the trade-off between true positives and false positives.

It is adopted over other metrics such as the “balanced accuracy” because the underlying

problem is more of an “information retrieval” problem than a “classification” one. To see

this, notice there are far more true negatives than true positives, and that detecting the

positives (the relevant SNP-pair) is a much more important objective than correctly calling

out the negatives.

Take the problem of conducting a Google search as an example. For each query, the

majority of the returned results are irrelevant. From a user’s perspective, how many truly

irrelevant web pages have been correctly left out of the search results are not important, that

is, the user does not care about the true negatives. Therefore, the most important measure

should concentrate on the set of detected web pages retrieved by the search engine (true

positive). Moreover, because the set of truly irrelevant pages is usually quite large, the true

negative rate will also be difficult to distinguish meaningfully for most search engines, e.g.,

any “reasonable” search engine will have a true negative rate of >99%. Therefore, measures

like the “balanced accuracy” actually place an undue amount of emphasis on this rather

inconsequential side of the performance. This is also why the information retrieval community

tends to largely favour metrics such as the F-measure to those more commonly used by the

classification community such as “balanced accuracy”.

The situation of detecting relevant SNP-pairs is very much like performing a Google search

in that (i) most pairs are not signals; (ii) it is not very important to get the true negatives

right; (iii) it is much more important to care about how many of the detected pairs are true

positives or false positives.
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2.7.2 Similation Examples

For the prototype disease model approach, the primary focus is to evaluate the ability of

different methods to detect different epistatic effects as represented by different disease

models.

First, six disease models with main effects (Table 2.10) are included. They were among

the most commonly used examples in various studies [24, 66–70]. Here in Table 2.10, these

models are parameterized in terms of odds, P(D|Gi)/[1− P(D|Gi)], rather than penetrance,

P(D|Gi). The parameters α and θ were determined by simultaneously solving Eq. (2.14) and

Eq. (2.15), given the prevalence P(D) and heritability h2 of the disease, as well as the MAF

of each SNP. The prevalence value is simply fixed as P(D) = 0.02, the heritability values are

as shown in Table 2.10. Each of these simulations with MAF=0.1 and 0.4 are repeated for all

SNPs. Assuming Hardy-Weinberg equilibrium, the MAF determined P(Gi) for each genotype

combination Gi, leaving α and θ to be the only unknowns in Eq. (2.14) and Eq. (2.15) so

that they could be uniquely determined.
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Table 2.10. Simulated examples for Section 2.7. Disease models with main effects.
The parameters α and θ are uniquely determined given prevalence P(D), heritability h2, and
MAF. Prevalence is fixed, i.e., P(D) = 0.02, and each simulation is repeated with MAF=0.1
and 0.4 for all SNPs.

(a) Threhold (T) (b) Dominant-Dominant (DD)

h2 = 0.02 h2 = 0.02

BB Bb bb BB Bb bb

AA α α α AA α α α

Aa α α α(1 + θ) Aa α α(1 + θ) α(1 + θ)

aa α α(1 + θ) α(1 + θ) aa α α(1 + θ) α(1 + θ)

(c) Modifying Effect (MOD) (d) Exclusive Or (XOR)

h2 = 0.02 h2 = 0.02

BB Bb bb BB Bb bb

AA α α α AA α α α(1 + θ)

Aa α α α(1 + θ) Aa α α α(1 + θ)

aa α(1 + θ) α(1 + θ) α(1 + θ) aa α(1 + θ) α(1 + θ) α

(e) Multiplicative (ME) (f) Threshold Multiplicative (MET)

h2 = 0.015 h2 = 0.015

BB Bb bb BB Bb bb

AA α α(1 + θ) α(1 + θ)2 AA α α α

Aa α(1 + θ) α(1 + θ)2 α(1 + θ)3 Aa α α(1 + θ) α(1 + θ)2

aa α(1 + θ)2 α(1 + θ)3 α(1 + θ)4 aa α α(1 + θ)2 α(1 + θ)4

Next, four disease models without main effects (Table 2.11) are included, taken from an

earlier study conducted by Ritchie et al. [52], in which these disease models were created

to have purely epistatic effects in the sense that no marginal effect existed for either SNP

involved.

The disease models, T, DD, MOD and XOR, all have two penetrance levels (Table 2.10),

and so do the prototype disease models (see Fig. 2.4). However, the simulations were carefully
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designed to ensure that, while some of these models (e.g., XOR) were relatively close to

a prototype, others (e.g., DD) were relatively far from all prototypes, as measured by the

metric Φ.

The disease models, ME, MET, and DMN 1-4 all have more than two penetrance levels

(Tables 2.10 and 2.11). They have been chosen so that a wider variety of epistatic effects

could be studied.

Table 2.11. Simulated examples for Section 2.7. Disease models without main effects,
taken from [52], where they were specifically constructed in such a way that there is no
individual association between either SNP and the disease.

(a) DMN 1 (b) DMN 2
MAF=0.25, h2 = 0.016 MAF=0.25, h2 = 0.04

BB Bb bb BB Bb bb
AA 0.08 0.07 0.05 AA 0 0.1 0.09
Aa 0.1 0 0.1 Aa 0.04 0.01 0.08
aa 0.03 0.1 0.04 aa 0.07 0.09 0.03

(c) DMN 3 (d) DMN 4
MAF=0.1, h2 = 0.002 MAF=0.1, h2 = 0.015

BB Bb bb BB Bb bb
AA 0.07 0.05 0.02 AA 0.09 0.001 0.02
Aa 0.05 0.09 0.01 Aa 0.08 0.07 0.005
aa 0.02 0.01 0.03 aa 0.003 0.007 0.02

Remark

When selecting disease model examples for the simulation study, both two- and multiple-level

ones are included to ensure that a wide variety of epistasis mechanisms have been covered.

Note that all of these methods in this chapter, i.e., MDR, RS and PTY, merely rely on

the TTTC-type models to capture/describe different epistatic effects. However, it does not

mean that they can only be applied to analyze data generated by this type. In other words,

the usefulness of them are not limited, which is important considering that in real world,

any epistasis mechanism could be possible. In the original MDR paper [6], it was shown

that approximating more complicated disease models by using the TTTC-type models could

actually improve detection because of reduced parameterization.
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Moreover, also note that the 0/1 penetrance levels among the 9 cells are merely an

indication of the type of SNP-SNP interaction at work, i.e., relatively high and low risk of

disease. It does not mean that all of those individuals having the “1” in the genotype will get

the disease, or those having the “0” genotype will not get the disease. Therefore, in almost

every simulated example throughout, the penetrance level is never complete-penetrance.

2.7.3 Significance Thresholds

To assess the methods, two different thresholds are applied. The nominal association measures

produced by different methods for each pair of SNPs (see Section 2.1) are thresholded by

their corresponding (nominal) p-values,

p̂i,j ≡ P(χ2
(1) > χ̂2

i,j), (2.20)

and a pair was considered “detected” if p̂i,j < α, where α was a significance threshold.

For convenience, simple Bonferroni corrections are applied to determine the threshold α. As

there are a total of
(
100
2

)
= 4, 950 pairs of SNPs, it is natural to consider a threshold of αeasy

in Eq. (2.21) first.

αeasy = 0.05÷ 4, 950 ≈ 10−5. (2.21)

To account for the fact that these nominal association measures are inflated (see Sec-

tion 2.2.3), a more stringent threshold is also considered to be applied. Notice that for a

pair of SNPs, each method has tested a different number of correlated disease models to

determine the final one, therefore, there is no straightforward way to pick one that applies

fairly for all methods. As a result, a convenient choice of αhard defined in Eq. (2.22) is simply

chosen based on the fact that RS would always consider 8 different disease models.

αhard = 0.05÷ 4, 950÷ 8 ≈ 1.26× 10−6, (2.22)

Correcting significance thresholds for simultaneous tests of correlated hypotheses is an
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intricate inferential problem for which there is no good solution yet. It is not clear whether

αhard is really the “correct” threshold for RS but, as a rough guideline, one may think that this

choice would favour RS slightly. The empirical results below do support this interpretation

to some extent.

When assessing the p-value adjustment method in Chapter 3 and results from adjusted

p-values in Chapter 4, though, the more “stringent” criteria is not applied because the

purpose there is to find a more “appropriate” evaluation criteria to rank SNP-pairs, and so

only αeasy is used.

2.7.4 Results

The results for all representative models are given in Table 2.12. A relatively large sample

size of n = 600 is used when the MAF is relatively low (e.g., 0.1), and a relatively small

sample size of n = 300 is used when the MAF is high (e.g., 0.25, 0.4). This is because, when

the MAF is relatively high (low), the underlying signals become stronger (weaker) and easier

(harder) to detect. Hence, all the methods would perform quite well (badly), which makes it

difficult to differentiate the performance of different methods. For the simulated cases with

100 SNPs, it is found that all methods essentially become indistinguishable when the sample

size reached as low as n = 100 or as high as n = 1000.

As explained previously, the threshold, αeasy, only includes a simple Bonferroni correction

and does not account for the fact that all of the methods, i.e., MDR, RS or PTY, have

usually tested a few disease models already before testing the significance of the SNP-pair

against the outcome. Strictly speaking, therefore, the Bonferroni correction alone is not

enough, and often leads to inflated false positive rates. Among the three methods, PTY is

the least prone to false positives, which explains why its performance is the best under αeasy.

Generally speaking, the results confirm some practical value to consider a less greedy and

less data-adaptive procedure such as the proposed PTY for epistasis detection.
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Table 2.12. Results from simulation study (Section 2.7). Average F-measures (and their standard errors) over 400
replications. A star (*) in front of the number indicates the best performer for that simulation.

αeasy = 1.00× 10−5 αhard = 1.26× 10−6

n MAF Model MDR RS PTY MDR RS PTY

600 0.1 T 0.012 (0.005) 0.080 (0.013) *0.083 (0.015) 0.000 (0.000) *0.046 (0.012) 0.030 (0.010)
MOD 0.062 (0.009) 0.067 (0.007) *0.075 (0.010) 0.063 (0.011) *0.109 (0.013) 0.090 (0.013)
DD 0.183 (0.016) 0.172 (0.015) *0.278 (0.019) 0.341 (0.023) 0.372 (0.021) *0.449 (0.024)
XOR 0.199 (0.014) 0.198 (0.013) *0.328 (0.020) 0.283 (0.022) 0.449 (0.022) *0.531 (0.024)
ME 0.011 (0.000) 0.011 (0.000) *0.012 (0.000) 0.013 (0.000) 0.013 (0.001) *0.015 (0.001)
MET 0.234 (0.019) 0.245 (0.016) *0.294 (0.021) 0.335 (0.025) *0.414 (0.023) 0.350 (0.024)

300 0.4 T 0.167 (0.011) 0.152 (0.010) *0.223 (0.014) *0.357 (0.017) 0.346 (0.017) 0.317 (0.018)
MOD 0.076 (0.007) 0.064 (0.006) *0.110 (0.010) 0.163 (0.013) 0.154 (0.013) *0.202 (0.015)
DD 0.015 (0.001) 0.014 (0.001) *0.135 (0.009) 0.035 (0.005) 0.032 (0.005) *0.276 (0.014)
XOR 0.195 (0.012) 0.164 (0.011) *0.306 (0.016) 0.441 (0.018) 0.409 (0.018) *0.561 (0.019)
ME 0.022 (0.002) 0.020 (0.002) *0.033 (0.002) 0.043 (0.004) 0.039 (0.003) *0.086 (0.006)
MET 0.073 (0.006) 0.074 (0.007) *0.076 (0.008) 0.132 (0.011) *0.141 (0.011) 0.103 (0.010)

600 0.25 DMN 1 0.729 (0.015) 0.686 (0.016) *0.935 (0.009) 0.951 (0.008) 0.939 (0.009) *0.992 (0.003)
0.25 DMN 2 0.743 (0.015) 0.705 (0.016) *0.938 (0.010) 0.959 (0.007) 0.944 (0.008) *0.972 (0.009)
0.1 DMN 3 0.700 (0.018) 0.675 (0.018) *0.832 (0.019) 0.822 (0.021) *0.852 (0.019) 0.722 (0.026)
0.1 DMN 4 0.752 (0.015) 0.720 (0.015) *0.897 (0.014) 0.912 (0.013) *0.921 (0.012) 0.831 (0.021)
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2.7.5 Discussion

Disease Model

Throughout the simulation study, the performance of each screening method has been

assessed by its ability to detect the underlying SNP-pair, but not by whether the true disease

model is correctly identified. The detection of the relevant SNP-pair is undoubtedly the

more fundamental task. Once the relevant SNP-pairs are identified, further studies can be

conducted to determine the actual underlying mechanism. Such an approach is certainly not

unusual in the context of genome-wide association (GWA) studies. For most GWA studies in

the literature, single SNPs are often tested and reported using disease models—e.g., additive,

dominant, and so on—that are not necessarily the correct ones. Ascertaining the true disease

model is almost never the goal of the initial GWA study; detecting the affected SNPs is.

In fact, this is also why the proposed PTY method works, because one need not always use

exactly the true disease model in order to detect a pair of affected SNPs. While using a “very

wrong” disease model can negatively affect the chances of detecting an affected SNP-pair, one

has a good chance of making the detection as long as the disease models used for screening is

“close enough” to the true one. Due to the way the prototype models are selected—i.e., as

representative models from each cluster, there is a very good chance that at least one of the

models is “close enough” to the true one.

High-order Epistasis

Earlier in the introduction section, it has been stated that screening for higher-order inter-

actions at a genome-wide level is still largely impractical at the present time. Nonetheless,

when it becomes possible for doing so, the idea of using prototype disease models will be even

more attractive. This is because when higher-order interactions are considered, the number

of disease models will grow in combinatorial scale, which leads to an increased tendency for

greedy approaches to produce false positives.
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Computational Time

In terms of computational time difference for the MDR, RS and the PTY methods, they are

comparably on the same scale for the application. As explained in the introduction section,

in order for the comparisons to be fair, all three methods (MDR, RS, and PTY) primarily

differed in how Mi,j is determined; afterward, the same chi-squared test (with the same

multiple-testing corrected threshold) was used to determine whether each given SNP-pair

(i,j) is significant or not. Therefore, the computational time of the three methods only differ

in the step which determines what disease model Mi,j to use for (i,j). As such, MDR takes

the least amount of time; RS always tests 8 (data-driven) disease models, so its run time is

about 8 times the run time of MDR; whereas the run time of PTY is comparable to that of

RS, as it requires tests anywhere between 7-14 (prototype) disease models, depending on the

specific pair.

Parameters for Similarity Metric

The value of the similarity/distance metric depends on MAF, prevalence, and heritability. So

in principle, this should be done “for each analysis”, but this is not what is done in practice

in this thesis.

The main message of Figure 2.3 is to illustrate that, while the numeric value of the

similarity/distance metric itself does change with MAF, the resulting clustering and hence

prototype selection do not change significantly. In the paragraphs below, the discussion

is devoted to explain that, while the numeric value of the similarity/distance metric can

change with prevalence and heritability, the relative distances between disease models are not

drastically warped, and the resulting prototype selection is relatively robust to these changes

(refer to Figure 2.5).

For each phenotype, the prevalence and heritability parameters are presumably fixed.

They can be obtained/estimated from other sources. If not, a vague estimate/guess can be

quite safely used, as these parameters do not affect prototype selection too much.
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As for the MAF, because the clustering results and hence prototype selection do not

change significantly (again, Figure 2.3), it is also not necessary to repeat prototype selection

for every SNP-pair. As explained previously, the MAF values are discretized into 6 bins.

For each of the 6× 6 = 36 combination bins, the cluster analysis is performed once prior to

screening to determine a set of prototypes. At the time of screening, each SNP-pair is first

determined (a trivial task) to fall into one of these 36 bins, and the set of prototype models

associated with that bin are then used to screen it.

Prototype disease models can be selected in many different ways, although using different

sets of prototypes is not expected to make a substantial difference. The specific proposal

outlined in this chapter is based on using a particular metric, Φ(M ′,M), to quantify the

similarity of disease models. This following explores more about the intuitive appeal of this

metric, as promised earlier in Section 2.4.1.

Let r0 = P(D)/[1− P(D)] denote the population-wide case-control ratio. Then, the ratio

U/V appearing in the denominator of Eq. (2.9) is simply

U

V
=

(P1)r + (1− P1)r0
(P0)r + (1− P0)r0

=
r0 + (r − r0)P1

r0 + (r − r0)P0

. (2.23)

This makes it clear that, if r = r0, then U/V = 1. In this case, it is easy to see that the

denominator of the Φ-coefficient can be interpreted as
√

Var(M ′)Var(M). This is because

M can be viewed as a Bernoulli random variable mapping various genotype combinations to

either 0 or 1, with P(M = 1) = W1· and P(M = 0) = W0·, so Var(M) = W1·W0·. Likewise,

Var(M ′) = W·1W·0

= (W11 +W01)(W10 +W00)

= W11W10︸ ︷︷ ︸
M=1

+W01W10︸ ︷︷ ︸
M ̸=M ′

+W11W00︸ ︷︷ ︸
M=M ′

+W01W00︸ ︷︷ ︸
M=0

. (2.24)

Var(M ′) can be decomposed into four terms, as shown above in Eq. (2.24), where each

successive term can be seen to measure the variability in M ′ when M = 1, when M and M ′
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completely disagree, when they completely agree, and when M = 0, respectively.

However, for a case-control sample, it is often the case that r ≫ r0, in which case Eq. (2.23)

implies that U/V ≈ P1/P0 > 1. It can be seen that, in this case, Eq. (2.9) implicitly

shows to calculate Var(M ′), the variance of the potential prototype model M ′ used to

approximate/represent M , differently:

Var(M ′) =
U

V
W11W10 +W01W10 +W11W00 +

V

U
W01W00. (2.25)

In particular, among genotypes considered to be risky by M (the set for which M = 1),

the variability in M ′ should be up-weighted, which reduces their similarity; whereas, among

those considered to be non-risky by M (the set for which M = 0), the variability in M ′

should be down-weighted, which increases their similarity. In other words, when considering

M ′ as a potential prototype for representing M , the metric Φ(M ′,M) “thinks” it is more

important for M ′ to agree with M on their assignments of the risky genotypes than for them

to agree on the non-risky ones. This is intuitively appealing; a concrete numeric example is

given in Appendix B.3.

The approximation that U/V ≈ P1/P0 also allows one to see how the parameters, P(D)

and h2, affect the metric Φ. The solution to Eqs. (2.14)-(2.15) is:

P1 = P(D) +

√
W0·

W1·
P(D)[1− P(D)]h2, P0 = P(D)−

√
W1·

W0·
P(D)[1− P(D)]h2. (2.26)

Fig. 2.5 contains various views of the odds, P1/P0, as a function of the ratio W1·/W0·,

prevalence P(D), and heritability h2. For any given disease model M with a specific ratio

W1·/W0·, the odds P1/P0 is certainly affected by the choices of P(D) and h2; but these

parameters also affect the odds of other disease models with different W1·/W0·-ratios in a

similar manner. For example, for fixed h2, a large (and potentially wrong) choice of P(D)

lowers the odds; whereas for fixed P(D), a large (and potentially wrong) choice of h2 elevates

it for all disease models. As a result, even though the distances do change between different

disease models and their candidate prototypes, the relative distances are not drastically
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warped. That’s why it is observed that the resulting prototypes are fairly robust to different

choices of P(D) and h2.

Fig 2.5. Different views of the odds, P1/P0, as a function of the ratio W1·/W0·,
prevalence P(D), and heritability h2, where P1, P0 are solutions to
Eqs. (2.14)-(2.15). While the parameters P(D) and h2 do affect the odds P1/P0 and hence
the metric Φ(M ′,M), their impact is similar at different values of W1·/W0· and hence similar
for different M .
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2.8 Real Data Application

This section reports analysis of the phase I bipolar disorder data from the Wellcome Trust

Case Control Consortium (WTCCC) [71]. For the prototype disease model method, because

the proposed method aims at screening SNP-pairs for different epistatic effects (rather than

individual SNPs for main effects), the complementary value that the proposed method offers

is the focus— particularly its ability to find relevant SNPs that other methods may still miss.

The WTCCC project involves genotyping of 500K SNPs on humans of British ancestry.

Bipolar disorder is one of seven diseases being studied by the WTCCC, and the shared control

samples consist of 1, 500 individuals from the 1958 British Birth Cohort and another 1, 500

individuals selected from blood donors recruited as part of their project.

Identical-twin studies have shown that bipolar disorder has a strong genetic component [72].

Current findings from genome-wise association studies (GWAS) demonstrate that bipolar

disorder shares many genetic overlaps with schizophrenia and other major depressive disorders.

It is also characteristic of being polygenic, i.e., many variants that coalesce into functional

pathways contribute to the disorder with small effects. The current understanding of its

neurobiology is that changes in inflammatory cytokines, corticosteroids, neurotrophins,

mitochondrial energy generation, oxidative stress, and neurogenesis are all involved in a

comprehensive way to explain its various clinical features [73].

2.8.1 Pre-processing

The same data quality control procedures are applied as described in [71]—excluding SNPs

with > 5% missing observations (> 1% for SNPs with MAF < 0.05), Hardy-Weinberg exact

p-value < 5.7× 10−7, p-value < 5.7× 10−7 for either a one- or two degree-of-freedom test of

association between the two control groups, and genome-wide heterozygosity < 23% or > 30%,

as well as samples with > 3% missing across all SNPs. In addition, the following SNPs are

also filtered out: MAF < 1%, or p-value < 10−7 in a univariate test of association, or p-value

< 10−5 from the test of Hardy-Weinberg equilibrium. The remaining data contained 1, 868
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cases (individuals with bipolar disorder), 2, 938 controls, and 405, 524 SNPs. Eliminating

“easily detectable” SNPs with “obvious” main effects is not uncommon for studies that focus

on the detection of SNP-SNP interactions—for example, the paper by Wan et al. [7] that

proposed the RS method also did this.

2.8.2 Mapping SNPs to genes

The marginal screening procedure (see Section 2.1) is used to screen and rank all pairs of

SNPs. Here, the 100 unique SNPs appearing in the top 85 pairs (nominal p-value < 10−11)

is focused on. The “Ensembl gene annotation system” [74] as well as SNPnexus [75] are

adopted to map these SNPs to the genes in which they most likely reside. Altogether, 75

genes are identified in this manner.

Fig. 2.6 shows the number of SNPs appearing in the top 85 pairs identified by PTY,

MDR and RS, respectively. While 15 SNPs were identified by all three methods, 42 were

identified by the proposed method alone and they were mapped to 18 unique genes. Five of

them—specifically, UNC13A [76], RGS6 [77], DPP10 [78], FGF14 [79] and TLE4 [79]—had

been associated with bipolar disorder or related suicide attempts. Moreover, the SNP mapped

to FGF14 had a p-value of 0.03 on a univariate test of association, indicating that it would

have had no chance of being detected in a genome-wide screening of individual SNPs. Here,

it has been detected as a result of pairwise screening that focused on epistatic effects.

Fig. 2.7 shows the largest interaction network based on the 85 genes that are identified.

As mentioned above, each of these “detected” SNPs is mapped to a gene in which it resides

(or to a nearby gene) using the “Ensemble gene annotation system” and “SNPnexus”, and is

represented as a node. If a SNP does not map to a recognized gene, it is retained as a node.

In presenting the network, oval is used to refer to the node as a gene and rectangle as the

SNP itself (The size of the node is irrelevant, i.e., it is determined by the amount of text

inside (e.g., length of the name), rather than anything scientific.). A link is placed between

two nodes if the SNPs underlying the nodes are from the same pair detected. So, for example,
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Fig 2.6. Analysis of bipolar disorder data. Venn diagram of unique SNPs appearing in
the top 85 pairs detected by PTY, RS, and MDR, respectively. SNPs detected multiple
times (e.g., occurring in multiple pairs) were counted only once.

the link between AQP1 and FAH means a pair of SNPs (one of which is mapped to AQP1

and another to FAH) is among the top 85 pairs detected.

As is often the case, these networks contain many disjoint components. The one presented

here is the biggest component with the most number of genes/SNPs connected. Therefore,

the hub gene, AQP1, appears to have the most connections with other genes/SNPs. AQP1

encodes a small integral membrane protein that functions as a water channel protein and is

potentially involved in a human neurological disorder called “central pontine myelinolysis” [80].

The specific SNP that is mapped to this gene (rs4299909) has a p-value of 0.0002 based on

a univariate test of association; hence, it would have had no chance of being detected by

marginal screening of individual SNPs, either. Here again, it has been detected as a result

of pairwise screening that focused on epistatic effects. For this reason, the underlying SNP

mapped to AQP1 (rs4299909) is also presented/displayed inside the oval to emphasize this

point.

Among other genes in this network, ST6GALNAC5 is known to catalyze the transfer

of sialic acid to cell surface proteins, and sialic acid has been suggested as an essential
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nutrient for brain development and cognition [81]. RGS6 regulates G protein signalling

and may modulate neuronal activities; in previous studies, SNPs in this gene have been

reported to be associated with schizophrenia [82]. MAN2A1 encodes a glycosyl hydrolase (a

common enzyme) and catalyzes the final hydrolytic step in the N-glycan maturation pathway;

many SNPs in this gene have been reported to be associated with various phenotypes and

diseases, including Alzheimer’s disease [83, 84]. TLE4 inhibits the transcriptional activation

mediated by PAX5, CTNNB1, and TCF family members in Wnt signalling, which has been

suggested to be potentially involved in the pathophysiology of bipolar disorder [85]. FAH

encodes the last enzyme in the tyrosine metabolism pathway; the amino acid, tyrosine, is a

precursor to neurotransmitters and increases plasma neurotransmitter levels—particularly

dopamine and norepinephrine, both important neurotransmitters in the brain [86]. FUT8

encodes an enzyme belonging to the family of fucosyltransferases; a variant in this gene

has been reported to influence glutamate concentrations in brains of patients with multiple

sclerosis [87]—glutamate is a neurotransmitter accounting in total for well over 90% of the

synaptic connections in the human brain.

Out of the 75 genes being identified, the following have also been reported by various

independent studies to be associated with bipolar disorder, or suicides related to bipolar

disorder: ANK3 [88], CNTNAP2 [89], PTPRN2 [90], DSCAM [76], PSD3 [76], RAPGEF4 [91],

CPN1 [92], EPHB2 [79], CAP2 [79], NAV2 [79], and ABCB1 [79].

2.8.3 Gene set enrichment analysis

To further validate the findings, gene set enrichment analysis (GSEA) [93] is also performed

on the aforementioned set of 75 genes. GSEA identifies classes of genes (e.g., those involved

in specific pathways) that are over-represented in a given gene set (e.g., the ones that haven

been discovered by PTY) and may have an association with disease phenotypes by comparing

the candidate set against background databases. Gene Ontology [94] is one such database,

which annotates and classifies genes in terms of their associated biological processes, cellular

components and molecular functions. Other popular databases include KEGG [95] and
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Fig 2.7. Analysis of bipolar disorder data. Largest interaction network formed by
genes mapped from SNPs appearing in the top 85 pairs. Each node is either a gene (oval), or
a SNP (rectangle) itself if it cannot be mapped to any gene. The size of the node is
irrelevant—it is determined by the amount of text inside rather than anything scientific. A
link between two nodes means the SNPs underlying the nodes are from the same pair
detected, so, for example, a link between AQP1 and FAH means that a pair of SNPs—one of
which was mapped to AQP1 and another, to FAH—was among the top 85 pairs detected.
The resulting network contains many disjoint components. The one presented here is the
biggest component.

Pathway Commons [96]. A tool called WebGestalt [97] is used to compare a candidate gene

set to various background databases and determine whether certain gene groups (e.g., those

occurring in known pathways) appear statistically more or less often than expected.

Table 2.13 lists the statistically enriched pathways from KEGG (multiple-testing adjusted

p-value ≤ 0.05). Many of them have been associated with bipolar disorder or related diseases.

For instance, the neurotransmitter dopamine, which is believed to have connections to bipolar

disorder, is part of the tyrosine metabolism pathway (line 3). The N-Glycan biosynthesis

pathway (line 4) has been reported to be significantly enriched by a study of bipolar disorder
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Table 2.13. Analysis of bipolar disorder data. GSEA results from KEGG. O =
number of genes in the discovered set; C = total number of genes in the given pathway.

p-value
Line Name O C Nominal Adjusted
1 metabolic pathways 13 1130 ≪ 0.01 ≪ 0.01
2 thyroid cancer 2 29 < 0.01 0.01
3 tyrosine metabolism 2 41 < 0.01 0.01
4 N-glycan biosynthesis 2 49 < 0.01 0.01
5 arginine and proline metabolism 2 54 < 0.01 0.01
6 melanoma 2 71 0.01 0.02
7 ErbB signalling pathway 2 87 0.01 0.02
8 hepatitis C 2 134 0.02 0.03
9 lysosome 2 121 0.02 0.03
10 axon guidance 2 129 0.02 0.03
11 pathways in cancer 3 326 0.02 0.03
12 cell adhesion molecules 2 133 0.02 0.03
13 endocytosis 2 201 0.05 0.05
14 regulation of actin cytoskeleton 2 213 0.05 0.05

in Canadian and UK populations [98]. Both arginine and proline (line 5) have been related

to schizophrenia [99]. The ErbB signalling pathway (line 7) regulates a diverse range of

physiological responses, such as cell proliferation, migration, differentiation, apoptosis and

motility; and insufficient ErbB signalling has been associated with the development of

neurodegenerative diseases in humans [100]. The regulations of the lysosome pathway (line 9)

and of the actin cytoskeleton pathway (line 14) were found in a transcriptome sequencing

and GWA study to be statistically enriched in genes associated with schizophrenia [101].

For comparison, the corresponding results for MDR and RS are provided in Appendix

B.1, and enriched pathways from Gene Ontology and Pathway Commons (for PTY identified

genes only) are provided in Appendix B.2.

67



2.8.4 Discussion

Results Validation

Validation of screening results is always tricky for real data. For genetic findings, an ultimate

validation can only be done in a real lab, although replication through an independent study

using a different sample often provides a certain level of validation as well.

Since it is challenging to perform either type of replication or cross-validation, this study

follows various other researchers and makes a best effort to produce some “validating evidence”

to corroborate the findings by (i) mapping the findings (raw SNPs) to genes, (ii) conducting

a literature search on these genes to see if any of them are known to have any association

with bipolar disorder, and (iii) conducting an enrichment analysis of these genes to see if any

of the enriched pathways are known to have any such association as well.

These types of analysis are inherent with some limitations. There are many more genetic

databases and tools, such as the GTEx tool(s) and/or chromatin data that may be potentially

utilized to verify the results better. However, this study does not pursue this direction

because the tentative efforts into it imply that it is challenging for statisticians who are not

knowledgeable enough about the mapping from SNPs to genes and additional analysis after

that. As the computational screening results, including those from any GWA studies, are

merely approaches to obtain a suggested list for further investigation, they are perhaps best

replicated by independent studies before being taken seriously enough to warrant any further

comprehensive functional analysis.

Multiple Testing

In terms of the p-value threshold, the Bonferroni type of correction is applied in the simulation

and real data analysis. For a large quantity of variable selection, it might be interesting to

consider FDR control. Compared to FDR control, Bonferroni correction is usually considered

to be more stringent. However, note that in the simulation, the nominal Bonferroni correction

corresponding to αeasy is actually too liberal rather than too stringent.
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The main reason an even more stringent correction corresponding to αhard is adopted is

that multiple disease models are tested for each SNP-pair, though it is not clear what the

“right” threshold should be and the αhard is also not necessarily the right one, refer to Section

2.7.3. Therefore, the FDR is not considered because it is less stringent than αeasy, whereas

the “right” correction should be more stringent (though what it should be theoretically is

not exactly clear).

The real data example (bipolar data) is mostly an illustrative case study. There, a few

top-ranked discoveries are merely investigated to seek some validation, e.g., by conducting

GSEA analysis and looking for existing evidence in the literature that supports the enriched

pathways. To limit the scope of such validation exercise (mostly, a literature search), only the

top 85 pairs and the unique genes therein are looked at. This cutoff is somewhat arbitrary, and

chosen out of convenience rather than anything else. If FDR is adopted, it will significantly

enlarge the scope of this validation exercise. That is, a longer list to validate against the

literature in this manner, which is not the actual goal for this project.
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Chapter 3

First-order Adjustment for Inflated

P-values

This chapter presents a method that corrects for the inflation in the nominal χ2
(1)-statistic

introduced in Section 1.3. A brief introduction about the inflation is first given, with

commonly available solutions. Then the general idea of the proposed correction method is

introduced, followed by more details about the solution steps. Lastly, simulation study is

performed to evaluate the effectiveness of the proposed method. This piece of work has been

written as a book chapter and published by Springer [102].

3.1 Overview

3.1.1 Motivation

In Section 1.3 it has been introduced that the MDR and RS methods use the nominal

χ2
(1)-statistic to calculate p-values for a SNP-pair. The MDR and the RS differ in how they

declare certain genotype combinations to be risky, and hence in their selection of the disease

model (DM). Both methods make their decisions by evaluating the case-control ratios of

different genotype combinations. On a balanced case-control sample, the MDR method
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selects a DM by declaring genotype combinations with case-control ratios exceeding unity

(i.e., > 1) to be risky. The RS method first sorts the case-control ratios in descending order,

and evaluates 8 different DMs by sequentially considering the top x genotype combinations

as being risky, for x = 1, 2, ..., 8; then, it chooses the one that best predicts the outcome (i.e.,

the phenotype).

The p-values are inflated because the statistics are derived from selected disease models

based on observed data, as have been evidenced in Section 2.2.3. This section provides some

convenient solutions to adjust the p-value calculation to mitigate the inflation for the MDR

and RS methods.

3.1.2 Available Solution

Clearly, using the χ2
(1)-distribution is only a valid approximation without the pre-selection

step, and a direct way to circumvent the inflation problem is to take the pre-selection of Mi,j

into account when computing the p-value in Eq. (1.2).

Analytically, it is not easy to derive the exact null distribution of the test statistic for

different screening methods. Some theoretical results are available, but they are not easy to

apply in practice. For example, Boulesteix’s work [103] on “maximally selected chi-square

statistics” can be applied to analytically characterize the null distribution of the test statistic

taking the pre-screening step into account, where the pre-screening bears much similarity

to the RS method. However, the calculation is combinatorial in nature, which makes it not

computationally feasible on a genome-wide scale.

Another solution would be to simulate the null distribution and compute an empirical

p-value. For example, for a given SNP-pair (i, j), replicates of SNP-pairs with the same

minor allele frequencies can be simulated, together with arbitrary case-control labels by

independent coin flips. Assume the simulated pairs are indexed by s = 1, 2, ..., S. Calculate

the test statistic for the SNP-pair (i, j) and those for the simulated null pairs using Eq. (1.1)

in Section 1.3, denote as χ̂2
i,j and χ̂2

s(s = 1, 2, ..., S) respectively. Then the empirical p-value
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can be calculated as shown in Eq. (3.1).

psim(i, j) =
1

S

S∑
s=1

I
(
χ̂2
s > χ̂2

i,j

)
. (3.1)

Note that the empirical p-value calculation above requirs a very large number of simulations

(S) , especially when the value of χ̂2
i,j is large. This is because tail probabilities such as

p-values are generally hard to estimate by simulation. The chance of observing a rare event

can be quite low over a set of simulations, or it may not be observed at all even over a very

large number of simulations. For this reason, it is not feasible to run the simulation for each

pair like this in a genome-wide scale. Therefore, the empirical p-value approach to correct for

inflation is not preferable for real world application.

Other empirical approaches are also available, for example, permutation test and cross-

validation. For each pair (i, j), the case-control labels can be repeatedly permuted. Then

for each permutation s = 1, 2, ..., S, the resulting test statistic χ̂2
s can be computed. After

that, an empirical p-value using Eq. (3.1) can also be calculated. Alternatively, for each pair

(i, j), one can only use part of the data to select Mi,j , and the remaining data to conduct the

independence test in Eqs. (1.1)–(1.2). In this way, the nominal p-value in Eq. (1.2) would no

longer be biased. However, this process has to be repeated multiple times and the resulting

p-values have to be averaged to reduce variation caused by the random division of the data.

Because of which, the computational requirement is also too high to be applied in large scale.

In summary, other than some differences in the details, these alternative approaches are

all quite similar in spirit; they solve the inflation problem by expensive computation, which

makes them impractical for genome-wide studies [51, 61].
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3.2 Proposed Method

3.2.1 Method Description

As explained in Section 3.1.2, empirical p-values are challenging to compute for relatively

large values of χ̂2
i,j. That’s why parametric models are commonly used for these purposes,

and why copula models are so popular in risk management [104]. Given a rare event R > tbig,

where R is a random quantity and tbig is a large quantity, by modeling the distribution of R

to be f(r; θ), the tail probability P(R > tbig) can then be estimated by
∫∞
tbig

f(r, θ̂)dr, where

θ̂ is an estimate of the parameter θ from the simulations R1, R2, ..., RS.

The proposed method to correct for inflation amounts to taking such a parametric approach,

where f is taken to be a chi-squared distribution, and θ to be its degree of freedom. In more

detail, the null distribution of the test statistic in Eq. 1.1 is still assumed to be chi-squared,

except that it has an inflated degree of freedom. Usually, the estimation of θ is much easier

than P(R > tbig), but it is worth emphasizing that such a parametric approach depends

on whether the model f(r; θ) has been “correctly” specified. The proposal in this section

essentially argues that a choice of f is correct to the first order. In the simulation section

(Section 3.3), the results are presented which appear to suppport this argument.

Since the chi-squared distribution has its degree of freedom equal to its mean, the effective

degree of freedom (EDF) can be computed using the same type of simulation as described in

the preceding section (Section 3.1.2), i.e., by

EDF =
1

S

S∑
s=1

χ̂2
s. (3.2)

Then an adjusted p-value is calculated as

padj(i, j) = P
(
χ2
(EDF) > χ̂2

i,j

)
. (3.3)
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Although the form for the null distribution is not known exactly (Section 3.1.2), it is known

for sure that the correct one is no longer χ2
(1) (Section 2.2.3). The proposed adjustment ensures

that the null distribution χ2
(EDF) will at least have the correct first moment by estimating the

EDF through simulation, even though it is still not exactly the right null distribution.
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(a) MDR

(b) RS

Fig 3.1. Screening simulated null pairs using the MDR or RS method. Histograms
of {χ̂2

s : s = 1, 2, ..., S} versus the χ2
(EDF) density functions, where EDF is computed by Eq.

(3.2), for some specific combinations of (MAF1,MAF2, n). While the χ2
(EDF) density

functions are not perfect fits of the underlying histograms, they are reasonable
approximations as first-order corrections.

It is in this sense that the proposed method can be regarded as a correction, or adjustment,
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of the first order. Such a first-order corrections can actually make a substantial difference in

practice. For example, with an EDF = 3.10, a nominal test statistic of 21.32 would result

in an adjusted p-value of P(χ2
(3.10) > 21.32) = 1.018 × 10−4. If the first-order correction is

not applied and the χ2
(1)-distribution is used, the same test statistic would give a p-value

of P(χ2
(1) > 21.32) = 3.887 × 10−6. The statistical evidence is inflated by two orders of

magnitude from 10−4 to 10−6.

Though the method is quite simple, empirically the approximation provided by the first-

order correction is quite adequate (see Fig. 3.1). Notice that the main advantage of using Eq.

(3.3) over Eq. (3.1), is that there is no need to run a separate simulation for each SNP-pair.

More details on this are given in the following sections.

3.2.2 Response Surface Model

In practice, it is noticed that the null distribution for the nominal χ2
(1)-statistic varies for

different SNPs. For this reason, this study aim to derive the EDF as a function of the

MAFs of the SNPs. In addition, the sample size for the null data set would also affect the

distribution of the null statistic, therefore it is also incorperated into the derivation.

In more detail, it has been empirically observed that the aforementioned EDF is a fairly

smooth function of three underlying parameters: MAF1, MAF2—the minor allele frequencies

of the two respective SNPs; and n—the sample size of the study. Hence, it suffices to compute

the EDF for only a few combinations of (MAF1,MAF2, n), and interpolate everywhere else

using a response surface model (RSM) [105] (see Fig. 3.2). This is what makes it a very

practical method for large-scale studies.

Specifically, through practice it is found that use of a quadratic RSM is sufficient. In

addition, the RSM should also be constrained to be symmetric with respect to the two MAF

arguments: MAF1 and MAF2. Hence, the final RSM used for interpolation is chosen to be of
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the following form:

EDF ≈ β0 + β1(MAF1) + β1(MAF2) + β2(
√
n/100)︸ ︷︷ ︸

main effects

+

β3(MAF1)
2 + β3(MAF2)

2 + β4(
√
n/100)2︸ ︷︷ ︸

quadratic terms

+

β5(MAF1)(MAF2) + β6(MAF1)(
√
n/100) + β6(MAF2)(

√
n/100)︸ ︷︷ ︸

interactions

, (3.4)

where a commonly-used square-root transform has also been applied to the sample size n.
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(a) MDR

(b) RS

Fig 3.2. The estimated response surface model (3.4) for the MDR as shown in
Eq. (3.5) and RS screening method as shown in Eq. (3.6). Top: EDF versus
(MAF1,MAF2) for n = 300, 600, 1500 and 3000. Bottom: EDF versus n for
(MAF1,MAF2) = (0.1, 0.1), (0.25, 0.25), (0.1, 0.4) and (0.4, 0.4).
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3.2.3 Parameter Estimation

Linear regression models are fitted on the simulated null data sets to obtain estimates of the

parameters in Eq. 3.4. For the null data, the following settings are applied:

� MAF1 and MAF2 ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.

� Sample Size n ∈ {100, 200, 300, 400, 600, 800, 1000, 1500, 2000, 3000}. Balanced case-

control data sets are simulated, e.g., for the setting of sample size 100, 50 cases and 50

controls are generated.

� Replicates of SNP-pairs: 100,000.

For each combination of MAF1, MAF2 and sample size, the MDR and RS procedures

are run, and the averages of the testing statistics χ̂2
i,j across all replicates of SNP-pairs

are calculated and used as the response inputs in the linear regression model, whereas the

corresponding MAF1, MAF2 and sample size are used as the explanatory variables. As a

result, the linear regression models consist of 10× 10× 10 = 1000 data points. Results for

the regression models are summarized in Table 3.1. RSM model fitting curves and surfaces

for some selected sample settings are presented in Figure 3.2. The figures show that the EDF

generally increases with the increase of MAF or sample size.

3.2.4 Adjusted P-value Calculation

With the estimated parameters, estimates of the EDFs can be obtained for the MDR and RS

methods by plugging in the estimates to Eq. 3.4. For each SNP-pair (i, j) with minor allele

frequencies (MAF1,MAF2), its adjusted p-value, p̂adj(i, j) can be computed as follows.

1. Use either the MDR method or the RS method to identify a DM, Mi,j.

2. Form a 2× 2 cross table, as described in Section 1.3, and compute the usual chi-squared

statistic, χ̂2
i,j, from Eq. (1.1).
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Table 3.1. Parameter estimates for the MDR and R-S methods under the null
distribution. The model equation is given in Eq. (3.4).

Parameter Estimate Standard Deviation P-value R2 Adjusted R2

MDR
β0 0.078 0.039 0.044 0.99 0.99
β1 7.678 0.105 <2e-16
β2 5.099 0.169 <2e-16
β3 -9.870 0.154 <2e-16
β4 -5.563 0.230 <2e-16
β5 5.609 0.194 <2e-16
β6 -0.125 0.143 0.383

RS
β0 -0.047 0.041 0.258 0.99 0.99
β1 8.439 0.112 <2e-16
β2 8.385 0.180 <2e-16
β3 -10.403 0.164 <2e-16
β4 -7.564 0.244 <2e-16
β5 4.499 0.207 <2e-16
β6 -2.208 0.152 <2e-16

3. If the MDR method has been used in Step 1 to identify Mi,j, compute the effective

degree of freedom by (see Eq. 3.4 and Table 3.1)

ÊDF = (0.078) + (7.678)(MAF1) + (7.678)(MAF2) + (5.099)(
√
n/100)

− (9.870)(MAF1)
2 − (9.870)(MAF2)

2 − (5.563)(
√
n/100)2

+ (5.609)(MAF1)(MAF2)

− (0.125)(MAF1)(
√
n/100)− (0.125)(MAF2)(

√
n/100). (3.5)

4. If the RS method has been used in Step 1 to identify Mi,j , compute the effective degree

of freedom by (see Eq. 3.4 and Table 3.1 )
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ÊDF = (−0.047) + (8.439)(MAF1) + (8.439)(MAF2) + (8.385)(
√
n/100)

− (10.403)(MAF1)
2 − (10.403)(MAF2)

2 − (7.564)(
√
n/100)2

+ (4.499)(MAF1)(MAF2)

− (2.208)(MAF1)(
√
n/100)− (2.208)(MAF2)(

√
n/100). (3.6)

5. Compute the adjusted p-value as

ˆpadj(i, j) = P
(
χ2

ÊDF
> χ̂2

i,j

)
, (3.7)

and use it—as opposed to the nominal p-value, porig(i, j), given by Eq. 1.2—to rank

the SNP-pair (against other SNP-pairs).

3.3 Simulation Study

The proposed method is evaluated using the same set of simulations and measures as detailed

in Section 2.7. The result of the first-order correction is shown in Fig. 3.3. It is clear from the

figures that the p-value adjustments are able to signifcantly improve the SNP-pair detection.
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Fig 3.3. Simulation results in terms of F-measure with and without p-value
adjustment for the MDR and RS methods. Each simulation has been repeated for 400
times and the average performance is being reported. Using the adjusted p-value given by
Eq. (3.7) — as opposed to the nominal p-value given by Eq. (1.2) — generally improves the
detection performance of popular screening methods such as the MDR and the RS,
sometimes substantially.

Table 3.2 shows the detailed precision, recall and averaged F-measure for each model. It

can be seen that in all cases, the adjustment of the p-values improves the detection precision
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as expected. Although there is a reduction of recall rate accordingly, the overall detection

effect as indicated by the F-measure improves in the majority of cases.

Further observation shows that the improvement on the DMN models is not as obvious as

the other ones using the first-order correction. Some explanations for this phenomenon are

provided below.

For the two-level disease models (DM), because MDR and RS are designed to capture

this kind of disease models, there is a tendency for the methods to capture false positive

SNP-pairs, which contain one of the true SNP. When there is no DF correction, the chi-square

test statistics are inflated. Therefore it is easy for MDR and RS to claim many significant

SNP-pairs, which are false positives. This leads to a high recall rate and low precision. When

the DF correction is applied, the recall rate decreases and the precision increases, which

together lead to increased F-measure as a result. The increase comes from two ways: a) more

increase in precision than the decrease of recall; b) a more balanced precision and recall rate

to give rise to the F-measure due to its mathematical property.

For the DMN data sets, the true disease models are not two-level anymore. The MDR and

RS methods have reduced power to claim significant SNP-pairs because the disease models

are now only modelled approximately. In other words, there are fewer false positive pairs

(especially the ones that contain one true and one false SNP) being detected compared to

two-level DM models. This results in a relatively lower recall rate and a higher precision rate

compared to the case of two-level DM, and a higher F-measure. When the DF correction is

applied, the recall rate decreases and precision increases, which leads to increased F-measure.

However, the increase is not as large as that for two-level models due to two possible reasons:

first, the decrease of recall is too large; second, the balance of precision and recall do not

change much before and after DF correction, i.e., there is no increase of F-measure due to

the mathematical property of it.
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Table 3.2. Results from simulation study for the P-value adjustment (Section 2.7).
Precision, recall and average F-measures over 400 replications.

Original Adjusted

Method MAF Model Precision Recall F-Measure Precision Recall F-Measure

MDR 0.1 T 0.025 0.030 0.027 0.313 0.013 0.024
MOD 0.033 0.273 0.059 0.152 0.165 0.158
DD 0.130 0.900 0.228 0.447 0.783 0.569
XOR 0.155 0.548 0.242 0.634 0.393 0.485
ME 0.006 1.000 0.011 0.015 0.998 0.029
MET 0.189 0.718 0.299 0.557 0.520 0.538

MDR 0.4 T 0.141 0.975 0.246 0.527 0.885 0.661
MOD 0.039 0.993 0.075 0.239 0.953 0.382
DD 0.009 1.000 0.017 0.054 1.000 0.102
XOR 0.144 0.998 0.252 0.590 0.963 0.732
ME 0.012 0.990 0.024 0.072 0.965 0.135
MET 0.043 0.850 0.081 0.214 0.673 0.325

MDR 0.25 DMN1 0.682 0.858 0.760 0.976 0.675 0.798
0.25 DMN2 0.677 0.880 0.765 0.976 0.705 0.819
0.1 DMN3 0.649 0.930 0.764 0.984 0.803 0.884
0.1 DMN4 0.657 0.980 0.787 0.980 0.908 0.942

RS 0.1 T 0.106 0.170 0.130 0.467 0.018 0.034
MOD 0.030 0.723 0.057 0.201 0.370 0.261
DD 0.109 0.983 0.197 0.556 0.930 0.696
XOR 0.139 0.913 0.241 0.752 0.688 0.719
ME 0.006 1.000 0.011 0.015 1.000 0.030
MET 0.175 0.915 0.294 0.681 0.713 0.696

RS 0.4 T 0.128 0.978 0.226 0.606 0.848 0.706
MOD 0.034 0.993 0.066 0.286 0.943 0.439
DD 0.008 1.000 0.016 0.072 1.000 0.135
XOR 0.119 0.998 0.212 0.648 0.945 0.769
ME 0.011 0.998 0.021 0.087 0.948 0.159
MET 0.042 0.898 0.080 0.293 0.668 0.407

RS 0.25 DMN1 0.670 0.948 0.785 0.996 0.698 0.821
0.25 DMN2 0.650 0.898 0.754 0.983 0.663 0.791
0.1 DMN3 0.607 0.943 0.739 0.992 0.778 0.872
0.1 DMN4 0.625 0.993 0.767 0.989 0.913 0.949
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Chapter 4

General Epistasis Detection

4.1 Introduction

4.1.1 Overview

This chapter aims to develop methods for detecting more general epistasis, which is represented

by disease models of multiple penetrance levels. Theoretically, a two-locus epistasis pattern

may consist of up to nine different penetrances. As mentioned in Section 1.2.1, using the

TTTC-type disease models to capture epistasis of this sort may increase the detection power,

especially when the sample size is inadequate. When data observations permit, it is desirable

to estimate the epistasis model accurately based on the research results on single-locus

effects [33–35]. For instance, if the true model has three different risk levels of getting the

disease, then a proper disease model of three penetrance levels is expected to lead to greater

power than other ones because it can better capture the true effects.

Similar to the use of TTTC-type disease model for epistasis detection, the general problem

in this chapter also requires two steps, i.e., determination of a disease model for a given

SNP-pair and test of association between the SNP-pair and disease outcome. The difference

is that the latter fits a flexible multi-level risk disease model to the SNP-pairs under study.

Roughly speaking, the determination of the disease model is usually less challenging than
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the association test for the general problem. For instance, the problem can be formulated in

a regression model setting where each genotype combination of a SNP-pair is coded as an

indicator variable, i.e.,

log
p(y = 1)

p(y = 0)
= β1X1 + β2X2 + · · ·+ β9X9, (4.1)

where

Xi =

 1, if the genotype is Gi,

0, otherwise.

Under such a framework, a set of coefficient estimates satisfying certain constraints would

correspond to a particular disease model. For example, constraints defined by β1 = β2 = β3

and β4 = · · · = β9 indicates that the genotypes of G1, G2, G3 have the same risk probabilities

of disease, and so as genotypes of G4, · · · , G9. In other words, the coefficient constraints

define a two-level risk disease model. Based on this, it is easy to obtain a disease model

by setting up some proper constraints and finding the solution to the regression problem

defined above. In contrast, the test of association is likely to be more complicated because the

determined disease model usually results from model selections; thereby the distribution of the

testing statistic would depend on the model selection process and may not be straightforward

to be determined.

The first proposed method is inspired by fused lasso [59] and post-model selection test. The

fused lasso does neighbour coefficient fusion to achieve the exact same coefficient estimates

for input variables under a regression model setting. Such a property makes it possible to

obtain coefficient constraints described above, thereby determine a disease model of multiple

risk levels. The fused lasso can be achieved by applying ordinary lasso on a set of transformed

variables that are the differences of the original explanatory variables. Based on this, forward

selection rather than the ordinary lasso is applied on the transformed variables in practice,

which can achieve the same goal of multi-level disease model determination. In addition, the

recent post-model selection test (PMST) is adopted to determine the number of coefficients

to fuse, i.e., for two coefficients being fused, a p-value from PMST can be calculated and
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used to decide whether the difference between them is statistically significant to reject the

fusion. Once a disease model is determined, it is refitted and the Pearson’s χ2−test can be

performed to assess the association between the SNP-pair and the disease outcome. Details

on this method are presented in Section 4.2.

The second method is derived by extending the RS method (Section 1.3.2), i.e., instead of

doing one best split as does RS, it continues to split the genotype combinations till a desirable

multi-level disease model is obtained. The method is named as “Sequential Split Procedure

(SSP)”, where the word of “sequential” is used for the reason that every subsequent split

is built upon the previous splits. In this way, a maximum of eight splits are needed, which

greatly reduces the computational complexity given the large pool of possible disease models

to choose from. Similar to the RS procedure, after that, the risk model is refitted, and

Pearson’s χ2−statistics are calculated for SNP-pair ranking. Details on this method are

presented in Section 4.3.

The first and second methods are found to be equivalent under mild conditions, details

of which are presented in Section 4.4.1. Because the two methods differ in the starting

framework and determine disease models in different ways, it is of interest to compare them

and understand various factors that contribute to the overall detection.

The third method, “Sequential Merge Procedure (SMP)”, is also applied for multi-level

risk disease model determination. It bears a similar idea as the second approach, and the only

difference is that instead of a sequential split, it does a sequential merge of the genotypes

for the purpose. As the whole process is quite similar to the split one, the details of it are

presented in Appendix C.2.

Notice that at each step of the SSP (or SMP) method, the rule to determine how to split

(or merge) is based on the best fitting P-values. As a result, the tesing statistics are bound

to produce inflated p-values if they are evaluated against their nominal degree of freedom.

For this reason, similar P-value adjustments as done for the RS method are applied to obtain

more proper p-values for the assessment. Details on the adjustment are presented in Section

4.5.
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4.1.2 General Simulation Setting

Throughout this chapter, the proposed methods are evaluated using the same simulation

examples as introduced in Section 2.7. They cover a wide variety of disease models that

are well suited for the investigation of multi-level epistasis detection methods. In more

detail, they include four disease models of two-level risk (T, MOD, DD and XOR), one of

five-level risk (ME), one of four-level risk (MET) and four of seven to nine different levels

of risk (DMN1-DMN4). Ideally, the general epistasis detection methods are expected to

produce comparable results as MDR and RS on the two-level risk disease models (T, DD,

MOD and XOR), and better results on the multiple-level risk disease models (ME, MET,

DMN1-DMN4).

A SNP-pair is claimed to be significantly associated with the outcome if the evaluation

p-value is smaller than the given significance threshold. In this chapter, αeasy = 10−5 as given

in Eq. 2.21 is adopted as the significance threshold. Compared to αhard, αeasy takes into

account the number of SNP-pairs being evaluated, but not the number of different disease

models being tested for each pair. Because the proposed methods in this chapter has included

p-value adjustment that corrects for inflation induced by testing of multiple disease models,

there is no need to further control type-I error through the significance threshold. Same

as before, the evaluation is through F-measure defined in Section 2.7, which assesses both

detection power and precision.

4.2 Forward Selection on Transformed Difference Vari-

ables with Post-model Selection Test

This section first introduces the idea of fused lasso and its transformation to ordinary lasso.

Then a brief review on the post-model selection test (PMST) is presented. After that, the

steps to determine a multi-level disease model by forward selection and the post-model

selection test are given. Based on the major idea of this method, i.e., “Forward Selection of
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Difference variables with Post-Model Selection Test”, the acronym “FSD-PST” is used to

refer to the method.

4.2.1 Fused Lasso and Transformation to Ordinary Lasso

The fused lasso was first proposed by Tibshirani et al. [59] in the form of a penalized regression

argmin|y −Xβ|2 + λ

p−1∑
i=1

|βi − βi+1| (4.2)

where the explanatory variables Xi, i = 1, 2, ..., p are expected to be ordered. The con-

straint term
∑p−1

i=1 |βi − βi+1| forces the regression model to achieve equal coefficient es-

timates among neighbour variables, which makes it possible to determine a general dis-

ease model with flexible risk levels. For instance, assume that Xi’s are the indicator

variables representing the ith genotype, which have been ordered in some way. Also as-

sume the model does not include an intercept term. Then a set of coefficient estimates

(β1, β2, · · · , β9) = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3) would indicate that the variables are

divided into three groups, and the ones within the same group have the same penetrances.

In other words, the coefficient estimates would translate to a disease model of three different

risk levels.

The fused lasso problem above can be turned into ordinary lasso [106] by a simple variable

transformation. Let X = (X1, X2, ..., X9)
T be the design matrix, where each Xi is the

indicator variable for the ith “ordered” genotype formed by a SNP-pair. The transformation

is conducted in the following steps:

1. Let

D =


1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · −1


8×9
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denote the fused lasso penalty design matrix on β, i.e.,
∑p−1

i=1 |βi − βi+1| = |Dβ|.

2. Append D by a vector of (1, 1, ..., 1)T , and denote the new matrix as D̃,

D̃ =



1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · −1

1 1 1 · · · 1


9×9

3. The inverse of D̃ is

D̃−1 =
1

9



−8 −7 −6 · · · −1 1

1 −7 −6 · · · −1 1

1 2 −6 · · · −1 1

· · · · · · · · · · · · · · · · · ·

1 2 3 · · · −1 1

1 2 3 · · · 8 1


9×9

4. Let θ = (θ1, θ2, · · · , θ9)T = D̃β, and then β = (β1, β2, · · · , β9)
T = D̃−1θ.

The problem in Eq. 4.2 becomes

arg min|y −XD̃−1θ|2 + λ
8∑

i=1

|θi| (4.3)

Note θ9 does not appear in the penalty term, which indicates the last variable appearing

in the transformed design matrix XD̃−1 is not penalized.

5. Write XD̃−1 = (Xnew1 Xnew2) and θ = (θTnew1, θ9)
T , then

XD̃−1θ = (Xnew1 Xnew2)(θnew1, θ9)
T = Xnew1θnew1 +Xnew2θ9
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and the problem becomes

arg min|(y −Xnew1θnew1)−Xnew2θ9)|2 + λ|θnew1|1 (4.4)

Fix the value of θTnew1. Because θ9 does not appear in the penalty term, the minimization

of the above equation with respect to θ9 is equivalent to minimization of just

arg min|(y −Xnew1θnew1)−Xnew2θ9)|2

From this new minimization problem, it is observable that the solution for θ9 is

θ̂9 = (XT
new2Xnew2)

−1XT
new2(y −Xnew1

ˆθnew1)

6. Plug back in the solution of θ9 and denote P = Xnew2(X
T
new2Xnew2)

−1XT
new2, then the

problem in Eq. 4.2 is reformulated as

arg min|(I − P )y − (I − P )Xnew1θnew1|2 + λ|θnew1|1 (4.5)

Treat (I − P )y and (I − P )Xnew1 as the new outcome and explanatory variables, the

fused lasso is transformed into ordinary lasso.

Based on the transformation, it is easy to see that testing βi − βi+1 = 0 is equivalent to

testing θi = 0, i = 1, 2, ..., 8. For the new ordinary lasso model, the solution path for θnew1’s

is piece-wise linear and easy to be obtained using the “lars” algorithm. Once the solutions

are calculated, a crucial next step is to decide on a proper value of λ which determines the

final model.

While cross-validation is the most popular way to solve the problem, it is computationally

intensive and does not necessarily provide the best solution. The advent of PMST meth-

ods [107] provides a new and promising direction. As the name indicates, a PMST is carried

91



out after a model selection procedure, which calculates corrected p-values that have accounted

for the selection events for statistical decision making. This implies that it can be applied to

nodes on the solution path to calculate corrected p-values to determine λ.

Alternatively, forward selection (FS) other than the ordinary lasso can be applied on

the transformed variables of (I − P )y and (I − P )Xnew1. In fact, the procedures described

above indicate that any variable selection procedure on the transformed variables with its

corresponding PMST could give a multi-level risk disease model. In practice, the forward

selection with its tailored PMST is chosen for the task. The choice is due to its simplicity

and usefulness, as well as a direct connection of it to the “Sequential Split” procedure to be

introduced in Section 4.3.

Notice that the last column of D̃−1 is a constant of 1/9, so Xnew2 = 1
9

∑9
i=1Xi = 1/9,

which is also a constant. Therefore, the problem shown in Eq. 4.4 can be viewed as lasso

regression on Xnew1 with an intercept term always included in the model. Henceforth, the

FS procedure is performed on y and Xnew1 with an intercept in the model.

Notice the transformed variables Xnew1 consist of different contrasts, or in a simpler term,

differences of the original variables, so the method is named Forward Selection on Difference

variables (FSD).

4.2.2 Review on Exact Post-model Selection Test

The exact PMST by Tibshirani et al. [107] is adopted, which is specially designed for model

selection procedures such as forward selection and lasso. It tests the partial regression

coefficient of the variable to enter, at each step of the model selection procedure, in a

projected linear model on the already selected variables. The test accounts for the adaptive

nature of the model selection procedures by conditioning on the selection events such that

the information already used during the selection will not be used again in the hypothesis

testing. In Tibshirani et al. [107], the authors show that p-values from this type of tests are

exact in finite samples under the linear regression model setting. In the paragraphs below, a
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brief review on the major idea of the PMST by Tibshirani et al. [107] is summarized, which

mainly consists of two steps:

1. Perform the model selection and obtain the selection conditions at each selection step.

2. Perform the conditional tests and calculate corrected p-values.

The main idea of the PMST is described based on a typical FS procedure and the following

notations:

� y : (y1, y2, · · · , yn)T ∼ N(0,Σ);

� Γm,n: (Γ
T
1 ,Γ

T
2 , · · · ,ΓT

m)
T , a real-valued matrix of m rows and n columns;

� un,1: (u1, u2, · · · , un), a real-valued vector of length n;

� vn,1: a real-valued vector of length n;

The parameter of interest is the coefficient of the variable to enter at each step and is

described as vTy. The key idea behind the conditional post-selection hypothesis tests is that

the selection events for the forward procedure can be characterized as a set of polyhedral

constraints on y, i.e., Γy ≥ u.

The FS procedure selects variables by repeatedly adding one predictor that most improves

the model fitting to the current active set untill all predictors are in the model or the residual

error becomes zero. After each addition, the coefficients are recomputed by least-square

regression on the active predictors. The parameter of interest is the least-square coefficient

estimate for the variable that has entered the model most recently.

Selection Condition

Suppose there are p variables in total. Without loss of generality, assume that y and Xi’s have

been centered, and that the variables enter the model by the following order: X1, X2, · · · , Xp.
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This indicates that for the first step, the residual sum of squares for fitting X1 is smaller

than that of the rest variables, i.e.,

∥I −X1X
T
1

∥X1∥22
y∥22 ≤ ∥

I −XiX
T
i

∥Xi∥22
y∥22, for i ̸= 1.

The inequality can be reduced to

s1
XT

1 y

∥X1∥2
≥ si

XT
i y

∥Xi∥2
, for i ̸= 1 and si = Sign(XT

i y),

or ΓT
1 y ≥ u1, where ΓT

1 =
s1XT

1

∥X1∥2 −
siX

T
i

∥Xi∥2 and u1 = 0. Based on the simplified form, the

condition can be viewed as measuring the magnitude of the linear predictors XT
i y among the

vectors y that would result in the FS procedure selecting variable X1.

For a general step k, assume the variables Ak−1 = {X1, X2, · · · , Xk−1} are in the model

already and Xk is to be selected next. This means that Xk reduces the current model residual

sum of squares the most among {Xk, Xk+1, · · · , Xp}. Let r denote the model residual after

regressing y onto the variable set XAk−1
, and X̃i the residual after regressing Xi onto XAk−1

,

i ∈ {k, k + 1, · · · , p}. Again, assume r and X̃i have been centered. Then the condition for

the kth step selection is

∥I − X̃kX̃k
T

∥X̃k∥22
r∥22 ≤ ∥

I − X̃iX̃i
T

∥X̃i∥22
r∥22, for i ∈ {k + 1, · · · , p},

which reduces to

sk
XT

k PAk−1
y

∥PAk−1
Xk∥2

≥ si
XT

i PAk−1
y

∥PAk−1
Xi∥2

, for i ∈ {k + 1, · · · , p},

where PAk−1
= I −XAk−1

(XT
Ak−1

XAk−1
)−1XT

Ak−1
. Clearly, the condition can also be written

in the form of ΓT
k y ≥ uk for some ΓT

k and uk.
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Parameter of Interest

At the first step, the parameter of interest to test is (XT
1 X1)

−1XT
1 y. In a general step k, it

is eTk (X
T
Ak
XAk

)−1XT
Ak
y, where ek is the kth standard basis vector. It can be seen that the

parameter of interest can be represented by vTy for some vector v of length n.

With these notations, the PMST p-value to calculate is defined as

PH0(v
Ty|Γy ≥ u) (4.6)

Conditional Test

The following lemmas provide the theoretical basis for testing the statistic of vTy|Γy ≥ u,

which essentially states that the conditions in the model selection procedures constrain the

outcome variable y to be in a polyhedral set.

Lemma 4.2.1 (Polyhedral selection as truncation). For any Σ, v such that vTΣv ̸= 0,

then

Γy ≥ u⇐⇒ V lo(y) ≤ vTy ≤ Vup(y),V0(y) ≤ 0,

where

ρ =
ΓΣv

vTΣv

V lo(y) = max
j:ρj>0

uj − (Γy)j + ρjv
Ty

ρj

Vup(y) = min
j:ρj<0

uj − (Γy)j + ρjv
Ty

ρj

V0(y) = max
j:ρj=0

uj − (Γy)j

Based on this Lemma, the following is true:
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vTy|Γy ≥ u⇐⇒ vTy|V lo(y) ≤ vTy ≤ Vup(y),V0(y) ≤ 0,

In other words, when conditional on a selection process Γy ≥ u, the linear function vTy

would follow a truncated Gaussian distribution. The following lemma provides the theoretical

basis for calculating the p-value in Eq. 4.6.

Lemma 4.2.2 (Pivotal Statistic after Polyhedral Selection). Let Φ(x) denote the

c.d.f. of the standard normal distribution, and F
[a,b]

µ,σ2 the c.d.f. of a N(µ, σ2) random variable

truncated in [a, b], i.e.,

F
[a,b]

µ,σ2(x) =
Φ(x−µ

σ
)− Φ(a−µ

σ
)

Φ( b−µ
σ
)− Φ(a−µ

σ
)
.

Then for vTΣv ̸= 0 and y ∼ N(θ,Σ), the statistic F
[Vlo,Vup]

µ,σ2 (vTy) is a pivotal quantity

conditional on Γy ≥ u:

P(F [Vlo,Vup]

vT θ,vTΣv
(vTy) ≤ α|Γy ≥ u) = α,

where V lo,Vup are as given above.

Remark

The reviewed PMST method above is for linear regression models. In Taylor and Tibshirani

(2018) [108], the PMST is proposed for l1 penalized likelihood models, which is applicable to

logistic regression. The idea is to use the iteratively reweighted least-squares (IRLS) algorithm

to fit the logistic regression model, then the parameter estimates in the logistic model could

be expressed as weighted least square estimates (as opposed to least-square estimates in linear

regression) that would also take the form of vTy for some vector v. Additionally, the authors

show that the selection conditions could also be expressed as y falling into a polyhedral set,

and the PMST p-values for logistic regression can be calculated in a similar fashion to that

for linear regression.
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However, in practice, linear regression models are chosen for this study, despite the fact

that the outcome variable is binary and logistic regression appears to be a more popular

choice. The reason is that the calculation of PMST p-values following the IRLS algorithm

is too computationally intensive to be applied at a large scale. Additionally, the weighted

LS estimates could be quite unstable for SNPs that contain sparse observations in some of

their genotypes, which also causes computational challenge in calculating the PMST p-values.

Further, the estimated parameters of interest and the corresponding PMST p-values suffer

from inaccuracy as a result of the IRLS algorithm. Though the linear regression modelling

framework only provides approximate results, it is much easier to be applied, especially at a

larger scale.

4.2.3 Application to Disease Model Determination and SNP-pair

Ranking

Disease Model Determination

The following notations are borrowed from Section 4.2.1 to demonstrate the “FSD-PST”

method in this section, i.e.,

� Xi, i = 1, 2, · · · , 9: indicator variable for the ith ordered genotype by the case-to-control

ratios

� X = (X1, X2, · · · , X9): design matrix for genotypes of the SNP-pair

� D̃: 9× 9 transformation matrix

Denote X̃ = XD̃−1 = (X̃1, X̃2, · · · , X̃9). As mentioned earlier, a linear regression frame-

work is adopted for practical consideration. Based on the transformed modelling form in Eq.

4.4, the transformed variables {X̃1, X̃2, · · · , X̃8} are entered into a simple linear regression

model by forward stepwise selection, where an intercept is always included.

Specifically, for the first step, the following regression models are fitted:
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y = γ1
0i + γ1

1iX̃i, i = 1, 2, · · · , 8.

Among the eight candidate variables, the one that leads to the smallest model residual

sum of squares is selected. Without loss of generality, assume the selected variable is X̃1.

Then the corrected p-value (p̃1 as shown below) for the first selected variable is calculated

and retained for determining the final disease model.

p̃1 = PH0:γ1
11=0(γ̂

1
11|RSS(y, X̃1) ≤ RSS(y, X̃i, i = 2, · · · , 8)) (4.7)

For a general step k, without loss of generality, assume that {X̃1, X̃2, · · · , X̃k−1} are already

in the model, then the following candidate models are fit:

y = γk
0i + γk

1iX̃1 + γk
2iX̃2 + · · ·+ γk

k−1,iX̃k−1 + γk
k,iX̃i, i = k, k + 1, · · · , 8.

Assume Xk yields the least RSS and is chosen at step k, then the corrected p-value as

shown below is calculated and adopted for disease model determination.

p̃k = PH0:γk
k,k=0(

ˆγk
k,k|RSS(y, (X̃Ak−1

, X̃k)) ≤ RSS(y, (X̃Ak−1
, X̃i), i = k + 1, · · · , 8)) (4.8)

The process is continued till every variable is selected into the model. Denote p̃ =

(p̃1, p̃2, · · · , p̃8) as the sequence of PMST p-values from the forward selection procedure. To

determine the final disease model for a given SNP-pair, the following criteria are used.

1. Minimum p-value, i.e.,

KPMSTP = {K : for which p̃K = Mini=1,2,··· ,8 p̃i}, (4.9)

2. False discovery rate control (FDR) as proposed by G’Sell [109]. This method can

be viewed as an extension of the BH procedure [110] used for FDR control. For the

BH procedure, the rejection set can be arbitrary, whereas for the sequence of PMST
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p-values, the rejection must always be the first K hypotheses for some K because the

PMST p-values are ordered by the way the variables enter the model.

Given a list of p-values pi, i = 1, 2, · · · ,m and a significance level α, the BH procedure

is carried out by first sorting them (pi, i = 1, 2, · · · ,m) and then finding

Kα = max{k : p{k} ≤
αk

m
}

By rejecting the hypotheses corresponding to theKα smallest p-values, the BH procedure

controls FDR at level α.

The idea of FDR control in G’Sell [109] is to transform the PMST p-values into statistics

q1 < q2 < · · · < q8 such that qi’s would behave like a sorted list of p-values that can be

used in the BH procedure.

Under the null hypotheses that p̃k ∼ U [0, 1] i.i.d, let

Ti = −log(1− p̃k),

then Ti’s are distributed as independent exponential random variables. Let

Ri =
i∑

j=1

Tj

m− j + 1
.

The Renyi representation theorem [111] shows that Ri’s have the same distribution as

a sorted list of independent standard exponential random variables.

Let

qi = 1− exp(−Ri).

qi’s are distributed like the uniform order statistics. Hence, calculate
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Kq
α = max{k : q{k} ≤

αk

m
}

and reject the Kq
α smallest p-values, the procedure can control FDR at α.

In G’Sell [109], the author further applied the following approximations

Ti

m− j + 1
≈ Ti

m
for j ≪ m

1− e−x

x
→ 1 for x→ 0, so qi ≈ Ri ≈

i∑
j=1

Tj

m
when m→∞

and proposed to conduct FDR control by calculating

Kα = max{k :
1

k

k∑
i=1

Ti ≤ α}

With these establishments, FDR control on the PMST p-values at a significance level

of α is performed by calculating

KFDR = max{k ∈ {1, 2, · · · , 8} : −1

k

k∑
i=1

log(1− p̃i) ≤ α}, (4.10)

and rejecting all hypotheses corresponding to the PMST p-values before and at K, i.e.,

p̃1, p̃2, · · · , p̃K .

In other words, the final disease model is selected to have K̂ + 1 levels under this

procedure, which is guaranteed to have an FDR controlled at α.

Note that in the above derivation steps, some assumptions have been applied. The first

one is that the sequence of p-values are independent, which the PMST p-values do not

satisfy. The second one is that the total number of null hypotheses is large relative to

the number of non-null ones. This may not apply so well for the SNP-pair genotypes

either, because the total hypotheses are only eight (corresponding to differences of nine
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genotypes for a SNP-pair), so the ratio of null to non-null hypotheses would not exceed

seven when any non-null hyothesis exists.

3. Changes in AIC. This criterion is taken from the PMST paper [107] and recommended

as a possible strategy for model selection on the PMST p-values. It determines the

final disease model in the following steps:

(a) Refit the selected disease model at each step, and calculate AICs from the corre-

sponding regression models.

(b) Select the step at which there have been two consecutive rises in the AIC criterion,

assume it is step K0.

(c) Conduct statistical inference on the selected variables by applying a Bonferroni

correction to the p-values of p̃1, p̃2, · · · , p̃K0 . The final disease model is selected by

the following criteria:

KAIC = max{k ∈ {1, 2, · · · , K0} : p̃k ≤
α

K0

}, (4.11)

The authors [107] mention that such a stopping rule defines a polyhedral constraint

on the outcome variable that has been included in calculating the PMST p-values.

Therefore, the usual statistical inference could be conducted on the PMST p-values

when the model is determined by such an adaptively selected model at step KAIC .

4. Changes in BIC. This criterion is all the same as the aforementioned AIC-style criteria

except that the AIC is replaced by the BIC criterion.

Once the step K is selected by the above criteria, the final model is:

y = γK
0i + γK

11X̃i1 + γK
12X̃2 + · · ·+ γK

1,KX̃K ,

which means that the transformed variables of X̃1, X̃2, · · · , X̃K are selected, i.e., splits

between the original variables of (X1, X2), (X2, X3), · · · , (XK , XK+1) are made sequentially.
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In other words, the final disease model is split as

G1 | G2 | · · · | GK | GK+1 GK+2 · · · G8 G9

i.e., each Gi, i ≤ K is its own group, and Gi, K + 1 < i < 9 are in one group.

Remark

1. Note that the presented example above is based on the assumption that the forward selec-

tion procedure selects the transformed variables in the order of X̃1, X̃2, · · · , X̃K for conve-

nient illustration. More generally, assume the transformed variables of X̃i1 , X̃i2 , · · · , X̃iK

are selected in the final model (not necessarily in the order of X̃i1 , X̃i2 , · · · , X̃iK ), where

1 ≤ i1 < i2 < · · · < iK , then the final disease model is split as

G1 · · · Gi1 | Gi1+1 · · · Gi2 | · · · | GiK−1+1 · · · GiK | GiK+1 · · · G9

2. Although the p-values from PMSTs (e.g., Eqs. 4.7 and 4.8) have accounted for the

model selection process, there is still some inflation about them. This comes from

the fact that the genotypes are always ordered by the case-to-control ratios at the

beginning, which has relied on the outcome data information.

Association Assessment

Once the final disease model of K levels is determined, it is refit to the SNP-pair by counting

the number of cases and controls in each risk group as defined by the disease model. A

cross-table of K × 2 is created, and Pearson’s χ2-test with K − 1 d.f. is performed. The

resulting p-values are used directly to assess the SNP-pairs for their association with the

outcome.
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4.3 Sequential Split Procedure

Inspired by the RS method [7] (section 1.3.2), it is straightforward to continue the splitting

of the genotypes for a SNP-pair to generate disease models of multiple risk levels. Because

the split procedure is sequential in the sense that each subsequent split is conditional on the

previous splits, it is referred to as “sequential split procedure”, or “SSP” for short.

The organization in this section is as follows. First, an overview of the overall splitting

procedure is given. Second, details on the statistics used for making the splitting decision and

the criteria used for determining the final disease model are introduced. Third, a summary

view of the splitting and merging procedures (details on the merging procedures are given in

Appendix C.2) are presented with some discussions.

4.3.1 Procedure Overview

The idea of the SSP is to make successive splitting to the genotypes of a given SNP-pair till a

proper number of groups are formed. For the first split, there are 29 − 2 = 510 ways to group

the genotypes, which reduces to 8 if minimization of misclassification error is desired based

on the theory mentioned in Wan et al. (2013)’s method [7]. The reduction is achieved by

sorting the 9 genotypes by their case-to-control ratios and splitting the ordered genotypes only.

The theory states (Theorem 1.3.1) that the split that minimizes the classification error is

guaranteed to be among splits of the ordered genotypes. Inspired by this, it is straightforward

to continue splitting the ordered genotypes after the first split. The method is presented in

more detail below.

Denote X = (X1, X2, · · · , X9) as the indicator variables of the genotypes Gi(i = 1, 2, · · · , 9)

formed by two SNPs. Similar to RS, Gi’s are first sorted according to their case-to-control

ratios. Without loss of generality, assume that the Gi’s are already ordered. The sequential

split procedure consists of eight sequential steps of nested splits that start from all Gi’s being

in one group to each one being its own group (refer to 4.12 below for an example).

Example 4.3.1. An Example of the Proposed General Sequential Splitting Procedure
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Step 1:

g1︷ ︸︸ ︷
X1 X2 X3 X4 |

g2︷ ︸︸ ︷
X5 X6 X7 X8 X9

Step 2:

g1︷ ︸︸ ︷
X1 X2 X3 X4 |

g2︷ ︸︸ ︷
X5 X6 |

g3︷ ︸︸ ︷
X7 X8 X9

Step 3:

g1︷︸︸︷
X1 |

g3︷ ︸︸ ︷
X2 X3 X4 |

g3︷ ︸︸ ︷
X5 X6 |

g4︷ ︸︸ ︷
X7 X8 X9

...

Step 8:

g1︷︸︸︷
X1 |

g2︷︸︸︷
X2 |

g3︷︸︸︷
X3 |

g4︷︸︸︷
X4 |

g5︷︸︸︷
X5 |

g6︷︸︸︷
X6 |

g7︷︸︸︷
X7 |

g8︷︸︸︷
X8 |

g9︷︸︸︷
X9

In general, the sequential split is done in the following steps:

Step 1 Test each one of the eight possible splits (as illustrated below) using a proper statistic

(details on the choice of the statistic are presented in Section 4.3.2). Select the one with

the best fit.

Candidate Split 1: X1 | X2 X3 X4 X5 X6 X7 X8 X9

Candidate Split 2: X1 X2 | X3 X4 X5 X6 X7 X8 X9

...

Candidate Split 8: X1 X2 X3 X4 X5 X6 X7 X8 | X9

Step 2 Fix the first split place and explore the rest seven places for a possible second split (see

illustration below). Perform a proper test with the first split accounted for (details are

presented in Section 4.3.2) and select the best fit.
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Candidate Split 1: X1 | X2 X3 X4

1st Split︷︸︸︷
| X5 X6 X7 X8 X9

Candidate Split 2: X1 X2 | X3 X4

1st Split︷︸︸︷
| X5 X6 X7 X8 X9

...

Candidate Split 7: X1 X2 X3 X4

1st Split︷︸︸︷
| X5 X6 X7 X8 | X9

Step 3 Continue similar procedure as step 2 (while fixing the existing splits) till every Gi is its

own group.

Step 4 Refit the disease model selected at each step to quantify the association of the SNP-pair

and the outcome. A final disease model is determined by using a “proper” stopping

criterion, as shown in Section 4.3.2.

Notice there are two selections in the process: selection of a place to split at each step,

and selection of a final disease model from all steps. For the first type of selection, the

standardized coefficient difference from fitting logistic regression models are used as the

criteria. For the second type of selection, four commonly used model selection criteria are

adopted, which are minimum of 1)“nominal” p-value from Pearson’s χ2-test 2) AIC 3) BIC

4) p-value from Likelihood Ratio Test (LRT). Details of these are given in Section 4.3.2.

4.3.2 Testing Statistics and Stopping Criteria

The choice for the place to split at each step is based on logistic regression. When a split is

made, the expectation is that the disease probabilities for the two newly split subgroups are

significantly different. Based on this idea, the statistic can be derived to test the coefficient

difference of the two subgroups of variables.
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Step One Splitting

For step 1, suppose the split between Xi and Xi+1 is being assessed, then the model being fit

is

log
p(y = 1)

p(y = 0)
= β1Xg1 + β2Xg2 , i = 1, 2, · · · , 8,

where the design matrix is

(Xg1 Xg2) = (
∑i

l=1Xl

∑9
l=i+1Xl) = X


i cols︷ ︸︸ ︷
1 · · · 1

0 · · · 0

9−i cols︷ ︸︸ ︷
0 · · · 0

1 · · · 1


T

Remark. Because all the Xi’s are dummy variables, combining the genotype combinations is

equivalent to summing the indicator variables up.

Based on this logistic regression model, the hypothesis H0 : β1 = β2 can be carried out by

Zi =
β̂1 − β̂2

̂std (β̂1 − β̂2)
∼ N(0, 1).

A selection of split i1 over all i, i = 1, 2, · · · , 9 means the following is true

|Z1
i1
| > |Z1

i |, i ̸= i1. (4.12)

Testing Statistics for Splitting at Step Two

Assume the first split is at place i1 (between the i1th and (i1 + 1)th variable). For step 2, the

following models are explored,

log
p(y = 1)

p(y = 0)
= β1Xg

i1
1
+ β2Xgi2

+ β3Xgi3
, for all i ̸= i1 (4.13)
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where the superscripts i1 and i have been used to indicate the spliting place and

(
Xgi2

Xgi3

)
=

( ∑i
l=i1+1Xl

∑9
l=i+1Xl

)
= X


i1 cols︷ ︸︸ ︷
0 · · · 0

0 · · · 0

i−i1 cols︷ ︸︸ ︷
1 · · · 1

0 · · · 0

9−i cols︷ ︸︸ ︷
0 · · · 0

1 · · · 1


T

for i > i1

(
Xgi2

Xgi3

)
=

( ∑i
l=1Xl

∑i1
l=i+1 Xl

)
= X


i cols︷ ︸︸ ︷
1 · · · 1

0 · · · 0

i1−i cols︷ ︸︸ ︷
0 · · · 0

1 · · · 1

9−i1 cols︷ ︸︸ ︷
0 · · · 0

0 · · · 0


T

for i < i1

Similarly, hypothesis tests of H0 : βgi2
= βgi3

are carried out based on the asymptotic

distribution of the statistic

Zi =
β̂2 − β̂3

̂std (β̂2 − β̂3)
∼ N(0, 1).

Select i2 for which

|Zi2| > |Zi|, i ̸= i1, i2. (4.14)

Testing Statistics for a General Step

Step 3 and beyond could be done similarly, i.e., regression models with dummy variables

representing two newly split groups are fit:

log
p(y = 1)

p(y = 0)
= β1Xg

i1
1
+ · · ·+ βkXg

ik
k

+ βk+1Xgik+1
+ βk+2Xgik+2

, (4.15)

for all i ̸= i1, i2, · · · , ik.
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The coefficients are tested for statistically significant differences:

Zi =
ˆβk+1 − ˆβk+2

̂std ( ˆβk+1 − ˆβk+2)
∼ N(0, 1).

Select ik+1 for which

|Zik+1
| > |Zi|, i ̸= i1, i2, · · · , ik. (4.16)

Remark. The indicator variables in Eq. 4.15 are mutually independent, and perfectly

correlated, i.e., X
g
i1
1
+ · · ·+ X

g
ik
k

+ Xgik+1
+ Xgik+2

= 1, so the model can be reduced to

log
p(y = 1)

p(y = 0)
= βk+1Xgik+1

+ βk+2Xgik+2
, for all i ̸= i1, i2, · · · , ik (4.17)

Disease Model Level Selection

In each step of the split procedure, there is a corresponding disease model being selected. To

determine the final one, the disease model of each level is refitted. Table 4.1 and Eq. 4.18

present the refitted example for a disease model of level j + 1. Four types of criteria are

calculated to make the decision.

Table 4.1. Distribution of individuals for the disease model after the jth step of
the SSP method.

g1 g2 · · · gj+1

Cases n11 n12 · · · n1,j+1

Controls n21 n22 · · · n2,j+1

log
p(y = 1)

p(y = 0)
= β1Xg1 + β2Xg2 + · · ·+ βjXgj+1

(4.18)

1. Minimum “nominal” p-value: nominal p-values are calculated using the Pearson’s

χ2-test, i.e.,
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pj = Pr
(
χ2
(j) > χ̂2

j

)
, j = 1, · · · , 8,

where χ̂2
j is the Pearson’s χ2-statistic after the jth step that is calculated based on

Table 4.1. The final disease model is the one with the smallest nominal p-value, i.e.,

Selected Level = K, for which pK = min
j=1,2,··· ,8

pj

2. Minimum AIC: logistic regression model is fitted for each step of the split (see example

in Eq. 4.18 for the jth step) and the AIC is calculated. The one with the smallest AIC

is selected.

AICj = −2log(Likelihood) + 2(j + 1)

Selected Level = K, for which AICK = min
j=1,2,··· ,8

AICj

3. Minimum BIC: similar to that of AIC except the criteria is changed to BIC.

BICj = −2log(Likelihood) + 2log(N)(j + 1),

where N is the sample size.

Selected Level = K, for which BICK = min
j=1,2,··· ,8

BICj

4. Minimum p-value from Likelihood Ratio Test (LRT): the two models before and after a

split are nested, so a Likelihood Ratio Test can be carried out to assess the necessity of

the split.

109



D1 = Deviance at Step 1 ∼ χ2
(1)

Dj = Deviance at Step (j − 1)−Deviance at Step j ∼ χ2
(1), j ≥ 2

pDj = Pr(χ2
(1) > Dj), j = 1, 2, · · · , 8

Selected Level = K, for which pDK = min
j=1,2,··· ,8

pDj

Association Assessment

When the final disease model is determined for a SNP-pair (i, j) (assume it has K + 1 risk

levels), it is refit and Pearson’s χ2-statistic χ̂2
i,j is calculated. After that, a nominal p-value

Pr(χ2
(K) > χ̂2

i,j) and p-value by adjusted degree of freedom Pr(χ2
(EDF ) > χ̂2

i,j) are computed

and used to assess the significance of the association between a SNP-pair and the outcome.

Notice the nominal p-values are inflated due to the best-fitting selections in the procedure,

therefore in Section 4.5, adjusted p-values similar to those applied for the MDR and RS

methods are calculated for the SSP method.

4.3.3 Method Summary

In the application of the SSP or SMP, a heuristic approach is chosen that involves an ordering

of the genotypes at its first step and two types of “model selection” thereafter, i.e., the best

fitting disease model at each step and the best disease model out of all steps. The complete

process is illustrated in Figure 4.1.

Ordering the case-to-control ratios in step one (Figure 4.1) and selecting the best disease

models at step two uses the outcome data, so they both lead to inflation in the nominal

p-value in step five. For step three, it is not straightforward to know whether any of the

criteria leads to inflation. In Section 4.5, a method is proposed to correct for the inflation

regardless of where the inflation is from.
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Compare to the SSP, FSD-PST (Section 4.2) mainly differs from it in step three (a

comparison of the two methods is given in Section 4.4.1). For FSD-PST, its PMST p-value

criterion used in step three has partially accounted for the inflation introduced at step two,

therefore is expected to lead to better disease model level determination than the “nominal”

p-value criteria used by the SSP. Nonetheless, because it does not account for the inflation

from step one, the disease model determined by it is still not expected to be optimal. Section

4.5.4 demonstrates that without further adjustment in step five, the PMST p-value generally

leads to better performance than the “nominal” p-value that also has no adjustment, but

worse performance than the one with an adjustment.

It is important to use a proper stopping criterion in step three to achieve good disease

model level estimation. However, there is probably no best or easy solution for it. Therefore,

four commonly used criteria are applied to cover a different range of possibilities.

Note that determining a proper disease model among all possible ones could be a much

more complicated problem. The essentially greedy sequential selection strategy used by SSP

has largely simplified the problem. Without such a design, the search space could be much

larger. For example, the total number of all possible two-level disease models is 29 − 2 = 510,

and that of three-level ones is 39 − 3 × (29) + 3 × 19 = 18150. Consequently, by largely

reducing the searching space, the proposed procedure is not guaranteed to find the correct

disease model.

111



Fig 4.1. Summary steps for the SSP/SMP method. In the chart the disease models
are represented by M , with subscripts denoting the index of places for the split or merge to
differentiate different models. Subscripts with | in them denote both the current and already
selected indexes, e.g., MJ3|J1,J2 means that the current split or merge is at J3 and it is built
upon two previous splits or merge at J1 and J2.
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4.4 Theoretical Comparison and Simulation Study

4.4.1 Equivalence of FSD-PST and SSP

In Section 4.2, a method that applies forward selection on (I − P )y and (I − P )Xnew1 (refer

to Section 4.2.1 for the definition of P and Xnew1) is proposed to determine a disease model.

In Section 4.3 a sequential ratio split procedure is presented for the same purpose. Although

the two methods are motivated from different ideas, i.e., the former from fused lasso under

a regression model framework and the latter from the RS method, it is found that they

are actually equivalent under minor conditions. Such a finding is helpful to understand the

disease model searching methods better, especially for the different steps that contribute to

the final disease model selection and SNP-pair ranking. In terms of equivalence, the following

result is obtained.

Theorem 4.4.1. The procedure of forward selection on the transformed difference variables

defined in Section 4.2 is equivalent to the sequential ratio split procedure introduced in Section

4.3, if treating the outcome variable y as continuous. The two procedures group genotypes in

exactly the same way and order, and the corrected p-values from the post-model selection test

as reviewed in Section 4.2.2 would also be the same for them.

Proof. The proof is done in a few steps. The gist of the proof is given below while details are

given in Appendix C.1.

1. Applying forward selection on the transformed variables of (I − P )y and (I − P )Xnew1

is equivalent applying it on y and Xnew1 with an intercept included at each step.

2. The coefficient difference of two newly split groups in SSP is equivalent to the coefficient

of the transformed variable representing the difference of split variables in FSD-PST.

In more detail, for the first step, βg11j
− βg12j

= γ1 in

log
p(y = 1)

p(y = 0)
= γ0 + γ1X1, (4.19)
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where

X1 =
1

2

j∑
l=1

Xl −
1

2

9∑
l=j+1

Xl = X(
1

2
· · · 1

2
− 1

2
· · · − 1

2
)T

and generally for the kth step, βgk1j
− βgk2j

= γk in

log
p(y = 1)

p(y = 0)
= γ0 +

k∑
i=1

γiXi,

where

Xi =
1

2

ji∑
l=ji−1

Xl −
1

2

9∑
l=ji+1

Xl = X(0 · · · 0 1

2
· · · 1

2
− 1

2
· · · − 1

2
0 · · · 0)T

for some 1 ≤ j1 < j2 < · · · < jk ≤ 9. This result holds for both linear and logistic

regression.

3. Use U1
j , j = 1, 2, · · · , 8 to denote the variables of Xnew1, which are the first eight

variables in XD̃−1, and V 1
j , j = 1, 2, · · · , 8 the difference of variables representing the

potential split groups at the first step, i.e.,

U1
j = X



−9−j
9
...

−9−j
9

j
9
...

...

j
9



 j rows

 9− j rows

V 1
j = X



−1
2
...

−1
2

1
2
...

...

1
2



 j rows

 9− j rows

then the quantities assessed in the forward selection of these two groups of variables at

step one can be shown to be equal, i.e.,

(U1
j − Ū1

j )
Ty

∥ (U1
j − Ū1

j )
T ∥2

=
(V 1

j − V̄ 1
j )

Ty

∥ (V 1
j − V̄ 1

j )
T ∥2

,
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which indicate the first step of forward selection satisfies what is stated in the theorem.

4. At the kth step, the relevant quantities being assessed can also be shown to be equal,

i.e.,

(U1
j − Ū1

j )
TP⊥

A y

∥ (U1
j − Ū1

j )
TP⊥

A ∥2
=

(V k
j − V̄ k

j )
TP⊥

A y

∥ (V k
j − V̄ k

j )
TP⊥

A ∥2
,

where

P⊥
A = I −XA(X

T
AXA)

−1XA,

and A indexes of already selected variables, V k
j takes on the following form

X(0 · · · 0 − 1

2
· · · − 1

2

1

2
· · · 1

2
0 · · · 0)T .

In fact, (U1
j − Ū1

j )
TP⊥

A = (V k
j − V̄ k

j )
TP⊥

A , which means both the parameter estimates

and selection conditions are equivalent, so the corrected p-values from PMST would

also be the same for SSP and FSD-PST.

4.4.2 Simulation Study

Simulation study results for the FSD-PST method are presented in this section, together

with the unadjusted results (as oppose to adjusted results to be presented in Section 4.5) for

the SSP method to serve as baseline comparison.

Selected Disease Model Level (DML)

The disease model levels are calculated for the true SNP-pairs that are determined by each

of the stopping criteria. Table 4.2 provides the DMLs determined by the SSP and FSD-PST

methods, which has also included the true DMLs as a reference; figure 4.2 presents them

115



in bar charts for a clearer view; figure 4.3 presents a selection of them in one line chart for

a comparison view. Comparing DMLs and model performance measures between different

criteria of the same method could provide a direct perception of how the DMLs affect the

SNP-pair detection performance. Additionally, a comparison of DMLs between the SSP and

FSD-PST methods helps lend some insight into the usefulness of the post-model selection

test for the problem.

Table 4.2. Actual v.s. determined final disease model levels for the true SNP-pairs that are
detected by the FSD-PST and SSP methods.

DM MAF TRUE SSP FSD-PST
Nomi P AIC BIC LRT PMST P AIC BIC FDR

T 0.1 2 3.018 3.673 2.800 2.611 2.250 2.125 2.070 2.185
T 0.4 2 2.62 3.125 2.171 2 2.307 2.687 2.344 2.702

MOD 0.1 2 2.899 3.258 2.484 2.206 2.130 2.153 2.027 2.208
MOD 0.4 2 2.613 3.211 2.199 2 2.223 2.585 2.111 2.650
DD 0.1 2 2.359 2.782 2.086 2 2.370 2.648 2.056 2.930
DD 0.4 2 2.350 3.143 2.155 2 2.153 2.295 2.055 2.444
XOR 0.1 2 2.605 2.997 2.293 2.028 2.264 2.224 2.093 2.262
XOR 0.4 2 2.571 3.153 2.175 2 2.312 2.712 2.239 2.623
ME 0.1 5 2.855 3.803 3.043 2 2.395 2.898 2.803 3.508
ME 0.4 5 3.375 4.523 3.213 2 2.643 3.726 3.443 3.972
MET 0.1 4 2.402 3.402 2.093 2 2.376 2.366 2.068 2.556
MET 0.4 4 3.292 4.01 2.905 2.006 2.673 3.738 3.422 3.739
DMN1 0.25 7 3.146 5.223 2.903 2.052 2.706 3.557 3.440 4.286
DMN2 0.25 8 2.922 3.344 2.583 2 2.425 2.797 2.477 2.831
DMN3 0.1 6 2.997 3.218 2.868 2 2.441 3.087 3.005 3.709
DMN4 0.1 8 3.065 3.423 3.005 2.020 2.495 3.128 3.093 3.768

Figure 4.2 shows that the DMLs selected by different stopping criteria of the SSP method

are different, where the difference is observed to be quite consistent across all disease model

examples. The AIC tends to select disease models with the highest levels, followed by the

nominal p-value and BIC, and the LRT selects the lowest of all. In general, AIC and nominal

p-value tend to select disease models of more than two levels, even if the true levels are only

two; whereas the LRT tends to select two levels in the majority of cases, even if the true

levels are multiple. Nonetheless, a trend for all criteria except LRT is observable that the

determined DMLs for disease models with two levels are generally lower than those with

116



multiple levels. This indicates that the general epistasis detection methods are somewhat

effective at determining a more accurate disease model than the TTTC-type methods.

DMLs selected by different criteria of the FSD-PST method are also different, but the

differences are not as consistent as those for the SSP method. The FDR criterion selects

the highest DMLs in most cases, followed by AIC (note the AIC and BIC criteria applied

for the FSD-PST method are different from those for the SSP method, see Section 4.2.3

for details). Same as for SSP, all four criteria for FSD-PST tend to select higher DMLs for

disease models with multiple levels than for those with just two levels, which proves their

potential usefulness in the general epistasis detection. In particular, such differentiation is

most noticeable for the FDR criteria (refer to Figure 4.3 for a clearer view of this point),

which tends to suggest that it’s relatively the best one among all. Additionally, the FSD-PST

method appears to give better DMLs than SSP in approximating the true DMLs. In Figure

4.3, DMLs for two representative stopping criteria are selected and presented for both SSP

and FSD-PST. It shows that FSD-PST tends to produce around the same levels of DMLs

as SSP for two-level DMs (T, MOD, DD, XOR), and slightly higher level DMLs for the

multi-level ones (MET, ME, DMN1-DMN4). In other words, the determined DMLs by

FSD-PST give better differentiation of two- and multi-level DMs than SSP.

The PMST p-value for FSD-PST yields DMLs in between that of the minimum (LRT)

and maximum (AIC) of the SSP method. In particular, the DMLs by the PMST p-values

fluctuate around that of the BIC criteria for the SSP method. Generally, BIC is known to

have the desirable property of being a consistent estimator that makes it select the true

model asymptotically, but its consistency is built on the condition that the true model is

contained among the candidate ones. In the case here, because the SSP is essentially greedy

in nature, i.e., the candidate models are only a subset of the full space of models, there is

no guarantee that the BIC would select the true model. When the PMST p-value selects

close DMLs as BIC, an implication is that it may contain some desirable property worthy of

further exploration. This property also applies to the other three criteria for the FSD-PST

method, which are built upon the PMST p-values and have accounted for disease model
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selections in the process.

For all the general epistasis detection methods introduced in this chapter, the determined

DMLs by them are still less than perfect in approximating the true ones. It is desirable

to improve it more, which is possible by improving both the searching methods and the

choices of stopping criteria. However, this is not pursued further in the current work. For

the choice of searching methods, all the FSD-PST/SSP/SMP methods are greedy due to

the consideration of a large-scale application. Foreseeably, any further improvement that

helps for the accuracy (grouping of genotype combinations of a SNP-pair) would inevitably

incur a higher computational burden. For the stopping criteria, the most popular ones from

traditional model selection procedures (minimum p-value, AIC, BIC, LRT) have already

been applied, and a recent one from PMST is also explored. For a complicated data set,

the way to find the most appropriate model selection criteria calls for extensive trials of

experiments, and it could also take some luck to find one, if any. Therefore the problem is

deferred to future work and model performance improvement through other aspects such as

a d.f. adjustment on the testing statistics is focused on in this work.
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Fig 4.2. Simulation results on the estimated disease model levels by different
stopping criteria of the SSP and FSD-PST methods. The values are calculated based
on the selected true SNP-pairs. The horizontal line represents the true disease model level.
Each simulation has been repeated for 400 times and the averages are reported.
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Fig 4.3. Determined disease model levels by SSP and FSD-PST for selected
stopping criteria. Two different stopping criteria for each method are selected for a clear
view. Different simulation disease models are presented along the X-axis, which are ordered
by the true DMLs from low to high. It shows that the FSD-PST method tends to select the
same level DMLs for two-level DMLs as SSP, and higher ones for multi-level DMs.
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Model Performance

Fig 4.4. Simulation results on F-measure for the FSD-PST and SSP methods
(based on unadjusted P-values). The results for MDR and RS are also based on
unadjusted p-values. Each simulation has been repeated 400 times and the average
performance is reported.

The F-measures are given in Figure 4.4. The results suggest that a good stopping criterion

tends to improve SNP-pair detection. Among the explored stopping criteria, some appear to
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perform somewhat better than others. For FSD-PST, the best performing criteria is FDR,

whereas for SSP the best one is LRT. Overall, the general epistasis detection methods of

FSD-PST and SSP have comparable performance to MDR and RS under their best performing

stopping criteria, but slightly worse performance under the other criteria.

The PMST is useful in improving the DMLs determination and the SNP-pair detection,

but only to a certain degree. Notice the PMST p-value criterion for FSD-PST leads to a

slightly better F-measures than the nominal p-value criteria for SSP, which indicates that

stopping criteria with inflation accounted for is useful. However, as will be shown in Section

4.5.4, when compared to the EDF adjusted F-measure of SSP, the FSD-PST has significantly

worse performance. A possible reason is that the criteria of PMST p-value only accounts

for inflation incurred in the searching process of disease model, but not that from other

causes. Additionally, the FSD-PST method and its stopping criteria contain some imperfect

implementation that may be further improved. For instance, the PMST p-value is based on

forward selection under a linear regression model framework, which may be refined using

logistic regression that is better suited for a binary outcome. Additionally, the adopted FDR

procedure is best suited for a sequence of indepedent p-values, which may be refined to better

suit the PMST p-values that are dependent. In summary, the PMST is a promising direction

to pursue for general epistasis detection, but there is a limit due to practical application

constraints.

A trend of consistency between the F-measures and the determined DMLs is observable.

For example, the FSD-PST method with its stopping criteria of BIC and FDR appears to

give better DMLs than SSP with the nominal p-value and BIC criteria, where “better” is

in the sense that the determined DMLs are closer to the true ones, i.e., there is a better

differentiation of the two-level and multi-level disease models (see Figure 4.3). As a result,

the corresponding F-measures mostly follow the same trend, i.e., the ones by FSD-PST are

better than those by SSP, even though slightly. Notice the trend is true for all but the LRT

criteria of the SSP method, which is discussed more in the paragraph below.

A comparison of F-measures between the SSP/FSD-PST and MDR/RS methods indicates
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that the use of simple disease models can still be quite competitive. The LRT criteria, for

example, is the only one among all criteria for SSP that performs comparably to the MDR/RS

method. It is noticable that LRT leads to simple disease models with DMLs of almost exactly

two for all cases, which is the cloest to MDR and RS. The advantage of a simple two-level

disease model can be perhaps understood as being a more strict rule that is able to filter

out more false positives than the multi-level ones. This is seen from the comparison of recall

and precision rates by SSP and MDR/RS. In the majority of simulation examples, the recall

rates are close to 100% by all methods, partly because the signal is all inflated. Therefore the

F-measure is mainly dependent on the precision. A simple two-level disease model appears to

give higher precision than the multi-level ones. The possible reason is: a criterion that tends

to select a multi-level disease model for the true SNP-pair also tends to select multi-level

ones for the false pairs, which gives rise to the signal of the false pairs. In comparison, when

MDR/RS restricts to use of two-level disease models for both the true and false SNP-pairs,

the competitive signal from false pairs is also limited, which then results in an overall better

selection of the true pairs.

Although the F-measures from LRT (for SSP) and FDR (for FSD-PST) are comparable,

their determined DMLs are quite different, i.e., LRT select DMLs of two across all simulation

examples, whereas FDR differentiates the two- and multi-level ones more evidently. The

difference implies a possibility for improving the choice of stopping criteria. A comparison

of the results from the nominal p-value for SSP and the PMST p-value for FSD-PST lends

insight into a possible direction to improve. Because the SSP and FSD-PST methods are

equivalent in the disease model searching process (under the condition that the outcome

variable is treated as the same type by both methods, e.g., continuous or binary, refer to

Section 4.4.1), the difference observed in the results can be attributed to the stopping criteria

of p-values. The F-measure from the PMST p-value appears to be slightly better than

that from the nominal p-value, which suggests that accounting for inflation in the criterion

may be useful. Additionally, among all criteria for FSD-PST, the FDR has slightly better

performance than the others. Because the criteria are all built on PMST p-values, this

result suggests that the performance may be further improved if more appropriate inference
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methods are applied on the PMST p-values.

4.5 P-value Adjustment

For all methods introduced in previous sections, the refitted Pearson’s χ2-statistics in the

last steps are inflated due to disease model searching in the processes. The PMST p-value

(Section 4.2) only accounts for the inflation partially, so its usefulness is limited as evidenced

by the results in Section 4.4.2. Inspired by the adjustment method for MDR and RS in

Chapter 3, this section explores similar p-value adjustment for the SSP and SMP methods to

rank the SNP-pairs more reasonably. It does not target any specific cause of the inflation

but addresses it for the whole process, which is simple and efficient.

The idea is to run the general epistasis procedures through SNPs unrelated to the disease

outcome to obtain the null distribution of the testing statistics, and calculate a more proper

p−value than the nominal one based on the empirical distribution to rank the SNP-pairs.

In practice, the testing statistics from the null data are observed to still follow the general

shape of a χ2-distribution, so they are assumed to still follow the chi-squared distribution

but with an elevated degree of freedom. For a given SNP-pair (i, j), since the chi-squared

distribution has its degree of freedom equal to its mean, similar effective degree of freedom

(EDF) as given in Eq. 3.2 are obtained to calculate the adjusted p-value in Eq. 3.3.

4.5.1 Null Distribution Simulation

The same null data as used in Section 3.2 is adopted, i.e., a replicate of 100,000 SNP-pairs

are simulated for different combinations of the two MAFs and sample size, and the disease

response variable is randomly assigned to create a balanced case-control sample.

For each combination of MAF1, MAF2, sample size n, and a replicate of SNP-pair, the

SSP and SMP are run, and the testing statistics (step four of Figure 4.1) are calculated.

After that, the averages of χ2-statistics across all SNP-pair replicates are calculated and
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retained as the empirical data points for the null distribution estimation. They are put as

the response variable in a linear regression model to obtain smooth estimates of the EDF

given inputs of MAFs and sample size.

4.5.2 Null Distribution Examples

Figure 4.5 and C.1 provide examples of the distribution for the testing statistics obtained

from running the SSP and SMP on the null data. Different combinations of the MAFs and

sample size are chosen for a relatively representative illustration. The curves are the density

functions of a χ2-distribution, where the d.f. is estimated to be the average of the empirical

χ2-statistics.

The figures show that the statistics generally follow the shape of a χ2-distribution. The

shapes are not evidently different between the split and merge procedures, but there are

slight differences for the statistics obtained from different stopping criteria. In general, the

nominal p-value criterion leads to a more dispersed distribution than the other criteria, and

the statistics from it appear to align best with a χ2−distribution. In comparison, the BIC

results in the least dispersed distribution, and the statistics from it slightly deviate from the

χ2−distribution occasionally. Overall, it is reasonable to assume that the statistics still follow

the χ2-distribution with a shifted mean.

Figures 4.6 and 4.7 provide comparisons of the original and fitted EDF values against the

sample size and MAF. These figures show that the fitted values are quite close to the original

points, which is consistent with the model fitting statistics given in Table 4.20 in the next

section.
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(a) MAF1=0.1 MAF2=0.1 n=300

(b) MAF1=0.1 MAF2=0.4 n=300

(c) MAF1=0.25 MAF2=0.25 n=300

(d) MAF1=0.4 MAF2=0.4 n=300

Fig 4.5. Histograms of {χ̂2
s : s = 1, 2, ..., S} versus the χ2

(EDF) density functions. ,

EDF is computed by Eq. 3.2, for some specific combinations of (MAF1,MAF2, n) and the
four stopping criteria. While the χ2

(EDF) density functions are not perfect fits of the
underlying histograms, they are reasonable approximations as first-order corrections.
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(a) Nominal P-value

(b) AIC

(c) BIC

(d) LRT

Fig 4.6. The estimated response surface model for SSP under different stopping criterion —
EDF versus (MAF1,MAF2) for n = (300, 600, 1500, 3000).
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(a) Nominal P-value

(b) AIC

(c) BIC

(d) LRT

Fig 4.7. The estimated response surface model for SSP under different stopping criterion —
EDF versus n for (MAF1,MAF2) = (0.1, 0.1), (0.25, 0.25), (0.1, 0.4) and (0.4, 0.4).
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4.5.3 Response Surface Model Results

Linear regression models are fit to obtain smooth estimates of the d.f.. The models take

the same form as that for the MDR and RS p-value adjustment, except that they have

one additional interaction term between the MAF and sample size to achieve better overall

fitting (refer to Eq. 4.20). It is logically reasonable to do so because the multiple steps of

disease model selection is a much more complicated process than the MDR and RS methods;

therefore it is expected that the inflation is a more complicated function of the MAF and

sample size.

The models are fit for the statistics obtained under each of the stopping criteria, and the

parameter estimates are presented in Table 4.3. The p-values show that all the terms are

significantly associated with the outcomes. The R2 show that the model could explain a

majority of the variance in the outcomes, so the model fitting is acceptable. For different

stopping criteria, the model estimates have the same signs but different values. Compared to

parameter estimates for the MDR and RS adjustment, the SSP and SMP have different signs

and values for β2 and β3 , which is likely due to the additional interaction term between the

MAF and sample size.

EDF ≈ β0 + β1(MAF1) + β1(MAF2) + β2(
√
n)︸ ︷︷ ︸

main effects

+

β3(MAF1)
2 + β3(MAF2)

2 + β4(
√
n)2︸ ︷︷ ︸

quadratic terms

+

β5(MAF1)(MAF2) + β6(MAF1)(
√
n) + β6(MAF2)(

√
n) + β7(MAF1)(n) + β7(MAF2)(n)︸ ︷︷ ︸

interactions

,

(4.20)
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Table 4.3. Parameter estimates for the sequential split procedures under the null
distribution using the model equation in Eq. 4.20.

Stopping Criteria Parameter Estimate Std P-value R2 Adjusted R2

Nominal P-value

β0 -0.556 0.125 1.11×10−05

0.951 0.95

β1 12.141 0.277 4.08×10−180

β2 -13.495 0.310 3.41×10−179

β3 13.238 0.836 1.02×10−46

β4 -12.645 1.284 3.72×10−21

β5 3.692 0.391 1.08×10−19

β6 -12.943 1.418 1.36×10−18

β7 11.622 2.178 1.41×10−07

AIC

β0 -1.038 0.117 1.29×10−17

0.967 0.966

β1 11.786 0.259 4.90×10−187

β2 -13.839 0.29 2.08×10−196

β3 13.119 0.782 3.17×10−51

β4 -12.114 1.201 4.80×10−22

β5 4.033 0.366 1.19×10−25

β6 -7.580 1.326 1.79×10−08

β7 5.112 2.037 1.24×10−02

BIC

β0 -0.433 0.070 1.34×10−09

0.985 0.985

β1 9.145 0.155 4.91×10−238

β2 -10.759 0.173 1.18×10−248

β3 10.125 0.467 1.80×10−75

β4 -10.027 0.718 4.38×10−38

β5 4.485 0.219 1.19×10−69

β6 -5.000 0.793 5.88×10−10

β7 4.110 1.218 7.92×10−04

LRT

β0 0.552 0.078 5.08×10−12

0.971 0.971

β1 7.164 0.173 2.16×10−170

β2 -8.053 0.193 1.70×10−171

β3 9.500 0.520 2.14×10−58

β4 -9.809 0.800 1.05×10−30

β5 3.488 0.243 1.03×10−39

β6 -5.096 0.883 1.31×10−08

β7 4.816 1.356 4.18×10−04
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After the parameters are estimated, estimates of the EDFs are obtained by plugging

in the estimates to Eq. 4.20, i.e., for each SNP-pair (i, j) with minor allele frequencies

(MAF1,MAF2) and a given sample size, its adjusted p-value is computed by the following

steps.

1. Run the SSP (or SMP) and identify a disease model for the SNP-pair using one of the

four stopping criteria, Mi,j.

2. Form the cross table by refitting the identified disease model and compute the usual

chi-squared statistic, χ̂2
i,j.

3. Compute the effective degree of freedom (EDF) by the Eq. 4.20 and the parameters in

the corresponding Table 4.3.

4. The adjusted p-value is computed by using the EDF from step three and Eq. 3.3.

4.5.4 Simulation Study

Full simulation study results for the SSP method are presented in this section, together with

part of the results from the MDR, RS and FSD-PST methods for comparison.

Two types of adjusted p-values are computed to rank the SNP-pairs for the SSP method,

one uses the EDFs from the predictive surface model of Eq. 4.20 in Section 4.5, and the other

uses EDFs from an empirical matching. For the latter, the EDF is obtained by matching

the MAF1, MAF2, and n of the SNP-pair to the values in the simulated null data, where the

MAF for each SNP is estimated based on the sample data and rounded to the nearest 5% to

match the available points in the simulation setting.

Of special note, p-value by use of EDF for the FSD-PST method is also computed for its

minimum p-value criterion, so as to add in more comparisons. The EDF for it is leveraged

from the SSP method under the nominal p-value criteria. This is logical to do because the

FSD-PST method bears much similarity to the SSP (refer to Section 4.4.1 for details).
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The results focusing on the FSD-PST and SSP methods are given in Figures 4.8, 4.9 and

4.10. The results for the SMP method with comparison to the SSP are given in Figures C.2

and C.3 in Appendix C.2.3. Overall, the SSP and SMP methods have quite close results in

all cases, both in terms of the d.f. of selected disease models and the F-measure. There is no

obvious difference that would make one method more preferable than the other. Figure C.3

also includes a comparison of results between the use of EDFs from the predictive surface

model and the empirical matching approach. It shows that there is also no observable

difference between them. Based on these observations, the results presented in this section

are focused on the FSD-PST and SSP methods with EDFs from the predictive surface model.
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Fig 4.8. Simulation results on recall rates of true SNP-pairs. Each simulation has
been repeated 400 times and the average performance is reported.
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Fig 4.9. Simulation results on Precision of detected SNP-pairs. Each simulation
has been repeated 400 times and the average performance is reported.
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Fig 4.10. Simulation results on F-measure. Each simulation has been repeated 400
times and the average performance is reported.

The model performance in terms of detection power (recall rate), precision and overall

efficiency are given in Figures 4.8, 4.9, and 4.10 respectively. The exact values are also given

in Table C.2 in Appendix C.3. The results are presented for the SSP, FSD-PST (partially),

MDR and RS methods for a comprehensive comparison.

The major findings are the following:
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� Similar to MDR and RS, the simple first-order d.f. adjustment for the general epistasis

detection methods is able to improve the SNP-pair detection (in terms of F-measure)

significantly. This results from a significant increase in the precision after the EDF

adjustment. In particular, the magnitude of increase in precision is usually larger than

the decrease of recall, which leads to an overall increased F-measure.

� The multi-level disease model approach such as SSP has some advantage over the

two-level ones such as MDR and RS. This can be seen from the result that the EDF

adjusted F-measures for SSP are in most cases quite close to or even slightly better

than that of MDR and RS. In particular, for the two-level DMs of T, MOD, DD, and

XOR, as well as the multi-level DMs of ME and MET, the LRT criteria for SSP leads

to comparable results as MDR and RS; whereas for the multi-level DMs of DMN 1 - 4,

the criteria of nominal p-value, AIC, and BIC for SSP all lead to better F-measures

than MDR and RS. In other words, the multi-level disease model approach has the

potential to perform better than the two-level approaches when the true DM is multiple

level, while still maintaining the chance of not losing too much when the true DM is

only two-level.

� A good stopping criterion could have an elevated chance to improve the SNP-pair

detection efficiency, but a universally best performing one could be challenging to be

found. For instance, the LRT consistently gives the best performance among all criteria

of SSP for the two-level DMs (T, MOD, DD, XOR) as well as for the multi-level ones

of ME and MET, but its top performance is not maintained for the multi-level DMs of

DMN 1 - 4. In contrast, the performance of the other three criteria for SSP are reversed.

These results are mostly consistent with the disease model levels being chosen. For T,

MOD, DD, and XOR whose true DMLs are two, the LRT criteria give DMLs of almost

exactly the true level, so the performance of LRT is optimal. For multi-level DMs

of DMN1 - DMN4, the nominal p-value, AIC and BIC criteria for SSP yield disease

models of more than two levels, which is linked to better results than MDR and RS.

Only the ME and MET are two exceptions from this rule, i.e., although the true DMLs
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are multiple, the best performance is achieved by the LRT criterion that uses DMLs of

quite close to two.

� When an EDF adjustment is applied to the FSD-PST method for its PMST p-value

criteria, the F-measure is improved significantly. Note the amount of EDF adjustment

is approximate because it is not estimated directly from the FSD-PST method but

from the SSP method with the nominal p-value criteria. This might be the reason that

the result is slightly worse than that of the nominal p-value for SSP. Foreseeably, if a

more proper EDF is applied, the result for FSD-PST may be further improved.

4.5.5 Results Discussion

As expected, the model detection recall rate is quite high before the EDF adjustment due to

inflation. When the EDF adjustment is applied, the recall rate is brought down significantly,

with varied decrease amounts across different simulation examples. In particular, there is

relatively smaller decrease for the SSP/FSD-PST methods than the MDR and RS methods.

Among different stopping criteria for the SSP method, the ranking of the recall rates (based

on EDF-adjusted p-values) align closely with the estimated DMLs, i.e., the AIC leads to

the largest recall rate, followed by the nominal p-value and BIC, and the LRT leads to the

smallest recall rate. Because the higher the DMLs, the more complicated the disease model,

the alignment between the recall rate and DMLs indicates that use of more complicated

disease models lead to higher detection power, no matter if the true disease model is two or

multiple levels.

For the majority of simulation examples, the SNP-pair detection precision is quite low

(< 10%) before the EDF adjustment. Application of the EDF adjustment leads to a significant

increase in the precision, i.e., two to three folds in most cases. Ranking of the precision

rates also show a consistent association pattern with the estimated DMLs, i.e, the higher the

DMLs, the lower the precision. This indicates that using more complicated models is likely

to lead to more noise selections than that of simpler ones.
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Looking at the F-measure, no single stopping criterion performs universally better than

others. There is a clear trade-off between recall and precision. The competitiveness of using

the two-level DMs also illustrates this point, i.e., the advantage of a multi-level DM in its

enhanced recall can be easily offset by its disadvantage of decreased precision, regardless

of the adopted stopping criterion. Additionally, even though the post-model selection test

provides a promising direction to pursue better disease model determination, a universally

best performing one is not guaranteed to be found, or that there may be no such a criterion

at all. This is because the performance of a criterion may be data dependent. For instance, a

consistent estimator such as BIC may be preferable when the sample size is sufficiently large,

but the LRT is known to have the highest recall among competitors on finite samples [112].

While the choice of stopping criteria for model performance enhancement is proven to

be challenging and inconclusive, the EDF adjustment provides another solution that is

practical and efficient. For all methods, the EDF adjustment is shown to improve model

performance significantly. For the PMST p-value criteria specifically, it is worth noting that

its performance is slightly improved over the nominal p-value of SSP, and EDF adjustment

helps improve its performance further. In fact, as can be seen across the majority of the

simulation examples, the magnitude of the latter improvement is much larger than the former,

which suggests that EDF adjustment is more practically useful than the choice of the stopping

rule.

4.6 Summary and Discussion

4.6.1 Methods Summary

Throughout this chapter, three methods have been proposed to do general epistasis detection,

i.e., FSD-PST, SSP and SMP, which all use flexible ways to determine multi-level disease

models to measure epistasis effects for a SNP-pair. The motivation of this proposal is based

on the belief that a correct specification of the disease model is helpful for the true SNP-pair

detection.

138



Similar to MDR and RS, all the methods in this chapter contain two major parts, i.e.,

determination of disease model and test of SNP-pair association with the outcome. While

the focus of the methods is on the first part that is more complicated than MDR and RS, the

second part is similar, i.e., SNP-pair association is tested by refitting the determined disease

models, and calculating the Pearson’s χ2-statistic.

Due to ordering of the case-to-control ratios at the beginning of these methods, and

disease model searching, inflation is introduced and the testing statistics do not follow the

χ2-distribution with the nominal d.f. anymore. Hence, a simple and efficient solution is

applied to estimate a more reasonable distribution for the testing statistics.

Inspiration for the FSD-PST method stems from fused lasso. A simple linear transformation

of the explanatory and outcome variables can turn the fused lasso into the ordinary lasso,

which motivates the use of forward selection on the transformed variables directly to achieve

multi-level disease model selection. A nice aspect of the chosen procedure is that it is actually

equivalent to the SSP method under minor conditions. Further, the recent post-model

selection tests that can account for model selection inflations are explored for their potential

usefulness in the general epistasis detection problem.

The SSP method is a direct extension from the RS method, i.e., it makes succesive splits

of the genotypes till every genotype is in a separate group. The algorithm is simple and

straightforward, which makes it applicable to SNP-pairs at the GWAS level. What makes it

more complicated than RS is that it not only needs to determine where to split at each step,

but also which the “best” disease model is from all steps.

The disease model searching process for SSP turns out to be exactly the same as that for

FSD-PST, if the outcome variable is treated as the same type (e.g., continuous) by both

methods. The stopping criteria for FSD-PST are built on PMST p-values with the model

selections accounted for, which differ from the stopping criteria for SSP. The difference

is helpful to provide some comparison on the choice of criteria for disease model level

determination and the subsequent impact on the SNP-pair identification.
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4.6.2 Discussion

Based on the formulation for the general epistasis detection problem, the SNP-pair detection

efficiency depends on the searching algorithm for the disease model, the selection of stopping

criteria for the DMLs determination, and also the EDF adjustment for the testing statistics.

For the searching algorithm, all the FSD-PST, SSP and SMP methods are greedy in nature.

This choice is made because both the number of multi-level disease models and SNP-pairs

are huge. As such, exhaustive testing is impossible, and any other potentially more powerful

algorithm is likely to require significantly larger computational time than the greedy ones.

The forward selection algorithm used in FSD-PST is popular for being simple and effective.

The idea of the SSP and SMP is also simple and straightforward, and the computational

feasibility for them to be applicable at large scale makes them rather appealing. Although

derived from different framework, the FSD-PST and SSP methods are shown to be equivalent,

which in a way indicates that the choices of applicable greedy algorithms are somewhat

limited, and that different greedy algorithms may not produce significantly different results.

Overall, the adopted disease model searching algorithms have been chosen carefully out of

practical and efficiency considerations, so the space for improvement is expected to be limited.

For the stopping criteria used for SSP and SMP, the commonly used model selection

criteria of nominal p-value, AIC, BIC and LRT have been explored. The simulation results

show that they behave differently in terms of the selected disease model complexity. The

LRT selects the most parsimonious model throughout, and does not show a clear sign of

determining a multi-level disease model; whereas the AIC consistantly selects disease models

of the highest DMLs. The performance of LRT and AIC are reversed on the disease models

with main effects (T, DD, MOD, DD, ME, MET) and disease models without main effects

(DMN 1-4). DMN 1-4 are all multi-level risk DMs, so it is easy to understand that AIC

performs better on them than the LRT. This is typical result with a tradeoff between recall

and precision, which is not expected to be easily improved further.

In terms of disease model complexity, i.e., selected disease model levels, some of the

stopping criteria for FSD-PST demonstrate a better sign of differentiation between the
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two- and multi-level disease models than those for SSP. For example, the BIC and FDR

criteria for FSD-PST estimate higher DMLs for the multi-level DMs than the two-level

ones, where the differences are noticeably higher than that of the nominal p-value and

BIC criteria for SSP (refer to Figure 4.3). This is a desirable property given the study

assumption that a more accurate estimate of disease model would result in better SNP-pair

detection. Nonetheless, when compared to the (EDF adjusted) F-measures of SSP, the

FSD-PST method’s performance is significantly worse. Implications from the results are two

folds. On the one hand, the better differentiation of two- and multi-level DMs by FSD-PST

indicates that the stopping criteria for it are indeed better than those of SSP. Hence a further

exploration of the PMST is worth pursuing for better SNP-pair detection. In fact, given the

current less-than-perfect implementation, there is known potential to improve the results for

FSD-PST further. On the other hand, the gain from better stopping criteria might be quite

limited or even not guaranteed.

EDF adjustment for the testing statistics has been shown to be quite effective in increasing

the SNP-pair detection precision, which leads to increase in the F-measure. Because the SSP

method is approximately the same as FSD-PST, a comparison on the nominal and PMST

p-values can directly reveal the effect of accounting for inflation in the stopping criteria.

The results show that there is indeed some observable improvement in the use of PMST

p-values over the nominal one. However, the improvement is not as phenomenal as the use

of EDF adjustment, which suggests that pursuit of the EDF adjustment method is much

more rewarding. In practice, in addition to the χ2-distribution assumption for the testing

statistics, the two-parameter Gamma-distribution has also been explored. However, use of

the more complex distribution did not seem to help significantly.

Looking at the EDF adjusted results, the multi-level disease model methods do not exhibit

a definite better performance than the two-level methods of MDR and RS. The results suggest

that the use of simple disease models can still be quite appealing. The general epistasis

detection methods proposed in this chapter are able to determine flexible disease model levels,

and exhibit observably better performance than MDR and RS in some of the multi-level
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disease model examples (e.g., DMN 1-4), therefore they have complementary values to the

two-level disease model methods.
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Chapter 5

Discussion and Future Work

5.1 Summary

In this thesis, effort has been dedicated to the detection of SNP-pairs with epistasis effects,

which are modeled by two types of approaches, i.e., use of two-level and multi-level disease

models. The success of epistasis detection depends on a good estimation of the disease model

at its first step, which makes it a different problem from the typical variable selection task.

The prototype disease model approach (PTY) uses two-level DMs to capture epistasis.

The idea of it stems naturally from clustering of all the two-locus disease models and selecting

representatives to test. It overcomes the limitations observed in the existing approaches of

MDR and RS which depend on the outcome data to determine the disease models. Because

the DM determination for PTY does not depend on the outcome information, it is found to

suffer less from false positive discoveries than MDR and RS. The simulation study shows that

it can improve an overall SNP-pair detection measured by the F-measure than MDR and

RS. The real-data application also confirms that it has complementary value to the existing

MDR and RS methods in finding relevant SNPs through epistasis effects.

Due to the disease model selections in the MDR and RS methods, the association measure

of Pearson’s χ2-statistics are observed to be inflated. To address this problem, a first-order
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p-value correction is proposed that tries to estimate a more appropriate distribution to

the statistics. Based on the observation that the testing statistics still generally follow the

shape of a χ2−distribution, an assumption is made that the testing statistics still follow the

χ2−distribution but with a shifted mean. The simulation results show despite the simple

correction, the overall SNP-pair detection measured by the F-measure can be significantly

improved after the adjustment.

Both the PTY and first-order p-value adjustment methods use DMs of two-level risk,

so multi-level DMs are incorporated in the proposed SSP, SMP and FSD-PST methods to

capture more general epistasis. The multi-level DM approaches are more complicated than

the two-level ones, especially for the step of disease model determination. Because the use

of a multi-level DM requires an extra step of the level determination, different commonly

used stopping criteria have been explored. The simulation studies show that a good stopping

criterion may lead to better SNP-pair detection. The post-model selection test appears to

define a better stopping criterion than the other ones, but it only leads to slightly better

performance in SNP-pair detection. In comparison, a first-order p-value correction method

similar to that applied for the MDR and RS methods has shown to provide significantly

better results than the use of a good stopping criterion.

5.2 Future Work

The current effort on the epistasis detection as explored in this thesis has resulted in some

promising results, but at the same time also shown the complexity and challenge in the

problem. Therefore some future work is needed, examples of which are briefly discussed

below.

Firstly, for the PTY method, a disadvantage is that there is bound to be a discrepancy

between the prototype disease model used to test a SNP-pair and the true one. Therefore,

it may suffer from a power loss for SNP-pair detection. Based on this understanding, it is

interesting to reduce the bias of prototype disease models and at the same time maintain as
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much of its advantage as possible in the future research. To achieve this goal, the research

direction could be to combine the idea of PTY and MDR/RS for the determination of a

disease model for a SNP-pair, and/or use of “smarter” prototype disease model selections

that are more tailored to a specific SNP-pair.

Secondly, from the study on the use of multi-level DMs to detect epistasis, the results

support the assumption that a good stopping criterion leads to enhanced SNP-pair detection.

However, no universally best performing one has been observed among the criteria used for

SSP/SMP. Therefore, further exploration to find a better stopping criterion than the explored

ones are needed. Results comparison between the SSP and FSD-PST methods shows that the

stopping criteria for FSD-PST may approximate the true DMs better, and also lead to better

SNP-pair detection than SSP before EDF adjustment is applied for the later. By conjecture,

a stopping criterion that accounts for inflation due to disease model searching might be a

good choice. For instance, PMST is a promising direction that falls into this category, and

a more proper application of it may lead to better results for the problem. Aside from the

stopping criteria, exploring other potentially more powerful or efficient algorithms for the

disease model searching provides another research direction. Based on the rich collection of

algorithms in the machine learning community, it might be possible to take advantage of

them and study their potential to be applied at large scales.

Thirdly, the p-value adjustment method has been shown to be quite effective for the

SNP-pair detection, which indicates the importance of proper distribution estimations for the

testing statistics. The assumption that the testing statistics still follow the χ2-distribution

in the current approach is somewhat stringent, so the future work can be to relax it to

further improve the distribution estimation. Additionally, it would be useful to derive the

exact theoretical distribution of the testing statistics. Relevant endeavor on the theoretical

derivation already exists for models that are similar to the RS method [103], so it is possible

to extend the work to apply to the RS and SSP methods.

It is worth mentioning that all the epistasis detection methods explored in this thesis

can be easily extended to the detection of SNP-environment interactions. For instance, the
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effect of a risk SNP may be different due to different environmental exposures defined by

categories. Then such an effect can be identified by following similar steps to that used

in this thesis. Pursued this way, an underlying assumption is that the SNP-environment

interaction effect is in the form of a specific interaction pattern, which can be represented by

some sort of “disease model” similar to the ones described in this thesis. Compared to the

typical statistical test of an interaction term, assessing the SNP-environment interaction in

this way can improve the risk factor detection and also provide useful insight into the exact

effect of the risk factor on the disease outcomes.

Lastly, this study has limited the interaction effects to be between two SNPs, or two-way

interactions in statistical terms. In reality, higher-order interactions still possibly exist, so

it is imperative to develop methods that can target high-order interactions, specially at

the genome-wide level. This is bound to cause much computational challenge, given that

three-way interactions already require a number of tests in the magnitude of 1014. It is

possible to achieve the task through a multi-step approach, which includes filtering of SNPs

at the earlier steps. Then how to design the filtering and testing to yield more efficient

identifications remains to be a future research problem. Additionally, due to the large

number of required tests, a multiple testing problem exists. As the same SNP is present in

many different interaction terms, many of the tests can be highly correlated with each other.

Therefore how to achieve the most efficient testing for a large scale of correlated terms in the

form of interaction effects is yet to be found.
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Appendix A

All 143 Disease Models Used for

Clustering

Table A.1. 143 Disease Models

1 0 0 0 13 0 0 0 25 0 0 1 37 0 0 1 49 0 0 0 61 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1

2 0 0 0 14 0 0 0 26 0 0 0 38 0 0 1 50 0 0 0 62 0 0 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0

3 0 0 0 15 0 0 0 27 0 0 0 39 0 0 1 51 0 0 0 63 0 0 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1

0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1

4 0 0 0 16 0 0 1 28 0 0 0 40 0 0 0 52 0 0 1 64 0 0 0

0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0

0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

5 0 0 0 17 0 0 1 29 0 0 0 41 0 0 0 53 0 0 1 65 0 0 0

0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0

162



0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1

6 0 0 0 18 0 0 0 30 0 0 1 42 0 0 0 54 0 0 1 66 0 0 0

0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1

0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0

7 0 0 0 19 0 0 0 31 0 0 1 43 0 0 0 55 0 0 1 67 0 0 0

0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1

0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1

8 0 0 0 20 0 0 0 32 0 0 0 44 0 0 1 56 0 0 0 68 0 0 1

0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0

0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

9 0 0 0 21 0 0 0 33 0 0 0 45 0 0 1 57 0 0 0 69 0 0 1

0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0

0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1

10 0 0 0 22 0 0 1 34 0 0 0 46 0 0 1 58 0 0 0 70 0 0 1

0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1

0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

11 0 0 0 23 0 0 1 35 0 0 0 47 0 0 1 59 0 0 0 71 0 0 1

0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1

12 0 0 0 24 0 0 1 36 0 0 1 48 0 0 0 60 0 0 1 72 0 1 0

0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0

1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0

73 0 1 0 85 0 0 0 97 0 0 1 109 0 0 0 121 0 1 1 133 0 1 0

1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1

0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1

74 0 1 0 86 0 0 0 98 0 0 1 110 0 0 0 122 0 1 0 134 0 1 1

1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0

0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0
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75 0 1 0 87 0 0 0 99 0 0 1 111 0 0 0 123 0 1 0 135 0 1 1

1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0

0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1

76 0 1 0 88 0 0 1 100 0 0 0 112 0 0 1 124 0 1 0 136 0 1 0

1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0

0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0

77 0 1 0 89 0 0 1 101 0 0 0 113 0 0 1 125 0 1 0 137 0 1 0

1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0

0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1

78 0 1 0 90 0 0 1 102 0 0 0 114 0 0 1 126 0 1 1 138 0 1 0

1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1

0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0

79 0 1 0 91 0 0 1 103 0 0 0 115 0 0 1 127 0 1 1 139 0 1 0

1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1

0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1

80 0 1 0 92 0 0 0 104 0 0 1 116 0 1 0 128 0 1 1 140 0 1 1

1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0

0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0

81 0 1 0 93 0 0 0 105 0 0 1 117 0 1 0 129 0 1 1 141 0 1 1

1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0

0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1

82 0 1 0 94 0 0 0 106 0 0 1 118 0 1 0 130 0 1 0 142 0 1 1

1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1

0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0

83 0 1 0 95 0 0 0 107 0 0 1 119 0 1 0 131 0 1 0 143 0 1 1

1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1

0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1

84 0 0 0 96 0 0 1 108 0 0 0 120 0 1 1 132 0 1 0
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1 0 0 1 0 0 1 1 0 1 0 0 1 1 1

1 0 0 1 1 0 1 1 0 1 0 0 1 0 0
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Appendix B

Additional Material for Chapter 2

B.1 GSEA results from KEGG for genes identified by

MDR and RS

For comparison, Table B.1 lists the statistically enriched pathways from KEGG (multiple-

testing adjusted p-value < 0.05) for genes identified by MDR and Table B.2, for genes

identified by RS. Note that the WebGestalt tool, which we used to perform GSEA (see

Section 5.3 of main text), restricts the number of overlapping genes from the candidate and

reference lists to be at least 2 — i.e., both O and C must be ≥ 2 in the tables below. This

explains why Table B.2 is so short, and corroborates to a certain extent our finding that RS

tends to produce the most inflated (nominal) measure of association (see Section 2.3 and

Table 6 of main text).
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Table B.1. Analysis of bipolar disorder data. GSEA results from KEGG for genes
identified by MDR. O = number of genes in the discovered set; C = total number of genes in
the given pathway.

Adjusted
Line Name O C p-value
1 oocyte meiosis 3 124 0.001
2 adrenergic signaling in cardiomyocytes 3 149 0.002
3 bile secretion 2 71 0.007
4 human T-cell leukemia virus 1 infection 3 255 0.009
5 insulin secretion 2 85 0.010
6 HTLV-I infection 3 258 0.010
7 progesterone-mediated oocyte maturation 2 98 0.013
8 cell cycle 2 124 0.020
9 phospholipase D signaling pathway 2 144 0.027

Table B.2. Analysis of bipolar disorder data. GSEA results from KEGG for genes
identified by RS. O = number of genes in the discovered set; C = total number of genes in
the given pathway.

Adjusted
Line Name O C p-value
1 oocyte meiosis 2 124 0.002

B.2 GSEA results from Gene Ontology and Pathway

Commons for genes identified by PTY

Gene Ontology

Table B.3 lists the statistically enriched pathways from Gene Ontology (multiple-testing

adjusted p-value < 0.05). Quite a few of them turned out to be related to neurons and/or

neuronal activities, which to some extent confirmed the relevance of the gene set we identified.

For example, the pathway labelled “regulation of synaptic plasticity” (line 1) is highly relevant

to both the pathophysiology and the treatment of bipolar disorder [113]. Animal models have

also shown that over-strengthened and/or weakened synapses at different circuits in the brain

can disturb brain functions in parallel, causing manic-like or depressive-like behaviors [114].

Similarly, the pathway labelled “neuropeptide signaling” (line 3) is integral to the modulation

of membrane excitability, synaptic transmission and synaptic development [115]; while the
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one labelled “neuron projection” (line 11) has previously been reported to be enriched in a

GWAS of bipolar disorder [116].

Table B.3. Analysis of bipolar disorder data. GSEA results from Gene Ontoloty. O =
number of genes in the discovered set; C = total number of genes in the given pathway.

p-value
Line Name O C Nominal Adjusted
1 regulation of synaptic plasticity 4 96 0.0009 0.05
2 generation of neurons 13 1073 0.0009 0.05
3 neuropeptide signalling pathway 4 89 0.0007 0.05
4 optic nerve development 2 8 0.0006 0.05
5 organonitrogen compound biosynthetic process 18 1688 0.0004 0.05
6 oligosaccharide metabolic process 3 37 0.0006 0.05
7 neuron recognition 3 30 0.0003 0.05
8 cell recognition 4 77 0.0004 0.05
9 ion binding 38 5820 0.0004 0.04
10 axon 8 286 ≪ 0.0001 < 0.01
11 neuron projection 11 651 ≪ 0.0001 < 0.01

Pathway Commons

Table B.4 lists the statistically enriched pathways from Pathway Commons (multiple-testing

adjusted p-values < 0.1). Quite a few of them have been associated with various neural

activities, neural disorders, and specifically bipolar disorder itself. For example, insulin (line

1) plays a critical role in the central nervous system, contributing to physiological processes

such as neuroplasticity, neuromodulation, and neurotrophism [117]. Animal experiments

have also shown that the injection of insulin in the brain increases both the amount and

the activity of dopamine transporters, which may play a role in bipolar disorder [118]. The

ephrin/eph signaling pathway (lines 5 and 9) affects the structure and connectivity of the

dopaminergic pathway [119], and it also coordinates multiple aspects of neural development

such as cell migration and axon targeting [120]. The Arf6 downstream pathway (lines 13,

14 and 18) regulates neuronal migration [121]. The N-cadherin (line 51) is important for

asymmetrical cellular processes in developing neurons and for regulating neuronal polarity [122,

123]. Altered CDC42 signaling pathways (lines 53 and 54) have been observed in patients
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schizophrenia [124] and, finally, evidence is also emerging that the Wnt pathway (lines 61, 64

and 68) is important for bipolar disorder [125–127].

In addition, many pathways in this table (e.g., lines 4, 7, 9, 10, 11, 12, and so on) are

related to cell signaling. Neurotransmitters are, of course, important signaling molecules; and

so are hormones, and many of them (e.g., glucocorticoids, thyroid hormones and gonadal

steroids) are known to mediate symptoms observed in mood disorders, e.g., triggering of

episodes in the postpartum period [128]. There has also been recent, specific suggestions

that some signal transduction pathways may play an integral role in the pathophysiology

and treatment of bipolar disorder [128].
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Table B.4. Analysis of bipolar disorder data. GSEA results from Pathway Commons. O = number of genes in the
discovered set; C = total number of genes in the given pathway.

p-value

Line Name O C Nominal Adjusted

1 Insulin Pathway 8 1288 0.0015 0.0034

2 Thrombin/protease-activated receptor (PAR) pathway 8 1300 0.0016 0.0034

3 S1P1 pathway 8 1288 0.0015 0.0034

4 IL5-mediated signaling events 8 1292 0.0015 0.0034

5 EphrinB-EPHB pathway 3 60 0.0001 0.0034

6 Signaling events mediated by focal adhesion kinase 8 1288 0.0015 0.0034

7 ErbB receptor signaling network 9 1312 0.0004 0.0034

8 IGF1 pathway 8 1291 0.0015 0.0034

9 Ephrin B reverse signaling 2 30 0.0012 0.0034

10 mTOR signaling pathway 8 1288 0.0015 0.0034

11 LKB1 signaling events 8 1308 0.0016 0.0034

12 PAR1-mediated thrombin signaling events 8 1299 0.0016 0.0034

13 Arf6 downstream pathway 8 1288 0.0015 0.0034

14 Arf6 trafficking events 8 1288 0.0015 0.0034

15 Internalization of ErbB1 8 1288 0.0015 0.0034

16 Signaling events mediated by VEGFR1 and VEGFR2 8 1296 0.0016 0.0034

17 Endothelins 8 1307 0.0016 0.0034

(continued on next page ...)
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Table B.4 (... continued from previous page)

p-value

Line Name O C Nominal Adjusted

18 Arf6 signaling events 8 1288 0.0015 0.0034

19 PDGFR-beta signaling pathway 8 1288 0.0015 0.0034

20 Class I PI3K signaling events mediated by Akt 8 1288 0.0015 0.0034

21 Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling 8 1288 0.0015 0.0034

22 IL3-mediated signaling events 8 1295 0.0015 0.0034

23 PDGF receptor signaling network 8 1293 0.0015 0.0034

23 Metabolism 7 824 0.0005 0.0034

24 IFN-gamma pathway 8 1296 0.0016 0.0034

25 Alpha9 beta1 integrin signaling events 8 1305 0.0016 0.0034

26 Plasma membrane estrogen receptor signaling 8 1301 0.0016 0.0034

27 Metabolism of amino acids and derivatives 4 188 0.0003 0.0034

28 EGF receptor (ErbB1) signaling pathway 8 1288 0.0015 0.0034

29 ErbB1 downstream signaling 8 1288 0.0015 0.0034

30 Nectin adhesion pathway 8 1295 0.0015 0.0034

31 Amine-derived hormones 2 14 0.0003 0.0034

32 Class I PI3K signaling events 8 1288 0.0015 0.0034

33 Syndecan-1-mediated signaling events 8 1300 0.0016 0.0034

34 Glypican 1 network 8 1299 0.0016 0.0034

(continued on next page ...)
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Table B.4 (... continued from previous page)

p-value

Line Name O C Nominal Adjusted

35 GMCSF-mediated signaling events 8 1292 0.0015 0.0034

36 VEGF and VEGFR signaling network 8 1304 0.0016 0.0034

37 Proteoglycan syndecan-mediated signaling events 9 1345 0.0004 0.0034

38 EGFR-dependent Endothelin signaling events 8 1289 0.0015 0.0034

39 Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met) 8 1293 0.0015 0.0034

40 Sphingosine 1-phosphate (S1P) pathway 8 1311 0.0017 0.0035

41 TRAIL signaling pathway 8 1328 0.0018 0.0036

42 Glypican pathway 8 1338 0.0019 0.0038

43 Beta1 integrin cell surface interactions 8 1351 0.0020 0.0039

44 EPHB forward signaling 2 40 0.0021 0.0040

45 Integrin family cell surface interactions 8 1378 0.0023 0.0043

46 AP-1 transcription factor network 5 623 0.0041 0.0074

47 Integrin-linked kinase signaling 5 656 0.0051 0.0090

48 Signaling by SCF-KIT 2 66 0.0057 0.0099

49 Axon guidance 3 219 0.0062 0.0105

50 Posttranslational regulation of adherens junction stability and dissassembly 3 231 0.0072 0.0120

51 N-cadherin signaling events 3 251 0.0090 0.0144

52 Integration of energy metabolism 2 83 0.0088 0.0144

(continued on next page ...)
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Table B.4 (... continued from previous page)

p-value

Line Name O C Nominal Adjusted

53 CDC42 signaling events 5 757 0.0093 0.0146

54 Regulation of CDC42 activity 5 770 0.0099 0.0153

55 Stabilization and expansion of the E-cadherin adherens junction 3 275 0.0115 0.0171

56 E-cadherin signaling in the nascent adherens junction 3 275 0.0115 0.0171

57 E-cadherin signaling events 3 280 0.0121 0.0177

58 Regulation of nuclear beta catenin signaling and target gene transcription 2 135 0.0221 0.0317

59 Validated transcriptional targets of AP1 family members Fra1 and Fra2 2 136 0.0224 0.0317

60 EGFR1 2 138 0.0230 0.0320

61 Canonical Wnt signaling pathway 2 155 0.0286 0.0392

62 Regulation of p38-alpha and p38-beta 2 164 0.0317 0.0428

63 Developmental Biology 3 433 0.0373 0.0495

64 Noncanonical Wnt signaling pathway 2 182 0.0383 0.0501

65 p53 pathway 2 189 0.0410 0.0520

66 p38 MAPK signaling pathway 2 189 0.0410 0.0520

67 CXCR4-mediated signaling events 2 192 0.0422 0.0527

68 Wnt signaling network 2 200 0.0454 0.0559

69 Glypican 3 network 2 206 0.0478 0.0580

70 Syndecan-4-mediated signaling events 2 209 0.0491 0.0588

(continued on next page ...)
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Table B.4 (... continued from previous page)

p-value

Line Name O C Nominal Adjusted

71 BMP receptor signaling 2 226 0.0564 0.0666

72 Signal Transduction 5 1231 0.0576 0.0671

73 IL1-mediated signaling events 2 234 0.0599 0.0688

74 ATR signaling pathway 2 250 0.0673 0.0763
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B.3 A numeric example illustrating the similarity met-

ric Φ(M ′,M)

Consider a pair of SNPs, each with MAF=0.2. Suppose that the true disease model is M ,

and that there are two potential prototypes, M ′ or M ′′, as shown below. Which candidate is

more similar to, and hence a better prototype for, M?

P(Gi)

AA Aa aa

BB 0.4096 0.2048 0.0256

Bb 0.2048 0.1024 0.0128

bb 0.0256 0.0128 0.0016

M

AA Aa aa

BB 0 0 0

Bb 0 1 1

bb 0 1 1

M ′

AA Aa aa

BB 0 0 1

Bb 0 1 1

bb 1 1 0

M ′′

AA Aa aa

BB 0 0 0

Bb 0 1 0

bb 0 0 0

Here, model M ′ differs from M on the genotypes, aaBB, AAbb and aabb, with

W ′
11 = 0.1280, W ′

10 = 0.0016, W ′
01 = 0.0512, W ′

00 = 0.8192;

and model M ′′ differs from M on the genotypes, aaBb, Aabb and aabb, with

W ′′
11 = 0.1024, W ′′

10 = 0.0272, W ′′
01 = 0.0000, W ′′

00 = 0.8704.

The entries for which M ′ ̸= M are emboldened in the table above, and so are those for which

M ′′ ̸= M .
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Overall, M ′′ has less disagreement with M than does M ′, as can be seen from the inequality:

∑
k ̸=ℓ

W ′′
kℓ = (0.0272 + 0.0000) < (0.0016 + 0.0512) =

∑
k ̸=ℓ

W ′
kℓ.

However, while M ′ has more disagreement with M overall, it actually has more agreement

with M than does M ′′ on the set G1 ≡ {Gi : M(Gi) = 1}—i.e., not only AaBb but

also aaBb and Aabb, although it also has additional disagreements with M on the set

G0 ≡ {Gi : M(Gi) = 0}—i.e., aaBB, AAbb, whereas M ′′ agrees with M completely on G0.

The similarity metric Φ is acutely sensitive to such a difference. On population data

(r = r0; see Section 6 of main text), we have

U

V
= 1 ⇒ Φ(M ′,M) = 0.273 and Φ(M ′′,M) = 0.294,

so M ′′ would be considered more similar to, and hence a better prototype for, M . However,

on case-control data (r ≫ r0), the ratio U/V ≈ P1/P0 > 1; see, again, Section 6 of main text.

As a concrete example here, suppose U/V ≈ P1/P0 = 5, which is a fairly typical value in

practice; then, we get

U

V
= 5 ⇒ Φ(M ′,M) = 0.310 and Φ(M ′′,M) = 0.278,

so M ′ would be considered a better prototype for M instead of M ′′. We think this is a

desirable property of our similarity metric Φ, in that it is more important for a prototype

candidate M ′ to agree with M on the set G1 than on G0.
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Appendix C

Additional Material for Chapter 4

C.1 Proof of the Equivalance between Forward Selec-

tion on Transformed Variables and General Ratio

Split Procedure

1. Proof. The 9th variable in XD̃−1 is X(1, · · · , 1)T = 1T
1×n, because as dummy variables,

Xi’s sum up to one. Therefore it is a constant and in the loss function |y −XD̃−1θ|2,

it is equivalent to the role of an intercept.

2. Proof. For step 1, X1 =
1
2

∑j
l=1Xl − 1

2
(1−

∑j
l=1Xl) =

∑j
l=1Xl − 1

2
, so the right hand

side of Eq. 4.19 becomes

γ0 + γ1(

j∑
l=1

Xl −
1

2
) = γ0 −

1

2
γ1 + γ1

j∑
l=1

Xl (C.1)

On the other hand, the regression coefficient difference βg11j
−βg12j

is from the regression

model
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log
p(y = 1)

p(y = 0)
= βg11j

j∑
l=1

Xl + βg12j

9∑
l=j+1

Xl = βg11j

j∑
l=1

Xl + βg12j
(1−

j∑
l=1

Xl)

= (βg11j
− βg12j

)

j∑
l=1

Xl + βg12j

Compare to Eq. C.1, it indicates βg11j
− βg12j

= γ1.

For a general step k, notice the Xk is composed of two groups of dummies that together

form one of the split group at step k − 1. Without loss of generality, assume the split

order is j1 < j2 < · · · < jk−1, and we are exploring the k split to be at j. Use Ti to

denote
∑ji

l=ji−1
Xl, i = 1, 2, · · · , k − 1, Tk =

∑j
l=jk−1

Xl and Tk+1 =
∑9

l=j+1 Xl, then we

have

X1 =
1

2
(

j1∑
l=1

Xl −
9∑

l=j1+1

Xl) =
1

2
− (T2 + · · ·+ Tk+1)

Xi =
1

2
(

ji∑
l=ji−1

Xl −
9∑

l=ji+1

Xl) =
1

2
(Ti − Ti+1 − · · · − Tk+1), 2 ≤ i < k

Xk =
1

2
(

j∑
l=jk−1

Xl −
9∑

l=j+1

Xl) =
1

2
(Tk − Tk+1)

And so

k∑
i=1

γiXi =
1

2
(γ1 + (γ2 − 2γ1)T2 + (γ3 − γ2 − 2γ1)T3 + · · ·+ (γk − γk−1

− · · · − γ2 − 2γ1)Tk − (γk + γk−1 + · · ·+ γ2 + 2γ1)Tk+1). (C.2)

On the other hand, βgk1j
− βgk2j

is from the regression model
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log
p(y = 1)

p(y = 0)
= βgk1j1

T1 + · · ·+ βgk1jk−1

Tk−1 + βgk1j
Tk + βgk2j

Tk+1

= βgk1j1
(1− T2 − · · · − Tk+1) + · · ·+ βgk1jk−1

Tk−1 + βgk1j
Tk + βgk2j

Tk+1

= βgk1j1
+ (βgk1j2

− βgk1j1
)T2 + · · ·+ (βgk1jk

− βgk1j1
)Tk + (βgk1jk+1

− βgk1j1
)Tk+1

Compare coefficients to the ones in Eq. C.2 we get
1
2
(γk − γk−1 − · · · − γ2 − 2γ1) = βgk1jk

− βgk1j1

1
2
(γk + γk−1 + · · ·+ γ2 + 2γ1) = βgk1j1

− βgk1jk+1

Sum the left and right hand side we get γk = βgk1jk
− βgk1jk+1

.

3. Proof. The two variables can be simplified as

U1
j = −9− j

9
(X1 + · · ·Xj) +

j

9
(Xj+1 + · · ·X9) := −

9− j

9
T1 +

j

9
(1− T̄1) = −T1 +

j

9

V 1
j = −1

2
(X1 + · · ·Xj) +

1

2
(Xj+1 + · · ·X9) := −

1

2
T1 +

1

2
T2 =

1

2
− T1

So the center of the two variables are

Ū1
j = −T̄1 +

j

9
,

V̄ 1
j = −T̄1 +

1

2
.
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Taking out the center of them we get

U1
j − Ūj = −(T1 − T̄1)

V 1
j − V̄j = −(T1 − T̄1)

Therefore

V 1
j − V̄ 1

j = U1
j − Ū1

j .

4. Proof. From 3 we know V 1
j − V̄ 1

j = U1
j − Ū1

j , so it suffices to show

(V 1
j − V̄ 1

j )
TP⊥

A = (V k
j − V̄ k

j )
TP⊥

A . (C.3)

We have

V k
j = V 1

j − T k
1 + T k

2

for some T k
1 , T

k
2 as summations of the original Xi’s (they could be the empty set as

well). And so additionally we have

V̄ k
j = V̄ 1

j − T̄ k
1 + T̄ k

2

Plug back to Eq. C.3, we get that it suffices to show

(T k
2 − T k

1 − T̄ k
2 + T̄ k

1 )
TP⊥

A = 0

Notice XA is the design matrix for already selected variables, so T k
1 and T k

2 are

summations of dummies variables all included in A. This indicate both T k
1 and T k

2 are

linear functions of XA, so we have
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(T k
2 − T k

1 − T̄ k
2 + T̄ k

1 )
T = XAc

for some constant vector c.

Therefore

(T k
2 − T k

1 − T̄ k
2 + T̄ k

1 )
TXA = cTXT

AXA

And so

(T k
2 − T k

1 − T̄ k
2 + T̄ k

1 )
TP⊥

A = (T k
2 − T k

1 − T̄ k
2 + T̄ k

1 )
T (I −XA(X

T
AXA)

−1XA)

= T k
2 − T k

1 − T̄ k
2 + T̄ k

1 − cTXT
AXA(X

T
AXA)

−1XA

= cTXT
A − cTXT

A = 0.

C.2 Sequential Merge Procedure

C.2.1 Procedure Overview

Flexible levels of risk model is achieved by sorting the nine genotype combinations based on

the case-to-control ratios, and then sequentially merging the neibours.
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Example C.2.1. General Merging Example

Step 1: X1 |
merge 1︷ ︸︸ ︷
X2 X3 | X4 | X5 | X6 | X7 | X8 | X9

Step 2: X1 |
merge 2︷ ︸︸ ︷

X2 X3 X4 | X5 | X6 | X7 | X8 | X9

Step 3: X1 |
merge 2︷ ︸︸ ︷

X2 X3 X4 | X5 |
merge 3︷ ︸︸ ︷
X6 X7 | X8 | X9

...

Step 8:

merge 8︷ ︸︸ ︷
X1 X2 X3 X4 X5 X6 X7 X8 X9

In general, the sequential merge is done in the following steps:

Step 1 Test each one of the eight possible splits (see illustration below) and select the one with

the best fit.

Candidate Merge 1:
︷ ︸︸ ︷
X1 X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9

Candidate Merge 2: X1 |
︷ ︸︸ ︷
X2 X3 | X4 | X5 | X6 | X7 | X8 | X9

...

Candidate Merge 8: X1 | X2 | X3 | X4 | X5 | X6 | X7 |
︷ ︸︸ ︷
X8 X9

Step 2 Fix the first merge place and explore the rest seven places for a possible second merge

(see illustration below). Perform a proper test taking into consideration of the first one

and select the best.
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Candidate Merge 1:
︷ ︸︸ ︷
X1 X2 | X3 |

Step 1 Merge︷ ︸︸ ︷
X4 X5 | X6 | X7 | X8 | X9

Candidate Merge 2: X1 |
︷ ︸︸ ︷
X2 X3 |

Step 1 Merge︷ ︸︸ ︷
X4 X5 | X6 | X7 | X8 | X9

Candidate Merge 3: X1 | X2 |

︷ ︸︸ ︷
X3

Step 1 Merge︷ ︸︸ ︷
X4 X5 | X6 | X7 | X8 | X9

...

Candidate Merge 8: X1 | X2 | X3 |
Step 1 Merge︷ ︸︸ ︷
X4 X5 | X6 | X7 |

︷ ︸︸ ︷
X8 X9

Step 3 Continue the procedure similar to step 2 while fixing the existing merges till all G′
is

form one group.

Step 4 When the merging process is finished, refit to quantify the association of the SNP-pair

and the outcome by the merge at each step (representing a different level of disease

model), and select a final disease model out of all levels by the use of the same stopping

criteria as applied for the general splitting procedure, i.e., minimum of

� “nominal” P-value as used in Section 3.2

� AIC

� BIC

� p-value from LRT test

C.2.2 Testing Statistics for a General Merge Step

The testing statitics for derterming the best merge place at each step is chosen to be the

standardized coefficient difference of two to-be-merging groups, and the most significant one

is selected.

At step k, assume the existing groups are G1, G2, · · · , G10−k, then the candidate merges
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are the following: (G1, G2), (G2, G3), · · · , (G9−k, G10−k). For the jth candidate merge, the

following logistic regression is fit,

log
p(y = 1)

p(y = 0)
= β1XG1 + · · ·+ βjXGj

+ βj+1XGj+1
+ · · ·+ β9−kXG9−k

, (C.4)

for j = 1, 2, · · · , 9− k, and the testing statistic is

Zj =
ˆβj+1 − β̂j

̂std ( ˆβj+1 − β̂j)
∼ N(0, 1).

The merge is chosen to be jk for which

|Zjk | < |Zj|, j ∈ {1, 2, · · · , 9− k} − {jk}.

The rest of the general merging steps are the same as the general split procedure, i.e.,

the final disease model is chosen among models of all levels and refitted to the SNP-pair to

obtain a χ2-statistic, and the statistic is evaluated using adjusted degree of freedom to be

used as the SNP-pair ranking measure.

C.2.3 Response Surface Model Results

Figure C.1 provides some histogram examples for the χ2-statistics generated using the null

data, and the response surface model results for SMP are summarized in Table C.1. The

statistics are observed to generally follow the shape of χ2-distribution.

184



Table C.1. Parameter estimates of the response surface model for the sequential merge
procedures under the null distribution. The model equation is given in Eq. 4.20.

Stopping Criteria Parameter Estimate Std P-value R2 Adjusted R2

Nominal P-value

β0 -0.647 0.127 5.05E-07

0.951 0.951

β1 12.630 0.281 7.62E-185

β2 -13.782 0.314 1.67E-180

β3 13.728 0.847 2.01E-48

β4 -13.250 1.302 2.25E-22

β5 3.929 0.397 2.18E-21

β6 -14.727 1.438 1.25E-22

β7 13.672 2.209 1.19E-09

AIC

β0 -1.086 0.117 5.62E-19

0.968 0.967

β1 11.872 0.260 4.07E-188

β2 -13.924 0.290 2.64E-197

β3 13.262 0.783 5.44E-52

β4 -12.244 1.203 2.16E-22

β5 4.274 0.366 3.13E-28

β6 -7.797 1.328 7.52E-09

β7 5.301 2.040 9.62E-03

BIC

β0 -0.423 0.069 1.89E-09

0.985 0.984

β1 9.020 0.153 5.80E-238

β2 -10.578 0.171 6.54E-248

β3 10.103 0.461 1.07E-76

β4 -9.997 0.708 9.74E-39

β5 4.227 0.216 4.90E-65

β6 -5.006 0.782 3.35E-10

β7 4.158 1.202 5.83E-04

LRT

β0 0.574 0.078 8.08E-13

0.970 0.969

β1 7.038 0.173 5.62E-167

β2 -7.876 0.193 2.81E-167

β3 9.412 0.521 1.91E-57

β4 -9.702 0.801 4.47E-30

β5 3.157 0.244 1.32E-33

β6 -5.015 0.884 2.28E-08

β7 4.759 1.358 4.96E-04
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(a) MAF1=0.1 MAF2=0.1 n=300

(b) MAF1=0.1 MAF2=0.1 n=300

(c) MAF1=0.1 MAF2=0.4 n=300

(d) MAF1=0.1 MAF2=0.4 n=600
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(e) MAF1=0.25 MAF2=0.25 n=300

(f) MAF1=0.25 MAF2=0.25 n=600

(g) MAF1=0.4 MAF2=0.4 n=300

(h) MAF1=0.4 MAF2=0.4 n=600

Fig C.1. Histograms of {χ̂2
s : s = 1, 2, ..., S} (for the SMP method) versus the χ2

(EDF)

density functions, where EDF is computed by Eq. (3.2), for some specific combinations of
(MAF1,MAF2, n) and four commonly used stopping criterias. While the χ2

(EDF) density
functions are not perfect fits of the underlying histograms, they are reasonable
approximations as first-order corrections.
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C.3 Simulation Study Results for SSP and SMP

The table C.2 provides the recall, precision, F-measure and determined disease model DF for

the SSP and SMP methods under all their respective stopping criteria, with and without

EDF adjustment on the SNP-pair association test p-value. Figure C.2 presents the DF values

and Figure C.3 presents the F-measures, all in barplots for better view of the results.

Table C.2. Results for the simulation study on the P-value adjustment for the SSP, SMP
and FSD-PST methods.

Model MAF Method Stopping Criteria Precision Recall F-measure DF

T 0.1 Merge Nomi P 0.045 0.155 0.070 1.968

AIC 0.042 0.140 0.065 2.375

BIC 0.046 0.125 0.067 1.720

LRT 0.065 0.110 0.081 1.568

Nomi P Adj EDF 0.313 0.053 0.090 3.901

AIC Adj EDF 0.315 0.103 0.155 3.449

BIC Adj EDF 0.317 0.063 0.104 3.033

LRT Adj EDF 0.603 0.045 0.084 3.548

Nomi P Adj Match 0.405 0.078 0.130 3.638

AIC Adj Match 0.317 0.115 0.169 3.227

BIC Adj Match 0.330 0.075 0.122 2.870

LRT Adj Match 0.597 0.048 0.088 3.379

Split Nomi P 0.039 0.140 0.061 2.018

AIC 0.032 0.123 0.051 2.673

BIC 0.047 0.125 0.068 1.800

LRT 0.050 0.090 0.064 1.611

Nomi P Adj EDF 0.310 0.055 0.093 3.873

AIC Adj EDF 0.326 0.108 0.162 3.450

BIC Adj EDF 0.296 0.070 0.113 3.065

LRT Adj EDF 0.597 0.048 0.088 3.578
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Nomi P Adj Match 0.395 0.075 0.126 3.610

AIC Adj Match 0.329 0.125 0.181 3.224

BIC Adj Match 0.298 0.075 0.120 2.877

LRT Adj Match 0.613 0.048 0.088 3.398

FST Post P 0.086 0.175 0.115 1.257

Post P Adj EDF 0.130 0.020 0.035 3.860

Post P Adj Match 0.168 0.030 0.051 3.596

T 0.4 Merge Nomi P 0.072 0.988 0.134 1.623

AIC 0.074 0.983 0.137 2.046

BIC 0.084 0.980 0.154 1.209

LRT 0.130 0.978 0.230 1.000

Nomi P Adj EDF 0.388 0.753 0.512 5.833

AIC Adj EDF 0.305 0.793 0.440 5.598

BIC Adj EDF 0.329 0.750 0.458 4.929

LRT Adj EDF 0.657 0.695 0.675 4.947

Nomi P Adj Match 0.389 0.745 0.511 5.910

AIC Adj Match 0.305 0.798 0.441 5.582

BIC Adj Match 0.317 0.750 0.446 4.905

LRT Adj Match 0.653 0.695 0.674 4.916

Split Nomi P 0.075 0.988 0.139 1.620

AIC 0.077 0.983 0.143 2.125

BIC 0.087 0.980 0.160 1.171

LRT 0.129 0.978 0.229 1.000

Nomi P Adj EDF 0.372 0.758 0.499 5.728

AIC Adj EDF 0.300 0.793 0.435 5.566

BIC Adj EDF 0.333 0.718 0.455 5.007

LRT Adj EDF 0.671 0.688 0.679 5.027

Nomi P Adj Match 0.376 0.755 0.502 5.796
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AIC Adj Match 0.302 0.800 0.438 5.555

BIC Adj Match 0.322 0.725 0.446 4.978

LRT Adj Match 0.662 0.693 0.677 4.992

FST Post P 0.099 0.970 0.180 1.307

Post P Adj EDF 0.389 0.685 0.496 5.726

Post P Adj Match 0.391 0.683 0.497 5.795

MOD 0.1 Merge Nomi P 0.017 0.753 0.033 1.711

AIC 0.018 0.738 0.034 1.892

BIC 0.021 0.723 0.041 1.190

LRT 0.030 0.708 0.058 1.106

Nomi P Adj EDF 0.046 0.433 0.083 3.894

AIC Adj EDF 0.042 0.490 0.077 3.423

BIC Adj EDF 0.036 0.383 0.066 3.003

LRT Adj EDF 0.079 0.295 0.125 3.531

Nomi P Adj Match 0.054 0.453 0.096 3.614

AIC Adj Match 0.044 0.513 0.080 3.208

BIC Adj Match 0.043 0.408 0.078 2.849

LRT Adj Match 0.098 0.325 0.150 3.352

Split Nomi P 0.018 0.743 0.035 1.899

AIC 0.019 0.718 0.037 2.258

BIC 0.021 0.718 0.041 1.484

LRT 0.030 0.643 0.057 1.206

Nomi P Adj EDF 0.048 0.445 0.086 3.866

AIC Adj EDF 0.043 0.525 0.080 3.440

BIC Adj EDF 0.041 0.405 0.075 3.023

LRT Adj EDF 0.069 0.260 0.109 3.554

Nomi P Adj Match 0.057 0.480 0.102 3.588

AIC Adj Match 0.044 0.543 0.081 3.221
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BIC Adj Match 0.051 0.440 0.091 2.866

LRT Adj Match 0.065 0.283 0.106 3.368

FST Post P 0.022 0.713 0.043 1.126

Post P Adj EDF 0.037 0.298 0.065 3.866

Post P Adj Match 0.044 0.335 0.078 3.578

MOD 0.4 Merge Nomi P 0.020 0.995 0.040 1.681

AIC 0.021 0.995 0.041 2.188

BIC 0.024 0.993 0.048 1.242

LRT 0.036 0.993 0.070 1.000

Nomi P Adj EDF 0.143 0.883 0.246 5.839

AIC Adj EDF 0.113 0.913 0.202 5.606

BIC Adj EDF 0.122 0.885 0.214 4.939

LRT Adj EDF 0.311 0.840 0.454 4.953

Nomi P Adj Match 0.149 0.880 0.255 5.915

AIC Adj Match 0.109 0.913 0.195 5.587

BIC Adj Match 0.122 0.888 0.214 4.914

LRT Adj Match 0.313 0.843 0.457 4.925

Split Nomi P 0.021 0.995 0.041 1.613

AIC 0.022 0.995 0.042 2.211

BIC 0.025 0.993 0.049 1.199

LRT 0.034 0.993 0.067 1.000

Nomi P Adj EDF 0.139 0.885 0.241 5.733

AIC Adj EDF 0.111 0.910 0.197 5.574

BIC Adj EDF 0.131 0.875 0.227 5.017

LRT Adj EDF 0.314 0.848 0.458 5.035

Nomi P Adj Match 0.138 0.878 0.238 5.800

AIC Adj Match 0.107 0.910 0.191 5.560

BIC Adj Match 0.130 0.878 0.226 4.988
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LRT Adj Match 0.318 0.850 0.463 5.001

FST Post P 0.027 0.985 0.053 1.223

Post P Adj EDF 0.155 0.843 0.262 5.731

Post P Adj Match 0.151 0.835 0.255 5.799

DD 0.1 Merge Nomi P 0.075 0.988 0.139 1.334

AIC 0.080 0.988 0.147 1.585

BIC 0.086 0.985 0.159 1.033

LRT 0.110 0.983 0.199 1.000

Nomi P Adj EDF 0.398 0.930 0.557 3.893

AIC Adj EDF 0.308 0.945 0.465 3.416

BIC Adj EDF 0.384 0.933 0.544 3.000

LRT Adj EDF 0.585 0.915 0.714 3.527

Nomi P Adj Match 0.386 0.935 0.546 3.619

AIC Adj Match 0.300 0.948 0.456 3.215

BIC Adj Match 0.382 0.940 0.543 2.863

LRT Adj Match 0.564 0.920 0.699 3.366

Split Nomi P 0.075 0.988 0.139 1.359

AIC 0.079 0.988 0.146 1.782

BIC 0.089 0.985 0.163 1.086

LRT 0.110 0.983 0.197 1.000

Nomi P Adj EDF 0.390 0.928 0.549 3.863

AIC Adj EDF 0.306 0.943 0.462 3.430

BIC Adj EDF 0.395 0.930 0.555 3.020

LRT Adj EDF 0.589 0.908 0.715 3.545

Nomi P Adj Match 0.379 0.933 0.539 3.594

AIC Adj Match 0.300 0.945 0.456 3.225

BIC Adj Match 0.393 0.940 0.554 2.880

LRT Adj Match 0.567 0.915 0.700 3.381
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FST Post P 0.096 0.980 0.175 1.385

Post P Adj EDF 0.393 0.908 0.549 3.859

Post P Adj Match 0.390 0.913 0.547 3.591

DD 0.4 Merge Nomi P 0.007 1.000 0.014 1.950

AIC 0.007 1.000 0.015 2.105

BIC 0.008 1.000 0.015 1.175

LRT 0.008 1.000 0.017 1.000

Nomi P Adj EDF 0.043 0.990 0.083 5.840

AIC Adj EDF 0.031 0.995 0.061 5.609

BIC Adj EDF 0.034 0.990 0.066 4.943

LRT Adj EDF 0.099 0.988 0.180 4.958

Nomi P Adj Match 0.040 0.988 0.078 5.916

AIC Adj Match 0.031 0.995 0.061 5.588

BIC Adj Match 0.034 0.990 0.066 4.916

LRT Adj Match 0.097 0.990 0.177 4.928

Split Nomi P 0.007 1.000 0.014 1.350

AIC 0.007 1.000 0.015 2.143

BIC 0.008 1.000 0.015 1.155

LRT 0.008 1.000 0.017 1.000

Nomi P Adj EDF 0.040 0.988 0.077 5.735

AIC Adj EDF 0.031 0.998 0.060 5.577

BIC Adj EDF 0.040 0.993 0.076 5.022

LRT Adj EDF 0.103 0.990 0.187 5.040

Nomi P Adj Match 0.040 0.988 0.077 5.801

AIC Adj Match 0.031 0.995 0.060 5.561

BIC Adj Match 0.038 0.993 0.074 4.991

LRT Adj Match 0.101 0.990 0.183 5.005

FST Post P 0.008 1.000 0.016 1.153
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Post P Adj EDF 0.049 0.980 0.094 5.735

Post P Adj Match 0.049 0.980 0.094 5.800

XOR 0.1 Merge Nomi P 0.061 0.923 0.114 1.444

AIC 0.064 0.915 0.120 1.710

BIC 0.079 0.913 0.145 1.077

LRT 0.129 0.910 0.225 1.008

Nomi P Adj EDF 0.242 0.670 0.355 3.892

AIC Adj EDF 0.171 0.763 0.280 3.419

BIC Adj EDF 0.238 0.705 0.356 3.002

LRT Adj EDF 0.487 0.610 0.542 3.530

Nomi P Adj Match 0.256 0.710 0.377 3.619

AIC Adj Match 0.185 0.788 0.300 3.214

BIC Adj Match 0.248 0.733 0.371 2.859

LRT Adj Match 0.493 0.643 0.558 3.362

Split Nomi P 0.066 0.918 0.123 1.605

AIC 0.070 0.908 0.129 1.997

BIC 0.082 0.913 0.150 1.293

LRT 0.127 0.900 0.223 1.028

Nomi P Adj EDF 0.224 0.685 0.338 3.863

AIC Adj EDF 0.162 0.763 0.267 3.433

BIC Adj EDF 0.226 0.695 0.341 3.022

LRT Adj EDF 0.439 0.553 0.490 3.549

Nomi P Adj Match 0.243 0.723 0.363 3.595

AIC Adj Match 0.182 0.793 0.296 3.226

BIC Adj Match 0.239 0.728 0.360 2.877

LRT Adj Match 0.435 0.560 0.490 3.378

FST Post P 0.087 0.900 0.158 1.247

Post P Adj EDF 0.278 0.638 0.388 3.864
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Post P Adj Match 0.290 0.673 0.405 3.596

XOR 0.4 Merge Nomi P 0.077 0.998 0.144 1.637

AIC 0.081 0.998 0.149 2.110

BIC 0.090 0.998 0.164 1.226

LRT 0.122 0.990 0.217 1.000

Nomi P Adj EDF 0.529 0.900 0.667 5.840

AIC Adj EDF 0.425 0.925 0.583 5.607

BIC Adj EDF 0.462 0.905 0.612 4.940

LRT Adj EDF 0.717 0.873 0.787 4.955

Nomi P Adj Match 0.532 0.898 0.668 5.912

AIC Adj Match 0.423 0.925 0.580 5.584

BIC Adj Match 0.454 0.910 0.606 4.910

LRT Adj Match 0.720 0.885 0.794 4.921

Split Nomi P 0.079 0.998 0.147 1.571

AIC 0.084 0.998 0.155 2.153

BIC 0.093 0.998 0.170 1.175

LRT 0.121 0.998 0.215 1.000

Nomi P Adj EDF 0.512 0.895 0.652 5.734

AIC Adj EDF 0.423 0.930 0.582 5.575

BIC Adj EDF 0.469 0.880 0.612 5.018

LRT Adj EDF 0.721 0.868 0.788 5.037

Nomi P Adj Match 0.515 0.895 0.653 5.797

AIC Adj Match 0.419 0.930 0.578 5.557

BIC Adj Match 0.467 0.885 0.612 4.983

LRT Adj Match 0.718 0.870 0.787 4.997

FST Post P 0.105 0.993 0.189 1.312

Post P Adj EDF 0.522 0.858 0.649 5.733

Post P Adj Match 0.534 0.858 0.658 5.796
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ME 0.1 Merge Nomi P 0.005 1.000 0.011 3.380

AIC 0.005 1.000 0.011 2.750

BIC 0.005 1.000 0.011 1.988

LRT 0.006 1.000 0.011 1.000

Nomi P Adj EDF 0.008 1.000 0.016 3.890

AIC Adj EDF 0.007 1.000 0.015 3.412

BIC Adj EDF 0.010 1.000 0.019 2.998

LRT Adj EDF 0.018 1.000 0.036 3.527

Nomi P Adj Match 0.008 1.000 0.016 3.610

AIC Adj Match 0.007 1.000 0.014 3.204

BIC Adj Match 0.010 1.000 0.019 2.855

LRT Adj Match 0.016 1.000 0.032 3.363

Split Nomi P 0.005 1.000 0.011 1.855

AIC 0.005 1.000 0.011 2.803

BIC 0.005 1.000 0.011 2.043

LRT 0.006 1.000 0.011 1.000

Nomi P Adj EDF 0.008 1.000 0.016 3.860

AIC Adj EDF 0.007 1.000 0.015 3.427

BIC Adj EDF 0.010 1.000 0.019 3.020

LRT Adj EDF 0.019 1.000 0.036 3.545

Nomi P Adj Match 0.008 1.000 0.016 3.586

AIC Adj Match 0.007 1.000 0.014 3.215

BIC Adj Match 0.010 1.000 0.019 2.872

LRT Adj Match 0.016 1.000 0.032 3.377

FST Post P 0.006 1.000 0.011 1.380

Post P Adj EDF 0.011 1.000 0.021 3.860

Post P Adj Match 0.011 1.000 0.021 3.586
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ME 0.4 Merge Nomi P 0.007 1.000 0.014 2.343

AIC 0.007 1.000 0.015 3.318

BIC 0.008 1.000 0.016 2.088

LRT 0.011 0.998 0.022 1.000

Nomi P Adj EDF 0.035 0.970 0.067 5.841

AIC Adj EDF 0.023 0.975 0.045 5.608

BIC Adj EDF 0.027 0.968 0.053 4.942

LRT Adj EDF 0.107 0.858 0.190 4.953

Nomi P Adj Match 0.035 0.970 0.068 5.916

AIC Adj Match 0.024 0.978 0.046 5.589

BIC Adj Match 0.027 0.968 0.052 4.915

LRT Adj Match 0.109 0.865 0.193 4.922

Split Nomi P 0.007 1.000 0.015 2.375

AIC 0.007 1.000 0.015 3.523

BIC 0.008 1.000 0.016 2.213

LRT 0.011 0.998 0.021 1.000

Nomi P Adj EDF 0.033 0.970 0.064 5.736

AIC Adj EDF 0.022 0.978 0.043 5.577

BIC Adj EDF 0.031 0.963 0.060 5.021

LRT Adj EDF 0.114 0.868 0.201 5.035

Nomi P Adj Match 0.034 0.970 0.065 5.801

AIC Adj Match 0.022 0.978 0.043 5.562

BIC Adj Match 0.030 0.963 0.058 4.990

LRT Adj Match 0.116 0.878 0.205 4.999

FST Post P 0.009 1.000 0.018 1.643

Post P Adj EDF 0.038 0.903 0.074 5.734

Post P Adj Match 0.040 0.903 0.076 5.799
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MET 0.1 Merge Nomi P 0.108 0.920 0.194 1.402

AIC 0.107 0.903 0.192 2.307

BIC 0.133 0.915 0.232 1.063

LRT 0.173 0.913 0.290 1.000

Nomi P Adj EDF 0.406 0.680 0.509 3.891

AIC Adj EDF 0.346 0.800 0.483 3.417

BIC Adj EDF 0.418 0.723 0.530 3.000

LRT Adj EDF 0.680 0.655 0.667 3.528

Nomi P Adj Match 0.423 0.735 0.537 3.595

AIC Adj Match 0.345 0.823 0.486 3.194

BIC Adj Match 0.412 0.733 0.527 2.839

LRT Adj Match 0.675 0.690 0.683 3.348

Split Nomi P 0.112 0.920 0.200 1.402

AIC 0.112 0.903 0.199 2.402

BIC 0.138 0.918 0.240 1.093

LRT 0.174 0.910 0.292 1.000

Nomi P Adj EDF 0.399 0.678 0.502 3.861

AIC Adj EDF 0.348 0.803 0.486 3.432

BIC Adj EDF 0.429 0.730 0.541 3.021

LRT Adj EDF 0.689 0.648 0.668 3.547

Nomi P Adj Match 0.417 0.733 0.531 3.569

AIC Adj Match 0.348 0.823 0.489 3.205

BIC Adj Match 0.423 0.740 0.538 2.856

LRT Adj Match 0.673 0.675 0.674 3.362

FST Post P 0.144 0.900 0.248 1.256

Post P Adj EDF 0.371 0.620 0.464 3.854

Post P Adj Match 0.384 0.670 0.488 3.561
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MET 0.4 Merge Nomi P 0.027 0.960 0.053 2.164

AIC 0.027 0.958 0.052 2.896

BIC 0.031 0.953 0.060 1.832

LRT 0.039 0.883 0.075 1.003

Nomi P Adj EDF 0.186 0.730 0.297 5.831

AIC Adj EDF 0.143 0.785 0.242 5.595

BIC Adj EDF 0.150 0.713 0.248 4.924

LRT Adj EDF 0.254 0.400 0.311 4.932

Nomi P Adj Match 0.184 0.728 0.293 5.901

AIC Adj Match 0.141 0.785 0.240 5.572

BIC Adj Match 0.148 0.715 0.245 4.895

LRT Adj Match 0.248 0.403 0.307 4.896

Split Nomi P 0.028 0.958 0.054 2.292

AIC 0.028 0.955 0.054 3.010

BIC 0.031 0.950 0.060 1.905

LRT 0.040 0.885 0.076 1.006

Nomi P Adj EDF 0.184 0.750 0.296 5.726

AIC Adj EDF 0.149 0.795 0.250 5.564

BIC Adj EDF 0.145 0.685 0.239 5.001

LRT Adj EDF 0.254 0.400 0.311 5.011

Nomi P Adj Match 0.179 0.748 0.289 5.788

AIC Adj Match 0.145 0.795 0.246 5.547

BIC Adj Match 0.139 0.685 0.231 4.967

LRT Adj Match 0.258 0.410 0.316 4.968

FST Post P 0.032 0.910 0.063 1.673

Post P Adj EDF 0.118 0.505 0.191 5.716

Post P Adj Match 0.115 0.503 0.188 5.780
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DMN1 0.1 Merge Nomi P 0.521 0.963 0.676 2.096

AIC 0.517 0.928 0.664 4.078

BIC 0.576 0.948 0.716 1.810

LRT 0.664 0.925 0.773 1.065

Nomi P Adj EDF 0.970 0.793 0.872 5.304

AIC Adj EDF 0.945 0.908 0.926 4.876

BIC Adj EDF 0.962 0.800 0.874 4.179

LRT Adj EDF 0.990 0.518 0.680 4.306

Nomi P Adj Match 0.969 0.805 0.880 5.084

AIC Adj Match 0.946 0.918 0.931 4.689

BIC Adj Match 0.964 0.803 0.876 4.089

LRT Adj Match 0.986 0.528 0.687 4.263

Split Nomi P 0.536 0.960 0.688 2.146

AIC 0.528 0.918 0.671 4.223

BIC 0.585 0.950 0.724 1.903

LRT 0.660 0.918 0.767 1.052

Nomi P Adj EDF 0.964 0.805 0.877 5.226

AIC Adj EDF 0.943 0.910 0.926 4.873

BIC Adj EDF 0.964 0.805 0.877 4.232

LRT Adj EDF 0.992 0.490 0.656 4.352

Nomi P Adj Match 0.965 0.813 0.882 5.010

AIC Adj Match 0.946 0.923 0.934 4.686

BIC Adj Match 0.965 0.815 0.884 4.141

LRT Adj Match 0.988 0.495 0.659 4.304

FST Post P 0.624 0.963 0.757 1.725

Post P Adj EDF 0.975 0.683 0.803 5.227

Post P Adj Match 0.974 0.715 0.825 5.004
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DMN2 0.1 Merge Nomi P 0.493 0.935 0.645 1.898

AIC 0.509 0.933 0.658 2.311

BIC 0.557 0.923 0.695 1.588

LRT 0.652 0.895 0.754 1.000

Nomi P Adj EDF 0.984 0.683 0.806 5.289

AIC Adj EDF 0.935 0.738 0.824 4.855

BIC Adj EDF 0.957 0.713 0.817 4.167

LRT Adj EDF 0.995 0.543 0.702 4.288

Nomi P Adj Match 0.980 0.690 0.810 5.079

AIC Adj Match 0.935 0.755 0.835 4.685

BIC Adj Match 0.954 0.718 0.819 4.090

LRT Adj Match 0.995 0.543 0.702 4.254

Split Nomi P 0.507 0.933 0.657 1.922

AIC 0.523 0.930 0.670 2.344

BIC 0.572 0.918 0.704 1.583

LRT 0.652 0.890 0.753 1.000

Nomi P Adj EDF 0.980 0.685 0.806 5.210

AIC Adj EDF 0.938 0.740 0.827 4.852

BIC Adj EDF 0.960 0.703 0.811 4.214

LRT Adj EDF 0.995 0.543 0.702 4.334

Nomi P Adj Match 0.983 0.695 0.814 5.003

AIC Adj Match 0.931 0.755 0.834 4.682

BIC Adj Match 0.957 0.708 0.814 4.138

LRT Adj Match 0.995 0.550 0.709 4.298

FST Post P 0.635 0.940 0.758 1.620

Post P Adj EDF 0.966 0.650 0.777 5.209

Post P Adj Match 0.961 0.673 0.791 4.993
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DMN3 0.25 Merge Nomi P 0.446 0.985 0.614 1.997

AIC 0.460 0.985 0.627 2.206

BIC 0.525 0.983 0.684 1.870

LRT 0.606 0.940 0.737 1.003

Nomi P Adj EDF 0.969 0.968 0.968 3.927

AIC Adj EDF 0.948 0.975 0.961 3.449

BIC Adj EDF 0.970 0.960 0.965 3.025

LRT Adj EDF 0.993 0.730 0.841 3.557

Nomi P Adj Match 0.969 0.968 0.968 3.662

AIC Adj Match 0.950 0.978 0.963 3.259

BIC Adj Match 0.969 0.968 0.968 2.898

LRT Adj Match 0.992 0.740 0.848 3.411

Split Nomi P 0.452 0.985 0.620 1.997

AIC 0.467 0.985 0.634 2.218

BIC 0.536 0.983 0.693 1.868

LRT 0.602 0.940 0.734 1.000

Nomi P Adj EDF 0.967 0.968 0.967 3.897

AIC Adj EDF 0.947 0.975 0.961 3.463

BIC Adj EDF 0.970 0.958 0.964 3.047

LRT Adj EDF 0.990 0.730 0.840 3.575

Nomi P Adj Match 0.968 0.968 0.968 3.637

AIC Adj Match 0.946 0.978 0.961 3.270

BIC Adj Match 0.969 0.965 0.967 2.915

LRT Adj Match 0.990 0.740 0.847 3.427

FST Post P 0.560 0.970 0.710 1.441

Post P Adj EDF 0.967 0.845 0.902 3.895

Post P Adj Match 0.966 0.868 0.914 3.638
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DMN4 0.25 Merge Nomi P 0.455 1.000 0.626 2.123

AIC 0.470 1.000 0.639 2.395

BIC 0.518 1.000 0.683 1.970

LRT 0.627 0.993 0.769 1.010

Nomi P Adj EDF 0.969 0.998 0.983 3.927

AIC Adj EDF 0.938 1.000 0.968 3.448

BIC Adj EDF 0.969 0.998 0.983 3.026

LRT Adj EDF 0.989 0.880 0.931 3.557

Nomi P Adj Match 0.968 0.998 0.982 3.649

AIC Adj Match 0.940 1.000 0.969 3.245

BIC Adj Match 0.969 0.998 0.983 2.888

LRT Adj Match 0.989 0.883 0.933 3.395

Split Nomi P 0.459 1.000 0.629 2.065

AIC 0.472 1.000 0.641 2.423

BIC 0.528 1.000 0.691 2.005

LRT 0.622 0.993 0.765 1.020

Nomi P Adj EDF 0.963 0.998 0.980 3.897

AIC Adj EDF 0.936 1.000 0.967 3.462

BIC Adj EDF 0.973 0.995 0.984 3.048

LRT Adj EDF 0.989 0.880 0.931 3.573

Nomi P Adj Match 0.965 0.998 0.981 3.624

AIC Adj Match 0.939 1.000 0.969 3.256

BIC Adj Match 0.971 0.998 0.984 2.906

LRT Adj Match 0.989 0.880 0.931 3.410

FST Post P 0.556 1.000 0.714 1.505

Post P Adj EDF 0.967 0.955 0.961 3.896

Post P Adj Match 0.966 0.955 0.961 3.628
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Fig C.2. Simulation results on the estimated disease model levels by different stopping
criteria of the SSP and SMP methods that are calculated based on the selected true
SNP-pairs. The horizontal line represents the true disease model level. Each simulation has
been repeated for 400 times and the averages are reported.
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Fig C.3. Simulation results of F-measure for the SSP and SMP methods with and without
EDF adjustments. Each simulation has been repeated for 400 times and the average
performance is being reported. There are no observable performance difference between SSP
and SMP in terms of F-measure. Using the adjusted p-value (3.7), as opposed to the
nominal p-value (1.2), generally improves the detection performance, sometimes
substantially. The adjustment by matched EDF or EDF from the response surface model
does not show any observable difference.
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