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Abstract

Transactions on blockchains can prove very costly, so as a solution to avoid these large
costs, schemes involving payment channel networks have been developed. One approach
to implementing these off-chain forms of payment securely involves adaptor signatures.

Previous work has established a generic construction of adaptor signatures using sig-
nature schemes that satisfy a couple of key properties. Unfortunately, most post-quantum
signature schemes do not satisfy these properties, meaning more work needs to be done to
develop quantum-safe solutions. We introduce a new post-quantum adaptor signature that
uses SQISign as its underlying signature. SQISign has been shown to be significantly faster
and to require less storage than any other isogeny-based signature, giving our construction
potential for significant improvements in the way of efficiency. We give the details of the
new scheme, provide proofs of its security, and estimate memory costs.
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Chapter 1

Introduction

The development of quantum computers poses a real threat to classical cryptography. Ever
since the creation of Shor’s algorithm, which allows for a quantum adversary to efficiently
factor and compute discrete logarithms (among other things) [21], systems such as RSA
risk being broken. As a result, post-quantum cryptography—the search for systems that
are still safe against quantum attack—has become an active area of research.

Public key systems rely on underlying hard mathematical problems. To make a system
that is quantum-safe, this hard problem must still be hard for a quantum adversary. One
such example is the Supersingular Isogeny problem. Before we can state the problem, we
first briefly discuss some of the vocabulary. We will not give an exhaustive introduction to
the field. The interested reader can refer to [22] for details.

1.1 Mathematical Background

Let k be a field. For simplicity, we assume char k ̸= 2, 3.

Definition 1.1.1. An elliptic curve E is an algebraic curve of genus 1, defined over k,
that can be written in the form:

E : y2 = x3 + ax+ b

for a, b ∈ k, where 4a3 + 27b2 ̸= 0. We denote the set of valid pairs (x, y) ∈ k2 satisfying
E as E(k).
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We call this way of writing the curve Weierstrass form, but we will often also consider
curves in Montgomery form which is written as:

E : By2 = x3 + Ax2 + x

The discriminant, ∆ = −16(4a3 + 27b2), and j-invariant, j = 1728 · 4a3/(4a3 + 27b2), are
values that can be computed for any elliptic curve, and only depend on the coefficients of
the curve’s equation. Note that the j-invariant is so-called because it is unique to a curve
up to isomorphism.

Definition 1.1.2. An elliptic curve E over the field Fq of characteristic p is supersingular
if p divides #E(Fq)− q − 1. Otherwise we say E is ordinary.

For our purposes, we will only be concerned with supersingular elliptic curves.

Definition 1.1.3. An isogeny, φ : E → E ′, is a rational map between two elliptic curves
that is also a group homomorphism.

• Isogenies give rise to an injection of function fields: φ∗ : K̄(E ′)→ K̄(E). The degree
of an isogeny, denoted deg(φ), is the degree of the finite extension K̄(E)/φ∗K̄(E ′).
Note, degrees are multiplicative, that is deg(φ0 ◦ φ1) = deg(φ0) · deg(φ1).

• An isogeny is separable if deg(φ) = | ker(φ)|. There exists a separable isogeny for
every finite subgroup G of E of the form ϕ : E → E ′ where ker(ϕ) = G.

• The dual of an isogeny, φ̂, is such that φ ◦ φ̂ = φ̂ ◦ φ = [n], where [n] denotes the
multiplication by n = deg(φ) map.

We say two elliptic curves are isogenous if there exists an isogeny from one of the curves
to the other.

Going forward, we are only concerned with separable isogenies, which are determined up
to isomorphism by their kernels. By constraining ourselves to only use separable isogenies,
we are able to define isogenies only by their kernel generator.

We are now ready to state the general isogeny problem that is at the core of all isogeny-
based post-quantum cryptography. There are different variations of this problem used, one
of which we will consider later on.

Problem 1.1.1. Given two elliptic curves, E,E ′, over k that are isogenous over k, compute
an isogeny φ : E → E ′ over k.
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It is generally agreed that this is a hard problem for both classical and quantum ad-
versaries [2]. Similarly, the following problem is also believed to be hard:

Problem 1.1.2 (Computational Supersingular Isogeny (CSSI) Problem). Let p be a prime
of the form p = leAA l

eB
B f − 1. Consider two isogenous curves E and E/⟨G⟩ defined over Fp2

whereG is a finite, cyclic subgroup of E. Assuming it exists, find an isogeny ϕ : E → E/⟨G⟩
of degree leAA with (cyclic) kernel kerϕ = G. Equivalently, find a generator of order leAA for
G.

Lastly, we state the SIDH relation, which offers up more public information but is still
conjectured to be hard for both classical and quantum adversaries within its proposed
parameter sets.

Problem 1.1.3 (SIDH Relation). Let p, E, E/⟨G⟩ all be as in Problem 1.1.2. Given a
basis (PB, QB) of E[l

eB
B ], and (PA, QA) a basis of E[leAA ], we have that G can be written as

G = [mA]PA+ [nA]QA. Find the isogeny φ : E → E/⟨G⟩ (or equivalently, find the integers
mA and nA) given p, E,E/⟨G⟩, φ(PB), φ(QB).

It was from this problem that the first feasible isogeny-based key exchange scheme came
about—Supersingular Isogeny Diffie-Hellman (SIDH) [14]. Since then, several other key
exchange and signature schemes have been published—the relevant one for our study being
SQISign.

1.2 Cryptographic Background

Before describing the protocol, we review the relevant background material on signatures,
blockchain, adaptor signatures, SQISign, SIDH, and the Quantum Random Oracle Model
(QROM).

1.2.1 Digital Signatures

A digital signature or signature is a cryptographic scheme consisting of three algorithms,
Σ = (KeyGen, Sign,Verify), intended to prove the authenticity of a message publicly. The
KeyGen phase takes in only a security parameter λ and outputs a secret key, public key pair
(sk, pk). The Sign algorithm takes a secret key and message, and outputs a signature σ.
Lastly, Verify is used by the person receiving the signature to check that it was indeed from
the claimed signer, using the message and public key as input, and outputting b ∈ {0, 1}.

3



Signatures can often be derived from a sigma protocol, which is a simplified version
of the underlying identification scheme. A sigma protocol consists of three rounds and
requires input from the verifier, although signature schemes often work around the latter
requirement using random oracles. The sigma protocol constitutes the proof of knowledge
that the prover will use in the signature scheme. To actually implement a sigma protocol as
a signature, there are transforms such as the Fiat-Shamir transform or the Unruh transform
that generically convert a sigma protocol into a non-interactive protocol. Since all isogeny-
based signature schemes derive from sigma protocols, we will usually discuss signature
schemes using the corresponding sigma protocols.

1.2.2 Blockchain

A blockchain is a decentralized secure system that stores transactional data. The purpose
is to allow users who don’t necessarily trust each other to maintain a common ledger, be
it for economic, political, or social reasons. Blockchains were originally created for Bitcoin
in order to solve the double spending problem in digital money, but have since evolved
to provide solutions in many different areas. The driving ethos is to allow all users to
participate without relying on a central institution to oversee them.

The idea behind blockchain was first introduced anonymously in [19]. The idea is
to keep a ledger of all transactions, and host it on each participant’s—or node’s—local
machine. In order for a new transaction to occur it must be verified by a majority of
nodes, that is, the nodes will check that the sender has the amount they claim to. This
verification (performed by nodes called miners) is done for a fee, thereby incentivizing the
nodes to uphold and maintain the integrity of the ledger.

The ledger is made up of a chain of blocks, where each block stores a certain amount
of information. Once a block is full, a new block is started, where the timestamp for the
new block is dependent on a hash of the previous block’s time stamp. This ensures a linear
progression of blocks, and helps prevent malicious parties from rewriting a previous block.

Blockchain security relies on the ability to authenticate someone’s transactions through
digital signatures. Public key cryptography, specifically elliptic curve cryptography, is used
to digitally sign users’ transactions. Elliptic curve signatures have been in widespread use
since the mid 1990s but there is reason to believe that in the next 20 to 30 years such
schemes may no longer be secure [18]. Elliptic curve cryptosystems, along with many other
classical cryptosystems, rely on the mathematical operation of taking discrete logarithms
being difficult for a classical computer. A quantum computer, however, could solve this
problem efficiently using Shor’s algorithm (or variations thereof), leaving the blockchain
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open to quantum attacks. Such attacks include editing blocks (faking past transactions)
and forging signatures. In the case of Bitcoin, this means a user could spend more than
they have, or steal bitcoin from other users.

1.2.3 Adaptor Signatures

Transactions on blockchains can prove very costly, so as a solution to avoid these large
costs, schemes involving payment channel networks have been developed. One approach
to implementing these off-chain forms of payment involves adaptor signatures.

An adaptor signature (AS) extends the notion of a signature scheme by incorporating
an additional hard relation for use in payment channels. The additional hard relation, R, is
typically the same one used in the underlying signature scheme, Σ, and consists of witness,
statement pairs (y, Y ) ∈ R. We use LR to denote the set of valid statements in R.

In an adaptor signature, for any statement Y , a signer holding a secret key can produce
a pre-signature on any message m. This pre-signature can be adapted into a full signature
on m if and only if the user has the witness to Y . Additionally, anyone with access to the
pre-signature, full signature, and Y , is able to from this extract the witness. We formalize
these requirements below, as given in [23].

Definition 1.2.1 (Adaptor Signature Scheme). An adaptor signature scheme with respect
to a hard relation R and a signature scheme Σ = (KeyGen, Sig,Ver) consists of four algo-
rithms:

PreSig(sk,m, Y ) : is a PPT algorithm, where on input of a secret key sk, message m ∈
{0, 1}∗, and statement Y ∈ LR, outputs a pre-signature σ̃.
PreVer(pk,m, Y, σ̃) : is a DPT algorithm that on input of a public key pk, a message
m ∈ {0, 1}∗, a statement Y ∈ LR, and a pre-signature σ̃, outputs a bit b.
Adapt(σ̃, y) : is a DPT algorithm that on input of a valid pre-signature σ̃, and a witness
y, outputs a signature σ.
Extract(σ, σ̃, Y ) : a DPT algorithm that on input of a pre-signature σ̃, a corresponding
signature σ, and a statement Y , outputs the witness y to the statement Y .

The adaptor signature will also inherit KeyGen and Ver from Σ. We use GenR to denote
the algorithm that generates the secret, statement pair (y, Y ).

Some desirable attributes we want in adaptor signatures include having honestly gener-
ated pre-signatures always be able to be adapted into correct full signatures (pre-signature
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correctness), signatures should be infeasible for an adversary to forge (aEUF− CMA secu-
rity), that any verifiable pre-signature (not necessarily honestly generated) can be adapted
into correct full signatures (pre-signature adaptability), and that any valid (pre-signature,
signature) pair will allow for the extraction of the relevant witness (witness extractability).
We now formalize these ideas in security definitions that are required for any valid and
secure adaptor signature.

Definition 1.2.2 (Pre-signature correctness). An adaptor signature aSIGR,Σ satisfies pre-
signature correctness, if for all n ∈ N and m ∈ {0, 1}∗:

Pr

 pVrfypk(m,Y ; σ̃) = 1∧
Vrfypk(m;σ) = 1∧
(Y, y′) ∈ R

∣∣∣∣∣∣
(sk, pk)← Gen(1n), (y, Y )← GenR(1n)
σ̃ ← pSignsk(m,Y ), σ := Adapt(σ̃, y)
y′ := Ext(σ, σ̃, Y )

 = 1.

Definition 1.2.3 (aEUF− CMA Security). An adaptor signature scheme aSIGR,SIG is un-
forgeable if for every PPT adversary A there exists a negligible function ν such that:
Pr[aSigForgeA,aSIGR,SIG

(n) = 1]≤ ν(n), where the definition of the experiment aSigForgeA,aSIGR,SIG

is as follows:

aSigForgeA,aSIGR,SIG
(n) OS(m) OpS(m,Y )

1 : Q := ∅, (sk, pk)← KeyGen(1n) 1 : σ ← Signsk(m) 1 : σ̃ ← pSignsk(m,Y )

2 : m∗ ← AOS ,OpS(pk) 2 : Q := Q∪ {m} 2 : Q := Q∪ {m}

3 : (y, Y )← GenR(1n), σ̃ ← pSignsk(m
∗, Y ) 3 : return σ 3 : return σ̃

4 : σ∗ ← AOS ,OpS(σ̃, Y )

5 : return
(
m∗ /∈ Q ∧ Vrfypk(m

∗;σ∗)
)

Definition 1.2.4 (Pre-signature adaptability). An adaptor signature scheme aSIGSIG,R sat-
isfies pre-signature adaptability, if for all n ∈ N, messages m ∈ {0, 1}∗, statement/witness
pairs (y, Y ) ∈ R, public keys pk and pre-signatuers σ̃ ← {0, 1}∗ we have if pVrfypk(m,Y ; σ̃) =
1, then Vrfypk(m;Adaptpk(σ̃, y)) = 1.

Definition 1.2.5 (Witness extractability). An adaptor signature scheme aSIGR is wit-
ness extractable if for every PPT adversary A, there exists a negligible function ν such
that the following holds: Pr[aWitExtA,aSIGR,SIG

(n) = 1] ≤ ν(n), where the experiment
aWitExtA,aSIGR,SIG

is defined as follows:
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E0 E1

EA E2

ψ

τ φ

σ

Figure 1.1: SQISign identification protocol.

aWitExtA,aSIGR,SIG
(n) OS(m) OpS(m,Y )

1 : Q := ∅, (sk, pk)← Gen(1n) 1 : σ ← Signsk(m) 1 : σ̃ ← pSignsk(m,Y )

2 : (m∗, Y ∗)← AOS ,OpS(pk) 2 : Q := Q∪ {m} 2 : Q := Q∪ {m}

3 : σ̃ ← pSignsk(m
∗, Y ∗) 3 : return σ 3 : return σ̃

4 : σ∗ ← AOS ,OpS(σ̃)

5 : y := Extpk(σ
∗, σ̃, Y ∗)

6 : return
(
m∗ /∈ Q ∧ (Y ∗, y) /∈ R ∧ Vrfypk(m

∗;σ∗)
)

1.2.4 SQISign

SQISign [8] is an isogeny-based signature scheme that was published in 2020. It is, to date,
the most compact post-quantum signature, and its speed and functionality have recently
been further improved by De Feo et al. [13]. It uses a single iteration of its identification
protocol, which is outlined in Figure 1.1.

The prover starts with a secret isogeny, τ . They publish its codomain, EA, as their
public key and keep τ as their secret key. They randomly select another map, ψ, with
domain E0 as their commitment, and only send its codomain, E1, to the verifier. The
commitment ψ must remain just as secret as τ . The verifier sends back a map, φ, with
domain E1 as a challenge. In practice, the challenge is created using a hash of the message.
To prove knowledge of the secret, the prover sends an isogeny from EA to the challenge
codomain, E2. They do so by composing the dual of the secret, τ̂ , along with ψ and φ, and
running an algorithm called KLPT on the resulting map. This gives a single isogeny map,
σ, of fixed degree, and appropriate domain, and codomain, without leaking any information
about τ or ψ.
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Note: The prover must know all of the isogenies in the chain in order to run KLPT
and get back a single isogeny.

The KLPT algorithm, named after its inventors, is at the heart of SQISign, and was
first introduced in [16], but later improved upon in the actual SQISign paper [8]. It uses
the Deuring Correspondence to create a mapping between the relevant isogenies and left
ideals in the quaternion algebra Bp,∞ = Q[i, j]. Via this correspondence, finding a single
isogeny equivalent to the composition of three isogenies becomes the problem of how to
find an ideal equivalent to the multiplication of three other ideals. Below, we summarize
the central step of the algorithm, which is: given an ideal I of norm n(I), find an equivalent
ideal J of a fixed norm N . First, we require the following lemma:

Lemma 1.2.1. Let I be an integral ideal. Then we have the following surjection from
I ∖ {0} to the set of ideals equivalent to I:

χI(α) = I
ᾱ

n(I)

where χI(α) = χI(β) only when α = βδ, δ ∈ OR(I)×, OR a maximal order.

The proof of this lemma can be found in both [8] and [16].

KLPT first takes a left O0-ideal I as input, where O0 is a maximal order of Bp,∞. It
then takes δ ∈ I and uses the value χI(δ) from Lemma 1.2.1 to obtain an equivalent ideal,
L. Next, it searches L to find an element β of the desired degree. The algorithm then
returns J = χL(β).

In the SQISign paper [8] the KLPT algorithm is further generalized to arbitrary max-
imal ideals (not just O0, which corresponds to the base curve E0 used in protocols) which
was the key contribution of the paper that allowed for the signature scheme to operate.
Furthermore, the norm of the outputs was decreased as well. These improvements are
achieved by taking advantage of Eichler orders and special extremal orders to narrow the
set of elements over which they must search to find the desired β element previously men-
tioned, making the algorithm feasible in the generalized setting.

1.2.5 Supersingular Isogeny Diffie-Hellman (SIDH)

Supersingular Isogeny Diffie-Hellman (SIDH) is a Diffie-Hellman-like key exchange system
first proposed by Jao, De Feo, and Plût [14] meeting post-quantum security standards. It
was later submitted to the United States National Institute of Standards and Technology’s
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E0 EA = E0/⟨SA⟩

EB = E0/⟨SB⟩ EAB = E0/⟨SA, SB⟩

ϕA

ϕB

Figure 1.2: An SIDH square.

(NIST) standardization process for post-quantum cryptography systems, under the name
of Supersingular Isogeny Key Encapsulation (SIKE), and is currently under consideration
in the third round of the process as an alternate candidate. We give a brief summary of
the system. For further details the reader can reference [14].

We begin with two parties, Alice and Bob, who would like to arrive at a shared secret.
They first agree on a prime p of the form ℓeAA ℓ

eB
B f ± 1, where ℓA, ℓB are small primes. In

practice, ℓA and ℓB are generally taken to be 2 and 3 respectively. The size of p will depend
on a security parameter λ. Alice and Bob fix the field of definition to be Fp2 , and select a
base curve E0. They each select a secret isogeny, ϕA, ϕB, respectively from the base curve,
and publish the codomain of their secrets for use as their public keys, EA, EB, respectively.
We are assured that Alice’s secret isogeny is separable and of degree ℓeAA , similarly Bob’s
secret will have degree ℓeBB .

Since the isogenies are separable we can represent them by their kernels, and hence
their kernel generators. We let the kernel of ϕA be SA = ⟨PA + αQA⟩, and let ker(ϕB) =
SB = ⟨PB + βQB⟩, where α ∈ Z/ℓeAA Z, β ∈ Z/ℓeBB Z and (PA, QA), (PB, QB) are generating
sets for E[ℓeAA ] and E[ℓeBB ] respectively. Alice and Bob will each publish these generating
sets along with their public keys, so their secrets simplify to the integers α, β.

Once the keys have been generated and the public information shared, Alice will com-
pute ϕA(PB) and ϕA(QB) and send it to Bob. Bob will now compute the shared curve EAB
with his secret integer β as EAB = EA/⟨ϕA(PB)+βϕA(QB)⟩ = EA/⟨ϕA(PB+βQB)⟩. Alice
will take a similar approach to arrive at EBA = EB/⟨ϕB(PA) +αϕB(QA)⟩ = EB/⟨ϕB(PA+
αQA)⟩ = EAB. The commutative square diagram is depicted in Figure 1.2.

1.2.6 Quantum Random Oracle Model (QROM)

Since we are working towards a quantum-safe adaptor signature, we will assess security
in the Quantum Random Oracle Model (QROM) as introduced in [24]. The model uses

9



the Unruh transform to adapt any interactive sigma protocol into a non-interactive zero
knowledge (NIZK) proof, with the additional online extractability property. This property
ensures that the witness from a proof can be extracted assuming access to the random
oracle.

In the quantum setting, we have that the adversary submitting queries to the oracle
has the choice to submit queries in superposition, meaning that reading the queries they
submit would change the state of the original query. In order to address this problem of
reading queries, an efficient method of inverting the query calls is used to determine the
inputs of two calls, which is enough to extract the witness being used. See [24] for full
details on this technique.

At a high level, the prover will send their responses to the possible challenges b ∈ {0, 1}
to the oracle, obtaining a hash of each response. The verifier can then send in their
challenge, and receive back a hash of the prover’s appropriate response. Note that the
oracle will require the prover to submit several proofs, and so at least a large portion of
them will need to be valid. Thus, any proofs selected to be inverted will be valid with a
high probability, enabling the extraction of the witness.

The zero-knowledge proof consists of two polynomial-time algorithms (P, V ). We as-
sume the statement, witness pair Y, y respectively, are valid inputs of the hard relation R.
By definition, a random oracle, H, involves a probability distribution on a set of functions;
denote this distribution by ROdist. Lastly, we let πy be a proof of Y produced by P . We
require that PH(y, Y ) =⊥ whenever (y, Y ) /∈ R and that V H(Y, πy) ∈ {0, 1}.

We list the security definitions that our zero-knowledge proof in SQI-AS will satisfy
below.

Definition 1.2.6 (Completeness). P (Y, y), V (Y, πy) is complete if and only if for any
quantum-polynomial-time oracle algorithm A, we have that

Pr[(Y, y) ∈ R ∧ ok = 0 : H ← ROdist, (Y, y)← AH(), π ← PH(Y, y), ok ← V H(Y, π)]

is negligible.

Definition 1.2.7 (Zero-knowledge). Given a simulator (S, H), the oracle H′(Y, y) does:
if (Y, y) /∈ R, return ⊥; else return H(Y ). (The purpose of H′ is merely to serve as an
interface for the adversary who expects a prover taking two arguments Y, y.)

A non-interactive proof system (P,V) is zero-knowledge if and only if there is a polynomial-
time simulator (S,H) such that for every quantum-polynomial-time oracle algorithm A,
we have that

|Pr[b = 1 : H ← ROdist, b← AH,P ()]− Pr[b = 1 : H ← S(), b← AH,H
′
()]|
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is negligible.

We assume that both S and H have access to and may depend on a polynomial upper
bound on the runtime of A.

Definition 1.2.8 (Online extractability). A non-interactive proof system (P,V) is online
extractable with respect to S if and only if there is a polynomial-time extractor E such
that for any quantum-polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (Y, y) /∈ R : H ← S(), (Y, πy)← AH(), ok ← V H(Y, πy), y ← E(H,Y, πy)]

is negligible.

We assume that both S and E have access to and may depend on a polynomial upper
bound on the runtime of A.

The transformation of any sigma protocol with the honest verifier zero-knowledge and
special soundness properties into a NIZK proof in QROM with the preceding properties is
described in detail in [24].

1.3 State of the Art

Adaptor signatures were first introduced in [3], giving examples using only signatures of
classical security. More recently, a paper on how to generically create adaptor signature
schemes from classical signatures meeting two particular criteria was published [10]. One
of these criteria require that the signature scheme satisfy a homomorphic property that
not all post-quantum signatures meet. In particular, SQISign does not meet it.

There are currently only two other post-quantum adaptor signatures that have been
published. The first being IAS [23], an isogeny-based protocol using CSI-FiSh as its under-
lying signature scheme. The second is LAS [11], a lattice-based system. We now discuss
both in detail.

1.3.1 IAS

Isogeny Adaptor Signature (IAS) [23] is the only other isogeny-based adaptor signature to
be published, using CSI-FiSh [4] as its underlying signature scheme. The paper introduces
the protocol itself, proofs of its security, how it might be applied in a blockchain setting,
and a memory and efficiency analysis. We summarize the structure of the scheme here.
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CSI-FiSh. Commutative Supersingular Isogeny based Fiat-Shamir signatures (CSI-
FiSh) [4] is an isogeny-based signature scheme that was developed in the wake of Commu-
tative Supersingular Isogeny Diffie-Hellman (CSIDH) [5]. It uses the same commutative
class group action as CSIDH given by

⋆ : Cl(O)×A → A

a ⋆ E0 7→ Ea

where A is the set of isomorphism classes of feasible elliptic curves, and Cl(O) is the set
of ideal classes over a curve’s endomorphism ring. In particular, the group action will use
the set of ideal classes of E0, which form a group. Since each ideal can be thought of as
a subset of endomorphisms, which can be defined by a single kernel set, we represent the
ideal class by the intersection of these kernels. This in turn leaves us with a new kernel
set, which gives rise to a homomorphism. Note this is no longer an endomorphism, so it
maps our starting curve into a new elliptic curve, Ea.

We now describe a single iteration of the sigma protocol for CSI-FiSh. Both parties
begin by agreeing on a starting curve E0. The prover then begins by choosing their secret
key a ∈ Cl(O) and publishing a ⋆ E0 = Ea as their public key. Similarly they choose
their commitment uniformly at random b ∈ Cl(O). Note that one of the contributions
of [4] was establishing how to make these selections uniformly at random by selecting
a standard generator of Cl(O), and choosing integers at random as exponents for the
generator. Therefore, for b ∈ Z and generator g of Cl(O), the class group action can be
written as

gb ⋆ E = [b]E

The prover will publish [b]E0 = Eb as their commitment.

The verifier will then issue a challenge c ∈ {0, 1}. If c = 0, the prover will reveal the
commitment b and the verifier will check that this gives a map from E0 to Eb. If c = 1,
the prover will reveal ba−1, and the verifier will check that this indeed gives a map from
Ea to Eb. With enough iterations the verifier will be assured of the prover’s knowledge.
This protocol is depicted in Figure 1.3.

IAS. IAS uses an isogeny-based witness/statement set, where the witnesses are ele-
ments y ∈ Cl(O) and the statements are curves y ⋆ E0 = EY .

After fixing a witness/statement pair, the pre-signer will choose a random b ∈ Z,
and compute Ê ′ = [b]E0 and E ′ = [b]EY . E ′ is then used to canonically determine the
challenge, c, and is included as part of the final pre-signature so that later parties can verify
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E0 Ea
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a⋆

b⋆
ba−1⋆

Figure 1.3: Sigma protocol of CSI-FiSh.

the challenge was computed honestly. Additionally, a zero-knowledge proof π showing that
the same b was used in Ê ′ and E ′ is provided. Therefore the final pre-signature to be sent
is σ̂ = (r̂, c, π, E ′), where r̂ is a response that is computed depending on c as described in
the CSI-FiSh protocol. To adapt σ̂ into a full signature, the user computes r = y + r̂, and
uses σ = (r, c) as the signature. Extraction is achieved simply by subtracting y = r − r̂.

Verification of the pre-signature is done by recomputing Ê ′ = [r̂]Ec where Ec is either
Ea or E0 depending on the challenge, and then checking that π is correct and that the
challenge was generated honestly. Verification of the full signature is inherited from CSI-
FiSh.

Due to the reliance on CSI-FiSh, IAS has limitations in its parameter sizes. CSI-FiSh
can run on at most the CSIDH-512 parameters, due to the fact that knowledge about
the structure of the class group is needed in order to compute the class group action
on uniformly random group elements. The best known algorithm to do so is classically
sub-exponential, making larger parameter sets currently not viable to compute.

SeaSign [7] is an isogeny-based signature that also uses the class group action of CSIDH,
but that replaces the uniformly random group element sampling with rejection sampling.
This change allows the signature to circumvent the requirement to complete the pre-
computation of the class group action structure in CSI-FiSh. If IAS were to use a signature
such as SeaSign, it might be able to improve the parameter sizes but this would then result
in an even slower run time and a more complicated security analysis.

1.3.2 LAS

LAS [11], a lattice-based adaptor signature, was the first published post-quantum adaptor
signature. It relies on standard lattice assumptions such as Module-LWE and Module-
SIS, and uses a simplified version of Dilithium as its underlying signature [9]. The paper
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summarizes the protocol and discusses its security, gives details on how to implement the
system on a blockchain, and gives efficiency analyses.

For the sake of the adaptor signature scheme, it is sufficient to simply understand that
it is generally difficult to find a short vector v, given a particular matrix A, such that
Av = 0. For the curious reader, we discuss the technical details in the Signature section
first.

Signature. As mentioned, the signature scheme to be used is a simplified version
of Dilithium, where some of the optimizations are not used for ease of presentation. The
protocol operates on the conjecturally hard Problem 1.3.1 and Problem 1.3.2, stated below.

Define Rq = Zq[X]/(Xd + 1) to be a cyclotomic ring with degree d = 2l for l ∈ Z, and
an odd modulus q. Let Sc denote the set of polynomials in Rq whose maximum absolute
coefficient is c ∈ Z+.

Define In as the nth-dimensional identity matrix.

Problem 1.3.1 (M-SIS). Choose m > n > 0. Let A′ ∈ Rn×(m−n)
q . Let A = [In||A′]. Find

a short, non-zero v ∈ Rm
q such that Av = 0 over Rq and ||v|| be less than a fixed amount

βSIS < q.

Problem 1.3.2. Fix m, l > 0. Distinguish between the following two cases:

1. (A,b) ∈ Rm×l
q ×Rm

q

2. (A,As+ e) for A ∈ Rm×l
q , a secret vector s ∈ Sl1, and an error vector e ∈ Sm1 .

We can now consider the Dilithium protocol by outlining one iteration. Note that to
prevent leaking information, both LAS and Dilithium use the rejection sampling technique.
That is, in order for the sampling of the masked vector, which will be our response, z = y+s
to be simulatable as random we sample y from Skγ for γ ≈ kd · p, and reject z if its norm
is not of sufficiently small size. This results in a uniform distribution of z over Skγ−p, as
desired.

To begin, the prover generates A ∈ Rk×l
q , as well as secret key short vectors s1 and s2.

They publish A and t = As1 + s2.

The prover selects a masking vector y, and computes w1 to be the ”high order” bits
of the coefficients of Ay. The challenge c is computed as a polynomial in Rq, which will
depend on the message and w1 via a hash function. The response will be z = y + cs1. If
z is not accepted during the rejection sampling step, then another y is chosen, repeating
this until z is accepted. The prover sends z to the verifier.
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To verify, the verifier will first compute w′
1, the ”high order” bits of Az − ct. Then

they will check that the challenge generated by the message and w′
1 matches the challenge

they were sent. Lastly they will check that the norm of z is as expected.

LAS. The witness/statement pair set we are drawing from are of the form (y, Y ) where

Y = Ay for a fixed A ∈ Rn×(n+l)
q and for a short y. Similarly, the general (public key,

secret key) pair used in signing is (t, r) where t = Ar.

To presign, the prover first selects a masking vector y ∈ Sn+lγ , and then computes
w = Ay. From this, they define the challenge to be a hash of t,w + Y , and the message.
Recall that (t, r) is the public key, secret key pair. Next, they compute ẑ = y + cr, and
repeat this process until ẑ is accepted in the rejection sampling step. They publish the
presignature σ̂ = (c, ẑ).

To adapt the presignature into a full signature, we simply return σ = (c, ẑ+y), where y
is the witness. Hence, if we are provided with σ and σ̂, we can extract the witness y = s−ẑ.

In practice, this adaptor signature is expected to run almost as quickly as a regular
lattice-based signature, with some loss due to the absence of some of the optimizations.
Security levels and parameter sizes are expected to be the same as those suggested by
Dilithium.
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Chapter 2

A New Isogeny-Based Adaptor
Signature

2.1 SQI-AS

In the previous work included in [10], a generic construction is described to convert any
signature scheme satisfying a particular homomorphic property and that is commitment-
recoverable into an adaptor signature. Unfortunately, most post-quantum signature schemes
seem to not satisfy these properties, meaning more work needs to be done to develop
quantum-safe solutions. In the works of [23] and [11], post-quantum adaptor signatures
are introduced using isogeny and lattice based underlying signatures respectively. We
now introduce a new post-quantum adaptor signature that uses SQISign as its underlying
signature, which we will refer to henceforth as SQI-AS. SQISign has been shown to be sig-
nificantly faster and requiring less storage than any other isogeny-based signature, along
with more flexibility in its parameter sets, giving our construction potential for significant
improvements in the way of efficiency and security.

To use SQISign as the underlying signature scheme in an adaptor signature, we select
our hard relation, RSSI , based on the Computational Supersingular Isogeny (CSSI) hard
problem 1.1.2 and the SIDH Relation 1.1.3. We will also choose our base curve E0 to match
the requirements laid out in SQISign [8]. Thus, we define our hard relation to be the set

RSSI := {
(
y, (EY , πY )

)
|y : E0 → EY , EY = E0/⟨P0 + αQ0⟩, α ∈ Z},

where πY is a zero-knowledge proof that (y, EY ) are a valid pair of the hard relation RSSI .
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Figure 2.1: PreSign algorithm.

In other words, y (the witness) is an isogeny from the base curve E0 to the curve EY .
The elliptic curve parameters of E0 will include a pair (P0, Q0) which will serve as a basis to
compute the kernel of y, hence the secret of y can be reduced down to a single integer, i.e.
the linear combination of P0 and Q0 used to compute ker(y). We select (EY , πY ) to be the
statement to the witness. See Section 2.3 for more detail on the proposed zero-knowledge
proof to be used for πY . Hence all of IY := (EY , πY ) is public knowledge. We will restrict
RSSI to only include isogenies with degrees that are powers of 5, the size of which will be
approximately p1/2.

We begin by considering the PreSig algorithm. KeyGen and GenR have already fixed
the parameters (y, Y ), τ , and EA, though we do not have access to y. We will stay close
to the SQISign protocol, but must somehow incorporate the statement EY in a verifiable
way. To do so, we begin by generating the commitment, ψ, as in SQISign, but with
smaller degree. Next, we will generate an extension on the commitment, ψ′, which is
a map whose domain is the commitment E1, and which is determined using a hash of
EY . Specifically, we will use the hash of EY as a seed to create a sequence of integers
which will be used to select the kernel generators of ψ′. The codomain of ψ′ serves as
our new commitment, and will be used to generate the challenge, along with the message,
as in SQISign. From here, the pre-signature, σ̃, is the map from the public key EA to
the challenge curve E2, which can be computed using the KLPT algorithm. We will also
output τ(P0), τ(Q0) with the presignature for use in the Adapt step later on, so the final
output is σpresig =

(
σ̃, τ(P0), τ(Q0)

)
. Figure 2.1 outlines the PreSig algorithm.

Note that σ̃ has too large of a degree to be considered an SIDH isogeny, which makes it
impossible to use σ̃ as-is in SIDH. However, since we will have access to all of the private
information about the entire map σ̃ during the latter portion of the protocol, we can simply
break up σ̃ into segments with SIDH-sized degrees (about p1/2). We do so by writing σ̃ as
the composition of several isogenies with SIDH-sized degrees. We won’t need to publish
any auxiliary points, so this technique leaks no extra information.

Verification of the pre-signature is inherited from the verification algorithm for SQISign.
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Figure 2.2: Adapt and Extract Algorithms

We now turn to the Adapt and Extract algorithms. Using the witness, y, we run an
SIDH-like transformation on τ , to obtain a new map y′ and its codomain EyA. In other
words, if EY = E0/⟨Sy⟩ and EA = E0/⟨SA⟩ then EyA = E0/⟨Sy, SA⟩. This operation
requires some extra information about τ which was provided with the presignature. Now,
we compute an SIDH-like square on σ̃ and y′ to obtain rsig, as pictured in Figure 2.2.
Note that for this second SIDH iteration, we have access to both maps y′ and σ̃ so there is
no need to publish additional auxiliary points, which is why, along with the difference in
degree sizes, we cannot call these explicit SIDH iterations. This completes Adapt. Note,
the full signature is σ = (rsig, πy′), where πy′ is a zero-knowledge proof that verifies that
EyA was generated honestly using y.

For Extract we can similarly compute the SIDH square for rsig and σ̃ to obtain a map
from EA to EyA of appropriate degree. This gives us y′, which is enough to obtain Sy, and
hence y.

Both Adapt and Extract are outlined in Figure 2.2.

2.1.1 Design Choices

We give a brief summary of other designs that were considered in the construction of
SQI-AS, and why they were not viable candidates.

We begin by considering the PreSig algorithm, where the output must somehow depend
on the statement being used from the set RSSI . Perhaps the most natural approach would
be to shift the commitment curve by the statement curve using a variation of SIDH,
depicted in Figure 2.3. With enough public information about the statement this could be
done using B-SIDH [6]. The problem, however, is that we would end up with an unknown
map from E0 to EY (recall we do not have access to the witness at this point), then a
known map from EY to EC . This is enough to generate a challenge, but it is not enough
to run the signing algorithm. In order to generate the presignature, we must run KLPT
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Figure 2.3: Naive approach to PreSig.
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Figure 2.4: Naive approach to Adapt and Ext.

on the composition of τ̂ , the commitment, and the challenge. If we do not know all of
the maps used in the commitment, then we cannot run KLPT . This is why we chose,
instead, to use the statement curve to canonically define an additional commitment map.
When choosing this extension we considered using a multiplication by n map, where n is
the j-invariant of the statement curve, however, this map would be too costly to compute.
This lead us to using a hash function to obtain a canonical stream of “random” integers
to choose the kernel of the extension map, as described in Section 2.1.

Now we turn to the Adapt and Extract algorithms. The intuitive approach to relating
the witness y′ and presignature σ̃ maps would be to simply compose them, shown in
Figure2.4. Then, when a user has the presignature and signature maps, they can compose
the presignature and the signature’s dual map to get back an isogeny from EA and EyA,
and use KLPT to write the result as a single map. The problem that arises, however, is
that the degree of an output isogeny from KLPT is fixed, and larger than required. Hence,
the resulting map would not satisfy the requirements of RSSI . By changing the protocol
to use a variation of SIDH, we are able to recover an isogeny of the desired, fixed degree,
and hence extract a viable witness.
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2.2 Parameters

The main difference between standard SQISign and SQISign as used in our scheme is the
degree of the commitment ψ. Other choices such as security parameters and primes will be
borrowed directly from SQISign. In the SQISign [8] implementation, ψ has degree p2 − 1.
Since we are adding the extension ψ′ we will change the degree of ψ to p + 1 and choose
ψ′ to have degree p − 1. This can be done efficiently through the composition of smaller
prime degree isogenies, the generators of which are determined by a pseudorandom number
generator. The seed that generates the sequence of numbers for ψ′ will be the hash of EY
and the seed of ψ. As discussed in [8], the commitment ψ is still secure at this degree, and
so we can make ψ′ public knowledge without risking any security. This means the verifier
can check for themselves that ψ′ was generated honestly.

As mentioned previously, RSSI will be a set of isogenies with degrees of powers of 5.
Following the parameters put forth in SQISign [8], we have that the presignature σ̃ will
have degree 2l ≈ p4. We will choose τ to correspond to an isogeny of degree 3s ≈ p1/2. This
ensures that y, τ , and σ̃ in the scheme will all have degrees that are pairwise relatively
prime to each other, hence we will not run into problems during the pseudo-SIDH iterations.
Recall that σ̃ has too large a degree to be considered an SIDH isogeny, but since we will
have access to the entire map during that portion of the scheme, we won’t need to publish
any auxiliary points, so we leak no more information.

2.3 Zero-knowledge Proof

We now give a suggestion for which sigma protocol to use for πy in the presignature σ̃ and
in πy′ for the full signature σ. In the interest of memory conservation we propose using a
not-yet published zero-knowledge proof, developed at the Supersingular Isogeny Graphs in
Cryptography workshop hosted at the Banff International Research Station in 2021 [1], but
we also provide a zero-knowledge proof published recently [12] for use in the meantime. We
begin with the former. It is a Proof of Isogeny Knowledge (PoIK) that proves knowledge
of the witness in the Weak SIDH Relation, which we will recall.

2.3.1 Weak SIDH Proof of Isogeny Knowledge

We state the Weak SIDH Relation below; however, note that it is simply the CSSI Problem
1.1.2, without the degree constraint on the secret isogeny.
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Problem 2.3.1. Let p be a prime of the form p = leAA l
eB
B f − 1. Consider two isogenous

curves E and E/⟨G⟩ defined over Fp2 . Assuming it exists, find an isogeny ϕ : E → E/⟨G⟩
with (cyclic) kernel kerϕ = G, or equivalently find a generator for G.

We summarize how one iteration of the PoIK’s sigma protocol works. Depending on
the requirements and desired security level, several iterations can be instantiated at the
same time, and/or the protocol can be made non-interactive.

Define Bi(E, l
e) to be a deterministic algorithm for computing a basis (Pi, Qi) of E[l

e].
Let ϕ be an isogeny ϕ : E0 → E1, of degree l

eB
B such that ϕ(P0) = P1, ϕ(Q0) = Q1, where

(P0, Q0) = B0(E0, l
eB
B )

Commitment: Using a random a ∈ Z/leAA Z, compute E2 = E0/⟨P0 + aQ0⟩ and
E3 = E1/⟨P1 + aQ1⟩. Push ϕ forward to an isogeny ϕ′ : E2 → E3. Compute B2(E2, l

eA
A )

and B3(E3, l
eA
A ). Compute a matrix

C =

(
x y
w z

)
such that ϕ′(B2(E2, l

eA
A )

)
= C ·B3(E3, l

eB
B ). Output a hash of C.

Challenge: The challenger selects and sends c ∈ {0, 1} at random.

Response: If c = 0, then output (a, C).

If c = 1, compute B∗(E2, l
eB
B ). Find e ∈ Z/leBB Z such that kerϕ′ = ⟨P ∗ + eQ∗⟩. Output

(e, E2).

Verification:

• If c = 0, compute E2 = E0/⟨P0+aQ0⟩ and E3 = E1/⟨P1+aQ1⟩. Compute B2(E2, l
eA
A )

and B3(E3, l
eA
A ).

Compute (P,Q)T = C · (P3, Q3)
T .

Let ψ̂ : E2 → E0 and ψ̂′ : E3 → E1 be the dual isogenies computed using a. Check
that kerψ can be generated by a linear combination of P2 and Q2, and that kerψ′

can be generated by the same linear combination using P and Q.

• If c = 1, compute B∗(E2, l
eB
B ). Check that E3 = E2/⟨P ∗+eQ∗⟩. Compute B2(E2, l

eA
A )

and B3(E3, l
eA
A ). Compute ϕ(P2), ϕ(Q2), and recompute C.

We omitted some details for brevity. The entire proof of knowledge is estimated to be
15.5 KB for a 128 bits security level.
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2.3.2 SIDH Proof of Knowledge

We now summarize a recently published PoIK by De Feo, Dobson, Galbraith, and Zobernig
[12] that requires more memory than the previous one, but has an actual proof of security.
The paper begins by finding a counterexample to the soundness property of the original
SIDH PoIK, and concludes with their own PoIK that does satisfy the soundness property.
We summarize one iteration of the sigma protocol.

The PoIK proves knowledge in the setting of Problem 1.1.3: the SIDH Relation, where
we have access to the expected degrees of the isogenies, and the isogenies acting on the
public basis points. Suppose the prover is proving knowledge of ϕ : E0 → E1.

Commitment: The prover will select a new isogeny ψ : E0 → E2 at random and
compute the SIDH square between E1 and E2 resulting in a hypothetical shared secret,
E3. See Section1.2.5 on how to compute the SIDH square. Then they will send the relevant
curves E2, E3 to the verifier. The protocol differs from the original SIDH PoIK in that the
prover will also reveal some points from E3 in order to further commit and eliminate any
opportunity of foul play on their part. This additional information is enough to achieve
special soundness. To choose these points, the prover will evaluate ϕ′ on two basis points
for E2, generated by a deterministic algorithm.

Challenge: The challenger selects and sends c ∈ {0, 1} at random.

Response: If c = 0, then the prover reveals the vertical isogenies ψ, ψ′. If c = 1, then
the prover reveals ϕ′.

Verification: In either case the verifier accepts if the revealed isogenies are of the
correct degrees and correspond to the correct curves. In the latter case they will also check
that the basis points of E2 evaluate correctly.

Several iterations are necessary to achieve an adequate level of security, the details of
which, along with the proofs of security, can be viewed in [12]. The sigma protocol is
depicted in Figure 2.5.

22



E0 E1

E2 E3

ϕ

ψ ψ′

ϕ′

Figure 2.5: SIDH Proof of Knowledge sigma protocol.
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Chapter 3

Security Proofs

We now go into the details of verifying the security of SQI-AS by checking that it satisfies
the definitions outlined in Section 1.2.3.

Theorem 3.0.1. If the signature scheme SQISign, ΣSQISign, is SUF-CMA, and RSSI is a
hard relation, then the adaptor signature scheme ΞΣSQISign,RSSI

is secure in QROM.

Proof. We will show that SQI-AS is secure in QROM by demonstrating it is pre-signature
adaptable, pre-signature correct, aEUF-CMA, and witness extractable.

Lemma 3.0.2 (Pre-signature Adaptability). The adaptor signature scheme ΞΣSQISign,RSSI

satisfies pre-signature adaptability.

Proof. Fix
(
y, IY := (EY , P0, Q0, πY )

)
to be a valid witness/statement pair from RSSI . Let

σ̃ be a pre-signature generated from PreSig, with fixed parameters τ, EA generated from
KeyGen, m ∈ {0, 1}∗, and EY .

Suppose we have that PreVerpk(m, IY ; σ̃) = 1. This means that σ̃ has domain EA and
codomain E2, where E2 is an honestly generated challenge.

This gives us that Adapt(σ̃, y) will necessarily be an isogeny r with domain E2 and where
its codomain is EA/⟨τ(P0) +ατ(Q0), ker(σ̃)⟩, where P0 +αQ0 is the kernel generator of y.
It will also include a zero-knowledge proof that y was used to generate EyA.

Now, when we apply Verify, it will successfully identify that the domain and codomain
of r are as described, and that y was correctly used to generate EyA. So we get that
Verifypk(m;Adaptpk(σ̃, y)) = 1.
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Lemma 3.0.3 (Pre-signature Correctness). The adaptor signature scheme ΞΣSQISign,RSSI

satisfies pre-signature correctness.

Proof. Let τ, EA, y, IY , σ̃, and σ be as in the previous lemma.

PreVerpk(m,EY ; σ̃) will check whether the domain of σ̃ is EA, and its codomain is an
honestly generated challenge depending on m and EY . Since PreSigsk(m,EY ) uses the
KLPT algorithm to generate σ̃ from the composition of the honestly generated challenge,
commitment, and τ , by the correctness of KLPT we get that PreVerpk(m,EY ; σ̃) = 1. From
the previous lemma, we thus get that Verifypk(m;Adaptpk(σ̃, y)) = 1 as well.

Now it remains to show that y∗ := Extpk(σ, σ̃, IY ) is an isogeny from the base curve E0 to
EY , and thus that (y∗, IY ) ∈ RSSI . In Extpk(σ, σ̃, IY ) the maps σ̂ and r are used to compute
an SIDH square in order to obtain an isogeny from EA to EyA. We call this isogeny y′.
Now we may compute the kernel generator of y′ as a linear combination of τ(PY ), τ(QY ),
giving the secret integer α∗, where α∗ is such that τ(PY )+α

∗τ(QY ) is the kernel generator
of y′. Note that the values τ(PY ), τ(QY ) are shared as part of the pre-signature σ̃.

We define y∗ to be the isogeny with codomain E0 whose kernel generator is PY +α
∗QY .

By the correctness of SIDH, we are assured that the α used to generate y is the same as
α∗, hence (y∗, IY ) ∈ RSSI .

Lemma 3.0.4 (aEUF-CMA Security). If the signature scheme SQISign, ΣSQISign is SUF-CMA
secure, and RSSI , is a hard relation, then the adaptor signature scheme ΞΣSQISign,RSSI

is
aEUF-CMA secure.

In terms of the structure of our protocol and the hard problems being used in it, ours is
most similar to IAS, the adaptor signature described in [23]. In their proof of aEUF-CMA
security, the authors focus on detailing how an adversary can use the CSI-FiSh signing
oracle to answer both signing and pre-signing queries. They have the adversary use the
CSI-FiSh oracle to answer signing queries, and when a pre-signing query is made they
again use the oracle to make a full signature, obtain the witness of the relevant statement,
and make the pre-signature from these parts.

The case of SQI-AS is different, in that we may only use our underlying signature–
SQISign–to answer pre-signature query calls. This is due to the fact that our final signature
is of a necessarily different degree than the output of a SQISign signature. Hence, we put
forth a proof which reduces the security of SQI-AS to the security of SQISign, with some
changes to the proof structure in [23].

We begin with our proof of reducing to the security of SQISign, where the key difference
is that our signing oracle will require a statement as input in order to answer pre-signing
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aSigForgeA,aSIGR,SIG
(n) OS(m,Y ) OpS(m,Y )

1 : Q := ∅, (sk, pk)← Gen(1n) 1 : σ ← Signsk(m,Y ) 1 : σ̃ ← pSignsk(m,Y )

2 : m∗ ← AOS ,OpS(pk) 2 : Q := Q∪ {m} 2 : Q := Q∪ {m}

3 : (Y, y)← GenR(1n), σ̃ ← pSignsk(m
∗, Y ) 3 : return σ 3 : return σ̃

4 : σ∗ ← AOS ,OpS(σ̃, Y )

5 : return
(
m∗ /∈ Q ∧ Vrfypk(m

∗;σ∗)
)

Figure 3.1: The modified aSigForge game.

E0 E1 EC

EA E2

EyA Er

ψ

τ

ψ′

φ

σ̃

y′ r

Figure 3.2: SQI-AS.

queries. This differs from Definition 1.2.3, but seeing as the statement is generally public
knowledge, and available to all parties involved in adaptor signature transactions, we claim
this would not harm the work-flow of the protocol substantially. In the interest of clarity, we
provide an amended version of the game used in Definition 1.2.3 in Figure 3.1 to be referred
to in our proof, along with a diagram of SQI-AS in Figure 3.2 for ease of presentation.

Proof. We proceed by reducing the forgeability of ΞΣSQISign,RSSI
(SQI-AS) to that of the

signature scheme SQISign. We play the amended aSigForge game with an adversary A,
and use their forgery to win the forgeability experiment of SQISign. We first focus on how
to supply the signing and pre-signing queries to A. Assuming we can answer these calls,
then we will be able to use their forgery to win our aSigForge game.

We begin by considering a sequence of games, starting with the aSigForge game, where
we will be able to answer all query calls made by A by the last game in the sequence.
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G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk)← KeyGen(1λ)

4 : m← AOS(·),OpS(·,·)(pk)

5 :
(
y,EY

)
← GenR(1λ)

6 : σ̃ ← PreSig(sk,m,EY )

7 : σ∗ ← A(σ̃, EY )
8 : b := Ver(pk,m, σ∗)

9 : return (m /∈ Q ∧ b)

OS(m,EY )

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] =⊥
2 : H[x]← HSQISign(x)

3 : return H[x]

OpS(m,EY )

1 : σ̃ ← PreSig(sk,m,EY )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 3.3: Game 0–aSigForge

We include a summary of each game and how it changes in the progression, along with
the games written in pseudocode. We closely follow the structure of the equivalent proof
in [23], but differ in our modifications of the signing oracle instead of the pre-signing oracle
(starting in game G2).

Game G0: This game is the aSigForge game 3.1. A can query the pre-signing oracle
OpS and the signing oracle OS. Since we are in the random oracle model, A can also query
H, the random oracle. The game corresponds to the adversary A creating a forgery σ∗ for
the message m∗ of its choosing. Because G0 is exactly the aSigForge game we get that

Pr[aSigForgeA,Ξ(n) = 1] = Pr[G0 = 1]

Game G1: This game is the same as G0 except that once a forgery σ∗ is outputted, a
win condition is added to the game in step 8 of Figure 3.4 (or in Step 5 of Figure 3.1) where
it checks if σ∗ can be obtained by adapting the pre-signature σ̃ with the witness y. This
can be done since the game itself generates the key pairings in Step 1 and 3 of Figure 3.4.
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G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk)← KeyGen(1λ)

4 : m← AOS(·),OpS(·,·)(pk)

5 :
(
y,EY

)
← GenR(1λ)

6 : σ̃ ← PreSig(sk,m,EY )

7 : σ∗ ← A(σ̃, EY )
8 : if Adapt(σ̃, y) = σ∗

9 : abort

10 : b := Ver(pk,m, σ∗)

11 : return (m /∈ Q ∧ b)

OS(m,EY )

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] =⊥
2 : H[x]← HSQISign(x)

3 : return H[x]

OpS(m,EY )

1 : σ̃ ← PreSig(sk,m,EY )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 3.4: Game 1
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G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk)← KeyGen(1λ)

4 : m← AOS(·),OpS(·,·)(pk)

5 :
(
y,EY

)
← GenR(1λ)

6 : σ̃ ← PreSig(sk,m,EY )

7 : σ∗ ← A(σ̃, EY )
8 : if Adapt(σ̃, y) = σ∗

9 : abort

10 : b := Ver(pk,m, σ∗)

11 : return (m /∈ Q ∧ b)

OS(m,EY )

1 : y∗ := K(EY , H)

2 : if (y∗, EY ) /∈ RSSI

3 : abort

4 : σ ← Sig(sk,m)

5 : Q := Q∪ {m}
6 : return σ

H(x)

1 : if H[x] =⊥
2 : H[x]← HSQISign(x)

3 : return H[x]

OpS(m,EY )

1 : σ̃ ← PreSig(sk,m,EY )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 3.5: Game 2

If it can be adapted in this way, then the game aborts. Note, while the witness/statement
pair is generated within the game, only the statement is made public to A.

We claim that the difference in win probability between G1 and G0 is negligible. If
it were non-negligible, we would be able to use the statement and forgery, along with the
pre-signing oracle, to extract a valid witness, thereby breaking the security of our hard
relation RSSI . Hence,

Pr[G1 = 1] ≤ Pr[G0 = 1] + negl(λ)

Game G2: Here is where we will make use of the input of the statement curve EY to
the signing oracle. In this game the only difference from G1 is that we modify the signing
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oracle OS. During the signing queries, we use the QROM extractor algorithm K on input
of the statement curve EY and the list of random oracle queries H to extract a witness
y∗. Specifically we do so as follows: recall that in the Quantum Random Oracle Model,
since the proof of knowledge of the witness requires the prover to submit hashes of the
responses to all possible challenges, the oracle will be able to extract the witness using its
online extractor algorithm K. For more details on this process see Section 1.2.6 or [24]. In
the case that (y∗, EY ) /∈ RSSI the game aborts. Hence, the game now has access to the
relevant witness, for use in the signing oracles.

We claim that the probability of G2 aborting due to extracting a witness y∗ such that
(y∗, EY ) /∈ RSSI is negligible. This is due to the extractor property of the zero-knowledge
proof being submitted to the random oracle. Since multiple proofs of knowledge of the
witness must be submitted, there is a non-negligible probability that a substantial subset
of them must be correct. Since the oracle requires only one fully correct proof to meet
the online extractablility algorithm, it is expected that K will be able to recover a viable
witness to the given statement curve. Since G1 and G2 differ only in the previous abort
event, we get that

Pr[G2 = 1] ≤ Pr[G1 = 1] + negl(λ)

Game G3: In this game we further modify the signing algorithm OS. In OS we will
execute the PreSig algorithm to obtain a correct pre-signature σ̃, and then converting it into
a valid signature using the extracted witness y that we obtained from K. The game must
also simulate the proofs included in the signature. Because of the zero-knowledge property
of our zero-knowledge proof, the simulator is able to generate a proof indistinguishable
from an honest one, π∗.

We use the regular Adapt algorithm to obtain the signature, so this game is indistin-
guishable from the previous game. It holds that

Pr[G3 = 1] ≤ Pr[G2 = 1] + negl(λ)

Hence, the original aSigForge game is indistinguishable to G3, a game we can answer
the queries for.

Now we have reduced the original aSigForge game to G3, a game where we can answer
the query calls of A. Specifically, when A queries the pre-signing oracle, the simulator
will query the SQISign signing oracle. When A queries the signing oracle, the simulator
first queries the SQISign signing oracle, uses the extractor K, and then uses the resulting
witness to adapt the pre-signature into a valid signature. Now A can make any queries to
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G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk)← KeyGen(1λ)

4 : m← AOS(·),OpS(·,·)(pk)

5 :
(
y,EY

)
← GenR(1λ)

6 : σ̃ ← PreSig(sk,m,EY )

7 : σ∗ ← A(σ̃, EY )
8 : if Adapt(σ̃, y) = σ∗

9 : abort

10 : b := Ver(pk,m, σ∗)

11 : return (m /∈ Q ∧ b)

OS(m,EY )

1 : y∗ := K(EY , H)

2 : if (y∗, EY ) /∈ RSSI

3 : abort

4 : σ̃ ← PreSig(sk,m,EY )

5 : σ ← Adapt
(
σ̃, y, (PY , QY )

)
6 : Q := Q∪ {m}
7 : return σ

H(x)

1 : if H[x] =⊥
2 : H[x]← HSQISign(x)

3 : return H[x]

OpS(m,EY )

1 : σ̃ ← PreSig(sk,m,EY )

2 : Q := Q∪ {m}
3 : return σ̃

Figure 3.6: Game 3
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the oracles it requires, and is able to generate a forgery. It remains to show that we can
use the resulting forgery provided by A to win the SQISign SigForge game.

To start the attack on SQISign, after A has made its chosen OS and OpS query calls
they will eventually generate their chosen message m∗. The simulator seeking to forge a
SQISign signature will use m∗ as the challenge message in the SQISign attack. Now, in
order to forge a signature on the challenge message m∗, the simulator will consider the
challenge isogeny generated in SQISign for the message m∗, and give this map to A as
the pre-signature, along with E0. The simulator will simulate a zero-knowledge proof that
E0 was generated using a witness y where (y, E0) ∈ RSSI . This is possible due to the
zero-knowledge property of our proof. Hence, the forgery σ∗ provided by A will be an
isogeny from EA to the challenge curve, as required by SQISign. This isogeny will not be
of the correct degree size (it will have a smaller degree), so we run an iteration of KLPT
on it to achieve the desired degree. This will be sufficient to satisfy the SQISign Verify
algorithm.

Lemma 3.0.5 (Witness Extractability). If the signature scheme SQISign, ΣSQISign is
SUF− CMA, and RSSI , is a hard relation, then the adaptor signature scheme ΞΣSQISign,RSSI

is witness extractable.

Proof. The difference now from the previous lemma is that A outputs IY along with the
message m∗. The simulator S does not have access to y, so it cannot use the witness to
adapt the pre-signatures into full signatures. However, it is possible to extract y from the
zero-knowledge proof included in the statement IY since we are in the QROM setting.

Thus the proof is almost identical to that of Lemma 3.0.4 except for the detail on
obtaining y described above.

This concludes the proof of Theorem 3.0.1.
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Chapter 4

Use on Blockchain

4.1 Payment Channel Networks

The main functionality of adaptor signatures is for use on blockchains. In the case two
parties will be sending several transactions to each other, the on-chain cost can get very
expensive. To avoid these costs, the two parties can use a payment channel network (PCN)
at the cost of two on-chain transactions. This construction was introduced in [3], where the
full details are included. We give a brief description of the primitive in order to motivate
the work put into SQI-AS.

We suppose Alice and Bob would like to exchange cryptocurrencies at least three times.
They will first agree on a starting balance, each one starting with TA and TB coins respec-
tively. They submit these amounts for authentication on the blockchain, which essentially
“opens” the channel between them, locking the coins into the wallet. Now let’s say Alice
wants to send Bob t ≤ TA coins. Then both parties will sign the new balances of TA − t
and TB + t respectively, and keep the confirmations locally. They can repeat this step any
number of times. Once they decide they would like to close the channel, they will submit
the most recent channel balance for authentication on the blockchain, and are now able to
cash out.

We run into the problem that Alice and Bob might not have a direct line of commu-
nication already open between them, for which we introduce the notion of an anonymous
multi-hop lock (AMHL). Alice and Bob can identify a chain of communication through
some number of intermediaries {Ui}, i = 1, . . . , k. Each intermediary Ui will establish a
lock on the right with Ui+1, in which they agree to release funds to Ui+1 if they can solve
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a cryptographic problem. We first outline the construction from [23], and then highlight
how it can be changed for use with SQI-AS.

4.1.1 AMHL realized by IAS

There are three phases: set-up, commit, and release. We have a sender S sending funds
to a receiver R through the intermediaries U1, . . . , Uk. In the set-up phase, S will choose
some random strings {li}ki=1, one for each intermediary. Next, S will compute yj =

∑j
i=0 li

and Yj = f(yj), where f is the cryptographic function being used (in the case of [23] it is
the ideal class group action on supersingular elliptic curves). S will now send the tuple
(Yi, Yi−1, li) to each intermediary Ui, and sends (Yk, yk) to R. Now S must also send a
zero-knowledge proof to each Ui that S in fact knows a witness to their given statement.

For the commit phase, each intermediary will create a pre-signature σ̂i = PreSig(ski, txi,Yi)
where txi is the conditional contract stating that Ui will release funds to Ui+1 once Ui is
provided their full signature. Beginning in the release phase, R has enough information
to immediately provide Uk with their full signature–that is, since R has access to yk and
σ̂k, R can immediately compute σk. Once Ui has received σi, they can use their own pre-
signature σ̂i to extract their witness yi. From here, using li, they compute yi−1 = yi − li,
use this to adapt σ̂i−1 and sends σi−1 to Ui−1, thereby releasing their funds. This process
will repeat until S has released their own funds.

4.1.2 AMHL realized by SQI-AS

The same idea can be applied to SQI-AS, with a slight change in the set-up phase. Since
our witnesses are not directly integers, we instead use the integers to compute the secret
isogeny. We repeat the set-up phase for clarity.

S begins by selecting a random integer lj ∈ Fp2 for each Uj, and then computes αj =∑j
i=0 li. Since in each instance of RSSI the statement includes a basis {PY , QY } that can

be canonically computed, we choose our witnesses {yi} such that ker(yj) = ⟨PY + αjQY ⟩,
giving us that Yj = codomain(yj). The rest of the scheme is essentially the same, with the
added computation that Ui will have to compute a discrete logarithm to obtain αi from
their witness yi.
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Figure 4.1: New Adapt and Extract algorithms for use on-chain.

4.2 On-Chain Use

Using adaptor signatures in payment-channel networks will also involve full signatures on
the block chain. For this reason, we would require our adapted signature to look just like
a regular signature. Hence, we outline a variant of SQI-AS that achieves this but at a cost
to efficiency.

The only difference comes from the order of the SIDH operations in the Adapt and
Extract algorithms.

In this variant, we perform the SIDH operation on σ̃ ◦ τ instead of just τ . Specifically,
in the presignature we will publish σ̃ ◦ τ(PY ) and σ̃ ◦ τ(QY ). Then in Adapt, once we
have access to the witness y, and hence its kernel generator PY + αQY , we can use α to
compute σ̃ ◦ τ(PY )+α · σ̃ ◦ τ(QY ), which we will use as the kernel generator for y′. Lastly,
we compute the SIDH square on y′ and σ̃ to obtain our full signature rsig, as pictured in
Figure 4.1.

The Extract algorithm is completed by computing the SIDH square on σ̃ and rsig, and
from there extracting α.

In this variant, the adapted signatures satisfy the SQISign verification algorithm, using
only a new challenge (instead of a different public key, as seen in the previous version).
Hence, the verifier need only check that the extension on the challenge was honestly gen-
erated. The efficiency loss comes from this check and having to run the additional SIDH
operation to compute y′. The overall loss is not significant, and so this variant is still
feasible to use.
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Chapter 5

Cost Estimates and Conclusion

We suggest following the SQISign parameter guidelines [8], with the slight changes made to
the commitment degree size as outlined in Section 2.2. Specifically, the authors of SQISign
suggest using the prime p such that

p+1 = 233·521·72·11·31·83·107·137·751·827·3691·4019·6983·517434778561·26602537156291,

p−1 = 2·353·43·1032·109·199·227·419·491·569·631·677·857·859·883·1019·1171·1879·2713·4283.

We estimate the storage costs of the pre-signature, adapted signature, and key gen-
eration, and compare the results to IAS [23], an isogeny-based adaptor signature with
CSI-FiSh used as its underlying signature scheme. Our estimated pre-signature requires
only 226 bytes, instead of more than 18 000 bytes as in IAS. Unfortunately, our signature
requires a zero-knowledge proof as well, so its size would be about 15 704 bytes, where as
the IAS signature can range between 263 and 1880 depending on the security parameters
used. Thus, SQI-AS provides a significant improvement in pre-signature size, but at the
cost of a larger adapted signature. This could be optimal if the payment channel network
is very large and requires a long set-up.

Future work can additionally look to improve the size and security of the zero-knowledge
proof being used. A shorter proof would have a large effect on the size of the adapted
signature, which is significant when signing on the blockchain. A concrete implementation
is also left to future work.
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Matteo Maffei, Pedro A. Moreno-Sanchez, and Siavash Riahi. Generalized bitcoin-
compatible channels. IACR-ASIACRYPT-2021, page 476, 2020.

[4] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. Advances in Cryptology
– ASIACRYPT 2019, pages 227–247, 2019.

[5] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. Advances in Cryptology
– ASIACRYPT 2018, 2018.

[6] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
Advances in Cryptology – ASIACRYPT 2020, 2020.

[7] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from
class group actions. Advances in Cryptology – EUROCRYPT 2019, pages 759–789,
2019.

[8] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: compact post-quantum signatures from quaternions and isoge-
nies. ASIACRYPT 2020, 2020.

37
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