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Abstract: We study a model for a network of synaptically coupled, excitable neurons to identify
the role of coupling delays in generating different network behaviors. The network consists of two
distinct populations, each of which contains one excitatory-inhibitory neuron pair. The two pairs are
coupled via delayed synaptic coupling between the excitatory neurons, while each inhibitory neuron is
connected only to the corresponding excitatory neuron in the same population. We show that multiple
equilibria can exist depending on the strength of the excitatory coupling between the populations. We
conduct linear stability analysis of the equilibria and derive necessary conditions for delay-induced
Hopf bifurcation. We show that these can induce two qualitatively different phase-locked behaviors,
with the type of behavior determined by the sizes of the coupling delays. Numerical bifurcation
analysis and simulations supplement and confirm our analytical results. Our work shows that the
resting equilibrium point is unaffected by the coupling, thus the network exhibits bistability between
a rest state and an oscillatory state. This may help understand how rhythms spontaneously arise in
neuronal networks.
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1. Introduction

Neuronal networks in the brain involve two fundamental types of neurons: excitatory neurons tend
to promote the firing of action potentials in other neurons, while inhibitory neurons do the
opposite [1–3]. The presence of both types of cells is thought to be important for the formation of
network oscillation patterns such as bursting and clustering [4–9].

Different network architectures can be found in different brain areas. Global inhibition, where the
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excitatory cells are sparsely connected but receive a common inhibitory input due to highly connected
inhibitory cells, has been implicated in the formation of bursting oscillations in the thalamus [7,10,11].
Networks where reciprocal excitatory and inhibitory connections dominate are thought to be important
in rhythm generation in the hippocampus [6,9]. However, for networks in the cortex, coupling between
excitatory cells is considered to be important [12]. Large scale networks in the cortex typically have
local excitatory-inhibitory circuits with long range excitatory connections [13, 14].

Whether excitatory or inhibitory, synaptic coupling represents the communication of electrical
information from one neuron to another. Inherent in this process are time delays. Conduction delay
results from the time it takes for the electrical information to travel along the axon of one neuron to
the synapse with another neuron. Synaptic delay results from processed and chemical reactions that
occur at the synapse itself. We refer to the total effect of these two delays as the coupling delay.

Numerical simulation studies of biophysical neural network models indicate that time delays can
be important in the formation of network behavior [6, 15–20]. To understand the mechanisms behind
such behavior, mathematical analysis is needed. Several different approaches to this problem can be
taken, depending on the context. Model networks of neurons that are intrinsically oscillatory can be
studied using a phase model, phase resetting curve or a Poincaré map approach [21–25], but other
approaches exist [26, 27]. Continuum models have been useful for studying delay induced
wave-propagation in large scale networks [28–30]. Stability and bifurcation analysis has proved
useful for studying networks of excitable neurons [27, 31–41]. Relaxation oscillators, either
inherently oscillatory or excitable, can be studied via geometric singular perturbation theory [42–47].
However, with a few exceptions [44–47] the work above focuses on networks where all the neurons
are of a single type (either excitatory or inhibitory) or the coupling is diffusive or sigmoidal rather
than synaptic. We note that there is an extensive literature on the effects of time delay on stability and
synchronization in artificial neural networks, which we do not attempt to review here. For recent
examples see [48–51].

In our previous study [47], we considered a network of excitable, relaxation oscillator neurons,
previously studied in [7, 10], where two distinct populations, one excitatory and one inhibitory, are
coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory
population is tightly coupled without time delay. Based on a geometric singular perturbation analysis
for relaxation oscillators, our results showed delays play a key role in producing network rhythms
where the excitatory cells are synchronized, that is, phase-locked with zero phase difference. The
analysis helped to explain how coupling delays in either excitatory or inhibitory synapses contribute to
generating these rhythms and determine the phase relationship between the excitatory and inhibitory
cells. Despite the richness of these results, our work was restricted to networks of neurons modeled as
relaxation oscillators. Also, further analysis on other types of network behaviors, such as clustering, is
needed to obtain a more complete understanding of how different population rhythms arise as a result
of the interaction between coupling delays, intrinsic properties of each cell and network architecture.

To extend previous work while relaxing the model limitations mentioned above, we study a
general network of excitable, non-relaxation oscillators. In this network, there are two distinct
populations, each of which includes a pair of excitatory and inhibitory neurons. To relax our previous
assumption where the excitatory cells were uncoupled, we couple them through time-delayed
synapses while leaving inhibitory cells coupled only with their respective excitatory ones. This allows
the interaction among excitatory cells, which may result in the emergence of different network
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behaviors such as clustering. Based on the extended model, our goal is to provide the existence and
stability conditions of differing population behaviors in terms of intrinsic properties of cells, the size
of coupling delays, and strengths.

Our paper is structured as follows: Section 2 presents the models for a single cell and for the
coupled network which will be considered in our study. Section 3 describes our analysis results
including linear stability analysis. Section 4 presents supplementary numerical simulations along with
numerical bifurcation analysis results using XPPAUT [52] and DDE-BIFTOOL [53]. We conclude
with a discussion in Section 5.

2. The models

We first describe the model equations corresponding to an uncoupled, single cell. There are two
types: one for inhibitory cells and one for excitatory cells. Then we introduce the synaptic coupling
between the cells, coupling delays, and network architecture to be considered.

2.1. Single cell model

The generalized equations for this model are as follows:

x′ = F(x, y), (2.1)
y′ = G(x, y), (2.2)

where ′ = d
dt , x ∈ R, and y ∈ Rn. Here x represents the voltage or activity of the neuron and y represents

the gating or recovery variables. To simplify the analysis, we consider n = 1 in our study (see [10]
for an example with n > 1). We assume that the x-nullcline, F(x, y) = 0, is a cubic-shaped function,
with left, middle, right branches, and F > 0 (F < 0) below (above) the x-nullcline curve. In addition,
the y-nullcline is assumed to be a monotone increasing function of x that intersects with x-nullcline
at the unique equilibrium point, and G > 0 (G < 0) below (above) the y-nullcline curve. This model
framework includes several in the literature [54–56], and often higher dimensional models can be
reduced to two dimensional models in this form [3].

Intersections of the nullclines determine equilibrium points of the system. Depending on the
location of the equilibrium point (either left or middle branch) along the x-nullcline, the system is
either excitable or oscillatory, respectively. For the excitable system, as can be seen in Figure 1, the
equilibrium point is stable so no periodic solutions arise. In this situation, the equilibrium point is
typically called the resting equilibrium point as the neurons are not active. However, if a sufficient
amount of input, such as applied current, is applied to the excitable system, the equilibrium point can
occur in the middle branch of the x-nullcline, resulting in an oscillatory system. A detailed discussion
on oscillatory system behaviors with varying applied currents is provided in Appendix A. Since many
cells in the brain are active only when stimulated [1–3] our model cells are assumed to be excitable
not oscillatory.

2.2. Synaptic coupling and network architecture

We consider networks with the architecture as shown in Figure 2. This is motivated by many brain
regions, where there are local connections (within a region) between inhibitory and excitatory cells
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Figure 1. Nullclines for Eqs (2.1) and (2.2). Black corresponds to the x-nullcline and red to
the y-nullcline. The dot represents the unique equilibrium point for an excitable system.

y

x

G(x, y) = 0

F(x, y) = 0

but global connections (between different region) are primarily between excitatory cells. This is the
case, for example in the cortex, where inhibitory connections are primarily confined within a column,
and even within a layer of a column, while the connections between columns or to different regions
are excitatory [13, 14]. As a simple model of this, we consider a system with two excitatory and two
inhibitory cells, where each E-I pair represents a different population. Thus there are no time delays
in the connections between excitatory and inhibitory cells, but there are time delays in the connections
between excitatory cells. We consider only two cells of each type to simplify the analysis. We will
discuss how our work might be extended to larger networks in Section 5.

E E

II

Figure 2. Schematic diagram of Excitatory-to-Excitatory network. Each E-cell interacts
with each other, sending and receiving excitation, denoted by dot. Each E-cell also excites
its coupled I-cell, which, in turn, inhibits its corresponding E-cell. Inhibitory connection is
denoted by dash.

The equations corresponding to each Ei for i = 1, 2 in the network are

x′i = FE(xi, yi) − gEI s(xi+2(t))(xi − xEI) − gEE s(x3−i(t − τ3−i))(xi − xEE), (2.3)
y′i = GE(xi, yi), (2.4)

where FE,GE correspond to F,G in Eqs (2.1) and (2.2), and gEI > 0 represents the maximal
conductance of the inhibitory synapse, which can be viewed as coupling strength from the I-cell to its
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connected E-cell in the same population. The function s determines the synaptic coupling. It is a
sigmoidal function which takes values in [0, 1]. Since the I-cell sends inhibition to the E-cells, xEI ,
the reversal potential for the synaptic connection, is set so that xi − xEI > 0, for the physiological
range of values for xi. Thus we will assume xi is less than the x-value of the resting equilbrium point
for the uncoupled cell. We denote xinh ≡ xEI . In a similar way, gEE > 0 represents the maximal
conductance of the excitatory synapse from the E-cell in the different population. xEE represents the
reversal potential for the excitatory connection, which is set so that xi − xEE < 0, for most of the
physiological range of values for xi. Thus we will assume that xEE is a small positive value. Finally,
τ3−i for i = 1, 2 denotes the delay in the excitatory synapse from E3−i to Ei cells in different
populations. Note that these are the only coupling delays in the network to be considered.

The model equations for I j−2 for j = 3, 4 are similarly given by

x′j = FI(x j, y j) − gIE s(x j−2(t))(x j − xIE), (2.5)

y′j = GI(x j, y j), (2.6)

where gIE denotes the maximal conductance of the excitatory synapse from E to I within the same
population. For analysis simplicity, we assume gEI = gIE < gEE but we could consider a different case
for these strengths. The reversal potential for the excitatory synapse, denoted by xIE, is chosen so that
x j − xIE < 0 for most of the physiological range of values for x j. We assume xexc ≡ xEE = xIE but a
different combination could be also considered for more complex network connections. It is assumed
that there is no coupling delay in the synaptic connection from E to I within the same population.

Note that we do not incorporate chemical kinetics for synapses into our model. However, τ1 and τ2

include the effect of delays due to the chemical kinetics, as well as other factors. In addition, intrinsic
properties of E- and I-cells, respectively, are identical in the system, in other words, FE and GE are the
same for both E-cells, while FI and GI are the same for both I-cells.

Recall that an excitable cell stays at its stable equilibrium point if there is no an external synaptic
input applied to the cell. The effect of this input depends on the type of coupling. For example, since
xi − xinh > 0, inhibitory coupling decreases x′i in Eq (2.3) while excitatory coupling increases x′j in
Eq (2.5), so long as x j − xexc < 0.

Equations (2.3)–(2.6) is a system of delay differential equations which can be written in vector form
as

x′ = F(x, x(t − τ1), x(t − τ2)), (2.7)

where x = (x1, y1, x2, y2)T . Let τmax = max(τ1, τ2). Then appropriate initial conditions are

x(t) = φ(t), −τmax ≤ t ≤ 0, (2.8)

where φ is a continuous function from [−τmax, 0] to R4. The initial value problem in the systems (2.7)
and (2.8) is guaranteed to have a unique solution if F is a C1 function [57]. Thus we assume F satisfies
this condition.
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3. Model analysis

3.1. Existence of equilibrium points

Let E∗ = (x∗1, y
∗
1, x

∗
2, y
∗
2, x

∗
3, y
∗
3, x

∗
4, y
∗
4) be an equilibrium point of Eqs (2.3)–(2.6). We assume that it is

symmetric, i.e., in the form E∗ = (x∗E, y
∗
E, x

∗
E, y

∗
E, x

∗
I , y
∗
I , x
∗
I , y
∗
I ). Plugging E∗ into the system yields that

0 = FE(x∗E, y
∗
E) − gEI s(x∗I )(x∗E − xinh) − gEE s(x∗E)(x∗E − xexc), (3.1)

0 = GE(x∗E, y
∗
E), (3.2)

0 = FI(x∗I , y
∗
I ) − gIE s(x∗E)(x∗I − xexc), (3.3)

0 = GI(x∗I , y
∗
I ). (3.4)

If there is no coupling, gEE = gEI = gIE = 0, then there is an equilibrium point where each neuron
is at its resting equilibrium point: xR = (xR

E, y
R
E, x

R
E, y

R
E, x

R
I , y

R
I , x

R
I , y

R
I ) where xR

E, y
R
E, x

R
I , y

R
I satisfy

0 = FE(xR
E, y

R
E),

0 = GE(xR
E, y

R
E),

0 = FI(xR
I , y

R
I ),

0 = GI(xR
I , y

R
I ).

Typically the synapses are not active when the neuron is at rest, thus we will assume that
s(xR

E), s(xR
I ) = O(δ) where 0 < δ � 1. A simple perturbation argument then shows that when there is

coupling in the network with gEE, gIE, gEI = O(1) (or smaller) the resting equilibrium point persists
and is given by xR + O(δ).

Other equilibrium points may also exist. To see this, consider a simplified situation when there is
no inhibition, that is, gEI = 0. Then x∗E, y

∗
E satisfy

0 = FE(x∗E, y
∗
E) − gEE s(x∗E)(x∗E − xexc), (3.5)

0 = GE(x∗E, y
∗
E), (3.6)

while the equations for x∗I , y
∗
I are unchanged, see Eqs (3.3) and (3.4). We can visualize the values of

x∗E and y∗E via intersections of the nullclines as shown in Figure 3. The effect of the coupling term
IEE ≡ gEE s(xE)(xE − xexc) can be understood as follows. Recall that gEE > 0 and s(xE) ≥ 0 for all xE.
Thus IEE = 0 if xE = xexc, negative if xE < xexc and positive otherwise. This can be seen in Figure 3a:
the blue curve (gEE > 0) intersects the black curve (gEE = 0) at xexc, lies above it for x < xexc and below
it for x > xexc. However, if xE is sufficiently small then s(xE) ≈ 0. Thus the black and blue curves
are virtually identical for xE sufficiently small. Since we assume s(xR

E) is small, the resting equilibrium
point is almost unchanged by gEE, but if gEE is large enough, other equilibrium points may exist as
shown by the multiple intersection points of the blue and red curves in Figure 3a. The effect of the
excitatory coupling on the inhibitory cell, IIE ≡ gIE s(x∗E)(xI − xexc), is similar but simpler. If x∗E is
small then s(x∗E) ≈ 0 and (x∗I , y

∗
I ) ≈ (xR

I , y
R
I ). If x∗E is large enough then IIE will shift the x-nullcline up

yielding moving (x∗I , y
∗
I ) up and to the right. See Figure 3b.

If there is no coupling between the E-cells, gEE = 0 but gEI , gIE > 0, the only equilibrium point is
the resting equilibrium point. This follows from the fact that for any xI , CEI = gIE s(xI)(xE − xinh) = 0
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(a) E-cell (b) I-cell

Figure 3. Effect of excitatory coupling on equilibrium points. Red curves correspond to
y-nullclines. Black dots denote equilibrium points. (a) Black and blue curves correspond to
xE-nullcline (Eq (3.5)) with gEE = 0 and gEE > 0, respectively. (b) Black and blue curves
correspond to xI-nullcline (Eq (3.3)) with x∗E small enough that s(x∗E) ≈ 0 and large enough
that s(x∗E) > 0, respectively.

yE

xE

GE(x, y) = 0

gEE = 0

gEE > 0

yI

xI

GI(x, y) = 0

s(x∗E) = 0s(x∗E) > 0

if xE = xinh, is postive for xE > xinh and negative for xE < xinh. Thus there can only be one equilibrium
value for the E-cell and this satisfies x∗E < xR

E. This means that s(x∗E) ≈ 0, which in turn implies x∗I ≈ xR
I .

If all couplings are present, the situation will be similar to the case with gEI = 0. The only difference
is that to obtain the extra equilibrium points, gEE may need to be larger to overcome the inhibition.

3.2. Linear stability analysis

To conduct the linear stability analysis, we first write xi(t) = x∗i + µi(t) and yi(t) = y∗i + ηi(t) for
i = 1, 2 and analogously, x j(t), y j(t) for j = 3, 4. Linearizing Eqs (2.3)–(2.6) about E∗ yields for
i = 1, 2, j = 3, 4,

µ′i(t) = (a1 − c1 − d1)µi(t) + a2ηi(t) − c2µi+2(t) − d2µ3−i(t − τ3−i),
η′i(t) = (b1µi(t) + b2ηi(t)),
µ′j(t) = (a3 − c3)µ j(t) + a4η j(t) − c4µ j−2(t),
η′j(t) = (b3µ j(t) + b4η j(t)),

(3.7)

where
[
a1 a2

b1 b2

]
=

 ∂FE
∂x

∂FE
∂y

∂GE
∂x

∂GE
∂y

∣∣∣∣∣∣
(x∗E ,y

∗
E)

=

[
∗ < 0
> 0 < 0

]
,

[
a3 a4

b3 b4

]
=

 ∂FI
∂x

∂FI
∂y

∂GI
∂x

∂GI
∂y

∣∣∣∣∣∣
(x∗I ,y

∗
I )

=

[
∗ < 0
> 0 < 0

]
,

[
c1 c2

c3 c4

]
=

[
gEI s(x∗I ) gEI s′(x∗I )(x∗E − xinh)
gIE s(x∗E) gIE s′(x∗E)(x∗I − xexc)

]
=

[
> 0 > 0
> 0 < 0

]
,

[
d1 d2

]
= gEE

[
s(x∗E) s′(x∗E)(x∗E − xexc)

]
=

[
> 0 < 0

]
.

The signs for most coefficients are fixed as indicated based on our assumptions about the forms of the
nonlinear functions. However, as can be seen from Figure 3, if gEE > 0 the signs of a1 and a3 will
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depend on the value of x∗E and x∗I . For the resting equilibrium point a1 < 0, a3 < 0 always. Further, if
s′(xR

E), s′(xR
I ) = O(δ) and gEE, gIE, gEI = O(1) then c j, d j = O(δ). Then, a simple perturbation argument

shows that the stability of the resting equilibrium point is unaffected by the coupling.
The characteristic equation for this linear DDE is obtained by considering solutions of the form

µ1(t)
η1(t)
µ2(t)
η2(t)
µ3(t)
η3(t)
µ4(t)
η4(t)


= eλt



v1

v2

v3

v4

v5

v6

v7

v8


,

where λ = β + iω ∈ C for β, ω ∈ R. Such solutions will be nontrivial if and only if

det



(λ − Π1) −a2 d2e−λτ2 0 c2 0 0 0
−b1 (λ − b2) 0 0 0 0 0 0

d2e−λτ1 0 (λ − Π1) −a2 0 0 c2 0
0 0 −b1 (λ − b2) 0 0 0 0
c4 0 0 0 (λ − Π2) −a4 0 0
0 0 0 0 −b3 (λ − b4) 0 0
0 0 c4 0 0 0 (λ − Π2) −a4

0 0 0 0 0 0 −b3 (λ − b4)


= 0, (3.8)

where Π1 = a1 − c1 − d1 and Π2 = a3 − c3.
Expanding the determinant, we get the characteristic equation for the above 8-dimensional system:

∆(λ) = {[λ2 − (Π1 + b2)λ + (Π1b2 − a2b1)][λ2 − (Π2 + b4)λ + (Π2b4 − a4b3)]
−c2c4(λ − b2)(λ − b4)}2 − e−λ(τ1+τ2){d2(λ − b2)[λ2 − (Π2 + b4)λ + (Π2b4 − a4b3)]}2 = 0.

(3.9)
Let τ =

(τ1+τ2)
2 and c = c2c4 < 0. Then the characteristic equation (3.9) could be simplified as

follows:

∆(λ) = ∆+(λ)∆−(λ) = 0, (3.10)

∆±(λ) ≡
[
f1(λ) f2(λ) − c(λ − b2)(λ − b4) ± e−λτd2(λ − b2) f2(λ)

]
,

where f1(λ) = λ2 − (Π1 + b2)λ + (Π1b2 − a2b1) and f2(λ) = λ2 − (Π2 + b4)λ + (Π2b4 − a4b3). Since
the coefficients of all terms in ∆+(λ) and ∆+(λ) are real, the roots of these functions come in complex
conjugate pairs. Thus we may analyze the roots of the full characteristic equation by studying the roots
of each factor separately.

3.2.1. Single neuron case without any coupling: ci = d j = 0

We first consider the single neuron case where there is no coupling within the two E-I pairs as well
as between two the E cells, that is, gEE = gEI = gIE = 0. This implies ci = d j = 0 for i = 1, 2, 3, 4 and
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j = 1, 2 in Eq (3.10). Thus we have

∆(λ) = [ f1(λ) f2(λ)]2 = [λ2 − (a1 + b2)λ + (a1b2 − a2b1)]2[λ2 − (a3 + b4)λ + (a3b4 − a4b3)]2 = 0.

Note that the discriminant of the quadratic function, f1(λ), is (a1 − b2)2 + 4a2b1 whose sign depends
on the specific values of the parameters. As discussed above, the only equilibrium point in this case is
the resting equilibrium point, thus a1 < 0, a3 < 0. It follows that (a1 + b2) < 0 and (a1b2 − a2b1) > 0,
which implies that if there are two real roots they are both negative. Even for complex roots, the first
condition implies that the real part of complex conjugate roots will be negative. Similarly, the roots
of f2(λ) all have negative real part. Thus, the equilibrium point E∗ is stable, which confirms that the
neuron is unable to fire or oscillate without any synaptic coupling, representing an excitable system.

3.2.2. Coupled system with a E-I coupling only: ci , 0, d j = 0

Next we consider the coupled system but with a E-I coupling only to investigate how the stability
of equilibrium point changes in response to the presence of inhibition from the I cells. This situation
corresponds to gEE = 0, gEI > 0, gIE > 0, thus we set d j = 0 while keeping nonzero ci in Eq (3.10),
which gives

∆(λ) = [ f1(λ) f2(λ) − c(λ − b2)(λ − b4)]2 = 0.

From the discussion in the previous section, the only equilibrium point in this case is the resting
equilibrium point, thus a1 < 0, a3 < 0.
I. λ = 0 case: Plugging λ = 0 to the above equation results in

∆(0) = [ f1(0) f2(0) − c2b2b4)]2 = 0.

Since f1(0) = ((a1 − c1)b2 − a2b1) > 0, f2(0) = ((a3 − c3)b4 − a4b3) > 0 and b2b4 > 0,∆(0) , 0 for any
c < 0. Thus, the characteristic equation cannot have a zero eigenvalue.

II. λ = ±iω case: Without loss of generality, we shall consider λ = iω only as the other case (λ = −iω)
will be similar. Plugging λ = iω into Eq (3.10) implies:

∆+(iω) = ∆−(iω) = (ω2 + E1iω − F1)(ω2 + E2iω − F2) + c(ω2 + E3iω − F3) = 0, (3.11)

where E1 = (Π1+b2), F1 = (Π1b2−a2b1), E2 = (Π2+b4), F2 = (Π2b4−a4b3), E3 = (b2+b4), F3 =2 b2b4.
Given all the specified signs in the system (3.7) from Section 3.2, we know that Ei < 0, Fi > 0 for all
i = 1, 2, 3.

Separating Eq (3.11) into real and imaginary parts to rewrite in the form of ∆±(iω) = <±(iω) +

i=±(iω) gives:
<±(iω) = ω4 − (F1 + F2 + E1E2 − c)ω2 + (F1F2 − cF3),
=±(iω) = ω((E1 + E2)ω2 − (E1F2 + E2F1 − cE3)).

To satisfy ∆±(iω) = 0 for a nonzero ω ∈ R, both <±(iω) = 0 and =±(iω) = 0 should be satisfied.
Solving for =±(iω) = 0 yields

ω2 = (E1F2 + E2F1 − cE3)/(E1 + E2). (3.12)
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Since both the numerator and denominator in Eq (3.12) are negative, such ω2 should exist. Also,
because (F1 + F2 + E1E2 − c) > 0, (F1F2 − cF3) > 0 in <±(iω), there are two positive roots for ω2.
Using the quadratic formula, the two solutions could be obtained, however, none of which is the same
as ω2 found in Eq (3.12). This implies that there is no ω, for which <±(iω) = =±(iω) = 0, i.e., there
are no pure imaginary eigenvalues for Eq (3.10). Thus, the equilibrium point E∗ is asymptotically
stable if no coupling between E-E is present despite the synaptic coupling between E-I. This result is
consistent with our previous study [47], in which no oscillatory solution was found in the case of no
delay in the E-I coupling.

3.2.3. Coupled system with coupling delay: ci , 0, d j , 0, τ > 0

Now we study the impact of excitatory coupling on the solution behaviors by considering the fully
coupled system with delay. Note that the corresponding characteristic equation with nonzero d j and τ
is given in Eq (3.10).

I. λ = 0 case: To check the existence of a zero eigenvalue, we plug in λ = 0 in Eq (3.10) to obtain

∆±(0) = f1(0) f2(0) − cb2b4 ∓ b2d2 f2(0)
= [(Π2b4 − a4b3)((Π1 ∓ d2)b2 − a2b1) − cb2b4] = 0.

(3.13)

Assume that a1 < 0 and a3 < 0. Since Π2b4−a4b3 > 0, (Π1+d2)b2−a2b1 > 0 and c, b2, b4 < 0, ∆−(0) , 0
since d2 < 0. However, there may exist d∗ ≡ d2 = [(Π2b4 − a4b3)(Π1b2 − a2b1) − cb2b4]/[b2(Π2b4 −

a4b3)] < 0 such that ∆+(0) = 0, because the numerator is positive but the denominator is negative.
Thus, there may be a zero eigenvalue, indicating that it is possible for the system to have multiple
equilibrium solutions. This may also imply that the presence of excitatory synaptic coupling plays an
important role in exhibiting other types of solutions in addition to the resting equilibrium solution.

Note that the existence of zero eigenvalue is valid even if there is no coupling delay (i.e., τ = 0)
between E-E cells because e−λτ = 1 for λ = 0 in Eq (3.10). In addition, we could consider an even
simpler case where the coupling between E-I is additionally removed by setting ci = 0 for all i in
Eq (3.13). Then, the four-cell system reduces to a pair of coupled E-E cells only as two I cells are
completely decoupled from this pair. Based on the same analysis, it follows that a zero eigenvalue can
still exist with no coupling between the E and I cells. This result supports previous modeling
studies [32–35, 58], in which qualitatively different equilibrium solutions in neural networks were
observed regardless of the presence of coupling delay.

II. λ = ±iω case: In addition, if we want to check whether the equilibrium loses its stability as the
value of τ increases and also to find the critical delay value at which the delay-induced bifurcation
occurs, let us consider the case of λ = ±iω.

First plugging λ = iω in Eq (3.10), we get

∆±(iω) = f2(iω)[ f1(iω) ± e−iτωd2(iω − b2)] − c(iω − b2)(iω − b4)
= f2(iω)[ f1(iω) ± (cos(τω) − i sin(τω))d2(iω − b2)] − c(iω − b2)(iω − b4).

(3.14)

Separating Eq (3.14) into real and imaginary parts, i.e., ∆±(iω) = <±(iω) + i=±(iω), and setting each
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part equal zero:

<±(iω) = ±d2(A(ω) cos(τω) + B(ω) sin(τω)) + HR(ω) = 0,
=±(iω) = ±d2(B(ω) cos(τω) − A(ω) sin(τω)) + HI(ω) = 0,

(3.15)

where

A(ω) = ((b2 + b4) + Π2)ω2 − b2(a3b4 − a4b3 − b4c3) ≡ A1ω − A2,

B(ω) = −ω3 + ((a3b4 − a4b3 − b4c3) − b2(c3 − a3 − b4))ω ≡ −ω3 + B2ω,

HR(ω) = −ω4 + (b2b4 + [(Π1 + Π2)(b2 + b4) − a2b1 − a4b3] + Π1Π2 − c)ω2

−[(a3b4 − a4b3 − b4c3)(b2Π1 − a2b1) − b2b4c)] ≡ −ω4 + C2ω
2 −C3,

HI(ω) = −[b2 + b4 + Π1 + Π2]ω3 + [(((Π1 + Π2)b4 − a4b3)b2 − a2b1b4)
+Π1(Π2(b2 + b4) − a4b3) − a2b1Π2 − c(b2 + b4)]ω ≡ −D1ω

3 + D2ω.

(3.16)

For ∆+(iω), we first gather all the terms of cos(τω) and sin(τω) by rearranging the above two
equations in Eq (3.15):

d2(A(ω) cos(τω) + B(ω) sin(τω)) = −HR(ω),
d2(B(ω) cos(τω) − A(ω) sin(τω)) = −HI(ω).

After algebraic manipulation, we can isolate cos(τω) and sin(τω) in terms of all other parameters.

d2(A(ω)2 + B(ω)2) cos(τω) = −(A(ω)HR(ω) + B(ω)HI(ω)) ≡ −C(ω), (3.17)
d2(A(ω)2 + B(ω)2) sin(τω) = −(B(ω)HR(ω) − A(ω)HI(ω)) ≡ −S(ω). (3.18)

To eliminate τ, square the equations in Eqs (3.17) and (3.18), add and simplify to give

HR(ω)2 + HI(ω)2 − d2
2(A(ω)2 + B(ω)2) = 0. (3.19)

This is a degree-eight function in ω with coefficients that depend on all the parameters except τ.
Dividing Eq (3.18) by Eq (3.17) results in tan(τω) = S(ω)/C(ω). However, this loses information
about the signs of cos(τω) and sin(τω) that are in Eqs (3.17)–(3.18). Thus we introduce y = arctan(u)
as the branch of the arctangent function with range (−π2 ,

π
2 ). Note that this corresponds to cos(y) > 0

and that the function arctan(u) + π corresponds to cos(y) < 0. The other branches of the arctangent
function are obtained from these two by adding multiple of 2π. As can be seen from Eq (3.17), since
d2 < 0 the sign of cos(τω) is determined by C(ω), and thus we define

τ = τk+(ω) ≡
1
ω

arctan
(
S(ω)
C(ω)

)
+ 2kπ, C(ω) > 0,

arctan
(
S(ω)
C(ω)

)
+ (2k + 1)π, C(ω) < 0,

(3.20)

where k = 0, 1, . . ..
For ∆−(iω) the only difference is that d2 is replaced by −d2 in Eqs (3.17) and (3.18). Thus, in this

case the signs of cos(τω) and C(ω) are the opposite. Hence we have

τ = τk−(ω) ≡
1
ω

arctan
(
S(ω)
C(ω)

)
+ 2kπ, C(ω) < 0,

arctan
(
S(ω)
C(ω)

)
+ (2k + 1)π, C(ω) > 0,

(3.21)
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where k = 0, 1, . . .. Note that we do not take k < 0 as these branches yield τ < 0.
Let us finally consider a simpler case of no delay, as similarly discussed in zero eigenvalue section.

One can do similar analysis and derive the same result in Eq (3.19) by setting τ = 0 in Eqs (3.14) and
(3.15) with the functions defined in the expressions of (3.16). It can be easily shown that, for
appropriate parameter values, there may exist pure imaginary eigenvalues for the characteristic
equation associated with the coupled system with no delay.

3.2.4. Eigenvector analysis

To complete this section, we consider the form of the eigenvectors associated with the
characteristic equation (3.10). First we rewrite the eigenvalue-eigenvector equation corresponding to
the linearization system (3.7) in a slightly different form, which corresponds to reordering the
variables as (µ1, η1, µ3, η3, µ2, η2, µ4, η4). Then solutions of the system (3.7) of the form veλt satisfy

M(λ, τ)v = 0, (3.22)

where

M =

(
λI − A d2e−λτ1 B

d2e−λτ2 B λI − A

)
,

with I the 4 × 4 identity matrix and

A =


a1 − c1 − d1 a2 −c2 0

b1 b2 0 0
−c4 0 a3 − c3 a4

0 0 b3 b4

 , B =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Nontrivial solutions will correspond to values of λ that satisfy the characteristic equation (3.10). Let λ
be such a value and v the corresponding solution of Eq (3.22). Define the 8 × 8 invertible matrix

P(λ) =

(
I 0
0 e(τ1−τ2)λ/2I

)
.

Then Eq (3.22) implies

0 = P−1M(λ)PP−1v
= M̂(λ)v̂, (3.23)

where v̂ = P−1v,

M̂(λ) =

(
λI − A d2e−λτB
d2e−λτB λI − A

)
,

and τ = (τ1 +τ2)/2. The matrix M̂ is exactly in the form considered by [27]. Following their approach,
let ξ ∈ R4. Then there is nontrivial vector

v̂± =

(
ξ

±ξ

)
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that satisfies Eq (3.23) if and only if there is a nontrivial ξ that satisfies

(λI − A ± d2e−λτB)ξ = 0. (3.24)

This latter is true if
∆±(λ) = det(λI − A ± d2e−λτB) = 0. (3.25)

It follows that if λ is root of ∆±(λ) and ξ is a nontrivial vector satisfying Eq (3.24) then the vector

v± = P(λ)
(
ξ

±ξ

)
=

(
ξ

±e(τ1−τ2)λ/2ξ

)
satisfies Eq (3.22).

For example, suppose that τ1 = τ2. If λ = ±iω is a root of ∆+(λ) in Eq (3.25) then the corresponding
eigenvector will be (ξ, ξ)T , which will yield a periodic solution of the system (3.7) with µ1(t) = µ2(t),
µ3(t) = µ4(t) and similarly for ν j. However, if λ = ±iω is a root of ∆−(λ) then the corresponding
eigenvector will be (ξ,−ξ)T . The complex form of the solution will satisfy ei(ω(t+π/ω))v = −ei(ωt)v. Thus
the corresponding periodic solution of the system (3.7) will satisfy µ1(t + T/2) = µ2(t), µ3(t + T/2) =

µ4(t) where T = 2π/ω, and similarly for η j. So the E-cells are phase-locked with phase difference of
T/2, as are the I-cells. A similar analysis if τ1 , τ2 shows that the corresponding solution will be phase
locked with phase difference τ1−τ2

2 , if λ = ±iω are roots of ∆+(λ), and with phase difference T+τ1−τ2
2 if

λ = ±iω are roots of ∆−(λ).

4. Numerical results

To further our study, we considered the following specific choice for the functions in Eqs (2.1) and
(2.2):

F(x, y) = µ(3x − x3) − y + Iapp,

G(x, y) = ε(γ(1 + tanh(β(x − δ))) − y).
(4.1)

This model is inspired by that of [56]. It has a cubic nonlinearity as for the FitzHugh-Nagumo
model [59, 60], but with a nonlinearity in the equation for the “recovery” variable which is similar to
that for a gating variable in a conductance-based model. We choose the same F and G for both
excitatory and inhibitory cells.

The parameters were chosen as follows

µ = 0.4, γ = 1.75, δ = 0.2, ε = 0.5. (4.2)

A bifurcation study of this model shows that with these parameters the parameter β could be used
to switch the model from a class 2 (β = 1.5) to a class 1 (β = 2.0) oscillator, with Iapp used as the
parameter. Details can be found in Appendix A. For both values of β the cell is excitable for Iapp small
enough, exhibits stable spiking behavior (has a stable limit cycle) for a middle range of Iapp values and
has a “high amplitude” stable equilibrium point for Iapp large enough. Typical spiking solutions are
show in Appendix A, where it can be seen that that x varies in the range [−2, 1] for these solutions.

For our studies of coupled cells, we set Iapp = 0 in all cells, so that all cells are excitable and the
only input comes from the synapses with other cells. The synaptic coupling function is

s(x) = 1/(1 + exp(k(θ − u))),
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with k = 5 and θ = 0.1. The synaptic reversal potentials are xEE = xIE = 0.5, and xEI = −2. With
this choice xE − xEI > 0 for all x on a typical spiking solution while xE/I − 0.5 < 0 for most points
of the typical spiking solution. Thus these choices give similar input to the cells as standard values in
conductance based models. The coupling strengths were varied as shown below.

4.1. Hopf bifurcations

To begin, we studied the case when there is no delay in the coupling. That is, we considered the
system given by Eqs (2.3)–(2.6), with τ1 = τ2 = 0, FE = FI = F and GE = GI = G where F,G
are given by Eq (4.1). We used XPPAUT [52] to carryout numerical bifurcation analysis of the model
when the excitatory coupling strength is varied. As shown in Figure 4, there is one equilibrium point
that appears to always exist and be asymptotically stable, at least for the range of gEE we considered.
This equilibrium point corresponds to all cells being at their resting equilibrium point. In other trials we
considered gEE ∈ [0, 700] and this equilibrium point still persisted. Note that, for our parameter values,
s(xR

E), s(xR
I ) ≈ 0.0001, and s′(xR

E), s′(xR
I ) ≈ 0.0006. This confirms the analysis of Section 3.1: if the

coupling strengths are O(1) with respect to the size of s(xR
E), s(xR

I ), s′(xR
E), s′(xR

I ) the resting equilibrium
point exists and is asymptotically stable. At a critical value of the excitatory coupling, gEE, a pair of
unstable equilibrium points of the form (x∗E, y

∗
E, x

∗
I , y
∗
I ), is created in a saddle-node (fold) bifurcation.

For larger gEE, one of these equilibria is stabilized in a Hopf bifurcation. The other appears to always
be unstable. The Hopf bifurcation is subcritical and gives rises to an unstable periodic orbit which is
destroyed in a homoclinic bifurcation. Varying the other conductances gEI and gIE or the value of β
did not affect the structure of the diagram, just the sizes of the equilibrium points and the region of
existence of the periodic orbit. See Figure 5. In this figure we see a threshold for g = gEI = gIE.
If g < 1 the saddle node and Hopf bifurcation occur as the same value as when g = 0. Thus the
connections between the E and I cells have little effect on the dynamics of the system. Above this
threshold the inhibition of the E cells by the I cells has an effect: larger gEE values are needed to cause
the saddle node and Hopf bifurations. In these diagrams we kept gEI = gIE, however, varying these
independently showed the similar behavior. There are thresholds for these parameters such that both
must be above their threshold for inhibition to have an effect.

Next we considered the coupled system with delay, given by Eqs (2.3)–(2.6), with FE = FI = F and
GE = GI = G given by Eq (4.1) and the parameters as described above. Using Maple, we numerically
solved for the equilibrium points as a function of gEE. This yielded the same curves of equilibrium
points as in Figure 4a, which is to be expected since the equilibrium points do not depend on the
size of the delays. Next we evaluated the Jacobian of the linearization at the equilibrium points and
plotted the curves corresponding to Eqs (3.20) and (3.21) as a function of gEE for two different values
of g = gIE = gEI . These are shown in Figure 6. Note that these curves are defined in terms of the mean
delay τ = τ1+τ2

2 . The blue curves correspond to the highest equilibrium point in Figure 4a, with the thin
curves corresponding to the ∆+ factor in Eq (3.10) having a pair of pure imaginary eigenvalues and
the thick to the ∆− factor. The cyan curves correspond the middle equilibrium point. For all parameter
values we considered, the middle equilibrium point was always unstable, thus these curves will not
affect the observable dynamics. As noted above, for our choice of parameter values we expect the low
(resting) equilibrium point to be asymptotically stable for gEE in the range we consider. The black
vertical line corresponds to the characteristic equation having a zero root. This value is independent of
the delay and corresponds to the saddle-node bifurcation points in Figure 4.
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Figure 4. One parameter bifurcation diagrams xE vs. gEE for the example system with β =

1.5, IE = II = 0, τ1 = τ2 = 0 and gEI , gIE as shown. Other parameter values are given by the
expressions (4.2). Thin/thick black curves show unstable/asymptotically stable equilibrium
points. Red curves show maximum and minimum amplitude of unstable limit cycle.
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(a) β = 1.5

0

1

2

3

4

5

g

0 2 4 6 8 10
gEE

(b) β = 2

Figure 5. Two parameter bifurcation diagrams g(= gEI = gIE) vs. gEE for the example
system. Parameter values are as given in the expressions (4.2) with IE = II = 0, τ1 = τ2 = 0
and with β as shown. Black is curve of saddle-node (fold) bifurcations. Blue is curve of Hopf
bifurcations.

The high equilibrium point is asymptotically stable in the region to the right of all the blue curves.
This follows from the fact that for τ = 0 the high equilibrium point is stable to the right of the
intersection point of the lowest thin blue curve with the gEE axis. This point corresponds to the Hopf
bifurcation at gEE = gH

EE ∼ 7.18 in Figure 4a and at gEE = gH
EE ∼ 8.9 in Figure 4b. Consider Figure 6a.

For any fixed gEE > gH
EE as τ is increased the high equilibrium point will lose stability at the first thick
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blue curve. If gEE is large enough then no curve is crossed for any τ > 0 and the equilibrium point
remains stable. If gEE < gH

EE then the high equilibrium point will gain stability at the first thin blue
curve then lose it at the first thick blue curve. The effect of inhibition can be seen by comparing
Figure 6a,b. While qualitatively, the figures are similar, there are some quantitative differences. From
a purely geometric perspective, larger gEI and gIE shift Figure 6a to the right, stretch it horizontally
and compress it vertically. The biological implication is that if the E-I coupling is stronger, then
stronger E-E coupling is needed to create the nonresting equilibrium points (as seen for zero delay in
Figure 4). However, smaller delays are needed to induce the Hopf bifurcations.

(a) gEI = gIE = 1 (b) gEI = gIE = 2

Figure 6. Plots of the curves in the gEE-τ parameter space where the characteristic equation
Eq (3.10) has a pair of pure imaginary eigenvalues. Blue curves correspond to the high
equilibrium point, cyan to the middle equilibrium point. Thin curves correspond to Eq (3.20)
(roots of ∆+) thick to Eq (3.21) (roots of ∆−). Parameter values are the same as Figure 4a,
except τ > 0 and β is as given. Note that τ = τ1+τ2

2 .

We expect that the high equilibrium point will undergo a Hopf bifurcation at τ values corresponding
to the blue curves. The relative phases of the two cell populations on the resulting periodic orbits will
be determined by the eigenvector structure. For example, if τ1 = τ2 then the eigenvector corresponding
to a pair of pure imaginary roots of ∆+(λ) will be of the form (ξ, ξ)T . Thus the periodic orbits emanating
from Hopf bifurcations along the thin blue curves will be of in-phase type: xE1(t) = xE2(t), xI1(t) =

xI2(t), yE1(t) = yE2(t) and yI1(t) = yI2(t) . We refer to these as synchronized solutions since the
corresponding variables of each cell type are synchronized. In general there will be phase-locking with
non-zero phase difference between different variables of a given cell type (e.g., xE1 vs. yE1) and between
the same variables of different cell types (e.g., xE1 vs. xI1). Along the thick blue curves, the roots
correspond to ∆−(λ) and the corresponding eigenvector is of the form (ξ,−ξ)T . Thus the corresponding
periodic orbits will be of anti-phase type that is xE1(t) = xE2(t + T/2) and xI1(t) = xI2(t + T/2) and
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similarly for the y variables. This follows from symmetric Hopf bifurcation theory [27, 61, 62].
Finally, we note that the intersections of the blue lines correspond to points where the high

equilibrium point has two pairs of pure imaginary eigenvalues, while the intersection points of the
black line with the blue and cyan curves corresponds to points where there is an equilibrium point
with one zero eigenvalue and a pair of pure imaginary eigenvalues. These correspond to Hopf-Hopf
bifurcations and saddle-node(fold)/Hopf bifurcations, respectively [63, 64]. While such codimension
two bifurcations are relatively rare in ordinary differential equation models, they are not unusual in
delay differential equation models [27, 33–35, 65].

To verify the predictions about Hopf bifurcations and periodic solutions, we use the numerical
continuation software DDE-BIFTOOL [53]. In addition to locating Hopf bifurcation points, this
software can numerically compute the coefficient of the normal form to determine the criticality of the
Hopf bifurcation. Applying the DDE-BIFTOOL to Eqs (2.3)–(2.6), with the functions in Eq (4.1), the
parameter values in the expressions (4.2) and τ1 = τ2 ≡ τ, we confirmed the curves in Figure 6 are
indeed curves of Hopf bifurcation. The bifurcations of the high equilibrium point were found to be
always subcritical while those of the middle equilibrium point were supercritical. The periodic orbits
produced by the bifurcation of the middle equilibrium point are unstable since the equilibrium point is
unstable before the bifurcation.

4.2. Periodic solutions

We also used DDE-BIFTOOL to follow branches of periodic solutions emanating from the Hopf
bifurcation points. Figure 7a shows branches of periodic solutions aring from various branches of
Hopf bifurcations at gEE ≈ 7.2 using τ1 = τ2 ≡ τ as the bifurcation parameter. Note that, the Hopf
bifurcations are subcritical and produce unstable periodic orbits which coexist with the stable
equilibrium point. However, in almost all cases, these branches undergo a saddle node of periodic
orbits giving rise to stable periodic orbits. The far left curve in Figure 7a starts from the Hopf point on
lowest thick blue curve in Figure 6a at τ ≈ 1.5. The far right curve in Figure 7a (which remains
unstable) starts from the same thick blue curve but at τ ≈ 2.7. The other curve of periodic solutions
starts from the Hopf point on the thin blue curve at τ ≈ 3.2. Figure 7b shows the form of the periodic
solutions for xE1 and xE2 at particular points on the branches. Other points on the same branch
produced different shapes of periodic orbits, but the phase relationship between xE1 and xE2 remains
the same. Note that the phase relationships correspond with the predictions of our analysis, namely,
the periodic solutions arising from the thick blue curves give rise to anti-phase periodic solutions and
those arising from the thin blue curves to in-phase (synchronized) solutions.

Figure 8 verifies this from a different perspective. It shows two branches of periodic solutions with
gEE as the bifurcation parameter, arising from to two different Hopf branches. The upper branch of
periodic solutions in Figure 8a corresponds to thin blue Hopf curve in Figure 6a which passes through
τ = 4.1864 when gEE ≈ 7.23. The corresponding periodic solution in Figure 8b is of in-phase type as
predicted by our analysis. The lower branch of periodic solutions in Figure 8a corresponds to the thick
blue Hopf curve in Figure 6a which passes through τ = 1.9184 when gEE ≈ 7.23. The corresponding
periodic solution in Figure 8b is of anti-phase type as predicted.

Finally, we confirmed the predictions of our analysis using numerical simulations of the model in
XPPAUT [52]. Some examples are show in Figure 9. Here we fixed gEE = 7.2 > gH

EE. In all simulations
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(a) Branches of periodic solutions (b) Periodic solutions

Figure 7. (a) Branches of periodic solutions with gEE ≈ 7.2. Green/red points correspond to
stable/unstable periodic solutions. (b) Periodic solutions for particular parameter values on
each branch. Bottom corresponds to leftmost branch in (a); top to rightmost branch.

(a) Branches of periodic solutions (b) Periodic solutions

Figure 8. (a) Branches of periodic solutions with gEE as the continuation parameter and τ
as shown. Green /red points correspond to stable/unstable periodic solutions. (b) Periodic
solutions for particular parameter values on each branch.

the initial conditions were

xE1 = −1, xE2 = −1.2, xI1 = −1, xI2 = −1.1, yE j = yI j = 0, −max(τ1, τ2) ≤ t ≤ 0,

which leads to the low (resting) equilibrium point which is asymptotically stable. A brief stimulation,
using the applied current Iapp is applied (for details see the caption of Figure 9) and the solution
switches to another asymptotically stable solution. For τ sufficiently small the high equilibrium point
is asymptotically stable (not shown). At τ ∼ 1.3 (on the thick blue line) the high equilibrium point loses
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stability. If τ1 = τ2, the resulting periodic orbit is predicted to be of anti-phase type. Figure 9a confirms
this. As τ is increased further the thick blue line is crossed again (which restabilizes the equilibrium
point) and then the think blue line is crossed. This latter results in a Hopf bifurcation leading to a
periodic orbit which is predicted to be of in-phase (synchronized) type for the case τ1 = τ2. Figure 9b
confirms this. Note that both periodic orbits are large amplitude which is consistent Figures 7 and 8.
If τ1 , τ2 the Hopf bifurcations will still occur at the values of (τ1 + τ2)/2 indicated by Figure 6,
however, the phase relationship of the resulting periodic solution will be different. This is illustrated in
Figure 9c,d where solutions are shown which have with the same parameters and value of τ1 + τ2 as in
Figure 9a,b, but τ1 , τ2. In all cases, the solution can be switched from the oscillatory solution back
to the resting equilibrium point by a transient stimulus to the inhibitory cells (not shown).

5. Discussion

In this paper, we study a model for a network of excitable neurons with excitatory and inhibitory
synaptic coupling to investigate the role of coupling delays in the existence and stability of different
types of oscillatory network behavior. Unlike many neural network models, a single, uncoupled
neuron in our neural system is assumed to have zero applied current so that the synaptic coupling
between neurons is the main factor to give rise to network behavior. We argue that the resting
equilibrium point, i.e., the equilibrium where all the neurons are at their uncoupled rest state, should
persist and remain asymptotically stable in the presence of coupling, but that sufficiently large
excitatory coupling can give rise to new equilibria. We then use linear stability analysis of these
equilibria to show that bifurcations are only expected when there is coupling between the excitatory
neurons. We show that the stability only depends on the average of the delays between the excitatory
neurons and give explicit expressions for values of the average delay where the equilibria lose
stability via a pair of pure imaginary eigenvalues. We show that these expressions come in two types,
which correspond to two factors in the characteristic equation. We then analyze the eigenvector
structure to predict the type of oscillatory patterns that would emerge in the corresponding
delay-induced Hopf bifurcations. To our knowledge, this is the first article to carry out stability and
bifurcation analyses on such a system.

We apply our analytical results to an example model inspired by that of Terman and Wang [56].
We solve for the equilibria of the model and show that the resting point always persists, while for
sufficiently large excitatory coupling a saddle node bifurcation occurs giving rise to two other
equilibria. We find curves of potential Hopf bifurcation of these equilibria in the parameter space of
the average delay and excitatory coupling strength, and show the two types described above alternate
as the delay increases.

We supplement and verify our analytical results using numerical simulations and numerical
bifurcation analysis. Using DDE-BIFTOOL [53] we verify that the curves of pure imaginary
eigenvalues are indeed Hopf bifurcations. For the case of equal delays, the two types of Hopf
bifurcation give rise to periodic solutions where corresponding cells are in-phase (synchronized) and
anti-phase. We find sets of parameter values where both types of periodic solutions exist and are
asymptotically stable. Using numerical simulations in XPPAUT [52], we show that if the delays are
not equal, but the average delay remains the same, the oscillation patterns are transformed as
predicted by the eigenvector analysis.
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(a) Antiphase periodic orbit, τ1 = τ2 = 1.5
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(b) In phase periodic orbit, τ1 = τ2 = 3.5
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(c) Out of phase periodic orbit, τ1 = 0.5, τ2 = 2.5
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(d) Out of phase periodic orbit, τ1 = 2.9, τ2 = 4.1

Figure 9. Numerical simulations of Eqs (2.3)–(2.6) with nonlinearities given by (4.1).
gEE = 7.2 and τ1, τ2 values as shown. Other parameter values are the same as Figure 6a.
Black/red corresponds to xE1/xE2, while green/blue corresponds to xI1/xI2. Initial conditions
are described in the text. Transient stimulation is applied as follows. (a) and (c) E cell
1: Iapp = 2, 30 ≤ t ≤ 32; (b) both E cells: Iapp = 2, 30 ≤ t ≤ 32; (d) E cell 1:
Iapp = 1.7, 30 ≤ t ≤ 32, E cell 2: Iapp = 1.7, 29.5 ≤ t ≤ 31.5.

This study extends our previous work [47] in that the neural networks considered herein include
two distinct pairs of excitatory and inhibitory neurons, which are coupled through excitatory synapses.
Previously, we considered the global inhibitory network where an excitatory population is uncoupled
but connected to a global inhibitory neuron only. Thus, our study exhibits other types of network
behaviors such as solutions where the excitatory cells are in anti-phase, in addition to synchronization
among excitatory neurons. Here, we also consider a general network of non-relaxation oscillators
unlike our previous study. Moreover, we extend our previous work by conducting numerical bifurcation
analysis based on DDE-BIFTOOL, in which we show the coupling delay plays a significant role in
generating various types of periodic solutions as a result of Hopf bifurcations.
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An important finding in the current work is that the resting equilibrium point is unaffected by the
coupling. This is due to the fact that the synaptic coupling is effectively zero when the neuron is
at rest, which is a common feature of biophysical models of neurons. Thus all the delay-induced
bifurcations involve nontrivial equilibria which are induced by the excitatory coupling and the resultant
stable periodic solutions coexist with the stable resting equilibrium. This is in contrast to studies of
neural networks with delayed diffusive or sigmoidal coupling where the resting/trivial equilibrium
point undergoes the delay-induced bifurcations and becomes unstable [27, 31–39].

Our results about Hopf bifurcation leading to in-phase and anti-phase periodic solutions, for the
case of symmetric delays in the E-E connections, mirror those found in many systems of two coupled
identical oscillators [31,33,34,36,37,39–41]. Here we have shown that these results persist in models
with synaptic coupling and even if the resting (trivial) equilibrium remains asymptotically stable.
Further, we have shown how these results may be extended to the case of non-symmetric delays.

Our results have interesting implications for how rhythms may arise in biological neural networks.
Rhythms are associated with frequencies that are observed at the network level as opposed to the
individual neuron level. One way that these can arise is through phase-locked oscillatory solutions [6,
66]. For example, in our small network in-phase (synchronized) oscillations give rise to a network
frequency equal to the frequency of the individual neurons, while anti-phase oscillations give rise to a
network frequency twice that of the individual neurons. Several studies have shown that rhythms can
arise in networks of oscillatory neurons [6, 66], however, these rhythms are generally always present
unless a parameter changes. In our model, due to the bistability between the resting equilibrium and
the oscillatory solutions, the network can transition between a non-rhythmic state and a rhythmic state,
simply through a transient input. Further, we observe parameter ranges where there is tristability
between the resting equilibrium point and two different oscillatory patterns (in-phase and anti-phase).
In this parameter regime the system can transition from the non-rhythmic activity to two different
rhythmic states, depending on the input.

Model limitations and future directions. Despite the richness of our analytical and numerical
results, our study is based on the small-size network with four, two excitatory and two inhibitory,
neurons only resulting in two excitatory-inhibitory pairs. The results for two neurons with symmetric
delays have been extended to larger networks with circulant coupling in [27]. We expect that we can
use a similar approach to extend our results for non-symmetric delays to these types of larger networks.

In addition, there is only one location where coupling delays are assumed to arise, which is in
synapses between excitatory cells in different populations. Though our study considers asymmetric
delay case among excitatory neurons but additional delays between coupled excitatory and inhibitory
cells are needed to obtain a more complete understanding of a realistic neural network. We could also
include delays within a population to better represent the synaptic delay between neurons. Further,
in some brain networks there exist long-range connections from excitatory cells in one population to
inhibitory cells in the other [6,14]. If such connections were added to our model, it would be necessary
to include the corresponding coupling delay. Thus, our future study would extend the current model to
investigate the impact of delays between different types of neurons on the observed network behaviors
in this study.

Our work here focused on models with one “activity” variable and one “gating” variable. However,
as shown in [27] the linear stability analysis we use could be applied to more general conductance-
based models with multiple gating variables.
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Finally, real neurons are not likely to be perfectly symmetric. In other studies without delay, it has
been shown that some results for symmetric systems persist, but new phenomena can also occur [67,
68]. Thus it would be interesting to include the effects of heterogeneity in neural parameters in a future
study.
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Appendix

A. Single cell model

In this paper we consider a single cell model inspired by that of Terman and Wang [56]. The model
is based on the FitzHugh-Nagumo [59,60] model but with a nonlinearity in equation for the “recovery”
variable which is similar to that for a gating variable in a conductance-based model. The equations for
this model are as follows

x′ = µ(3x − x3) − y + Iapp,

y′ = ε(γ(1 + tanh(β(x − δ))) − y).

This nonlinearity for the recovery variable means that the model may act either as a class I and class II
oscillator, depending on the parameter values.

For the parameters used in this study, that is, given in the expressions (4.2), the parameter β can
be used to switch the model from a class 2 to a class 1 oscillator, with Iapp used as the bifurcation
parameter. This can be seen in Figure 10, which shows a one parameter bifurcation diagram of the
system when Iapp is used as the bifurcation parameter.
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Figure 10. One parameter bifurcation diagram V vs. Iapp with parameters given by the
expressions (4.2) and β values as shown. Black/red curves correspond to asymptotically
stable/unstable equilibrium points. Green/blue circles correspond to asymptotically
stable/unstable periodic orbits.

When β = 1.5 there is a unique equilibrium point which goes loses stability in a subcritical Hopf
bifurcation. A stable periodic orbit is created by a saddle node of periodic orbits. When β = 2.0
there are up to three equilibrium points and a stable periodic orbit is created in a saddle node on an
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invariant circle bifurcation. In both cases the cell is excitable for Iapp small enough, exhibits stable
spiking behavior (has a stable limit cycle) for a mid range of Iapp values and has a “high amplitude”
stable equilibrium point for Iapp large enough. Typical spiking solutions are shown in Figure 11. Note
that the x varies in the range [−2, 1] for these solutions.
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(a) β = 2, Iapp = 1
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Figure 11. Typical spiking solutions of single cell model. Parameter values are given by the
expressions (4.2), and β and Iapp as shown.
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