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Abstract

The feedback equivalence problem, that there exists a state and feedback transformation
between two control systems, has been used to solve a wide range of problems both in linear
and nonlinear control theory. Its significance is in asking whether a particular system can
be made equivalent to a possibly simpler system for which the control problem is easier to
solve. The equivalence can then be utilized to transform a solution to the simpler control
problem into one for the original control system.

Transverse feedback linearization is one such feedback equivalence problem. It is a feed-
back equivalence problem first introduced by Banaszuk and Hauser for feedback linearizing
the dynamics transverse to an orbit in the state-space. In particular, it asks to find an
equivalence between the original nonlinear control-affine system and two subsystems: one
that is nonlinear but acts tangent to the orbit, and another that is a controllable, linear
system and acts transverse to the orbit. If this controllable, linear subsystem is stabilized,
the original system converges upon the orbit.

Nielsen and Maggiore generalized this problem to arbitrary smooth manifolds of the
state-space, and produced conditions upon which the problem was solvable. Those condi-
tions do not help in finding the specific transformation required to implement the control
design, but they did suggest one method to find the required transformation. It relies on
the construction of a mathematical object that is difficult to do without system-specific
insight.

This thesis proposes an algorithm for transverse feedback linearization that computes
the required transformation. Inspired by literature that looked at the feedback linearization
and dynamic feedback linearization problems, this work suggests turning to the “dual
space” and using a tool known as the derived flag. The algorithm proposed is geometric
in nature, and gives a different perspective on, not just transverse feedback linearization,
but feedback linearization problems more broadly.
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Chapter 1

Introduction

Nonlinear control theory has a long geometric tradition. Hermann first injected geometric
ideas into control theory when studying the accessibility problem [23]. Within decades,
a flurry of articles from a number of notable academics used the language of differential
geometry to aid in the design of feedback linearizing controllers, ascertain controllability,
and find controlled-invariant sets and distributions [8, 21, 22, 24, 25]. These results have
since been synthesized into mainstream nonlinear control texts like [27, 42, 43].

The state-space, exact feedback linearization problem is one issue tackled and resolved
by taking a geometric approach. The problem asks whether there exists a change of
coordinates ξ = Φ(x) and feedback u = α(x)+β(x) v that locally transforms the nonlinear
control-affine system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1.1)

into a linear, controllable system

ξ̇(t) = Aξ(t) +B v(t).

This idea is depicted visually in Figure 1.1. Hunt, Su and Meyer presented in [26] necessary
and sufficient conditions upon which such a transformation exists. If the conditions are
satisfied, then the change of coordinates Φ (and, consequently, the feedback u = α(x) +
β(x) v) can be found by solving a large system of partial differential equations (PDEs).
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ξ̇ = Aξ +Bv

β(x)

α(x)

(1.1) Φ(x)v u x ξ

Figure 1.1: State-space, exact feedback linearization is a feedback equivalence problem wherein a
change of coordinates ξ := Φ(x) and feedback u = α(x) + β(x) v transforms the system into a
controllable linear system with a new input and new state.

The difficulty of solving this system of PDEs was clear, and within a few years attempts
were made to alleviate the difficulty. The first attempt was made in [15] by Gardner and
Shadwick in the case where the controllability indices of (A,B) in the target system are
distinct. They completed their work in [16] for the general case. The G.S. (Gardner-
Shadwick) algorithm1, their proposed approach, minimizes the number of integrations
required to find the transformation Φ. This remarkable work soon inspired attempts at
algorithmic solutions to other nonlinear control design problems such as dynamic feed-
back linearization [4, 48], differential flatness [44], and even the linearization of nonlinear
discrete-time systems [3]. All of these are feedback equivalence problems.

1.1 Feedback Equivalence

The notion of feedback equivalence broadly speaking asks: under what conditions can
solutions of one controlled dynamical system be transformed into solutions of another?
The transformation that does this is known as a feedback transformation.

1The literature is not clear on what “G.S.” really stood for. We have taken the liberty of assuming
that it stands for the original authors of the algorithm. Had it stood for anything else, the original authors
would have stated so.
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ẋ = Ax+Bv

G

F

(1.2) I
v x x

Figure 1.2: The pole placement problem of linear control theory is a feedback equivalence problem
where the target system is another linear control system with system matrix A = A + BF that
has a desired characteristic polynomial.

Definition 1.1.1 (Feedback Transformation) . Let x ∈ Rn, z ∈ Rn, u ∈ Rm, v ∈ Rm.

A (regular) feedback transformation (Φ, α, β) is a diffeomorphism Ψ : Rn×Rm → Rn×Rm

that takes the form (z, v) = Ψ(x, u) = (Φ(x), β(x)−1(u− α(x))).

Feedback transformations are grounded in practical aspects of control design where
z = Φ(x) changes the (full-state) output of a system block while u = α(x) + β(x) v
transforms a virtual input v into the plant’s input u that must be applied to the real
system. A number of important modern linear control theory problems may be cast in this
framing. For instance, consider the single-input, linear control system,

ẋ(t) = Ax(t) +B u(t), (1.2)

where A : Rn → Rn and B : R → Rn. When is it possible to define a state feedback
u = F x+Gv so that the eigenvalues of the closed-loop system matrix A+BF are at some
desired location? This is the pole placement problem, and it can be cast as a feedback
equivalence problem. In particular, we restrict α(x) = F x, β(x) = G and z = T x to
ensure the new system in terms of state z and virtual input v is a linear time-invariant
control system. Figure 1.2 depicts the equivalence problem as a feedback diagram. It
is a well-understood result that the necessary and sufficient conditions for the solvability
of this equivalence problem is that the system (1.2) is controllable [49]. Controllability
ensures that there exists a feedback transformation so that the system (1.2) under the new
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ż(t) = Az +BGw

ż1(t) = z2(t), . . . , żn = v(t)

I G

F

(1.2) T I
u x

F ′

zvw

Figure 1.3: The pole placement problem can be broken down into two equivalence problems that
are easier to solve: putting a system into controllable canonical form, and then pole placement of
that system so A has the desired characteristic polynomial.

coordinates looks like a chain of integrators,

ż1(t) = z2(t),
...

żn−1(t) = zn(t),

żn = v(t).

Such a system is said to be in Brunovský normal form. It is easy to place the poles of
a system in Brunovský normal form. That is, it is easy to find the required feedback
transformation for the system in the new coordinates z with virtual input v that will result
in a system matrix with a desired characteristic polynomial. Together, these two feedback
transformations solve the pole-placement feedback equivalence problem. This process is
depicted in Figure 1.3.

The solvability conditions for feedback equivalence problems can usually be found by
observing the properties that must be invariant under such a transformation. For example,
for multi-input, linear, time-invariant control systems, the controllability indices of (A,B)
are invariant under feedback transformations that preserve the linear, time-invariant prop-
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erty of the system. When the system is in the Brunovský normal form, the controllability
indices indices are easy to compute, and directly describe the number and length of the
integrator chains. This hints that a necessary and sufficient condition for a controllable,
multi-input linear system to be equivalent to some chains of integrators, they must have
equal controllability indices. The result in [49, Corollary 5.3] says precisely this. It is for
this reason, and for its practical power, that feedback equivalence problems are useful.
They allow us to determine testable conditions for solvability, and have practical utility in
control design as they can be used directly to simplify or change the system dynamics.

This general approach to control problems of linear systems made its way into nonlinear
control theory as well, starting with the state-space, exact feedback linearization problem;
this feedback equivalence problem was described earlier and depicted in Figure 1.1. We
leave the deeper theory of this problem to Section 2.1.

It is uncommon for a nonlinear system to be exactly feedback linearizable. A number
of strategies emerged from this observation. Dynamic feedback linearization enlarged the
class of systems that could be transformed into controllable, linear systems under feedback
transformations by considering the addition of a dynamic, nonlinear precompensator. In-
formally, the dynamic feedback linearization problem asks whether there exists a dynamic,
nonlinear precompensator,

ż(t) = q(x(t), z(t)) + r(x(t), z(t))s(t)

u(t) = a(x(t), z(t)) + b(x(t), z(t))s(t)
(1.3)

so that the combined nonlinear dynamics from the virtual input s to the combined state
(x, z),

(1.3) (1.1)s
u x

z

(x, z)

could be feedback linearized exactly through a feedback transformation. Figure 1.4 depicts
the feedback transformed, dynamically precompensated system that is rendered feedback
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controllable linear system

precompensated plant

β(x, z)v (1.3) (1.1) Φ(x, z)
y

α(x, z)

u

x

z

s

Figure 1.4: The dynamic feedback linearization problem asks to find a dynamic precompensator
that, together with the original nonlinear plant, can be exactly feedback linearized.

equivalent to a controllable, linear system. Solving the dynamic feedback linearization
problem is much more difficult than the exact feedback linearization problem since we must
not only find a feedback transformation to feedback linearize a system, but we must make a
clever choice of dynamic precompensation (1.3) to make that possible. Necessary conditions
for solvability were presented in [47]. Necessary and sufficient conditions were presented a
few years later by Guay et al. in [18]. This work was inspired — in a manner similar to
this thesis — by the work of Gardner and Shadwick in [16]; Guay et al. bootstrapped off
the conditions developed by Gardner and Shadwick to implicitly provide a procedure that
computes the required precompensator (1.3) and feedback transformation.

An alternative strategy emerged at the same time that leveraged a property some
larger family of systems satisfy: differential flatness [13]. A system (1.1) is differentially
flat if there exists integers k ≥ 0 and ℓ ≥ 0 as well as a change of coordinates of the
type y = Φ(x, u, u̇, . . . , u(k)) and (x, u) = Ψ(y, ẏ, . . . , y(ℓ)). The output y is called a flat
output. The vector y and its first ℓ derivatives along the solutions to the nonlinear control
system (1.1) uniquely determine the state and control action. It was long believed that
differentially flat systems are dynamically feedback linearizable systems, but it was not
clear until recently how to take a dynamically feedback linearized system and construct
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a flat output. Note that the output y in a flat system is only a function of the state
and derivatives of the input. It is not a function of the internal state of the dynamic
precompensator, unlike what is depicted in Figure 1.4 where the output is a function of z
as well as x. The equivalence of the dynamic feedback linearization and differential flatness
problems was established in [32].

The theory behind flatness takes a more general approach to the equivalence of nonlin-
ear control systems, and can even be applied to systems that are not control-affine. This
general approach can be powerful. Knowing Ψ and Φ is more useful than knowing how to
dynamically feedback linearize a system when considering planning problems, e.g. trajec-
tory planning. The flatness problem indicates not only what signal to plan a trajectory
for, i.e., y, but also to what order of smoothness it must have to ensure there exists an ap-
propriate control action u that renders it invariant. Unfortunately, flatness-based methods
do come at the cost of theoretical complexity. More recent articles, such as [17, 38, 44, 45],
have made steady progress at applying flatness techniques to derive necessary and sufficient
conditions on dynamic feedback linearizability for multi-input control systems that are not
necessarily control-affine. However, flatness is difficult to test and use for solving dynamic
feedback linearization of a system with many inputs. Moreover, any nonlinear system can
be made control-affine by using dynamic extension.

One could simply accept that a nonlinear control system is not feedback linearizable,
and instead ask to find the largest subsystem that is feedback linearizable. The linearized
subsystem can be stabilized with linear state-feedback. The system dynamics restricted
to the set where the feedback linearizing output remains identically zero, known as the
zero dynamics manifold, may not be stable but, assuming it is, the total dynamics can be
asymptotically stabilized. This method is known as partial feedback linearization, so as to
indicate that only a part of the system is transformed into a controllable, linear system. The
problem was first proposed by Krener et al. in [30] and resolved in the single-input case.
The conditions upon which the full multi-input problem could be solved were presented
in [34] by Marino alongside a procedure to find the required feedback transformation. The
feedback equivalence problem for partial feedback linearization is depicted by Figure 1.5.

A closely related problem arose in the late 1990s with application to motion control

7



ξ̇=Aξ +∑︁m⋔
i=1 bi v

i
⋔

η̇=f(η, ξ)+g(η, ξ) v

v∥

v⋔

β(x)

α(x)

(1.1) Φ(x)v u

η

ξ

Figure 1.5: Partial feedback linearization can be viewed as the feedback equivalence problem of
finding the largest, linear, controllable subsystem in a nonlinear, control-affine system. The η-
dynamics are affected by both v⋔ and v∥ while the linear ξ-dynamics are only affected by v⋔.

problems: given a controlled invariant submanifold2 N of the state-space, when is it possible
to feedback linearize those dynamics that act transverse3 to N? This problem, known as the
transverse feedback linearization (TFL) problem, differs from partial feedback linearization
in that it starts with a desired zero dynamics manifold N and asks to find a feedback
transformation that locally linearizes dynamics transverse to it. Like exact, partial and
dynamic feedback linearization, transverse feedback linearization is a feedback equivalence
problem: it asks to find a change of coordinates (η, ξ) := Φ(x) and feedback u = α(x) +
β(x) v so that, in the new coordinates, there is a linear subsystem (the subsystem associated
with ξ) whose dynamics are precisely the dynamics that are transverse to N. This factors
the dynamics of the nonlinear system in a manner suited to the objective.

This feedback equivalence problem is also depicted by Figure 1.5 except for one critical
difference. In transverse feedback linearization, the nonlinear control system is expected
to be partially feedback linearizable “in the right way.” That is, the linearized states ξ
are equal to zero if, and only if, the plant’s state resides in the target submanifold N. The
control engineer begins with the set N and finds a partial feedback linearization whose zero

2A set N ⊆ Rn is controlled invariant if there exists an input u so that if the system starts in N, it
evolves in N for all future time.

3The dynamics are not tangent to the set.
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dynamics manifold — i.e., the submanifold where ξ = 0 — is the set N. The algorithm
presented in [34] for partial feedback linearization provides no such guarantee that the
zero dynamics manifold will coincide with any such desire. The zero dynamics manifold
takes on an arbitrary shape dependent on choices taken in the procedure in a non-trivial
way. The value of starting with the desired zero dynamics manifold first, and asking the
transverse dynamics be partially feedback linearized is clear: when the control specification
is satisfied by driving the state to the set, for example, asking a robot to follow a path
in its output space. As a result, transverse feedback linearization acts as one approach to
solving what is known as the set stabilization problem.

1.2 The Set Stabilization Problem

Consider now the multi-input, nonlinear, control-affine system,

ẋ(t) = f(x(t)) +
m∑︂

i=1
gi(x(t))ui(t), (1.4)

where x(t) ∈ Rn is the system state at time t and u1(t), . . . , um(t) ∈ R are the control
actions at time t. The vector field f : Rn → TRn is known as the drift vector field. It
determines the behaviour of the system under zero control action. The vector fields g1,

. . . , gm : Rn → TRn are the control vector fields that determine how each input drives the
system.

Example 1.1 (Model of a Car) . The motion of a car-like vehicle can be modelled by
the kinematic bicycle model with dynamic extension given by

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3(t) cos (x4(t))
x3(t) sin (x4(t))

x6(t)
x3(t)

ℓ
tan (x5(t))

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u1(t) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2(t),

=: f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t),

(1.5)
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(0, 0)

(x1, x2)

ℓ

x4

x5

Figure 1.6: Depiction of the kinematic bicycle model of a vehicle described in Example 1.1.

where ℓ > 0 is the distance between the front and rear axles. Part of the state is depicted in
Figure 1.6. The position of the car in an inertial frame is (x1(t), x2(t)) and its heading angle
(relative to the x1-axis) is x4(t). The forward speed is x3(t) with a forward acceleration
x6(t) which is controlled by input u2(t). The state x5(t) is the steering angle with the
angular velocity of the steering angle controlled by input u1(t). ◀

It is often of great use to have a system’s state driven towards a subset of possible
states. In some ways this is reflective of the common control design specification that is
often found in classical linear control. Indeed, the geometric approach of Wonham [49] is, in
his own words, “first characterize solvability as a verifiable property of some constructable
state subspace.” Then many of the synthesizing approaches therein result in the state being
driven towards, or along, these subspaces. The general class of set stabilization techniques
involve bringing a system towards a given parameterized set of states without a priori
imposing a time parametrization. This frees the control designer from accidentally making
the problem infeasible. There are a variety of set stabilization techniques, e.g., [6, 19, 29,
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40]. One example of a nonlinear control design problem in which set stabilization naturally
arises is the so-called “path following” problem illustrated in the coming examples.

Example 1.2 (Path Following for a Car) . Consider the model proposed for vehicular
motion in Example 1.1. We would like the front-axle of the car to approach a circular path
of radius R > 0 in the position-plane at a constant forward speed x3 = 1, but do not wish
to impose (explicitly) any specific time-parameterization of the motion of the body along
the path. This is equivalent to making the state vector x(t) approach the set

G =
{︂
x ∈ R5 : (x1 + ℓ cos(x4))2 + (x2 + ℓ sin(x4))2 −R2 = 0, x3 = 1

}︂
.

◀

Set stabilization approaches to path following treat the path as a set in its own right,
and provide a controller that makes (1) this set invariant and (2) locally (or globally)
stable. In doing so the controller brings the system to the path and provides a guarantee,
in the absence of disturbances, that the physical system will never leave the objective
set. Formally, the set stabilization problem is as follows. Let N ⊆ Rn be a subset of the
state-space.

Problem 1.2.1 (Set Stabilization). Find a control law u so that the following holds on
some open set U containing N: for any open set V ⊃ N of U, there exists an open set
V0 ⊇ N so that solutions of (1.4) starting in V0 stay in V.

A necessary condition to solve this problem is that the control law render the set N
invariant: systems that start in N, stay in N for all future time. When this specification
is achievable, i.e., there exists u1, . . . , um so that N is invariant, we say N is a controlled-
invariant set.

More often than not, the set stabilization problem is augmented with the demand that
the set be made attractive. That is, require solutions stay in the neighbourhood of N and,
in some sense, tend towards N. When there exists u1, . . . , um so that solutions of (1.4) tend
towards N, we say that N can be made attractive. It is clear that, when N is a one-point set,
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Figure 1.7: A configuration where the the center of the vehicle’s front axle (red disk) resides on
the path with the desired forward speed, but its instantaneous velocity (red vector) causes it to
leave the path regardless of control action.

this problem subsumes the classic asymptotic stabilization problem of ensuring dynamics
tend to a single-point in the state-space.

As the next example illustrates, one must carefully construct the controlled-invariant
set: the controlled-invariant set is normally a smaller set contained in the set of states that
meet the control objective.

Example 1.3 (Path Following for a Car) . Recall the objective from Example 1.2 where
we wish to bring the vehicle towards a circular path while maintaining regulating a constant
forward speed.

Initializing the car on the set G is not sufficient to ensure the car remains on G as time
advances, no matter the choice of control input. For example, consider configuration

x0 = (R− ℓ, 0, 1, 0, 0, 0).

In this configuration, the vehicle is on the east end of the circle, facing east. This con-
figuration resides on the circular path and the vehicle is moving at the desired forward
speed, but immediately leaves the path in future time for all possible inputs u as the
vehicle has an instantaneous velocity that is not tangent to the path. This is visually
depicted by Figure 1.7. We can therefore say that the set of all points on the path G is not
controlled-invariant.

12



On the other hand, there does exist a smaller set of configurations, contained in G,
where the vehicle resides on the path and can, under appropriate control action, stay on
it for all future time; in other words, there exists a controlled-invariant set contained in G
that describes motion along the path. It can be shown that the set

N :=
{︂
x ∈ R5 : y1(x) = y2(x) = y3(x) = y4(x) = y5(x) = 0

}︂
⊂ G,

where,

y1(x) := (x1 + ℓ cosx4)2 + (x2 + ℓ sin x4)2 −R2,

y2(x) := x3 − 1,

y3(x) := x1 cos(x4) + x2 sin(x4),

y4(x) := ℓ cos(x5)− sin(x5)(x1 sin(x4)− x2 cos(x4),

y5(x) := x6,

can be rendered controlled-invariant through the (non-unique) state feedback u∗(x) =
(0, 0). The first constraint demands the vehicle’s forward axle converge upon the unit
circle while the second constraint asks that the vehicle’s speed be 1. These are the very
same constraints that appeared in our problem specification. The third constraint asks
that the vehicle’s rear axle itself travel so that its velocity is orthogonal to its position;
that is, it achieves circular motion of unknown radius. The fourth constraint can be derived
by computing Lie derivatives of the first constraint along solutions of (1.7). One point in
this set is

x0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ℓ cos
(︂
arcsin

(︂
ℓ
R

)︂)︂
R− ℓ sin

(︂
arcsin

(︂
ℓ
R

)︂)︂
1

arcsin
(︂

ℓ
R

)︂
− arctan

(︂
ℓ√

R2−ℓ2

)︂
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

depicted graphically in Figure 1.8. It is less obvious, but this set is the largest, in terms of
set inclusion, controlled invariant set that contains x0 and is contained in G. Configurations

13



Figure 1.8: A configuration of the vehicle where the front-axle resides on the path and can be kept
on the path for all future time with an appropriate control action. Intuitively, this will correspond
to a constant, non-zero steering angle keeping the vehicle in a constant-rate right turn.

in N describe all possible configurations on the path where the vehicle can be made to
remain on the path in for all future time by appropriate control action. ◀

Having a controlled-invariant set, though necessary, is still not sufficient to ensure that
the set-stabilization problem is solvable. Making a set attractive itself can be a challenge,
and depends on the dynamics in a neighbourhood of the set. Attractiveness is often
ensured either by Lyapunov [50], passivity [14, 51], or linearization-based methods [28, 46].
Linearization-based methods either approximate the dynamics transverse to the set with
a linear dynamical system (Jacobian-based linearization), or attempt to partially feedback
linearize the system in a way so that the resulting linear subsystem’s dynamics corresponds
to the transverse dynamics to the set.

Transverse feedback linearization is precisely the latter problem. It asks that, given a
controlled-invariant set, find a feedback transformation that renders the dynamics trans-
verse to the set linear and controllable. It is at this point that any linear feedback in the
new coordinates that renders the linear subsystem asymptotically stable will ensure the
set is locally attractive.
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1.3 Local Transverse Feedback Linearization

When the target set N is an orbit, necessary and sufficient conditions upon which one could
feedback linearize the transverse dynamics were found by Banaszuk and Hauser in [5].
Nielsen and Maggiore then presented conditions for when N is a general submanifold [40].
We now remind the reader of these results, but, before doing so, formally state the local
transverse feedback linearization problem (TFL). Take the system dynamics to be (1.4).
Let N be a closed, embedded n∗-dimensional submanifold of Rn and fix a point x0 ∈ N.
Suppose N is rendered locally, controlled-invariant by a state feedback u∗(x). The local
transverse feedback linearization problem is as follows.

Problem 1.3.1 (Local Transverse Feedback Linearization (TFL)). Find a (local) feedback
transformation (Φ, α, β) defined on an open set U of x0 so that, if we write (η, ξ) = Φ(x)
and u = α(x) + β(x) [ v⊤

∥ v⊤
⋔ ]⊤, the nonlinear control system (1.4) takes the form

η̇(t) = f(η(t), ξ(t)) +
m∥∑︂
i=1

g∥,i(η(t), ξ(t)) vi
∥ +

m⋔∑︂
i=1

g⋔,i(η(t), ξ(t)) vi
⋔,

ξ̇(t) = Aξ(t) +
m∑︂

j=1
bj v

j
⋔(t).

(1.6)

and (A, [ b1 ··· bm ]) is in Brunovský normal form4. Moreover, in (η, ξ)-coordinates, the
manifold N is locally given by

Φ(U ∩ N) = {(η, ξ) ∈ Φ(U) : ξ = 0} .

Linear control design may be used to design a control law v⋔ for the linear subsystem
that ensures ξ(t) → 0 as t → ∞ for all initial conditions starting in Φ(U) as long as the
state x(t) resides in U.

It turns out that solving the TFL problem is equivalent to finding an output of suitable
vector relative degree that vanishes on N. This was the view championed by Isidori with
regards to the problem of feedback linearization; this is discussed further in Chapter 2.
In the spirit of this idea, the following theorem was established in [41]. We provide the
statement as stated in [40].

4The reader should consult Figure 1.5.
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Theorem 1.3.1 ([40, Theorem 3.1]). The local transverse feedback linearization problem
is solvable at x0 if, and only if, there exists an open subset U ⊆ Rn of x0, natural numbers
ρ0 ∈ N, κ1, . . . , κρ0 ∈ N, and a smooth function h : U→ Rρ0 so that:

(1) U ∩ N ⊂ h−1(0), and

(2) the system (1.4) with output y = h(x) yields vector relative degree (κ1, . . . , κρ0) at
x0 with ∑︁ρ0

i=1 κi = n− n∗.

The theorem shows that the transverse feedback linearization problem is equivalent
to the zero dynamics assignment problem with relative degree (see Definition 2.1.3): find
an output h for system (1.4) that yields a well-defined relative degree and whose zero
dynamics manifold locally coincides with N. The output h is called a (local) transverse
output with respect to N at x0, or a transverse output for short. Theorem 1.3.1 does not
provide conditions on when the problem can be solved nor does it tell us how to find a
transverse output h.

In [40], checkable, necessary and sufficient conditions for the solvability of the TFL
problem were presented. Before presenting this theorem, we need to recall the classic
control distributions, found as Ml in [34], given by,

G(k)
x := spanR{adj

f gi|x : 1 ≤ i ≤ m, 0 ≤ j ≤ k}, k ≥ 0, x ∈ Rn.

When G(k) is a smooth and regular distribution, the associated C∞(Rn)-submodule,

G(k) := Γ∞( G(k)) = spanC∞(Rn){adj
f gi : 1 ≤ i ≤ m, 0 ≤ j ≤ k} ⊆ Γ∞(TRn), k ≥ 0,

is, by construction, finitely, non-degenerately generated. The necessary and sufficient con-
ditions for the solvability of the TFL problem are as follows.

Theorem 1.3.2 ([40, Theorem 3.2]). Suppose that inv( G(i)), i ∈ {1, . . . , n − n⋆ − 1},
0 ≤ k ≤ n − n∗ are smooth and regular distributions in an open set containing x0. The
transverse feedback linearization (TFL) problem is solvable at x0 if, and only if,

(1) dim(Tx0N + G(n−n∗−1)
x0 ) = n, and
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(2) there exists an open set U ⊆ Rn containing x0 so that for every κ ∈ {1, . . . , n−n∗−1}
and for all x ∈ U ∩ N,

dim
(︂
TxN + inv( G(κ−1))x

)︂
= dim

(︂
TxN + G(κ−1)

x

)︂
.

Condition (1) is known as the controllability condition, while condition (2) is known as
the involutivity condition. The assumptions of Theorem 1.3.2 are checkable, but its proof
does not provide a procedure for finding the transverse output even in the single-input case
as the next example illustrates.

Example 1.4 (Path Following for a Car) . Recall the model from Example 1.1 and the
set-stabilization problem from Example 1.3. If we set u2(t) = 0 — i.e. the forward speed
is fixed — and take ℓ = 2, then we can consider a simplified single-input system,

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3(t) cos (x4(t))
x3(t) sin (x4(t))

0
x3(t)

2 tan (x5(t))
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u1(t). (1.7)

Consider the 2-dimensional submanifold (n∗ = 2),

N =
{︂
x ∈ R5 : d1(x) = d2(x) = d3(x) = 0

}︂
,

d1(x) = (x1 + 2 cosx4)2 + (x2 + 2 sin x4)2 − 16,

d2(x) = x1 cos(x4) + x2 sin(x4),

d3(x) = 2 cos(x5)− sin(x5)(x1 sin(x4)− x2 cos(x4)),

that can be rendered locally controlled-invariant by u∗(x) = 0. We wish to show that,
in an open neighbourhood of point x0 = (−

√
3, 3, 1, π/6,−π/6) ∈ N, the system can be

transverse feedback linearized with respect to the set N by using Theorem 1.3.2.
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To check the conditions of Theorem 1.3.2 we compute the distributions,

G(0)
x = spanR

{︄
∂

∂x5

⃓⃓⃓⃓
⃓
x

}︄
,

G(1)
x = spanR

{︄
∂

∂x5

⃓⃓⃓⃓
⃓
x

, sec2(x5) ∂

∂x4

⃓⃓⃓⃓
⃓
x

}︄
,

G(2)
x = spanR

{︄
∂

∂x5

⃓⃓⃓⃓
⃓
x

, sec2(x5) ∂

∂x4

⃓⃓⃓⃓
⃓
x

− sin(x4) sec2(x5) ∂

∂x1

⃓⃓⃓⃓
⃓
x

+ cos(x4) sec2(x5) ∂

∂x2

⃓⃓⃓⃓
⃓
x

}︄
.

This is performed using [31, Proposition 8.26] to compute the Lie brackets in local coordi-
nates xi for R5. The tangent space can be characterized locally using [31, Proposition 5.38]
to be, for x ∈ N,

TxN = spanR

{︄
∂

∂x3

⃓⃓⃓⃓
⃓
x

, x2 ∂

∂x1

⃓⃓⃓⃓
⃓
x

− x1 tan(x4) ∂

∂x2

⃓⃓⃓⃓
⃓
x

− ∂

∂x4

⃓⃓⃓⃓
⃓
x

}︄

= spanR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

−x1 tan(x4)
0
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(1.8)

in the coordinates for R5. Condition (1) of Theorem 1.3.2 requires dim(Tx0N + G(2)
x0 ) = 5.
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Evaluating Tx0N and G(2)
x0 yields, in coordinates,

Tx0N = spanR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

− 1√
2

0
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, G(2)

x0 = spanR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

It is not hard to see that the sum of the above two vector spaces has dimension 5. So
condition (1) holds.

To evaluate condition (2), we compute the involutive closures of G(0) and G(1). It turns
out both are already involutive. Since both G(0)

x and G(1)
x are independent with respect to

TxN at every point x ∈ N near x0, the dimension of the sum of the subspaces is equal to
the sum of their dimensions. It follows that

dim(TxN + G(0)
x ) = 2, dim(TxN + G(1)

x ) = 3,

on an open set of N containing x0. This then establishes condition (2). As a result, (1.7)
is transverse feedback linearizable to N at x0. ◀

The next result connects transverse feedback linearization to partial feedback lineariza-
tion, but it is not a viable solution to the local transverse feedback linearization problem
because it relies on constructing a distribution D satisfying additional conditions for which
a procedure is not known. On the other hand, the theorem provides a guideline for finding
the transverse output.

Theorem 1.3.3 ([40, Theorem 3.5]). Suppose that inv( G(i)), i ∈ {1, . . . , n − n⋆ − 1},
0 ≤ k ≤ n − n∗ are smooth and regular distributions in an open set containing x0. The
local transverse feedback linearization problem is solvable if, and only if, there exists an
involutive smooth and regular distribution D defined on an open set U containing x0 so
that,

(i) D|U∩N = T(U ∩ N),
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(ii) D is locally controlled invariant5 under the dynamics (1.4),

(iii) For all x ∈ U ∩ N, dim(TxN + G(n−n⋆−1)
x ) = n, and

(iv) For every i ∈ {1, . . . , n− n⋆ − 1}, D + G(i) is an involutive distribution on U.

1.4 Motivation and Statement of Contribution

Indeed, if one begins with a function h whose zero level set contains N and happens to
yield the correct relative degree, then solving the transverse feedback linearization problem
is a straight-forward application of Theorem 1.3.1. On the other hand, if no output is
known, then the only result to turn to is Theorems 1.3.2–1.3.3. The procedure, based on
Theorems 1.3.2–1.3.3, for computing a transverse output requires the designer to first check
the conditions of Theorem 1.3.2. Often, in practice, this is easy. If the conditions hold,
then one must find a (non-unique) distribution D satisfying conditions (i), (ii) and (iv) of
Theorem 1.3.3. The distribution D is guaranteed to exist. Given D and the distributions
G(i), one computes exact one-forms annihilating the distributions D+ G(k) at specific indices
k where the transverse outputs are expected to appear. The difficulty in this process is in
constructing D. It isn’t as straightforward as it sounds as the next example demonstrates.

Example 1.5 (Path Following for a Car) . In Example 1.4, we showed that (1.7) is
transverse feedback linearizable to N at x0. It then follows from Theorem 1.3.3 that there
exists a distribution D that satisfies the conditions (i), (ii), and (iv); this distribution will
allow us to construct the output function with the correct relative degree.

Recall the characterization of the tangent space for N given in (1.8). Any candidate D

for Theorem 1.3.3 must satisfy condition (i), so a natural choice of candidate is a smooth
extension of (1.8),

Dx := spanR

{︄
x2 ∂

∂x1

⃓⃓⃓⃓
⃓
x

+ x2 tan(x4) ∂

∂x2

⃓⃓⃓⃓
⃓
x

− ∂

∂x4

⃓⃓⃓⃓
⃓
x

,
∂

∂x3

⃓⃓⃓⃓
⃓
x

}︄
.

5A distribution D is said to be controlled invariant if the corresponding submodule Γ∞(D) satisfies,
[f, Γ∞(D)] ⊆ Γ∞(D) + Γ∞( G(0)).
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It is easy to verify that D satisfies conditions (i) and (ii). It does not, however, satisfy
condition (iv). In particular, we will now show that inv(D+ G(1)) ̸⊆ D+ G(1), contradicting
condition (iv). To do this, consider the vector fields X ∈ Γ∞(D) and Y ∈ Γ∞( G(1)) given
by

X = x2 ∂

∂x1 + x2 tan(x4) ∂

∂x2 −
∂

∂x4 , Y = sec2(x5) ∂

∂x4 .

The Lie bracket of these two vector fields is

[X, Y ] = x2 sec2(x4) sec2(x5) ∂

∂x2 .

It is easy to see that if x2 sec2(x4) sec2(x5) ̸= 0, then [X, Y ] /∈ D + G(1). The expression
sec2(x4) sec2(x5) is necessarily non-zero and x2 is non-zero on most points of N. It is, in
particular, non-zero at the point x0. For the points where it is zero, the distribution fails to
be regular. This, of course, does not mean that the problem is not solvable. It just means
we have to be more clever. One solution is,

Dx := spanR

{︄
x2 ∂

∂x1

⃓⃓⃓⃓
⃓
x

− x1 ∂

∂x2

⃓⃓⃓⃓
⃓
x

− ∂

∂x4

⃓⃓⃓⃓
⃓
x

,
∂

∂x3

⃓⃓⃓⃓
⃓
x

}︄
,

which does, in fact, satisfy all the conditions of Theorem 1.3.3 near x0. ◀

As Example 1.5 illustrates, it is not always clear how to choose the distribution D which
satisfies the conditions of Theorem 1.3.3 even when we know that such a distribution exists.
This thesis proposes a solution to this problem by considering the dual to those conditions
of Theorem 1.3.2 and, in the spirit of [16, 18], leverage them to present an algorithm that
constructs the required feedback transformation.

The proposed algorithm possesses a number of features of note. First, it produces its
own certificate: the transverse output for which input-output feedback linearization can
be performed to locally feedback linearize the dynamics transverse to N. This is in-line
with known algorithms for state-space, exact feedback linearization. Secondly, the algo-
rithm provides a geometric intuition for the algebraic adaptation process performed on the
derived flag (Section 2.2). We show that the adaptation process amounts to producing a
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sequence of descending zero dynamics manifolds converging upon the desired zero dynam-
ics manifold N. This not only gives a geometric perspective to our algorithm, but also to
the GS algorithm [16] and “Blended Algorithm” [35] since, when N = {x0} is a one-point
set, the TFL problem coincides with the state-space, exact feedback linearization prob-
lem [40, Corollary 3.3]. Unlike previously published algorithms, the proposed algorithm
begins with a desired zero dynamics chosen a priori and finds a virtual output whose zero
dynamics manifold coincides with the desired zero dynamics manifold. This is something
that cannot be done with the GS and Blended algorithms. This is also not possible with
the algorithm for partial feedback linearization presented in [34] and used in [33] as the
resulting zero dynamics manifold is not fixed before-hand; the resulting zero dynamics is
not guaranteed to equal N. This thesis directly addresses this with the proposed algorithm
that, by leveraging the conditions under which a desired zero dynamics manifold may be
transverse feedback linearized, produces the required output for the desired zero dynamics
manifold.

1.5 Organization and Notation

The thesis is organized in the following way. First, a review of the two dominant per-
spectives on feedback linearization theory is given in Chapter 2: the relative degree view
championed by Isidori, and the equivalence of one-forms view championed by Gardner.
In that chapter, the differential algebraic objects used throughout the thesis are formally
introduced, and we develop some interesting results that connect the ideas of Gardner
with those of Isidori. The reader may wish to consult Appendix A to briefly review the
differential geometry used throughout the thesis before entering Chapter 2.

After reviewing feedback linearization theory, Chapter 3 proposes the dual conditions
for transverse feedback linearization and shows, under additional regularity assumptions,
the equivalence between them and the conditions of Theorem 1.3.2 for single-input systems.
The proof method employed explicitly demonstrates how computations in the space of one-
forms relate to computations on the vector fields in the original conditions for transverse
feedback linearization.

22



Chapter 4 is the climax of this thesis, and proves that the dual conditions for trans-
verse feedback linearization — proposed in the preceding chapter — apply just as well to
multi-input systems. The proof method used explicitly executes the proposed algorithm,
thereby establishing its correctness. Finally, in Chapter 5 we discuss the open problems
and interesting questions that arose because of this thesis.

Notation

The set of natural numbers is denoted by N and the set of real numbers by R. If A is a finite
set, then card(A) denotes its cardinality. If M is a smooth (C∞) differentiable manifold of
dimension m, then we denote by C∞(M) the ring of smooth real-valued functions on M.
If p ∈ M, then TpM denotes the tangent space at the point p and its dual, the cotangent
space, is denoted T∗

pM. The tangent and cotangent bundles of M are written TM and T∗M
respectively. If (U; x1, . . . , xm) is a chart of M, then for each p ∈ U the basis of vectors for
TpM induced by the chart is denoted by ∂/∂x1|p , . . . , ∂/∂xm|p . The vector fields ∂/∂x1,

. . . , ∂/∂xm form a local frame for TM. The unique dual basis for T∗
pM induced by the

chart is denoted dx1
p, . . . , dxm

p . If H : M → N is a smooth map between manifolds, then
the pushforward at p is DH|p : TpM → TH(p)N and the pullback at p is the dual map
DH|∗p : T∗

H(p)N→ T∗
pM.

The set of smooth sections of TM is denoted by Γ∞(TM), whose elements define vector
fields on M, and the set of smooth sections of T∗M is denoted by Γ∞(T∗M), whose elements
define covector fields (smooth one-forms) on M. The set Γ∞(TM) (resp. Γ∞(T∗M)) is a
real vector space, but can also be endowed with the structure of a module over the ring
C∞(M). Let k ∈ N ∪ {0}. Define the set of smooth k-forms Γ∞(ΛkT∗M) as sections of the
bundle of k-forms and the space of all smooth forms as Γ∞(ΛT∗M) := ⨁︁m

k=0 Γ∞(ΛkT∗M).
Let X ∈ Γ∞(TM) and ω ∈ Γ∞(ΛkT∗M). The notation Xp ∈ TpM (ωp ∈ ΛkT∗

pM) denotes
the vector X (k-form ω) in the tangent space (forms over the cotangent space) at p ∈ M.

If G ⊆ TM is a distribution, then its restriction to p ∈ M is denoted Gp ⊆ TpM.
The set of covectors that annihilate vectors in Gp is ann( Gp) ⊆ T∗

pM. Define ann( G) :=
⊔p∈M ann( Gp) ⊆ T∗M. If I ⊆ T∗M is a codistribution, then its restriction to p is denoted
Ip ⊆ T∗

pM.
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When a distribution D ⊆ TM is smooth and regular, it is a subbundle of TM and, as
such, can be associated to a C∞(M)-submodule of vector fields D := Γ∞(D) ⊆ Γ∞(TM)
comprising of smooth sections X ∈ Γ∞(TM) that satisfy Xp ∈ Dp for all p ∈ M.

If D ⊆ Γ∞(TM) is a C∞(M)-submodule and p ∈ M, then to this object we associate a
distribution defined pointwise by,

Dp := {Xp : X ∈ D} ⊆ TpM.

We say a smooth k-form ω annihilates D ⊆ Γ∞(TM) if it evaluates to zero when all of its
arguments are vector fields from D. The set of smooth forms that annihilate vector fields in
D is ann(D) ⊆ Γ∞(ΛT∗M). If I ⊆ Γ∞(ΛT∗M) and p ∈ M, then to this object we associate
a codistribution defined pointwise by,

Ip := {ωp : ω ∈ I ∩ Γ∞(T∗M)} ⊆ T∗
pM.

Given two smooth vector fields X, Y ∈ Γ∞(TM), their Lie bracket is [X, Y ] ∈ Γ∞(TM).
If D,G ⊆ Γ∞(TM) are submodules, then

[D,G] := {[X, Y ] : X ∈ D, Y ∈ G} ⊆ Γ∞(TM).

Similarly, if D, G ⊆ TM are distributions, then we can define their Lie bracket pointwise,

[D, G]p := { [X, Y ]|p : X ∈ D, Y ∈ G} ⊆ TpM.

If D ⊆ TM is a distribution, then the involutive closure is inv(D). As a matter of con-
venience, repeated Lie brackets are compressed using the following notation. Let X,

Y ∈ Γ∞(TM) and define ad0
X Y := Y and ad1

X Y := [X, Y ]. Recursively define adk
X Y :=

[X, adk−1
X Y ] for all k > 1.

Let ℓ ≥ 0. If ω ∈ Γ∞(ΛkT∗M) and β ∈ Γ∞(ΛℓT∗M) denote their wedge product by
ω ∧ β ∈ Γ∞(Λk+ℓT∗M). The wedge product distributes over the addition of smooth forms,
amd endows the space of smooth forms with a graded algebra structure over the ring
of smooth functions. If ω1, . . . , ωℓ ∈ Γ∞(Λ1T∗M) are smooth one-forms, then ⟨ω1, . . . ,

ωℓ⟩ ⊆ Γ∞(ΛT∗M) denotes the ideal generated by ω1, . . . , ωℓ over the aforementioned
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graded algebra. The exterior derivative of ω ∈ Γ∞(ΛkT∗M) is dω ∈ Γ∞(Λk+1T∗M). If
I ⊆ Γ∞(ΛT∗M) is an ideal, then the largest ideal contained in I that is closed under the
exterior derivative is denoted I(∞); the ideal I(∞) is otherwise known as the differential
closure of I. The Lie derivative of ω along a vector field X ∈ Γ∞(TM) is the smooth k-form
LXω ∈ Γ∞(ΛkT∗M). Repeated Lie derivatives of order j > 1 are defined recursively by
L

j
Xω := L

j−1
X (LXω).

If H : M → Rℓ is smooth, then it can be written component-wise as H = (H1, . . . ,

Hℓ) where H1, . . . , Hℓ : M → R are smooth. The function H i : M → R may be seen as
a smooth zero-form on M and, as such, has an exterior derivative dH i ∈ Γ∞(T∗M) and a
Lie derivative, along the vector field X, LXH

i : M→ R.
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Chapter 2

Feedback Linearization Theory

This chapter provides a consolidated review of the dual theory of feedback linearization
which is difficult to find in a single source in the literature. First, in Section 2.1 we
review the standard results for state-space, exact feedback linearization, a special case of
transverse feedback linearization. We then visit the object known as the derived flag in
Section 2.2 and prove a number of useful connections between the flag and the notion
of relative degree. These results play a crucial role in the primary proof of this thesis,
but, more importantly, provide intuition behind the derived flag construction. Finally, we
provide a brief review of the modern results of feedback linearization theory.

2.1 Exact Feedback Linearization

Nonlinear control systems of the form (1.4) are more difficult to design controllers for when
compared to controllable, linear control systems,

ξ̇(t) = Aξ(t) +
m∑︂

j=1
bj v

j(t). (2.1)

A natural problem to pose is whether, or not, it is possible to transform (1.4) into (2.1) with
an appropriate change of variables in an open set containing some objective x0 ∈ Rn. This
would greatly simplify the control design problem, as one could run through the change
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of variables and then use linear control design procedures to stabilize the system (2.1).
Formally, the problem of finding such a change of variables is the state-space, exact feedback
linearization problem.

Problem 2.1.1 (State-Space, Exact Feedback Linearization). Suppose the set {x0} ⊆ Rn

for system (1.4) is rendered controlled-invariant by input u0 ∈ Rm. Find an open set V
containing x0 and a (local) feedback transformation (Φ, α, β) defined on V so that

(1) Φ(x0) = 0,

(2) u0 = α(x0), and

(3) letting ξ = Φ(x) and u = α(x)+β(x) v, solutions to the nonlinear control system (1.4)
on V correspond to solutions of the linear control system (2.1) where (A, [ b1 ··· bm ])
is in Brunovský normal form.

In particular, solutions to (1.4) correspond to solutions of a linear control system con-
sisting of m decoupled linear control systems (Ai, b

′
i) given by,

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 . . . 0 · · · 0

. . .
. . .

1
0 0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rκi×κi , b′

i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Rκi×1, 1 ≤ i ≤ m, (2.2)

where κ1, . . . , κm > 0 are positive integers satisfying ∑︁m
i=1 κi = n. That is, solutions

to (1.4) are rendered equivalent to solutions of a linear control system with m integration
chains of lengths κ1, . . . , κm. This problem was depicted visually in Figure 1.1. The
conditions upon which the problem is solvable is written using the language of differential
geometry. Specific distributions — an assignment of subspaces to points on a manifold
— are constructed through algebraic operations — repeated Lie brackets — on the vector
fields f and g. Conditions on these distributions determine the solvability of the feedback
linearization problem.
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We now review these constructions to formally recall the solution to the feedback lin-
earization problem. Once again, recall the classic control distributions, found as Ml in [34],
given by,

G(k)
x := spanR{adj

f gi|x : 1 ≤ i ≤ m, 0 ≤ j ≤ k}, k ≥ 0, x ∈ Rn. (2.3)

as well as the distributions, which can be seen as a variant of Gj in [34],

S(0) := G(0),

S(k) := S(k−1) + [S(k−1),S(k−1)] + G(k), k ≥ 1.
(2.4)

We have already briefly discussed the control distribution G(k). The distributions S(k) were
defined in [12] for the single-input case. Although G(k) and S(k) may not be equal, their
involutive closures are.

Lemma 2.1.1. For all k ≥ 0, inv( G(k)) = inv(S(k)).

Proof. By definition (2.4), we have that G(k) ⊆ S(k). It follows directly by the definition
of the involutive closure that inv( G(k)) ⊆ inv(S(k)). As a result, it suffices to show the
reverse inclusion to show equality.

By definition (2.4), G(0) = S(0) so it follows that inv( G(0)) = inv(S(0)). Suppose, by
way of induction, that for some k ≥ 0,

inv( G(k)) = inv(S(k)).

Fix p ∈ Rn and pick Xp ∈ S(k+1)
p . By definition (2.4), there exist vectors Ap ∈ S(k)

p ,

Bp ∈ [Sk,Sk]p, Cp ∈ G(k+1)
p that satisfy

Xp = Ap +Bp + Cp.

By the definition of the involutive closure, Cp ∈ G(k+1)
p ⊆ inv( G(k+1))p. By the definition

of the involutive closure and the inductive hypothesis,

Ap ∈ S(k)
p ⊆ inv(S(k))p = inv( G(k))p.
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Since inv( G(k)) ⊆ inv( G(k+1)), conclude that Ap ∈ inv( G(k+1))p. All that remains is showing
that Bp ∈ inv( G(k+1))p. However we know that [S(k),S(k)] ⊆ inv(S(k)). Conclude that, by
the inductive hypothesis,

Bp ∈ [S(k),S(k)]p ⊆ inv(S(k))p = inv( G(k))p.

Again, since inv( G(k)) ⊆ inv( G(k+1)), Bp ∈ inv( G(k+1))p. We therefore conclude that Xp ∈
inv( G(k+1))p. Since p ∈ Rn was arbitrary, this proves the result.

The distribution S(k) and its associated submodule S(k) := Γ∞(S(k)) will play a more
prominent role when discussing transverse feedback linearization. For now, we focus our
attention on the G(k) distributions.

The following theorem provides the most commonly used conditions to test the solv-
ability of Problem 2.1.1. These conditions are a restating of the conditions Hunt, Su and
Meyer presented in [26]. If the conditions are satisfied, then the change of coordinates
ξ := Φ(x) (consequently the feedback u = α(x) +β(x) v) can be found by solving a system
of partial differential equations.

Theorem 2.1.2 ([27, Theorem 5.2.3]). The state-space, exact feedback linearization prob-
lem is solvable at x0 if, and only if, there exists an open set V containing x0 where,

(1) dim( G(n−1)
x0 ) = n,

(2) for every 0 ≤ i ≤ n− 2, the distribution G(i) is involutive, and

(3) for every 0 ≤ i ≤ n− 1 and for all x ∈ V, dim( G(i)
x0 ) = dim( G(i)

x ).

The first condition is known as the controllability condition as it is necessary for all
states to be reached after n integrations of the control action. The second condition is
known as the involutivity condition, and is a technical requirement for sufficiency. The last
condition is another technical requirement and is known as the constant dimension condi-
tion. Together, these are the necessary and sufficient conditions to solve Problem 2.1.1.

The control distributions G(k) are not just used to test if Problem 2.1.1 is solvable,
but, as Isidori indicates on [27, pg. 233], can be used to construct the required change of
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coordinates Φ. The procedure is described explicitly in the proof and, in part, inspires the
procedure developed in this thesis. Because of its significance, we now build tools required
to discuss the algorithm. First, we state a definition that plays a key role in both feedback
linearization and in the thesis broadly.

Definition 2.1.3 (Relative Degree) . Let h ∈ C∞(Rn) be a smooth function. The sys-
tem (1.4) with output h is said to have relative degree κ ∈ N at x0 if there exists an open
set V of x0 so that, for all x ∈ V,(︂

Lg1L
i
fh(x) · · · LgmL

i
fh(x)

)︂
= 0, 0 ≤ i ≤ κ− 2,

and at x0,

rank
(︂
Lg1L

κ−1
f h(x0) · · · LgmL

κ−1
f h(x0)

)︂
= 1.

Relative degree plays an important role in the feedback linearization problem as it
indicates how many derivatives with respect to time must be applied to an output before
the input appears and, importantly, that the input appears in a manner that permits
cancellation of nonlinearities (the coefficient multiplying the control is non-zero). The
“top” of the ith integration chain in (2.2) has relative degree κi at ξ(x0).

We can say more about the family of outputs at the top of the integration chains. We
expect that not only the input appear at the end of each chain but that the inputs that
drive each chain are independent of one another. This motivates the definition of vector
relative degree.
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Definition 2.1.4 (Vector Relative Degree) . Let h1, . . . , hℓ ∈ C∞(Rn). The sys-
tem (1.4) with output (h1, . . . , hℓ) is said to have a vector relative degree of (κ1, . . . ,

κℓ) ∈ Nm if,(︂
Lg1L

i
fh

j(x) · · · LgmL
i
fh

j(x)
)︂

= 0, 1 ≤ j ≤ ℓ, 0 ≤ i ≤ κj − 2,

and at x0,

rank

⎛⎜⎜⎜⎝
Lg1L

κ1−1
f h1(x0) · · · LgmL

κ1−1
f h1(x0)

... ...
Lg1L

κℓ−1
f hℓ(x0) · · · LgmL

κℓ−1
f hℓ(x0)

⎞⎟⎟⎟⎠ = ℓ.

It is said to have uniform vector relative degree if κ1 = · · · = κℓ.

The matrix ⎛⎜⎜⎜⎝
Lg1L

κ1−1
f h1(x0) · · · LgmL

κ1−1
f h1(x0)

... ...
Lg1L

κℓ−1
f hℓ(x0) · · · LgmL

κℓ−1
f hℓ(x0)

⎞⎟⎟⎟⎠
is known as the decoupling matrix, and appears multiplying the input after an appropriate
number of Lie derivatives. The rank condition tells us this matrix has a right inverse.

Isidori points out that solving Problem 2.1.1 is equivalent to finding a family of outputs
for (1.4) which would yield a specific vector relative degree. This is asserted in [27, Lemma
5.2.1] which we repeat here for convenience.

Lemma 2.1.5 ([27, Lemma 5.2.1]). The state-space, exact feedback linearization problem
is solvable if, and only if, there exists a family of smooth functions h1, . . . , hm ∈ C∞(Rn)
so that the system (1.4) with output (h1, . . . , hm) has vector relative degree (κ1, . . . , κm)
at x0 where ∑︁m

i=1 κi = n.

The outputs hi of Lemma 2.1.5 correspond to the top of the integration chains in the
linear subsystems (2.2). Constructing the state-transformation, as a result, amounts to
differentiating the outputs hi along the dynamics of (1.4) until the controls appear in the
form −β(x)−1α(x) + β(x)−1 u; this then defines the feedback transformation.
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Isidori’s presentation of feedback linearization as a question of finding outputs that
yield a vector relative degree hints at a procedure to compute the feedback transformation:
one must find the family of m outputs hi that yield a vector relative degree. At first
glance, the connection between vector relative degree and the conditions of Theorem 2.1.2
are not apparent. However, as a consequence of [27, Theorem 4.1.2], the definition of vector
relative degree is equivalent to asking that, for all x ∈ V,(︂

Ladi
f g1h

j(x) · · · Ladi
f gm

hj(x)
)︂

= 0, 1 ≤ j ≤ ℓ, 0 ≤ i ≤ κj − 2,

and at x0,

rank

⎛⎜⎜⎜⎜⎝
Ladκ1−1

f
g1
h1(x0) · · · Ladκ1−1

f
gm
h1(x0)

... ...
Ladκℓ−1

f
g1
hℓ(x0) · · · Ladκℓ−1

f
gm
hℓ(x0)

⎞⎟⎟⎟⎟⎠ = ℓ.

Observe that the vector fields which we differentiate the hi along are precisely the vector
fields that span, pointwise, the distributions G(k). This suggests an equivalent characteri-
zation for vector relative degree in terms of the differentials of hi.

Definition 2.1.6 (Vector Relative Degree) . Let h1, . . . , hℓ ∈ C∞(Rn). The sys-
tem (1.4) with output (h1, . . . , hℓ) is said to have a vector relative degree of (κ1, . . . ,

κℓ) ∈ Nℓ at x0 if, there exists an open set V containing x0 so that, for all x ∈ V,

dhj
x ∈ ann( G(i)

x ), 1 ≤ j ≤ ℓ, 0 ≤ i ≤ κj − 2,

and at x0,

rank

⎛⎜⎜⎜⎝
dh1

x0(adκ1−1
f g1) · · · dh1

x0(adκ1−1
f gm)

... ...
dhm

x0(adκm−1
f g1) · · · dhℓ

x0(adκm−1
f gm)

⎞⎟⎟⎟⎠ = ℓ.

Isidori’s algorithm for state-space, exact feedback linearization can now be described.
Because of Theorem 2.1.2 (1) and the definition of G(0), there exists a largest index 0 ≤ κ1 ≤
n so that dim( G(κ1−1)

x0 ) < n. By Theorem 2.1.2 (2), the distribution G(κ1−1) is involutive. By
construction, it is finitely generated and, by Theorem 2.1.2 (3), it is constant dimensional
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pointwise. By Frobenius’s Theorem, we can pick the maximal set of exact differentials dh1,

. . . , dhℓ, that annihilate G(κ1−1) and are pointwise linearly independent.
The integral of these exact differentials correspond to some of the family of output

functions that will yield the required vector relative degree. In particular, these are the
components of the final output which yield vector relative degree κ1. The remaining outputs
must be computed by walking backwards through the distributions G(k) and iteratively ap-
plying Frobenius’s Theorem. Importantly, the known outputs and their Lie derivatives (up
to a certain order) will annihilate all of G(k) for all k ≤ κ1−1. As a result, one must carefully
find exact differentials that annihilate the submodules but also are linearly independent
of the known dhi and their Lie derivatives. If they fail to be linearly independent, they
will not yield the required vector relative degree. This more, or less, amounts to solving
m-systems of partial differential equations. Worse still, at each iteration the size of this
system increases and isn’t related to the number of outputs that one actually must search
for.

The difficulty solving this series of systems of PDEs is clear, and within a few years
attempts were made to alleviate the difficulty. The first attempt was made in [15] by
Gardner and Shadwick in the case where the controllability indices of the target linear
system (A,B) are distinct. They completed their work in [16] for the general case. The
matter of how difficult it can be to “decouple” the new outputs from known outputs and
how to reduce the PDE size was resolved by this work. The inspiration taken by the
authors was to recognize that the decoupling problem in the dual to the space of vector
fields — smooth one-forms — could be reduced to an algebraic problem.

It is worth pointing out that working in dual presents another aesthetic advantage.
Consider the following question:

If all we care about is the outputs that yield the right vector relative degree,
could we not work instead with the objects that contain the possible candidate
outputs instead of the vector fields they must annihilate?

We address this very question in the next section and we will see how the works [16, 48]
connect with finding outputs yielding vector relative degree.
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2.2 The Derived Flag

The differentials of outputs hi that with system (1.4) yield a relative degree are the subject
of this section. We will define an object, known as the derived flag, that captures the notion
of “eliminating” outputs whose derivative along the solutions of (1.4) contains (1) an input
or (2) an already eliminated state affected by an input at a lower order of integration. As
a result, this flag aids in the search of functions that yield a desired relative degree.

To do this, the current setting — viewing time t and controls ui as special relative to
the states xi — is not appropriate even though this is the standard perspective taken in
the literature. Unusually, Hermann, Gardner and a few others took the perspective that
time and control are independent variables, in their own right, and, instead of searching
for the change of coordinates ξ := Φ(x) alone, sought a diffeomorphism that preserved the
special status that the time and control must have [15, 22]. This is the perspective we take
for the remainder of this thesis as it proves useful.

Define the ambient manifold as the Cartesian product

M := R× Rm × Rn,

of time (R), control (Rm) and states (Rn). Let π : M → Rn be the projection map
π(t, u, x) = x and let ι : Rn → M be the insertion map ι(x) = (0, 0, x). A smooth function
h : M→ Rℓ is said to be a smooth function of the states if the diagram

M Rn

Rℓ

π

h h◦ι

commutes. It is convenient to consider vector fields that are ι-related to the vector fields
f and gj in (1.4). Through an abuse of notation, define

f :=
n∑︂

i=1
(f i ◦ π) ∂

∂xi
, gj :=

n∑︂
i=1

(gi
j ◦ π) ∂

∂xi
, 1 ≤ j ≤ m, (2.5)

so that f(π(p)) = Dπ|p f(p) and that f on Rn and f on M are ι-related vector fields. The
fact that the vector fields f ∈ Γ∞(TRn) as defined in (1.4) and f ∈ Γ∞(TM) as defined
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in (2.5) are related by the insertion ι and projection π justifies this abuse of notation. It
will be clear from context which manifold f and gj reside.

With these constructions, the control system (1.4) is differentially equivalent to the
system of differential equations on M,

ṫ = 1,

ẋ = f(x) +
m∑︂

j=1
gj(x)uj.

(2.6)

Furthermore, system (1.4) with output h : Rn → Rm yields a vector relative degree at
x0 ∈ Rn if, and only if, system (2.6) with output h ◦ π : M → Rm yields a vector relative
degree at ι(x0) ∈ M. Not only this, but the distributions G(k) and S(k) defined on M
directly correspond to the very same objects G(k) and S(k) defined on Rn in the natural
way. That is, Dπ|ι(x) G(k)

ι(x) = G(k)
x .

We can view solutions to the control system (2.6) as integral submanifolds of a distri-
bution. Define the smooth and regular distribution of control directions,

Up := spanR

⎧⎨⎩ ∂

∂u1

⃓⃓⃓⃓
⃓
p

, . . . ,
∂

∂um

⃓⃓⃓⃓
⃓
p

⎫⎬⎭ ⊆ TpM, p ∈ M, (2.7)

which is associated with the C∞(M)-submodule U := Γ∞(U). Additionally, define the
smooth and regular distribution

D(0)
p := spanR

⎧⎨⎩ ∂

∂t

⃓⃓⃓⃓
⃓
p

+ f |p +
m∑︂

j=1
gj|p u

j

⎫⎬⎭+ Up, (2.8)

which is associated to the C∞(M)-submodule D(0) := Γ∞(D(0)). Observe that the vector
field

F := ∂

∂t
+ f +

m∑︂
j=1

gju
j ∈ D(0) (2.9)

is tangent to solutions of (2.6). When u is a sufficiently smooth signal, integral submani-
folds of D(0) determine solutions of (2.6) and, in turn, solutions of (1.4).
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Alternatively, the control system (2.6) may be viewed as an exterior differential system
on M in the following way. Define the smooth one-forms

ωi := dxi −

⎛⎝f i(x) +
m∑︂

j=1
gi

j(x)uj

⎞⎠ dt ∈ Γ∞(T∗M), 1 ≤ i ≤ n. (2.10)

The submanifolds of M on which the ideal1

I(0) := ⟨ω1, . . . , ωn⟩ ⊆ Γ∞(ΛT∗M), (2.11)

vanishes correspond to solutions of the differential equation (2.6) where u is a sufficiently
regular signal — corresponding therein to solutions of (1.4). The ideal I(0) is simply, finitely,
non-degenerately generated by construction since it is generated by a finite number of
smooth one-forms ωj that are pointwise linearly independent. It follows that the generators
of I(0) span a smooth and regular codistribution I(0) ⊆ T∗M. To this ideal I, we associate
the object of importance in this section: the derived flag.

Definition 2.2.1 (The Derived Flag) . Let I(0) ⊆ Γ∞(ΛT∗M) be an ideal, and define
the derived ideals by

I(k+1) := {ω ∈ I(k) : dω ∈ I(k)}, k ≥ 0. (2.12)

The derived flag of I(0) is the sequence of derived ideals,

{0} ⊆ · · · ⊆ I(i+1) ⊆ I(i) ⊆ · · · ⊆ I(1) ⊆ I(0). (2.13)

The length of the derived flag is the smallest N ∈ N such that I(N) = I(N+1).

Example 2.1 (Model of a Car) . Recall the dynamics (1.5) from Example 1.1. The

1See Appendix A.6 for a discussion on exterior differential systems.
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system ideal (2.11) for this nonlinear control system is,

I(0) := ⟨ω1, ω2, ω3, ω4, ω5, ω6⟩,

ω1 := dx1 − x3 cos(x4) dt,

ω2 := dx2 − x3 sin(x4) dt,

ω3 := dx3 − x6 dt,

ω4 := dx4 − x3

ℓ
tan(x5) dt,

ω5 := dx5 − u1 dt,

ω6 := dx6 − u2 dt.

The derived flag of length 3 is

I(1) = ⟨dx1 − x3 cos(x4) dt, dx2 − x3 sin(x4) dt, dx3 − x6 dt, dx4 − x3

ℓ
tan(x5) dt⟩,

I(2) = ⟨dx1 − x3 cos(x4) dt, dx2 − x3 sin(x4) dt⟩,

I(3) = ⟨0⟩.

◀

The differential ideal I(N) is not, in general, the largest differential ideal contained
within I(0). For this reason, we define the largest differential ideal contained within an
ideal.

Definition 2.2.2 (The Differential Closure) . Let I ⊆ Γ∞(ΛT∗M) be an ideal. The
largest, differential ideal contained in I is denoted I(∞). The ideal I(∞) is said to be the
differential closure of the ideal I.

The existence of the differential closure is ensured by an argument leveraging Zorn’s
Lemma (see [10, Lemma 3.9.4]). With an abuse of notation, we denote the differential
closure of the ideal I(0) by I(∞). If all the ideals in the derived flag (2.13) are simply, finitely,
non-degenerately generated — as was the case for I(0) — then I(N) = I(∞). Consequently,
we make the following convenient assumption about this flag.
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Assumption 2.2.3. The ideals I(k) and the augmented ideals ⟨I(k), dt⟩(∞) are locally, sim-
ply, finitely, non-degenerately generated, for all k ≥ 0.

Assumption 2.2.3 allows us to take the generators of I(k) and use them as a basis for
a smooth and regular codistribution I(k) ⊆ T∗M. The next few lemmas are general facts
that are useful in the pursuit of finding outputs that yield a desired relative degree.

Definition 2.2.4 (Characteristic Vector Fields) . Let I be a simply, finitely generated
ideal and let I ⊆ T∗M be the associated codistribution. A smooth vector field Y ∈ Γ∞(TM)
is said to be a characteristic vector field (of I) if, for all p ∈ M, Ip ⊆ ann(spanR{Yp}) ⊆
T∗

pM.

Note that the vector field F ∈ D(0) defined in (2.9) is a characteristic vector field of I(0).

If a smooth one-form ω annihilates all the characteristic vector fields of an ideal I that is
simply, finitely, non-degenerately generated, then ω ∈ I. Using this, we show that the Lie
derivative of a smooth one-form in the derived flag along specific vector fields is a smooth
one-form that is also in the derived flag.

Lemma 2.2.5. Let κ ∈ N and let Y ∈ Γ∞(TM) be a characteristic vector field of the I(0)

⊆ Γ∞(ΛT∗M). If ω ∈ I(κ) is a smooth one-form, then LY ω ∈ I(κ−1).

Proof. By [31, Proposition 14.35],

LY ω(·) = d(ω(Y ))(·) + dω(Y, ·).

Since Y is a characteristic vector field of I(0) and ω ∈ I(κ) ⊆ I(0), we have that ω(Y ) = 0.
Therefore,

LY ω(·) = dω(Y, ·).

Since ω ∈ I(κ), by definition we have dω ∈ I(κ−1). Moreover, Y is a characteristic vector
field of I(κ−1) ⊆ I(0) as well. As a result, dω(Y,X) = 0 for all characteristic vector fields X
of I(κ−1). Conclude then that LY ω(·) = dω(Y, ·) ∈ I(κ−1).
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Lemma 2.2.5 makes a general statement about smooth one-forms in the derived flag
(2.13). The next lemma connects the smooth one-forms in the augmented ideal ⟨I(κ), dt⟩
with those in the derived flag (2.13).

Lemma 2.2.6. Let κ ≥ 0 and F ∈ D(0) be the vector field defined in (2.9). If ω ∈ ⟨I(κ), dt⟩
is a smooth one-form, then ω − ω(F ) dt ∈ I(κ).

Proof. Let ω ∈ ⟨I(0), dt⟩. Then there exists a b ∈ C∞(M) so that,

ω − b dt ∈ I(0).

Since F ∈ D(0),

0 = ω(F )− b dt(F ) = ω(F )− b.

Therefore b = ω(F ) and ω − b dt = ω − ω(F ) dt ∈ I(0).

Fix κ ≥ 0. Suppose, by way of induction, that if ω ∈ ⟨I(κ), dt⟩, then ω−ω(F ) dt ∈ I(κ).

Consider ω ∈ ⟨I(κ+1), dt⟩. By definition, there exists a b ∈ C∞(M) so that,

ω − b dt ∈ I(κ+1).

By (2.12), I(κ+1) ⊆ I(κ), and so
ω − b dt ∈ I(κ).

It follows that ω ∈ ⟨I(κ), dt⟩, and, by the inductive hypothesis, we may write

ω − ω(F ) dt ∈ I(κ).

Taking the difference we have that,

(ω(F )− b) dt ∈ I(κ).

Since F is a characteristic vector field of I(0) and I(κ) ⊆ I(0),

0 = (ω(F )− b) dt(F ) = ω(F )− b.

Conclude that
ω − ω(F ) dt ∈ I(κ+1),

completing the proof.
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Using this lemma, we can now show that if the differential of a smooth function h ∈
C∞(M) lives in a particular ideal of the derived flag (2.13), then a Lie derivative along the
characteristic vector field F of I(κ) (of a particular order) annihilates the distribution G(0)

defined in (2.3).

Lemma 2.2.7. Let κ ∈ N, let h ∈ C∞(M) and let F ∈ D(0) be the vector field defined
in (2.9). If dh ∈ ⟨I(κ), dt⟩, then Lκ−1

F dhp ∈ ann( G(0)
p ) for all p ∈ M.

Proof. Base Case (κ = 1): Let dh ∈ ⟨I(1), dt⟩. Using Lemma 2.2.6, write

dh− dh(F ) dt =: ω ∈ I(1).

Fix 1 ≤ i ≤ m. Evaluate this differential form with gi ∈ Γ∞(TM) to find,

dh(gi)− dh(F ) dt(gi) = ω(gi).

Since gi is only a function of the states, it is time-independent, and so

dh(gi) = ω(gi).

Then, using the fact that gi = [F, ∂/∂ui],

dh(gi) = ω

(︄[︄
F,

∂

∂ui

]︄)︄
.

By Proposition A.5.10,

dh(gi) = F

(︄
ω

(︄
∂

∂ui

)︄)︄
− ∂

∂ui

(︄
ω(F )

)︄
− dω

(︄
F,

∂

∂ui

)︄
.

Since ω ∈ I(1), we have that ω, dω ∈ I(0). Both ∂/∂ui ∈ D(0) and F ∈ D(0) are characteristic
vector fields of I(0) and, as a result, it follows that,

dh(gi) = 0.

Since 1 ≤ i ≤ m was arbitrary, we have established that dhp ∈ ann( G(0)
p ) for all p ∈ M.
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Induction (κ ≥ 1): Suppose, by way of induction, that if dh ∈ ⟨I(κ), dt⟩ then
Lκ−1

F dhp ∈ ann( G(0)
p ) for all p ∈ M. Let dh ∈ ⟨I(κ+1), dt⟩. Using Lemma 2.2.6, write

dh− LFh dt ∈ I(κ+1).

By definition (2.12), the exterior derivative of dh− LFh dt satisfies,

dt ∧ LF dh ∈ I(κ).

Since F is a characteristic vector field of I(κ), we can pass F as the first argument of this
differential two-form and use Definition A.4.3 of the wedge product to find

LF dh− (LF dh(F )) dt ∈ I(κ).

It immediately follows that LF dh ∈ ⟨I(κ), dt⟩. By the inductive hypothesis,

Lκ−1
F LF dhp ∈ ann( G(0)

p ),

for all p ∈ M. After combining the Lie derivatives, find that Lκ
F dhp ∈ ann( G(0)

p ) for all
p ∈ M as required.

The next result directly follows from Lemma 2.2.7.

Corollary 2.2.8. Let κ ∈ N, let h ∈ C∞(M) and let F ∈ D(0) be the vector field defined
in (2.9). If dh ∈ ⟨I(κ), dt⟩, then

dhp,LF dhp, . . . ,L
κ−1
F dhp ∈ ann( G(0)

p ),

for all p ∈ M.

Proof. Repeatedly apply Lemma 2.2.7 using the observation,

dh ∈ ⟨I(κ), dt⟩ ⊆ ⟨I(κ−1), dt⟩ ⊆ · · · ⊆ ⟨I(1), dt⟩,

to arrive at the conclusion.
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If we now restrict our attention to smooth functions of the state, Corollary 2.2.8 reduces
to a condition that looks almost like the requirements for a smooth function to yield a
relative degree.

Lemma 2.2.9. Let κ ∈ N, h ∈ C∞(M) be a smooth function of the states, and let f ∈
Γ∞(TM) be the drift vector field of system (2.6). If dh ∈ ⟨I(κ), dt⟩, then

dhp,Lfdhp, . . . ,L
κ−1
f dhp ∈ ann( G(0)

p ),

for all p ∈ M.

Proof. Let F ∈ D(0) be the vector field defined in (2.9). We will show that Li
F dh = Lfdh

for 1 ≤ i ≤ κ− 1. Invoke Corollary 2.2.8 to find that

dhp,LF dhp, . . . ,L
κ−1
F dhp ∈ ann( G(0)

p ), (2.14)

for all p ∈ M. Observe that, by definition (2.9) of F,

LF dh = L∂/∂t+f+
∑︁m

i=1 gjuj dh.

Since h is a smooth function of the states,

LF dh = Lfdh+
m∑︂

i=1
ujLgj

dh.

Using (2.14) conclude LF dh = Lfdh. Suppose, by way of induction, for some 1 ≤ i < κ−1

Li
F dh = Li

fdh.

Consider Li+1
F dh. Observe that

Li+1
F dh = LFL

i
fdh.

Since f and h are smooth functions of the states, Li
fh is also a smooth function of the

states. As a result,
Li+1

F dh = LfL
i
fdh+

m∑︂
i=1

ujLgj
Li

fdh.
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By (2.14), the latter term vanishes resulting in,

Li+1
F dh = Li+1

f dh,

completing the proof.

The connection between the derived flag and relative degree is made clearer by Lemma
2.2.9. It is a necessary condition that if a smooth function of the state h yields a relative
degree of κ at p0 that dh ∈ ⟨I(κ−1), dt⟩ as its Lie derivatives along f up to order κ − 2
annihilate the control vector fields g1, . . . , gm.

It is not clear, however, how one can determine whether a given exact one-form living
in ⟨I(κ−1), dt⟩ is the differential of an output yielding relative degree κ. A fair conjecture
is that the differential dh not live in the subsequent augmented ideal of the flag ⟨I(κ), dt⟩.
We dedicate the rest of this section to showing that this, in fact, is the right requirement.

Recall from Definition 2.2.2 that the ideal ⟨I(κ), dt⟩(∞) is the largest differential ideal
contained in ⟨I(κ), dt⟩. We now demonstrate the relationship between the differential ideal
⟨I(κ), dt⟩(∞), and the involutive closure of the control distribution inv( G(κ−1)). We separate
the claim into two parts that individually rely on different, seemingly unrelated assump-
tions. First we consider what happens under Assumption 2.2.3.

Lemma 2.2.10. Let κ ∈ N. If Assumption 2.2.3 holds, then

⟨I(κ), dt⟩(∞) ⊆ ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
.

Proof. Let κ ∈ N and consider the differential ideal, ⟨I(κ), dt⟩(∞)
. By Assumption 2.2.3, this

differential ideal is simply, finitely generated. Fix p ∈ M and invoke Frobenius’s Theorem
to find, on some open set U containing p, exact differential forms dh1, . . . , dhℓ so that,

⟨I(κ), dt⟩(∞) = ⟨dh1, . . . , dhℓ, dt⟩,

where we’ve used the fact that dt is already known to be exact. Moreover, we can
take the h1, . . . , hℓ to be smooth functions of the states. It is already clear that dt ∈
ann(Γ∞(U ⊕ inv( G(κ−1)))) so we turn to verifying the dhi annihilate vector fields of
ann(Γ∞(U ⊕ inv( G(κ−1)))).
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Fix 1 ≤ i ≤ ℓ. By Lemma 2.2.9, for all p ∈ M,

dhi
p,Lfdhi

p, . . . ,L
κ−1
f dhi

p ∈ ann( G(0)
p ), (2.15)

Fix 1 ≤ j ≤ m and 0 ≤ r ≤ κ− 1. Consider dhi(adr
f gj). By [27, Lemma 4.1.2]2,

dhi(adr
f gj) =

r∑︂
q=0

(−1)q

⎛⎝ r

q

⎞⎠L
r−q
f

(︂
L

q
fdhi (gj)

)︂
.

By (2.15), Lq
fdhi(gj) = 0 for all 0 ≤ q ≤ r. As a result, dhi(adr

f gj) = 0. This holds for all
0 ≤ r ≤ κ− 1 and 1 ≤ j ≤ m. As a result, dhi

p ∈ ann( G(κ−1)
p ), for any p ∈ M. We already

have, since the hi are smooth functions of the state, dhi
p ∈ ann(Up). Since these are exact

differential forms, they must also annihilate the involutive closure inv( G(κ−1)). As a result,
conclude that

⟨I(κ), dt⟩(∞) = ⟨dh1, . . . , dhℓ, dt⟩ ⊆ ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
.

The reverse containment relies on a regularity assumption on the distributions G(k)

and S(k). Up until now, we have avoided making such an assumption. However, it is
standard in the literature to assume certain regularity assumptions about the dimension
and smoothness of these distributions.

A C∞(M)-submodule of vector fields is said to be finitely, non-degenerately generated
if there exists a finite set of vector fields which generate the submodule while being linearly
independent pointwise. This is precisely the regularity assumption we take on G(k), S(k)

and their involutivity closures.

Assumption 2.2.11. The distributions G(k), inv( G(k)) and S(k) are smooth and regular3.

Assumption 2.2.11 ensures that the C∞(M)-submodules G(k) := Γ∞( G(k)) and S(k) :=
Γ∞(S(k)) are locally, finitely, non-degenerately generated. Equipped with Assumption
2.2.11, we can show the reverse containment. The proof is left to Appendix B as it relies
on a future result and its proof does not add more insight.

2Set s = 0, k = 0, r = r.
3It is not necessary to make the assumption on inv(S(k)) by Lemma 2.1.1.

45



Lemma 2.2.12. Let κ ∈ N. If Assumptions 2.2.3 and 2.2.11 holds, then

⟨I(κ), dt⟩(∞) ⊇ ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
.

Together, Assumptions 2.2.3 and 2.2.11 along with Lemmas 2.2.10 and 2.2.12 imply
equality.

Corollary 2.2.13. Let κ ∈ N. If Assumptions 2.2.3 and 2.2.11 holds, then

⟨I(κ), dt⟩(∞) = ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
.

It turns out that if we relax the discussion to consider only those family of outputs
that would yield a uniform vector relative degree κ with the system, then the connection
between relative degree and the derived flag (2.13) is clear. The next lemma proves the
connection in this case.

Lemma 2.2.14. Suppose Assumptions 2.2.3 and 2.2.11 hold. Take h1, . . . , hℓ ∈ C∞(M),
ℓ ≤ m, to be smooth functions of the state. The system (2.6) with output (h1, . . . , hℓ)
yields a vector relative degree (κ1, . . . , κ1) at p0 if, and only if, there exists an open set
U ⊆ M containing p0 where,

⟨dh1, . . . , dhℓ⟩ ⊆ ⟨I(κ1−1), dt⟩(∞) (2.16)

and, at p0,

spanR{dh1
p0 , . . . , dh

ℓ
p0} ∩ spanR{I(κ1)

p0 , dtp0} = {0}. (2.17)

Proof. Let h1, . . . , hℓ ∈ C∞(M), ℓ ≤ m, be smooth functions of the state with linearly
independent differentials at p0 ∈ M. First we suppose the conditions (2.16) and (2.17) hold
and prove the system (2.6) with output (h1, . . . , hℓ) yields a vector relative degree (κ1,

. . . , κ1) at p0. For each i ∈ {1, . . . , ℓ}, we have that dhi ∈ ⟨I(κ1−1), dt⟩, so, by Lemma 2.2.9,
for all p ∈ M,

dhi
p,Lfdhi

p, . . . ,L
κ1−2
f dhi

p ∈ ann( G(0)
p ).

By [27, Lemma 4.1.2] conclude that,

Ladj
f

gl
hi = dhi(adj

f gl) = 0, 0 ≤ j ≤ κ1 − 2, 1 ≤ l ≤ m, 1 ≤ i ≤ ℓ.
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We now show that the associated ℓ×m decoupling matrix has rank ℓ at p0. In pursuit
of contradiction, suppose there exists constants ci ∈ R so that

ℓ∑︂
i=1

ci

(︂
Lg1L

κ1−1
f hi(p0) · · · LgmL

κ1−1
f hi(p0)

)︂
= 0.

Define the smooth function
h :=

ℓ∑︂
i=1

cih
i ∈ C∞(M).

Since dhi ∈ ⟨I(κ1−1), dt⟩(∞) and ci ∈ R, we have dh ∈ ⟨I(κ1−1), dt⟩(∞)
. For any fixed 1 ≤ l ≤

m, consider dh(adκ1−1
f gl). By [27, Lemma 4.1.2]4,

dh
(︂
adκ1−1

f gl

)︂
=

κ1−1∑︂
i=0

(−1)i

⎛⎝κ1 − 1
i

⎞⎠Lκ1−1−i
f Lgl

Li
fh.

By Lemma 2.2.9, Li
fdh ∈ ann( G(0)) for all 0 ≤ i ≤ κ1 − 2 and, as a result,

dh
(︂
adκ1−1

f gl

)︂
= (−1)κ1−1Lgl

Lκ1−1
f h.

Evaluating at p0

dhp0

(︂
adκ1−1

f gl(p0)
)︂

= (−1)κ1−1Lgl
Lκ1−1

f h(p0) = 0.

Since 1 ≤ l ≤ m was arbitrary, dhp0 ∈ ann( G(κ1−1)
p0 ). But then, by Lemma 2.2.12 and the

fact that dh is exact,
dhp0 ∈ spanR

{︂
I(κ1)

p0 , dtp0

}︂
which, in tandem with (2.17), implies dhp0 = 0. This contradicts the preliminary assump-
tion that the differentials dhi are linearly independent at p0 ∈ U. Therefore the decoupling
matrix has maximal rank and so it follows that the outputs yield a well-defined vector
relative degree.

Now suppose the output (h1, . . . , hℓ) yields a vector relative degree of (κ1, . . . κ1) at p0.

Fix 1 ≤ i ≤ m and 1 ≤ j ≤ ℓ. By [27, Lemma 4.1.2] and the definition of relative degree
we have

dhj
(︂
adk

f gi

)︂
= Ladk

f gi
hj,

= 0, 0 ≤ k ≤ κ1 − 2.
4We consider when s = 0, k = 0 and r = κ1 − 1.
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We may conclude dhj ∈ ann( G(k)) for all 0 ≤ k ≤ κ1 − 2. Since dhj is exact, it is easy to
see that for any two vector fields X, Y ∈ G(k) = Γ∞( G(k)) we have

L[X,Y ]h
j = LX

(︂
LY h

j
)︂
− LY

(︂
LXh

j
)︂

= 0,

So dhj annihilates any finite order Lie brackets of vector fields in G(k). We now show,
by induction, that dhj annihilates any finite order Lie brackets of vector fields in S(k) =
Γ∞(S(k)) defined in (2.4). First see that S(0) = G(0) so we have dhj ∈ S(0). Therefore dhj

also annihilates any finite order Lie brackets of vector fields in S(0). By way of induction
suppose dhj ∈ S(k) and that it annihilates finite order Lie brackets of vector fields in
Sk. Then, by (2.4), the fact that dhj ∈ ann(G(k)) and dhj ∈ ann(S(k)) and the fact that
it annihilates finite order of Lie brackets for S(k−1) conclude that dhj ∈ ann(S(k)). This
argument holds until k = κ1 − 2. As such we have

dhj ∈ ann(S(k)), 0 ≤ k ≤ κ1 − 2,

and in particular, since dhj is exact,

dhj ∈ ann(inv(S(κ1−2))) = ann(inv( G(κ1−2))).

Since dhj is independent of u, we have that dhj ∈ ann(U). Together conclude that,

dhj ∈ ann(Γ∞(U ⊕ inv( G(κ1−2)))).

By Corollary 2.2.13,
dhj ∈ ⟨I(κ−1), dt⟩(∞)

Since j ∈ {1, . . . , m} was arbitrary, this demonstrates that (2.16) holds. We now show
that (2.17) holds as well by a contrapositive argument. Suppose that (2.17) does not hold.
We will show that the output does not yield a vector relative degree. Given that the
condition (2.17) fails, there must exist a linear combination of the dhi so that

ℓ∑︂
i=1

aidhi
p0 ∈ spanR

{︂
I(κ)

p0 , dtp0

}︂
.
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By Lemma 2.2.10 and (2.4),
ℓ∑︂

i=1
aidhi ∈ ann( G(κ−1))

and, in particular,
ℓ∑︂

i=1
aidhi

(︂
adκ−1

f gj

)︂
= 0, 1 ≤ j ≤ m.

on U. By [27, Lemma 4.1.2] and because ∑︁ aidhi ∈ ann( G(k)) for 0 ≤ k ≤ κ2 − 2,

ℓ∑︂
i=1

aiLgj
Lκ−1

f hi = 0, 1 ≤ j ≤ m.

This contradicts the requirement that the decoupling matrix⎛⎜⎜⎜⎝
Lg1L

κ1−1
f h1(p0) · · · LgmL

κ1−1
f h1(p0)

... ...
Lg1L

κℓ−1
f hℓ(p0) · · · LgmL

κℓ−1
f hℓ(p0)

⎞⎟⎟⎟⎠
has maximal row rank and so the outputs do not yield a vector relative degree.

Lemma 2.2.14 only addresses those outputs with uniform relative degree. The non-
uniform case involves ensuring the scalar outputs and their Lie derivatives form a basis that
generates the ideals in the derived flag adapted to its particular structure. Nevertheless,
Lemma 2.2.14 is useful for finding and verifying outputs that yield uniform vector relative
degree.

2.3 A Modern Perspective

Having defined and established a number of properties of the derived flag, we now present
an alternative perspective on the solution to the state-space, exact feedback linearization
problem. To do so, we first define a special indexing of the linearized states in Prob-
lem 2.1.1. It can be easily verified that when the system (2.1) is in Brunovský normal form
the coordinates ξ can be indexed in the following way. State ξi,j is the state which, upon j
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derivatives along solutions of (2.1), yields the virtual input vi. The resulting system with
these linearized states takes the form,

ξ̇
1,κ1(t) = ξ1,κ1−1(t) · · · ξ̇

m,κm(t) = ξm,κm−1(t),
... ...

ξ̇
1,1(t) = v1(t) · · · ξ̇

m,1(t) = vm(t),

(2.18)

where ∑︁m
i=1 κi = n. There are m integration chains or towers of lengths κ1, . . . , κm. With

that out of the way, we now remind ourselves of the perspective taken by Hermann in [22].

Hermann saw the feedback linearization problem as a problem of equivalence. Suppose,
for a moment, we knew Problem 2.1.1 was solvable, and we knew the length of the chains
that will appear, i.e. the indices κ1, . . . , κm. The only information missing is the exact
expression for the linearized states ξi,j as a function of the known states xk. Finding this
missing information amounts to searching for a diffeomorphism Ψ between the original
coordinates (t, u, x) and the new coordinates (t, v, ξ) with the property that the submodule
D(0) from (2.8) is generated by,

D(0) = spanC∞

⎧⎨⎩ ∂

∂t
+

m∑︂
i=1

⎡⎣vi ∂

∂ξi,1 +
ri∑︂

j=2
ξi,j−1 ∂

∂ξi,j

⎤⎦⎫⎬⎭⊕ spanC∞

{︄
∂

∂v1 , . . . ,
∂

∂vm

}︄
. (2.19)

The distribution must be preserved under the diffeomorphism and so algebraic properties
held by distribution (2.19) must also be held by distribution (2.8). This is significant as
there are a number of invariants that must hold for the linear system which act naturally
through the diffeomorphism and, therefore, must hold of the nonlinear system. For exam-
ple, the derived flag (2.13) in the coordinates where the system appears linear satisfies the
property,

I(k) = ⟨dξi,j − ξi,j−1 dt : 1 ≤ i ≤ m, k < j < κi⟩, k ≥ 1,

and
⟨I(k), dt⟩ = ⟨dt, {dξi,j : 1 ≤ i ≤ m, k < j < κi}⟩, k ≥ 1.

Notably, the latter ideal is a differential ideal generated by exact, smooth one-forms. Since
the exterior derivative acts naturally through the diffeomorphism, i.e. Theorem A.5.12,
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we can inspect these ideals in the original coordinates to deduce what dξi,j are as a func-
tion of the dxk. Integrating these ideals using Frobenius’s Theorem produces the required
diffeomorphism.

It is unclear (1) whether it is possible to perform this integration, (2) how many inte-
grations must be performed, and (3) which ideals of the derived flag must be integrated.
Gardner and Shadwick were the first to recognize this particular property, albeit without
presenting this description. Write the generators for the system ideal (2.11) with the same
indexing rule used in (2.18) so that, for j > 2,

ωi,j = dξi,j − ξi,j−1 dt, 1 ≤ i ≤ m,

and,
ωi,1 = dξi,1 − vi dt, 1 ≤ i ≤ m.

Observe that, for any fixed 1 ≤ i ≤ m and j > 1,

dωi,j = dt ∧ dξi,j−1 = dt ∧ ωi,j−1.

This property is not preserved under feedback transformations, but is a desireable property
that captures the key property of a controllable, linear system. As a result, we give such
a basis a special name.

Definition 2.3.1 (Adapted Basis) . A set of generators ωi,j for I(0) is called an adapted
basis if there exists κ1, . . . , κm ∈ N so that,

dωi,1 = dt ∧ dvi, 1 ≤ i ≤ m, (2.20)

and
dωi,j = dt ∧ ωi,j−1, 1 ≤ i ≤ m, 2 ≤ j ≤ κi, (2.21)

where ∑︁m
i=1 κi = n.

The generators defined for the original nonlinear system is rarely adapted. The goal is
to find a feedback transformation that transforms those generators (2.10) into an adapted
basis since, at that point, the linearized states ξi,j may be recovered. In particular, one

51



needs only to compute the ξi,κi at the top of the integration chain. The rest of the ξi,j will
be Lie derivatives along f of ξi,j+1. This explicitly finds the change of coordinates ξ = Φ(x).

In search for this transformation, one can instead first seek generators ωi,j for the
original system ideal (2.11) that satisfy (2.20) and (2.21) up to a congruence given by,

dωi,j − dt ∧ ωi,j−1 ∈ I(j), 1 < j ≤ κi. (2.22)

Such a basis was what Gardner and Shadwick called an adapted basis. Given such gen-
erators, the algorithm proposed by Gardner and Shadwick in [16] turns these congruences
into equalities and computes an adapted basis per Definition 2.3.1.

The original algorithm is opaquely presented in [16]. To make matters worse, they do
not discuss how to find these generators that satisfy the congruences (2.22) required to
use their algorithm which turns out to be non-trivial. Some researchers suggest that this
is a major flaw of their algorithm [35]. This is likely a misunderstanding as the existence
problem was resolved within a few years. In [48, Theorem 4], the precise method by
which one could adapt generators to satisfy these congruences subject to a controllability
condition,

I(n) = {0}

and an involutivity condition,

⟨I(k), dt⟩ = ⟨I(k), dt⟩(∞)
, 0 ≤ k ≤ n,

was presented. These are the conditions as they were restated in [43, Proposition 12.76].
Together, these conditions allow the rewriting of any generators to satisfy the congru-
ences (2.22) which then permits the use of the GS algorithm presented in [16]. This is the
most modern treatment of state-space, exact feedback linearization.

The algorithm both to find generators and to perform the feedback linearization is de-
scribed in detail in [48] with some simpler examples presented in [36]. Murray demonstrated
how the adapted basis can also be used for systems that are not feedback linearizable, e.g.
nonholonomic systems, such as to perform path generation [37].

We do not deliberate further except to point out a few observations. All of the works
discussed in this section primarily work in the ideals I(k) of the derived flag (2.13) and
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not of the augmented ideals ⟨I(k), dt⟩. However, we know from the end of the preceding
section that it is the augmented ideals where the differentials of the outputs explicitly
reside (see Lemma 2.2.14). Even in [48], the augmented ideal plays little role but ensuring
the congruences can be satisfied by an appropriate rewriting subject to involutivity. This
thesis departs from this standard by primarily working with the augmented ideals to better
connect the algebraic algorithms on these ideals with the intuition of relative degree.
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Chapter 3

Single-Input Systems

In this chapter, we restrict our attention to the problem of finding the feedback transfor-
mation for the single-input transverse feedback linearization problem. The single-input
case will inform us on the correct dualization of the transverse feedback linearization con-
ditions in the more difficult multi-input case. As such, consider the single-input, nonlinear,
control-affine system

ẋ(t) = f(x(t)) + g(x(t))u(t) (3.1)

where f, g ∈ Γ∞(TRn). This is the single-input variant of the control system (1.4) discussed
in Chapters 1 and 2. Let N ⊂ Rn be a closed, embedded n∗-dimensional submanifold
passing through the point x0 that is rendered controlled-invariant by a feedback u∗ : N→
Rm. Fix a point x0 ∈ N. In transverse feedback linearization, the controlled invariant
submanifold N is treated as a given datum. There exist methods for constructing such
sets [7, Section 5]. This set can be viewed as a model of a control specification [20];
the control specification is achieved if the system’s state belongs to N (see Section 1.2).
This is a common point of view in many control problems [2], e.g., observer design, the
synchronization or state agreement problem, path following and regulation. Imposing
controlled invariance amounts to requiring that the control specification be feasible.

Section 3.1 states the dual conditions for transverse feedback linearization. We then
build a number of useful supporting results in Section 3.2 and then prove the main result
in Section 3.3. Finally the chapter concludes with a few simple examples.
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3.1 Dual Conditions for Transverse Feedback
Linearization

The local transverse feedback linearization problem was already stated, in full, in Sec-
tion 1.3. As we noted then, this thesis proposes dual conditions with the hope of resolving
an algorithm to compute the required feedback transformation. Having established in
Chapter 2 how relative degree is related to the derived flag, and recognizing that relative
degree plays an important role in transverse feedback linearization as in Theorem 1.3.1,
we are inspired to propose new dual conditions for transverse feedback linearization.

Before doing so, let us briefly review the setup. In Section 2.2, we observed that to
the single-input, nonlinear control system (3.1) on Rn we can associate a single-input,
nonlinear control system (2.6),

ṫ = 1,

ẋ = f(x) + g(x)u.
on the manifold M := R×R×Rn comprised of time (R), control (R) and states (Rn). The
control system (2.6) may be viewed as an exterior differential system on M by defining the
smooth one-forms (2.10),

ωj := dxi − (f i(x) + gi(x)u) dt ∈ Γ∞(T∗M), 1 ≤ i ≤ n,

and defining the ideal (2.11) over the graded algebra of smooth forms,

I(0) := ⟨ω1, . . . , ωn⟩ ⊆ Γ∞(ΛT∗M).

Solutions of the control system (2.6) are integral submanifolds of I(0). To this ideal I, we
associate the derived flag

{0} ⊆ · · · ⊆ I(i+1) ⊆ I(i) ⊆ · · · ⊆ I(1) ⊆ I(0)

which is constructed recursively by (2.12) (see Definition 2.2.1).
Solutions to the control system (2.6) may also be viewed as the integral submanifold of

the smooth and regular distribution (2.8),

D(0)
p := spanR {Fp}+ Up,
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where F ∈ Γ∞(TM) was defined in (2.9) to be,

F := ∂

∂t
+ f + gu,

and U is the smooth and regular distribution,

Up := spanR

⎧⎨⎩ ∂

∂u

⃓⃓⃓⃓
⃓
p

⎫⎬⎭ .
The distribution (2.8) is associated to the C∞(M)-submodule D(0) := Γ∞(D(0)). It can be
verified that I(0) = ann(D(0)). To the smooth and regular distribution U we associate the
C∞(M)-submodule U := Γ∞(U).

Furthermore, we established in Lemma 2.2.14 that an output h has relative degree
n− n∗ at p0 := (0, u∗(x0), x0) if, and only if,

dh ∈ ⟨I(n−n∗−1), dt⟩,

and
dhp0 /∈ ⟨I(n−n∗), dt⟩(∞)

p0 .

Comparing this with the conditions of Theorem 1.3.1, we are motivated to search the ideal
⟨I(n−n∗−1), dt⟩ for exact one-forms that are (1) transverse to N — i.e. annihilate tangent
vectors — and (2) do not reside in the subsequent ideal ⟨I(n−n∗), dt⟩(∞).

Before stating the dual conditions, we first translate the data of the problem, N, into
an object in M. Define the closed, embedded submanifold

L := {p = (t, u, x) ∈ M : t = 0, x ∈ N}. (3.2)

Note p0 = (0, u∗(x0), x0) ∈ L and, for all p = (0, u, x) ∈ L,

TpL = spanR

⎧⎨⎩ ∂

∂u

⃓⃓⃓⃓
⃓
p

⎫⎬⎭⊕ TxN.

Given this, we can now state the conditions upon which we can find the transverse output.
The first of these is the controllability condition,

ann (Tp0L) ∩ spanR{I(n−n∗)
p0 , dtp0} = spanR{dtp0}. (Con)
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The second is an involutivity condition demanding that on an open set U ⊆ M containing
p0, for all p ∈ U ∩ L,

ann (TpL) ∩ spanR{I(k)
p , dtp} ⊆ ⟨I(k), dt⟩(∞)

p , 0 ≤ k ≤ n− n∗. (Inv)

Lastly, we require that the codistribution in the left-hand side of (Inv) satisfy, for all
p ∈ U ∩ L and every 0 ≤ k ≤ n− n∗,

dim
(︂
ann(Tp0L) ∩ spanR{I(k)

p0 , dtp0}
)︂

= dim
(︂
ann(TpL) ∩ spanR{I(k)

p , dtp}
)︂
. (Dim)

In this chapter, we prove, subject to the additional regularity Assumption 2.2.3, the fol-
lowing theorem that shows the equivalence of (Con), (Inv) and (Dim) with the conditions
of Theorem 1.3.2 in the single-input case only.

Theorem 3.1.1. Suppose Assumptions 2.2.3 and 2.2.11 hold and m = 1. Conditions
(Con), (Inv) and (Dim) are equivalent to Theorem 1.3.2 (1) and (2).

The proof of Theorem 3.1.1 is in Section 3.3. It directly follows from this equivalence
that, under the mild regularity Assumptions 2.2.3 and 2.2.11, the controllability condi-
tion (Con), involutivity condition (Inv), and constant dimension condition (Dim) together
form necessary and sufficient conditions to solve the transverse feedback linearization prob-
lem.

Corollary 3.1.2. Suppose Assumptions 2.2.3 and 2.2.11 hold and m = 1. The transverse
feedback linearization problem is solvable at x0 if, and only if, the controllability condi-
tion (Con), involutivity condition (Inv) and constant dimension condition (Dim) hold.

Example 3.1 (Path Following for a Car) . Recall the path following problem posed in
Example 1.4. Since Theorem 3.1.1 is true, we expect that the dual conditions (Con), (Inv)
and (Dim) hold in an open set of M = R× R× R5 containing p0 = (0, u∗(x0), x0). Let us
first verify this.

First we compute the augmented ideals ⟨I(κ), dt⟩ of the derived flag for the system (1.7).
In Example 2.1, we computed the derived flag for a similar system (1.5) controlled by two
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inputs. When input u2 = 0, the derived flag’s length is prolonged becoming,

I(1) = ⟨dx1 − x3 cos(x4) dt, dx2 − x3 sin(x4) dt, dx3, dx4 − x3

ℓ
tan(x5) dt⟩,

I(2) = ⟨dx1 − x3 cos(x4) dt, dx2 − x3 sin(x4) dt, dx3⟩,

I(3) = ⟨cos(x4) dx1 + sin(x4) dx2 − x3 dt, dx3⟩,

I(4) = ⟨dx3⟩.

Using this, we can compute the augmented ideals ⟨I(κ), dt⟩,

⟨I(0), dt⟩ = ⟨dx1, dx2, dx3, dx4, dx5, dt⟩

⟨I(1), dt⟩ = ⟨dx1, dx2, dx3, dx4, dt⟩,

⟨I(2), dt⟩ = ⟨dx1, dx2, dx3, dt⟩,

⟨I(3), dt⟩ = ⟨dx3, cos(x4) dx1 − sin(x4) dx2, dt⟩,

⟨I(4), dt⟩ = ⟨dx3, dt⟩.

(3.3)

The codistributions I(κ) are defined pointwise by the span of the one-forms that generate
I(κ). We also need the differential closures of these augmented ideals for the involutivity
condition. They are,

⟨I(0), dt⟩(∞) = ⟨dx1, dx2, dx3, dx4, dx5, dt⟩

⟨I(1), dt⟩(∞) = ⟨dx1, dx2, dx3, dx4, dt⟩,

⟨I(2), dt⟩(∞) = ⟨dx1, dx2, dx3, dt⟩,

⟨I(3), dt⟩(∞) = ⟨dx3, dt⟩.

The only object that remains to compute is the annihilator of the tangent space of L,
the lift of N. In this case, since N is generated as a level set of differentially independent
functions in an open set containing x0, the annihilator is spanned by the exterior derivatives
of those functions. In particular, on some open set U containing p0,

ann(TL) = spanC∞(U){dy1, dy2, dy3, dt}
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where

dy1 := (x1 + 2 cos(x4)) dx1 + (x2 + 2 sin(x4)) dx2 − 2(x1 sin(x4)− x2 cos(x4)) dx4,

dy2 := cos(x4) dx1 + sin(x4) dx2 − (x1 sin(x4)− x2 cos(x4)) dx4,

dy3 := − sin(x4) sin(x5) dx1 + cos(x4) sin(x5) dx2

− ((x1 sin(x4)− x2 cos(x4)) cos(x5) + 2 sin(x5)) dx5.

At p0, we have that

ann(Tp0L) = spanR{dx2 +
√

3dx4,
√

3dx1 +dx2 +4
√

3dx4, dx1−
√

3dx2 +16dx5, dt}. (3.4)

We are ready to test the dual conditions for transverse feedback linearization.
From (3.3), deduce that,

spanR{I(3)
p0 , dtp0} = spanR{dx3

p0 , dtp0}.

Combine this with (3.4) to find that

ann (Tp0L) ∩ spanR{I(3)
p0 , dtp0} = spanR{dtp0}.

In this problem, N is a 2-dimensional submanifold, i.e. n∗ = 2, and, as such, the controlla-
bility (Con) condition holds. The involutivity condition is straightforward to establish in
this case. Since,

⟨I(0), dt⟩ = ⟨I(0), dt⟩(∞)
, ⟨I(1), dt⟩ = ⟨I(1), dt⟩(∞)

, ⟨I(2), dt⟩ = ⟨I(2), dt⟩(∞)
,

and
ann (TpL) ∩ spanR{I(3)

p , dtp} = spanR{dtp} ⊆ ⟨I(3), dt⟩(∞)
,

the involutivity condition (Inv) holds automatically. It remains to check the constant
dimension condition. For brevity, we leave out this check. It can be verified that the
constant dimension condition holds as well. ◀
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3.2 Supporting Results

The facts discussed in this section are critical to the proof of the main result, but are
also interesting in their own right. They directly connect the distributions used by Isidori,
Marino and others in more traditional work with the ideals used in works by Gardner,
Shadwick, Schlacher and Schöberl. Under the regularity Assumptions 2.2.3 and 2.2.11,
the ideals I(κ) of the derived flag (2.13) are the annihilators of the submodules S(κ−1) :=
Γ∞(S(κ−1)) and a few other vector fields.

Lemma 3.2.1. Suppose Assumptions 2.2.3 and 2.2.11 hold. Let I(0) be the system ideal
(2.11) corresponding to system (3.1). There exists an open set of M containing p0 such
that in this open set, for any κ ∈ {1, . . . , n− n⋆},

I(κ) = ann
(︂
D(0) + S(κ−1)

)︂
.

The proof of Lemma 3.2.1 can be found in Appendix B. The vector fields in D(0) include
the vector field F of the system (3.1) and the natural coordinate vector field ∂/∂u of the
control space. The next lemma uses Lemma 3.2.1 to precisely characterize the vector fields
annihilated by the augmented ideal ⟨I(κ), dt⟩.

Lemma 3.2.2. Suppose Assumptions 2.2.3 and 2.2.11 hold. Let I(0) be the system ideal
(2.11) corresponding to system (3.1). There exists an open set on M containing p0 such
that on this open set, for any κ ∈ {1, . . . , n− n⋆},

⟨I(κ), dt⟩ = ann
(︂
U⊕ S(k−1)

)︂
.

The proof of Lemma 3.2.2 can also be found in Appendix B. Using these lemmas, we
can connect the known involutivity and controllability conditions for transverse feedback
linearization with the dual characterization proposed in this section. First we show what
the dual involutivity condition is equivalent to in terms of vector fields.

Lemma 3.2.3. Suppose Assumptions 2.2.3 and 2.2.11 hold. The involutivity condition
(Inv) holds if, and only if, there exists an open set U containing p0 so that, for every
1 ≤ κ ≤ n− n∗ and for all p ∈ U ∩ L,

TpL + inv( G(κ−1))p = TpL + S(κ−1)
p . (3.5)
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Proof. Suppose that the involutivity condition (Inv) holds. Then, there exists an open set
U containing p0 so that, for every 0 ≤ κ ≤ n− n∗ and for all p ∈ U ∩ L,

ann (TpL) ∩ spanR{I(κ)
p , dtp} ⊆ ⟨I(κ), dt⟩(∞)

p .

Intersect both sides with ann(TpL) to get,

ann (TpL) ∩ spanR{I(κ)
p , dtp} ⊆ ann (TpL) ∩ ⟨I(κ), dt⟩(∞)

p .

Using the definition of the differential closure, conclude that,

ann (TpL) ∩ spanR{I(κ)
p , dtp} = ann (TpL) ∩ ⟨I(κ), dt⟩(∞)

p .

Compute the annihilator of both sides and invoke Lemma 3.2.2 as well as Corollary 2.2.13
to find this expression is equivalent to,

TpL + Up + S(κ−1)
p = TpL + Up + inv( G(κ−1))p.

By the construction of the lifted manifold L, we have that Up ⊆ TpL. As a result,

TpL + S(κ−1)
p = TpL + inv( G(κ−1))p.

The operations performed to arrive here are reversible and, as such, the proof is complete.

We have not yet established that the dual involutivity condition (Inv) is equivalent to
the known involutivity condition,

TpN + inv( G(κ−1))p = TpN + G(κ−1)
p .

It is not obvious, but this condition is equivalent to (Inv) under Assumptions 2.2.3 and
2.2.11. The next lemma, together with Lemma 3.2.3, will establish this.

Lemma 3.2.4. Suppose Assumption 2.2.11 holds. Let U be an open set containing p0 ∈ L.
For all p ∈ U ∩ L and κ ∈ {1, . . . , n− n⋆ − 1}

TpL + inv( G(κ−1))p = TpL + S(κ−1)
p (3.6)

if, and only if, for all p ∈ U ∩ L and every κ ∈ {1, . . . , n− n⋆ − 1}

TpL + inv( G(κ−1))p = TpL + G(κ−1)
p . (3.7)
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Proof. Sufficiency is the most direct, so we tackle that first. Suppose that there exists an
open set U containing p0 so that, for all p ∈ U∩ L and every κ ∈ {1, . . . , n−n⋆− 1}, (3.7)
holds. Observe that, by Lemma 2.1.1 and the definition of the involutive closure, we have
the inclusion,

TpL + inv( G(κ−1))p = TpL + inv(S(κ−1))p ⊇ TpL + S(κ−1)
p .

The reverse inclusion is just as straightforward. Use the definition (2.4) with (3.7) to find,

TpL + inv( G(κ−1))p = TpL + G(κ−1)
p ⊆ TpL + S(κ−1)

p .

Next we show necessity. Suppose that there exists an open set U containing p0 so that, for
all p ∈ U ∩ L and every κ ∈ {1, . . . , n− n⋆ − 1}, (3.6) holds. We make use of induction to
show that

inv( G(κ−1))p ⊆ TpL + G(κ−1)
p .

This, along with the fact that G(κ−1) ⊆ inv( G(κ−1)), establishes (3.7).
Base Case (κ = 1): By (3.6),

inv( G(0))p ⊆ TpL + S(0)
p .

Use definition (2.4) to conclude,

inv( G(0))p ⊆ TpL + G(0)
p .

Induction (1 ≤ κ < n− n∗ − 1): Suppose by way of induction that, for some κ ≥ 1,

inv( G(κ−1))p ⊆ TpL + G(κ−1)
p . (3.8)

Consider inv( G(κ)). By (3.6),

inv( G(κ))p ⊆ TpL + S(κ)
p .

Using definition (2.4) find,

inv( G(κ))p ⊆ TpL + S(κ−1)
p + [S(κ−1),S(κ−1)]p + G(κ)

p .
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By the definition of the involutive closure,

inv( G(κ))p ⊆ TpL + inv(S(κ−1))p + G(κ)
p .

Apply Lemma 2.1.1 so that our expression reads,

inv( G(κ))p ⊆ TpL + inv( G(κ−1))p + G(κ)
p ,

and invoke the inductive hypothesis (3.8) to arrive at,

inv( G(κ))p ⊆ TpL + G(κ−1)
p + G(κ)

p .

Finally, use the definition (2.3) to arrive at the conclusion,

inv( G(κ))p ⊆ TpL + G(κ)
p .

We can now claim that the proposed involutivity condition (Inv) is in-fact equivalent to
the known involutivity condition for transverse feedback linearization — up to a projection
onto the state-space — as a direct corollary to Lemmas 3.2.3 and 3.2.4.

Corollary 3.2.5. Suppose Assumptions 2.2.3 and 2.2.11 hold. The involutivity condi-
tion (Inv) holds if, and only if, there exists an open set U containing p0 so that, for all
p ∈ U ∩ L and every κ ∈ {1, . . . , n− n⋆ − 1},

TpL + inv( G(κ−1))p = TpL + G(κ−1)
p .

Having determined the proposed involutivity condition’s equivalence with the known
involutivity condition, we now look towards the controllability condition. Unfortunately,
the controllability conditions are not equivalent except when the involutivity condition
holds. This is expected since the augmented ideals ⟨I(κ), dt⟩ annihilate more than just the
submodules G(κ−1); they also annihilate vector fields in S(κ−1) which comprises Lie brackets,
up to a certain order, of vector fields in G(κ−1). The coming lemma instead concludes this
section by translating the controllability condition (Con) into its vector field equivalent.
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Lemma 3.2.6. Suppose Assumptions 2.2.3 and 2.2.11 hold. The controllability condi-
tion (Con) holds if, and only if,

Tp0L + S(n−n∗−1)
p0 ≃ Up0 × Rn,

Proof. Suppose the controllability condition (Con)

ann (Tp0L) ∩ spanR{I(n−n∗)
p0 , dtp0} = spanR{dtp0},

holds. Compute the annihilator of both sides and invoke Lemma 3.2.2 to find,

Tp0L + Up0 + S(n−n∗−1)
p0 = spanR

{︄
∂

∂u1 ,
∂

∂x1 , . . . ,
∂

∂xn

}︄
.

By construction of L, Up0 ⊆ Tp0L and so

Tp0L + S(n−n∗−1)
p0 = spanR

{︄
∂

∂u1 ,
∂

∂x1 , . . . ,
∂

∂xn

}︄
≃ Up0 × Rn.

The result directly follows and, since these operations are reversible, the proof is complete.

3.3 Proof of Theorem 3.1.1

We are now equipped to prove Theorem 3.1.1. The proof is split into two parts, necessity
and sufficiency. We will first show that the conditions for Theorem 1.3.2 are necessary
for the proposed conditions to hold, then show they are sufficient. Assumptions 2.2.11
and 2.2.3 are taken as standing assumptions for this section and will not be directly called
in these proofs although both of them are required to varying degrees throughout the proof.
In particular, the use of Lemmas 3.2.5 and 3.2.6 directly rely on these assumptions, the
source of which is Corollary 2.2.13 which connects the ideals to the distributions.

Proof. First, we prove the dual conditions are sufficient to solve the single-input transverse
feedback linearization problem. Suppose conditions (Con), (Inv) and (Dim) hold. Given
the controllability condition (Con), we may use Lemma 3.2.6 to find,

Tp0L + S(n−n∗−1)
p0 ≃ Up0 × Rn.
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By definition (2.4),

Up0 × Rn ≃ Tp0L + S(n−n∗−2)
p0 + [S(n−n∗−2),S(n−n∗−2)]p0 + G(n−n∗−1)

p0 .

By the definition of the involutive closure and Lemma 2.1.1,

Up0 × Rn ≃ Tp0L + inv( G(n−n∗−2))p0 + G(n−n∗−1)
p0 .

Since we have the involutivity condition (Inv), invoke Corollary 3.2.5 to find,

Up0 × Rn ≃ Tp0L + G(n−n∗−2)
p0 + G(n−n∗−1)

p0 .

Finally use definition (2.3) to conclude,

Up0 × Rn ≃ Tp0L + G(n−n∗−1)
p0 .

Since the subpaces G(n−n∗−1)
p0 and Up0 are independent and since Tp0L = Up0 ⊕ Tx0N, we

may conclude that Theorem 1.3.2 (1),

Rn ≃ Tx0N + G(n−n∗−1)
x0 ,

holds. It remains to show Theorem 1.3.2 (2). Before doing so, we first observe that, by
the definition (2.3), the fact that system (3.1) has only one input, and Theorem 1.3.2 (1),
we must have that, for every κ ∈ {1, . . . , n− n∗},

dim(Tx0N + G(κ−1)
x0 ) = n∗ + κ.

It then follows from the constant dimension condition (Dim) and the very same inde-
pendence argument given for U and G(κ−1) that, for every κ ∈ {1, . . . , n − n∗} and
x ∈ π(U) ∩ N,

dim(TxN + G(κ−1)
x ) = n∗ + κ, (3.9)

shrinking U if necessary. Now we are ready to establish Theorem 1.3.2 (2). Since the
involutivity condition (Inv) holds, we can use Corollary 3.2.5 to find,

TpL + inv( G(κ−1))p = TpL + G(κ−1)
p ,
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for all p ∈ U ∩ L and every κ ∈ {1, . . . , n− n⋆ − 1}. It follows that, in the state-space, for
all x ∈ π(U) ∩ N,

TxN + inv( G(κ−1))x = TxN + G(κ−1)
x .

Use this alongside (3.9) to arrive at Theorem 1.3.2 (2),

TxN + inv( G(κ−1))x = TxN + G(κ−1)
x ≃ Rn∗+κ.

It remains to show that the dual conditions are necessary to solve the single-input
transverse feedback linearization problem. Suppose there exists an open subset V ⊆ Rn of
x0 where Theorem 1.3.2 (1) and (2) holds. Pick any sufficiently small open subset U of p0

so that π(U) = V. From Theorem 1.3.2 (1) we have,

Rn ≃ Tx0N + G(n−n∗−1)
x0 .

By definition (2.4),

Rn ≃ Tx0N + G(n−n∗−1)
x0 ⊆ Tx0N + S(n−n∗−1)

x0 .

Since Tx0N + S(n−n∗−1)
x0 ⊆ Tx0Rn ≃ Rn, conclude,

Tx0N + S(n−n∗−1)
x0 ≃ Rn.

It directly follows that, on M,

Tp0L + S(n−n∗−1)
p0 ≃ Up0 × Rn.

We can then use Lemma 3.2.6 to find that the controllability condition (Con) holds.
Next we show that the involutivity condition (Inv) holds. From Theorem 1.3.2 (2) we

have, for all x ∈ V ∩ N and every κ ∈ {1, . . . , n− n⋆ − 1},

TxN + inv( G(κ−1))x = TxN + G(κ−1)
x .

It follows that, for all p ∈ U ∩ L and every κ ∈ {1, . . . , n− n⋆ − 1},

TpL + inv( G(κ−1))p = TpL + G(κ−1)
p . (3.10)
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Conclude that the involutivity condition (Inv) holds by Corollary 3.2.5.

It remains to show the constant dimension condition. Observe that the constant di-
mension condition, by Lemma 3.2.2, is equivalent to,

dim(Tp0L + S(κ−1)
p0 ) = dim(TpL + S(κ−1)

p ),

for all p ∈ U ∩ L and every κ ∈ {1, . . . , n − n⋆ − 1}. Using (3.9) and Lemma 2.1.1, find
that,

TpL + inv(S(κ−1))p = TpL + G(κ−1)
p .

Since G(κ−1) ⊆ S(κ−1) ⊆ inv(S(κ−1)), conclude,

TpL + S(κ−1)
p = TpL + G(κ−1)

p .

The constant dimension condition (Dim) directly follows from this and Theorem 1.3.2 (2).

3.4 Illustrative Examples

The stated goal of this thesis is to develop dual conditions for solvability of the transverse
feedback linearization problem that ostensibly make it easier to find the transverse output;
this can be used to determine the feedback transformation. Returning to this goal, let
us consider how one computes the transverse output from the proposed conditions for
transverse feedback linearization. Consider the problem of finding an exact smooth one-
form dh so that,

dh ∈ ⟨I(n−n∗−1), dt⟩(∞)
,

dh|L ∈ ann(TL).
(3.11)

Although it may not appear so, this is a Cauchy problem: it asks to find a smooth function
h that is constant (w.l.o.g. zero) on L and solves a system of linear partial differential equa-
tions. By Theorem 3.1.1, solvability of this problem is ensured by the controllability (Con),
constant dimension (Dim) and involutivity (Inv) conditions. In particular, these conditions
are equivalent to the conditions of Theorem 1.3.2 which then ensures the existence of a
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local transverse output h per Theorem 1.3.1. This local transverse output h vanishes on
L by definition so dh|L ∈ ann(TL). Moreover, h yields a relative degree of n − n∗, so,
by Lemma 2.2.14, dh ∈ ⟨I(n−n∗−1), dt⟩(∞)

. As a result, the local transverse output h is a
solution to the Cauchy problem (3.11)!

Now we give a sketch of the computation in the single-input case. The locally, simply,
finitely, non-degenerately generated differential ideal

⟨I(n−n∗−1), dt⟩(∞) = ⟨σ1, . . . , σℓ, dt⟩,

can be tied to a smooth and regular, involutive distribution,

∆p = spanR

⎧⎨⎩(X1)p, . . . , (Xn−ℓ)p,
∂

∂u

⃓⃓⃓⃓
⃓
p

⎫⎬⎭ ⊆ TM,

that satisfies ann(∆p) = ⟨I(n−n∗−1), dt⟩(∞)
p . Since ∆ is involutive, by Frobenius’s Theo-

rem, we can assume without loss of generality that the vector fields X1, . . . , Xn−ℓ, ∂/∂u

commute. We then solve the Cauchy problem,

LX1h = 0,
...

LXn−ℓ
h = 0,

L∂/∂uh = 0,

h|N = 0.

for h ∈ C∞(U) that has a non-vanishing differential. This function h can be taken, without
loss of generality, to be independent of time t, and is, by construction, independent of u.
As a result, we can restrict h onto the state-space Rn and define an output for the original
nonlinear control system (3.1). This output h will yield a relative degree of n − n∗ since
0 ̸= dhp0 ∈ ann(Tp0N), so, by the controllability condition (Con),

dhp0 /∈ spanR

{︂
I(n−n∗)

p0 , dtp0

}︂
.

The relative degree of h then follows by Lemma 2.2.14. We now apply this method to the
path following problem in Example 3.1, as well as a different academic example.
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Remark 3.4.1. Alternatively, Frobenius’s Theorem can be used to find the exact genera-
tors to the differential ideal ⟨I(n−n∗−1), dt⟩(∞)

. The transverse output is a function of those
smooth functions whose differentials generate this ideal. This is the approach taken in
Chapter 4.

Path Following for a Car

Recall the path following problem posed in Example 3.1. We have already verified the
conditions for Theorem 3.1.1, so it now remains to compute the transverse output. From
the end of Section 3.1 we recall that we must construct a Cauchy problem associated to
the differential ideal ⟨I(n−n∗−1), dt⟩(∞)

. In this problem, n−n∗−1 = 2. As a result, we look
at the differential ideal,

⟨I(2), dt⟩(∞) = ⟨dx1, dx2, dx3, dt⟩.

The distribution annihilated by this differential ideal is,

∆p = spanR

⎧⎨⎩ ∂

∂x4

⃓⃓⃓⃓
⃓
p

,
∂

∂x5

⃓⃓⃓⃓
⃓
p

,
∂

∂u

⃓⃓⃓⃓
⃓
p

⎫⎬⎭ .
Consider the Cauchy problem

∂h

∂x4 = 0, ∂h

∂x5 = 0, ∂h

∂u
= 0, h|N = 0.

A solution to this problem is,

h(x) = (x1)2 + (x2)2 − 12.

It is a regular matter to verify that the system (1.7) with output h yields a relative degree
of three and the zero dynamics manifold coincides with N in an open set containing x0.
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Academic Example

Consider the nonlinear, control-affine system

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3(t)
x3(t)

0
−x3(t) + x4(t)x5(t)

−x1(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2(t)
x1(t)

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u(t). (3.12)

and set
N =

{︂
x ∈ R5 : (x1)2 + (x2)2 − 1 = x3 = 0

}︂
,

that is rendered controlled-invariant by input u∗(x) = 0. We wish to transverse feedback
linearize the system (3.12) with respect to N at x0 = (1, 0, 0, 1, 1) ∈ N. Since N has
codimension 3, the single transverse output must yield a relative degree of 3. Both functions
(x1)2 + (x2)2 − 1 and x3 that are used to define N fail to yield the required relative degree
in an open set containing x0 and, as a result, cannot act as the transverse output.

However, it turns out that there does exist a transverse output. The dual conditions
for transverse feedback linearization hold and, in particular, we have

dim
(︂
ann(TpL) ∩ spanR{I(2), dtp}

)︂
= dim

(︂
ann(Tp0L) ∩ spanR{I(2), dtp0}

)︂
= 2.

and
ann(Tp0L) ∩ spanR{I(3), dtp0} = spanR{dtp0}.

Recall that the outputs of relative degree 3 must reside in differential ideal ⟨I(2), dt⟩(∞)
. As

a result, we write the system of partial differential equations associated to this ideal and
state the Cauchy problem that, when solved, produces the required transverse output. We
have that,

⟨I(2), dt⟩(∞) = ⟨dx1 − (x1 − x2)dx3, dx2, dx4, dx5, dt⟩,

which is associated to the system of partial differential equations,

(x1 − x2) ∂h
∂x1 + ∂h

∂x3 = 0, ∂h

∂u
= 0.
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The final Cauchy problem is

(x1 − x2) ∂h
∂x1 + ∂h

∂x3 = 0, ∂h

∂u
= 0, h|N = 0.

Using the method of characteristics, a solution to this Cauchy problem is found to be

h(x) = (x2 − x1)e−x3 − x2 +
√︂

1− (x2)2.

The system (3.12) with output h yields a relative degree of three, and h vanishes on N.
Therefore, by Theorem 1.3.1, the output h is a transverse output, and may be used with
input-output feedback linearization to transverse feedback linearize the dynamics.
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Chapter 4

Multi-Input Systems

Having established the conditions for single-input transverse feedback linearization, we
now turn to the general multi-input case. Recall the nonlinear, multi-input control-affine
system,

ẋ = f(x) +
m∑︂

j=1
gj(x)uj, (4.1)

and its lift onto M in (2.6) given by,

ṫ = 1,

ẋ = f(x) +
m∑︂

j=1
gj(x)uj.

(4.2)

Let N ⊂ Rn be a closed, embedded n∗-dimensional submanifold passing through the point
x0 that is rendered controlled-invariant by signal u∗ : N → Rm. Define the lift of N given
by the closed, embedded submanifold

L := {p = (t, u, x) ∈ M : t = 0, x ∈ N}. (4.3)

Fix p0 := (0, u∗(x0), x0) ∈ L ⊆ M. In this chapter, we will also lift other submanifolds of
the state-space Rn to M in precisely the same manner.

The conditions for transverse feedback linearization in the multi-input case are precisely
the same — (Con), (Inv) and (Dim) — as those presented in Section 3.1 for the single-input
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case. Although the same proof technique applies in the multi-input case, we seek to provide
both a proof and an algorithm useful in finding the required feedback transformation.

4.1 The Main Result

The dual conditions for transverse feedback linearization, first stated in Section 3.1, apply
just as well to multi-input systems. For convenience, we remind ourselves of the conditions.
The first of these is the controllability condition,

ann (Tp0L) ∩ spanR{I(n−n∗)
p0 , dtp0} = spanR{dtp0}. (Con)

The second is an involutivity condition demanding that on an open set U ⊆ M containing
p0, for all p ∈ U ∩ L,

ann (TpL) ∩ spanR{I(k)
p , dtp} ⊆ ⟨I(k), dt⟩(∞)

p , 0 ≤ k ≤ n− n∗. (Inv)

Lastly, we require that the codistribution in the left-hand side of (Inv) satisfies, for all
p ∈ U ∩ L and every 0 ≤ k ≤ n− n∗,

dim
(︂
ann (Tp0L) ∩ spanR{I(k)

p0 , dtp0}
)︂

= dim
(︂
ann (TpL) ∩ spanR{I(k)

p , dtp}
)︂
. (Dim)

We now state the main theorem of this thesis: that these conditions may be used to test
whether the transverse feedback linearization problem is solvable for multi-input systems.

Theorem 4.1.1 (Main Result). Suppose Assumptions 2.2.3 and 2.2.11 hold. The sys-
tem (4.1) is locally transverse feedback linearizable with respect to the closed, embedded and
controlled-invariant submanifold N ⊆ Rn at x0 if, and only if, (Con) holds and there exists
an open set U ⊆ M of p0 on which conditions (Inv) and (Dim) hold.

There are a number of constants that appear in the supporting results that follow. First
we define the indices, for all i ≥ 0,

ρi(p0) := dim
ann (Tp0L) ∩ spanR{I(i)

p0 , dtp0}
ann (Tp0L) ∩ spanR{I

(i+1)
p0 , dtp0}

(4.4)
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Using the indices ρi define

κi(p0) := card{j : ρj(p0) ≥ i}, i ≥ 0. (4.5)

Unlike in the single-input case, we need not necessarily concern ourselves with ideals in
the flag (2.13) up to index n− n∗. Observe that

ρκ1 = · · · = ρn−n∗ = 0, (4.6)

by definition. If the controllability condition (Con) holds, then we can use the above fact
to conclude that

ann(Tp0L) ∩ spanR{I(κ1), dtp0} = spanR{dtp0}.

As a result, it suffices to look at the ideals in the flag (2.13) with indices up to and including
κ1. When κ1 = n− n∗, either there is only one input m = 1 or m− 1 of the input vector
fields gi act tangent to N.

We call (κ1, . . . , κn−n∗) the transverse controllability indices of (4.1) with respect to N
at x0 = π(p0) [40]. Observe that, when the constant dimension condition (Dim) holds, ρi

and κi are constant on an open set of N containing p0. These indices play a role in the
algorithm as they indicate in which ideals components of the transverse output appear. It is
fairly straightforward to show that the conditions are necessary for the transverse feedback
linearization problem to be solvable. As a result, we now briefly prove the necessity of the
dual conditions.

Proof of Theorem 4.1.1 (Necessity). Suppose that, on an open set V ⊆ Rn containing x0

the local transverse feedback linearization problem is solvable. That is, there exists a
change of coordinates (η, ξ) := Φ(x) and feedback u := α(x) + β(x) [ v∥ v⋔ ]⊤ where, in the
new coordinates, the nonlinear control system (4.1) takes the form

η̇(t) = f(η(t), ξ(t)) +
m−ρ0∑︂
j=1

g∥,j(η(t), ξ(t)) vj
∥(t) +

ρ0∑︂
j=1

g⋔,j(η(t), ξ(t)) vj
⋔(t),

ξ̇(t) = Aξ(t) +
ρ0∑︂

j=1
bj v

j
⋔(t),

(4.7)
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and (A, [ b1 ··· bρ0 ]) is in Brunovský normal form, and, furthermore, in (η, ξ)-coordinates
the target set N is locally

Φ(V ∩ N) = {(η, ξ) ∈ Φ(V) : ξ = 0} .

Lifting the dynamics of (4.7) in the same manner as was done to obtain (4.2) gives, on
some open set U ⊆ M containing p0,

ṫ = 1,

η̇ = f(η, ξ) +
m−ρ0∑︂
j=1

g∥,j(η, ξ) v
j
∥ +

ρ0∑︂
j=1

g⋔,j(η, ξ) v
j
⋔,

ξ̇ = Aξ +
ρ0∑︂

j=1
bj v

j
⋔,

and the lifted manifold L ⊆ U is locally

U ∩ L = {(t, v, η, ξ) ∈ U : t = ξ = 0} .

By [40, Lemma 4.3], the controllability indices of (A, [ b1 ··· bρ0 ]) equal the transverse con-
trollability indices of (4.4) so (A, [ b1 ··· bρ0 ]) has ρ0 integration chains of length κ1 ≥ · · · ≥
κρ0 . We can therefore index the ξ-coordinates as in (2.18): for each fixed 1 ≤ i ≤ ρ0, write

ξ̇
i,j = ξi,j−1, 2 ≤ j ≤ κi,

ξ̇
i,1 = vi

⋔.

Observe that the generators ωi of the system ideal (2.11) associated to the ξi,j take the
form

ωi,j = dξi,j − ξi,j−1dt, 2 ≤ j ≤ κi,

ωi,1 = dξi,1 − vi
⋔,

and, as a result, satisfy the adaptation property,

dωi,j = dt ∧ ωi,j−1, 2 ≤ j ≤ κi,

dωi,1 = dt ∧ vi
⋔.

76



It is clear then that, for each p ∈ U, we have the adapted basis structure,

ann(TpL) ∩ spanR{I(k)
p , dtp} = spanR{dtp}+ spanR{dξi,j

p : 1 ≤ i ≤ ρ0, j > k}.

From this we can deduce the TFL conditions. The constant dimension condition (Dim)
follows directly. The controllability condition (Con) follows from considering the index
k = n− n∗. Observe there are no ξi,j with j > n− n∗ since that would imply the existence
of more than n− n∗ transverse directions to N. Therefore

ann(TpL) ∩ spanR{I(n−n∗)
p , dtp} = spanR{dtp}.

The involutivity condition (Inv) follows because we have exact generators dt and dξi,j that
generate the codistribution,

ann(TpL) ∩ spanR{I(k)
p , dtp}

for all 0 ≤ k ≤ n− n∗.

The rest of this chapter is dedicated to establishing the dual conditions for transverse
feedback linearization are sufficient, and to exposing the proposed algorithm for transverse
feedback linearization.

4.2 Supporting Results

Lemma 2.2.14 of Section 2.2 established that, under mild regularity assumptions, sys-
tem (4.2) with output h yielding a uniform vector relative degree at p0 must have a differ-
ential that lives in a specific ideal but not live in the subsequent augmented ideal of the
derived flag (2.13). Now we ask a different question: Given an output that yields a uniform
vector relative degree, how do we find additional scalar outputs that (1) yield a smaller
uniform vector relative degree and (2) combine with previously known scalar outputs to
yield a vector relative degree? All the while, we must ensure that (3) the new outputs
vanish on the target manifold N.

Points (1) and (2) are classically performed by “adapting” the basis of exact generators
for the derived flag (2.13) per Definition 2.3.1. This is precisely what we wish to replicate
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except that the adapted portion of the basis acts transverse to N. This is where point (3)
imposes a greater degree of difficulty in the adaptation process precisely because we ask
that the differentials of the outputs dhi annihilate tangent vectors to N. At a high level,
we present three procedures that together will be used to correctly adapt the derived flag.
These are:

(a) finding generators that “drop off” when computing the derived flag (2.13),

(b) grouping generators into those that annihilate tangent vectors to L and those that
do not, and

(c) rewriting generators so that the induced output has a full rank decoupling matrix.

Note that these steps are performed repeatedly throughout the algorithm. This section
presents technical results that demonstrate how to perform steps (a) and (b). Step (c) is
presented in the proof of the main result.

Before discussing these subprocedures in any detail, we must know the dimension of
the subspace in an ideal of the derived flag (2.13) that annihilates tangent vectors to L.
The first lemma shows how the controllability condition (Con) determines this.

Lemma 4.2.1. If (Con), then for all 0 ≤ k ≤ n− n∗

dim
(︂
ann(Tp0L) ∩ spanR{I(k)

p0 , dtp0}
)︂

= 1 +∑︁n−n∗−1
i=k ρi,

and n− n∗ = ∑︁n−n∗−1
i=0 ρi.

Proof. By (Con) we have

dim
(︂
ann(Tp0L) ∩ spanR{I(n−n∗)

p0 , dtp0}
)︂

= 1

so the formula holds for k = n− n∗. Suppose, by way of induction, that for some 1 ≤ k ≤
n− n∗

dim
(︂
ann(Tp0L) ∩ spanR{I(k)

p0 , dtp0}
)︂

= 1 +∑︁n−n∗−1
i=k ρi. (4.8)

Consider
dim

(︂
ann(Tp0L) ∩ spanR{I(k−1)

p0 , dtp0}
)︂
.
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By (4.4)

dim(ann(Tp0L) ∩ spanR{I(k−1)
p0 , dtp0}) = dim(ann(Tp0L) ∩ spanR{I(k)

p0 , dtp0}) + ρk−1.

Apply the inductive hypothesis (4.8) and conclude

dim
(︂
ann(Tp0L) ∩ spanR{I(k−1)

p0 , dtp0}
)︂

= 1 +∑︁n−n∗−1
i=k−1 ρi.

We now verify the final fact. First observe

spanR{I(0)
p0 , dtp0} = spanR{dx1

p0 , . . . , dx
n
p0 , dtp0}.

By construction of L we have

ann(Tp0L) ⊆ spanR{dx1
p0 , . . . , dx

n
p0 , dtp0}.

Therefore

dim
(︂
ann(Tp0L) ∩ spanR{I(0)

p0 , dtp0}
)︂

= dim (ann(Tp0L)) = 1 + n− n∗.

Combining this with the formula

dim
(︂
ann(Tp0L) ∩ spanR{I(0)

p0 , dtp0}
)︂

= 1 +∑︁n−n∗−1
i=0 ρi,

completes the proof.

The previous result concerned the ideal but not its differential closure. Next we show
that, when the involutivity condition holds, we can work with either the ideal or its differ-
ential closure as long as we are only concerned with the differentials that annihilate tangent
vectors to L.

Proposition 4.2.2. If (Inv) holds on some open set U containing p0, then for all p ∈ U∩L

ann(TpL) ∩ spanR{I(k)
p , dtp} = ann(TpL) ∩ ⟨I(k), dt⟩(∞)

p , 0 ≤ k ≤ n− n∗.

Proof. Fix p ∈ U ∩ L and intersect both sides of the involutivity condition (Inv) with
ann(TpL). Use the fact that ⟨I(k), dt⟩(∞) ⊆ ⟨I(k), dt⟩ to arrive at the equality.
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As mentioned in Section 2.3, finding outputs of vector relative degree amounts to find-
ing an appropriately adapted basis for the derived flag. That is, find generators for I(0)

that act as an adapted basis per Definition 2.3.1. Recall that, when N = {x0}, the trans-
verse feedback linearization problem reduces to the exact state-space feedback linearization
problem [40]. As a result, we expect our algorithm to apply just as well to feedback lin-
earization. In the exact feedback linearization algorithm presented in [16], the generators
for the differential ideals ⟨I(k), dt⟩(∞) are assumed to satisfy,

⟨I(0), dt⟩(∞) = ⟨ω1, . . . , . . . , ωn, dt⟩,

⟨I(1), dt⟩(∞) = ⟨ω1, . . . , ωn−ρ0 , dt⟩,
...

⟨I(κ1−1), dt⟩(∞) = ⟨ω1, ω2, dt⟩,

⟨I(κ1), dt⟩(∞) = ⟨dt⟩.

(4.9)

The generators “drop off” as the derived flag is computed. This is precisely what is meant
by subprocedure (a) and is what is meant by Gardner and Shadwick’s adapted basis. Note
that the procedure provided by Tilbury and Sastry in [48, Theorem 4] cannot be used as
it relies on the conditions for state-space, exact feedback linearization. This is why we
explicitly demonstrate that the re-adaptation process, subprocedure (a) in particular, can
be applied when required.

Even given an adapted basis, finding exact generators that annihilate tangent vectors
to L is itself challenging. Constructing one-forms that annihilate L directly from known
exact forms can ruin their exactness. In reality, one must solve a Cauchy problem for
every component of the transverse output, as seen in the single-input case in Section 3.4.
This is tenable in the single-input case, but is not a satisfying solution in the multi-input
case especially when seeking multiple, independent, scalar, transverse outputs. To avoid
this, we introduce maps Hk whose differential is the exact generator for ⟨I(k), dt⟩(∞). The
re-adaptation process mentioned earlier, subprocedure (a), amounts to rewriting the com-
ponents of these smooth maps so that the image of the pullback Im(DHk)∗ = ⟨I(k), dt⟩(∞)

remains the same.

80



Remark 4.2.3. Manipulating the integrals of the exact generators suggests integrating all
the differential closures of the augmented ideals in the derived flag (2.13). In Section 4.4,
we show that integration is only required for those differential ideals ⟨I(k), dt⟩(∞) at which
k is a distinct transverse controllability index. This is in keeping with the simplicity of
Section 3.4 where integration is only performed at index κ1 − 1 = n− n∗ − 1.

We start by showing the existence of the aforementioned maps. The TFL conditions
— (Con), (Inv) and (Dim) — allow us to construct the map Hk explicitly with a specific
rank deficiency when restricted to L. This deficiency will ultimately be used to construct
the transverse outputs.

Lemma 4.2.4. Suppose Assumption 2.2.3 holds. If (Con) holds at p0 and there exists an
open set U containing p0 where (Inv) and (Dim) hold, then for every 0 ≤ k ≤ n− n∗ there
exists an integer ℓk ≥ 1 +∑︁n−n∗−1

i=k ρi, a possibly smaller open set V ⊆ U containing p0, and
a smooth map Hk : V→ Rℓk satisfying the characteristic property

⟨dH1
k , . . . , dH

ℓk
k ⟩ = ⟨I(k), dt⟩(∞)

, (4.10)

with constant rank, on V ∩ L, equal to

rank (Hk|V∩L) = ℓk −
(︂
1 +∑︁n−n∗−1

i=k ρi

)︂
.

Proof. By Assumption 2.2.3, the differential ideal ⟨I(k), dt⟩(∞) is simply, finitely, non-
degenerately generated so, by Frobenius’s Theorem (Theorem A.6.4), there exists ℓk exact
generators dh1, . . . , dhℓk on some open neighbourhood V ⊆ U of p0. Define a smooth map
Hk : V→ Rℓk by

Hk(p) :=
(︂
h1(p), . . . , hℓk−1(p), t

)︂
.

Without loss of generality, take hi to be smooth functions of the state. By construction,
Hk satisfies the characteristic property (4.10).

We already know, by Assumption 2.2.3, that Hk has constant rank. It is not directly
obvious that Hk|V∩L has constant rank as well. Since (Inv) holds over V, invoke Proposi-
tion 4.2.2 to find

ann(TpL) ∩ ⟨I(k), dt⟩(∞)
p = ann(TpL) ∩ spanR{I(k)

p , dtp}, (4.11)
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for all p ∈ V ∩ L. It then follows by (Dim) that, for p ∈ V ∩ L,

dim
(︃

ann(TpL) ∩ ⟨I(k), dt⟩(∞)
p

)︃
= constant.

Then use the characteristic property (4.10) to determine that Hk|V∩L must have constant
rank.

We now proceed by directly computing its rank at a point p ∈ V∩ L. Because the rank
of Hk|V∩L is constant, it suffices to compute its rank at p0. Compute the dimension on both
sides of (4.11) and invoke Lemma 4.2.1 to find,

dim
(︃

ann(Tp0L) ∩ ⟨I(k), dt⟩(∞)
p0

)︃
= 1 +∑︁n−n∗−1

i=k ρi.

It immediately follows that

rank Hk|V∩L = ℓk −
(︂
1 +∑︁n−n∗−1

i=k ρi

)︂

The proof of Lemma 4.2.4 did not specifically rely on the way the map Hk was con-
structed (as the integral of a Frobenius system). The proof holds without modification for
any map Hk that satisfies the characteristic property (4.10). The next corollary states this
fact.

Corollary 4.2.5. Suppose (Con) holds and there exists an open set U containing p0 where
(Inv) and (Dim) hold. If a smooth map Hk : U → Rℓk satisfies the characteristic prop-
erty (4.10) then it has constant rank on U ∩ L equal to

rank (Hk|U∩L) = ℓk −
(︂
1 +∑︁n−n∗−1

i=k ρi

)︂
.

We now ask whether the Hk can be “adapted” to include components that are constant
(without loss of generality, zero) on L. In general, level sets of the form

{p ∈ M : H i
k(p) = H i

k(p0)}

do not contain L, as depicted in Figure 4.1a. Figure 4.1b shows how the corresponding gen-
erators for the codistribution ⟨I(k), dt⟩(∞) do not annihilate vectors tangent to L although
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L

p0

H1
k(p) = H1

k(p0)

H2
k(p) = H2

k(p0)

(a) The intersection of the level sets of Hi
k form an

integral submanifold (light blue) of ⟨I(k), dt⟩(∞) pass-
ing through p0. Neither level set contains L.

L

⟨I(k), dt⟩(∞)
p0

ann(Tp0L)(dH1
k)p0

(dH2
k)p0

(b) The original choice of generators do not annihi-
late vectors tangent to L.

H̃
1
k(p) = H̃

1
k(p0)

(c) There exists a map H̃k so that the zero locus of
the leading components contain L while preserving
the integral submanifold.

L

(dH̃
1
k)p0

(dH̃
2
k)p0

(d) The smooth one-form dH̃
1 lives in ⟨I(k), dt⟩(∞)

and annihilates the tangent space of L.

Figure 4.1: An arbitrary set of generators (red, green) for the codistribution ⟨I(k), dt⟩(∞) (blue) is
adapted to annihilate the tangent space of L (black).

the codistribution has a non-trivial intersection with ann(Tp0L). We can use the rank de-
ficiency of Hk on L to construct an adaptation of Hk where the leading 1 + ∑︁n−n∗−1

i=k ρi

components have level sets that locally contain L. Figure 4.1c shows the level sets of the
newly rewritten H̃k. At a point p ∈ L, the leading components’ differential lives in ann(TpL)
∩ ⟨I(k), dt⟩(∞)

p as seen in Figure 4.1d.

Lemma 4.2.6. If Hk : V → Rℓk is a smooth map satisfying the characteristic prop-
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erty (4.10) and its restriction has constant rank equal to

rank (Hk|V∩L) = ℓk − ρ,

then there exists a map H̃k : V → Rℓk which satisfies the characteristic property (4.10)
and, for all p ∈ V ∩ L, vp ∈ TpL, i ∈ {1, . . . , ρ}, dH̃ i

k(vp) = 0.

Proof. Apply [31, Rank Theorem (Proposition 4.12)] and shrink V if necessary to find a
coordinate chart φ for L and a coordinate chart ψ for Rℓk so the composition ψ◦Hk|V∩L◦φ−1

takes the form
ψ ◦ Hk|V∩L ◦ φ

−1 = (0, . . . , 0, ⋆, . . . , ⋆),

with ρ leading zeros. Define H̃k := ψ ◦ Hk. The map H̃k still satisfies the characteristic
property (4.10) but is now “adapted” so that the first ρ components vanish on L and,
consequently, their differentials must annihilate tangent vectors to L as required.

Remark 4.2.7. Let J be a differential ideal associated with codistributionJ, and let L ⊆ M
be a closed, embedded submanifold. Consider the Cauchy problem

dh ∈ J,

h|L = 0,

locally around a point p0 ∈ L, and ask to find the maximal set of differentially independent
functions that solve this problem. Lemma 4.2.6 suggests that a necessary and sufficient
condition is that the non-empty condition

dim (ann(Tp0L) ∩Jp0) > 0,

and constant dimension condition,

dim (ann(TpL) ∩Jp) = dim (ann(Tp0L) ∩Jp0) ,

holds for all p in a sufficiently small neighbourhood of p0. This should be compared with
similar results such as [31, Theorem 19.27].
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The established facts ensure that, assuming (Con) holds at p0 and there exists an open
set U so that (Inv) and (Dim) hold, we can write, for all p ∈ U ∩ L,

ann(TpL) ∩ ⟨I(0), dt⟩(∞)
p = spanR{dH1

0 , . . . , . . . , . . . , dHn−n∗

0 , dt},

ann(TpL) ∩ ⟨I(1), dt⟩(∞)
p = spanR{dH1

1 , . . . , . . . , dH
n−n∗−ρ0
1 , dt},

...

ann(TpL) ∩ ⟨I(κ1−1), dt⟩(∞)
p = spanR{dH1

κ1−1, . . . , dH
ρκ1−1
κ1−1 , dt},

ann(TpL) ∩ ⟨I(κ1), dt⟩(∞)
p = spanR{dt}.

(4.12)

None of the previous results guarantee that components of Hk are also components of Hk−1

even though we know that

⟨dH1
k , . . . , dH

ℓk
k ⟩ = ⟨I(k), dt⟩(∞) ⊆ ⟨I(k−1), dt⟩(∞) = ⟨dH1

k−1, . . . , dH
ℓk−1
k−1 ⟩

The purpose of the coming lemmas is to ensure that we can always rewrite (4.12) as,

ann(TpL) ∩ ⟨I(0), dt⟩(∞)
p = spanR{dH1

κ1−1, . . . , . . . , . . . , dHn−n∗

0 , dt},

ann(TpL) ∩ ⟨I(1), dt⟩(∞)
p = spanR{dH1

κ1−1, . . . , . . . , dH
n−n∗−ρ0
1 , dt},

...

ann(TpL) ∩ ⟨I(κ1−1), dt⟩(∞)
p = spanR{dH1

κ1−1, . . . , dH
ρκ1−1
κ1−1 , dt},

ann(TpL) ∩ ⟨I(κ1), dt⟩(∞)
p = spanR{dt}.

(4.13)

Pay close attention to the subtle difference between (4.13) and (4.12): if a differential
appears as a generator in one ideal, it appears as a generator in all the preceding ideals of
the derived flag. We would like the components of our smooth maps to satisfy this same
property. To do this, noting that ℓk ≥ ℓk+1 because ⟨I(k), dt⟩(∞) ⊇ ⟨I(k+1), dt⟩(∞)

, define
the linear projection Pk : Rℓk+1 × Rℓk−ℓk+1 → Rℓk+1 defined by the matrix, Pk = [ Iℓk+1 0 ].
Then, rewrite the components of Hk so that the following diagram commutes.

V ⊆ M V ⊆ M · · · V ⊆ M V ⊆ M

Rℓ0 Rℓ1 · · · Rℓn−n∗−1 Rℓn−n∗

id

H0

id

H1

id id

Hn−n∗−1 Hn−n∗

P0 P1 Pn−n∗−2 Pn−n∗−1
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Maps Hk that make this diagram commute have components that are subsumed in the
“larger” maps Hk−1, . . . , H0. This can be done, up to a reordering in the projection, to
preserve the fact that the leading components of Hk vanish on L. To prove that such a
construction is possible, we need only prove that a smaller adaptation is possible.

Proposition 4.2.8. Let k ≥ 0, ℓk > ℓk+1 > 0, let Pk : Rℓk+1×Rℓk−ℓk+1 → Rℓk+1 , Pk(x, y) =
x, and let U be an open set containing p0. If Hk+1 : U → Rℓk+1 and Hk : U → Rℓk are
smooth maps satisfying the characteristic property (4.10), then on a possibly smaller open
set V containing p0, there exists a smooth map H̃k : V→ Rℓk that makes the diagram,

V ⊆ M

Rℓk Rℓk+1

H̃k

Hk+1

Pk

commute and ⟨dH̃1
k, . . . , dH̃

ℓk

k ⟩ = ⟨dH1
k , . . . , dH

ℓk
k ⟩ = ⟨I(k), dt⟩(∞)

.

Proof. Write Hk+1 = (H1
k+1, . . . , H

ℓk+1
k+1 ). Since ⟨I(k+1), dt⟩(∞) is contained in ⟨I(k), dt⟩(∞)

and by the characteristic property (4.10),

⟨dH1
k+1, . . . , dH

ℓk+1
k+1 ⟩ ⊆ ⟨dH1

k , . . . , dH
ℓk
k ⟩.

It follows that we can pick the ℓk+1−ℓk components ofHk that are differentially independent
from the components H i

k+1 at p0. Take these differentially independent components of Hk+1

to be the last ℓk+1 − ℓk components without loss of generality. Define

H̃k := (H1
k+1, . . . , H

ℓk+1
k+1 , H

ℓk+1−ℓk+1
k , . . . , Hℓk

k ),

and observe that, on a sufficiently small open set V containing p0, this map will satisfy

⟨dH̃1
k, . . . , dH̃

ℓk

k ⟩ = ⟨dH1
k , . . . , dH

ℓk
k ⟩

and Pk ◦ H̃k = Hk+1.

Proposition 4.2.8 implies that, for every 0 ≤ k ≤ n − n∗ − 1, there exists Hk, Hk+1 so
that Hk+1 = Pk ◦Hk. Geometrically, the level sets of the components of Hk+1 are subsumed
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by the level sets of the components of Hk. This is depicted in Figure 4.2. Together with
Lemma 4.2.6, we can find a sequence of maps whose leading components vanish on L while
making the aforementioned diagram commute (up to a reordering in the projections). The
next corollary states this fact.

Corollary 4.2.9. If (Con) holds and there exists an open set U ⊆ M containing p0 where
(Inv) and (Dim) hold then there exists a possibly smaller open set V ⊆ U containing p0

and a sequence of smooth maps H0, . . . , Hn−n∗ so that:

(1) each map Hk satisfies the characteristic property (4.10),

(2) for all 0 ≤ k ≤ n− n∗ − 1, Hk+1 = Pk ◦Hk where Pk : Rℓk+1 ×Rℓk−ℓk+1 → Rℓk+1 is a
projection onto the leading ℓk+1 components of Rℓk , and

(3) for all 0 ≤ k ≤ n− n∗ the leading 1 +∑︁n−n∗−1
i=k ρi components of Hk vanish on L.

Corollary 4.2.9 encodes subprocedures (a) and (b) as presented at the start of this
section. It assures us that there exists a set of generators which “drop off” on computing
the derived flag while explicitly expressing the components with differentials that annihilate
tangent vectors to L. Note, however, that we still do not know what the transverse output
is.

p0

H1
k+1(p) = H1

k+1(p0) H1
k(p) = H1

k(p0)

H2
k(p) = H2

k(p0)

Figure 4.2: A depiction of Proposition 4.2.8. The level sets of components of Hk subsume those
of Hk+1 while preserving the image of their differentials.
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4.3 The Proposed Algorithm

It was purported that the proof that the dual conditions are sufficient for transverse feed-
back linearization employs the proposed algorithm. This is precisely what we aim to show
in this section.

The Geometry of the Algorithm

The proposed algorithm produces a flag of (locally) closed, embedded submanifolds,

Rn ⊇ π(U) =: Z(n−n∗+1) ⊇ Z(n−n∗) ⊇ · · · ⊇ Z(2) ⊇ Z(1) = π(U) ∩ N.

Each manifold Z(i) is constructed as the local zero dynamics manifold containing x0 of an
incomplete transverse output with respect to N. The scalar outputs used to construct Z(i)

are all the components of the transverse output for N which have relative degree greater
than, or equal to, i.

As a result, one can take the following perspective on the algorithm. Informally, the
algorithm transverse feedback linearizes the system dynamics with respect to N by finding
those scalar outputs that are transverse to N and have the largest possible relative degree κ1.

The algorithm proceeds by finding outputs that yield a lower relative degree, are transverse
to N but not transverse to the zero dynamics manifold Z(κ1) induced by the already known
outputs. The new outputs can then be combined with the known outputs to yield a relative
degree with a smaller zero dynamics manifold. The process repeats until the zero dynamics
manifold agrees with N locally.

To simplify the discussion involving the outputs and their associated zero dynamics
manifolds, we define a special class of controlled-invariant set.
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Definition 4.3.1 (Regular Zero Dynamics Manifold) . A closed, embedded subman-
ifold Z ⊆ Rn is said to be a regular zero dynamics manifold of type (ℓ, κ) (at x0)
for (4.1), where 1 ≤ ℓ ≤ n and κ ∈ Nℓ, if there exists an open set U ⊆ Rn containing x0

and a smooth function h : U→ Rℓ so that

(1) the system (4.1) with output h yields a vector relative degree κ = (κ1, . . . , κℓ) at x0,

and

(2) the zero dynamics manifold for h coincides with U ∩ Z.

Although not explicit, Definition 4.3.1 implies that a regular zero dynamics manifold
Z of type (ℓ, κ) has dimension n − ∑︁ℓ

i=1 κi. It is also clear from Definition 4.3.1 that
regular zero dynamics manifolds are controlled-invariant sets; the converse is clearly not
true. Since all of the Z(i) in the proposed algorithm’s flag are constructed as the zero
dynamics manifold associated to some output for (4.1), the proposed algorithm produces
a flag of regular zero dynamics manifolds containing N. We can restate Theorem 1.3.1 in
the language of Definition 4.3.1.

Theorem 4.3.2. The local transverse feedback linearization problem is solvable at x0 if,
and only if, there exists constants ρ0 ∈ N and κ = (κ1, . . . , κρ0) ∈ Nρ0 so that N is a regular
zero dynamics manifold of type (ρ0, κ) at x0.

Theorem 4.3.2 implies that the proposed algorithm produces a descending flag of man-
ifolds that are transverse feedback linearizable at x0. This formulation gives geometric
intuition behind the algorithm for transverse feedback linearization, but also to algorithms
for feedback linearization methods more broadly. The GS algorithm proposed in [16] and
Blended algorithm proposed in [35] both involve adapting generators starting with the
smallest (last) ideal in the derived flag (2.13) and working backwards to the system ideal
I(0). This can be viewed as constructing a sequence of components for the feedback lin-
earizing output starting with those components that yield the highest relative degree to
those that yield the lowest relative degree. Implicitly, this produces a descending flag of
regular zero dynamics manifolds that terminates at the one-point set {x0}. Partial feedback
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linearization, which is concerned with finding the largest feedback linearizable subsystem,
could be cast in the same light by instead asking that the last regular zero dynamics
manifold in the flag be as small (in dimension) as possible.

The Proof

We are ready to prove the dual conditions for transverse feedback linearization are sufficient
and, in turn, demonstrate the purported algorithm.

Proof of Theorem 4.1.1 (Sufficiency). Suppose (Con) holds at p0 and that there exists an
open set U ⊆ M of p0 on which conditions (Inv) and (Dim) hold. At the start of the
algorithm we set Z(n−n∗+1) := π(U) since there cannot be a scalar transverse output for N
with relative degree greater than n− n∗.

By Corollary 4.2.9 there exists a sequence of smooth maps H0, . . . , Hn−n∗ defined on
an open set V ⊆ U containing p0 that satisfy the characteristic property (4.10), i.e., for
any fixed 0 ≤ k ≤ n− n∗,

⟨dH1
k , . . . , dH

ℓk
k ⟩ = ⟨I(k), dt⟩(∞)

.

Furthermore, the leading components of these maps vanish on L so we may write, for any
0 ≤ k ≤ n− n∗,

Hk = (H1
k , . . . , t⏞ ⏟⏟ ⏞

vanish on L

, . . . , . . . , . . . , Hℓk
k⏞ ⏟⏟ ⏞

not constant on L

).

Now recall the discussion surrounding (4.6). We already know that the t component of
Hn−n∗ is the only component that vanishes on L. However, since ρκ1 = · · · = ρn−n∗−1 = 0,
we can also say the same thing about the map Hκ1 . That is,

Hκ1 = (t,H2
κ1 , . . . , . . . , H

ℓκ1
κ1⏞ ⏟⏟ ⏞

not constant on L

), (4.14)

As a result, we start our algorithm at index κ1.
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Set Z(κ1+1) := Z(n−n∗+1) = π(U), and consider the map Hκ1−1. By definition, ρκ1−1 > 0.
Therefore, we can write1

Hκ1−1 = (H1
κ1−1, . . . , H

ρκ1−1
κ1−1 , t⏞ ⏟⏟ ⏞

vanish on L

, . . . , . . . , . . . , H
ℓκ1−1
κ1−1⏞ ⏟⏟ ⏞

not constant on L

).

Take the ρκ1−1 smooth functions H1
κ1−1, . . . , H

ρκ1−1
κ1−1 , and define the candidate transverse

output
h := (H1

κ1−1, . . . , H
ρκ1−1
κ1−1 ).

Now we show that the system (4.2) with output h yields a vector relative degree of (κ1, . . . ,

κ1) at p0. Clearly dhi ∈ ⟨I(κ1−1), dt⟩(∞) by the characteristic property (4.10). Therefore

⟨dh1, . . . , dhρκ1−1⟩ ⊆ ⟨I(κ1−1), dt⟩(∞)
. (4.15)

Observe that dhi ∈ ann(TL). As a result,

spanR{dh1
p0 , . . . , dh

ρκ1−1
p0 } ⊆ ann(Tp0L).

Using (4.14), the characteristic property (4.10), and (Con),

spanR{dh1
p0 , . . . , dh

ρκ1−1
p0 } ∩ ⟨I(κ1), dt⟩(∞)

p0
⊆ spanR{dtp0}.

We already know that the hi are smooth functions of the state, so we may conclude

spanR{dh1
p0 , . . . , dh

ρκ1−1
p0 } ∩ ⟨I(κ1), dt⟩(∞)

p0
= {0}.

Finally use Proposition 4.2.2 to deduce

spanR{dh1
p0 , . . . , dh

ρκ1−1
p0 } ∩ spanR{I(κ1)

p0 , dtp0} = {0}. (4.16)

The expressions (4.15) and (4.16) are the conditions for Lemma 2.2.14. Since Assump-
tions 2.2.3 and 2.2.11 hold, conclude that h yields a uniform vector relative degree of (κ1,

1The components H1
κ1−1 up to H

ρκ1−1
κ1−1 are constant on L and can be treated, without loss of generality,

as zero on L. Therefore, we write that these components vanish on L.
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. . . , κ1) at p0. Define the local regular zero dynamics manifold, possibly shrinking U if
necessary,

Z(κ1) := {x ∈ π(U) : h(ι(x)) = · · · = Lκ1−1
f h(ι(x)) = 0},

of type (ρκ1−1, (κ1, . . . , κρκ1−1)) at x0 = π(p0). Fix 0 ≤ k < κ1 − 1. Because of (4.15),
Lemma 2.2.9 implies that

dhi, . . . ,Lκ1−k−1
f dhi ∈ ⟨I(k), dt⟩(∞) = ⟨dH1

k , . . . , dH
ℓk
k ⟩, 1 ≤ i ≤ ρκ1−1.

As a result, we can, without loss of generality, rewrite Hk to take the form

Hk = (
other components⏟ ⏞⏞ ⏟
. . . , . . . , . . . , . . .,

vanish on Z(κ1)⏟ ⏞⏞ ⏟
h, . . . ,Lκ1−k−1

f h, t⏞ ⏟⏟ ⏞
vanish on L

, . . . , . . . , . . . , . . .⏞ ⏟⏟ ⏞
not constant on L

),

This process adapts all maps Hk for k < κ1−1 so that they explicitly include h and its Lie
derivatives along f in their components. Perform this operation for each k while ensuring
the components of Hk are subsumed by the components of Hk−1, i.e., Hk = Pk−1 ◦Hk−1,

up to a reordering. We say that the sequence H0, . . . , Hκ1 is adapted to L subordinate
to the regular zero dynamics manifold Z(κ1). Observe that Z(κ1) ⊇ N since h|N = 0 by
construction. It is trivially the case that Z(κ1) ⊂ Z(κ1+1) = π(U). The final fact that we
simply state is that the only differentials that vanish on L at index κ1 − 1 are those that
are linearly dependent on the differentials of h. That is,

ann(Tp0L) ∩ spanR{dH1
κ1−1 . . . , dH

ℓκ1−1
κ1−1 } ⊆ ann(Tp0L(κ1)),

where L(κ1) is the lift of Z(κ1). This completes the base case. Suppose, by way of induction,
that, for some 2 ≤ k ≤ κ1,

(H.1) Z(k) is a regular zero dynamics manifold of type (ρk−1, (κ1, . . . , κρk−1)) at x0 satisfying

Z(k+1) ⊇ Z(k) ⊇ N,

(H.2) there exists a smooth function h : U → Rρk−1 so that system (4.1) with output h
yields a vector relative degree (κ1, . . . , κρk−1) at x0 and the zero dynamics coincide
locally with Z(k),
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(H.3) all maps H0, . . . , Hn−n∗ are adapted to L subordinate to the regular zero dynamics
manifold Z(k) using output h and,

(H.4) denoting L(k) as the lift of Z(k) we have that2

ann(Tp0L) ∩ spanR

{︂
dH1

k−1, . . . , dH
ℓk−1
k−1

}︂
⊆ ann(Tp0L(k)), (4.17)

The goal of this induction is to construct new regular zero dynamics manifold Z(k−1) that
satisfies

(C.1) Z(k−1) is a regular zero dynamics manifold of type (ρk−2, (κ1, . . . , κρk−2)) at x0 satis-
fying

Z(k) ⊇ Z(k−1) ⊇ N,

(C.2) there exists a smooth function h′ : U → Rρk−2 so that system (4.1) with output h′

yields a vector relative degree (κ1, . . . , κρk−2) at x0 and the zero dynamics coincide
locally with Z(k−1),

(C.3) all maps H0, . . . , Hn−n∗ are adapted to L subordinate to the regular zero dynamics
manifold Z(k−1) using output h′ and,

(C.4) denoting L(k−1) as the lift of Z(k−1) we have that

ann(Tp0L) ∩ spanR

{︂
dH1

k−2, . . . , dH
ℓk−2
k−2

}︂
⊆ ann(Tp0L(k−1)), (4.18)

Consider the map Hk−2 whose component differentials generate the differential ideal ⟨I(k−2),

dt⟩(∞). By (H.3) of the inductive hypothesis, Hk−2 takes the form

Hk−2 = (

other components⏟ ⏞⏞ ⏟
H1

k−2, . . . , . . . , H
ρk−2−ρk−1
k−2 ,

vanish on Z(k)⏟ ⏞⏞ ⏟
h1, . . . ,L

κρk−1 −k+1
f hρk−1 , t⏞ ⏟⏟ ⏞

vanish on L

, . . . , . . . , . . .⏞ ⏟⏟ ⏞
not constant on L

).

There are now two cases. If ρk−2 = ρk−1, then the number of “other components” that
vanish on L is zero. This is because, due to the vector relative degree of h, the ρk−1 new

2This condition ensures that Z(k) ⊇ N is the smallest possible regular zero dynamics manifold of type
(ρ, κ) where κ ≥ k.
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components Lκ1−k+1
f h1, . . . ,L

κρk−1 −k+1
f hρk−1 , appear in Hk−2. In this case, set Z(k−1) = Z(k)

which remains a regular zero dynamics manifold of type (ρk−2, (κ1, . . . , κρk−2)) establish-
ing (C.1). The rest of the inductive properties (C.2)–(C.4) follow directly from (H.2)–(H.4)
by leaving the output h′ := h unchanged.

Alternatively, ρk−2 > ρk−1. In this case, there exists precisely µ := ρk−2 − ρk−1 “new”
components whose differentials annihilate tangent vectors to L: these are the first com-
ponents that are differentially indepedent of the Lie derivatives of h yet vanish on L.
Take these new component functions, up to a reordering, to be the leading components
H1

k−2, . . . , H
µ
k−2, and define the output

q := (H1
k−2, . . . , H

µ
k−2).

We now show that the system (4.2) with candidate output h′ := (h, q) yields a well-defined
vector relative degree of (κ1, . . . , κρk−2) at p0. Since the qi are component functions of Hk−2

we have by the characteristic property (4.10) that

⟨dq1, . . . , dqµ⟩ ⊆ ⟨I(k−2), dt⟩(∞).

We also know from (H.2) of the inductive hypothesis that hi yields a relative degree of
κi so the jth Lie derivative of h along f yields a relative degree as well of κi − j, for
0 ≤ j ≤ κi − 1. Invoke Lemma 2.2.14, subject to Assumptions 2.2.3 and 2.2.11, to find

⟨Lκ1−k+1
f dh1, . . . ,L

κρk−1 −k+1
f dhρk−1⟩ ⊆ ⟨I(k−2), dt⟩(∞)

.

Combine these data to find

⟨dq1, . . . , dqµ,Lκ1−k+1
f dh1, . . . ,L

κρk−1 −k+1
f dhρk−1⟩ ⊆ ⟨I(k−2), dt⟩(∞)

. (4.19)

Putting that aside, invoke Lemma 2.2.14 once again to find

spanR

{︃
Lκ1−k+1

f dh1
p0 , . . . ,L

κρk−1 −k+1
f dhρk−1

p0

}︃
∩ spanR{I(k−1)

p0 , dtp0} = {0}.

By (H.4) of the inductive hypothesis,

spanR{dq1
p0 . . . , dq

µ
p0} ∩ ⟨dH

1
k−1, . . . , dH

ℓk−1
k−1 ⟩ = {0},
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since the dqi ∈ ann(Tp0L) but dqi /∈ ann(Tp0L(k)). Combine these data to conjecture that

spanR

{︃
dq1

p0 , . . . , dq
µ
p0 ,L

κ1−k+1
f dh1

p0 , . . . ,L
κρk−1 −k+1
f dhρk−1

p0

}︃
has a trivial intersection with span{I(k−1)

p0 , dtp0}. Suppose, in search of a contradiction,
there is a linear combination

µ∑︂
i=1

ai dqi
p0 +

ρk−1∑︂
i=1

bi L
κi−k+1
f dhi

p0 ∈ spanR

{︂
I(k−1)

p0 , dtp0

}︂
.

If there is an ai ̸= 0, then this form does not live in ann(Tp0L(k)) which contradicts (H.4)
of the inductive hypothesis. Therefore ai = 0 for all 1 ≤ i ≤ µ. We now show that bi = 0
for all 1 ≤ i ≤ ρk−1. Suppose

ρk−1∑︂
i=1

bi L
κi−k+1
f dhi

p0 ∈ spanR{I(k−1)
p0 , dtp0},

Then, by Lemma 2.2.14, the system (4.2) with output

(Lκ1−k+1
f h1, . . . ,L

κρk−1 −k+1
f hρk−1)

does not yield a uniform vector relative degree at p0. This immediately contradicts the
well-defined vector relative degree for h. Therefore bi = 0 for all 1 ≤ i ≤ ρk−1. As a result,
conclude that system (4.2) with output h′ = (h, q) yields a vector relative degree at p0.

The vector relative degree must be (κ1, . . . , κρk−2). This demonstrates (C.2). Define the
local regular zero dynamics manifold

Z(k−1) := {x ∈ Z(k) : q(ι(x)) = · · · = L
κρk−2 −1
f q(ι(x)) = 0},

of type (ρk−2, (κ1, . . . , κρk−2)). By construction Z(k−1) ⊂ Z(k) and, since q|N = 0, Z(k−1) ⊇ N.
This establishes (C.1). To establish (C.3), we adapt, exactly as in the base case, the maps
H0, . . . , Hn−n∗ to L subordinate to Z(k−1) so that all the Lie derivatives of h′ = (h, q)
appear explicitly. It remains to show (C.4). First observe that the components of

Hk−2 = (
other components⏟ ⏞⏞ ⏟
q1, . . . , . . . , qµ,

vanish on Z(k)⏟ ⏞⏞ ⏟
h1, . . . ,L

κρk−1 −k+1
f hρk−1 , t⏞ ⏟⏟ ⏞

vanish on L,Z(k−1)

, . . . , . . . , . . .⏞ ⏟⏟ ⏞
not constant on L

),
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that vanish on L constitute a component of h, a Lie derivative of h, or q. It follows that,
using the characteristic property 4.10,

ann(TpL) ∩ ⟨I(k−2), dt⟩(∞) ⊆ ann(TpL(k−1)).

Use (Inv) with Proposition 4.2.2 to conclude that (C.4) holds. This completes the induc-
tion.

The inductive algorithm proceeds until the regular zero dynamics manifold Z(1) of type
(ρ0, (κ1, . . . , κρ0)) is produced at step k = 2. By Lemma 4.2.1, Z(1) is an n∗-dimensional
submanifold with codimension n − n∗. It contains the n∗-dimensional submanifold N and
so Z(1) = N is a regular zero dynamics manifold of type (ρ0, (κ1, . . . , κρ0)). Theorem 4.3.2
implies that N is transverse feedback linearizable at x0. A by-product of this algorithm is
that the final output h is the transverse output.

Simplifying the Algorithm

The algorithm used in the proof inspires a shortened, but equivalent, algorithm that pro-
duces a transverse output under the conditions for TFL — (Con), (Inv), (Dim). The
procedure is presented in Algorithm 1. One difference from the proof is that integration
only happens at iterations where ρk−1 differs from ρk. These are indices corresponding to the
distinct transverse controllability indices. Another difference is the lack of re-adaptation
of all the maps H0, . . . , Hn−n∗ throughout the algorithm. In fact, the vast majority of the
maps Hk are not constructed. This is not an oversight. The adaptation process is embed-
ded in Line 13 where Hk−1 is adapted to have the known output h and its Lie derivatives
appear explicitly. This alongside the fact that the algorithm runs from larger to smaller
indices ensure an appropriately adapted basis is constructed.

4.4 Illustrative Examples

In this section we explore a number of examples that illustrate the evaluation of the con-
ditions for transverse feedback linearization, and the algorithm proposed in Section (4.3).
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Algorithm 1 The Transverse Feedback Linearization algorithm.
1: procedure TFL Procedure(f, g,N, x0, u∗)
2: Compute ρ0(p0), . . . , ρn−n∗(p0) ▷ as in (4.4)
3: Compute κ1(p0), . . . , κm(p0) ▷ as in (4.5)
4: Z(κ1+1) ← Rn

5: Initialize h← ( )
6: for k ← κ1, . . . , 1 do
7: if ρk−1 = ρk then
8: Z(k) ← Z(k+1)

9: continue
10: end if
11: µ← ρk−1 − ρk

12: Construct Hk−1 to satisfy (4.10) ▷ integrate ⟨I(k−1), dt⟩(∞)

13: Rewrite Hk−1, while preserving (4.10), so that

Hk−1 = (H1
k−1, . . . , H

µ
k−1, h

1, . . . , . . . ,L
κρk

−k

f hρk , t⏞ ⏟⏟ ⏞
vanish on L

, . . .).

14: h← (h,H1
k−1, . . . , H

µ
k−1)

15: Z(k) ← zero dynamics of h.
16: end for
17: end procedure

Academic Example

Consider the nonlinear, control-affine system

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2(t)
x1(t)

x3(t)x4(t)
0

x6(t)
−x3(t)x5(t) + x6(t) + x7(t)

x5(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

x3(t)
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u1(t) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2(t)
0
0
0

−x1(t)
x1(t)
x1(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2(t) (4.20)
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and the closed, embedded 2-dimensional submanifold

N :=
{︂
x ∈ R7 : (x1)2 + (x2)2 − x3 = x4 = x5 = x6 = x7 = 0

}︂
, (4.21)

rendered controlled-invariant by u∗(x) = 0. Fix a point x0 = (2, 0, 4, 0, 0, 0, 0) ∈ N. In
light of Theorem 1.3.1, if (4.20) is transverse feedback linearizable with respect to N at
x0, then there exists either a single scalar function yielding a relative degree 5 at x0 that
vanishes on N or two scalar functions yielding a vector relative degree (κ1, 5−κ1) at x0 that
simultaneously vanish on N. Natural candidates can be picked out of the functions that
define N since they satisfy (1) of Theorem 1.3.1. Unfortunately, all of the scalar functions
used to define N in (4.21) either yield a relative degree of 1 at x0 or do not yield a relative
degree at all. As a result, we cannot directly use them to form an output that satisfies (2)
of Theorem 1.3.1.

However, as we now show using our dual TFL conditions, the transverse feedback
linearization problem is solvable at x0 ∈ N. The ideals I(i) in (2.13) for system (4.20) are

I(0) = ⟨dx1, dx2, dx3, dx4, dx5, dx6, dx7⟩

I(1) = ⟨x1 dx1 + x2 dx7, dx2 − dx7, dx3 − x3 dx4, dx5 + dx7, dx6 − dx7⟩

I(2) = ⟨β1, β2⟩,

I(3) = ⟨0⟩,

where β1, β2 ∈ Γ∞(T∗M) are smooth one-forms whose expressions we omit for clarity.
The derived flag (2.13) terminates at I(3). Immediately we see that the controllability
condition (Con) holds since

⟨I(n−n∗), dt⟩ = ⟨I(5), dt⟩ = ⟨I(3), dt⟩ = ⟨dt⟩.

Next we check the constant dimensionality condition (Dim). Observe that, for any p ∈ L
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in a sufficiently small open set containing p0,

ann(TpL) ∩ spanR{I(0)
p , dtp} = ann(TpL),

ann(TpL) ∩ spanR{I(1)
p , dtp} = spanR{dx6 − dx7, dx5 + dx7,

−2x1 dx1 − 2x2 dx2 + dx3 − x3 dx4 − 2x2 dx7dt}.

ann(TpL) ∩ spanR{I(2)
p , dtp} = spanR{dx5 + dx7, dt}.

ann(TpL) ∩ spanR{I(3)
p , dtp} = spanR{dt}.

(4.22)

Thus the constant dimensionality condition (Dim) holds. It remains to check the involu-
tivity condition (Inv) holds. Note that the ideals ⟨I(0), dt⟩, ⟨I(1), dt⟩ and ⟨I(3), dt⟩ are all
differential ideals. Therefore, it suffices to check that

ann(TpL) ∩ spanR{I(2)
p , dtp} ⊆ ⟨I(2), dt⟩(∞)

p .

Using Maple, we directly compute the derived flag for ⟨I(2), dt⟩ and verify it converges to

⟨I(2), dt⟩(∞) = ⟨dx5 + dx7, dt⟩.

Comparing this with the expression for ann(TpL) ∩ span{I(2)
p , dtp} above, we see that

the involutivity condition (Inv) holds. As a result, the transverse feedback linearization
problem is solvable for (4.20) with respect to N at x0, and we can execute Algorithm 1.

We start by computing the indices ρ and κ as required by Line 2. Using (4.22), deduce

ρ0(p0) = 2, ρ1(p0) = 2, ρ2(p0) = 1, ρ3(p0) = 0,

and,
κ1(p0) = 3, κ2(p0) = 2.

Let
U :=

{︂
(t, u, x) ∈ M : x1 > 0, x3 > −3

}︂
and set Z(κ1+1) = Z(4) := π(U). The ideals are simply, finitely, non-degenerately generated
on U and it can be verified that the conditions (Dim) and (Inv) hold over U.

The iteration begins at k = κ1 = 3. Observe that ρ2 > ρ3. It follows that we expect
to find µ = ρ2 − ρ3 = 1 new scalar output that will yield a relative degree of 3 at p0 and
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is constant on L. We proceed by integrating the differential ideal ⟨I(2), dt⟩(∞) to find the
map H2 = (x5 + x7, t). Right away we see that the new component that is constant (i.e.
vanishes) on L is the first component and so we define our candidate partial transverse
output h := x5 + x7. We then define the local regular zero dynamics manifold Z(3) to be
the zero dynamics of system (4.20) with output h. Explicitly,

Z(3) :=
{︂
x ∈ Rn : x5 + x7 = x5 + x6 = −x3 x5 + 2x6 + x7 = 0

}︂
.

The next iteration of the algorithm looks at index k = 2. Here, we again note that
ρ1 > ρ2 and µ = ρ1 − ρ2 = 1. We expect to see one new scalar output with relative degree
2 at p0 that is constant on L. Integrate ⟨I(1), dt⟩(∞) to find

H1 = (H1
1 , . . . , H

5
1 ) = (

h,Lf h⏟ ⏞⏞ ⏟
x5 + x7, x5 + x6,

1
2(x1)2 + x2 x7 − 2, x2, x3 e−x4 − 4, t),

where we highlight the fact that, as expected, the known output h and its Lie derivative
Lfh appear explicitly in the first two components. Unfortunately, it is not obvious (at first
glance) what the new scalar output is since none of the other components are constant on
L besides the trivial t component. However, Lemma 4.2.6 states that a rewriting for H1

where four components vanish on L is possible. The simplest strategy is to restrict H1 to L
and eliminate the effect of the coordinates algebraically. We perform this to find that the
algebraic combination of components of H1,

2H3
1 + (H4

1 )2 −H5
1 ,

vanish on L. Using this, rewrite H1 as

H1 = ((x1)2 + (x2)2 + 2x2 x7 − x3 e−x4
,

h,Lf h⏟ ⏞⏞ ⏟
x5 + x7, x5 + x6, t⏞ ⏟⏟ ⏞

vanish on L

, x2, x3 e−x4 − 4⏞ ⏟⏟ ⏞
not constant on L

).

Define the new candidate output h := (x5 + x7, H1
1 ) and the induced local, regular zero

dynamics manifold, shrinking U as necessary,

Z(2) :=
{︂
x ∈ Z(1) : H1

1 (x) = LfH
1
1 (x) = 0

}︂
.
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The final iteration of the algorithm at index k = 1 is skipped since ρ0 = ρ1. Set
Z(1) := Z(2). The algorithm asserts that Z(1) = N locally. The transverse output is

h(x) =
⎡⎣ x5 + x7

(x1)2 + (x2)2 + 2x2 x7 − x3 e−x4

⎤⎦ ,
and it is a regular matter to verify that the system (4.20) with output h yields a vector
relative degree of (3, 2) at x0 while locally vanishing on N.

Path Following for a Car

We now recall Example 1.3 where the objective was to design a control law that brings
the vehicle’s front axle towards a circle of radius R > 0 with a forward speed of 1. The
nonlinear control-affine system is,

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3(t) cos(x4(t))
x3(t) sin(x4(t))

x6(t)
x3(t)

ℓ
tan(x5(t))

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u1(t) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2(t), (4.23)

and we wish to make the controlled-invariant set,

N :=
{︂
x ∈ R6 : y1(x) = y2(x) = y3(x) = y4(x) = y5(x) = 0

}︂
,

locally attractive where,

y1(x) := (x1 + ℓ cos(x4))2 + (x2 + ℓ sin(x4))2 −R2,

y2(x) := x3 − 1,

y3(x) := x1 cos(x4) + x2 sin(x4),

y4(x) := ℓ cos(x5)− sin(x5)
(︂
x1 sin(x4)− x2 cos(x4)

)︂
,

y5(x) := x6.
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In Example 1.3, we noted that the point

x0 =
(︄
−ℓ cos arcsin ℓ

R
,R− ℓ sin arcsin ℓ

R
, 1, arcsin ℓ

R
,− arctan ℓ√

R2 − ℓ2
, 0
)︄
,

is in N and N is rendered controlled-invariant by state feedback u∗(x) = (0, 0). We aim to
transverse feedback linearize the dynamics (4.23) at x0 with N. First, we must check the
conditions for transverse feedback linearizability.

In a sufficiently small open set of p0 = (t, u∗(x0), x0), the annihilator of the tangent
space of L is,

ann(TpL) = spanR{dx1 + x2 dx4, dx2 − x1 dx4, dx3, dx5, dx6, dt}. (4.24)

We computed the derived flag (2.13) associated to the lift of the dynamics (4.23) in Ex-
ample 2.1, so it remains to compute the augmented ideals ⟨I(κ), dt⟩ and their differential
closures. They are

⟨I(0), dt⟩ = ⟨dx1, dx2, dx3, dx4, dx5, dt⟩,

⟨I(1), dt⟩ = ⟨dx1, dx2, dx3, dx4, dt⟩,

⟨I(2), dt⟩ = ⟨dx1, dx2, dt⟩,

⟨I(3), dt⟩ = ⟨dt⟩,

(4.25)

and
⟨I(0), dt⟩(∞) = ⟨dx1, dx2, dx3, dx4, dx5, dt⟩,

⟨I(1), dt⟩(∞) = ⟨dx1, dx2, dx3, dx4, dt⟩,

⟨I(2), dt⟩(∞) = ⟨dx1, dx2, dt⟩,

⟨I(3), dt⟩(∞) = ⟨dt⟩.

(4.26)

Equipped with these objects, we are now ready to verify the conditions for transverse
feedback linearizability at p0. The controllability condition (Con) asks that, at p0,

ann(Tp0L) ∩ spanR{I(4)
p0 , dtp0} = spanR{dtp0}.

Because spanR{I(4)
p0 , dtp0} ⊆ spanR{I(3)

p0 , dtp0} = spanR{dtp0}, the controllability condition
holds.
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Next we compute the intersection of (4.24) with the augmented ideals and use this
to compute the transverse controllability indices (4.5). Observe that, combining (4.24)
and (4.25), for all p ∈ L in a sufficiently small open set containing p0,

ann(TpL) ∩ spanR{I(0)
p , dtp} = ann(TpL),

ann(TpL) ∩ spanR{I(1)
p , dtp} = spanR{dx1

p + x2 dx4
p, dx2

p − x1 dx4
p, dx3

p, dtp},

ann(TpL) ∩ spanR{I(2)
p , dtp} = spanR{x1 dx1

p + x2 dx2
p, dtp},

ann(TpL) ∩ spanR{I(3)
p , dtp} = spanR{dtp},

(4.27)

As a result, the constant dimension condition (Dim) holds, and we have that

ρ0(p0) = 2, ρ1(p0) = 2, ρ2(p0) = 1, ρ3(p0) = 0,

as well as,
κ1(p0) = 2, κ2(p0) = 1.

Comparing (4.26) with (4.27), we also see that the involutivity condition (Inv) holds. We
therefore may proceed in finding the transverse output. The indices indicate that we must
find two scalar outputs that with system (4.23) yield a relative degree of three and two at
p0.

We have already presented the algorithm in detail as it applies to an academic example.
For this example, we now show a number of shortcuts implied by the intuition of the
algorithm that are useful in solving real problems by hand.

The iteration of the algorithm begins at k = κ1 = 3 where we have ρ2 > ρ3. It follows
that we expect to find µ = ρ2 − ρ3 = 1 new scalar output that yields a relative degree of
two at p0 and is constant on L. Importantly, the differential of this output must live in the
differential ideal

⟨I(2), dt⟩(∞) = ⟨dx1, dx2, dt⟩,

which is generated by exact one-forms. Since the output cannot be a function of time, we
expect that the scalar output we are searching for must take the form h1(x) = α(x1, x2).
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Looking at the constraints yi that define N, we observe that,

y1(x) = (x1 + ℓ cos(x4))2 + (x2 + ℓ sin(x4))2 −R2,

= (x1)2 + (x2)2 + 2 ℓ (x1 cos(x4) + x2 sin(x4))−R2 + ℓ2,

= (x1)2 + (x2)2 + 2 ℓ y2(x)−R2 + ℓ2.

On L, y2(x) = 0, so,
y1|L = (x1)2 + (x2)2 −R2 + ℓ2.

Given that y1|L = 0 by definition, we can consider the smooth extension α : M → R of
y1|L ,

α(x1, x2) = (x1)2 + (x2)2 −R2 + ℓ2.

Additionally, by construction, it satisfies the requirement,

dα ∈ ⟨dx1, dx2⟩ ⊆ ⟨I(2), dt⟩(∞)
.

Using α we can rewrite the generators for ⟨I(2), dt⟩(∞) as,

⟨I(2), dt⟩(∞) = ⟨dα, x2 dx1 − x1 dx2⟩.

Define the local regular zero dynamics manifold of system (4.23) with output h := α by,

Z(3) :=
{︂
x ∈ Rn : (x1)2 + (x2)2 −R2 + ℓ2 = x3

(︂
x1 cos(x4) + x2 sin(x4)

)︂
= L2

fα = 0
}︂
,

where

L2
fα = x3 x6

(︂
x1 cos(x4) + x2 sin(x4)

)︂
+ (x3)2

(︄
1 + x2 cos(x4)− x1 sin(x4)

ℓ
tan(x5)

)︄
.

The iteration of the algorithm proceeds at step k = κ1 = 2 where we have ρ1 > ρ2. It
follows that we expect to find µ = ρ1 − ρ2 = 1 new scalar output that yields a relative
degree of two at p0 and is constant on L. The differential of this output must live in the
differential ideal

⟨I(1), dt⟩(∞) = ⟨dx1, dx2, dx3, dx4, dt⟩,

which is generated by exact one-forms.
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By inspection, one integral of dx3 is x3 − 1 which is a function that is zero on L.
However, it is important that we ensure dx3 is differentially independent from the known
output h = α and its Lie derivatives. This is a key component of the proposed algorithm.
An equivalent condition is to ask that dx3

p /∈ ann(TpZ(3)) for all p ∈ Z(3). This works because
we know, by construction, that differentials of the known output h live in ann(TpZ(3)).

The condition holds. As a result, the candidate output

h(x) =
⎡⎣h1(x)
h2(x)

⎤⎦ :=
⎡⎣ α(x)
x3 − 1

⎤⎦ =
⎡⎣(x1)2 + (x2)2 −R2 + ℓ2

x3 − 1

⎤⎦
for system (4.23) yields a vector relative degree of (3, 2) at p0 and vanishes on L. Therefore
h is a local transverse output and solves the local transverse feedback linearization problem
for system (4.23) with respect to N at x0. In particular, define,

ξ1,3 := h1, ξ2,2 := h2,

ξ1,2 := Lfh
1, ξ2,1 := Lfh

2,

ξ1,1 := L2
fh

1.

(4.28)

Make any choice of differentially independent coordinate η1 to complete the state trans-
formation. For the feedback transformation, write⎛⎝u1

u2

⎞⎠ :=
⎛⎝Lg1L

2
fh

1 Lg2L
2
fh

1

Lg1Lfh
2 Lg2Lfh

2

⎞⎠−1 ⎡⎣−
⎛⎝L3

fh
1

L2
fh

2

⎞⎠+
⎛⎝v1

⋔

v2
⋔

⎞⎠⎤⎦ , (4.29)

where v1
⋔, v

2
⋔ are the new virtual inputs, both of which act transversal to the set N. It can

be verified that both (4.28) and (4.29) can be used on an open set of any point of N. The
size of this open set is entirely determined by the choice of η1.
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Chapter 5

Future Work and Open Problems

Chapter 4 established the purported goal of this thesis: an algorithmic procedure to find
the local transverse output (see Theorem 1.3.1) that solves the local transverse feedback
linearization problem (Problem 1.3.1). The algorithm — Algorithm 1 — amounts to iter-
atively constructing a sequence of adapted Cauchy problems whose solution produces the
required transverse output. Since state-space, exact feedback linearization is equivalent to
the local transverse feedback linearization problem with N = {x0}, the algorithm applies
just as well to the ubiquitous state-space, exact feedback linearization problem.

Equipped with an algorithm to compute a local transverse output, one might be
tempted to stitch together a “global” transverse output through the use of a partition
of unity; this in the hopes of solving a “global” transverse feedback linearization problem.
We will see in Section 5.1 that this is not possible in general, but a careful understanding
of the issues may yield progress to solving that problem.

Another interesting problem is whether the local transverse feedback linearization prob-
lem can be solved when full state-feedback cannot be employed, i.e. only an output is
available. In [39], the dual space was used to address the problem in the single-input case.
We discuss in Section 5.2 this problem and briefly discuss how Algorithm 1 may inform a
solution.
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5.1 Global Transverse Feedback Linearization

Consider the multi-input, nonlinear control system,

ẋ(t) = f(x(t)) +
m∑︂

i=1
gi(x(t))ui(t), (5.1)

where x(t) ∈ Rn, and let N ⊆ Rn be a closed, embedded n∗-dimensional submanifold of the
state-space. Suppose N is rendered controlled-invariant by input signal u∗(x). The global
transverse feedback linearization problem is as follows.

Problem 5.1.1 (Global Transverse Feedback Linearization (GTFL)). Find an open set U
containing N, and a feedback transformation (Φ, α, β) defined on U,

(i) The restriction of Φ to N is Φ|N : η ↦→ (η, 0), and

(ii) if we let (η, ξ) := Φ(x), then the nonlinear control system (1.4) is differentially equiv-
alent to,

η̇(t) = f(η(t), ξ(t)) +
m∥∑︂
i=1

g∥,i(η(t), ξ(t)) vi
∥ +

m⋔∑︂
i=1

g⋔,i(η(t), ξ(t)) vi
⋔,

ξ̇(t) = Aξ(t) +
m⋔∑︂
j=1

bj v
j
⋔(t),

(5.2)

where (A, b1, . . . , bm⋔) is in Brunovský normal form.

A necessary condition to solve Problem 5.1.1 is that there exists a transverse output
that yields a relative degree of n − n∗ at all points of N and vanishes on N. This is not
sufficient.

Conditions upon which Problem 5.1.1 is solvable for single-input systems were suggested
by Nielsen & Maggiore in [41, Theorem 4.4]. Their theorem shows that the vector field
conditions for transverse feedback linearization, i.e. conditions of Theorem 1.3.2, are suffi-
cient when N is parallelizable. These are only sufficient conditions, but, in principle, they
can be used to explicitly construct the transverse output that solves the global transverse

108



feedback linearization problem; albeit, the construction of the transverse output involves
a very involved computation of flows.

It is not difficult to show that orientability of N is a necessary condition for the sys-
tem (5.1) to be globally transverse feedback linearizable with respect to N.

Proposition 5.1.1. If system (5.1) is globally transverse feedback linearizable with respect
to N, then N is orientable.

Proof. Suppose system (5.1) is globally transverse feedback linearizable with respect to
N. Let U and Φ : U → N × Rn−n∗ be the open set and diffeomorphism that solves the
problem. The orientation of Rn induces an orientation on U. Define ξ : U ⊆ Rn → Rn−n∗

to be smooth function that satisfies Φ(p) = (η(p), ξ(p)) ∈ N×Rn−n∗
. By Problem 5.1.1 (i),

ξ|N = 0. Additionally, since Φ is a diffeomorphism, ξ has constant rank n−n∗. It follows that
N = ξ−1(0) is a regular level set of ξ, and, by [31, Proposition 15.23], N is orientable.

However, it turns out that we actually must impose a stronger condition on N: paral-
lelizability. This is to ensure that the feedback transformation is regular in the sense that
the controls vi act in linearly independent directions everywhere on N.

As of yet, it is not known under what conditions Problem 5.1.1 is solvable when m > 1
(multi-input), let alone how to construct the transverse output in that case. Recognizing
that it is certainly necessary to have a transverse output, one may be tempted to use the
methods of Chapter 4 to construct a candidate solution to Problem 5.1.1. Unfortunately,
the method used to construct the transverse output locally in Chapter 4 does not generalize
well here.

For one, it is taken that a differentially closed form is exact in order to construct the
smooth map Hk : M→ Rℓk that satisfies the characteristic property,

⟨dH1
k , . . . , dH

ℓk
k ⟩ = ⟨I(k), dt⟩(∞)

.

The components of Hk are formed by integrating the differentially closed generators of
⟨I(k), dt⟩(∞)

. It is not always true that a differentially closed form is exact, i.e. can be
integrated to form a smooth function. In particular, one would require that the open set
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U, where the form is differentially closed, have a trivial cohomology. In local transverse
feedback linearization, U can be taken to be a sufficiently small open ball which does have
a trivial cohomology. As the next example demonstrates, working locally may result in
solutions that cannot be extended to solve the global problem.

Example 5.1 (Failure to Extend Local Transverse Outputs) . Let x(t) ∈ R3. Con-
sider the nonlinear control system,

ẋ(t) =

⎛⎜⎜⎜⎝
x2(t)
−x1(t)
−1

2

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
x1(t) x3(t)
1−(x3(t))2

x2(t) x3(t)
1−(x3(t))2

1

⎞⎟⎟⎟⎠ u1(t) (5.3)

and suppose we want to globally transverse feedback linearize this system with respect
to the unit circle laying in the z = 0 plane; that is, the 1-dimensional submanifold N :=
S1 × {0} ⊆ R3. The augmented ideals ⟨I(κ), dt⟩ are given by,

⟨I(0), dt⟩ = ⟨dx1, dx2, dx3⟩,

⟨I(1), dt⟩ = ⟨dx1 − x1 x3

1− (x3)2 dx3, dx2 − x2 x3

1− (x3)2 dx3⟩,

⟨I(2), dt⟩ = ⟨dt⟩.

For any p ∈ L := {0} × R× N,

ann(TpL) ∩ spanR{I(0)
p , dtp} = ann(TpL),

ann(TpL) ∩ spanR{I(1)
p , dtp} = spanR{x1 dx1

p + x2 dx2
p, dtp},

ann(TpL) ∩ spanR{I(2)
p , dtp} = spanR{dtp}

The controllability condition (Con), involutivity condition (Inv) and constant dimension
condition (Dim) do hold for all p ∈ L. Suppose we wanted to find the transverse output
as described in Algorithm 1. In this case, there is only one input and, therefore, only one
scalar output to find, and its relative degree must be n− n∗ = 2 at every point of N. This
output’s differential lives in the differential ideal, ⟨I(1), dt⟩(∞)

. In local transverse feedback
linearization, we would use Lemma 4.2.4 which uses Frobenius’s Theorem to find exact
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generators for the differential ideal ⟨I(1), dt⟩(∞)
. Unfortunately, Frobenius’s Theorem only

finds exact generators for the differential ideal locally. Worse still, the adaptation process
of Lemma 4.2.6 can further restrict the open set and the resulting generators may not
always extend naturally to an open set containing L. Let us see how.

Consider the point x0 = (0, 1, 0) ∈ N and the lifted point p0 = (0, 1/2, 0, 1, 0) ∈ L. We
will use Frobenius’s Theorem to find exact generators for the differential ideal ⟨I(1), dt⟩(∞)

,

and then use these exact generators to define a smooth function H1 whose component
function’s differentials generate the ideal. The differential ideal is exactly generated by

⟨I(1), dt⟩(∞) =
⟨︄√︂

1− (x3)2 dx2 + x2 x3√︂
1− (x3)2

dx3,
1
x2 dx1 − x1

(x2)2 dx2
⟩︄
.

Clearly, this holds only on the convex, open set

U :=
{︂
(t, u, x) ∈ M : x2 > 0,−1 < x3 < 1

}︂
.

We can integrate these locally exact one-forms on U to find a smooth function

H1(x) :=
(︄
x2
√︂

1− (x3)2,
x1

x2

)︄
,

whose component function’s differentials generate the differential ideal.
The restriction H1|U∩L has constant rank 1 and, as a result, we may use Lemma 4.2.6 to

rewrite H1 to have one transverse component with respect to L. For instance, one solution
is,

H̃1(x) =
⎛⎝x2

√︂
1− (x3)2,

√︂
1− (x2)2(1− (x3)2)

x2
√︂

1− (x3)2
− x1

x2

⎞⎠ ,
where the second component is constant on U∩L. As a result, the local transverse feedback
linearization problem is solvable at x0 using the output

h(x) =

√︂
1− (x2)2(1− (x3)2)

x2
√︂

1− (x3)2
− x1

x2 .
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Unfortunately, this output cannot be extended onto a larger open set containing N. Instead
consider the smooth function

h(x) = (x1)2 + (x2)2 − 1− (x3)2.

This function vanishes on N, and, with system (5.3), yields a relative degree of 2 at every
point of N. ◀

Example 5.1 shows that the methods applied in Chapter 4 force us to work locally, and
the resulting output function may not extend naturally to solve the global problem. A
standard technique in smooth differential geometry is to take local solutions to a problem
and use the partition of unity to build a global solution. Suppose we found a finite open
cover {Ui} of N, and solved the local transverse feedback linearization problem on these
open sets. That is, we found a family of outputs hi : Ui → Rn−n∗ that with system (5.1)
yield the required relative degree on all points of Ui ∩ N. Is it possible to stitch these
outputs together using a partition of unity to form a transverse output that is defined on⋃︁

i Ui? This is not always possible, as the next example demonstrates, even when the global
transverse feedback linearization problem is solvable.

Example 5.2 (Stitching Local Transverse Outputs) . Consider the linear control sys-
tem

ẋ(t) =

⎛⎜⎜⎜⎝
x1(t)

0
−x2(t)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
1
1
1

⎞⎟⎟⎟⎠ u1(t), (5.4)

and suppose we want to globally transverse feedback linearize this system with respect to
the x1-axis,

N := {(x1, 0, 0) ∈ R3 : x1 ∈ R}.

Consider the open cover {U1,U2} of N given by

U1 := {x ∈ R3 : x1 < 1}, U2 := {x ∈ R3 : x1 > −1},
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and define the smooth functions

h1 : U1 → R, h2 : U2 → R

x ↦→ x2 − x3 x ↦→ ex3−x2 − 1

Both functions solve the local transverse feedback linearization problem in the open sets
they are defined on since they vanish on N, and yield the required relative degree of 2 at
every point of Ui ∩ N. In fact, both functions can be extended globally in the natural way
to solve the global transverse feedback linearization problem. However, it is not always the
case that we will be lucky to find functions that do extend naturally. We now show that a
partition of unity cannot be used to construct a global transverse output out of these local
transverse outputs.

Take any partition of unity λ1, λ2 : U1 ∪ U2 → R subordinate to the open cover U1 and
U2. Define

h(x) := λ1(x)h1(x) + λ2(x)h2(x).

Substituting our expression for h1 and h2 and using the partition of unity property find,

h(x) = ex3−x2 − 1 + λ1(x)
(︂
x2 − x3 − ex3−x2 + 1

)︂
.

Compute the exterior derivative and observe that, on N,

dh|U1∩U2∩N = (1− 2λ1) dx3 − (1− 2λ1) dx2.

Since λ1 is a bump function that varies from 0 to 1 over U1 ∩ U2, there exists a point on
U1 ∩ U2 ∩ N where dh vanishes. This contradicts the requirement that h yields a relative
degree at all points of N. ◀

The problem observed in Example 5.2 is a problem of orientation. Output h2 induces
a different orientation onto N than output h1. Flipping the sign of h2, or considering the
function ex2−x3 − 1, solves this issue, but a second, more insidious problem, arises.
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Example 5.3 (Stitching Local Transverse Outputs ctd.) . Again consider the linear
control system (5.4) and the open cover U1, U2. Define the smooth functions,

h1 : U1 → R, h2 : U2 → R

x ↦→ x2 − x3 x ↦→ exp(h1(x))− 1

Unlike in the last example, let us consider a class of partitions. Suppose λ1 : U1 ∪U2 → R
is a smooth transition function that satisfies,

λ1|U1\U2
= 1, λ1|U2\U1

= 0,

and is only a function of x1 on U1 ∩ U2. That is, dλ1|U1∩U2
= β(x1) dx1. Set λ2 := 1− λ1.

Together, λ1 and λ2 form a partition of unity subordinate to the open cover U1,U2. Define
the smooth function

h(x) := λ1(x)h1(x) + λ2(x)h2(x).

Substituting our expressions for λi and h2(x) find that, on U1 ∩ U2,

h(x) = exp(h1(x)) + 1 + (h1(x)− exp(h1(x)) + 1)λ1(x).

Let us compute the Lie derivative of h along the control vector field g(x) = ∂/∂x1+∂/∂x2+
∂/∂x3 for system (5.4). Observe that,

Lgh = dh(g),

= exp(h1) dh1(g) + λ1 (1− exp(h1))dh1(g) + (h1 − exp(h1) + 1) dλ1(g).

Since h1 yields a relative degree of 2, we know that Lgh
1 = dh1(g) = 0. As a result,

Lgh = (h1 − exp(h1) + 1) dλ1(g).

Using the fact that dλ1|U1∩U2
= β(x1) dx1, we have

Lgh = (h1 − exp(h1) + 1) β(x1) dx1(g) = (h1 − exp(h1) + 1) β(x1).

This is non-zero in an open set containing N. However, we require that the differential
dh annihilate the control vector field in order to yield a well-defined relative degree of 2.
Therefore, system (5.4) with output h does not yield the required relative degree of 2 and
fails to solve the global transverse feedback linearization problem. ◀
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Example 5.3 illustrates that the partitions of unity themselves must yield a relative
degree that is greater than or equal to the relative degree of the desired output. Other-
wise, the partition of unity will destroy the relative degree property satisfied by the local
transverse outputs.

To summarize, we have discussed a range of problems that appear in the attempt to
solve the global transverse feedback linearization problem. In general, the problem is only
solvable for parallelizable manifolds N. Solvability conditions are unknown in the multi-
input case, let alone the algorithm to compute the required feedback transformation.

Even if we relaxed the problem to ask us to find a global transverse output, the tech-
niques used in Chapter 4 force us to work locally. We have seen that these local solutions
do not always extend to be a global transverse output. Worse still, even when the local
transverse feedback linearization problem is solved on every open set of a finite open cover
of N, a partition of unity can fail to stitch these solutions together; this is either because
the stitched solution fails to induce a consistent orientation, or because the relative degree
property is destroyed. Further research in this area will require a careful, methodical con-
struction that keeps track of the decided orientation of N, and ensures the relative degree
is preserved.

5.2 Transverse Feedback Linearization with Partial
Information

Consider the multi-input system with output,

ẋ(t) = f(x(t)) +
m∑︂

i=1
gi(x(t))ui(t)

y(t) = h(x(t)).
(5.5)

Assuming that only the output y is measurable, if h is not a diffeomorphism, then we cannot
use the entire state x to perform feedback linearization. In particular, the transversal states
ξ = ϕ(x) and virtual control v = α(x) + β(x)u may depend on the entire state x and, of
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q̇ = Aq +B(α(x) + β(x)u)

(5.5) λ(y)u q

Figure 5.1: When only the measurable outputs are available for feedback, the system can still be
put in a form that is almost transverse feedback linearized with respect to a controlled-invariant
set N by finding a clever state transformation.

course, most (if not all) transversal states must be known in order to correctly place poles
of the resulting linearized system.

This problem is important for economical and technological reasons. It is often the
case that the states themselves are not observed but outputs, i.e. functions of states, that
are. These are a function of the available sensors and may be restricted due to constraints
in the design of the system. Like in Chapter 4, this problem can be cast as a problem of
finding a transverse output.

Problem 5.2.1 (Transverse Feedback Linearization with Partial Information). Given sys-
tem (5.5) find a transverse output q : Rn → Rρ0 that can be written as q = λ ◦ h where
q : Rp → Rρ0 is a smooth function.

The equivalence perspective on this problem is depicted in Figure 5.1. Unlike Fig-
ure 1.5, no feedback transformation is performed, but the transversal part of the state
transformation must be a function of the output y. Currently the result is only established
in its single-output formulation [39]. Given the observable outputs h = (h1, . . . , hℓ) define
W as the distribution that satisfies,

ann(Γ∞( W)) = ⟨dh1, . . . , dhℓ⟩.

Then we have the following theorem, proven in [39], that solves Problem 5.2.1.

Theorem 5.2.1 ([39, Theorem 5.3]). Suppose that inv(G(n−n⋆−2))+ W is regular at x0 ∈ N
and suppose m = 1. Then Problem 5.2.1 is solvable at x0 if and only if
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(a) Tx0N⊕ G(n−n∗−1)
x0 = Tx0Rn and,

(b) there exists an open neighbourhood U of x0 ∈ Rn so that, for all x ∈ U ∩ N,

dim
(︂
TxN⊕ G(n−n⋆−2)

x

)︂
= dim

(︂
TxN⊕ inv( G(n−n⋆−2) + W)x

)︂
.

The multi-input result is not known. However, the results of this thesis provide useful
information for those who endeavour to resolve this. Turning to the algorithm for transverse
feedback linearization in Algorithm 1, observe that a necessary condition is that the “new”
components of the transverse output computed in Line 13 must have differentials that live
in the differential ideal ⟨dh1, . . . , dhℓ⟩. Unfortunately, it is possible that choices made in
previous steps of the algorithm can obstruct the ability to find such components in later
steps. There is no obvious resolution to this problem. A likely path to success may hinge
on specially constructing the regular zero dynamics manifolds in such a way so that the
future steps of the algorithm proceed successfully while pulling transverse outputs from
smooth functions of the hi.

A simpler problem asks that the transverse output be observable: informally, the trans-
verse output must be a smooth function combination of the measurable outputs and their
Lie derivatives with respect to f. The space of observable states is characterized by the
minimal codistribution O that is invariant under f, g1, . . . , gm and contains the measur-
able outputs dhi [27]. Suppose O is associated with a simply, finitely generated, differential
ideal,

O = ⟨db1, . . . , dbr⟩.

It is a necessary condition that

ann(TpL) ∩ spanR

{︂
I(κ)

p , dtp
}︂
⊆ Op,

since Line 13 of Algorithm 1 can be modified to ensure the transverse components come
from the differential ideal O. Unfortunately, this doesn’t solve the original problem since
it is possible for the new components to be Lie derivatives of the measureable output and
not the measureable output itself.
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Appendix A

Elements of Differential Geometry

Critical to the discussion of transverse feedback linearization is the notion of a surface.
The particular object we concern ourselves with is that of a manifold, which is a sort
of generalization of a surface and is the fundamental concern of the topic of differential
geometry.

A.1 Submanifolds of Euclidean Space

Before diving into the more abstract topic of manifolds, we first build on the familiar
geometry found in Rn. The tools we build generalize in a natural way to the more abstract
smooth manifold structure.

Definition A.1.1 (Smooth Submanifold of Rn) . Let 0 ≤ m < n be integers. A subset
M ⊂ Rn is called an (smooth) m-dimensional embedded submanifold of Rn if for every
p ∈ M there exists an open set U ⊆ Rn containing p in Rn, an open subset V of Rm and a
diffeomorphism φ : U ∩M → V. The pair U ∩M, φ is called a chart.

This definition says, in effect, that M is an m-dimensional embedded submanifold if
locally, near every point p ∈ M, M looks like an open subset of Rm. A submanifold in this
thesis always refers to an embedded submanifold of some Euclidean space. Another way
to construct submanifolds is through the pre-image of smooth functions. Let U be an open
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set of Rn and let H : U→ Rk be a smooth map. The function H is said to be a submersion
at p ∈ U if the linear map DH|p : Rn → Rk is onto (has rank k). If H is a submersion at
every point p ∈ U then H is called a submersion.

Definition A.1.2 (Regular Values) . A point y ∈ Rk is called a regular value of H :
U→ Rk if H is a submersion at every point p ∈ H−1(y).

The next theorem ties the notion of regular values to Definition A.1.1.

Theorem A.1.3 ([31, Corollary 5.14]). Let H : U→ Rk and m := n− k. If y is a regular
value of H then the set H−1(y) is an m-dimensional embedded submanifold.

Many interesting examples of manifolds arise as the pre-images of submersions. This is
not an accident since, as the next result states, locally, every submanifold arises this way.

Theorem A.1.4 ([31, Proposition 5.16]). Let M be an m-dimensional submanifold of Rn

and let k := n − m. For every p ∈ M there exists a neighbourhood U of p in Rn and a
submersion H : U→ Rk so that U ∩M equals H−1(0).

Remark A.1.5. Take M = Rn and consider the nonlinear control system,

ẋ(t) = f(x(t)) +
m∑︂

i=1
g(x(t))ui(t), (A.1)

where x(t) ∈ M. Let N ⊂ M be a closed, embedded n∗-dimensional submanifold containing
a point x0 ∈ N. In this thesis, the problem of finding a transverse output for N amounts
to finding a submersion H : U ⊆ M → Rn−n∗

, where the open set U contains x0, so that,
upon an appropriate choice of feedback, the dynamics of ξ(t) := H(x(t)) are linear and
controllable.

A.2 The Tangent Space

To every point on a surface in R3 we can naturally attach a tangent plane; this notion
allows us to characterize the directions one may travel along the surface. This notion can
be generalized to submanifolds. We start by fixing some notation.
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Definition A.2.1 (Geometric Tangent Space) . Let p ∈ Rn. The (geometric) tangent
space to Rn at p is the set of pairs

TpRn := {(p, v) : v ∈ Rn} .

The identification TpRn ≃ Rn, (p, v) ↦→ v makes TpRn a n-dimensional real vector
space. Specifically, for v1, v2 ∈ Rn, λ ∈ R, the vector space operations on TpRn are defined
as

(p, v1) + (p, v2) := (p, v1 + v2), λ(p, v1) := (p, λv1).

Next we give an intuitive definition of the tangent space to a submanifold. It is not the
most general definition because it leverages the fact that M sits inside Rn.

Definition A.2.2 . Let M be an m-dimensional submanifold of Rn, let p ∈ M and let (U, φ)
be a coordinate chart with p ∈ U. The tangent space to M at p, denoted TpM, is the image
of the linear map

Dφ−1
⃓⃓⃓
φ(p)

: Tφ(p)Rm → TpRn.

In other words, w ∈ TpRn is in TpM if, and only if w = Dφ−1|qv for some v ∈ Tφ(p)Rm.

Since φ is a diffeomorphism onto its image, Dφ−1|q is one-to-one, and so TpM is an m-
dimensional subspace of TpRn.

One problem with Definition A.2.2 is that it appears to depend on the coordinate chart
(U, φ). This is not the case and it is easy to show that if (V, ϕ) is another coordinate chart
with p ∈ V, then Im Dϕ−1|ϕ(p) = Im Dφ−1|φ(p).

An equivalent definiton of TpM can be given using the submersion from Theorem A.1.4.
Let H : U→ Rk be the submersion whose existence is asserted by Theorem A.1.4 and where
U is an open subset of Rn containing p and H(p) = 0. Since H is a submersion at all points
of U∩M, the map DH|p : TpRn → T0Rk is onto and therefore its kernel has dimension m.
It turns out that we can define TpM by

TpM = Ker DH|p .
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It is possible to show that this definition is also independent of the particular submersion
H. With these ideas in place, we can define the differential of a map between manifolds.
Let M be a submanifold of Rn, let N be a submanifold of Rr, and let H : M → N be
a smooth map. By definition there exists an open set U of M in Rn and a smooth map
H̃ : U→ Rr extending H. We define, for each p ∈M,

DH|p : TpM→ TH(p)N

to be the restriction of DH̃|p : TpRn → TH̃(p)Rr to TpM. It can be shown that this map is
independent of the chosen extension.

Next we characterize tangent spaces in a way that generalizes to the case where there
is no ambient Euclidean space. Let C∞(p) denote the space of maps that are smooth in
an open set containing p ∈ M. Suppose that (p, v) ∈ TpRn, and let H ∈ C∞(p). Then we
can associate to v a linear map Lv : C∞(p)→ R defined as

LvH(p) =
n∑︂

i=1
vi ∂H

∂xi

⃓⃓⃓⃓
⃓
p

where vi is the i-th component of v. This map is just the directional derivative of H at p
in the direction of v. The essential properties of this directional derivative are captured in
the following definition.

Definition A.2.3 (Derivations) . A derivation at a point p ∈ Rn is an operator Xp :
C∞(p)→ R that satisfies, for all α, β ∈ R and G,H ∈ C∞(p),

(i) Linearity over R: Xp(αG+ βH) = αXp(G) + βXp(H) and,

(ii) Leibniz Rule: Xp(GH) = Xp(G)H(p) +G(p)Xp(H).

The set of all derivations at a point p ∈ Rn can be given a (real) vector space structure.
Specifically, for derivations X1, X2 at p and λ ∈ R, the vector space operations are defined,
for H ∈ C∞(p), as

(X1 +X2)(H) := X1(H) +X2(H), (λX1)(H) := λX1(H).
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It can be shown [31, Proposition 3.2] that this vector space is isomorphic to the vector
space TpRn from Definition A.2.1. Indeed, the isomorphism is the map which takes v to
its directional derivative Lv. Thus, with an abuse of notation, we also let the symbol TpRn

denote the vector space of derivations at p and write the canonical basis for this vector
space as {∂/∂x1, . . . , ∂/∂xn}. With this in place we give our final, most general, definition
of the tangent space to a point on a manifold.

Definition A.2.4 (Abstract Tangent Space) . Let M be an m-dimensional submanifold
of Rn. A linear map Xp : C∞(M) → R is called a derivation at p if it satisfies, for all
G,H ∈ C∞(M),

Xp(GH) = Xp(G)H(p) +G(p)Xp(H).

The set of all derivations at p is the tangent space to M at p, denoted TpM. An element of
TpM is called a tangent vector at p.

A.3 Vector Bundles and Distributions

We have now seen how a vector space — the tangent space, which captures the notion of
“tangency” — can be attached to any point p of a smooth manifold M. This generalized
the idea of a tangent plane to any fixed point on a surface in R3. It turns out that we
can bundle together these vector spaces with the manifold M and endow this space with
a smooth manifold structure. The structure views this space locally as a product between
M and Rm. In this section, we review this notion.

Recall that a topological space E is a set equipped with a topology B which consists of all
sets which are classified as “open” on E. The topology is closed under possibly uncountably
infinite union and under finite intersections. A map is between topological spaces is said
to be continuous if the pre-image of any open set in the codomain is open in the domain.
A homeomorphism is a continuous bijection with a continuous inverse. Finally, any open
subset V ⊆ E of a topological space can be endowed a natural topology, known as the
subspace topology, which consists of open sets of the form V ∩ R where R is open in E.

Equipped with this knowledge of topology, we can define a smooth vector bundle.
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Definition A.3.1 ((Smooth) Vector Bundle) . Let M be an m-dimensional submani-
fold of Rn. A (smooth) vector bundle over M (of rank k) is a smooth manifold E together
with a surjective smooth map π : E→ M so that,

(i) for each p ∈ M, the fiber Ep := π−1(p) is endowed with a k-dimensional (real) vector
space structure, and

(ii) for each p ∈ M, there exists an open set U ⊆ M containing p and a diffeomorphism
ϕ : π−1(U)→ U× Rk that satisfies,

• if p : U× Rk → U is the standard projection then p ◦ ϕ = π|U , and

• for each q ∈ U, the restriction ϕ|Eq
is a vector space isomorphism.

Sometimes we will write a vector bundle as π : E → M. A common theme throughout
this thesis is the “smooth” assignment of vector subspaces of the vector spaces in the vector
bundle to points on the manifold. To define this notion of smoothness, we first establish
how to pick a smooth assignment of vectors to points on the manifold.

Definition A.3.2 (Smooth Sections of a Vector Bundle) . Let M be an m-di-
mensional submanifold of Rn and take π : E → M to be a vector bundle. A smooth
section of E is a smooth map X : M→ E between manifolds that satisfies π ◦X = idM .

The set of all smooth sections of a vector bundle E is denoted Γ∞(E). Given X1, X2 ∈
Γ∞(E) we can define addition by the smooth map,

(X1 +X2)(p) := X1(p) +X2(p), p ∈ M,

and scalar multiplication by,

(λX1)(p) := λX1(p), p ∈ M, λ ∈ R,

thereby endowing Γ∞(E) with a real vector space structure. Alternatively, Γ∞(E) can be
given a C∞(M)-module structure by defining scalar multiplication as,

(fX1)(p) := f(p)X1(p), p ∈ M, f ∈ C∞(M).
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It is, in general, not the case that a subspace of the smooth sections of a vector bundle can
be viewed as a vector bundle in its own right.

Definition A.3.3 (Generalized Subbundle of a Vector Bundle) . Let M be an m-
dimensional submanifold of Rn and let π : E → M be a vector bundle. A subset D ⊂ E is
a generalized subbundle of E if, for any fixed p ∈ M,

(i) the set Ep ∩ D is a vector subspace of Ep, and

(ii) there exists an open set U ⊆ M containing p and a family of smooth sections {Xα}
of E so that, for all q ∈ U,

Eq ∩ D = spanR {Xα(q)} .

The generalized subbundle is said to be locally generated and the {Xα} are called
local generators.

A generalized subbundle of E assigns to each point p ∈ M a vector subspace of Ep. The
converse is not true. Also observe that Definition A.3.3 (i) does not restrict the dimension
of the vector subspaces to be consistent (constant) over M.

Important to this thesis will be this consistency, which we describe as the notion of
regularity. It will often be required that the dimension of all the vector spaces assigned to
points on M are the same. The next definition incorporates this requirement.

Definition A.3.4 (Subbundle of a Vector Bundle) . Let M be an m-dimensional sub-
manifold of Rn and let π : E → M be a vector bundle. A generalized subbundle D ⊂ E is
a subbundle of E (of rank ℓ) if, for all p ∈ M,

dim(Ep ∩ D) = ℓ.

A related object found throughout the nonlinear control is the notion of a distribution.
In the literature, a distribution begins first with assigning vector subspaces to points on
the manifold. Given a vector bundle, a distribution D ⊂ E assigns, to every point p ∈ M,
a vector subspace of Ep. Clearly a distribution is, by itself, not a generalized subbundle.
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A smooth distribution is simply a distribution that is a generalized subbundle of the
tangent bundle TM, i.e. near every point there exists smooth sections that generate the
vector subspaces in a neighbourhood of the point. Like a generalized subbundle, we say
smooth distributions are locally generated. It is not difficult to see that a finite family of
smooth sections X1, . . . , Xℓ ∈ Γ∞(TM) that span a submodule of Γ∞(TM) can be used to
generate a smooth distribution (generalized subbundle).

A smooth and regular distribution is a subbundle of the tangent bundle. Such dis-
tributions are not only locally generated, but are locally, finitely generated. Unlike what
was discussed earlier, it is not the case that a finite family of smooth sections X1, . . . ,

Xℓ ∈ Γ∞(TM) can be used to generate a smooth and regular distribution (subbundle). On
the other hand, we need only impose that the Xi are linearly independent pointwise —
X1(p), . . . , Xℓ(p) ∈ Ep are linearly independent for all p ∈ M — to ensure that they gener-
ate a smooth and regular distribution. In this case, we say that the submodule generated
by X1, . . . , Xℓ ∈ Γ∞(TM) is locally, finitely, non-degenerately generated. Since a smooth
and regular distribution D is a subbundle, the set Γ∞(D) ⊆ Γ∞(TM) is a subspace that is
locally, finitely, non-degenerately generated.

A.4 The Space of Alternating Tensors

The dual space of TpM, called the cotangent space, takes a prominent role in this thesis.
Elements of the cotangent space consume vectors of the tangent space and produce a real
number.

Definition A.4.1 (Cotangent Space) . Let M be an m-dimensional submanifold of Rn

and let p ∈ M. The cotangent space to M at p is the dual vector space

T∗
pM := (TpM)∗ .

An element of T∗
pM is called a cotangent vector at p.

This structure can be further generalized to consider multi-input maps. A map ωp :
(TpM)k → R is called (0, k)-tensor at p if it is a linear function in each of its parameters
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assuming all others are fixed, i.e.,

ωp(v1, . . . , vℓ−1, αvℓ + βv′
ℓ, vℓ+1, . . . , vk) = αωp(v1, . . . , vℓ−1, vℓ, vℓ+1, . . . , vk)

+ β ωp(v1, . . . , vℓ−1, v
′
ℓ, vℓ+1, . . . , vk).

Some texts also call it a covariant k-tensor at p. Consider the set of all such covariant
k-tensors at p, denoted T (0,k)(TpM). This is a vector space over R if we define addition and
scalar multiplication, for ωp, βp ∈ T (0,k)(TpM), by,

(ωp + βp)(v1, . . . , vk) := ωp(v1, . . . , vk) + βp(v1, . . . , vk)

(αωp)(v1, . . . , vk) := αωp(v1, . . . , vk).

The space of (0, 0)-tensors at p is defined to be the field R and the space of (0, 1)-tensors at
p is the cotangent space T∗

pM. A (0, k)-tensor at p, ωp ∈ T (0,k)(TpM), is called alternating,
or an alternating (0, k)-tensor at p if its value changes sign whenever two arguments are
swapped:

ωp(v1, . . . , vi, . . . , vj, . . . , vk) = −ωp(v1, . . . , vj, . . . , vi, . . . , vk).

Alternating (0, k)-tensors are also called k-forms. The space of k-forms at p, denoted
Λk(TpM), is a vector subspace of T (0,k)(TpM).

Proposition A.4.2. The dimension of Λk(TpM), for k > m, where m is the dimension of
manifold M, is 0.

Proposition A.4.2 implies that the “largest” non-trivial form at a point p on an m-
dimensional manifold is an m-form. As a result, the space of all forms at p, denoted
Λ(TpM) is characterized by a finite, homogeneous, external direct sum of the individual
spaces Λk(TpM):

Λ(TpM) :=
n⨁︂

k=0
Λk(TpM).

where again Λ0(TpM) = R. This space can be given a graded algebra structure. First
we define a product between forms called a wedge product. In order to define it, recall
that if n ∈ N, then Sn denotes the symmetric group. Elements of Sn are bijections σ :
{1, . . . , n} → {1, . . . , n}. The parity of the bijection is denoted sgn(σ).
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Definition A.4.3 (The Wedge Product) . Let k, ℓ ∈ {1, . . . , m} and say ωp ∈ Λk(TpM)
and βp ∈ Λℓ(TpM). Then the wedge product ωp ∧ βp ∈ Λk+ℓ(TpM) is defined, for all
v1, . . . , vk+ℓ ∈ TpM, as

(ωp ∧ βp)(v1, . . . , vk+ℓ) = 1
k! ℓ!

∑︂
σ∈Sk+ℓ

sgn(σ)ωp(vσ(1), . . . , vσ(k)) βp(vσ(k+1), . . . , vσ(k+ℓ)).

The following proposition establishes the properties that allow the wedge product to
give a graded algebra structure to Λ(TpM).

Proposition A.4.4 ([31, Proposition 14.11]). Suppose ωp, ω
′
p ∈ Λk(TpM), βp, β

′
p ∈

Λℓ(TpM) and γ ∈ Λq(TpM). Then,

(a) Bilinearity: For α, α′ ∈ R, (αωp + α′ ω′
p) ∧ βp = α (ωp ∧ βp) + α′ (ω′

p ∧ βp),

(b) Associativity: ωp ∧ (βp ∧ γ) = (ωp ∧ βp) ∧ γ,

(c) Anticommutativity: ωp ∧ βp = (−1)kℓβp ∧ ωp.

The graded algebra Λ(TpM), is sometimes called the exterior algebra. A consequence of
Proposition A.4.4 is that a basis for each individual vector space Λk(TpM) can be obtained
directly from a basis for Λ1(TpM). In particular,

Proposition A.4.5. Let Λ1(TpM) = spanR{ω1
p, . . . , ω

n
p }. Then for k ∈ {2, . . . , m}

Λk(TpM) = spanR

{︂
ωσ(1)

p ∧ · · · ∧ ωσ(k)
p : σ ∈ Sk, σ(1) < σ(2) < · · · < σ(k)

}︂
.

A.5 Vector Fields and Differential Forms

A vector field on an open subset U ⊆ Rn is a function X which assigns, to each p ∈ U, an
element Xp of TpU. The vector field is smooth if, for every H ∈ C∞(U), the function LXH,

defined pointwise by (LXH)(p) := Xp(H), is smooth. This has an obvious generalization
to embedded submanifolds of Rn.
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Definition A.5.1 (Vector Fields on Manifolds) . Let M be a manifold. A vector field
on M is a function X which assigns to each p ∈ M an element Xp of TpM. The vector
field is smooth if, for all H ∈ C∞(M), the function LXH : M → R defined pointwise by
(LXH)(p) := Xp(H) is smooth.

The notation LXH itself plays an important role in the thesis, as it computes how the
function H changes under the flow of X.

Definition A.5.2 (Lie Derivative) . Let M be a manifold, X be a smooth vector field,
and H ∈ C∞(M). The Lie derivative of H along the vector field X is the smooth function
LXH defined pointwise by (LXH)(p) := Xp(H) for all p ∈ M.

An equivalent characterization of smooth vector fields can be given using the notion of
smooth sections. To do this, we first construct a vector bundle using the tangent space.

Definition A.5.3 (Tangent Bundle) . Let M be an m-dimensional submanifold of Rn

and let p ∈ M. The tangent bundle of M is the disjoint union,

TM :=
⨆︂

p∈M
TpM,

and can be made into a vector bundle over M of rank m.

The tangent bundle bundles together the tangent spaces at each and every point of
the manifold. The tangent bundle is an important example of a smooth vector bundle. A
smooth vector field X : M → TM is simply a smooth section of the tangent bundle. It is
for this reason that we let Γ∞(TM) denote the set of all smooth vector fields on a manifold
M.

This set can be given different algebraic structures the most important of which, from
the perspective of this thesis, is that of a (real) Lie algebra.
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Definition A.5.4 (Lie Bracket of Vector Fields) . For X, Y ∈ Γ∞(TM), the vector
field [X, Y ] ∈ Γ∞(TM) is the vector field that satisfies, for all H ∈ C∞(M),

L[X,Y ]H = LX(LYH)− LY (LXH).

It is called the Lie bracket of X and Y.

The Lie bracket of two smooth vector fields X, Y ∈ Γ∞(TM) can be computed easily
in local coordinates using the following proposition.

Proposition A.5.5 ([31, Proposition 8.26]). Let M be an m-dimensional manifold. Sup-
pose (U; x1, . . . , xm) is a local coordinate chart. Let X, Y ∈ Γ∞(TM) given locally by,

X =
m∑︂

i=1
X i ∂

∂xi
,

Y =
m∑︂

i=1
Y i ∂

∂xi
.

The smooth vector field [X, Y ] is locally — on U — given by,

[X, Y ] =
m∑︂

i=1

⎡⎣ m∑︂
j=1

X i

(︄
∂Y j

∂xi

)︄
− Y i

(︄
∂Xj

∂xi

)︄⎤⎦ ∂

∂xi

The set Γ∞(TM), viewed as a real vector space, together with the Lie bracket constitutes
a (real) Lie algebra. Given smooth distributions D1, D2 ⊆ TM, their Lie bracket [D1,D2] ⊆
TM is defined pointwise by,

[D1,D2]p := {[X, Y ]p : X ∈ Γ∞(D1), Y ∈ Γ∞(D2)} .

Generally, [D1,D1] ̸⊆ D1. A smooth distribution is involutive if [D1,D1] ⊆ D1.

When a distribution D ⊆ TM is not involutive, there exists a smallest such involutive
distribution inv(D) ⊇ D called the involutive closure of D. The existence of the involutive
closure is ensured by an argument utilizing Zorn’s Lemma (see [10, Lemma 3.9.4]).

Next we define an object which is algebraically dual to a vector field. A differential
one-form on an open subset U ⊆ Rn is a function ω which assigns, to each p ∈ U, an
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element ωp of T∗
pU. Observe that at any given fixed point p ∈ M, ωp is a one-form over

the vector space of tangent vectors at p. The differential one-form is smooth if, for every
X ∈ Γ∞(TRn), the function ω(X) : Rn → R defined pointwise by ω(X)(p) := ωp(Xp), is
smooth. This again has an obvious generalization to embedded submanifolds of Rn.

Definition A.5.6 (Smooth One-Forms) . Let M be a manifold. A differential one-form
on M is a function ω which assigns to each p ∈ M an element ωp of T∗

pM. The one-form is
smooth if, for all X ∈ Γ∞(TM), the function ω(X) : M→ R defined by ω(X)(p) := ωp(Xp)
is smooth. Such a form ω is simply said to be a smooth one-form.

Again, an equivalent characterization of smooth one-forms can be given using the notion
of smooth sections. Like before, we first construct a vector bundle of the related vector
space.

Definition A.5.7 (Cotangent Bundle) . Let M be an m-dimensional submanifold of Rn

and let p ∈ M. The cotangent bundle of M is the disjoint union,

T∗M :=
⨆︂

p∈M
T∗

pM,

and can be made into a vector bundle over M of rank m.

A smooth one-form ω : M→ T∗M is simply a smooth section of the cotangent bundle.
It is for this reason that we let Γ∞(T∗M) denote the set of all smooth one-forms on a
manifold M. The set Γ∞(T∗M) can also be viewed as a module over the ring of smooth
functions C∞(M) like the space of vector fields Γ∞(TM). We leave the discussion of this to
a later section.

In Section A.4, we constructed pointwise a graded algebra of forms over the vector
space of tangent vectors. It turns out we can construct a graded algebra over the space
of differential forms as well, defining higher order differential forms, by leveraging the
algebraic structure available at any fixed point p ∈ M.

137



Definition A.5.8 (Smooth k-Forms) . A differential k-form is a function ω which as-
signs to p ∈ M an element of Λk(TpM). The differential k-form is smooth if, for all X1, . . . ,

Xk ∈ Γ∞(TM), the function ω(X1, . . . , Xk) : M→ R defined pointwise by

ω(X1, . . . , Xk)(p) := ωp(X1
p , . . . , X

k
p )

is smooth. The set of differential k-forms on M is denoted Γ∞(Λk(TM)) and the set of all
differential forms is denoted Γ∞(Λ(T∗M)).

The algebra of differential forms can be equipped with an operation that takes a smooth
k-form and produces a smooth (k + 1)-form, called the exterior derivative. To start, we
define the differential of a smooth function. If (U; x1, . . . , xm) is a chart of M, then for
each p ∈ U the basis of vectors for T∗

pM induced by the chart is denoted by dx1
p, . . . , dxm

p .

Let φ : U → Rm, q ↦→ (x1(q), . . . , xm(q)). The exterior derivative of H ∈ C∞(M) at p is
the smooth one-form dH ∈ Γ∞(T∗M) given pointwise by the expression

dHp =
m∑︂

k=1

∂ (H ◦ φ−1)
∂xk

⃓⃓⃓⃓
⃓
φ(p)

dxk
p.

This definition gives a construction for the smooth one-form dH on the open set U. We can
then define, recursively, the exterior derivative operator on the set of differential forms.

Definition A.5.9 (Exterior Derivative) . The exterior derivative of a smooth k-form
written in components as

F =
∑︂
j∈J

F j dxj1 ∧ . . . ∧ dxjk ,

where J ⊂ {1, . . . ,m}k is a set of multi-indices and F j : M → R are smooth functions, is
given by the smooth (k + 1)-form

dF =
∑︂
j∈J

dF j ∧ dxj1 ∧ . . . ∧ dxjk .

Exterior differentiation observes a number of important properties. For one, let F be
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a smooth k-form and G a smooth ℓ-form. Then,

d(F ∧G) = dF ∧G+ (−1)kF ∧ dG.

Moreover, by the symmetry of mixed partial derivatives, we have that d(dF ) = 0 for
any smooth form F. Another useful property of the exterior derivative is described in the
following proposition.

Proposition A.5.10 ([31, Proposition 14.32]). Let k ≥ 0, X1, . . . , Xk+1 ∈ Γ∞(TM) and
F ∈ Γ∞(Λk(TM)). Then we have

dF
(︂
X1, . . . Xk+1

)︂
=

k∑︂
ℓ=1

Xℓ
(︂
F (X1, . . . , ˆ︂Xℓ, . . . , Xk+1)

)︂
+

∑︂
0≤i<j≤k

(−1)i+jF ([X i, Xj], X1, . . . , ˆ︂X i, . . . , ˆ︂Xj, . . . , Xk+1),

where ˆ︂X i denotes that the argument is deleted.

Finally, we close this section with a useful fact relating the smooth forms between
manifolds. Let H : M→ N be a smooth map.

Definition A.5.11 . A vector field X on M and a vector field Y on N are H-related if, for
all p ∈ M,

DH|p Xp = YH(p).

If H : M → N is a diffeomorphism, then to each X ∈ Γ∞(TM) we can uniquely define
an H-related vector field Y ∈ Γ∞(TN) by letting, for each q ∈ N,

Yq := DH|H−1(q) XH−1(q). (A.2)

The unique H-related vector field defined by (A.2) is called the pushforward of X by H and
is denoted by H∗X. A similar, and arguably nicer, statement can be made for smooth one-
forms and, even more generally, smooth forms. In particular, we can relax the requirement
that H be a diffeomorphism.
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Let H : M → N be an arbitrary smooth map between manifolds. For each p ∈ M let
(DH|p)∗ : T∗

H(p)N → T∗
pM denote the dual map of DH|p : TpM → TH(p)N. Then for any

smooth one-form ω on N, and any p ∈ M, define a smooth one-form H∗ω on M pointwise
by

(H∗ω)p :=
(︂

DH|p
)︂∗
ωH(p). (A.3)

In particular, using the definition of the dual map, we have that for each Xp ∈ TpM,

(H∗ω)p(Xp) = ωH(p)
(︂

DH|p Xp

)︂
.

The unique, smooth one-form on M defined by (A.3) is called the pullback of ω by H.
This pullback extends naturally to arbitrary smooth forms. Given a smooth k-form

ω we define the pullback of ω as the smooth k-form H∗ω on M that is given, for all
X1, . . . , Xk ∈ Γ∞(TM) and p ∈ M, by the expression

(H∗ω)p(X1, . . . , Xk) :=
(︂
ωH(p)

)︂ (︂
DH|p X1

p , . . . ,DH|p Xk
p

)︂
. (A.4)

The map H∗ : Γ∞(Λ(T∗N))→ Γ∞(Λ(T∗M)), defined using (A.4), is also called the pull-
back map and can be seen as simply an extension of the pullback map (A.3). Remarkably,
the next theorem shows that this map acts naturally with respect to the exterior derivative
and, as such, is a homomorphism of algebras.

Theorem A.5.12 ([1, Theorem 6.4.4]). Let H : M → N be a smooth map between man-
ifolds. Then the pullback map H∗ : Γ∞(Λ(T∗N)) → Γ∞(Λ(T∗M)) satisfies for all ω,
β ∈ Γ∞(Λ(T∗N)),

(i) H∗(ω ∧ β) = H∗ω ∧H∗β and,

(ii) H∗(dω) = d (H∗ω) .

A.6 Exterior Differential Systems

Recall that vector spaces at points can be bundled together to form what is known as a
vector bundle. This can be done first by individually bundling the vector spaces of k-forms
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Λk(T∗M) := ⊔p∈MΛk(T∗Mp). Then, take the direct sum of these manifolds to produce
Λ(T∗M) := ⊕m

k=1Λk(T∗M). Smooth sections of this vector bundle are smooth forms over
M. The set of smooth forms Γ∞(Λ(T∗M)) can be viewed as a graded algebra over the ring
of smooth functions C∞(M). A graded subalgebra I ⊆ Γ∞(Λ(T∗M)) is called an ideal over
the graded subalgebra if, for all ω ∈ I and β ∈ Γ∞(Λ(T∗M)), β ∧ ω ∈ I.

Let I ⊆ Γ∞(Λ(T∗M)) be an ideal over the graded subalgebra of smooth forms. It is
said to be locally, simply, finitely generated if for any point p ∈ M there exists an open set
U containing p and a finite set of smooth one-forms ω1, . . . , ωℓ ∈ Γ∞(Λ(T∗U)) such that
any smooth form β ∈ I can be written locally as,

β|U =
ℓ∑︂

i=1
c ∧ ωi.

The smooth one-forms {ω1, . . . , ωℓ} are called local generators. The ideal I is non-
degenerately generated if the local generators are linearly independent pointwise. Notice
that a locally, simply, finitely, non-degenerately generated ideal I can be associated with a
smooth and regular distribution I ⊆ T∗M. Equipped with this notion, we can define what
an exterior differential system is. For our purposes, the following definition suffices.

Definition A.6.1 (Exterior Differential System) . An exterior differential system is a
locally, simply, finitely generated ideal I ⊆ Γ∞(Λ(T∗M)) over the graded algebra of smooth
forms Γ∞(Λ(T∗M)).

The term “system” evokes a desire for a solution. The next definition describes what
precisely is considered to be a solution to an exterior differential system.

Definition A.6.2 . An integral submanifold to an exterior differential system I is an im-
mersed submanifold N ⊆ M whose immersion H : N → M is such that H∗ω = 0 for all
ω ∈ I.

Often we seek an integral submanifold to an exterior differential system that passes
through a particular point p0 ∈ M. These are stated to be the integral submanifolds passing
through p0. The one-point manifold N = {p0} ⊆ M is an integral manifold to every exterior
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differential system since the pullback maps all inputs to 0. In fact, given any non-trivial
integral submanifold N to I, any submanifold N ⊆ N is also an integral submanifold to I.

This fact motivates the search for maximal integral manifold passing through the point
p0. When it exists, the maximal integral submanifold to an exterior differential system is
considered the solution. At times it is convenient to specifically ask for an integral manifold
of a given dimension where it is clear what the upper bound on dimension is. To build
some intuition, let us consider a few examples.

Example A.1 (ODE as EDS) . Let M = R3 with the standard smooth manifold struc-
ture and coordinates (t, x1, x2). Consider the system of ordinary differential equations

dx1

dt
= x2,

dx2

dt
= −x1.

Tied to this is the exterior differential system I := ⟨dx1 − x2 dt, dx2 + x1 dt⟩. Fix p0 =
(t0, x1

0, x
2
0) ∈ M. Define the submanifold

Np0 :=
{︂
(t− t0, x1

0 cos(t− t0) + x2
0 sin(t− t0),−x1

0 sin(t− t0) + x2
0 cos(t− t0)) : t ∈ R

}︂
.

The submanifold Np0 has an immersion given by H : Np0 → R3, t ↦→ (x1, x2, x3) with
pullback, for all a, b, c ∈ R,

H∗(a dx1 + b dx2 + c dt) :=
[︂
c+ (a x2

0 − b x1
0) cos(t− t0)− (a x1

0 + b x2
0) sin(t− t0)

]︂
dt.

It can also be shown that,

H∗(dx1 − x2 dt) = 0, H∗(dx2 + x1 dt) = 0.

It follows that Np0 is an integral submanifold of I passing through p0. Moreover, it is the
maximal integral submanifold passing through p0 since a 2-dimensional submanifold of
R3 would limit the kernel of H∗ to a maximum dimension of 1. Since dx1 − x2 dt and
dx2 + x1 dt are linearly independent, we have that the maximal integral submanifold must
have dimension 1. ◀
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Example A.2 . Let M = R3 with the standard smooth manifold structure and coordinates
(x1, x2, x3). Define the exterior differential system I := ⟨x3 dx1 − x2 dx2⟩ ⊆ Γ∞(ΛT∗M).
Based on the intuition of Example A.1, one would expect to have a maximal integral
submanifold of dimension 2. Suppose there exists an immersed integral submanifold N
of dimension 2 passing through p0 ∈ M with immersion H : N → M. Then the one-form
ω := x3 dx1−x2 dx2 ∈ I satisfiesH∗ω = 0. Additionally, we have that the exterior derivative
d(H∗ω) = 0. By Theorem A.5.12, H∗(dω) = 0. As a result

0 = H∗dω = H∗
(︂
dx3 ∧ dx2

)︂
.

Again, use Theorem A.5.12 to find

0 = H∗dx2 ∧H∗dx3.

This suggests that there exist non-zero constants a, b ∈ R so that at the point p0 ∈ M,

0 =
(︂

DH|p0

)︂∗ (︂
a dx2

p0 + b dx3
p0

)︂
.

Suppose p3
0 ̸= 0. Then the covectors p3

0 dx1 − p2
0 dx2 and a dx2

p0 + b dx3
p0 are linearly in-

dependent and in the kernel of DH|∗p0
. This is a contradiction since we have shown that

DH|∗p0
has a kernel of dimension 2 at p0 but the rank of DH|∗p0

has to be at least two (H
is an injective map and the dimension of N is 2). As a result, there cannot exist an integral
submanifold of dimension 2 passing through points where p3

0 ̸= 0.
When p3

0 = b = 0, the above contradiction does not appear. However, an integral
submanifold of dimension 2 passing through such a point also fails to exist since such an
integral submanifold must pass through points of the form q := (q1, q2, q3) where q3 ̸= 0.
The above contradiction then appears at this point q. It follows that there are no 2-
dimensional integral submanifolds to I through any point of R3.

On the other hand, if N is 1-dimensional there is no contradiction, but also there is no
unique integral submanifold of dimension 1 passing through any fixed point p0 ∈ M. ◀

Example A.1 and A.2 demonstrate that there is an additional property about the ideal
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I and the forms that generate it that is required to ensure a maximal integral submanifold
exists through some point p0. This property, we define now, is that the ideal in Example A.1
is said to be a differential ideal. This property is the key requirement in the existence and
uniqueness of the maximal integral manifold.

Definition A.6.3 (Differential Ideal) . An ideal I is said to be differentially closed if
it is closed under the exterior derivative operator d : Γ∞(Λ(T∗M)) → Γ∞(Λ(T∗M)). A
differentially closed ideal I is called a differential ideal.

Differential ideals play a critical role in guaranteeing the uniqueness of the maximal
integral submanifolds when I is generated by one-forms. Intuitively, this is because the
exterior derivative cannot introduce new, unaccounted for constraints as it did in Ex-
ample A.2. The standard result that relates differential ideals to the uniqueness of the
maximal integral manifold is Frobenius’s Theorem, which we state now.

Theorem A.6.4 (Frobenius’s Theorem (Differential Forms)). Let I be a differential ideal
on an m-dimensional manifold M that is simply, finitely and non-degenerately generated
by r smooth 1-forms. Then, in a sufficiently small neighbourhood of a point p0 ∈ M, there
exists coordinates y1, . . . , ym for M so that

I = ⟨dy1, . . . , dym−r⟩.

It is important to take a moment to observe the significance of this result. Frobenius’s
theorem shows that, given a differentially closed ideal generated by smooth 1-forms, there
exists a local coordinate chart φ : U→ Rm, p ↦→ (y1(p), . . . , ym(p)), where the differentials
of the first m−r coordinates generate the ideal. Immediately, one can construct the family
of integral submanifolds in U by letting c ∈ Rm−r and defining

Nc := φ−1
(︂{︂

(c1, . . . , cm−r, ym−r+1(p), . . . , ym(p)) : p ∈ U
}︂)︂
.

The integral submanifold passing through p0 is given by,

N(y1(p0),...,ym−r(p0)) := φ−1
(︂{︂

(y1(p0), . . . , ym−r(p0), ym−r+1(p), . . . , ym(p)) : p ∈ U
}︂)︂
.
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The proof of Theorem A.6.4 can be found in [9, Theorem 1.1]. The following example
illustrates how the proof of Frobenius’ theorem may be used. The method is laborious in
comparison to traditional methods, but its generality makes it a powerful tool.

Example A.3 . Let M = R3 with the standard smooth manifold structure with coordinates
x1, x2 and x3. Consider the simply, finitely and non-degenerately generated ideal

I := ⟨ex2dx1 + e−x1dx2⟩ =: ⟨ω1⟩.

We would like to find the maximal integral manifolds, of dimension 2, to this ideal. First
we check that I is a differential ideal. The exterior derivative of the generator ω1 is

−
(︂
e−x1 + ex2)︂ dx1 ∧ dx2 = −e

−x1 + ex2

e−x1 dx1 ∧ ω1 ∈ I.

Indeed I is a differential ideal, so we know there exists coordinates where the integral
manifolds to I are level sets of the last coordinate. We can compute these coordinates by
running through the proof of Frobenius’s theorem. First fix a base point q ∈ M. Now,
since r = 2, we have to first construct a new differential ideal, containing our ideal, that
has a codimension of 1. Define J := ⟨ω1, dx3⟩. This is a differential ideal containing I

with codimension r = 1. We can use the base case of Frobenius’s theorem to construct
coordinates where J = ⟨da2, da3⟩. The distribution annihilated by J is given pointwise by

Dx = spanR

{︄
e−x1 ∂

∂x1

⃓⃓⃓⃓
⃓
x

− ex2 ∂

∂x2

⃓⃓⃓⃓
⃓
x

}︄
.

This is a smooth distribution with a local flow Θ : D ⊆ R×M→ M, given by

Θ(t, q) =
(︂
ln
(︂
t+ eq1)︂

,− ln
(︂
t+ eq2)︂

, q3
)︂
.

From Flow Box Theorem (see [11, Theorem 4.4.1]), we can define a diffeomorphism Φ by

Φ(a1, a2, a3) := Θ(a1, (q1, a2, a3))

where the open set this is defined on is determined by the base point q1. The smooth
inverse is given by

Φ−1(x1, x2, x3) =
(︂
ex1 − 1, ln

(︂
e−x2 − ex1 + 1

)︂
, x3

)︂
.
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In the new coordinates we have that J = ⟨da2, da3⟩. By chance, Φ∗ω1 = h(a)da2 where
h(a) ̸= 0 on an open set containing h(q). We can immediately write I = ⟨da2⟩ and this then
gives an expression for the integral manifolds to I. The integral manifold passing through
q ∈ M is given locally by

Nq :=
{︂
x ∈M

⃓⃓⃓
e−x2 − ex1 = e−q2 − eq1}︂

.

◀

Not all ideals J are differentially closed. Some of these times, it is useful to find the
largest differential ideal contained in J. This construction can be viewed as a dual to
the involutive closure inv(D) of a submodule D of vector fields. We denote the largest
differentially closed ideal contained in J by J(∞) ⊆ J. Like inv(D), the existence of J(∞)

object is ensured by an argument utilizing Zorn’s Lemma. The proof follows closely that
of [10, Lemma 3.9.4].
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Appendix B

Technical Proofs

This appendix presents the proofs of a number of technical supporting results used through-
out the thesis that were involved and not critical to the discussion at hand. The first few
of these results come from Section 3.2.

Lemma (Lemma 3.2.1). Suppose Assumptions 2.2.3 and 2.2.11 hold. There exists an open
set on M containing p0 such that on this open set, for any k ∈ {1, . . . , n− n⋆},

I(k) = ann
(︂
D(0) + S(k−1)

)︂
.

Proof. By Assumptions 2.2.3 and 2.2.11, the ideals I(k) are simply, finitely, non-degen-
erately generated and the submodules D(0) and S(k−1) are finitely, non-degenerately gener-
ated. The latter fact ensures that the annihilators ann(D(0)) and ann(S(k−1)) are (locally)
simply, finitely generated ideals. It therefore suffices to verify that the two ideals are locally
equal in their space of one-forms.

Base Case (k = 1): Pick ω ∈ I(1). Since I(1) ⊂ I(0), ω ∈ D(0). It suffices to show that
ω annihilates vector fields in S(0) = G(0). Let 1 ≤ i ≤ m and consider ω(gi). Observe that,

ω(gi) = ω

(︄[︄
F,

∂

∂ui

]︄)︄
.

Use Proposition A.5.10 to find,

ω(gi) = F

(︄
ω

(︄
∂

∂ui

)︄)︄
+ ∂

∂ui

(︄
ω

(︄
F

)︄)︄
− dω

(︄
F,

∂

∂ui

)︄
.
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Since ω ∈ I(0) = ann(D(0)),

ω(gi) = −dω
(︄
F,

∂

∂ui

)︄
.

Use (2.12) and ω ∈ I(1) to conclude that dω ∈ I(0). Therefore,

ω(gi) = 0.

This was shown for arbitrary 1 ≤ i ≤ m and so ω ∈ G(0) = S(0). Therefore I(1) ⊆ ann(D(0) +
S(0)). Now pick ω ∈ ann(D(0) + S(0)). Since ω ∈ D(0), ω ∈ I(0). We now show that ω is
differentially closed in I(0). Pick arbitrary vector fields X, Y ∈ D(0) and consider dω(X, Y ).
By Cartan’s formula,

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

Since ω ∈ ann(D(0)),
dω(X, Y ) = −ω([X, Y ]).

Now observe that [X, Y ] ⊆ D(0) +G(0) since either both X, Y ∈ U — which is involutive —
or we have at least one of X or Y = F. In the latter case, the Lie bracket produces vector
fields gi as demonstrated earlier in the base case. As a result, ω([X, Y ]) = 0. Therefore
dω(X, Y ) = 0 and we can conclude that ω ∈ I(1). This completes the base case.

Induction (k ≥ 1): Suppose, by way of induction, that for some k ≥ 1

I(k) = ann
(︂
D(0) + S(k−1)

)︂
. (B.1)

First we show that I(k+1) ⊆ ann(D(0) + S(k)). Pick a smooth one-form ω ∈ I(k+1). If the
one-form ω is in

ann(D(0)) ∩ ann(S(k−1)) ∩ ann
(︂[︂
S(k−1), S(k−1)

]︂)︂
∩ ann(G(k)),

then ω lives in
ann

(︂
D(0) + S(k−1) +

[︂
S(k−1), S(k−1)

]︂
+ G(k)

)︂
.

It follows by (2.4) that ω ∈ ann(D(0)+S(k)). To this end, by definition ω ∈ I(k) and therefore
by the induction hypothesis (B.1)

ω ∈ ann
(︂
D(0) + S(k−1)

)︂
. (B.2)
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Now let X1, X2 ∈ S(k−1) be arbitrary smooth vector fields and let X = [X1, X2]. Evaluating
the differential form ω on the vector field X and using Proposition A.5.10 gives

ω(X) = ω([X1, X2]),

= X1(ω(X2))−X2(ω(X1))− dω(X1, X2).

By (B.2), ω ∈ ann(S(k−1)) so
ω(X) = −dω(X1, X2).

As ω ∈ I(k+1) it follows that ω is closed in I(k) under exterior derivative: dω ∈ I(k). Then, by
the inductive hypothesis (B.1), dω ∈ ann(D(0) +S(k−1)). So it follows that dω ∈ ann(S(k−1))
and we arrive at ω(X) = 0. As X was a general vector field of [S(k−1), S(k−1)] we have
established that ω ∈ ann([S(k−1), S(k−1)]). Combining with (B.2) gives

ω ∈ ann
(︂
D(0) + S(k−1) + [S(k−1), S(k−1)]

)︂
.

It remains to show that ω ∈ ann(G(k)). It follows from (2.3) that G(k)= G(k−1)+[D(0),G(k−1)].
However, by (B.2), ω ∈ ann(G(k−1)). As a result it suffices to check that ω ∈ ann([D(0),

G(k−1)]). Let X ∈ G(k−1) and Y ∈ D(0) be smooth vector fields. Evaluating ω([Y,X]) and
using Proposition A.5.10 gives

ω([Y,X]) = −dω(Y,X)−X(ω(Y )) + Y (ω(X)).

By the inductive hypothesis (B.1) and (B.2) ω ∈ ann(D(0) + G(k−1)), so

ω([Y,X]) = −dω(Y,X).

But we also know that dω ∈ ann(D(0) +S(k−1)) and G(k−1) ⊆ S(k−1) therefore dω(Y,X) = 0
and

ω([Y,X]) = 0.

Since Y,X were arbitrary ω ∈ ann(G(k)). As a result

ω ∈ ann
(︂
D(0) + S(k−1) + [S(k−1), S(k−1)] + G(k)

)︂
.

Then using (2.4) we get
ω ∈ ann

(︂
D(0) + S(k)

)︂
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and we conclude that
I(k+1) ⊆ ann

(︂
D(0) + S(k)

)︂
.

To complete the proof we must establish the reverse inclusion I(k+1) ⊇ ann(D(0)+S(k)). Pick
any smooth one-form ω ∈ ann(D(0) + S(k)). Since S(k−1) ⊆ S(k), ω ∈ ann(D(0) + S(k−1)). It
then follows by the inductive hypothesis that ω ∈ I(k). Consider the two-form dω; observe
that, since ω ∈ I(k), dω ∈ I(k−1). As I(k−1) ⊆ ann(D(0)), dω ∈ ann(D(0)). Arbitrarily pick
smooth vector fields X1, X2 ∈ S(k−1) and observe that, by Proposition A.5.10, dω(X1, X2)
equals

−ω([X1, X2]) +X1(ω(X2))−X2(ω(X1)).

Since ω ∈ ann(S(k−1)),
dω(X1, X2) = −ω([X1, X2]).

Observe that, by (2.4), [X1, X2] ∈ [S(k−1), S(k−1)] ⊆ S(k). Using this in combination with
ω ∈ ann(D(0) + S(k)) it follows that

dω(X1, X2) = 0,

But then dω ∈ I(k) by the inductive hypothesis. Since ω, dω ∈ I(k), we have that ω is
closed under exterior derivative in I(k) so we conclude that ω ∈ I(k+1). This establishes
that I(k+1) and ann(D(0) + S(k)) are equal in their homogeneous component of one-forms
and the proof is complete.

Lemma (Lemma 3.2.2). Suppose Assumptions 2.2.3 and 2.2.11 hold. There exists an open
set on M containing p0 such that on this open set, for any κ ∈ {1, . . . , n− n⋆},

⟨I(κ), dt⟩ = ann
(︂
U⊕ S(κ−1)

)︂
.

Proof. For any fixed κ ∈ N, the inclusion

⟨I(κ), dt⟩ ⊆ ann
(︂
U⊕ S(κ−1)

)︂
,

follows directly from Lemma 3.2.1 and properties of annihilators. By Assumption 2.2.11,
there exists an open set U ⊆ M containing p0 and a finite number of generators X1, . . . ,

Xℓ ∈ Γ∞(TU) that non-degenerately generate,

S(κ−1) = spanC∞(U) {X1, . . . , Xℓ} .
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Using this, we know that at p ∈ U, the associated codistribution satisfy,

Up + S(κ−1)
p = spanR

⎧⎨⎩ ∂

∂u1

⃓⃓⃓⃓
⃓
p

, . . . ,
∂

∂um

⃓⃓⃓⃓
⃓
p

, X1|p , . . . , Xℓ|p

⎫⎬⎭ .
Contrast that with,

D(0)
p + S(κ−1)

p = spanR {F |p} ⊕ Up ⊕ S(κ−1)
p

= spanR

⎧⎨⎩F |p , ∂

∂u1

⃓⃓⃓⃓
⃓
p

, . . . ,
∂

∂um

⃓⃓⃓⃓
⃓
p

, X1|p , . . . , Xℓ|p

⎫⎬⎭ ,
and observe that

dim
(︂
Up + S(κ−1)

p

)︂
= dim

(︂
D(0)

p + S(κ−1)
p

)︂
− 1. (B.3)

This implies that

dim
(︂
ann

(︂
Up + S(κ−1)

p

)︂)︂
= dim

(︂
ann

(︂
D(0)

p + S(κ−1)
p

)︂)︂
+ 1

Using Lemma 3.2.1 find,

dim
(︂
ann

(︂
Up + S(κ−1)

p

)︂)︂
= dim

(︂
I(κ)

)︂
+ 1.

But,
dim(spanR{I(κ)

p , dtp}) = dim(I(κ)
p ) + 1.

It follows that,

dim
(︂
ann

(︂
Up + S(κ−1)

p

)︂)︂
= dim

(︂
spanR{I(κ)

p , dtp}
)︂
.

Lemma (Lemma 2.2.12). Let κ ∈ N. If Assumptions 2.2.3 and 2.2.11 hold, then

⟨I(κ), dt⟩(∞) ⊇ ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
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Proof. Fix p ∈ M. Since inv( G(κ−1)) is a smooth and regular distribution, so is the direct
sum U⊕ inv( G(κ−1)). Invoke Frobenius’s Theorem on an open neighbourhood U ⊆ M of p
to find a new local coordinate system (t, u, z) where, without loss of generality1,

Uq ⊕ inv( G(κ−1))q = spanR

⎧⎨⎩ ∂

∂u1

⃓⃓⃓⃓
⃓
q

, . . . ,
∂

∂um

⃓⃓⃓⃓
⃓
q

,
∂

∂zℓ+1

⃓⃓⃓⃓
⃓
q

, . . . ,
∂

∂zn

⃓⃓⃓⃓
⃓
q

⎫⎬⎭ , q ∈ U.

It directly follows that

ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
= ⟨dt, dz1, . . . , dzℓ⟩.

Now we must show the containment

ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
⊆ ⟨I(κ), dt⟩(∞).

Clearly dt ∈ ⟨I(κ), dt⟩(∞). It suffices to show that dzi ∈ ⟨I(κ), dt⟩(∞) for 1 ≤ i ≤ ℓ. Fix
1 ≤ i ≤ ℓ and consider dzi ∈ ann(U ⊕ inv( G(κ−1))). By Lemma 2.1.1,

ann
(︂
Γ∞(U ⊕ inv( G(κ−1)))

)︂
= ann

(︂
Γ∞(U ⊕ inv(S(κ−1)))

)︂
,

therefore
dzi ∈ ann

(︂
Γ∞(U ⊕ inv(S(κ−1)))

)︂
.

Since U ⊕ inv(S(κ−1)) ⊇ U ⊕S(κ−1),

dzi ∈ ann
(︂
Γ∞(U ⊕S(κ−1))

)︂
.

By Lemma 3.2.2, dzi ∈ ⟨I(κ), dt⟩. Since dzi is closed,

dzi ∈ ⟨I(κ), dt⟩(∞)
.

1The time variable t and control variables u need not change in this coordinate change since U is
already generated by coordinate vector fields and because neither U nor G(κ−1) are time-variant.
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