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Abstract

The emergence of BERT in 2018 has brought a huge boon to retrieval effectiveness
in many tasks across various domains and led the recent research landscape of IR to
transformer-related technologies. While researchers are fascinated by the power of BERT,
along with related transformer models, substantial computational costs incurred by trans-
formers become an unavoidable problem. Meanwhile, under the light of BERT, there are
“out-of-date” but fairly effective techniques forgotten by people. For example, learning to
rank was one of the most popular technologies a decade ago.

In this work, we aim to answer two research questions: RQ1 is whether using learning
to rank as a filtering stage in a multi-stage reranking pipeline can improve the efficiency of
reranking using transformers without sacrificing effectiveness. In addition, we are interested
in if using transformer-based features in the traditional learning to rank framework can
increase effectiveness as RQ2.

To answer RQ1, we implement a multi-stage reranking pipeline which places learning
to rank as a filter in the middle stage. This configuration allows the pipeline to only
send the most promising candidates using cheap learning to rank module to expensive
neural rerankers, hence a speedup in overall latency for transformer-based reranking can be
obtained without a degradation in effectiveness. By applying the pipeline on MS MARCO
passage and document ranking tasks, we can achieve up to 18 × increase in efficiency
while maintaining the same level of effectiveness. Moreover, our method is orthogonal to
other techniques that focus on neural models themselves to accelerate inference. Hence,
our method can be combined with other accelerating works to further save computational
costs and latency.

For RQ2, since transformers generate relevance scores for different query-document
pairs independently, it is possible to use transformer-based scores as learning to rank
features, so that learning to rank can take advantage of transformers to increase retrieval
effectiveness. Applied to the MS MARCO passage and document ranking tasks, we gain a
maximal 52% increase in effectiveness by adding the BERT-based feature compared to the
“traditional” learning to rank. Also, we obtain a result with a little bit higher effectiveness
by adding transformer-based features with other traditional features in learning to rank,
compared to the standard retrieve-and-rerank design with transformers.

This work explores potential roles of learning to rank in the age of muppets.1 In a
broader sense, this work illustrates that we should stand on the shoulder of giants, which
is what we learned and discovered in history, to explore next unknowns.

1Muppets being a whimsical way to refer to BERT and related transformer models.
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Chapter 1

Introduction

Pretrained transformers have achieved a huge success in improving retrieval effectiveness
in various tasks across different domains, e.g., text ranking, machine translation. Among
various transformers, BERT [11], which stands for Bidirectional Encoder Representations
from Transformers, is one of the best-known examples. Results provided by BERT are un-
doubtedly superior to results generated by traditional ranking methods used before. Many
established and replicable experiments make this superiority widely accepted. Outside of
the academic research field, BERT also brings benefits to industry. Google and Microsoft
have made posts about applying BERT to their products improves search experience to
customers [23].

While BERT has significantly increased retrieval effectiveness, large computational
costs and query latencies are incurred by the standard “retrieve-and-rerank” setup with
transformers. The growing costs are obstacles to using neural rerankers in real-world ap-
plications [52]. For example, the ColBERT paper [19] shows that reranking 1000 hits from
the MS MARCO passage dataset takes 32.9 seconds per query using the BERTlarge model.
Also, researchers realize the high computational costs of transformer-based rerankers [15]
compel the exploration of other approaches, for example, simplified models [16, 42, 30, 28,
14, 17] and learned dense representations [50].

Naturally, reducing computational costs and latencies while maintaining the same level
of effectiveness would be a practical problem for academic research and industry to further
take advantage of BERT and other transformers. Instead of focusing on the cutting-
edge BERT reranker itself, if doing some retrospectives, we wonder if some “out-of-date”
methods may offer help to BERT.

Back in the 2010s, before the rise of transformers, learning to rank was one of the major
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developments in text ranking. Learning to rank emerged at the intersection of machine
learning, information retrieval, and natural language processing. Documents have many
signals to show whether it is relevant or not to a given query. Each signal can be repre-
sented as a feature. Learning to rank utilizes hand-crafted, manually engineered features
to automatically build ranking models with supervised machine learning techniques [21].

The processing time of learning to rank is relatively short compared to transformers.
Although BERT is so powerful that it covers up lights of all other methods, the retrieval
effectiveness obtained by learning to rank is not poor.

Now, the problem becomes if there exist any forms of cooperation between BERT and
learning to rank to help us be as effective as BERT and as efficient as possible. In a broader
sense, we should stand on the shoulders of giants, history, to explore next unknowns.

1.1 Research Question

As there are two parties involved, BERT and learning to rank, the cooperation could
naturally go in both ways. To be specific, the two ways of cooperation are (1) How can
learning to rank help BERT? (2) How can BERT help learning to rank? From here, two
research questions are motivated, respectively.

1.1.1 RQ1

Treating BERT as the main part, we wonder what can learning to rank offer to help BERT
reduce computational costs and query latencies while maintaining BERT effectiveness.
There are two factors affecting the total runtime of BERT in a retrieve-and-rerank design:
the number of query-document candidate pairs and the processing time for each individual
pair.

BERT requires a much longer time than other techniques when reranking the same
number of candidates, because its sophisticated neural network architecture costs longer
per query-document pair in terms of latencies. The ColBERT paper [19] listed that the
number of FLOPs/query BERTlarge need is as 570,000 × more than KNRM [48, 49]. There
are methods used to directly accelerate inference, e.g., knowledge distillation, early exits,
model simplification. However, we wish not to change the nature of BERT in this work,
i.e., per query latencies will not change.

The option left is to reduce the number of candidates which are sent to BERT for
inferencing. Obviously, without any extra actions, only sending fewer hits to BERT will
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harm effectiveness. However, inspired by the multi-stage reranking architecture, we can
first narrow down the range of true relevant documents and send more promising candidates
under the consideration of BERT to maintain the effectiveness. Here comes the usage of
cheap learning to rank reranker and leads the Research Question 1 (RQ1), can we use
learning to rank as a filtering stage in a multi-stage reranking pipeline to improve the
efficiency of BERT reranking without sacrificing effectiveness?

1.1.2 RQ2

Considering the opposite way of cooperation in RQ1, we are curious about what advantages
BERT can bring to learning to rank in terms of effectiveness.

Features in learning to rank are scores, calculated by different statistics or language
models, which represent similarities between queries and documents. Meanwhile, BERT
ranks candidates based on scores for each pair of query and document, which are generated
independently of the context [11]. It is reasonable to come up with the idea of considering
transformer-based features, including but not limited to BERT and TCT-ColBERT scores,
etc., as features within the learning to rank framework, where gradient boosted tree [29] is
one of the common choices of frameworks. In this way, we can utilize relevance signals from
BERT, which have higher effectiveness, to favour inference in learning to rank framework.

Inspired by the above idea, we address Research Question 2 (RQ2) here: can we use
BERT-based features in traditional learning to rank framework to increase effectiveness?

1.2 Contributions

The contribution of this thesis is summarized below.

• Answer “YES” to RQ1.

By inserting the cheaper learning to rank technique as a “filtering” stage in a multi-
stage ranking architecture, fewer candidates need to be sent for further BERT infer-
ences, hence reducing the processing time for BERT without degradation in accuracy.
With experiments we conducted on MS MARCO passage and document, we find we
can maintain the same level of effectiveness as a standard retrieve-and-rerank method
using BERT while we can obtain an up to 18 × speedup in terms of latency. Fur-
thermore, this design can help us control the effectiveness-efficiency trade-offs and
make applications more practical in the real world [52].
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• Answer “YES” to RQ2.

We have verified that learning to rank with transformer-based features can largely
increase the original effectiveness of learning to rank by up to 52%. Furthermore,
using transformer-based and other traditional features has a little bit better accu-
racy compared to the standard retrieve-and-rerank with BERT configuration. Learn-
ing to rank with transformer-based and other traditional features does not yield a
huge improvement on effectiveness compared to directly using transformers. When
transformer-related relevance signals are present, contributions from other features
become minimal. Specifically, for passage, the effectiveness of learning to rank with
the BERT-based feature is ∼1 point higher than the standard transformer effective-
ness and meanwhile, for document, there is a 0.2 point win in effectiveness using our
learning to rank module with the BERT-based feature.

1.3 Thesis Organization

The thesis is organized as follows:

• Chapter 2 reviews fundamental background and existing works of learning to rank,
BERT in detail.

• Chapter 3 introduces multi-stage pipelines used for comparisons in experiments and
the learning to rank architecture built with Pyserini for this work, including used
features and the preprocessing steps on the queries and documents.

• Chapter 4 introduces datasets and the evaluation metrics, then describes the exper-
imental setup and implementations.

• Chapter 5 presents experimental results and analysis.

• Chapter 6 concludes this thesis and discusses potential directions for future works.

4



Chapter 2

Background and Related Work

2.1 Learning to Rank

Learning to rank was one of the most popular techniques in the Information Retrieval and
Natural Language Processing community before the era of muppets. Back to that period of
time, learning to rank had outstanding retrieval effectiveness as it utilizes machine learning
techniques. As learning to rank falls into the supervised learning category, it involves 2
steps: training and testing. Figure 2.1 visualizes the whole process.

In the training process, the training set includes query and document pairs. The rele-
vance between the query and document is given by a label, usually a number. The higher
the number is, the more relevant the document is to the given query. Then, the feature ex-
traction phase happens. During feature extraction, a feature vector xi,j, which is computed
from a feature function ϕ(qi, di,j), is created for each query-document pair. The learning
algorithm takes feature vectors and labels as input to train a ranking model f(x) [21].

When it comes to the testing process, unseen queries are used in the test set. Feature
vectors are created for each unseen query-document pair again. Then, the trained ranking
model f(x) will assign scores to each query-document pair and give the final rank list based
on sorted scores.

The ranking model can be generalized since its learning is based on features. In other
words, the learning ability is positively related to the qualities of chosen features. In
previous works, LETOR [38] dataset uses 46 features, which includes a few commonly
used ranking features, for example, query-independent features such as document length;
query-dependent features, which involves interactions between query and document, like
TFIDF, BM25 [39], etc..
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Training 
SystemLabeled (q,d) pairs →

Ranking
System

← Unseen queries q* 
with documents

f(q*, d)

𝑓 𝑞, 𝑑

Figure 2.1: Learning to Rank Architecture

Evaluation metrics are calculated by comparing the ranked list output with relevance
judgements. Widely used metrics are adopted, such as MRR (Mean Reciprocal Rank),
MAP (Mean Average Precision), NDCG (Normalized Discounted Cumulative Gain).

There are three main approaches mentioned in existing learning to rank works: point-
wise approach, pairwise approach, and listwise approach. The pointwise approach treats
the ranking problem as a classification/regression task. Each query-document pair is
learned and predicted by the ranking model independently in the training and testing
process. Meanwhile, the pairwise approach focuses on the ranking order of two query-
document pairs. Ranking SVM [18], RankBoost, and lambdaMART [7] are common pair-
wise approaches. The listwise approach naturally takes ranking lists as input in both the
training and testing process and outputs the permutation of inputs based on optimization
strategy in the chosen algorithm. ListNet is an instance of listwise approaches. These
three approaches mainly differ in their input/output structures and loss functions.

More examples for each approach can be seen in Table 2.1. Normally, the pairwise and
listwise approaches outperform the pointwise approach. In the most recent Yahoo Learning
to Rank Challenge [9], the team from Microsoft using LambdaMART [8], which belongs
to the pairwise approach, is the top winner.
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Categories Examples

Pointwise OC SVM McRank Prank
Pairwise Ranking SVM RankBoost RankNet LambdaMART LambdaRank
Listwise SVM MAP AdaRank ListNet SoftRank AppRank

Table 2.1: Examples for each Learning to Rank Methods Categories

Figure 2.2: BERT input representation. The input embeddings are the sum of the token
embeddings, the segmentation embeddings and the position embeddings. The Diagram is
taken from Devlin et al. [10]

.

The major difficulty of using learning to rank is that learning to rank relies heavily on
hand-crafted feature engineering.

2.2 BERT

BERT stands for Bidirectional Encoder Representations from Transformers [10], which is
a pretrained transformer-based deep learning technique. Once BERT was published in
2018, it immediately amazed researchers by its performance and became the state of the
art. BERT takes a sequence of tokens as input and then outputs a sequence of contextual
embeddings. Since BERT provides context-dependent representations of the input tokens,
more sophisticated characteristics of language, such as semantics and syntax, can be learned
by the model. This makes BERT be able to interpret meanings in a complicated but more
realistic linguistic context.
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Specifically, BERT adopts a uniform standard for input format in order to make BERT
available for various downstream tasks. The input format has two special characters. The
first special token is [CLS]: every input sequence to BERT starts with [CLS]. Another spe-
cial delimiter token [SEP] is appended to the end of each input sentence, so that BERT
can handle a sequence with more than one sentence. BERT uses WordPiece embeddings
[46] with a 30,000 token vocabulary to tokenize original texts into subwords. In the final
input representation, each token contains the subword token embedding, the segment em-
beddings (indicates which sentence contains the given token) and the position embeddings.
There is a length limitation of 512 tokens for BERT. The way of input construction is also
illustrated in Figure 2.2.

As a pretrained transformer, BERT involves two phases: pre-training and fine-tuning.
There are two different tasks in pre-training of BERT. The first is Masked Language Model
(MLM). Given a sentence, 15% of input tokens are randomly masked. MLM is to train a
deep bidirectional representation that can predict those masked tokens from both left and
right contexts. The second task is Next Sentence Prediction (NSP), which aims to find the
relationship between sentences. The input is a pair of sentences A and B. There is a 50%
of chance that B is the next sentence following A; while another 50% of chance is that B
is a randomly selected sentence from the corpus. NSP trains a model to predict whether
B is the correct following sentence of A. Fine-tuning for downstream tasks is relatively
inexpensive compared to pre-training. Pretrained models (also called model checkpoints)
can be downloaded. Task-specific inputs and outputs are then plugged into those models
to fine-tune all parameters from end-to-end.

In Jan 2019, BERT was applied to text ranking problems for the first time [34] on
the MS MARCO passage ranking tasks. With BERT, the effectiveness obtained a ∼30%
relative gain, compared to the best pre-BERT method.

2.3 Effectiveness-Efficiency Trade-offs

Effectiveness of the system usually refers to the quality of the output. Common effective-
ness metrics in IR are MRR@10, NDCG@20, and MAP etc.. On the other hand, efficiency
focuses on completing a task using fewer resources. In IR, retrieval latencies and compu-
tational costs are usually considered in efficiency problems. Effective technologies usually
come with higher computational costs. In order to achieve higher quality results, more
and more sophisticated ranking architectures are adopted, resulting in a slower system.
Especially when the world enters the neural era, the problem of simultaneously increasing
effectiveness and efficiency in end-to-end retrieval systems becomes trickier.

8



Wang [44] proposed using multi-stage retrieval architectures to control the trade-offs be-
tween effectiveness and efficiency. Specifically, multi-stage retrieval architecture can lower
the latency by optimizing recalls in previous stages and sending only the most promising
candidates to the final expensive techniques. In fact, there are already many researches
using multi-stage neural pipelines in the context of transformers [34, 42, 28, 36].

There are various ways to further reduce computational costs. The first approach is
to transform big and exhaustive models into smaller or simpler models to reduce inference
time. We can transfer knowledge learned from a larger model into a smaller model using
distillation. The work of Gao [14] shows that knowledge distillation can successfully help
us save a large amount of processing time while only losing minimal effectiveness. There
are also other works [30, 27] taking the same approach. Another major approach is to ask
the model to exit earlier at an appropriate time to optimize the efficiency [42, 47]. By
adding a classifier to each layer of transformers, once a classifier in a middle layer reaches
the confidence threshold, the early exit is performed and speedups are obtained.

9



Chapter 3

Retrieval Architecture

3.1 Multi-Stage Ranking

We adopt a standard formulation of multi-stage ranking. It involves the first stage retrieval
H0, which uses keyword search against an inverted index and then retrieves top k0 candi-
dates from the corpus. There is a pipeline of rerankers, denoted H1 to HN , following the
H0 stage. Each subsequent stage Hi will receive a ranked list with top ki−1 hits for each
query obtained from the previous stage Hi−1, rerank these hits, and then pass the result
to the next stage. The ranked list received from the last stage is the final result we used
to evaluate by standard tools.

3.1.1 Two designs used to answer RQ1

We compare two designs of multi-stage ranking architectures to answer RQ1.

BoW + BERT As a baseline, we adopt the retrieve-and-rerank approach originally
proposed by Nogueira and Cho [31], which is widely used as the standard architecture for
applying pretrained transformers to ranking. k0 is used to denote the number of candidates
from bag-of-words retrieval. We notate a configuration of this design as BoW(k0) + BERT,
with a commonly used default k = 1000 [31].

Furthermore, we introduce the docTTTTTquery document expansion technique (d2q
variant from now on) [35, 33] based on predicting queries for which a text would be relevant.
We denote the BoW retrieval on documents with their original texts concatenated by the
predicted queries as BoWd2q for d2q variants and the pipeline as BoWd2q + BERT.

10



BoW BERT

BoW LTR BERT
𝑯𝟎 𝑯𝟏 𝑯𝟐

𝒌𝟎 𝒌𝟏

𝑯𝟎 𝑯𝟏

𝒌𝟎
Baseline

Figure 3.1: Multi-stage architectures

BoW + LTR + BERT This represents our proposed design of inserting a filtering
stage before BERT to reduce the number of candidates for further neural inferencing. We
introduce k0, same as before, the number of candidates from bag-of-words retrieval and k1,
the number of top hits of the new ranking generated by our learning to rank stage. We
notate a configuration of this design as BoW(k0) + LTR(k1) + BERT. k1 top hits from
the learning to rank stage are sent to the final BERT stage.

We utilize the advantage of d2q in our learning to rank stage as well. We use LTRd2q

to represent the setting in which the learning to rank stage extracts features from the
document expansions as an extra field.

Given this setup, the answer to RQ1 becomes an effectiveness-efficiency trade-off of
BoW + BERT vs. BoW+LTR+BERT (d2q variant), depicted in Figure 3.1. We want to
know, when the same level of effectiveness is required, how much latency can we save in
the final stage BERT by passing fewer candidates to consider. To obtain an answer, we
use the learning to rank module to extract features from documents and train a model
using supervised learning, where the goal is to maximize recall. Then by applying the
trained model to the ranked list returned by bag-of-words retrieval, we can pass more
valuable candidates to the expensive BERT reranking stage. Note that we use BERT in
our notation for convenience. BERT can be replaced with other neural transformers, such
as T5.
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3.1.2 Design used to answer RQ2

To answer RQ2, we compare the following designs of multi-stage ranking architectures.

BoW + LTR This retrieve-and-rank approach involves BoW and the learning to rank
technique. Similarly, we use k0 to denote the number of candidates returned by bag-of-
words retrieval and sent to the learning to rank stage. To make a fair comparison with the
common default setup, we choose k0 to be 1000 as well. Different from the learning to rank
stage above with lots of traditional non-neural features, we include neural features which
use scores generated by BERT and other transformers this time. Here, we introduce new
notations of different sets of features in the learning to rank module.

• LTR refers to a set of features that contains all features in term-based, score-based,
proximity-based and translation-based scores as described in Section 3.2.

• LTR w/ BERTonly represents the learning to rank module that only has one feature,
which is the BERT score feature.

• LTR w/ BERT means the model has features both in LTR and LTR w/ BERTonly,
i.e., all traditional features plus a neural transformer feature.

By comparing BoW+LTR and BoW + LTR w/ BERT, we can answer RQ2 by a
potential effectiveness improvement in BoW + LTR w/ BERT configuration. We want
to know whether given the same list of candidates, can learning to rank achieve a higher
level of effectiveness with the help from BERT. In addition, we compare BoW+BERT
vs. BoW + LTR w/ BERT to explore whether learning to rank with transformer-based
and all traditional features can outperform the standard retrieve-and-rerank pipeline with
transformers.

3.2 Learning-to-Rank Features

We split learning to rank features we implemented into five categories: term-based, score-
based, proximity-based, translation-based, and transformer-based [52]. These features are
inspired by previous studies on learning to rank [37, 12]. The summary of features is in
Table 3.1. An enumeration of all features is listed in Appendix A.
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Feature Category # Examples

Term-based 54 Max of IDF, Max of TF
Score-based 14 BM25, DFR
Proximity-based 15 Co-occurrences, BM25-TP
Translation-based 4 translation probability
Transformer-based 2 BERT

Table 3.1: Summary of learning to rank features.

3.2.1 Term-based Features

Based on previous works on learning to rank, we compute various term statistics, such
as term frequency (TF), inverse document frequency (IDF), log term probability, and
inverse collection term frequency. We also use relevance scores of each term, computed by
existing retrieval modes such as BM25, as term-based features combining different types of
statistics. We use six aggregation functions to aggregate term-based statistics for all terms
in a query: max, min, sum, mean, median, and the ratio between max and min.

3.2.2 Score-based Features

In order to further improve retrieval accuracy, we have taken document-level statistics
such as document length into consideration besides term-based statistics. We also in-
clude traditional bag-of-words retrieval models (e.g., BM25, Query Likelihood, Divergence
From Randomness) as features, since they are effective when combining term-based and
document-based statistics. Note that computing the retrieval model score is equivalent to
using sum as the aggregation function for term-based statistics.

3.2.3 Proximity-based Features

While proximity among terms captures an important relevance signal, traditional retrieval
models cannot catch the signal since they assume terms are independent and ignore their
relationships. Hence, we include features such as the counts of ordered and unordered co-
occurrence of bigrams within different window sizes, which directly capture the proximity of
query terms, i.e. the distance between terms within documents. We also include proximity-
based retrieval functions, such as SDM [29] and BM25-TP, as our features.
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3.2.4 Translation-based Features

So far, all the features we used focus on exact match between query terms and document
terms. However, semantic relationships between a query and a document usually play a
crucial role in improving retrieval effectiveness. We use a translation model IBM Model 1
[6, 5] to measure the translation probability between queries and documents, in order to
incorporate features that capture semantic relationships between a query and a document
and resolve the vocabulary gap. With the IBM Model 1 translation model, we compute
the conditional translation probability P (q|D) for a query token and a document pair,
and then take the product of all individual conditional query token probabilities as our
final query-document feature. To be specific, we adopt the following equation in our IBM
Model1 feature.

P (Q|D) =
∏
q∈Q

P (q|D) (3.1)

P (q|D) = (1 − λ)

[∑
d∈D

T (q|d)P (d|D)

]
+ λ · P (q|C) (3.2)

3.2.5 Transformer-based Features

When using transformers as standard rerankers, BERT for example, we compute the prob-
ability that the passage is relevant to a query by sending the [CLS] vector as input to a
single layer neural network. The relevance probability for a query-passage pair is calculated
independently [31]. We use these relevance probabilities as one of our feature scores, so
that the learning to rank algorithm utilizes the power of transformers. Note that this type
of features is only used to answer RQ2.

All learning to rank features are extracted at the level of tokens. Specifically, both
queries and tokens are tokenized into a multi-field representation: (1) raw the field contains
the original tokens; (2) stemmed the field consists of stemmed tokens; (3) subword the field
breaks tokens into subwords; (4) d2q the field includes stemmed tokens of docTTTTTquery
predictions (only used when d2q variants are involved). Feature extraction is performed
over all applicable fields for each query-document pair. Each field has 83 different features.
The raw and subword fields have extra four translation-based features. Transformer-based
features only work on one field since they use data from external resources and will have
no difference on each field. Table 3.1 summarizes features with examples for each feature
category.

14



Chapter 4

Experimental Setup

4.1 Data

The MS MARCO passage dataset [3] is used for training and testing. The training set
contains approximately ∼500K queries. The development and test sets contain ∼7K queries
each. Detail statistics are listed in Table 4.1. On average, each query has one relevant
passage; negative passages are taken from BM25 results that are not otherwise judged as
relevant. In order to make the training process more efficient, there is no need to use all
negative passages. The final training data contains queries with all positive passages and
20 negative passages for each query.

The MS MARCO document dataset [3] is also used for evaluation in a zero-shot manner.
Each document is segmented into multiple passages as the neural models cannot process
long documents. The sliding window strategy [36] is adopted in segmentation step. Specif-
ically, the window length is 3 sentences with a stride of 1 sentence, so that the segments
length is close to the passage length. Retrieval is performed at the segment level, as well
as the learning to rank stage and transformers. The final document score is the highest
relevance score among its segments, which is known as the MaxP method [4, 10, 1, 41].

4.2 Implementation

Anserini [51], an open-source IR toolkit built on Lucene, is used to build the indexes and
perform the first stage retrieval. To retrieve top-ranked candidate passages in the first
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Passage Document
train dev dev

# of documents 8.8M 3.2M

# of queries 502,939 6,980 5,193

Table 4.1: MS MARCO dataset statistics.

Paramete Value

num leaves 200
learning rate 0.1
min data in leaf 50
max bin 255
max depth -1
min sum hessian in leaf 0
feature fraction 1
learning rate 0.1
num boost round 1000
early stopping round 200

Table 4.2: LambdaMART Algorithm Parameters.

stage, BM25 is used. The choice of parameters (k1 = 0.82 and b = 0.68) is made to
optimize recall@1000 based on the authors’ recommendations.1 The retrieved candidate
passages are then sent to the feature extraction phase through Pyserini, which is the Python
interface of Anserini [22].

The LambdaMART algorithm, implemented in the LightGBM library, is adopted in
the learning to rank module. LambdaMART is a modified LambdaNet but replaces the
underlying neural network model with gradient boosted regression trees. Hyperparameters
are tuned to optimize recall@200 on the MS MARCO dev set using grid search. Specifically,
num leaves is 200, learning rate is 0.1, min data in leaf is 50, max bin is 255. We fix early
stopping patience to 200 and use up to 1000 trees. The full list of parameters is listed
in Table 4.2. In order to make learning to rank inference more efficient, we adopt batch
processing and multi-threading to help us leverage multi-core CPUs.

1https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
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We run the final stage transformer rerankers in the open source project PyGaggle, which
provides a gaggle of deep neural architectures for text ranking and question answering.2

We use checkpoints provided by PyGaggle for BERT-large and T5-base models, fine-tuned
on the MS MARCO passage data, as this work does not explore the final stage neural
transformers. The checkpoints for those two models have been shown to have competitive
effectiveness as baselines [34, 32, 36]. In order to align with the transformers’ requirements,
all token sequences in the batch are set to 512 tokens. If their lengths exceed 512 tokens,
we truncate the part after the 512th token.

4.3 Latency Measurement

To answer RQ1, we are interested in the trade-offs between effectiveness and efficiency.
In terms of efficiency, we focus on the per query latencies here. We have two different
servers to run the multi-stage architecture. The first server is used to run the first-stage
retrieval and the learning to rank filtering stage. This server is equipped with 2 Intel
Xeon Platinum 8160 CPUs and the index is stored on a local SSD partition. We perform
transformer inference on another 6 core server with a single Tesla V100 GPU. To note that
we exclude the processing time to load data and models and sum component results to
compute end-to-end query latency. To make the comparison stand out, we also normalize
latencies from different pipelines into a speedup value.

2https://github.com/castorini/pygaggle
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Chapter 5

Results and Analysis

In this chapter, we present experimental results. Those experiments are designed to answer
RQ1 and RQ2. By results we obtained from rigorous experiments, we can provide positive
answers to both research questions.

5.1 Results for RQ1

In this section, we are going to compare the pipelines mentioned in Section 3.1.1, which
is BoW + BERT vs. BoW + LTR + BERT (d2q variant when applicable), in the main
result tables. Furthermore, we have done a few analytical experiments on the trade-off
relationship and feature importance.

5.1.1 RQ1 results for passage ranking

In Table 5.1, evaluation results on MS MARCO passage ranking is presented. There are
various kinds of configurations based on the notation introduced in Section 3.1.1. We report
MRR@10 and NDCG@10 as our effectiveness and also latency (s/query) to show efficiency
for each type of configuration. We highlight the number N in the Table 5.1, where N is
the number of candidates sent to the most expensive neural reranking stage. As the neural
reranking stage consumes most of the total time, smaller N leads to a shorter total time.
We want to emphasize that in Table 5.1, our goal is to obtain effectiveness parity between
our proposed configuration with the baselines while having a faster inference process.
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Configuration N MRR@10 NDCG@10 Latency

(a) BoW(1k) + BERT 1000 0.379 0.441 9.63s
(b) BoW(10k) + LTR(100) + BERT 100 0.381 0.443 1.32s (7×)
(c) BoW(10k) + LTRd2q(20)+ BERT 20 0.382 0.442 0.53s (18×)

(d) BoW(1k) + T5 1000 0.380 0.443 5.60s
(e) BoW(10k) + LTR(100) + T5 100 0.382 0.445 0.92s (6×)
(f) BoW(10k) + LTRd2q(20) + T5 20 0.382 0.444 0.46s (12×)

(g) BoWd2q(1k) + BERT 1000 0.389 0.454 9.63s
(h) BoWd2q(10k) + LTRd2q(50) + BERT 50 0.389 0.454 0.83s (12×)

(i) BoWd2q(1k) + T5 1000 0.386 0.453 5.60s
(j) BoWd2q(10k) + LTRd2q(50) + T5 50 0.388 0.454 0.63s (9×)

Table 5.1: The effectiveness and efficiency of different pipeline configurations on the MS
MARCO passage ranking task. The effectiveness of the pipelines with additional LTR
modules is statistically indistinguishable from the baselines without the LTR modules.

Rows (a), (d), (g), (i) are baseline configurations, with a common N=1000. We have
six learning to rank pipelines presented. We choose the smallest N , i.e., the smallest
number of candidates that need to be sent to transformers, that can achieve the same
level of effectiveness as the baselines. The k0, which is the number of candidates from the
first-stage retrieval, is different. Although in our proposed configuration k0 is larger than
the baseline, since they only use traditional retrieval techniques, the increase in the first
and second stage ranking time is negligible, which can be explained in a detailed latency
composition table later. We conduct two-tailed paired t-tests to verify that no significant
effectiveness differences exist between results before and after inserting learning to rank as
the filtering stage. With the help of learning to rank filtering, we only need to use N from
20 to 100 for the expensive transformer inference, based on different configuration setups,
to achieve the same or higher MRR@10 and NDCG@10. We also report per query latency
for each configuration, along with a speedup value which is normalized against the latency
of baselines. From the last column, we observe that we can achieve 18 × speedup with
the help of learning to rank’s d2q variant version. We obtain 10 × speedup on average
for different configurations, and vary from 6 × to 18 × depending on the neural model
we pick and whether we use the d2q variant. Note that the BoW + BERT baseline used
here in row (a) is a more efficient version, which has adopted batch tokenization and other
engineering optimizations, compared to the version reported by Khattab and Zaharia [19].
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Model Retrieval
Feature

Extraction
LTR

Prediction
Neural

Reranking Total

(a) BoW(1k) + BERT 15 - - 9610 9630
(b) BoW(10k) + LTR(100) + BERT 120 180 40 980 1320

(c) BoW(1k) + T5 15 - - 5580 5600
(d) BoW(10k) + LTR(100) + T5 120 180 40 584 920

Table 5.2: Detailed breakdown of latency (ms/query) for a few representative pipeline
configurations on the MS MARCO passage ranking task.

Hence, the speedup values presented in Table 5.1 is compared to a well-optimized baseline.

In order to show a detailed latency composition, Table 5.2 is presented for 4 configu-
rations. Note that, we only use learning to rank without the d2q variant as an example
since d2q is applied to the corpus as a preprocessing step, which will not affect query
latency at search time. Obviously, we observe that the final stage of neural ranking takes
dominant effect in the total latency and the neural ranking run time is linearly dependent
on N , which is the number of candidates sent to neural transformers in Table 5.1. This
confirms our method to minimize N achieves better efficiency. Although increasing k0
in the first stage and also feature extraction and prediction steps in the learning to rank
filtering stage introduces overheads, this is worthwhile. By comparing rows (a) and (b) in
Table 5.2, increasing 300 ms/query overhead by introducing learning to rank and larger
k0 can help us save 9000 ms/query (30 × overhead) in the final stage. The total overhead
remains modest. The T5 model originally takes less time than BERT, hence the overhead
of learning to rank is relatively larger than BERT and the speedup is not as large as BERT.

Feature extraction is the most expensive step in learning to rank. However, the time in
feature extraction is not much related to the number of features. In fact, experiments show
that the number of features in the learning to rank module will not make a big difference
in the time of the feature extraction phase. This is because the most time-consuming part
of feature extraction is loading the forward index for each document. In the design of the
learning to rank module, no matter how many features we want, we only need to load the
document once; once the document is in cache, each single feature extraction is very fast.
For now, the implementation of feature extraction is relatively inefficient in Java code.
One potential future direction for this work would be expending more engineering effort,
for example, optimization proposed by Asadi and Lin [2], to further decrease overhead
introduced by learning to rank.
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Figure 5.1: MRR@10 as a function of N , the number of candidates reranked by the final
neural reranker, on the MS MARCO passage ranking task.

Figure 5.1 displays MRR@10 as a function of the number N on the x-axis (log scale) for
our five configurations compared to BERT. Similar to Table 5.1, N represents the number
of hits sent to the most expensive neural transformers. Since the latency of neural inference
is dominant, speedups are mostly obtained from smaller N , i.e., the smaller N normally
means less total latency. The target, which is the MRR@10 of baseline BoW(1000) +
BERT, is drawn horizontally in purple. From the figure, we can see configurations with
learning to rank as the middle filtering stage helps to achieve the target MRR@10 with
smaller N . Moreover, with the help of d2q expansions, N can be further reduced without
degradation in MRR@10. Note that in order to make learning to rank perform better, k1,
the number of hits from first stage retrieval, is increased. However, it will not affect much
in terms of efficiency, as the time in first stage retrieval is minimal compared to BERT
inference.

Figure 5.2 is another way to represent the relationship between the MRR@10 and N ,
as we used latencies for different N on the x axis. Note that we only draw a subset of
Figure 5.1 where the x axis only has latencies when N ≤ 300. This figure shows a suitable
latency range to choose learning to rank. We can see it is not worthwhile to use learning
to rank when the desired latency is less than 0.5s, since the blue curve is not much above
the red curve. It is because learning to rank itself introduces overhead. Table 5.2 shows
that learning to rank overhead is 0.34s for a query with 10k hits. When the desired latency
is only around 0.5s, there is little time left for neural inference, hence we are not able to
take many advantages from neural transformers. It is worthwhile to spend all the time
on BERT directly when the desired latency is small, as BERT is much more powerful in
terms of effectiveness compared to learning to rank. For reference, when spending 0.34s on

21



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Latency (s/query)

0.28

0.30

0.32

0.34

0.36

0.38

M
R

R
@

10
BoW d2q+LTR d2q+BERT

BoW+LTR d2q+BERT

BoW d2q+BERT

BoW+LTR+BERT

BoW+BERT

Target: BoW(1000)+BERT

Figure 5.2: MRR@10 vs. reranking latency on the MS MARCO passage ranking task.

BoW+LTR, the MRR@10 is 0.28; on the other hand, we can reach MRR@10 0.28 when
running BoW+BERT in 0.43s.

So far, all the tables and figures focus on the condition when we reach effectiveness
parity. Figure 5.3 uses BoW+LTR+BERT configuration as an example to show possible
trade-offs between effectiveness and efficiency. Note that speedups are normalized by using
BoW(1000) + BERT as the reference point. There will be times that a faster processing
speed is desired while the highest accuracy is not necessary. From figure 5.3, we can see
various possible speedups with their corresponding MRR@10. For example, we can achieve
0.36 MRR@10 using only N = 20 as our setting and enjoy 17 × speedup without using
d2q (see Table 5.1).

As mentioned in Chapter 3, there are four categories of features used in the experiment
to answer RQ2. We are interested in how much contribution each feature category makes to
the final effectiveness, hence we conduct ablation experiments to investigate the importance
of each category and list results in Table 5.3. From the table, we can see that the score-
based feature category is the least important one. A possible explanation is that score-based
features have a lot of redundant information which is also revealed in term-based features.
Score-based features and term-based features are only performing different aggregation
functions on the same raw signals, such as term frequency, document frequency, etc. As
score-based features include only summation on signals and term-based including max,
min, mean, median and the ratio between max and min, term-based features have a larger
impact on the learning to rank.

Obviously, translation-based features have the dominant effect in the model. Without
translation-based features, the effectiveness drops the most while the translation-based
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Figure 5.3: MRR@10 vs. speedup for different N , the number of candidates reranked by
the final neural reranker, on the MS MARCO passage ranking task.

category has the least features. All other three feature categories are computed based on
either exact match between query and document or static signals in query and document.
Translation-based features support semantic matching by modelling alternative expressions
of query terms so that a document can match a query term that does not appear in the
document, i.e., solve the problem known as the vocabulary gap.

Furthermore, we have used built-in functions in the LightGBM library to analyze the
importance of each feature. Specifically, the function ranks importance by the total number
of splits and the total gain of splits. Aligning with the result from the ablation experiments,
all translation-based features are placed in the top 10 features with the highest number of
splits. This reconfirms that it is important for our module that translation-based features
bridge the gap between queries and documents by semantic matching. Also, traditional
bag-of-words retrieval models still form the base of learning to rank, since the feature with
the highest total gain of splits is the GL2 model from the Divergence From Randomness
family of scoring functions.

5.1.2 RQ1 results for document ranking

To examine the generality and robustness of our proposed configuration, we also applied
our learning to rank pipeline on the MS MARCO document ranking task. Note that
all experiments are conducted in a zero-shot manner. We split documents into segments
that are 3 sentences long with a stride of 1 sentence. All the middle steps, from first stage
retrieval, learning to rank filtering to neural ranking, are performed on segments. The final
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Configuration Recall@100 MRR@10

Full Model 0.781 0.382
− Score-based 0.780 (−0.09%) 0.381 (−0.24%)
− Term-based 0.771 (−1.27%) 0.379 (−0.74%)
− Proximity-based 0.767 (−1.76%) 0.379 (−0.96%)
− Translation-based 0.743 (−4.82%) 0.371 (−3.01%)

Table 5.3: Feature importance ablation results on the MS MARCO passage ranking task.

Configurlation N MRR@100 NDCG@10 Latency

(a) BoW(1k) + BERT 1000 0.3658 0.4252 9.35s
(b) BoW(10k) + LTR(100) + BERT 100 0.3661 0.4288 1.32s (7 ×)

Table 5.4: The effectiveness and efficiency of different pipeline configurations on the MS
MARCO document ranking task. The effectiveness of the pipelines with additional LTR
modules is statistically indistinguishable from the baselines without the LTR modules.

stage transformers and learning to rank model are trained on MS MARCO passage only.
We use MaxP [4, 10, 1, 41] at the very last step to evaluate effectiveness. We still achieve
the same level of desired speedups as experiments on passages without lower MRR@10.

Results are shown in Table 5.4, which is organized in the same structure as Table
5.1. Recall again that we aim to achieve effectiveness parity with respect to the baseline
(BoW+BERT in this case). Due to the configuration of d2q, this time we are unable
to append suitable d2q predictions to segments, hence the speedup is not as fast as re-
sults in the passage experiment. However, for configuration without the d2q variant,
BoW+LTR+BERT can obtain the same level of speedups as in passage ranking. This
confirms that our learning to rank module is extendable to other datasets.

5.2 Results for RQ2

In this section, we are going to compare pipelines mentioned in Section 3.1.2, which is BoW
+ LTR vs. BoW + LTR w/ BERT and BoW + BERT vs. BoW + LTR w/BERT, on the
MS MARCO passage and document ranking tasks in the main result tables. Furthermore,
we have analyzed feature importance on new proposed learning to rank models.
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MRR@10

Baselines

(a) BoW + LTR 0.248
(b) BoW + BERT 0.365
(c) BoW + TCT-ColBERT 0.352

Our configurations

(d) BoW + LTRw/BERTonly
0.373

(e) BoW + LTRw/BERT 0.378 (+ 52%)∗

(f) BoW + LTRw/TCT−ColBERTonly
0.348

(g) BoW + LTRw/TCT−ColBERT 0.355 (+ 43%)∗

Table 5.5: The effectiveness of different pipeline configurations on the MS MARCO passage.
*Relative increase percentages are calculated with respect to row (a).

5.2.1 RQ2 results for passage ranking

Table 5.5 shows results for different configurations on MS MARCO passage. Row (a) serves
as the baseline which is having learning to rank with only traditional features as a reranker
on top of bag-of-words retrieval. Note that our goal is to have our proposed learning to
rank model with neural features obtaining higher effectiveness, compared to the baseline.
We also list rows (b) and (c) as references for results from standard transformer reranking
experiments, specifically results for passages are found in the TCT-ColBERT paper [24].
Rows (b) and (c) serve as baselines of standard retrieve-and-rerank with transformers.
Rows (d) - (g) are our proposed configurations with different sets of features. Specifically,
row (d) is the experiment result of learning to rank with only the BERT-based feature in
the feature set; while row (e) contains all other traditional features. Rows (f) and (g) are
organized in a similar manner as (d) and (e), except that they interact with TCT-ColBERT
scores.

We report MRR@10 for passage and calculate the percentage increase in effectiveness
for rows (e) and (f) with respect to corresponding traditional learning to rank baselines.
We use row (a) as our baseline to calculate the increase percentage in effectiveness for
both row (e) and (g). We observe that the BERT-based feature helps the learning to rank
module increase its effectiveness by 52% in passage ranking. A 43% increase in MRR@10
for incorporating TCT-ColBERT can be seen. The results from these two rows confirm
that transformer-based features can bring significant benefits to the effectiveness of learning
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Figure 5.4: Feature importance analysis for learning to rank with BERT scores based on
split

Figure 5.5: Feature importance analysis for Learning to rank with BERT scores based on
gain
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MRR@100

Baselines

(a) BoW + LTR 0.309
(b) BoW + BERT 0.370

Our configurations

(d) BoW + LTRw/BERTonly
0.366

(e) BoW + LTRw/BERT 0.372 (+ 20%)∗

Table 5.6: The effectiveness of different pipeline configurations on the MS MARCO docu-
ment. *Relative increase percentage is calculated with respect to row (a).

to rank. Furthermore, by comparing rows (b) and (e), there is little increase by adding
traditional features to the learning to rank model with transformer-based features, which
illustrates that the contribution from traditional features is minimal when the transformer-
based features are present.

We show the result of feature importance analysis using built-in functions in LightGBM
in Figures 5.4 and 5.5. Only the top 10 features with the most impact are presented in
figures. In Figure 5.4, LightGBM ranks the importance by the number of splits for that
feature, which is the x axis. In other words, more splits mean that the feature is used
more frequently in the model, hence the feature is more important. In Figure 5.5, the total
gains of splits that use the feature determine the importance. Both figures agree that the
BERT-based feature takes the dominant position in the learning to rank model.

5.2.2 RQ2 results for document ranking

Table 5.6 shows results for experiments on MS MARCO document and is organized in a
same manner as Table 5.5. We want to emphasize again that we adopt sliding window and
MaxP strategy to split document corpus into segments, i.e., learning to rank model and
the final neural models are all trained on MS MARCO passage only; also learning to rank
inferencing and neural inferencing are performed on the segment level.

We can see similar results as in passage. Adding traditional features on learning to
rank model with neural features helps a little in effectiveness; on the other hand, adding
BERT feature on top of traditional features increases 20% in terms of retrieval effectiveness.
Though the increase is not as competitive as results for passage, it is still significant. A
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possible explanation is that since we did not train a learning to rank model on MS MARCO
document, the strength of learning to rank model is weaker, hence less impressive increase
in effectiveness.
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Chapter 6

Conclusion and Future Work

When BERT was published in 2018 for the first time, it immediately impressed researchers
in the IR and NLP fields with its superior retrieval ability. By then, BERT became the state
of the art and led the major research direction in recent years. Many research works have
demonstrated that the “retrieve-and-rerank” approach with transformers largely increased
the retrieval effectiveness compared to traditional, non-neural ranking methods.

Meanwhile, expensive costs come along with neural approaches as transformers are
intrinsically complicated. Growing costs impede the usage of BERT in real-world appli-
cations. Also, the light of BERT is so bright that it covers all the old but fairly effective
traditional ranking approaches. Some thrown-away methods are still valuable and worth
further exploration. Based on these concerns, this thesis raises two research questions. The
RQ1 is that is it possible to use learning to rank, which was the most popular technique
before the arrival of BERT, as a filtering stage, so that efficiency can be increased by send-
ing only the most promising candidates to expensive BERT reranker. While the RQ2 is
interested in if BERT-based features can still benefit learning to rank approach in terms
of effectiveness.

To answer RQ1, this thesis performs experiments with BoW+LTR+BERT pipelines
on MS MARCO passage and document. It turns out that with this BoW+LTR+BERT
configuration, we can achieve an up to 18 × speedup while maintaining the same level
of accuracy. Also, by using the BoW+LTR+BERT configuration, we can control the
effectiveness-efficiency trade-offs by choosing the number of candidates which are sent to
BERT.

The answer for RQ2 is also “Yes”. By adding transformer-based features in the learning
to rank technique, we observe a significant increase in effectiveness, which is up to 52%.
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Moreover, using learning to rank with transformer-based features brings us a little increase
in effectiveness compared to using transformers alone.

These answers demonstrate that there are still potential roles for the learning to rank
technique, even if it is “out-of-fashion”, in the age of muppets dominated by transformers
and other neural models. Our field should not open a new page without remembering our
history.

There are a few potential directions for future works. The first is to extend experiments
to more available datasets. Also, other researchers have proposed acceleration approaches
directly dealing with neural models. As this thesis proposes to resolve the efficiency problem
in an orthogonal way to the approach in RQ1, we can try to combine our method with
those approaches to accumulate speedups.
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Appendix A

Full List of LTR Features

Term-based

Sum of ICTF
Average of BM25 Average of DFR GL2 Average of DFR in expB2 Average of DPH Average of ICTF
Median of BM25 Median of DFR GL2 Median of DFR in expB2 Median of DPH Median of ICTF
Max of BM25 Max of DFR GL2 Max of DFR in expB2 Max of DPH Max of ICTF
Min of BM25 Min of DFR GL2 Min of DFR in expB2 Min of DPH Min of ICTF
MaxMinRatio of BM25 MaxMinRatio of DFR GL2 MaxMinRatio of DFR in expB2 MaxMinRatio of DPH MaxMinRatio of ICTF
Sum of IDF Sum of Normalized TF Sum of TF
Average of IDF Average of LMDir Average of Normalized TF Average of TF Average of TFIDF
Median of IDF Median of LMDir Median of Normalized TF Median of TF Median of TFIDF
Max of IDF Max of LMDir Max of Normalized TF Max of TF Max of TFIDF
Min of IDF Min of LMDir Min of Normalized TF Min of TF Min of TFIDF
MaxMinRatio of IDF MaxMinRatio of LMDir MaxMinRatio of Normalized TF MaxMinRatio of TF MaxMinRatio of TFIDF

Score-based

SCS Probablity Sum Doc Size Query Length Query Coverage Ratio
Unique Term Count in Query Matching Term Count Normalized TFIDF BM25 LMDir
DFR GL2 DFR in expB2 DPH TFIDF

Proximity-based

UnorderedSequentialPairs with gap 3 OrderedSequentialPairs with gap 3 UnorderedQueryPairs with gap 3 OrderedQueryPairs with gap 3 BM25-TP
UnorderedSequentialPairs with gap 8 OrderedSequentialPairs with gap 8 UnorderedQueryPairs with gap 8 OrderedQueryPairs with gap 8 Proximity
UnorderedSequentialPairs with gap 15 OrderedSequentialPairs with gap 15 UnorderedQueryPairs with gap 15 OrderedQueryPairs with gap 15 TP distance

Translation-based

title IBM Model1(raw field) url IBM Model1(raw field) body IBM Model1(raw field) body IBM Model (subword field)

Muppet-based

BERT TCT ColBERT
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