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Abstract

Quantum algorithm development is a famously difficult problem. The lack of intuition
concerning the quantum realm makes constructing quantum algorithms which solve partic-
ular problems of interest difficult. In addition, modern hardware limitations place strong
restrictions on the types of algorithms which can be implemented in noisy circuits.

These challenges have produced several solutions to the problem of quantum algorithm
development in the modern Near-term Intermediate Scale Quantum (NISQ) Era. One of
the most prominent of these is the use of classical machine learning to discover novel quan-
tum algorithms by minimizing a cost function associated with the particular application
of interest.

This quantum-classical hybrid approach, also called Variational Quantum Algorithms
(VQAs) has emerged as a major interest for both academic and industrial research due to its
flexible framework and existing applications in both optimization and quantum chemistry.

What is still unclear, is whether these algorithms will work at scale in the noisy training
environment of the NISQ era. This is mainly due to the phenomenon of exponentially
vanishing training gradients, commonly referred to as the Barren Plateaus problem, which
prevents training of the classical machine learning model.

Recent results have shown that some types of cost functions used in training result in
Barren Plateaus, while others do not. This cost function dependence of barren plateaus
has implications for the entire field of VQAs which appear to be relatively unexplored thus
far.

In this thesis I revisit a 2018 paper my collaborators and I published, which established a
new Variational Quantum State Diagonalization (VQSD) algorithm, and demonstrate that
this algorithm’s cost function will encounter a Barren Plateau at scale. I then introduce a
simple modification to this cost function which preserves the function of VQSD while also
ensuring trainability at scale.
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Chapter 0

Mathematical Preliminaries

Here we provide the key definitions and terminology which are assumed as background in
the main document.

Note that I do not claim ownership over any of the following well-known ideas. I simply
present them here for the reader’s convenience.

0.1 Complex Vector Spaces and Useful Identities

Throughout this work, we are dealing with quantum states which represent physical, nat-
ural systems at their smallest scale (photons, electrons, atoms, etc.). The mathematical
foundation upon which all of this is described assumed familiarity with complex numbers

z = α + βi = e−iθ ∈ C, where θ ∈ [0, 2π] and i =
√
−1

The role of complex numbers in quantum is well beyond the scope of this thesis, but
one feature that imaginary ‘phases’ provide is the ability of quantum states to undergo
interference, which is a core feature of how quantum information differs from its classical
counterpart.

A vectorspace over such a field of complex numbers is called a Hilbert Space and
is denoted HN where N is the dimension of the space. Vectors in this Hilbert space
representing quantum states can transform into new states by multiplying the appropriate
matrix/linear transformation M .
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Some more miscellaneous definitions and identities from these areas which we do not
assume are known are as follows:

1. Exponential of an operator A

e−iA =
∞∑
k=0

Ak

k!

2. Tensor product over addition

M ⊗ (A+B) = M ⊗ A+M ⊗B

0.2 Hello 〈Q|uantum〉

This is a basic introduction to quantum mechanics, the notation we use throughout the
thesis, as well as the core concepts and principles which are essential to following sections.

0.2.1 〈Bra|Ket〉 Notation

First we start with bra/ket notation. Fundamentally, this notation enables us to represent
column vectors |〉, row vectors 〈| and the interactions between them.

We can show how a more traditional column vector notation can be equivalently de-
scribed as a quantum state

~v ≡ |v〉

row vectors can be similarly described using 〈v|. This notation becomes visually useful
when we take inner products of two states |ψ〉 and |φ〉 which we denote 〈ψ|φ〉 ∈ C.

We can use this notation to denote the essential probabilities of various outcomes
represented by |ψ〉 - we illustrate this with the following example of a quantum bit or
qubit:

We define the qubit |ψ〉 = a |0〉 + b |1〉 ∈ H2 as the smallest possible piece of quantum
information. We can represent this in vector form by identifying

|0〉 ≡
[
1
0

]
, |1〉 ≡

[
0
1

]
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then

|ψ〉 =

[
a
b

]
.

0.2.2 Baby Statistics

The state |ψ〉 encodes a probability distribution over the outcomes |0〉 and |1〉. We can think
of |ψ〉 as representing the probability of two mutually exclusive (orthogonal) outcomes, such
as a coin coming up heads |0〉 or tails |1〉. We represent the probability of heads with the
following equation

Pr(0) = | 〈0|ψ〉 |2 = |a|2.

Similarly, the probability of measuring tails is Pr(1) = | 〈1|ψ〉 |2 = |b|2, here |b| denotes
the absolute norm of the complex number b, where the absolute norm is defined by

|z| = (α + βi)(α− βi) = α2 + β2.

Given the probabilistic nature of quantum, our objective in quantum computing may
either be to produce a particular measurement outcome (such as heads), or to encode
the numerical output of our computation by storing it in the probability (e.g |a|2) of a
particular outcome, or in the average of the data we chose to observe in (or extract from)
the quantum state |ψ〉.

To see how we may calculate average (or expectation) values of data extracted from
the quantum state |ψ〉 - consider a concrete example:

Consider for a moment an experiment where we prepare an electron in a laboratory by
putting the electron in a box where the electron is exposed to an energy field (Hamiltonian)
which we represent as the matrix H. For the purposes of this example, imagine that
the energy of the electron is in a superposition of three possible measurement outcomes
|ψ〉 = c1 |E1〉 + c2 |E2〉 + c3 |E3〉. This is simply a qubit with one extra level (a qutrit)
where the measurement outcomes correspond to energy levels rather than heads or tails.
The energy outcome |Ei〉 is an eigenvector of the Hamiltonian H and the energy Ei we
measure is its eigenvalue.
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If we measure the energy of the electron we will likely get a different answer Ei each time
according to the relative size of the probabilistic weights |c1|2, |c2|2, |c3|2. If we want to learn
more, we may prepare the same experiment many times and make multiple measurements
to collect data which would allow us to approximate these weights. In this context, we
may define the average energy in terms of the state by applying the Hamiltonian H to the
state |ψ〉 and projecting the result back onto |ψ〉 via

〈H〉 ≡ 〈ψ|H |ψ〉
= (c†1 〈E1|+ c†2 〈E2|+ c†3 〈E3|)(c1H |E1〉+ c2H |E2〉+ c3H |E3〉)
= (c†1 〈E1|+ c†2 〈E2|+ c†3 〈E3|)(c1E1 |E1〉+ c2E2 |E2〉+ c3E3 |E3〉)
= E1|c1|2 + E2|c2|2 + E3|c3|2.

Using this formula, we can then input our approximations of |c1|2, |c2|2, |c3|2 to calculate
the average energy 〈H〉.

0.2.3 Normalization

Now we are ready to state a core axiom of quantum. If the state |ψ〉 can be understood as
containing the relative probabilities of different measurement outcomes - from a statistical
perspective we know that the sum of the probabilities of each possible outcome must be
one. We call this normalization. Revisiting our qubit |ψ〉 = a |0〉 + b |1〉 from before,
normalization implies Pr(0) + Pr(1) = |a|2 + |b|2 = 1. In general, if {|0〉 , |1〉 , ..., |d− 1〉}
is our orthonormal basis for Hd and we have the quantum state |ψ〉 =

∑d−1
i=0 ci |i〉 then

normalization requires

〈ψ|ψ〉 =
d−1∑
i=0

|ci|2 = 1.

This normalization needs to hold even when our quantum state evolves in time

|ψ〉i
M−→ |ψ〉f

and as a result we must constrain the types of valid matrices M which can evolve our state.
We require that the state evolution matrix M be unitary, i.e.
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MM † = M †M = I

Where I is the identity matrix. A corollary of this property is that, given quantum
states |ψ〉 , |φ〉 applying the state transformation M to produce M |ψ〉 ,M |φ〉 has no effect
on their inner product

〈ψ|M †M |φ〉 = 〈ψ|φ〉 .

We can see that this preserves normality when we consider the case where |φ〉 = |ψ〉 as
no matter the evolution M applied, provided M is unitary it will always be the case that

〈ψ|M †M |ψ〉 = 〈ψ|ψ〉 = 1.

0.3 Quantum Computers and Quantum Algorithms

Now that we have established the fundamental notation inherent to quantum, we are
ready to introduce the concept of a quantum computer as well as the broader subject of
this thesis: quantum algorithms.

A quantum computer can be defined as a device containing a number of packets of
quantum information. Often and for the purposes of this thesis, those packets of quantum
information are the two-level subsystems we introduced in the previous section: qubits.

In general though, quantum computers can be built from subsystems with any number
of levels. If all components of the quantum computer have d levels, then we call these
components qudits and the computer is referred to as a qudit quantum computer. The
state of an arbitrary qudit was given briefly in the previous section as

|ψ〉 =
d−1∑
i=0

ci |i〉 .

Whether we store information in qubits or qudits, this alone does not grant our de-
vice the status of quantum computer. Rather quantum computers are characterized by
their ability to both store and manupulate quantum information via some given quantum
algorithm.
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0.3.1 Building Quantum Algorithms with Quantum Gates

In order to understand the way we will discuss quantum algorithms in future sections,
here I briefly outline the ‘atomic structure’ of quantum algorithms in terms of a few much
simpler quantum operations.

Each quantum computer may source it’s qubits or qudits from a different technology.
The details of these technologies is far beyond the scope of this thesis, but suffice to say that
each different kind of quantum computer will interact with quantum information differently.
These differences translate to the way each computer can compile, or ‘articulate’ quantum
algorithms via its own ‘native alphabet’ A.

These native gate alphabets are sets which contain more fundamental quantum opera-
tions called quantum gates. It is for this reason we will use the terms alphabet and gate
set interchangeably.

Figure 1: Any fully capable, or universal, gate alphabet must be able to perform all three
fundamental quantum operations Entangelent, Phase rotation, and Superposition.

What are these fundamental gates? We will introduce an example of a particular
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native gate alphabet by expanding on the fundamental opration underlying all classical
computing.

Classical computers make use of logical circuits (NOT, OR, AND) to construct basic
arithmetic circuits and the more complex programs and algorithms for which they are now
known. These fundamental operations act on classical binary {0, 1} and can be represented
as extensions of a single circuit flip, or NOT operation controlled on zero other bits (NOT),
one other bit (OR), and two other bits (AND). You can see this principle in practice and
try your hand at building classical circuits here [1].

This NOT gate, which we will denote X, is the first gate which we will add to our
alphabet A. We define the action of X via it’s effect on the basis vectors |0〉 , |1〉 ∈ H2

X |0〉 = |1〉
X |1〉 = |0〉

If we recall the vector form of our basis, then X takes on the matrix form

X =

[
0 1
1 0

]
.

Next we add the uniquely quantum gates which make quantum computation possible.
While different gate sets vary in their details, all universal gate sets contain three funda-
mental quantum operations: Superposition (H), Entaglement (CX), and Phase Rotations
(T) 1. An example of such operations for universal quantum computation is the Clifford
+ T set:

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 e−iπ/8

]
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Using these, we can construct another important family of quantum gates called the

Paulis:

7



I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, T 4 = Z =

[
1 0
0 −1

]
, Y = iXZ =

[
0 −i
i 0

]
Using these basic components and quantum states composed of tensor products of

qubits |φ〉 = |ψ〉1⊗|ψ〉2⊗ ...⊗|ψ〉n. We can endeavor to construct quantum algorithms by
acting on individual qubits with any of the above 2× 2 or pairs of qubits using the 4× 4
entangling gate CX.

8



Chapter 1

Introduction

This thesis investigates the efficacy of using machine learning models to discover new quan-
tum algorithms. These quantum algorithms are called Variational Quantum Algorithms
(VQAs). While these represent an exciting and relatively new approach to quantum algo-
rithm development, this field remains highly heuristic in nature and general results which
guarantee the efficacy of these methods at scale are only beginning to emerge [2]. In
particular, VQAs are vulnerable to exponentially vanishing cost function gradients which
prevent training at scale. This phenomenon, also called the Barren Plateaus Problem,
poses a major challenge to every VQA.

This thesis starts off with an introduction to the general problem of quantum algorithm
development and to the near-term infeasibility of fault-tolerance, thereby setting the stage
for the NISQ Era and VQAs. Chapter 1 discusses the fundamentals of VQAs and introduces
the problem of barren plateaus along with recent results which guarantee trainability for
VQAs with local cost functions. Chapter 2 applies these results to my own variational
quantum algorithm for density matrix diagonalization, called VQSD. Finally, Chapter 3
discusses next steps: How I intend to apply this same analysis to the entire field of VQAs.

1.1 Why is it so Hard to Write Quantum Algorithms?

Developing new quantum algorithms is hard. While the concept of quantum computation
was first proposed by Richard Feynman in the 1980s [3], we didn’t see the first example of
a quantum algorithm which demonstrated an exponential advantage solving a problem of
major interest until Peter Shor published his factoring algorithm in the mid nineties [4].
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In the years since the publication of his landmark factoring algorithm, the general
challenge of developing quantum algorithms for a given problem of interest has frustrated
even Shor [5]. In this paper, which Shor titled Why haven’t more quantum algorithms
been found?, the master of factoring laments that so few algorithms have been discovered.
Aside from worrying that there may not be very many use cases where quantum computers
demonstrate a speedup, Shor’s main explanation for the challenge is our lack of quantum
intuition.

That is, intuition about how the unique properties of the quantum world can be lever-
aged to produce algorithms with advantage over their classical counterparts. Specifically,
we need to develop intuition about the role that uniquely quantum phenomena, like inter-
ference, entanglement, and superposition play in speeding up computation.

The counter-intuitive nature of the quantum realm has made it difficult for the first
generation of researchers since Shor to design new quantum algorithms. Many algorithms
have been found since Shor’s algorithm, but it still remains a very high bar to clear if a
person wants to start writing quantum algorithms.

At this stage, it is important to contextualize that quantum computing is still very
young as a discipline and that this problem need not be permanent. The roughly 100
years since the development of quantum mechanics in the first Quantum Revolution has
been characterized by its own experts struggling to accept quantum’s “Spooky action at a
distance” in the case of Einstein [6], and the development of a research culture insisting that
students “Shut up and calculate” rather than spend time contemplating central questions
to which the experts of the field still have no good answers. Quantum works, even if
nobody intuitively understands it.

In contrast to quantum mechanics, quantum computing provides a fundamentally new
opportunity for new generations to advance beyond stale old debates and toward radical
new understanding of the quantum world. This opportunity comes from the fact that
quantum computing enables us to study the core features of quantum in a new context -
that of information and computation rather than position and mechanics.

This optimism must be tempered by the reality that thus far, general quantum intuition
for quantum algorithm development still largely eludes researchers. Quantum algorithm
development becomes significantly more challenging when the noise of real-world imple-
mentations is considered.

Development of the first generation of quantum algorithms which followed Shor was
conducted under the assumption that noise could be neglected provided robust error cor-
rection, with algorithms implemented on so-called ‘fault tolerant’ devices. More modern
quantum algorithms will require a clear-headed assessment of the feasibility of this fault
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tolerance and strategies for error mitigation in the absence of comprehensive error correc-
tion.

1.2 The in-feasibility of fault tolerance

Fault tolerant quantum computation is enabled by what are called ‘error correction’ tech-
niques. Although is it beyond the scope of this thesis to dive into the field of error correc-
tion, we introduce the term in order to discuss the feasibility of building the long-awaited
fault tolerant quantum computer. A quantum computer which achieves fault tolerance has
done so by implementing error correction at a sufficient scale that we are able to perform
quantum gate operations effectively noiselessly.

The idea behind error correction is to create a noise-free logical qubit1 using many
physical qubits subject to noise which are able to successfully correct errors to create the
noise-free environment in which the logical qubit lives. This has the unfortunate side effect
of exploding the number of physical qubits required to run the computer, with the specific
ratio of noisy to logical qubits depending heavily on the quality of the device (error rate)
and type of error correction used. In order for error correction to lead to fault tolerance,
the error rates of the physical hardware needs to be below a set threshold determined by
the error correcting code in question. The resource analysis which follows will focus on
how long the algorithm takes to run and the number of qubits or the size of the device
needed.

How feasible then is fault tolerance? Let us briefly examine the resources, both in
device size and calculation time, to perform the two most famous quantum algorithms:
Shor’s factoring algorithm [4] and Grover’s search [7].

First we consider Shor’s quantum factoring algorithm.

How practical is factoring? In 2013 Devitt et al set out to answer this question [8]. It
is important to point out that any answer to this question will be entirely dependent on
our assumptions about device quality and what type of error correction we are employing
- for the assumptions relevant to this study please see [8]. These researchers applied Shor’s
algorithm to its primary application: breaking RSA encryption - which is the basis of
modern information security online. Breaking RSA requires factoring a ∼1024-bit number.
In this study, it was determined that, after accounting for all realistic factors which arise
when implementing Shor’s algorithm fault-tolerantly, this calculation will require 2.3 years

1For all basic definitions see 0
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and 1.9 billion physical qubits to complete. Although we note that this figure has recently
been improved on, now requiring only 8 hours and 20 million noisy qubits [9] - this final
metric still presents a serious challenge for modern engineers as the largest devices of today
have ∼ 100.

Next we turn to Grover’s search.

In 2016, Amy et al. performed a cost analysis on the resources required to use Grover
on attacking cryptographic schemes like SHA-256 and SHA3-256 [10]. It was found that
the
√
n query run time vastly underestimates the cost of implementing this algorithm. All

fault tolerant quantum computations assume some error correction scheme, here researchers
assumed a particular model called a surface code. It is here that the resource requirements
begin to stack up.

Let’s consider SHA-256. Researchers in [10] found that for this task Grover would
require 2153.8 ≈ 1.98 ·1046 cycles to complete. These cycles are algorithm subroutines which
clean up the noise to preserve fault tolerance and are repeated throughout the algorithm.
In [11] a cycle time of 200ns/cycle was deemed reasonable for surface code computers. We
may then calculate the run time of this algorithm as 2153.8cycles × 200 · 10−9s/cycle =
3.98 · 1039s = 1.26 · 1032 years - keeping in mind the age of the universe is 13.8 · 109, we see
this is beyond infeasible.

It is important to note that both of the above examples simply provide an estimate of
resources with lots of room for improvement. Despite this, the estimated 1.9 billion qubits
required for factoring, or the calculation time of 9 · 1021 times the age of the universe to
attack SHA-256 with Grover puts the feasibility of fault-tolerance in perspective - fault-
tolerance is just not feasible until we see many many orders of magnitude
improvement on multiple fronts.

We can’t wait for fault tolerance. Instead, we look to prepare the next generation of
quantum algorithms to suit those devices which can be reasonably built over the next few
years which do not rely on error correction.

These are the constraints which give rise to the modern era of Noisy Intermediate Scale
Quantum devices.

Welcome to the NISQ Era.
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Chapter 2

Quantum Algorithms of the NISQ
Era

So where does all this leave us? The famously hard problem of developing quantum algo-
rithms becomes confined by the limitations of modern hardware. If we are to design useful
quantum algorithms for the modern era, we are going to have to take a more realistic
approach. If the number of qubits n is difficult to scale up, what is the smallest n that
still gives us a quantum advantage over classical computers?

The answer to this question is very much a moving target, and will have changed in the
time between when these words were written and when they were read. Quantum comput-
ers must compete alongside rapidly advancing supercomputers and the field of quantum
computing is many decades younger than its classical counterpart. However, in 2018 Google
made a claim to the first quantum computation which surpassed the capabilities of a mod-
ern supercomputer with a 52 qubit chip called Sycamore, which was the largest device of
its time [12].

This value has already been greatly improved upon, but a realistic range of near-term
values might be 50− 150 noisy qubits. This is derived from the values that John Preskill
gave in 2018, right around the time when Sycamore was being built [13]. In his widely
popular paper, Preskill introduced the term Noisy Intermediate-Scale Quantum (NISQ) to
refer to our current phase of quantum technological development.

In this modern era, with our picture of 50 − 150 noisy qubits in mind, we are ready
to discuss a new paradigm for quantum algorithms which combines quantum circuits with
classical optimization/machine learning.
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2.1 Variational Quantum Algorithms

The fundamental recognition that modern quantum hardware is too noisy to handle long
calculations gives rise to a very useful question. How might we exploit the availability of
relatively error-free classical computers to assist quantum computation?

Enter Variational Quantum Algorithms (VQAs), also called Hybrid Quantum-Classical
Algorithms. This class of NISQ algorithms employs a hybrid approach to solving an
optimization problem. Broadly speaking, in these algorithms the quantum computer is
fed a set of classical parameters specifying the quantum algorithm to perform. The output
of this parametrized algorithm is then assessed via a predefined cost function such that
the minimum of the cost function corresponds to the correct output. Until this minimum
is found, the intermediate value of the cost function is fed into a classical optimizer, such
as gradient descent, which updates the parameters closer to the optimal value and feeds
those back into the quantum computer to try again. The quantum advantage of this
method comes from using the quantum computer to evaluate cost functions which are
infeasible/inefficient to compute on a classical computer. The appeal of VQAs is that,
in principle, they minimize the complexity of the quantum computation by offloading as
much of the computation to the classical computer as possible. A more detailed overview
of VQAs can be found here [14].

We now turn our attention to two of the earliest and most famous VQAs which launched
the field due to their near-term applications in quantum chemistry and optimization, re-
spectively.

2.1.1 Variational Quantum Eigensolver (VQE)

When Richard Feynman laid out his idea of a quantum mechanical computer in 1986,
an important question is what could we use it for? [3]. Feynman’s reasoning was that a
quantum computer should have a natural advantage in simulating quantum systems found
in nature since nature itself is quantum.

In 2014, a NISQ algorithm was developed for this application using the hybrid paradigm
we sketched out at the start of this chapter [15]. Where historically properties of molecules
in quantum chemistry were determined by solving the Schrödinger equation, this approach
becomes intractable for systems with more than 2-3 atoms due to exponential scaling of
system size. Quantum Phase Estimation (QPE), a quantum algorithm developed in the
pre-NISQ era of assumed fault-tolerance, can be used to calculate eigenvalues of eigenvec-
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tors (including the ground energy eigenvalue) but as we have discussed, this approach is
infeasible for the NISQ era.

This is the problem solved by the Variational Quantum Eigensolver (VQE). Where
classical approaches all require exponential resources simply to represent the quantum
states involved in computation, VQE is able to represent these using only linear resources
by storing the quantum states naturally as qubits.

The goal of VQE is to calculate the ground state eigenenergy of a given Hamiltonian
H. As a quick reminder, the Hamiltonian of a system characterizes the energy landscape
unique to that system. We represent the Hamiltonian as a sum of Paulis which we denote
using the following indices P = {I,X, Y, Z} = {σI , σX , σY , σZ} = {σ1, σ2, σ3, σ4}. We
decompose the Hamiltonian H into a series of sums over increasing numbers of Paulis

H =
∑
iα

hiασ
i
α +

∑
ijαβ

hijαβσ
i
ασ

j
β + ...

where we sum over individual Paulis, pairs of Paulis, etc. Here the Roman indices
{i, j, ...} denote the qubit and the coefficients h ∈ C. The elipses in the sum indicate
additional terms involving sums with three, four, etc.

The cost function of VQE is obtained via an efficient means for calculating the expected
value of the Hamiltonian. We have

〈H〉 = 〈λ|H|λ〉 =
∑
iα

hiα〈σiα〉+
∑
ijαβ

hijαβ〈σ
i
ασ

j
β〉+ ...

Each of these individual expectation values can then be directly calculated in parallel
by measuring each qubit incurring a constant depth, a major reduction in complexity rel-
ative to QPE. Because expectation values require multiple samples to calculate precisely,
this basic circuit will have to be repeated O(|hmax|2Np) times in order to estimate indi-
vidual expectation values with p precision and where N is the number of terms in the
decomposition.

Assuming the Hamiltonian has only polynomially many terms in its Pauli representa-
tion, the above method is an efficient method for calculating expectation values. Although
this does restrict the types of Hamiltonian which can be analyzed with VQE, authors of
the original algorithm noted several Hamiltonians of this type which are of interest [15].
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Of course, in order for gradient descent to work, a gradient has to be present. In
2018, a team of researchers at Google showed that for entire families of quantum circuits,
the gradient vanishes exponentially with the number of qubits involved [16]. Research on
circumventing this problem is ongoing with some important recent breakthroughs this year
(2021). I will get to these a little later, but for the time being it suffices to be aware of
this problem and to consider gradient-free optimization schemes.

This version of VQE provides a quantum advantage both in storage of quantum state
and calculation of average energy given by 〈H〉. By 2019, VQE had been subsequently
improved to require fewer qubits [17] and fewer circuit samples [18].

Variational hybrid algorithms, of which VQE is an example, abound. These algorithms
simplify the quantum algorithm development problem by requiring only the development
of a quantum algorithm for a particular cost function. By plugging various cost functions
into the classical optimization scheme many new applications, from optimization via the
Quantum Approximate Optimization Algorithm (QAOA) [19] to matrix diagonalization
via the Variational Quantum State Diagonalization algorithm (VQSD) [20], and beyond.

Let’s look at the next most well-known of these applications: Optimization.

2.1.2 Quantum Approximate Optimization Algorithm

As we’ve already discussed, the primary difference between different VQAs is the cost
function being optimized. In order to craft a cost function which allows for the solving of
a given combinatorial optimization problem, we would like to incentivize the satisfying of
constraints Ci. These constraints define the feasible values of typically a few of the n bits
available in the computer and we define Ci(x) = 1 if n-bit string x satisfies constraint i
and Ci(x) = 0 otherwise. We see then that

C(x) =
∑
i

Cα(x)

achieves maximum when x is a solution to all constraints in the combinatorial opti-
mization problem. Now, if a bit string is found which satisfies these constraints we have a
feasible string. Approximate optimization allows us to be content with a string x∗ which
gets us close to the maximum of C without actually reaching optimality1.

1Although this is the traditional way to state the cost function of QAOA, if we want to be consistent
with the minimization approach outlined previously by VQE and later with more general VQAs, we can
do this by redefining the constraint Ci(x) = 0 if x satisfies the constraint and 1 otherwise.
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This is the problem solved by QAOA. An interesting feature of QAOA is that the nature
of the constraints Ci is highly application dependent, so although QAOA is an algorithm
for optimization problems in general, it is more of a meta-algorithm which defines how one
may tailor the VQA paradigm to a particular optimization problem of interest.

Since we would like to search over the space of bit strings to find the optimal x satisfying
the most constraints. We initialize the input state of the QAOA algorithm in a uniform
superposition over all states |s〉 = |+〉⊗n.

Next we define two rotation operators:

The first of these rotation operators encodes the cost function into an exponential
rotation by free parameter θ which we denote

UC(θ) = e−iθC =
m∏
α=1

e−iθCα

The parameter θ is freely chosen and can be optimized from 0 to 2π in the classical
post processing.

The next operator we define encodes the sum of individual bit flips over all qubits into
an exponential rotation by a second free parameter φ. If we define Xj as the bit flip X
acting on the jth qubit then we have

UX(φ) = e−iφ
∑n
j=1Xj =

n∏
j=1

e−iφXj

Together these rotation operators UC and UX allow us to bias the uniform superposition
according to the cost function to converge toward the optimal string [19].

As QAOA is only an approximate optimization algorithm, and given that any near
term implementation is limited by noise, QAOA then defines the critical parameter p ≥ 1.
This parameter p fixes the depth of the algorithm by defining the rotation tuples Θ =
(θ1, θ2, ...θp) and Φ = (φ1, ...φp). This is important because quantum information becomes
corrupted by noise the longer the circuit runs. The parameter p effectively fixes the max
runtime of the algorithm by specifying an algorithm with p gate layers - where each layer
can be implemented in some fixed time dependent on the device runnign the circuit. We
can then define the algorithm output state
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|Θ,Φ〉 = UX(φp)UC(θp)...UX(φ1)UC(θ1)|z〉

Referring to [19], we also rapidly define the expectation value and maximum expectation
value over all 2p angles (Θ,Ω).

Ep(Θ,Ω) = 〈Θ,Ω|C|Θ,Ω〉
Mp = maxΘ,ΩEp(Θ,Ω)

In [19] it is further shown that

Mp ≥Mp−1 (2.1)

and

lim
p→∞

Mp = max
x

C(x) (2.2)

These results establish the strategy behind QAOA. Depending on the user’s knowledge
of the depth restrictions on their device, choose the largest reasonable p. This value can
always be increased later to test hardware capacity and the result (1.1) shows this can only
improve the optimized expectation value2.

Once we fix some maximal p we then use the quantum computer to produce |Θ,Ω〉
which is then measured in the computational basis to produce a bit string x. We can then
check how many constraints x satisfies to calculate C(x). Because x is produced randomly,
we would need to repeat this step several times to determine whether the state |Θ,Ω〉 has
successfully biased the uniform superposition |s〉 to favor bit strings which approximately
maximize C, which we confirm by measuring an increasing expectation value Ep.

2At this point we should pause for a moment to point out that this argument (we will produce ever
better optimizations as we add layers and re-train) assumes (conjectures) that training additional layers
will always be possible. Although QAOA may be the most famous example of this, the so-called ’layer-
wise trainability conjecture’, which appears throughout the VQA literature - and it also happens to be
wrong [21]. Researchers in [21] showed, in 2021, that counterexample algorithms can be found where this
conjecture fails and we can not be train beyond a particular depth p. We will come back to the issue of
trainability in a future section.
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Here is where classical optimization plays a role as we vary the parameters (Θ,Ω) to
produce ever higher expectation values Ep. This part of the algorithm is nontrivial, and the
trove of various classical optimization methods for choosing and searching for appropriate
parameters to maximize the cost function is extensive and beyond the scope of this thesis.

Further we run into issues of trainability in the famous Barren Plateaus problem [16],
which will be discussed in subsequent sections. Next, we will examine the basic concepts
and tools that go into the construction of general variational hybrid algorithms and in
further sections we delve into the trainability of VQAs in general.

2.1.3 General Structure of Variational Quantum Algorithms

Since the development of VQE and QAOA in 2014, Variational Quantum Algorithms
(VQA)s have emerged as a leading paradigm to quantum algorithm development for near
term devices [14].

One of the advantages of this paradigm is that it can be flexibly applied to a wide range
of problems. In order to find a VQA which solves given application of interest, we first
define the relevant parameter-dependent cost function C(α)3. This cost function often
suggests itself naturally relative to the problem to be solved. Despite this, one of the chief
challenges of designing a VQA is designing a quantum algorithm which evaluates C(α)
with some advantage over classical methods.

In the previous example of VQE, where we would like to find the ground energy state,
the energy H, or functions dependent on H present themselves as natural cost functions to
be minimized. Here we chose to minimize the average 〈H〉 of the energy because we have
already established a protocol for evaluating expected values of Paulis and combinations
of Paulis used in the construction of H.

Extending this concept, we can consider a more general observable than energy, which
we denote O. The expectation value of this observable then gives us a more general cost
function C(α) which we define in terms of the average or expected value of the observable
O via

C(α) ≡ 〈O〉 = Tr(Oρout) = Tr[OU(α)ρinU
†(α)] (2.3)

Here U(α) is the parametrized unitary4 implemented by the quantum computer given

3Here the cost function is averaged over all possible bit strings and is taken as a function of the k-
parametric input α rather than as a function of some particular bit string.

4We use the term unitary interchangeably with quantum algorithm.
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k-parameter input α which prepares the output state ρout from the input state ρin and
where Tr(A) is the trace of operator A. Given an ensemble of such observables {Oi}, [14]
extends this definition into the more general cost function

C(α) =
∑
i

fi(〈Oi〉) (2.4)

Where {fi} are functions which are application-specific and generally provide more
flexibility into the above definition. It is important to note that, for a given problem of
interest, there may be multiple choices of {fi} which yield valid cost functions.

While the above (1.4) is a more general form, many of the cost functions we are inter-
ested in stick to the simpler case of

C(α) = Tr[OU(α)ρU †(α)] (2.5)

In order for either of the above to be valid cost function, the cost function must be
Trans-FEM:

First, we require that the classical machine learning or optimization algorithm be
Trainable. This critical requirement turns out to be highly nontrivial and will need to be
more thoroughly examined in the next section. Second, the minimum of the cost function
must be Faithful by always corresponding to the desired solution. Third, the quantum
circuit which implements the cost function must be Efficient to implement5. Fourth, a
Meaningful cost function associates better approximate solutions to smaller values [14].

There are now more than 40 VQAs with FEM cost functions in the literature. While
these characteristics are typically easy enough to verify on paper, the trainability of these
algorithms remains only heuristically verified at best for the majority of existing cost
functions. In the next section we outline the trainability problem and possible ways around
this roadblock. This will allow us to produce a true Trans-FEM cost function for state
diagonalization in the next chapter.

2.2 Trapped on a Barren Plateau: The Trainability

Problem

Of the four properties that each cost function C must have, ensuring that the optimization
landscape generated by C is actually trainablity which proves to be the most difficult

5Its depth can scale at most polynomially with number of qubits.
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property to guarantee - at least in the sense that it is still a very open problem in the
field. To compound this issue, a paper from 2018 [16] has shown that some choices of C
are impossible to train when scaled up - this is the issue of barren plateaus.

More concretely, the issue of barren plateaus is as follows: For a given VQA specified
by the cost function C(α) = 〈O〉, we need to classically train our k-parameter vector α
to find the minimum of the k + 1 landscape induced by C. One way we might accomplish
this is by calculating the gradient ∂βC with respect to some directional component β ∈ α
and employing gradient descent.

In [16] it was shown that, if we initialize α randomly at the start of the algorithm, then
the average gradient

〈∂βC(α)〉 = 0

will not be biased in any particular direction. On its own this is not a problem, after all,
it would be nice to start off without a bias so ideally we find the best direction for gradient
descent. Given this average center around zero, we have the variance of the gradient given
by

V ar(∂βC) = 〈(∂βC)2〉.

This variance becomes the key parameter of interest to determine the trainability of
our algorithm when we consider that Chebyshev’s inequality bounds the probability that
the gradient will deviate from its mean value of 0 via

Pr(∂βC ≥ a) ≤ V ar(∂βC)

a2
. (2.6)

This inequality allows us to calculate the variance for a particular type of VQA and deter-
mine whether it will not be trainable - this is what is done in [16].

Their result states that, if U(α) is at least O(n1/d) deep, where n is the number of
qubits and d ≥ 2 is the dimension of the qudits, and we have no problem-specific structure
built into the ansatz which structures U(α), then the variance will shrink exponentially
as we increase the system size. Via Chebyshev, as the variance shrinks so too does the
probability that the gradient will take on a significant nonzero value. Thus we see that
in this context, we will have gradients which vanish exponentially with system size - thus
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foiling our gradient descent. This phenomenon is called a barren plateau and its presence
ensures that C will be untrainable. Since the discovery of this phenomenon in 2018, the
number of VQAs which have barren plateaus has only increased, and in this section we will
survey the existing 3 years of literature on this phenomenon to develop a comprehensive
understanding of the implications of barren plateaus for the future of the field.

Since this initial result in 2018, a great deal of interest has been devoted to understand-
ing how systemic the issue of barren plateaus was for the field. Although the initial result
focused on gradient descent facilitated by first order derivatives, it was further shown
in 2020 that these exponentially vanishing gradients also apply to higher order deriva-
tives as well [22]. This effectively killed gradient-based methods for training, and in 2020,
researchers investigated whether gradient-free methods were similarly affected by barren
plateaus or whether these could be used to train in the presence of a barren plateaus.
If information about gradients of C is not available, then another data source which is
used by many gradient-free optimization schemes is cost function values C(αi) for mul-
tiple inputs αi. Analytical results showed that differences between consecutive points in
the cost function landscape C(αA) − C(αB), also vanish exponentially with system size
[23]. Thus distinct points in our data set {C(αi)}i∈Index require exponential resources to
distinguish and thus lose their value in navigating C. This has broad implications for the
entire field of gradient-free algorithms, though [23] provides concrete numerical verification
for Nelder-Mead, Powell, and COBYLA algorithms.

While we have these examples of types of VQAs we can design which exhibit barren
plateaus, we also find examples of problem classes which have barren plateaus regardless
of the structure of your VQA. The only case we discuss here involves learning the unitary
dynamics behind scrambling processes [24].

To lead our discussion of scrambling processes, we explore the example of scrambling
of information which is dropped into a black hole. Concretely, if our information were con-
tained in the state |x〉, then the black hole will scramble this information and redistribute
it via the emission of Hawking radiation. If we collect all of this radiation, and if we share a
maximally entangled state (e.g. one part of |ψ〉 = 1

2
(|00〉+ |11〉)) with the black hole, then

we can recover the scrambled information U |x〉, where U is referred to as the scrambling
unitary. If U is known, or if we can learn U , then we can unscramble |x〉 and recover the
information which would have been otherwise lost to the black hole. The above example
is known as the Hayden-Preskill thought experiment [25]. While this example may seem,
otherworldly, and therefore irrelevant to practical algorithm development, consider that
black holes are merely the most efficient example of what is actually a very wide category
of approximate scramblers (e.g. handwriting a note and putting it through a blender). In
addition, by studying VQAs in this context, we can find results which have big implications
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for our field right here on Earth.

This year, researchers in [24] investigated whether quantum machine learning (QML),
which in this context is indistinguishable with the field of VQAs, can be employed to learn
the scrambling unitary U . In the original result of [16], it was found that barren plateaus
emerge, in some sense as a consequence of the inherent randomness of the starting unitary
we are training. In [24], a complementary result is found where if the target scrambler U is
sufficiently random, then barren plateaus are guaranteed. What is important to illustrate,
is that these barren plateaus are agnostic to the structure, or ansatz, of your algorithm.
As such this problem case represents the potential start of an as yet poorly understood
whole family of problems for which no amount of clever design will allow us to solve using
VQAs.

In addition to the existence of problems which are untrainable, as we are dealing with
NISQ algorithms, it should be noted that the above results apply even to noise-free sce-
narios. As no VQA is likely to operate in a noise-free environment anytime soon, it is
important for us to understand the impact of noise on circuit training. In early 2021 it
was shown that noise can actually induce barren plateaus provided the depth of the circuit
grows at least linearly with system size [26]. The noise model behind this result breaks
U(α) into a series of layers, similar to the approach of QAOA, and implements single qubit
Pauli noise operation N (σ) = cσσ between each layer where σ ∈ {I,X, Y, Z}. Here we
restrict the constant −1 ≤ cX , cY , cZ ≤ 1 and define the noise rate r = maxcx, cY , cZ .
From this it can be shown that in a noisy environment representable by the above noise
model, only circuits which have sublinear scaling remain possible candidates for successful
training.

Given each of these examples where barren plateaus eliminate any possibility of training
our VQA, and the fact that this field will only continue to grow, it behooves us to find
ways to avoid barren plateaus.

2.3 Escaping the Barren Plateau: Cost function de-

pendent barren plateaus

With the problem of barren plateaus fresh in our minds, we now turn to a new result from
2021 that shows how barren plateaus are dependent on the global or local nature of the
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cost function [2]. Recalling the general structure of the cost function given by

C(α) =
∑
i

fi(Tr[OiU(α)ρinU
†(α)])

=
∑
i

fi(〈Oi〉),

then the key result from [2] was to show that the observables {Oi} we choose have a direct
impact on whether each Ci(α) will be trainable. In further notation we use ρ to represent
ρin unless otherwise specified. Considering again the simplified form of

C(α) = Tr[OG/LU(α)ρU †(θ)],

where the observable

OG/L = c0I + ÔG/L

where ÔG/L =
N∑
i=1

ciÔi

is called global or local depending on the structure of Ôi which we define in the coming
subsections, where I is the identity and each ci ∈ R.

If O is global, then it has been shown in [2] that the cost function derived from this
observable will encounter a barren plateau and will thus be unable to train at scale. Con-
versely, if this observable is local, then it has been similarly shown that no barren plateau
will occur and training will be possible.

2.3.1 Global

Here we define the global observable OG = c0I + ÔG where the operator ÔG =
∑N

i=1 ciÔi

is a linear combination of N nontrivial operators Ôi = Ô1,i ⊗ Ô2,i ⊗ ... ⊗ Ôn,i. There are

two forms of ÔG which are known to produce barren plateaus via [2]:

1. If N = 1 and each Ôk is a nontrivial projector of rank rk acting on the kth subsystem
(Ex. ÔG = |00...0〉 〈00...0| =

⊗n
k=1 Ôk where Ôk = |0〉 〈0|k)

2. If N > 1 and each Ôki acts on m qubits such that Tr(Ôki) = 0 and Tr(Ô2
ki) ≤ 2m

(Ex. ÔG =
∑N

i=1 ci(Ô1,i⊗ Ô2,i⊗ ...⊗ Ôn,i) where Ôik =
⊗m

j=1 σj is a nontrivial tensor
product of m paulis σj ∈ {I,X, Y, Z})
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2.3.2 Local

Next we define the local observable OL = c0I + ÔL where the operator ÔL =
∑N

i=1 ciÔi

such that Ôi acts on at most m qubits such that Ôi = Ô′i ⊗ Ô′i′ , where Ô′i is a tensor
product of Paulis acting on m/2 qubits.

By understanding the structure of these global and local observables, we enable our-
selves to recognize these types of observables we they appear in existing VQAs as well as
any new VQAs we develop.

Note: The above definitions do not in fact constitute a dichotomy as the terms global
& local may suggest. These descriptions should be considered a partial understanding of
the factors which give rise to barren plateaus. If an observable happens to fall in one of
the above two categories then we will know whether they will encounter a barren plateau
- otherwise these results have little to say.
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Chapter 3

Trainability of Variational Quantum
State Diagonalization

Now that we have set the stage, we turn to the novel calculation of this thesis: show-
ing that the Variational Quantum State Diagonalization (VQSD) algorithm which Ryan
LaRose, Arkin Tikku, Lukasz Cincio, Patrick Coles, and myself published in 2019 will not
be trainable at scale and how we can fix it.

We will start by explaining the details of VQSD and understand the cost function used
in our original paper [27]1. Then we will apply results from [2] to prove that VQSD will
not scale with this cost function.

3.1 VQSD: How it Works

The VQSD algorithm was designed to perform matrix diagonalization in the variational
context. The real world context in which this would take place is by representing the
matrix we wish to diagonalize as the density matrix ρ of some quantum system we can
prepare many times in the laboratory. Once we have diagonalized this quantum state, we
are able to extract the eigenvectors and eigenvalues of the matrix.

This quantum matrix representation has some natural advantages over classical diag-
onalization methods in the limit of large system size. Specifically, for sufficiently large

1Prior to adopting my preferred name of Joan Arrow, I went by my legal name of Étude O’Neel-Judy,
you can find my early publications under this name.
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numbers of qubits N , the resulting density matrix will have 2N × 2N entries, an exponen-
tial number which would not be efficient to even write down, let alone diagonalize. We
see then that a quantum approach to matrix/state diagonalization has the potential for
application in exponential regimes inaccessible to classical methods. The VQSD algorithm
is shown in figure 3.1 from [20].

Figure 3.1: Diagram of VQSD

The algorithm takes as input many copies of the quantum state ρ, an initial guess for
the parameter vector α, and a depth p chosen as shallow as possible to mitigate noise.
These inputs are then used to determine the approximate diagonalizing Up(α), and applies
this unitary to two copies of ρ. This produces two copies of the approximately diagonal
state ρ̃ = Up(α)ρU †p(α). Here, the structure of Up(α) is given by the alternating layered
ansatz shown bellow for p = 3 on 6 qubits without connectivity between the top and
bottom qubits2. The two-body operation Gi(αi) is left without further specifying in order
to allow this ansatz to be agnostic to the native gate set of a particular device.

2Note that if connectivity allows, we also include a two-body operation between top and bottom qubits
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U(α)

G1(α1) G6(α6)

G4(α4)

G2(α2) G7(α7)
=

G5(α5)

G3(α3) G8(α8)

If we are able to successfully minimize the cost function and obtain the optimal diag-
onalizing unitary Up(αopt), then we can proceed to use Up(α) for eigenvalue readout and
eigenvector preparation as shown in 3.1 (c) and (d). This provides the capability of eigen-
value spectroscopy and eigenvector preparation for use in subsequent condensed matter
experiments and is the main application of our algorithm.

3.1.1 Cost Function

The cost function which was used in our experimental implementations, and which mea-
sures ’how approximate’ the approximately diagonalized quantum state ρ̃ we have produced
is is given by

C(ρ̃) = Tr(ρ2)− Tr((D(ρ̃))2). (3.1)

Here D is the dephasing channel which artificially diagonalizes the input state by simply
deleting off diagonal terms. Taken together, when we take the trace of the dephased
state and subtract this value from the original purity Tr(ρ2), we produce 0 if and only if
Tr((D(ρ̃))2) = Tr(ρ2) which only can happen if dephasing has no impact on ρ̃, i.e. ρ̃ is
diagonal. If we are guaranteed ideal conditions, we can assume Tr(ρ2) = 1, otherwise we
may simply calculate the purity of the input state at the start of the algorithm (which can
be done efficiently [28]) and reuse that value for each subsequent training step.

The key insight at the heart of this cost function is that D is not a unitary gate. So as
long as D acts nontrivially on the state, i.e. so long as off-diagonal terms remain after the
attempt at diagonalization, D will reduce the purity and leave room from improvement.
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The quantum circuit which we can use to calculate Tr((D(ρ̃))2) is simply a single layer
of entangling controlled-not (CX) gates, given bellow for arbitrary input density matrices
A,B, so named to identify their corresponding registers for later use:

•
•

A ...
•

ωAB



B ...




Tracing out the A system and measuring the remaining subsystem ωB in the computa-

tional basis then yields the desired value Tr(D(A)D(B)) =
∑

z Az,zBz,z encoded into the
probability of measuring the all-zero state |00...0〉.

This final statement is non-obvious, so to understand it here we reproduce the proof
from [20]:

We start on the left-hand side of the above circuit with the input state A ⊗ B. The
proof works in this general case, but keep in mind that for state diagonalization, we also
have A = B = ρ̃.

After applying our layer of CNOTs, we produce the state ωAB given by

ωAB =
∑
z,z′

|z〉 〈z|A |z′〉 〈z′| ⊗XzBXz′ .

Where Xz = Xz1 ⊗ Xz2 ⊗ ...Xzn is a series of n bit flip (or NOT) gates and we
are summing over all possible n-bit strings z, z′. By tracing out the A system, i.e. by
eliminating the degrees of freedom given by that system, we produce:
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ωB =
∑
z

〈z|A |z〉XzBXz

=
∑
z

Az,zX
zBXz.

We then calculate the probability of the all zero outcome:

〈00...0|ωB |00...0〉 = 〈00...0|
∑
z

τz,zX
zBXz |00...0〉

=
∑
z

Az,z 〈00...0|XzBXz |00...0〉

=
∑
z

Az,z 〈z|B |z〉

=
∑
z

Az,zBz,z

= Tr(D(A)D(B)).

A critical advantage of this cost function, is that we may perform this quantum calcu-
lation in constant depth 1, regardless of system size.

3.2 Investigating Trainability

Now that we have familiarized ourselves with VQSD, we turn to the question of whether
this algorithm’s cost function will allow training at scale or whether it will encounter a
barren plateau.

Since barren pleateaus have been found to be dependent on cost function locality, and
since each VQA cost function C(α) = 〈O〉 can be expressed in terms of the expectation
value of some observable O, we need only determine whether the observable associated
with VQSD is sufficiently local or not.

3.2.1 Identifying 〈Oi〉

Here we detail the basic process used by VQAs to calculate the value of the cost function
for a given training parameter α and input state ρ. By understanding this basic VQA
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algorithm in explicit detail, we will see how to identify the observable of interest for a
particular VQA given its cost function. Note that this basic process may be have to be
repeated for every Oi if the cost function depends on several observables.

1. Input state ρ = |ψ〉 〈ψ| into the device and set parameter α.

2. Apply unitary U(α) to produce ρ′ = U(α) |ψ〉 〈ψ|U †(α) = |ψ′〉 〈ψ′|.

3. Perform a measurement of an m qubit subsystem in the

Oi = Ai(I
⊗n−m ⊗ Z⊗m)A†i (3.2)

basis as shown in the following circuit diagram for some m ≤ n. Here Z is the Pauli
operator and A†i is the matrix which rotates the Z⊗m eigenbasis to the eigenbasis of
the given Oi.

4. Repeat steps 1-3 many times to approximate |pj|2, the probability of observing bit
string j in order to calculate the expectation value 〈Oi〉 =

∑
j zj|pj|2 where zj is the

jth eigenvalue of Z⊗n.

U(α) A†iρ ...
... m




This A†i matrix and the subsequent measurement is the physical realization of the cost
function, and given this circuit for calculating the cost function of a particular VQA, we
can then determine the locality of the observable.

3.2.2 Theorem 1: VQSD will not scale

Next we turn to the locality of VQSD. Applying our knowledge of this algorithm to the
structure of the previous section, we have the following circuit for one full run of the
algorithm:
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U(α)

•
•

ρ ...

•



U(α)
ρ ...


Here we identify the observable of interest by recalling that the cost function circuit

A†i = CX⊗n encodes the value of the cost function (corresponding to how well we diago-
nalized the input state) into the probability of the all zero state in the bottom register.
This output observable is captured by the operator

Ooutput = I⊗n ⊗ (|0〉 〈0|)⊗n.

By inspection, this observable will produce a cost function which is maximized when
the probability that the bottom register is in the |00...0〉 state is similarly maximized.

If we would like to recast this as a minimization problem, then we can implement

O′output = I⊗2n −Ooutput.

Which, for some arbitrary pure output state |ψ〉 ∈ H2n has the cost function

C(α,O′output) = Tr(O′output |ψ〉 〈ψ|)
= 〈ψ| O′output |ψ〉
= 〈ψ| I⊗2n −Ooutput |ψ〉
= 〈ψ| I⊗2n |ψ〉 − 〈ψ| Ooutput |ψ〉
= 1− C(α,Ooutput)
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Now we have seen the way the output observable Ooutput facilitates diagonalization, let
us analyze whether this input state produces a local or global observable OV QSD once we
conjugate by the cost function.

OV QSD = CX⊗n(I⊗n ⊗ (|0〉 〈0|)⊗n)CX⊗n. (3.3)

Note, intuitively we might expect this observable to be global since a key component of
the observable, namely |00...0〉 〈00...0| =

⊗n
i=1(|0〉 〈0|)i =

⊗n
i=1 Pi is a tensor product of

rank 1 projectors and as such fits the definition of a global operator

Now we can turn to proving our first original result:

Theorem 1. OV QSD is in fact a global observable and as such will produce a barren plateau
and prevent training at scale.

Proof. First we simplify OV QSD to show that it has global structure similar to that shown
above.

OV QSD =
∑
z,z′

|z〉 〈z| I⊗n |z′〉 〈z′| ⊗Xz |00...0〉 〈00...0|Xz′

=
∑
z

|z〉 〈z| ⊗ |z〉 〈z|

=
n⊗
j=1

∑
zj∈{0,1}

|zjzj〉 〈zjzj|

=
n⊗
j=1

(|00〉 〈00|+ |11〉 〈11|)j

where z, z′ are n-bit strings and zj is a bit in the jth position of z.

We can define the rank 2 projector P = |00〉 〈00|+ |11〉 〈11|, to produce

OV QSD =
n⊗
j=1

Pj. (3.4)

From this form we can recognize the VQSD observable as a global observable made
from an n-fold tensor product of rank 2 projectors. From [2], we can then conclude that
the cost function of VQSD will encounter a barren plateau when employed at scale and
thus will not be trainable.
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With this first key result in the bag, we can now push further to identify a new, local
observable which will enable VQSD to be salvaged.

3.2.3 Theorem 2: Fixing VQSD

Next we turn our attention to fixing VQSD with a sufficiently local observable that never-
theless preserves the action of the diagonalizing cost function which enables this application
to work.

Since we still need an output observable which is maximized when the probability that
bottom register is |00...0〉 is also maximized, we naively try the hyper-local observable from
the previous chapter modified for our two-register context with VQSD

Ooutput = I⊗n ⊗ (
1

n

n∑
i=1

(|0〉 〈0|)i ⊗ Ii′) (3.5)

where we define (|0〉 〈0|)i⊗ Ii′ = I⊗ ...⊗|0〉 〈0|⊗ ...⊗ I projects the ith qubit onto zero
and does nothing to each other qubit. We divide by the number of qubits to make sure we
produce cost function values between 1 and 0.

Given an arbitrary output state |ψ〉, this observable produces the following cost function

C(α,Ooutput) = Tr(Ooutput |ψ〉 〈ψ|)
= 〈ψ| Ooutput |ψ〉

= 〈ψ| I⊗n ⊗ 1

n

n∑
i=1

(|0〉 〈0|)i ⊗ Ii′ |ψ〉

=
1

n

N∑
i=1

Prob(0)Bi

where Prob(0)Bi is the probability that the ith qubit in the bottom register is measured
in the zero state. Thus we see that this cost function is maximized when each individual
probability Prob(0)Bi is maximized simultaneously, thereby maximizing the probability of
the all zero state.

Next we prove our second result:
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Theorem 2. The observable

O′V QSD = CX⊗n(I⊗n ⊗ (
1

n

n∑
i=1

(|0〉 〈0|)i ⊗ Ii′))CX⊗n (3.6)

does in fact produce a local observable which induces a new cost function for VQSD that is
immune to barren plateaus.

Proof. The structure of this calculation will closely mirror that shown in the previous
section. Here we intend to show that O′V QSD has a local structure similar to that shown
above.

O′V QSD =
∑
z,z′

|z〉 〈z| I⊗n |z′〉 〈z′| ⊗Xz(
1

n

n∑
i=1

(|0〉 〈0|)i ⊗ Ii′))Xz′

=
∑
z

|z〉 〈z| ⊗ (
1

n

n∑
i=1

(|zi〉 〈zi|)⊗ Ii′))

=
1

n

n∑
i=1

∑
z1,z2,...,zn∈{0,1}

|z〉 〈z|A ⊗ (|zi〉 〈zi|)⊗ Ii′)B

=
1

n

n∑
i=1

∑
z1,z2,...,zn∈{0,1}

(|z1〉 〈z1|A ⊗ ...⊗ |zn〉 〈zn|A)⊗ (IB ⊗ ...⊗ |zi〉 〈zi|B ⊗ ...⊗ IB)

=
1

n

n∑
i=1

∑
z1,z2,...,zn∈{0,1}

(|z1〉 〈z1|A ⊗ IB)⊗ ...⊗ |zizi〉 〈zizi| ⊗ ...⊗ (|zn〉 〈zn|A ⊗ IB)

Here we take a pause. We have reorganized our terms to place the ith qubit of register A
beside the ith qubit of register B - we do this because this is the adjacency relationship
enacted by the series of CX gates in the cost function. We have then placed next to each
other the qubits which have been acted on by the cost function, which will help us simplify.

An identity which we need to resolve this calculation is given by

M ⊗ (N1 +N2) = M ⊗N1 +M ⊗N2. (3.7)

That is, we may add Ni terms componentwise across a tensor product of matrices
provided they share a constant M term. Further, we recall that the identity matrix can
be constructed via
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∑
i∈{0,1}

|zi〉 〈zi| = |0〉 〈0|+ |1〉 〈1| = I. (3.8)

Now we are ready to complete the proof by summing each j 6= i term to the identity

O′V QSD =
1

n

n∑
i=1

∑
z1,z2,...,zn∈{0,1}

(|z1〉 〈z1|A ⊗ IB)⊗ ...⊗ |zizi〉 〈zizi| ⊗ ...⊗ (|zn〉 〈zn|A ⊗ IB)

=
1

n

n∑
i=1

∑
z1,z2,...,zn−1∈{0,1}

(|z1〉 〈z1|A ⊗ IB)⊗ ...⊗ |zizi〉 〈zizi| ⊗ ...⊗ (IA ⊗ IB)

=
...

=
1

n

n∑
i=1

∑
zi∈{0,1}

(IA ⊗ IB)⊗ ...⊗ (|zizi〉 〈zizi|)⊗ ...⊗ (IA ⊗ IB)

=
1

n

n∑
i=1

(IA ⊗ IB)⊗ ...⊗ (|00〉 〈00|+ |11〉 〈11|)i ⊗ ...⊗ (IA ⊗ IB)

=
1

n

n∑
i=1

(|00〉 〈00|+ |11〉 〈11|)i ⊗ Ii′

=
1

n

n∑
i=1

Pi ⊗ Ii′ .

Note how this observable is remarkably similar in structure to our starting hyper-local
observable. Due to the linear nature of the trace, the cost function will be an averaged
sum over 〈Pi ⊗ Ii′〉 given by

C(θ,O′V QSD) =
1

n

n∑
i=1

〈Pi ⊗ Ii′〉. (3.9)

We can now analyze whether this new observable is still local enough to guarantee
trainability. Given the above structure of O′V QSD, we fit the definition of a local observable
provided Pi can be equivalently replaced by a tensor product of paulis.
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Exploring this concept further, if we write the projector Pi in terms of Paulis

Pi = (|00〉 〈00|+ |11〉 〈11|)i =
1

2
(Z1 ⊗ Z2 + I ⊗ I).

Taking the expectation value of 〈Pi⊗Ii′〉 we have 〈Pi⊗Ii′〉 = 〈1
2
(Z1⊗Z2+I1⊗I2)⊗Ii′〉 =

1
2
(〈Z1 ⊗ Z2 ⊗ Ii′〉+ 〈I ⊗ I ⊗ Ii′〉) = 1

2
(〈Z1 ⊗ Z2 ⊗ Ii′〉+ 1)

Where we obtain the last equality since 〈I ⊗ I ⊗ Ii′〉 = Tr(I⊗2n |ψ〉 〈ψ|) = 〈ψ|ψ〉 = 1.
Thus we see that our cost function

C(θ,O′V QSD) =
1

n

n∑
i=1

〈Pi ⊗ Ii′〉

=
1

n

n∑
i=1

1

2
(〈Z1 ⊗ Z2 ⊗ Ii′〉+ 1)

=
1

2n
(n+

n∑
i=1

(〈Z1 ⊗ Z2 ⊗ Ii′〉))

=
1

2
+

1

2n

n∑
i=1

(〈Z1 ⊗ Z2 ⊗ Ii′〉)

=
1

2
+ C ′(θ,O′V QSD)

where the new cost function C ′ matches perfectly the definition of a local cost function.
Thus we see that the hyper-local output observable O′output does in fact induce a trainable
algorithm for VQSD.

As a final remark, note how the cost function circuit A† = CX⊗n for VQSD did not
radically change the structure of the global/local output observables (Ooutput,O′output).
Recall that this whole process outlined above boiled down to

Ooutput =
n⊗
i=1

|0〉 〈0|i −→ OV QSD =
n⊗
i=1

(|00〉 〈00|+ |11〉 〈11|)i

O′output =
1

n

n∑
j=i

|0〉 〈0|j ⊗ Ij′ −→ O
′
V QSD =

1

n

n∑
j=i

(|00〉 〈00|+ |11〉 〈11|)j ⊗ Ij′ .
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This may not be terribly surprising since in this case the cost function circuit was very
simple. However, it does beg the question as we step back and consider other possible
cost function circuits, whether general properties of those circuits can be identified which
‘delocalize’ the local output observable. To better understand this more general behavior,
we outline the next steps for this research.
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Chapter 4

Next Steps & Future Research

The calculations of the previous section enabled us to interrogate the cost function of VQSD
and determine whether this cost function will live up to its promise in real implementations.

The follow-up of this work is a wholesale audit of the entire field of VQAs, first to
determine whether the cost functions upon which they are built are Trans-FEM, and if
not, to propose more localized observables which solve the same task while also avoiding
barren plateaus. This analysis is important because it will shine a light on the efficacy of
this field by showing how many VQAs can be said to actually avoid barren plateaus and
perform in the scale regime for which they are designed. Without a clear understanding
of this issue, the field of VQAs will remain speculative in its real promise.

Here we enumerate the majority of the VQAs in the literature, organized with newer
algorithms on top, and the problem they endeavor to solve:

1. Circuit compiler for quantum error correction [29]

2. Nonlinear system solver [30]

3. Linear system solver [31]

4. General quantum simulator [32]

5. Hamiltonian diagonalization for dynamical quantum simulation [33]

6. Fast-forwarding for quantum simulation beyond coherence time [34]

7. Quantum Fisher Information estimator [35]
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8. Adaptive circuit learning for quantum metrology [36]

9. State quantum metrology [37]

10. Singular value decomposer [27]

11. Fidelity estimator [38]

12. Training deep quantum neural networks [39]

13. The Born Supremacy [40]

14. Circuit-centric quantum classifiers [41]

15. Unsampling on a photonic processor [42]

16. Theory of variational quantum simulation [43]

17. Accelerated VQE [18]

18. Factoring [44]

19. Quantum simulation of imaginary time evolution [45]

20. Quantum circuit compilation [46]

21. Quantum subspace simulator [47]

22. Spin-squeezing [48]

23. Consistent histories for quantum foundations [49]

24. Quantum convolutional neural networks [50]

25. Generative adversarial quantum machine learning [51]

26. Training neural networks using low-depth circuits [52]

27. Supervised learning with quantum enhanced feature spaces [53]

28. QML in feature hilbert spaces [54]

29. Addressing hard classical problems with adiabatically assisted Variational Quantum
Eigensolvers [55]
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30. Variational Quantum Gate Optimization [56]

31. Classification with QNN [57]

32. Differentiable learning of quantum circuit Born machines [58]

33. Quantum circuit learning [59]

34. Efficient Variational Quantum Simulator Incorporating Active Error Minimization
[60]

35. Quantum autoencoders for efficient compression of quantum data [61]

36. QVECTOR: an algorithm for device-tailored quantum error correction [62]

37. Performance of QAOA on Typical Instances of Constraint Satisfaction Problems with
Bounded Degree [63]

38. A Quantum Approximate Optimization Algorithm (QAOA) [19]

39. A variational eigenvalue solver on a photonic quantum processor (VQE) [15]

Beyond analysis of each of the above, answering the more general question of which
circuit cost functions A† are able to ‘delocalize’ our hyper-local output observable O′output
will help us to better and more quickly establish whether A†O′outputA is local or not without
having to explicitly calculate the result every time.
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