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Abstract

Deep convolutional neural network (CNN) algorithms have emerged as a powerful tool
for many computer vision tasks such as image classification, object detection, and seman-
tic segmentation. However, these algorithms are computationally expensive and difficult
to adapt for resource constrained environments. With the proliferation of CNNs for mo-
bile, there is a growing need for methods to reduce their latency and power consumption.
Furthermore, we would like a principled approach to the design and understanding of
CNN model behaviour. Computationally efficient CNN architecture design and running
inference with limited precision arithmetic (commonly referred to as neural network quan-
tization) have become ubiquitous techniques for speeding up CNN inference speed and
reducing their power consumption. This work describes a method for analyzing the quan-
tized behaviour of efficient CNN architectures and subsequently leveraging those insights
for quantization-aware design of CNN models.

We introduce a framework for fine-grained, layerwise analysis of CNN models during and
after training. We present an in-depth, fine-grained ablation approach to understanding
the effect of different design choices on the layerwise distributions of weights and activations
of CNNs. This layerwise analysis enables us to gain deep insights on how the interaction
of training data, hyperparameters, and CNN architecture can ultimately affect quantized
behaviour. Additionally, analysis of these distributions can yield additional insights on how
information is propagating through the system. Various works have sought to design fixed
precision quantization algorithms and optimization techniques that minimize quantization-
induced performance degradation. However, to the best of our knowledge, there has not
been any prior works focusing on a fine-grained analysis of why a given CNN’s quantization
behaviour is observed.

We demonstrate the use of this framework in two contexts of quantization-aware model
design. The first is a novel ablation study investigating the impact of random weight
initialization on final trained distributions of different CNN architectures and resulting
quantized accuracy. Next, we combine our analysis framework with a novel “progressive
depth factorization” strategy for an iterative, systematic exploration of efficient CNN ar-
chitectures under quantization constraints. We algorithmically increase the granularity of
depth factorization in a progressive manner while observing the resulting change in layer-
wise distributions. Thus, progressive depth factorization enables the gain of in-depth,
layer-level insights on efficiency-accuracy tradeoffs. Coupling fine-grained analysis with
progressive depth factorization frames our design in the context of quantized behaviour.
Thus, it enables efficient identification of the optimal depth-factorized macroarchitecture
design based on the desired efficiency-accuracy requirements under quantization.
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Chapter 1

Introduction

Deep convolutional neural networks (CNN) are a class of neural network (NN) architec-
tures that have become the dominant method for solving various computer vision and image
processing tasks. Their tremendous accuracy (given adequate training data) is due to the
fact that they leverage two fundamental assumptions for vision processing: 1) sparse, lo-
cal connections/receptive field and 2) weight sharing between spatial locations (leading to
translational equivariance). Despite first being introduced in 1989 [27], deep convolutional
neural networks did not gain widespread academic attention until after AlexNet [26] won
the ImageNet competition [40] in 2012. This was in large part due to a lack of adequate
computing power at the time of their inception. Since then, there has been a rapid prolif-
eration of research related to advancing the application and understanding of deep CNNs.
Thus, enabling dramatic advances in computer vision. Recent research has demonstrated
incredible performance on vision tasks such as image classification [16, 26, 47], object de-
tection [10, 31, 37, 53], image segmentation [14, 38] and many more [8, 28, 42, 46, 51, 56].

Evidently, CNNs are a powerful tool for creating accurate, data-driven algorithms to
solve various tasks. However, the computation required to train and test these algorithms
leads to heavy power consumption and the need for expensive hardware. Current state-of-
the-art vision models have over 60 million parameters and require tens or, depending on
the use-case, even hundreds of gigabytes of memory to train. While computing power has
continued to grow at an astonishing rate, considering methods to improve the efficiency
of CNNs would be germane to the mainstream adoption and accessibility of deep learning
technologies. Increased wireless connectivity has made cloud-AI computing for mobile
devices a reality but there are still plenty of applications that would be better served with
on-device processing such as camera image signal processing (ISP), photo/video gallery
search, photo-editing, and many more. Efficient CNN architecture design and limited
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precision, quantized inference have emerged as two primary techniques for enabling fast,
low-power processing of CNNs on edge-devices.

1.1 Convolutional Neural Networks

The first feed-forward, multi-layer neural networks - also called multilayer perceptrons
(MLP) - consisted of densely connected neurons where every value in an input feature
vector was connected to every neuron in that given layer (see Figure 1.1). This meant that
they could only handle a fix-sized image input (i.e., the number of input pixels could not
change) and that the number of parameters in the network dramatically increased with
image resolution. For example in Figure 1.1, we can see that for a given dense layer with
inputs of length N (orange for input layer, blue for output layer) and M number of neurons
(blue for input layer, green for output layer), the number of parameters required is N×M .
For a standard HD image, the input vector alone is over 6 million values. Most image
classification tasks resize images to 224 × 224 which still results in over 150,000 values.
We can see that for most real-world applications, the dimensionality of a naive dense layer
rapidly explodes.

Furthermore, dense connectivity also meant that any small local translation could sig-
nificantly change the output of the network. Consequently, training such networks to
generalize to vision tasks, where object and patterns can appear anywhere in the image,
requires unreasonably high amounts of data. To illustrate, for an MLP to learn to recognize
a simple, handwritten uppercase-L, we would need to have samples for every possible loca-
tion that the L could appear in (e.g., upper-right, center, lower-left), samples for different
styles of L (e.g., more angular L’s, more perpendicular L’s), and many more. Evidently,
the number of data samples required to generalize would exponentially increase with the
dimensionality and complexity of vision tasks.

Inspired by the Neocognitron [9] and findings at the time on neuronal connection pat-
terns of the V1 visual cortex, LeNet [27] proposed a novel neural network architecture to
greatly simplify computation and data requirements based on two fundamental assump-
tions/inductive biases of vision:

• Sparse, local neuron connectivity — That is, the relevant features that any given
neuron needs to learn/detect is constrained to a local neighbourhood. Consequently,
neurons no longer needed to be connected to every single value of the input.

• Weight sharing across spatial locations — That is, the actual relevant features in an
image/video are sparsely, redundantly encoded in the pixels and can show up at any
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Figure 1.1: Basic MLP. An illustrative example of a densely connected neural network.
Each edge/connection is a single layer-weight.

given spatial location. Thus, weight sharing could also be thought of as weight reuse
where we reuse the same set of weights to process different locations of the input.
Consequently, weight sharing also leads to translational equivariance.

In the context of 2D-image/video processing, convolutional kernels naturally emerge
from these two inductive biases of spatial/visual pattern recognition. Thus, the convolu-
tional neural network was invented. This re-parametrization of neural networks for vision
would prove to be an incredibly powerful technique for significantly improving the general-
ization of NNs for vision as well as enabling much more computationally efficient processing
as CNNs could make use of highly efficient convolutional kernel optimizations. The combi-
nation of sparse, local connectivity and weight sharing (see Figure 1.2 for illustration) led
to a dramatic reduction in the number of unique parameters in a neural network. Thus,
improving computational efficiency and sample efficiency (i.e., fewer samples are required
in the training set in order to generalize). Coincidentally, convolutional filters have long
been used in digital signal processing and image processing applications for feature detec-
tion and image filtering. Thus, an alternative, albeit misleading interpretation of CNNs is
that they consist of a stack of learnable image filters that perform a series of hierarchical,
differentially optimized image processing operations on the input.While helpful for initial
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Figure 1.2: Local connectivity. An illustrative example of a locally connected neural
network. In this architecture, each neuron is only connected to a local neighbourhood of
inputs.

intuition, this viewpoint obfuscates the underlying principles of local neuron connectivity
upon which CNNs were formulated. In principle, CNNs are learning the local, spatial re-
lations between pixels/image features rather than learning the optimal filtering operations
to apply to an image.

Many early CNN architectures consisted of a simple sequential stack of convolutional
layers such as the original LeNet [27] and VGG-Net [45]. However since then, there has
been an abundance of research in increasingly complex architectures such as multiple par-
allel branches of convolutions, skip/forwarding connections, and multi-scale architectures
as examples. Furthermore, architecture complexities have grown with the complexity of
various vision tasks which CNNs are now being applied to such as object detection, pose
estimation, crowd counting, and segmentation. Along with these advances, the computa-
tional demands of state-of-the-art CNN architectures has continued to grow. Thus, there
has also been increasing interest in designing more computationally efficient CNN archi-
tectures as well as other methods for accelerating CNN computation to reduce latency and
power consumption such as fixed point, limited precision computation.

4



1.2 Motivation

Previously, CNN algorithms were bound to the domain of high performance computing.
Only the most powerful gaming GPUs and cloud computing servers could handle the
tremendous computational load required for both training and inference. However, as mo-
bile computing power has increased, so has the interest in using CNNs in everyday, resource
constrained settings. In mobile computing platforms, such as cellphones, smart-watches,
drones, and Internet-of-Things (IoT), latency and power are the primary concern. CNN
designers must find ways to balance accuracy with hardware performance. To illustrate,
many desktop gaming CPUs have a power budget on the order of 50-100 watts. In stark
contrast, mobile computing platforms typically have a power budget of 1-2 watts or less
for the entire system. A couple percentage points of increased accuracy often cannot jus-
tify reduced battery life and slower response times. Furthermore, tight limits on memory,
storage, area, and computational density further constrain the resources available for CNN
inference and processing. Thus, mobile CNN algorithms must consider a number of com-
putational cost factors such as the memory required for the neural network parameters,
memory required for intermediate layer outputs, number of operations in a single infer-
ence (measured in this work as the number of multiply-accumulate operations aka MACs.
Alternatively, some works count the number of floating point operations or FLOPs which
translates to 2× the number of MACs), and power/energy consumed for a single inference.

To illustrate, most mobile devices only have a few megabytes allocated for the L2-cache
(also referred to as on-chip memory). However, minimizing latency and power consumption
typically requires keeping as much of the data in L2-cache as possible since accessing
external memory incurs energy costs that can be as much as 100× greater than on-chip
memory access [3]. A state-of-the-art CNN architecture such as InceptionResNetV2 [47]
can require over 50 MB of memory for the parameters alone (assuming parameters are
stored as 8-bit integers. Costs significantly increase with 32-bit floating point numbers).
“Always-on” algorithms such as wakeword detection (e.g., “OK, Google”) and high data-
bandwidth algorithms such as video colour enhancement will incur even greater cost if not
designed efficiently as they must either be running for extended periods of time or at a
high frequency on large amounts of data (e.g., a standard HD video requires processing
over six million pixels at a rate of at least 30 frames/second or higher or alternatively, less
than 33 ms/inference).

Evidently, there is a growing need for methods of designing efficient, low-power con-
volutional neural networks that can operate within these constraints. A mobile CNN
should deliver high accuracy without occupying the majority of the computational/power
resources. With adaptation of co-processors such as digital signal processors (DSP) for
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CNN processing, deploying CNN models with fixed point integer weights and activations
for quantized inference has become a popular technique for minimizing storage, latency,
and power. This is because processors such as the DSP have been well optimized for
highly parallel image processing using fixed point arithmetic. However, most CNN design-
flows perform design, experimentation, and analysis on the floating point (fp32) model
behaviour. Thus, it is often unclear what effect different design choices may have on the
actual deployed model since the on-device CNN will often be performing inference with
very different precisions. This work explores the effects of efficient CNN design and quan-
tized inference in tandem to better understand the behaviour of deployed, on-device CNN
algorithms.

1.3 Contributions

We introduce a novel framework for fine-grained, layerwise analysis of CNN models during
and after training. We present an in-depth, fine-grained ablation approach to understand-
ing the effect of different design choices on the distributions of weights and activations
of different CNN architectures. This layerwise analysis enables us to gain deep insights
on how the interaction of training data, hyperparameters, and CNN architecture can ulti-
mately affect quantized behaviour. Additionally, analysis of these distributions can yield
additional insights on how information is propagating through the system.

We demonstrate the use of this analysis framework in two different applications. The
first is a novel, systematic ablation study investigating the impact of random weight ini-
tialization on final trained distributions of different CNN architectures and in turn, the
8-bit quantized (quint8) inference behaviour. The second is a novel “progressive depth
factorization” strategy for efficient CNN architecture exploration under quantization con-
straints. Coupling the proposed strategy with fine-grained analysis of layer-wise distribu-
tions enables the gain of in-depth, layer-level insights on efficiency-accuracy tradeoffs under
fixed-precision quantization and increasing depth factorization of convolution. Our overall
contribution is framing the design and analysis of CNNs in the context of fixed-point inte-
ger computation as it has become a common method for low-power inference. Analyzing
CNN behaviour through the lens of quantization drives development of CNN models in a
more efficient pipeline that always keeps the deployment environment in mind.
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1.4 Outline

The outline of this thesis is as follows:

In Chapter 2, we provide the relevant background for framing the context of this work
including neural network quantization and the computational costs of CNN training and
inference.

In Chapter 3, we introduce and describe the details of our framework for fine-grained,
layerwise analysis of CNN models.

In Chapters 4 and 5 we demonstrate two applications of this analysis framework for
quantization-aware design of CNN models.

Finally, Chapter 6 discusses the overall implications and insights of our results as well
as future directions for this research.
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Chapter 2

Background

2.1 Neural Network Training and Inference

CNN training is comprised of two main stages: forward propagation (also referred to as
inference) of the training samples, and backward propagation of the gradient with respect
to the loss function (after backward propagation there is also the parameter update step,
but for simplicity we will include it with backpropagation). However, after training, a
deployed model only needs to compute the forward pass to make predictions on the new
samples (sometimes referred to as samples in-the-wild or test samples). The following two
subsections will briefly detail the main computation of forwards and backwards propagation
as well as the background relevant to why we might be concerned with devising more
efficient CNN algorithms.

2.1.1 Forward Propagation

Forward propagation refers to the process of providing an input x to a neural network
and applying a sequence of layer operations under composition to produce an output y.
This can be more precisely described in Eq. 2.1 where F (x) represents the N -layer neural
network function and fi is the i-th layer of the network.

y = F (x) where

F (x) = fi ◦ fi−1 ◦ . . . ◦ f1(x) for i ∈ 1, 2, . . . , N
(2.1)

8



Figure 2.1: Forward Propagation. An illustrative example of forward propagation from
input vector x to produce output y. The circles represent the values of the feature vector
at each stage. Subscripts simply refer to the i-th element of the feature vector. In many
cases, y is a multi-dimensional vector or tensor. Each layer has weight matrix W (i).

We can conceptualize computing F (x) as propagating our input x from the first/bottom
layer of the network, through successive layers all the way to the output/top layer of the
neural network, applying a non-linear transform to the input data/tensor at each layer.
The intermediate layers, fi are referred to as hidden layers and their outputs are often
called activations, hidden activations, or hidden feature maps. During training, we often
compute forward propagation on a batch of B samples (referred to as a batch-size of B)
to utilize a GPU’s parallel processing power and reduce the amount of time required to
train a model. At inference-time, it is typically assumed that the model will be receiving
a single image at a time (i.e., a batch-size of 1).

Figure 2.1 visualizes forward propagation in a simple 2-layer, fully connected neural
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network. It should be noted that while for simplicity and illustrative purposes, we describe
the neural network as a sequence of single layers fi(x), fi(x) is often a more complicated
function implemented as multiple layers and operations applied in sequence and/or in
parallel. Thus, fi(x) can also be thought of as the i-th stage or module of the neural
network F (x). One can easily see how the amount of computation quickly explodes with
the increase in dimensionality of our input data, hidden activations and model parameters.

2.1.2 Backward Propagation and Training

Backward propagation, widely popularized in [39], is the actual mechanism by which a
neural network’s parameters can be updated/trained to improve its predictions and mini-
mize the target loss function. Leveraging the chain rule, it is the method that has allowed
us to efficiently compute the gradient of a cost function with respect to each of the parame-
ters in a multi-layer network using straightforward matrix multiplications for the majority
of computation. Thus, backward propagation enables the ability to train powerful, deep
networks in a reasonable amount of time. This is illustrated in Algorithm 1.

Algorithm 1: Backpropagation of Error

Result: Compute gradient of loss with respect to each layer’s parameters
L(y) = L ◦ F (x)
// F (x) is N-layer neural network, L(y) is the loss

∇yN = ∂L
∂y

// gradient of the loss w.r.t. output of layer-N

for i in N, N-1, . . . , 1 do
yi = fi(xi−1); // current layer’s output

∇yi = ∂L
∂fi

; // gradient of loss w.r.t. output of layer i
∂L

∂W (i) = ∇yi · ∂fi
∂W (i) ; // Gradient of loss w.r.t. weights of layer i

∂L
∂xi−1

= ∇yi · ∂f
∂xi−1

; // Gradient of loss w.r.t. input to layer i

// ∂L
∂xi−1

is the gradient of loss w.r.t. output of layer i-1

(i.e., ∇yi−1). Thus, we can now backprop to the next layer

end

Similar to forward propagation, computing the gradients in a deep convolutional neural
network is a very computationally dense operation. Furthermore, due to the noisy, iter-
ative nature of stochastic gradient descent (SGD), high precision is typically required to
accumulate many small gradient steps over training to effectively traverse the loss surface
and minimize cost. The traditional weight update computation for stochastic gradient
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descent is illustrated in Eq. 2.2 where L is the cost function/loss, η is the learning rate and
θ are the model parameters. Note that other variants of SGD exist that seek to speed-up
convergence (i.e., reduce the number of steps/iterations required to converge). These typi-
cally involve modifying the weight update equation based on some momentum-based term.
However, the core ingredient is that they make use of iterative, gradient based updates.
The learning rate is a hyperparameter that scales the magnitude of any given update. The
intuitive rationale is that when we are optimizing on a non-convex, “poorly behaved” loss
surface, we should take smaller incremental steps so as not to overshoot the global minima.
Typical values for learning rate can be in the range η ∈ [10−1, 10−4]. However, the learning
rate can often be even smaller over the course of training due to other hyperparameters
such as learning rate schedules and learning rate decay. Learning rate decay describes the
process of reducing the learning rate over the course of training so that the optimization
process can settle in a global minima. It is analogous to reducing the temperature in
simulated annealing. While learning rate schedule and learning rate decay are often used
interchangeably, here we make a distinction since there have been recent works proposing
learning rate schedules that do not strictly decay η. Thus, one can see how high precision
is required for gradient descent to accurately update network parameters during training
and converge towards an accurate minimum.

θt = θt−1 − η
∂L

∂θt−1

(2.2)

While there are many promising methods and research in the area of using 16-bit float-
ing point (half-precision), a mix of 16-bit and 32-bit floating point (mixed precision) and
even 8-bit floating point numbers for computing gradients and performing backpropaga-
tion [2, 6, 33, 50], the standard practices still typically use 32-bit floating point (FP32)
since FP32 usually guarantees enough precision for iterative gradient descent methods to
converge. The rounding errors introduced by less precision can typically lead to unstable
training and a diverging cost function. Thus, when training a neural network, the computa-
tion of forwards and backwards propagation both require massive amounts of high-precision
computation as well as high memory and bandwidth costs.

2.1.3 Computational Cost of Training and Inference

Neural network training and inference involve high density computation that was previ-
ously impossible for most computing hardware to handle in a reasonable amount of time.
For example, the state-of-the-art ResNet-152 [16] requires 5.65 billion MACs (or 11.3 billion
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FLOPs since a multiply-accumulate operation would contain two floating point operations)
for a single inference alone [16]. The less accurate, but more efficient ResNet-34 still re-
quires 1.8 billion MACs for a single inference. These computations are made even more
costly when considering the data movement required to load weights and activations into
memory, store accumulated partial sums of activations, and also the energy cost of running
power-hungry floating point operations. To illustrate, ResNet-152 contains over 60 million
parameters. When stored as 32-bit floating point numbers that is more than 228 MB of
storage/memory required for just the CNN model alone. Such a large memory footprint
guarantees that multiple external memory accesses will be required for the model param-
eters alone. The memory required for computing activations, gradients, and parameter
updates further increases the data movement requirements of a CNN model by several
times.

When looking at the hardware cost of a CNN in terms of latency and power consump-
tion, external memory accesses (e.g., DRAM accesses) dominate data movement costs by
a couple orders of magnitude [3]. They are much more expensive when compared to ac-
cessing a cache or local buffer. Thus, any optimizations that can minimize off-chip data
movement (i.e., reading/writing from DRAM) will significantly improve the hardware per-
formance of a CNN algorithm. Besides data movement, reducing the number of MACs in
a CNN can also greatly reduce hardware costs as decreasing the number of computations
per inference can reduce the time/power consumed from computing all MACs of a forward
pass and can also potentially reduce the clock frequency at which the computation needs
to be performed. Table 2.1 shows some of the associated memory and computational costs
of some state-of-the-art CNNs from the past few years. Eq. 2.3 and Eq. 2.4 describe the
number of MACs and number of parameters respectively associated with computing an
output activation-map with dimensions H×W for a single convolutional layer with K×K
filters, Cin input channels, and Cout output channels. Input channels refers to the number
of channels of the incoming image/tensor and output channels refers to the number of
channels in the outgoing image/tensor produced by the current layer.

MACs = K ×K ×H ×W × Cin × Cout (2.3)

Params = K ×K × Cin × Cout (2.4)

Evidently, computation of a given layer quickly grows with image dimensions, channel
depth and kernel size. State-of-the-art models often have several tens of layers, or even over
a hundred layers, and the hidden activation maps can have hundreds of channels. Thus, the
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computation of accurate CNNs can be difficult to efficiently execute and fit within a tightly
constrained computational budget. While it is expected that training is quite expensive
considering the massive dataset requirements for training accurate algorithms and the high
precision requirements for iterative gradient descent, CNN inference only involves forward
propagation. Thus, recent research in enabling “AI-on-the-edge” has focused on designing
CNN architectures that are fast and efficient for inference such that neural networks can
be deployed on mobile devices after they have been intensively trained “offline” (i.e., using
a powerful GPU or GPU server). A few prominent areas of efficient CNN research include
designing efficient CNN architectures, pruning unnecessary weights/filters, and reducing
the precision of the neural network computation (i.e., fixed point quantization or CNN
quantization). Oftentimes, deploying a CNN for mobile use-cases will involve some com-
bination of methods from the aforementioned topics, particularly CNN quantization as it
can be easily adapted for existing efficient, low-power hardware.

2.2 Fixed Point Quantization of CNN Weights and

Activations

In the default setting, CNNs require 32-bit floating point computations for the forward and
backward propagation during training. As mentioned in Sec. 2.1.2, this is mainly due to
the fact that during iterative gradient descent optimization, gradient updates accumulate
in very low magnitudes. Thus, 32-bits of floating point precision are required to adequately
represent the data without losing these updates. This high precision data format can have
several implications in terms of computational cost. Using high-precision representations
usually mean that the weights and activations of the model cannot fit in the on-chip
memory (i.e., the on-chip cache). Thus, over the course of a single inference hundreds
of megabytes of data may have been moved to/from the external memory. Furthermore,
floating point computations often require more complicated, power-hungry arithmetic logic
units (ALU) that are less suitable for resource-constrained platforms such as cell-phones,
drones, and IoT devices. While modifying the CNN architecture is one way to reduce data
movement and computation, it is not always guaranteed to produce an algorithm with
comparable accuracy to the more expensive model. Additionally, simply modifying the
CNN architecture does not address the issue of performing costly floating point operations.

In light of these challenges, fixed point quantization of convolutional neural networks
has quickly emerged as an essential tool for running efficient CNN inference. Models de-
ployed in low-power settings that only require forward propagation/inference computations
can often be run with fixed point integer arithmetic. Thus, leading to major savings in
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Network Name Parameter Storage Size (MB) Num. Parameters Num. MACs

ResNet-50 [16] 99.2 26M 2.0B

ResNet-152 [16] 288.9 60M 5.65B

ResNeXt-101 [55] 320.4 84M 16B

Inception-v4 [47] 183.1 48M 6.5B

Inception-ResNet-v2 [47] 213.6 56M 6.5B

Xception [5] 87.7 23M 4.2B

SENet [18] 556.9 146M 21B

NASNet-A [58] 339.5 89M 12B

DenseNet-264 [20] 129.7 34M 3.0B

EfficientNet-B0 [49] 20.2 5.3M 0.20B

EfficientNet-B1 [49] 29.8 7.8M 0.35B

EfficientNet-B2 [49] 35.1 9.2M 0.5B

Table 2.1: List of the various state-of-the-art CNNs from the past few years and their
associated hardware costs. We limit the quantifiers of cost to those that would be agnostic
to underlying hardware/software implementations. For example, bandwidth numbers can
be influenced by chip architecture, memory technology and the bus bitwidth. Reported
numbers are from [49].
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Figure 2.2: Real/Continuous FP32 mapped to Discrete/Quantized UINT8 rep-
resentation. An illustrative example of mapping a set of real/continuous numbers to
a quantized/discrete number line. In the simplest case shown above, we perform a lin-
ear/affine mapping.

latency, power, and storage. In the commonly used deployment setting, CNN weights and
activations are quantized to discrete 8-bit integer representations. Thus, reducing mem-
ory/storage requirements of weights and activations by 4× and significantly reducing the
computational cost of inference as complex floating point ALUs can be replaced with fast,
simple integer ALUs. As seen in Fig. 2.2, this translates to linearly/affinely projecting
the real, continuous-valued weights/activations from a known, finite range onto a discrete,
linear space. This method of linear quantization is also referred to as uniform quantization
due to the fact that the discrete states in the integer space are uniformly distributed along
the number line. It has been used in traditional signal processing for decades. Fig. 2.3
illustrates how quantization creates discretized “steps” to approximate a continuous func-
tion; each value in the quantized space (i.e., each quantized integer number) represents one
of those discrete steps or “levels” in the real number space.

Converting between real and quantized values primarily involves three steps:

1. Determine the range of our data (e.g., range of values in a layer’s weights). This will
be parameterized by the maximum and minimum values, max and min. For CNN
weights, we often take the absolute max/min of the tensor. However, for activations
we first need to compute forward propagation of the CNN on a set of “representative”
samples (often called the “calibration dataset”) to profile the distribution of activa-
tions for each layer. A representative calibration dataset should hopefully capture
the actual distribution of activation values we expect in the real-world data so that
we can select a quantization range that does not lose too much information.
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2. Determine the step-size, S as calculated in Eq. 2.5, where max and min are de-
termined from the previous step and N is the number of bits used to represent a
quantized number, usually eight. S is the distance/delta when moving between two
adjacent points/levels in the discrete integer space. In Fig. 2.3, it is the vertical dis-
tance when moving from one consecutive quantization level to another. Step-size can
be thought of as inversely proportional to the “resolution” of the quantized mapping
as smaller steps mean that we can represent the real numbers with finer precision
(i.e., higher resolution).

3. Finally, Eqs. 2.6 and 2.7 show the relations for mapping between real values, r and
the quantized values, q. The mapping is parameterized by the step-size from Step
2 and a zero-point, Z. Z is simply the quantized integer value that represents the
real-zero. To make the real-zero perfectly map to Z can sometimes require slightly
adjusting the values of max and min. This is referred to as making real-zero perfectly
quantized. As mentioned in [24] there can be many numerical and, depending on if
signed integers are used for the quantized numbers, hardware benefits to making
zero perfectly quantized. For quantizing from real to integer, there may also be a
clamping operation as seen in Eq. 2.7. This is necessary for cases where max and min
are not the absolute maximum and minimum of the tensor such as when quantizing
activations.

S =
max−min

2N − 1
(2.5)

r = S(q − Z) (2.6)

q =
clamp(r,min,max)

S
+ Z (2.7)

clamp(x, a, b) =


x a ≤ x ≤ b

a x < a

b x > b

(2.8)

As can be seen from the formulation of quantization, the main sources of error when
mapping from the continuous, real space to the discrete, integer space are rounding error,
and clamping errors. Values within the defined max/min range may introduce rounding
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Figure 2.3: Discrete Steps From Quantization. An illustrative example of how quan-
tization uses a set of discrete steps to approximate a continuous function/signal.
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error if they do not fall exactly on one of the quantization levels whereas values that fall
outside the defined range are clamped to the range’s endpoints, thus introducing clamping
errors. Various works have explored different quantization algorithms [12, 24, 34] to mini-
mize the loss of information when mapping CNN weights and activations into a discretized
space. The ability to convert CNN computation entirely to 8-bit fixed point arithmetic
means that engineers can easily make use of existing hardware such as DSP blocks which
have been optimized over decades for massively parallel, fixed point integer arithmetic.
The use of DSPs as co-processors/accelerators for CNN inference has provided significant
speed and power benefits as DSPs have been optimized for efficiently processing millions
of pixels in images and videos in real-time. However, directly converting the floating point
CNN model to quantized integer arithmetic for inference as-is can sometimes lead to un-
acceptable degradation in accuracy.

The trained distribution of values in CNN weights and activations are typically clustered
around zero in non-uniform distributions. Thus, a uniform, affine quantization encoding
is actually sub-optimal from an information theoretic point-of-view. It would make sense
to place more quantization-levels where there are many real-values and allocate less levels
in the outlier domains. There have been works such as those in [12, 34] that seek to create
more complicated, non-linear quantization schemes (or with Vector Quantization [12], even
non-scalar) such as Log-2 based quantization that provide significant theoretical benefits
over uniform quantization for retaining floating-point accuracy. However, mobile hardware
accelerators are usually limited in the types of operations that can be parallelized for fast
execution. Thus, the aforementioned quantization methods are often not supported by ex-
isting mobile hardware. As such, other works have focused on quantization-method-specific
optimization (e.g., targeting 8-bit uniform quantization). These include quantization-aware
fine-tuning [24] and differential optimization of quantization parameters [4, 25], e.g., finding
the optimal max/min values of each layer for minimal quantized degradation. These meth-
ods train a model that is robust to quantized perturbations by simulating the error/noise
of fixed point arithmetic to make them ready for on-device deployment. In our work, we
will also be focusing on uniform 8-bit quantization of CNN weights and activations.

In this chapter, we have seen the dramatic costs of CNN training and inference. Besides
needing to make CNNs “fit” on hardware in terms of memory, storage and MACs, the power
and time consumption of these algorithms is massive. We have also seen how fixed point
quantization is a very promising and straightforward method for significantly reducing
the latency and power of CNN inference. However, quantization is a noisy process that
can introduce non-trivial, and sometimes even catastrophic error. The next chapter will
describe the framework we propose for better understanding the sources of this quantization
noise and how that can be leveraged for quantization-aware design of CNNs.
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Chapter 3

Fine-grained, Layerwise Analysis of
Weights/Activations Distributions to
Better Understand Quantization
Noise in the System

We seek to better understand how various design decisions for improving efficiency of
our convolutional neural networks can affect the expected behaviour of deployed models.
Namely, how do decisions such as training hyperparameters or architecture design affect
the inference behaviour of a trained model under 8-bit, uniform quantization of weights and
activations? In a common design flow, design choices are made based on the observed fp32
behaviour of a model. Trade-offs between accuracy, latency, power and other hardware
performance metrics are primarily made based on offline testing with fp32 computation.
In recent years, the increased importance of quantization for edge deployment of CNNs has
led to increased research on quantization-simulation [4, 24, 25] and improved quantization
methods [12, 34, 35].

Quantization simulation can be very powerful as it allows for a direct simulation of
how the CNN is expected to perform under quantization. Furthermore, methods such
as [4, 21, 24, 25] have successfully devised ways to train “quantization-aware” CNNs and
enable models to adapt to error induced by quantization noise. However, quantization
simulation is bit-width specific and may not necessarily transfer to a given target device
if the simulated quantization does not match the on-device computation. Thus, insights
gained from quantization simulation are not guaranteed to transfer to different settings.
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Another viable desigh flow is to have “quantization-in-the-loop” wherein effects of quanti-
zation are simulated on the GPU or candidate models are quantized for on-device testing
and re-iteration of design. However, such a design flow is also bit-width and device-specific.
While the aforementioned methods are incredibly useful and well established, it would also
be useful to glean some more general, lower-level insights beyond a CNN’s output behaviour
under quantization.

In most cases, quantization behaviour of the model is only observed at a coarse-grained,
high-level/model-level viewpoint. That is, ablation studies and comparisons are done by
observing the inference outputs of the fp32 and quint8 models and comparisons are largely
made based on the difference in floating point output and quantized 8-bit output of a given
CNN. For example, the quantized mean squared error (QMSE) of a given CNN would be the
mean squared error between the fp32 model output and the quint8 model output. Another
commonly used measure is the quantized KL-divergence (QKL-Div) which is usually the
average KL-divergence between the fp32 model softmax outputs and the quint8 model
softmax outputs. Whereas QMSE directly quantifies quantization error, QKL-Div could
be interpreted as a measure of distributional shift between the fp32 model outputs and the
quint8 model outputs. Note that as most works are concerned with classification networks,
the model outputs are usually softmax outputs which can be interpreted as a distribution.
In such cases, KL-divergence can be directly calculated with the model output tensors and
the mean KL-divergence computed. However, quantized KL-divergence becomes less easily
computed if the model output is not a softmax or some other distribution. In such cases,
one would typically need to generate a histogram of the fp32 model and quint8 output
distributions. From this point, KL-divergence can be computed as usual.

In some cases, CNN quantization [25] will also show plots of some layerwise distributions
but they are typically included for illustrative purposes and do not analyze the CNN
layers in a fine-grained manner. However, as CNN algorithms are complex, multi-layer
systems with millions of parameters, high-level analysis of quantized model behaviour does
not adequately capture the rich interactions of the CNN with quantization noise and the
resulting dynamics that emerge as a result. For example, how might quantization error in
an early layer propagate through the CNN and ultimately affect the output of the model?
Can it be amplified or attenuated and what might lead to such effects? These questions
are not easily answered unless we go to a more fine-grained level of analysis.

Thus, we would like to go to a lower-level of abstraction and better understand quan-
tization dynamics at a layerwise and even channelwise level. In this work we propose a
novel fine-grained analysis framework for understanding the layerwise distributions of CNN
weights and activations. From this analysis, we wish to gain detailed insight on the layer-
wise distributions of final trained weights and activations. This information can give us an
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in-depth look at how the learning dynamics of various models play out. For example, the
dynamic ranges of each weight/activation tensor determine the resolution of the quantized
step-size and, by extension, the quantization noise in a CNN. Thus, this analysis can help
explain the observed quantized inference behaviour of different trained models.

We propose systematically ablating through a variety of hyperparameter/design choices
while tracking the dynamic ranges of each layer’s weights and activations during and after
training. In this way, we can isolate the effect of these different choices and analyze
the changing distributions at each layer. We also track the “average channel precision”.
Average channel precision is defined as Eq. 3.1 where rangei refers to the dynamic range
of channel-i in a convolutional weight tensor with C output channels and rangetensor refers
to the dynamic range of the entire convolutional weight tensor. Channel precision in this
context is the ratio between an individual channel’s range and the range of the entire
layer. Nagel et al. [35] use this precision quantity to algorithmically maximize the channel
precisions of each layer in a network prior to quantization. It can be seen as a measure of
how well the overall layer-wise quantization encodings represent the information in each
channel.

average precision =
1

C

C∑
i=1

rangei
rangetensor

(3.1)

For dynamic ranges of activations, we randomly sample N training inputs from our
training set and observe the corresponding activation responses. To reduce outlier noise,
we perform symmetric percentile clipping (e.g., top and bottom 1%) and track the dynamic
range and average precision of the clipped activations. As percentile clipping has become
a ubiquitous default quantization setting we feel that this method establishes a realistic
baseline of what can be expected during inference-time. Finally, there is one more set of
dynamic ranges that must be observed. Applying batch normalization (BatchNorm) [23]
after each convolutional layer has become the best-practice in a large range of CNN algo-
rithms. However, the typical method of applying the BatchNorm layer after convolution
is not well-suited for mobile hardware processing. Best practice for fast CNN inference
usually involves folding/fusing the scale and variance parameters of a BatchNorm layer
into the preceding layer’s convolution parameters prior to quantization. The method for
obtaining BatchNorm-folded weights is shown in Eq. 3.2 where γ is the BatchNorm scaling
parameter [23], w is the weight tensor, σ2

B is the variance of the layer’s activations for
a given batch B, and EMA() refers to the exponential moving average computed across
batches over training. The term ε is a small constant for numerical stability. Essentially,
the scaling that is normally applied to each channel of activations can be applied to the out-
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put channel of convolutional weights instead. Thus, BatchNorm-folding effectively removes
BatchNorm layers from the network. Linearity guarantees that this folding operation is
mathematically equivalent to normal Conv-BatchNorm operation. Note that this is only
valid if the BatchNorm layer is placed directly after the convolution, prior to any non-
linearity/activation function being applied. It is the BatchNorm-folded weights that are
being quantized and run on-device. Therefore, we must also track the dynamic range and
precision of our CNN’s batchnorm-folded (BN-Fold) weights.

wfold =
γw√

EMA(σ2
B) + ε

(3.2)

In this manner, we can iterate through various designs and configurations, gaining
insights at each step on the trained models and their learning dynamics as well as the
final weights and activations distributions. Our method can be extended as a framework
to analyze a plethora of different design choices. These can include architecture choices
such as layer-type, skip/residual connections as well as training hyperparameters such as
random weight initialization method, learning rate schedules, batch-size, and optimizers.
Despite their simplicity, such analyses can provide deep insight on the interplay of these
various design choices and perhaps yield new understanding on their interaction. In the
following chapters we will demonstrate different applications of our analysis method.

SQNR(x) = 10 log (
E[x2]

E[δ2x]
) (3.3)

Several groups perform a layerwise analysis of the signal-to-quantization-noise-ratio
(SQNR) in a CNN [29, 32, 43]. They use SQNR, defined in Eq. 3.3 where δx is the
quantization noise/error of x, to estimate the amount of useful information passing from
layer to layer in a CNN after quantization. While Lin et al. [29] and Meller et al. [32]
mainly use SQNR to perform mathematical analysis and make numerical decisions related
to quantization, Sheng et al. [43] use a layerwise SQNR analysis to identify architectural
choices that were hurting the quantized performance of MobileNets-v1 before retraining a
modified MobileNets architecture. Our method can be seen as expanding on this approach
and going to an even lower level, directly analyzing the distributions at each layer. This
insight can help guide further exploration for quantization-based optimizations such as the
above-mentioned works or provide a baseline expectation of quantized accuracy trade-offs
in scenarios where tight timelines/limited resources may force engineers to deploy their
quantized model as-is.
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Chapter 4

Analyzing the Effect of Random
Weight Initialization on Trained
Layerwise Distributions and
Behaviour of the Quantizated Models

4.1 Random Weight Initialization Methods

As we have described in Chapter 3 the motivations for analyzing the layerwise distributions
of a CNN for understanding quantization, it would seem natural to first demonstrate the
application of our analysis to a hyperparameter that directly influences the layerwise weight
distributions of a neural network. Random weight initialization is an often overlooked, but
crucial hyperparameter of neural network training. Weight initialization methods decide
where we should begin on the loss surface and in the model-space. They directly influence
the starting point of each layer’s distributions. Thus, it seems reasonable to expect that
even for the same CNN architecture, the choice of random weight initialization method
can significantly affect the quantization behaviour of the fully-trained network.

Weights initialization strategies are often designed with the goal of solving issues such as
vanishing/exploding gradients [11, 13, 15]. However, another aspect of weights initialization
is its impact on the final trained distributions of each layer. As they determine our starting
point on the loss surface and initial conditions, initial distributions of each weight tensor
will have a profound impact on the final trained model. Gradient descent is an incremental
process with many small, noisy steps. Thus, an intelligent weight initialization strategy
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will have significant impact on the local minima reached on our path through the loss space
and consequently the model space as well. With regards to quantization, this means that
weight initialization choices could have significant impact on the dynamic ranges and data
distributions of the weights and activations in a trained CNN. Thus, affecting the noise in
our system and the expected quantized inference behaviour.

We use our proposed framework for in-depth, fine-grained quantitative analysis of the
impact of various weights initialization strategies on final accuracy and quantized be-
haviour. By analyzing the trained distributions of each layer’s weights and activations,
we can gain deep insight on how different weights initialization strategies will affect the
dynamic ranges of each layer. This in turn provides insight on the quantized behaviour
of a CNN. Furthermore, we analyze the effect of these different weights initializations for
a small set of different CNN architectures. Thus, we are able to isolate and observe the
interplay between the CNN architecture choices (the parameterization) and the weights
initialization strategy (the starting point on the parameterized loss surface). To our best
knowledge, we are the first to perform such a systematic, low-level, quantitative analysis
of various weights initialization strategies and their effect on quantized behaviour.

4.2 Background

In early research, neural network parameters were often randomly initialized based on
sampling from a unit normal or uniform distribution. The respective variance and range of
these distributions would be hyperparameters for the practitioner to decide. While easily
taken for granted, researchers have provided mathematical proofs showing how intelligent
weights initialization strategies can solve issues of vanishing and exploding gradients [11, 13,
15]. At initialization, if we assume linearity of each layer, we can model the neural network’s
forward pass as Eq. 4.1 — a series of matrix multiplications of input variableX with random
variables Wi (i.e., the randomly initialized weights). Typically, the initial weights Wi and
the input X are assumed to be zero-mean distribution with variances V ar(Wi), V ar(X)
respectively and we also assume that each column of Wi is independently sampled from
the same distribution. Thus, it follows that the variance of the product distribution Y is
the product of variances illustrated in Eq. 4.2 where ni is the number of columns in matrix
Wi. Similarly, the variance of the gradients in the backwards pass at initialization are also
determined by the product of variances of the randomly initialized parameters.

Y = (
n∏

i=1

Wi)X (4.1)
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Y = V ar(X) ·
n∏

i=1

niV ar(Wi) (4.2)

Thus, to prevent these series of matrix multiplications from pushing variances too high
(exploding activations/gradients) or too low (vanishing activations/gradients), we would
want each layer’s weights to be initialized to a distribution with unit variance. This idea
forms the core principle of different weight initialization research works. These research
works define fan in and fan out of a fully connected layer as the number of input/output
units respectively. For convolution, it is defined as Eq. 4.3 where K is the kernel width
of a given layer’s square convolutional kernel and Cin/out is the number of input/output
channels respectively. In the aforementioned works, they provide proofs on how their
proposed fan in/fan out-aware initialization strategies scale the variance of gradients at
each layer to roughly unit variance. Thus, avoiding failure modes created by vanishing
and exploding gradients. Note that these proofs rely on some assumptions such as the
modeling of NN layers as linear matrix multiplication done in [11]. Furthermore, in [11]
the authors’ experiments only use Tanh and Sigmoid activation and they assume that at
initialization, each layer is operating in the linear region of the activations.

fanin/out = K ×K × Cin/out (4.3)

In [15] the authors note that these linearity assumptions are inaccurate for Relu activa-
tions [36]. More specifically in the forward pass, the output of a single layer is the result of
a matrix multiplication followed by applying a rectifier (see Eq. 4.4). The rectifier breaks
linearity assumptions. Furthermore, the output of this layer and input to the subsequent
layer is no longer zero-mean and we cannot assume a simple product of variances to be the
distribution of the Relu-activated outputs. However, the authors note that if they assume
Wi to be a symmetric distribution around zero and the layer’s bias parameters are also
zero, we can model the variance of the product distribution Y to be a product of variances
scaled by 1

2
as illustrated in Eq. 4.5. Evidently, there are some simplifying assumptions

that must be made for these formulations. However, empirical evidence has shown tangible
benefits to using such fan in/fan out-aware initialization strategies and they have become
widely adopted in the field. The weight initialization methods described in [11, 15] have
become some of the most popular random initialization methods. Both papers describe
methods for random weight initialization by sampling from either Gaussian or uniform
distributions. The distributions from which each of these methods sample their random
weights are described in detail in Sec. 4.4
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y = max(0, x) (4.4)

Y = V ar(X) ·
n∏

i=1

1

2
niV ar(Wi) (4.5)

While the introduction of batch normalization [23] layers has greatly mitigated training
issues involving gradient scales, the choice of “where to begin” in the parameterized loss
space is still extremely relevant. An often-overlooked effect of these initialization strategies
is their impact on the trained dynamic ranges of each layer. As gradient descent is a noisy,
iterative process with small, incremental steps, the final distributions of each layer are
profoundly impacted by their starting point.

4.3 Fine-grained Layerwise Analysis

Besides a high-level study of how different weight initializations affect 32-bit floating point
(fp32) and eight-bit quantized (quint8) accuracy, we also wish to better understand the
journey from initial distributions to the final distributions of each layer’s trained weights
and activations. We will systematically ablate through a variety of different weight ini-
tialization strategies and apply our fine-grained layerwise analysis framework to better
understand how our choice of weight initialization method can ultimately impact post-
training quantized inference behaviour. Note that while our main focus is analyzing the
final trained distributions, we could also be tracking the distributions of each layer’s weights
and activations during training. This information can give us an in-depth look at how the
learning dynamics of various weight initializations play out.

4.4 Experiment

For our experiment we use a simple, VGG-like macroarchitecture with four variations that
differ in the micro-architecture of each layer (i.e., the type of convolution block used and
the use of BatchNorm in-between convolution and Relu. See Figure 5.1 for the general
macro-architecture). These four variations are determined by the type of conv-block used
at each layer: Regular Conv With BN, Regular Conv No BN, DWS Conv With BN, and
DWS Conv No BN. These respectively correspond to using regular convolution followed
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by BatchNorm and Relu, regular convolution followed by only Relu and no BatchNorm,
depthwise separable convolution blocks with BatchNorm and Relu after each convolution
layer (same as the MobileNets block in [17]), and finally depthwise seperable convolution
with only Relu and no BatchNorm after each convolution layer. The very first convolution
layer stays fixed for all architectures, but follows the With/Without BatchNorm behaviour
of the rest of the layers.

Our four CNNs are trained and tested on CIFAR-10 with a wide variety of different
weight initialization strategies. These strategies can be separated into two categories of
naive, straightforward strategies and more intelligent, layer-aware methods. Furthermore,
the most common random weight initializations can also be categorized by the type of
sampling distribution: random sampling from uniform distributions (hereafter referred to
as RandUni) and random sampling from normal distributions (hereafter referred to as
RandNorm). With considerations of dynamic range in mind, we seek to select distribu-
tions for the naive methods that would roughly correspond to small, medium, and large
initial weights ranges. For the layer-aware initialization strategies, we use four commonly
used methods introduced in [11, 15]. Named after the authors, we call them Glorot Uni-
form (GlorotUni) and Glorot Normal (GlorotNorm) from [11], He Uniform (HeUni) and
He Normal (HeNorm) from [15]. See Equations. 4.6, 4.7, 4.8, 4.9 for the respective sam-
pling distributions for obtaining initial weights. In these works, the distribution range
(for uniform sampling) and standard deviation (for normal sampling) for each layer are
calculated based on fan in, fan out, or some combination of the two. We choose to focus
on only the convolution layers and so the fully connected layers are always initialized using
Glorot Uniform initialization. Furthermore, we also keep the weight initialization of the
first convolution layer constant; only Glorot Uniform initialization is used. This was to
keep the very first convolution layer as constant as possible.

WGlorotUni ∼ U [−
√

6

fan in+ fan out
, +

√
6

fan in+ fan out
] (4.6)

WGlorotNorm ∼ N (0,
2

fan in+ fan out
) (4.7)

WHeUni ∼ U [−
√

6

fan in
, +

√
6

fan in
] (4.8)

WHeNorm ∼ N (0,
2

fan in
) (4.9)
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Initialization Method Standard Deviation Max/Min Value C

RandNorm Large 1 N/A N/A

RandNorm Med 0.5 N/A N/A

RandNorm Small 0.1 N/A N/A

RandUni Large N/A +/- 1 N/A

RandUni Med N/A +/- 0.5 N/A

RandUni Small N/A +/- 0.25 N/A

ModGlorotUni Large N/A N/A 1296

ModGlorotUni Med N/A N/A 36

GlorotUni N/A N/A N/A

GlorotNorm N/A N/A N/A

HeUni N/A N/A N/A

HeNorm N/A N/A N/A

Table 4.1: List of the various weight initialization strategies used. For methods that require
some hyperparameter selection we include the values selected.

Based on initial results showing Glorot Uniform having the most success in fp32 ac-
curacy, we further experiment with Modified Glorot Uniform (ModGlorotUni) weights
initialization strategies. The method of computing the max/min range of the uniform
sampling distribution in Glorot Uniform initialization can be generalized as Eq. 4.10 where
C is some constant. In the original paper, C = 6. Following our established method of
selecting distributions corresponding to small, medium, and large initial weights ranges,
we select two values of C that would roughly correspond to medium and large ranges. The
original Glorot Uniform leads to fairly small ranges. See Table 4.1 for a detailed breakdown
of the sampling methods used in each of the 48 experiments.

max/min = ±

√
C

fan in+ fan out
(4.10)

Each network is trained for 200 epochs of SGD with Momentum = 0.9 and batch-
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size = 128. Initial learning rate is 0.01 and we scale it by 0.1 at the 75th, 120th, and 170th
epochs. For the activation range tracking we perform top/bottom 1% clipping computed
on a random sample of 1024 training samples. Basic data augmentation includes verti-
cal/horizontal shift, zoom, vertical/horizontal flip and rotation. We use Tensorflow-1.15
for training and quantizing the weights and activations to quint8 format.

For each network we evaluate testing performance with respect to 4 metrics: fp32 accu-
racy, quint8 accuracy, quantized mean-squared error (QMSE), and quantized crossentropy
(QCE). Results are presented in Table 4.2. QMSE refers to the MSE between the fp32
network outputs and the quint8 network outputs after dequantization. Similarly, QCE
measures the cross entropy between the fp32 network outputs and the dequantized quint8
network outputs. While QMSE directly measures how much the quint8 network outputs
deviate from the fp32 network, QCE quantifies the difference in the distribution of the
network outputs. Together, QMSE and QCE can help us understand by how much the
quantized network and floating point network outputs differ as well as how the shapes of
each network’s outputs diverge from each other. For classification tasks, the quantized
network can predict the same class as the fp32 network, despite deviations in logit values,
if the overall shape of the output distribution is similar. Therefore QCE can sometimes be
more reflective of differences in quantized behaviour. Additionally, we also observe the rel-
ative percent accuracy degradation (see 4.11) of each network after quantization. Though
these quantities often track together, there can be scenarios where a network with more
QMSE or QCE actually has less relative quantization degradation from a pure accuracy
standpoint. This could be explained by favourable rounding within the network leading
to the correct top-1 class prediction despite relatively large errors in the quint8 network
outputs and possibly shifting distributions of values among other class probabilities.

percent acc decrease =
|Accuracyfp32 − Accuracyquint8|

Accuracyfp32
× 100 (4.11)

4.5 Discussion

We can see in Table 4.2 that besides affecting the final FP32 accuracy of a given CNN
architecture, the weights initialization strategy also has significant impact on the QUINT8
accuracy. Particularly worth noting is the markedly improved quantized behaviour in the
DWS Conv With BN networks trained using RandUni Large initialization. Equally note-
worthy is the stark drop in QUINT8 accuracy observed with the DWS Conv With BN
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Network Architecture FP32 Accuracy QUINT8 Accuracy QMSE QCE Percent Accuracy Decrease

DWS Conv No BN GlorotUni 10.00 10.00 0.000 2.303 0.00

DWS Conv No BN ModGlorotUni Large 74.42 70.70 0.009 1.109 5.00

DWS Conv No BN RandNorm Large 69.94 63.07 0.006 0.893 9.82

DWS Conv No BN RandNorm Med 74.68 73.26 0.006 0.951 1.90

DWS Conv No BN RandUni Large 75.22 72.77 0.004 0.872 3.26

DWS Conv With BN GlorotNorm 80.10 69.76 0.014 1.127 12.91

DWS Conv With BN GlorotUni 81.04 71.02 0.012 1.054 12.36

DWS Conv With BN ModGlorotUni Large 76.33 68.64 0.012 1.789 10.07

DWS Conv With BN ModGlorotUni Med 80.16 70.86 0.014 1.011 11.60

DWS Conv With BN HeNorm 79.48 55.56 0.033 2.400 30.10

DWS Conv With BN HeUni 80.51 62.49 0.024 1.786 22.38

DWS Conv With BN RandNorm Large 74.93 66.32 0.010 1.358 11.49

DWS Conv With BN RandNorm Med 77.99 66.32 0.016 1.694 14.96

DWS Conv With BN RandNorm Small 80.61 70.12 0.013 1.464 13.01

DWS Conv With BN RandUni Large 76.60 74.18 0.003 0.811 3.16

DWS Conv With BN RandUni Med 78.40 67.82 0.016 1.993 13.49

DWS Conv With BN RandUni Small 79.02 64.25 0.017 1.452 18.69

Regular Conv No BN GlorotNorm 87.03 84.46 0.005 0.585 2.95

Regular Conv No BN GlorotUni 86.89 85.51 0.003 0.403 1.59

Regular Conv No BN HeNorm 86.20 85.56 0.001 0.228 0.74

Regular Conv No BN HeUni 86.20 85.89 0.006 0.485 0.36

Regular Conv With BN GlorotNorm 89.34 86.33 0.005 0.340 3.37

Regular Conv With BN GlorotUni 88.53 88.33 0.002 0.207 0.23

Regular Conv With BN ModGlorotUni Large 60.35 57.03 0.005 1.920 5.50

Regular Conv With BN ModGlorotUni Med 84.60 60.08 0.029 3.217 28.98

Regular Conv With BN HeNorm 86.87 86.30 0.003 0.311 0.66

Regular Conv With BN HeUni 87.88 86.47 0.004 0.693 1.60

Regular Conv With BN RandNorm Large 55.41 45.43 0.009 2.070 18.01

Regular Conv With BN RandNorm Med 59.57 56.55 0.001 1.465 5.07

Regular Conv With BN RandNorm Small 80.19 68.96 0.017 2.016 14.00

Regular Conv With BN RandUni Large 58.69 58.15 0.002 1.577 0.92

Regular Conv With BN RandUni Med 67.03 66.15 0.002 1.260 1.31

Regular Conv With BN RandUni Small 76.28 75.80 0.002 0.888 0.63

Table 4.2: Detailed results for each combination of weight initialization strategy and CNN
architecture. The initialization strategies that suffered from vanishing/exploding gradients
are ommitted. DWS Conv No BN GlorotUni is kept for illustrative purposes.
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Figure 4.1: General Macroarchitecture of the CNN. For our analysis we use a fixed
macro-architecture so that we can isolate the interactions between various weight initial-
ization strategies and a few different convolutional layer choices. A flatten layer is used
between the final Conv and first Dense layer.

networks trained using the HeNorm and HeUni weight initialization methods and the Reg-
ular Conv With BN network trained with ModGlorotUni Med initialization. As expected,
quantized accuracy usually worsened when BatchNorm layers were introduced. This is
often attributed to the increased dynamic ranges/distributional shift introduced by Batch-
Norm Folding. BatchNorm Folding can sometimes lead to large increases in the dynamic
ranges of a given layer’s convolutional weights and significant distributional shift of the
quantized filter values. Thus, leading to increased error and information loss.

While each CNN architecture is trained on twelve different initialization methods, Reg-
ular Conv No BN only has four results. This is because the other initialization methods
had issues of exploding gradients. Their results were omitted. It is possible that with a
sufficiently small learning rate, these models would have been able to train. However, for
the sake of our systematic ablation study, we focused on isolating just the effects of weight
initialization method. Most of the DWS Conv No BN experiments also did not learn but
suffered from vanishing gradient issues instead. However, in our analyses we found that
these vanishing gradients were not necessarily caused by a deep architecture leading to
the gradient progressively vanishing during backpropagation. Instead, we observed a “van-
ishing activations” type phenomenon in the forward pass wherein the activations of the
final Depthwise Separable Convolution block are exceedingly small. Thus, no gradients
are able to propagate past the fully connected layers. Figure 4.2 shows a plot of the net-
work activations in DWS Conv No BN GlorotUni. For illustrative purposes, we keep the
DWS Conv No BN GlorotUni result and omit the rest. The normalization introduced by
BatchNorm alleviates this issue as expected. One could consider an additional aspect of
BatchNorm as adding capacity to the network in the form of a learned (if BatchNorm
scale γ is used), or layer-dependent explicit scaling. Scaling that would otherwise be
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too difficult for the convolution parameters to learn in addition to extracting features. We
seek to follow-up on this hypothesis in future works. While we focus on the variations in
quantized behaviour in this work, the varying FP32 accuracies are also worthy of close
study. Our method sets out a framework through which we can systematically study these
phenomena.

To better understand why we are observing the given quantized behaviour, we can use
the proposed fine-grained analysis and inspect the distributions of each model layer-by-
layer. These layerwise plots enable a more low-level, focused look. As we look to analyze
any anomalies or unexpected behaviour, our fine-grained approach allows us to gain much
more detailed insight as to what dynamics are at play when we introduce quantization
noise. With regards to the significantly improved quantized accuracy for the depthwise
seperable network, DWS Conv With BN RandUni Large, we observe in Figures 4.3, 4.4
and 4.5 that weights ranges don’t necessarily tell the whole story. Despite having generally
larger weights ranges, we start to see several other key areas in which the RandUni Large
layers stand out. For example, while the two He-initialized models tend to have a spike
in the BN-Fold weights range at layer 2, RandUni Large actually decreases in range. Fur-
thermore, when we compare the BN-Fold weights precisions we also see a drop in precision
for the other networks at layer 2 while the precision for RandUni Large increases. With
the activations, we see that all of the activation ranges increase at layer 2 while activa-
tion precisions decrease. However, RandUni Large experiences a significantly smaller drop
in activation precision. Thus, suggesting that RandUni Large has a higher retention of
information in those crucial early stages of low-level feature extraction. Also of note is
the significant drop in quantized accuracy for the He-initialized DWS Conv models. This
large quantization error serves to illustrate how sometimes strong gains in floating point
performance can easily be lost at deployment time when the on-device computation differs
from the offline testing. Thus, necessitating the need for robust quantized testing and more
quantization-aware design methodologies.

Analyzing inter-model changes in the layerwise distributions might explain why we
observe such a wide range of behaviour caused by varying weight initialization. From Fig-
ures 4.3, 4.5 we can see how our models end up with widely varying layerwise distributions.
It would also be worthwhile to observe the relative change in range/precision after Batch-
Norm folding. This would be a proxy for observing the distributional shift of the weights.
While it is intractable to pinpoint any single reason, our layer-level analysis reveals a rich
set of interactions that build a detailed picture of each network’s system dynamics as well as
inter-network trends. We could further expand our analysis to more rigorous, yet scalable
statistics. For example, we know that a uniformly distributed tensor would best utilize the
quantized steps of our given discretization method. Thus, the KL-divergence between a
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Figure 4.2: Vanishing Act! In this figure we can see how the activation ranges of
DWS Conv No BN become increasingly small until they practically disappear. Conse-
quently, gradients are not able to propagate past the fully-connected layers (final three
points on the graph).

given weight/activation tensor and its corresponding uniform distribution (i.e., a uniform
distribution with the same bounds as the tensor) is a potential metric to explore. Overall,
from these initial analyses, we see that a fine-grained, systematic approach to analyzing
various design choices can yield detailed insights on the learning dynamics of a CNN.
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Figure 4.3: Layerwise plot of the dynamic range of convolutional filter weights for a selected
subset of the trained models.
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Figure 4.4: Layerwise plot of the dynamic range and average precision of BN-Folded convo-
lutional filter weights for a selected subset of the trained models. By comparing to Fig. 4.3
we can see how BatchNorm Folding changes the distribution of convolutional weights that
are actually being quantized.
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Figure 4.5: Layerwise plot of the dynamic range and average precision of convolutional
layer activations for a selected subset of the trained models.
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4.6 Quantized Behaviour Over Training Epochs

In addition to analyzing the fully trained behaviour of our CNNs, it would be useful to see
how quantization error evolves as training progresses. If the quantization error of networks
early-on in training can be predictive of the expected quantization error of fully-trained
models, then there could be opportunities for predicting quantization error. This could
be incredibly useful in applications such as neural architecture search (NAS) where there
is significant interest in predicting CNN behaviour without needing to spend the costly
GPU-hours involved with training to convergence.

For this study, we selected eight of the trained networks and quantized their corre-
sponding checkpoints saved from Epochs {5, 50, 75, 150}. For each of these quantized
checkpoints we computed their fp32 accuracy, quint8 accuracy, percent accuracy decrease
(those three values in Table 4.3), and QMSE (see Table 4.4). These epochs correspond
roughly to early, middle, and late stages of training. We would like to see if there are any
trends in quantization degradation during different stages of training. The models were
selected to evenly represent the four different architectural choices in our ablation study -
with/without batchnorm and depthwise-separable convolution vs regular convolution. We
also wanted to select the models to represent a variety of quantization degradation (i.e.,
large quantization error vs. small quantization error). We also show some plots of how
each model’s layerwise statistics evolve during training. However, due to space constraints
we only include a randomly selected subset of plots for discussion. From plots of some of
the layerwise distributions we can see that dynamic ranges and average precisions of our
models do converge. However, the point at which these statistics stabilize can widely vary
between layers and between models. We wonder if quantization error will converge before
end-of-training. Figures 4.7, 4.6, and 4.8 show some examples of randomly selected layers
from randomly selected models. We notice that while the values usually tend to stabilize,
there can sometimes be large variations early-on in training. This is most pronounced in
the activation ranges (Fig. 4.8) as well as plots for the weights of one of the depthwise-
convolution layers (Fig. 4.6). Unfortunately, there is not enough space to show all layers
and all models.

As expected, the quantization accuracy decrease and QMSE of our models in early
training (Epoch 5) are not representative of our final trained models. For example,
DWS Conv No BN RandNorm Large only has a relative accuracy decrease of 0.41% at
Epoch 5 compared to 9.82% decrease in the final trained model. In general, it seems
to be hard to predict the quantized accuracy ranking of models based on intermediate
quantization results before they are fully trained. This may be explained by the large vari-
ations in the layerwise distributions as observed in the aforementioned plots. However, by
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Figure 4.6: Plot of average precision vs training epoch (left) and range vs. training epoch
(right) for randomly selected layer weights from a DWS Conv model.

Epoch 75, the quantization degradation of the worst model, DWS Conv With BN HeNorm
is already apparent. Furthermore, when we observe the QMSE of each of these models
over training in Table 4.4 we can identify the two worst models by Epoch 75 as well
(DWS Conv With BN HeNorm and DWS Conv With BN GlorotUni). Perhaps interme-
diate quantization error can be used for early pruning of the models that have the worst
quantized performance. Any method that can reduce the number of models that need to
be fully trained would save a lot of compute/GPU-hours. It would be interesting to see if
there were some other more refined metric that can better predict the expected quantiza-
tion behaviour of our final models. It might also be helpful to get intermediate quantization
results from more epochs. However, there would be a tradeoff as this will also increase
quantization overhead.
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Figure 4.7: Plot of average precision vs training epoch (left) and range vs. training epoch
(right) for randomly selected layer weights from a Regular Conv model.

Figure 4.8: Plot of activation range vs. training epoch for randomly selected layers from
a Regular Conv (left) and a DWS Conv (right) model. We can see how the activation
distributions change quite a bit over the course of training.

39



Network Epoch 5 Epoch 50 Epoch 75 Epoch 150 Epoch 200 (Final)

DWS Conv No BN RandNorm Med 39.83/36.49/8.39 64.85/61.54/5.10 68.73/64.69/5.88 74.58/72.33/3.02 74.68/73.26/1.90

DWS Conv No BN RandNorm Large 38.76/38.6/0.41 59.15/57.84/2.21 64.53/61.89/4.09 69.79/68.76/1.48 69.94/63.07/9.82

DWS Conv With BN HeNorm 38.60/37.90/1.81 73.75/65.12/11.70 75.15/58.44/22.24 79.76/68.71/13.85 79.48/55.56/30.1

DWS Conv With BN GlorotUni 41.25/38.2/7.39 74.7/68.7/8.03 77.46/70.0/9.63 81.07/70.18/13.43 81.04/71.02/12.36

Regular Conv No BN HeUni 47.25/46.56/1.46 80.21/79.92/0.36 82.12/80.87/1.52 86.38/86.61/0.27 86.20/85.89/0.36

Regular Conv No BN GlorotNorm 39.81/39.2/0.0153 79.66/76.80/3.59 83.11/78.12/6.00 87.11/85.73/1.58 87.03/84.46/2.95

Regular Conv With BN ModGlorotUni Large 31.37/29.13/7.14 55.22/46.12/16.48 56.73/51.62/9.00 60.18/57.57/4.34 60.35/57.03/5.50

Regular Conv With BN RandUni Small 39.88/39.92/0.10 68.85/64.55/6.25 71.75/63.66/11.28 76.42/66.97/12.37 76.28/75.8/0.63

Table 4.3: Results stated as (FP32 Acc/QUINT8 Acc/% Decrease) evolution of floating
point vs quantized accuracy over the course of training. We’d like to see if there are any
patterns that can be discerned early-on to predict quantization degradation of our final
model.

Network Epoch 5 Epoch 50 Epoch 75 Epoch 150 Epoch 200 (Final)

DWS Conv No BN RandNorm Med 0.006 0.004 0.01 0.005 0.006

DWS Conv No BN RandNorm Large 0.004 0.007 0.007 0.007 0.006

DWS Conv With BN HeNorm 0.003 0.011 0.023 0.020 0.033

DWS Conv With BN GlorotUni 0.004 0.010 0.014 0.016 0.012

Regular Conv No BN HeUni 0.001 0.004 0.003 0.001 0.006

Regular Conv No BN GlorotNorm 0.004 0.004 0.006 0.003 0.005

Regular Conv With BN ModGlorotUni Large 0.002 0.005 0.003 0.003 0.005

Regular Conv With BN RandUni Small 0.001 0.005 0.010 0.011 0.002

Table 4.4: QMSE at various epochs in training for a subset of the trained models.
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4.7 Conclusion

We conduct the first in-depth, quantitative study of the impact of weight initialization
strategies on final quantized inference behaviour of various basic CNN architectures. This
study also serves as an example of how we can apply the finegrained, layerwise analysis
framework introduced in Chapter 3. We show that in addition to affecting final floating
point accuracy, a well-chosen weight initialization can also significantly affect a CNN’s
quantized accuracy. We also demonstrate potential for analyzing changing model dynam-
ics/behaviours over the course of training as an additional avenue of insight. Future work
includes further exploration of the interaction of BatchNorm with initial weight distribu-
tions, analysis of other intelligent initialization strategies, modifying other training hyper-
parameters, and analysis of weight initialization’s impact on more complex architectures.
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Chapter 5

Factorizing Convolution to Reduce
the Parameters and Operations in a
CNN While Monitoring the Impact
on Quantized Behaviour

Convolutional neural networks require significant computational load. For example, the
state-of-the-art ResNet-152 [16] requires over 5 billion MACs for a single inference. Con-
sequently, researchers have sought to design architectures that will increase the computa-
tional efficiency of CNNs. Depth factorization of convolutional layers is an effective tool
for reducing computational complexity that we will explore and analyze. In particular, we
will investigate the trade-offs in MACs versus accuracy for both floating point and quan-
tized inference and we will apply fine-grained layerwise analysis to better understand the
interaction of depth factorization with quantization.

5.1 Depth Factorization of Convolutional Neural Net-

works

Following the recent explosion in deep learning research, there has been increased atten-
tion on complexity reduction strategies for deep convolutional neural networks (CNN) to
enable inference on mobile processors. Quantization [24, 25, 35], and depth factoriza-
tion [5, 17, 55, 57] have quickly emerged as two highly effective strategies for reducing
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the power and computational budget needed for on-device inference. These two methods
work orthogonally. As previously mentioned, fixed point quantization enables simple, low
bit-width integer operations which are several times faster/less power than floating point
(fp32) operations. Thus, quantization directly reduces the costs associated with perform-
ing the computation itself. For example, the cost of performing a single 3× 3 convolution
will be inherently lower when using fixed-point integer computation instead of floating
point. Conversely, depth factorization reduces the actual number of CNN parameters and
multiply-accumulate (MAC) operations that need to performed. Thus, depth factorization
reduces the theoretical computation complexity of our CNN models. For depth factoriza-
tion, we split the input channels into f groups and apply f groups of filters independently
to their respective channel groups. For a given factorization rate, f, the number of MACs
in a convolution layer with a K ×K kernel goes from 5.1 to 5.2 (where H ×W is the size
of the output activation, Cin, Cout are the input-channel depth and output-channel depth
respectively), thus reducing computation by a factor of f. For simplicity, our equations
have excluded the MAC contribution from the pointwise convolution that typically follows
the group convolution. Pointwise convolution is often used for the dual purpose of mixing
channel information and changing (usually increasing) channel depth.

MACconv = K ×K ×H ×W × Cin × Cout (5.1)

MACfactorized conv = K ×K ×H ×W × Cin

f
× Cout

f
× f (5.2)

Depthwise separable convolution as described in MobileNets [17] has become a staple in
efficient network design. It represents the extreme end of the depth factorization spectrum
with one convolution filter per input channel. However, perhaps we do not always need to
go to the extreme. A key tradeoff when designing CNNs for limited compute is efficiency
vs. accuracy. As we scale down our architectures, we will necessarily lose accuracy. While
depthwise separable convolutions are extremely efficient, they suffer from low data paral-
lelism making them less suited to hardware acceleration. Also as mentioned in [5], they
should not be assumed as the optimal point on the depth-factorization-spectrum. Further-
more, with quantization emerging as essential for on-device inference, we must consider
the additional component of quantization error. In general, efficient architectures have so
few parameters that they often suffer more quantized accuracy loss compared to higher
complexity networks. However, there is still limited understanding of how different archi-
tectural choices impact quantized accuracy. Given the significant investment involved with
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Figure 5.1: FactorizeNet Macroarchitecture. For our progressive, fine-grained analysis
we start with a simple regular CNN and fix the macroarchitecture. We then progressively
increase the level of factorization of each block using Groupwise Separable Convolution with
varying f. The very first convolution layer stays fixed. A Flatten layer is used between
final Conv layer and first Dense layer.

architecture search/design, it would be beneficial to gain detailed insights on the poten-
tial quantizability of an architecture during the design phase. Thus, helping speed-up the
quantization optimization process.

We introduce a systematic, progressive depth factorization strategy for exploring the
efficiency/accuracy trade-offs of scaling down CNN architectures under quantization and
computation constraints. Starting with a simple, fixed macroarchitecture (see Figure 5.1)
we algorithmically increase the granularity of depth factorization in a progressive manner
while analyzing the final trained layerwise distributions of weights and activations at each
step. Our proposed strategy enables a fine-grained, low-level analysis of layer-wise distri-
butions to gain in-depth, layer-level insights on efficiency-accuracy tradeoffs under fixed-
precision quantization. Furthermore, we can identify optimal depth-factorized macroar-
chitectures which we will refer to as FactorizeNet. While previous studies [19, 55] have
performed ablation studies on the effect of different factorization choices on testing ac-
curacy, they used a high-level approach and were mainly concerned with fp32 accuracy.
[43] performs layerwise analysis of the signal-to-quantization-noise-ratio (SQNR) to iden-
tify layers that were hurting the quantized accuracy of MobileNets-v1 before retraining
a modified MobileNets architecture. Our method can be seen as expanding on this ap-
proach and going to an even lower level, directly analyzing the distributions at each layer.
Insights gained from such a fine-grained approach can help guide further exploration for
quantization-based optimizations or provide a baseline expectation of quantized accuracy
trade-offs when engineers deploy their quantized model as-is.
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5.2 Related Works

Quantization and efficient CNN architecture design together have vastly enabled the use
of CNNs in everyday life. Works such as MobileNet, ShuffleNet, and SqueezeNet, explore
various ways to factorize the convolution operation to reduce overall MAC footprint and
create efficient parametrizations while maintaining high accuracy. In fact, the authors in
[22] outline a systematic, ablative approach to exploring the space of SqueezeNet architec-
tures. They explore trade-offs such as 1 × 1 vs. 3 × 3 kernels, varying the dimensionality
of Fire modules, and varying the Squeeze ratio. However, their method does not explore
the depth factorization space and they limit their study to the high-level impact of various
architecture choices on the final floating point accuracy. Besides manual design, research
into automated search methods such as CondenseNet, DARTS, MnasNet, GenSynth, FB-
Nets ([19, 30, 48, 52, 54]) have taken a neural architecture search (NAS) approach to
search the design space for optimal solutions. Making use of algorithmic optimization
approaches, these methods have further pushed the Pareto frontier of CNN design in the
complexity/accuracy space.

In conjunction with efficient neural network architecture design methods, low bit-width
(16 bits and below), fixed point quantization has enabled highly parallelized processors such
as DSPs to run fast, low-power inference entirely with integer arithmetic. Methods such
as log-quantization [34], uniform quantization (Tensorflow), vector quantization (Vector
Quantization by Gong [12]) look to design various projection methods that maximize the
representational power of our n-bit integers in attempts to recover floating-point accu-
racy. However, the noise induced by quantization error is still poorly understood and it
can often be hard to predict which CNN architectures will quantize well aka are “quan-
tization friendly.” Given the problem of quantization robustness, various research works
explore methods to increase the robustness of models to quantization noise. Some methods
such as quantization-aware training (QAT) in [24] make use of simulated quantization to
adapt the network to quantization noise at training time. This method essentially adds
quantization noise as a regularizer that the CNN must adapt to. Trained quantization
thresholds (TQT) [25] go a step further and also make use of simulated quantization and
differential optimization to find the optimal min/max thresholds of each layer for uniform
quantization. Data-free quantization (DFQ) [35] eschews quantization training and seeks
to perform linear transformations on the weight distributions of each layer in order to
reduce quantization error without changing mathematical behaviour of the network.

Our method falls at the intersection of these areas. It is a systematic, algorithmic
approach to efficient CNN architecture exploration that utilizes fine-grained analysis to gain
insight on how a given architectural choice might impact quantized inference behaviour.
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Figure 5.2: The depthwise factorization spectrum. On one end, we have regular convolu-
tion, with factorization rate of f = 1. On the other end we have depthwise convolution
with factorization rate of f = input-depth. For a given layer in a CNN architecture, the
optimal level of factorization could lie anywhere on this spectrum.

This insight can help guide further exploration for quantization-based optimizations such as
the above-mentioned works or provide a baseline expectation of quantized accuracy trade-
offs in scenarios where tight timelines/limited resources may force engineers to deploy their
quantized model as-is.

5.3 Progressive Depth Factorization and Fine-Grained

Layer Analysis

Consider a spectrum of depth factorization (see Figure 5.2) with regular convolution on
one end (factorization rate f = 1 ) and depthwise convolution on the other (factorization
rate f = input depth). As we turn the knob from f = 1 to f = input depth for each layer
or set of layers in a given macroarchitecture, we will observe a range of efficiency/accuracy
trade-offs. Thus, a given CNN macroarchitecture is a search space in itself where a large
range of factorization levels and combinations of factorizations can be realized to meet
given efficiency-accuracy constraints. Besides searching for the optimal factorization con-
figuration, we also wish to gain detailed insight on the impact of various factorization
choices on the layer-wise distributions of final trained weights and activations. This in-
formation can help us understand which factorization settings are the most amenable to
quantization as well as provide detailed insight on the response of various stages of a CNN
to depth factorization. We propose algorithmically increasing the factorization of a given
CNN macroarchitecture in a progressive manner while conducting a low-level analysis of
the layerwise distributions for each level of factorization. At each factorization step, we
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Figure 5.3: Reverse Pyramid Factorization Scheme. For this factorization scheme,
we start with an initial factorization rate, finit, and double the factorization rate each time
the input depth doubles, thus preserving the number of channels per group throughout the
network. For finit = 64, we recover the depthwise separable CNN.

train the factorized CNN and track the distributions of weights and activations of each
layer as described in Chapter 3. Making systematic, iterative changes to our CNN depth-
factorization and observing the changing distributions should reveal insights on how various
factorizations affect the learned distributions as well as the interactions of the factorized
convolutional layer with quantization noise. For example, how will dynamic ranges change
as factorization increases? Will BatchNorm-folded weight distributions exhibit similar be-
haviour at various levels of factorization? The iterative steps will allow us to isolate effects
of different design choices and then use our fine-grained analysis to take a low-level, detailed
look at the resulting changes in our trained model.

In this manner, we can iterate through progressively increasing factorization configura-
tions, gaining insights on the efficiency/accuracy trade-offs at each step as well as the final
layerwise distributions. Progressive Depth Factorization provides a general framework not
only for systematically understanding the efficiency/accuracy trade-offs of factorization,
but also for finding the optimal factorization configuration. As there are many directions
that can be taken through the “Progressive Depth Factorization space”, our method can
be merged with automated search methods such as GenSynth [52] to trace out various
paths through the space, especially for increasingly complex architectures.

5.4 Experiment

We start with a VGG-like macroarchitecture (see Figure 5.1) trained and tested on CIFAR-
10. As we begin to factorize, the regular convolution layers (except for the first layer, which
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stays constant) are replaced with “Groupwise Separable” Convolution where factorization
rate f is a programmable parameter. We refer to the resulting set of architectures as
FactorizeNet. The groupwise separable convolution follows the structure of depthwise
separable convolutions [17]. i.e., GroupConv-BatchNorm-Relu-PointwiseConv. When f
= input depth, we recover depthwise separable convolutions. Following best practices,
we always use a Conv-BatchNorm-Relu op-pattern. We demonstrate two progressively
increasing factorization methods. The first is a uniform factorization configuration. i.e., A
single factorization rate is applied to every Groupwise Separable Conv layer in the network.
We progressively double this factorization rate on each step through the search space. We
train networks with uniform factorizations of f = 2, 4, 8, 16. These networks are denoted
FactorizeNet-fj where j is uniform factorization rate (e.g., FactorizeNet-f2 is the network
with a uniform factorization rate of 2). The second approach is to progressively double
the factorization rate as we go deeper into the CNN in a Reverse Pyramid configuration
(see Figure 5.3 for details). For Reverse Pyramid factorization, we train networks with
finit = 2, 4. These networks are denoted FactorizeNet-finitk where k is initial factorization
rate (e.g., FactorizeNet-finit2 is the network with reverse pyramid factorization and initial
factorization rate of 2). We also train FactorizeNet with regular convolution and depthwise
separable convolution in place of Groupwise Separable Conv (denoted Regular Conv and
DWS Conv). Each network is trained from scratch for 200 epochs of SGD with Momentum
= 0.9, batch-size = 128, and Glorot Uniform initializer [11] for all layers. Initial learning
rate is 0.01 and we scale it by 0.1 at the 75th, 120th, and 170th epochs. For the activation
range tracking we perform top/bottom 1% clipping computed on a random sample of
1024 training samples. Basic data augmentation includes vertical/horizontal shift, zoom,
vertical/horizontal flip and rotation. We use Tensorflow for training and quantizing the
weights and activations to quint8 format. Basic top/bottom 1% percentile clipping is used
for activation quantization as it is a common, low-overhead method.

For each network we observe the efficiency-accuracy trade-offs with respect to 4 quan-
tities: fp32 accuracy, quint8 accuracy, percent relative accuracy decrease, quantized mean-
squared error (QMSE), and quantized crossentropy (QCE), similar to those in Chapter 4.
Figures 5.4 and 5.5 shows these quantities vs MAC-count.

5.5 Discussion

From Figures 5.4 and 5.5, we have a high-level picture of the efficiency/accuracy trade-
offs. Interestingly, FactorizeNet-finit2 (104.3 MMACs, 86.01% fp32 acc, 80.31% quint8
acc) has less MACs than FactorizeNet-f2 (153.8 MMACs, 86.54% fp32 acc, 80.05% quint8
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Figure 5.4: Best viewed in colour. Left: Accuracy vs MACs (fp32 and quint8 accuracy)
under depth factorization. Since the Dense layers are fixed, we only compare the MAC
totals of the convolution layers. Right: QMSE vs MACs.

Figure 5.5: Best viewed in colour. Left: QCE vs MACs. Right: Percent accuracy decrease
vs MACs.
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acc) but similar accuracy. Furthermore, if targeting fp32 environments, FactorizeNet-finit2
would offer over 2.5x MAC reduction from Regular Conv (266.0 MMACs, 88.37% fp32
acc, 85.60% quint8 acc) with a very small accuracy reduction. When analyzing quantized
accuracy, some interesting anomalies emerge. Specifically the sharp drop in accuracy for
FactorizeNet-f16 (14.8% relative accuracy drop). Also worth noting is that while most
of the other models have higher quantized accuracy, DWS Conv experiences a noticeably
smaller relative decrease in quantized accuracy (4.21% vs. 5.88% - 7.53%). This may be
due to the much smaller increase in range of the BN-Fold weights in its first layer.

To better understand the factors contributing to the degradation in FactorizeNet-f16,
we move to our low-level analysis. Figures 5.6, 5.7, 5.8 show the dynamic ranges of each
layer. This low-level information gives us a direct look at the underlying distributions
and how they interact with quantization noise. For example, besides generally smaller
weights ranges (both convolution weights and batchnorm-folded weights), Regular Conv
activations ranges are also noticeably lower. This begins to explain why Regular Conv is so
robust to quantization (3.13% relative accuracy loss). Going back to FactorizeNet-f16, the
increased BN-Fold weights ranges early in the network may begin to explain why this CNN
experienced a sharp drop in quantized accuracy. Furthermore, if we analyze the average
precision of the BN-Fold weights in FactorizeNet-f16 we see a combination of large range
and low precision in the early, low-level feature extraction layers. Interestingly, the BN-Fold
weights in FactorizeNet-f2 show an even worse average precision in the first layer. However,
the precision of BN-Fold weights in FactorizeNet-f2 is higher on average and hints at a
more representative projection of the network’s layers from their continuous distribution
into a discretized space. Furthermore, we observe a generally lower range of activations for
Factorizenet-f2. See Figures 5.9, 5.11, 5.10, and 5.12 for detailed comparisons. The rest of
the plots are also included below.

There would appear to be some rich dynamics involving information loss from both
quantized activations and quantization of parameters. Error from quantized activations
could be viewed as noise in the “message” being passed onto the next layer whereas error
from quantizing the BN-Folded weights is noise introduced in the “encoding” process or
inaccuracy of the encoded relationships between inputs (e.g., input pixels). Given that zero
can be perfectly encoded in uniform quantization methods as described in [24], it would
also be interesting to see if there is a correlation between layerwise sparsity of weights and
activations and quantization error. Zooming back out to the inter-network trends, we can
see from the BN-Fold weights ranges that there may be a significant loss of information
in the early low-level feature extraction stages. It would be interesting to see how these
distributions change if we do not use BatchNorm for the first layer since the pre-BN-Fold
weights have a much smaller range. From these initial analyses, we see another aspect of
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Figure 5.6: Weights ranges per layer. In general, we see how ranges get smaller as we go
deeper into the network.

CNN design in which a fine-grained, systematic analysis can yield detailed insights to help
further guide our design process.
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Figure 5.7: BatchNorm-folded weights ranges per layer. Here we can see how the Batch-
Norm parameters have led to a significant change in the dynamic ranges of each layer.
Most notable is the large spike in ranges of the first convolution layer.
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Figure 5.8: Activation ranges per layer. We performed percentile clipping to obtain the
activation ranges.
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Figure 5.9: Comparing layerwise weights ranges for DWS Conv, FactorizeNet-f16, and
FactorizeNet-ff2.

Figure 5.10: Comparing layerwise BatchNorm-folded weights ranges for DWS Conv,
FactorizeNet-f16, and FactorizeNet-ff2.
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Figure 5.11: Comparing layerwise activation ranges for DWS Conv, FactorizeNet-f16, and
FactorizeNet-ff2.

Figure 5.12: Comparing average precision of each layer’s BatchNorm-Folded weights for
DWS Conv, FactorizeNet-f16, and FactorizeNet-ff2.
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Figure 5.13: Weights precisions per layer.
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Figure 5.14: BatchNorm-folded weights precisions per layer.
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Figure 5.15: Activation precisions per layer. We performed percentile clipping to obtain
the activation ranges of the tensor and each channel.
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Figure 5.16: Comparing layerwise weights precisions for DWS Conv, FactorizeNet-f16, and
FactorizeNet-ff2.
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Figure 5.17: Comparing layerwise activation precisions for DWS Conv, FactorizeNet-f16,
and FactorizeNet-ff2.
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5.6 Conclusion

We introduce a systematic, progressive depth factorization strategy coupled with a fine-
grained layerwise analysis for exploring the efficiency/accuracy trade-offs of factorizing
CNN architectures. In this chapter, we demonstrate another way in which our fine-grained
layerwise analysis framework can be applied to better understand CNN design. Namely, in
understanding the effect of architectural choices on the learned layerwise distributions. In
doing so, we can gain detailed insights on the impact of depth factorization on final floating
point and quantized accuracy and also identify the optimal factorization configuration (i.e.,
FactorizeNet). Future work includes using more sophisticated algorithms for increasing
factorization, investigating activation sparsity under factorization, and factorizing more
complex blocks/architectures.
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Chapter 6

Conclusions

6.1 Discussion

This work serves as an initial study on using more systematic, fine-grained approaches to
understanding behaviour of our trained CNN models, especially as it pertains to quantiza-
tion and leveraging that understanding to design better quantized models. Furthermore,
we have demonstrated how framing our analysis and design in the context of quantization
can create a more streamlined pipeline for designing CNNs for deployment on-the-edge.
As we have seen, there is significant room for exploration when it comes to analyzing
the behaviour of neural network models at different scales, from the layer-scale up to the
model-scale. Such iterative, systematic approaches can help us learn more about the design
space and guide our exploration of various hyperparameter and design choices of our NN
algorithm.

We have seen how there are rich dynamics at play in each CNN we train and how
these layerwise distributions can give rise to complex interactions with quantization noise
that require a fine-grained analysis to better understand. For example, something as
simple as the choice of random initialization method can lead to unexpected quantized
behaviour that does not necessarily align with observed floating point behaviour. From our
experiments, we have seen how a fine-grained, systems-based analysis of CNNs can deepen
our understanding of observed high-level model behaviour/issues and inspire future works
for improving on such observed error. For example, progressively increasing the level of
depth factorization within a CNN (such as in Reverse Pyramid factorization desribed in
Chapter 5) can improve quantization robustness while still yielding a large reduction in
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MACs. Other factorization settings should be explored for quantization-robust, efficient
CNN architectures.

While our primary focus was on quantization behaviour, we believe that our proposed
fine-grain analysis framework can help us understand other aspects of CNN behaviour
such as the layerwise dynamics during training, learning dynamics in general, layerwise
representations, and layerwise sparsity. Below, we suggest some future directions in which
we believe we could be expanding our framework with new analyses and improving on our
existing ones. Furthermore, we suggest how insights gained may be leveraged for creating
new methods of designing quantization-aware CNNs.

6.2 Future Research

6.2.1 Exploring Additional Layerwise Statistics

We have started with two simple layerwise statistics that are easy to calculate and demon-
strate the utility of our approach. However, range and precision are not the only layerwise
statistics that we could collect. For example, the metrics we used to quantify the out-
put error of our quantized model such as QCE and QMSE could be used for measuring
layerwise quantization noise as well. Such an analysis could reveal how error propagates
through the system and also how quantization noise induces distributional shifts in each
layer. Minimizing layerwise QMSE might also be a useful method for further improving
the quantized accuracy of hard-to-quantize models as it provides a stronger supervisory
signal for minimizing quantization error.

Layerwise activation and weight sparsity is also an interesting statistic that could be
explored. For example, observing how layerwise sparsity changes under increasing depth
factorization might reveal some insights on how depth factorization affects the types of
deep representations learned. Furthermore, as zero is often perfectly represented in uniform
quantization methods, varying levels of sparsity might also point to another factor affecting
a given CNN’s sensitivity/robustness to quantization noise. For example, would CNNs with
a high degree of sparsity be more robust to quantization noise? Current research focuses on
learning highly sparse weights for the sake of reducing number of stored parameters or for
structured pruning to reduce computations. However, not much exploration has been done
on the relationship between sparsity and quantization robustness. Do sparse activations
or sparse weights increase robustness? We believe both are worthy of investigation.
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6.2.2 Improving Robustness/Generalizability of our Analyses

One aspect of quantization error that we have not accounted for in these initial studies
is the effect of the data used for “calibrating” the network quantization. I.e., the dataset
used to determine the quantization parameters of each layer’s activations. From papers
in the literature (e.g., Choi et al. [4] and Jain et al. [25]) we have seen that the choice
of activation ranges used for quantization is highly non-trivial and there are a plethora
of ways to determine them. In our simple post-training quantization method we use a
randomly sampled set of images from the training set. It would be beneficial in future
works to compute the average/expected quantized behaviour of a model across various
“quantization trials” where different randomly sampled sets of data are used. Future
works should focus on multiple trials of both training and quantization so that we can
get a more accurate picture of expected behaviour for various models, especially when
comparing quantized behaviour across various CNN architectures. Quantifying both the
average quantized behaviour and the variation in behaviour might reveal how different
models are more/less stable to quantization and other choices.

6.2.3 Analyzing More Complex CNN Architectures

As mentioned before, we should also extend fine-grained layerwise analysis to more complex
CNN architectures such as residual blocks. The experiments in this work use a simple
VGG-like architecture with straightforward connectivity. However, we have seen in recent
years that most state-of-the-art CNNs have various complex connectivity patterns such as
ResNet [16], DenseNet [20], and MobileNet-v2 [41]. In this context, we see that a natural
generalization of fine-grained layerwise analysis is to also consider “block” or “module”-
wise analysis wherein multiple layers/operations can be grouped together into a module.
Considering groups of layers adds another level of granularity between the layer-scale and
the model-scale and may also be useful for understanding how different parts or “stages” of
a network transform/extract information and affect quantization. Such multi-scale analysis
further reinforces the approach of analyzing CNN algorithms from a system perspective.

6.2.4 Fine-grained Layerwise Analysis for Understanding Learn-
ing Dynamics

As briefly illustrated in Chapter 4, Section 4.6, our fine-grained layerwise analysis frame-
work can also be applied to analyze how a model changes during training. Expansion of our
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layerwise analysis could include observing various aspects of how layerwise distributions
change over time as well as layerwise gradient information during backpropagation. This
could help to understand what is being learned/encoded in our models. In Section 4.6
we saw that we could only exclude the worst models with significant quantization error
when predicting quantized accuracy based on early behaviour. This lack of predictabil-
ity was reflected in the fluctuation of layerwise range and precision for multiple layers
that in some cases persisted through most of training. Similarly, perhaps observing some
other metric/statistic will yield insights as to how different CNNs progress through train-
ing. Such insights could potentially yield better training methods for learning accurate,
quantization-robust CNNs.

For example, from our layerwise analyses we have seen that distributions with smaller
range and higher average precision tend to be more robust to quantization. Thus, it would
make sense to devise methods of training CNNs that promote learning of compact, non-
heavy-tailed distributions of weights and activations. It is unclear whether this can be
achieved by devising new learning algorithms or if it should be achieved by modifying the
cost function that is being optimized. Shkolnik et al. [44] devise a regularizer based on
the kurtosis of weights to promote learning distributions of weights that are more uniform.
However, their regularizer penalizes kurtosis of the entire weight tensor and we have seen
that a good match between channelwise distributions and the tensorwise distribution can
be important. A stronger constraint that also regularizes the kurtosis of each channel is
a potential direction to explore. Alternatively, perhaps an iterative solver that can better
find flat minima/low curvature areas of the loss surface or computes weight updates that
lead to smoother distributions would be well suited for learning quantization-robust CNNs.
Besides learning algorithms based on iterative optimizers, meta-learning algorithms may
also be adapted for quantization robustness. Learning to predict quantization-aware weight
updates is an interesting direction of exploration.

6.2.5 Better Quantization-Aware Design of CNNs

Finally, it would be most pertinent to leverage the insights gained from our fine-grained
analysis framework for better quantization-aware design of CNNs. For example, we saw
in Chapter 4 how the use of BatchNorm would consistently lead to increased quantization
error, especially for depthwise-separable CNNs. Thus, better “BatchNorm-free” training of
CNNs may be an effective tool for training more quantization-robust CNNs. The authors
of [1] have presented such a training method but did not investigate the implications of their
method for CNN quantization. In another example, we saw in Chapter 5 that increasing
depth factorization of convolutional layers often leads to greater spikes in weights ranges
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and worse average precision. The CNNs from those experiments appear to be particularly
sensitive to greater depth factorization in earlier layers. Thus, designing CNN architectures
with less depth factorization in the early convolutional layers may provide a better trade-off
between computational efficiency and quantization robustness. Another related avenue of
investigation could be using mixed-precision quantization where layers with greater depth
factorization can be allocated a greater number of bits as their computational cost is lower
and more bits can be allocated to represent the larger dynamic ranges. This is a simple
heuristic that would likely be outperformed by one that also takes into account the statistics
of the layerwise distributions.

Referring back to our findings in Chapter 4, revisiting analysis of random weight ini-
tialization with quantization in mind could yield more quantization-friendly initialization
methods. For example, we saw that the “naive” initialization methods worked surprisingly
well for training depthwise-separable CNNs without BatchNorm that had low quantization
error. It would be interesting to see if further exploration of this phenomenon could yield a
more concrete method for parameterizing the random sampling distributions for depthwise
separable CNNs similar to what is done by Glorot et al. [11] and He et al. [15]. Further-
more, current best practices for quantization-aware training with simulated quantization
require first training the CNN with FP32 precision until convergence before fine-tuning the
model with simulated quantization. For example, the Tensorflow guide to quantization-
aware training suggests it is better to finetune with quantization rather than train from
scratch [7]. If a better initialization could reduce the amount of FP32 training iterations
required prior to switching to quantization simulation it would greatly reduce the training
costs of quantized CNNs when using quantization-aware training.

An additional area of design that we did not yet discuss is quantization-friendly ac-
tivations. In [24], Jacob et al. use ReLU6 (a ReLU activation with the output range
clamped to the interval [0, 6]) as a straightforward means of limiting the dynamic range
of activations. Other choices of the maximum clamping value could be useful and prove
better for a given application. However, besides limiting dynamic range, there may be
nonlinearities that map the activations into a more evenly distributed space. For exam-
ple, maybe ReLU followed by a Log2(x) function would produce more linearly distributed
activations. Miyashita et al. [34] propose using a Log2 based quantization scheme as it
better fits the heavy-tailed distributions of weights and activations often found in neural
networks. However, perhaps this mapping could be directly performed in FP32 during
training. Alternatively, if future research reveals a strong correlation between activation
sparsity and quantization robustness, then perhaps activation functions such as ReLU that
promote sparsity would be desirable for quantization.

In general, we believe that analyzing trends in layerwise distributions using our pro-

66



posed fine-grained analysis framework will yield valuable insights for improving the design
of CNNs such that the distributions of feature maps and weight tensors are more amenable
to quantized inference.
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