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Abstract

In the first major contribution of this thesis, we present analysis of two lowest-order
hybridizable discontinuous Galerkin methods for the Stokes problem, while making only
minimal regularity assumptions on the exact solution. The methods under consideration
have previously been shown to produce H(div)-conforming and divergence-free approxi-
mate velocities. Using these properties, we derive a priori error estimates for the velocity
that are independent of the pressure. These error estimates, which assume only H1+s-
regularity of the exact velocity fields for any s ∈ [0, 1], are optimal in a discrete energy
norm. Error estimates for the velocity and pressure in the L2-norm are also derived in this
minimal regularity setting. In the second major contribution of this thesis, we extend this
analysis to the setting of the steady Navier–Stokes problem. We begin by proposing a new
divergence-free discontinuous Galerkin method for the steady Navier–Stokes problem, and
we show that the resultant discretized problem admits a unique solution under a smallness
condition on the problem data. We then present an error analysis of the method in the
minimal regularity setting, and we take special care to properly estimate the nonlinear
terms arising from convection. We show that it is possible to derive optimal a priori er-
ror estimates for the velocity in a discrete energy norm. Our velocity error estimates are
independent of the pressure, and require only H1+s-regularity of the exact velocity fields
where s ∈ (0, 1] in the two-dimensional case and s ∈ (1/2, 1] in the three-dimensional case.
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Chapter 1

Introduction

Finite element methods for incompressible flows that are pressure-robust have become
increasingly popular. Such methods produce approximate velocity fields for which the a
priori velocity error estimates are independent of the pressure approximation. Numerous
classical inf-sup stable finite elements, such as the MINI element [2] and Bernardi–Raugel
elements [5], are not pressure-robust [26], with the velocity error polluted by the pressure
approximation error scaled by the inverse of the viscosity, which can be large if the pressure
is complicated or the viscosity is small.

One way of achieving pressure-robustness is by stable mixed methods with H(div)-
conforming and divergence-free approximate velocities [26]. Methods with these properties
may relax H1-conformity and use discontinuous velocity approximations, as constructing
H1-conforming and inf-sup stable schemes that are also divergence-free is difficult [26].
For this reason, discontinuous Galerkin (DG) methods seem to be a natural candidate
for the construction of pressure-robust schemes. Several classes of pressure-robust DG
methods that produce H(div)-conforming and divergence-free approximate velocities were
introduced in [13, 46].

A drawback of DG methods is that they are, on a given mesh, typically computa-
tionally more expensive than standard conforming methods. Hybridized discontinuous
Galerkin (HDG) methods were introduced to improve upon the computational efficiency
of DG methods while retaining their desirable properties [11]. This is accomplished by in-
troducing extra degrees of freedom on cell facets which allow for local cell-wise variables to
be eliminated by static condensation. Examples of H(div)-conforming and divergence-free
HDG methods are given in [10, 37, 39] for the Stokes problem and in [21, 31, 38] for the
Navier–Stokes problem.
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The most important contributions of this thesis are presented in Chapter 2, which
is based on the preprint paper [4] (this paper has been accepted for publication in the
Journal of Scientific Computing). In Chapter 2 we study two closely related lowest-order
hybridizable DG methods for the velocity-pressure formulation of the Stokes problem,
which is given by

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

(1.1)

Both methods produceH(div)-conforming and divergence-free approximate velocities, and
are therefore pressure-robust. The first method is the lowest-order HDG method analyzed
in [37, 39]. The velocity finite element space for this method consists of discontinuous
piecewise linear functions on cells and facets. As discussed in [39], the computational
cost of this method can be reduced, while maintaining pressure-robustness, by using a
continuous basis for the velocity facet space. Such an approach is reminiscent of embedded
discontinuous Galerkin (EDG) methods [23]. This leads to the EDG–HDG method of [39],
the lowest-order formulation of which is the second method considered in Chapter 2.

The standard error analysis of DG and HDG methods for eq. (1.1) assumes that the
exact solution is sufficiently regular, i.e. it is assumed that (u, p) ∈H2(Ω)×H1(Ω). Under
this assumption, it can be shown that (see e.g. [14, Chapter 6])

‖u− uh‖1,h ≤ C
{
h‖u‖H2(Ω) +

1

ν
h‖p‖H1(Ω)

}
,

where uh is the discrete velocity solution and ‖·‖1,h is a discrete H1-norm. For pressure-
robust methods, the standard analysis can be straightforwardly modified to yield that if
u ∈H2(Ω), then (see e.g. [26])

‖u− uh‖1,h ≤ Ch‖u‖H2(Ω) . (1.2)

Error bounds of the form in eq. (1.2), which predict optimal rates of convergence with
respect to the mesh size h, were derived in [39] for the HDG and EDG–HDG methods.
Moreover, numerical experiments in [39] suggest that even when H2-regularity of the
exact velocity solution fails to hold, these methods remain convergent. Because of their
computational efficiency, the lowest-order HDG and EDG–HDG methods are appealing
for problems with minimal regularity. However, error analysis for this minimal regularity
case has not been developed. The purpose of Chapter 2 is to close this gap by extending
the analysis of [39] to the minimal regularity setting. In particular, we show in Chapter 2
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that if u ∈ H1+s(Ω) for some real number s ∈ [0, 1], then the lowest-order HDG and
EDG–HDG methods satisfy

‖u− uh‖1,h ≤ Chs‖u‖H1+s(Ω) ,

plus additional higher-order terms on the right-hand side. In Chapter 2 we also derive
L2-error bounds for the velocity and pressure in the minimal regularity setting.

To put the error analysis of Chapter 2 into a broader context, we review briefly the
literature relevant to our analysis. Numerous classes of non-pressure-robust nonconforming
methods for the Stokes problem were analyzed under minimal regularity assumptions in
[3, 32]. Key to the analysis of [3, 32] is a so-called enrichment operator that maps noncon-
forming discrete functions toH1-conforming functions. More recently, by using enrichment
operators that map discretely divergence-free functions to exactly divergence-free ones, this
minimal regularity analysis has been extended to pressure-robust schemes. This is done
in the works of [28, 33, 34, 45], which establish quasi-optimal and pressure-robust error
estimates for various finite element methods that achieve pressure-robustness by modifying
the source term in the discrete formulation. In [34, 45] modified Crouzeix–Raviart methods
are considered, while [33] focuses on modified conforming methods and [28] on modified
DG methods. Finally, a variety of conforming and nonconforming pressure-robust methods
based on an augmented Lagrangian formulation have been proposed and analyzed under
minimal regularity assumptions in [29].

The main contributions of Chapter 2 are as follows. First, we derive a bound on
the consistency error of the lowest-order HDG and EDG–HDG methods, by means of
an enrichment operator of the type considered in [28]. A consequence of the hybridized
formulation is that our consistency error bound contains a new term not found in previous
works. However, we show that it is still possible to obtain optimal pressure-robust velocity
error estimates in a discrete energy norm. Pressure-robust velocity error estimates in the
L2-norm are also derived, and we conclude our analysis in Chapter 2 by deriving L2-error
bounds for the pressure.

Chapters 3 and 4 of this thesis should be viewed as being complementary to the material
presented in Chapter 2. Chapter 3 is dedicated to proving a technical but important
inequality for functions belonging to the three-dimensional finite element space of Guzmán
and Neilan [25]. This inequality is used to ensure that the enrichment operator considered
in Chapter 2 satisfies some crucial stability and approximation properties.

Chapter 4 can be viewed as an extension of the results in Chapter 2 to the setting of the
steady Navier–Stokes equations. We begin Chapter 4 by proposing a new divergence-free
DG method for the steady Navier–Stokes problem. Our proposed method is essentially a
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combination of the lowest-order formulation of the methods considered in [13] and [28].
We prove that the resultant discretized steady Navier–Stokes problem admits a unique
solution provided that a smallness condition on the problem data holds. Then, building on
the ideas developed in Chapter 2, we derive optimal and pressure-robust a-priori velocity
error estimates for the method in a discrete energy norm. The analysis holds under minimal
regularity assumptions on the exact solution, and is similar to that of Chapter 2, but with
the need to additionally estimate contributions arising from the nonlinear convective term.

An important remark on the use of boldface notation

In Chapter 2 and Appendix A, boldface notation is used solely to denote cell-facet function
pairs, see eq. (2.9). Vectors, vector-valued functions and vector-valued function spaces are
not written using boldface in Chapter 2 and Appendix A. This notational convention is
used in other HDG papers [37, 39] and we are using it to be consistent with the literature.
In contrast, HDG methods do not appear or play any role in Chapters 3 and 4. Therefore,
in these chapters, we use the “standard” notational convention in which vectors, vector-
valued functions and vector-valued function spaces are written using boldface.
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Chapter 2

Analysis of pressure-robust
embedded-hybridized discontinuous
Galerkin methods for the Stokes
problem under minimal regularity

This chapter is based on [4, Sections 2-4] and is organized as follows. In Section 2.1 we in-
troduce the Stokes problem and the methods to be analyzed, and discuss some preliminary
results. The main analysis is carried out in Section 2.2, where we derive our error estimates
for the velocity and the pressure. In Section 2.3 our theoretical findings are illustrated by
numerical examples.

2.1 Preliminaries

Let Ω ⊂ Rd with d ∈ {2, 3} be a connected and bounded domain with polyhedral boundary
∂Ω. The codimension of ∂Ω is assumed to be one, but we do not require that Ω be a
Lipschitz domain. In particular, domains with cracks are allowed. On a given set D ⊂ Ω,
we let (·, ·)D denote the L2-inner-product on D and ‖·‖D the L2-norm on D. Given an
integer k ≥ 0, we let ‖·‖k,D and |·|k,D denote the usual Hk-norm and Hk-semi-norm on D,

respectively. If k > 0 is not an integer, we let ‖·‖k,D denote the fractional order Hk-norm
on D as defined in [15, 16]. In the following we omit the subscript D in the case of D = Ω.
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2.1.1 Stokes problem

Let f ∈ L2(Ω)d be a prescribed body force and ν > 0 a given constant kinematic viscosity.
The Stokes problem seeks a velocity field u ∈ H1

0 (Ω)d and kinematic pressure field p ∈
L2

0(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
such that

νa(u, v) + b(v, p) = (f, v) ∀v ∈ H1
0 (Ω)d, (2.1a)

b(u, q) = 0 ∀q ∈ L2
0(Ω), (2.1b)

where a : H1
0 (Ω)d ×H1

0 (Ω)d → R and b : H1
0 (Ω)d × L2

0(Ω)→ R are the bilinear forms

a(w, v) := (∇w,∇v), b(v, q) := −(∇ · v, q).

It is known that eq. (2.1) is well-posed, see e.g. [19, Chapter 4]. Furthermore, within the
reduced space V := {v ∈ H1

0 (Ω)d : ∇ · v = 0} of divergence-free functions, the velocity
u ∈ V equivalently satisfies the reduced problem

νa(u, v) = (f, v) ∀v ∈ V. (2.2)

We introduce the space of weakly divergence-free vector fields with vanishing normal
component on ∂Ω,

L2
σ(Ω) := {w ∈ L2(Ω)d : (w,∇ψ) = 0 ∀ψ ∈ H1(Ω)}, (2.3)

and note that every vector field f ∈ L2(Ω)d admits a unique Helmholtz decomposition [34,
Theorem 2.1]

f = ∇φ+ Pf,

where φ ∈ H1(Ω)/R and Pf ∈ L2
σ(Ω).

The vector field Pf is called the Helmholtz projection of f , see e.g. [26, Section 2]. We
note that the reduced problem in eq. (2.2) is equivalent to

νa(u, v) = (Pf, v) ∀v ∈ V, (2.4)

since for all v ∈ V it holds that (f, v) = (Pf, v). In particular, the velocity solution u is
determined only by the Helmholtz projection Pf of the body force. The presence of Pf
in eq. (2.4) will turn out to play an important role in the pressure-robustness of our error
estimates in Section 2.2, and we discuss why this is the case in Remark 2.1.
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2.1.2 Mesh-related notation

Let T = {K} be a conforming triangulation of Ω into simplices {K}. Let K ∈ T . We use
FK to indicate the collection of (d−1)-dimensional faces of K. We set hK = diam(K) and
let nK denote the outward unit normal on ∂K. The mesh size is defined as h := maxK∈T hK
and the mesh skeleton is defined as Γ0 =

⋃
K∈T ∂K.

Notice that, if cracks are present in the domain, it is possible for two distinct elements
K1, K2 ∈ T to share a face σ ∈ FK1 ∩ FK2 that lies on the boundary, i.e. σ ⊂ ∂Ω. In
this case, it will not be convenient to view σ as a single mesh face, as is typically done
for interior faces. Following [43], we therefore define the collection of mesh faces as the
quotient set

Fh :=
{

(σ,K) : K ∈ T , σ ∈ FK
}
/∼,

(σ1, K1) ∼ (σ2, K2) ⇐⇒
[
(σ1, K1) = (σ2, K2)

]
or
[
σ1 = σ2 and σ1 * ∂Ω

]
.

For F = [(σ,K)] ∈ Fh we set hF := diam(σ). Also, surface integration on F is well-defined,
with the understanding that

∫
F
v ds :=

∫
σ
v ds for all v ∈ L1(σ). The boundary faces Fb

and interior faces Fi are naturally defined as

Fb := {[(σ,K)] ∈ Fh : σ ⊂ ∂Ω}, Fi := Fh \ Fb,

and we note that ∂Ω =
⋃

[(σ,K)]∈Fb
σ since the codimension of ∂Ω is one.

If F ∈ Fi is an interior face belonging to two distinct elements K1, K2 ∈ T , we let
nF denote the unit normal on F pointing from K1 to K2, and we define on F the jump
operator J·K and average operator {{·}} in the usual way:

JφK|F := φ|K1 − φ|K2 , (2.5)

{{φ}}|F :=
1

2
(φ|K1 + φ|K2), (2.6)

where φ is any function defined piecewise on K1 ∪K2. The ambiguity in the ordering of
K1, K2 will be unimportant. If F ∈ Fb is a boundary face belonging to K ∈ T , we let
nF denote the unit normal on F outward to K, and we define on F the jump and average
operators as

JφK|F = {{φ}}|F := φ|K , (2.7)

where φ is any function defined on K.

Finally, the following definition will be used in Appendix A. Let K ∈ T . Observe that
we do not have FK ⊂ Fh because of how Fh is defined using equivalence classes. We
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therefore define FK,h := {[(σ,K)] ∈ Fh : σ ∈ FK} so that FK,h ⊂ Fh holds. The sets
FK and FK,h intuitively encode the same information; they both contain exactly (d + 1)
elements which describe the faces of K. The only difference is that FK,h is defined using
equivalence classes in Fh.

2.1.3 Discrete finite element spaces and norms

We introduce the following low-order discontinuous finite element spaces on Ω:

Xh := {vh ∈ L2(Ω)d : vh|K ∈ [P1(K)]d ∀K ∈ T },
Qh := {qh ∈ L2

0(Ω) : qh|K ∈ P0(K) ∀K ∈ T },

where Pk(D) is the space of polynomials with degree at most k on D. Also, let P1(Fh) :=∏
F∈Fh

P1(F ). We introduce the low-order discontinuous facet finite element spaces

X̄h := {v̄h ∈ [P1(Fh)]d : v̄h|F = 0 ∀F ∈ Fb},
Q̄h := P1(Fh).

Notice that X̄h can be viewed as the space of discontinuous piecewise-linear vector functions
on Γ0 that vanish on ∂Ω. Likewise, Q̄h can be viewed as the space of discontinuous
piecewise-linear scalar functions on Γ0, with the caveat that these functions are double-
valued on boundary faces shared by two distinct cells.

It will also be convenient to introduce the extended velocity spaces

X(h) := Xh +H1
0 (Ω)d, (2.8a)

X̄(h) := X̄h +H
1/2
0 (Γ0)d, (2.8b)

where H
1/2
0 (Γ0)d is the trace space of functions in H1

0 (Ω)d restricted to Γ0. We use boldface
notation for function pairs in X(h)× X̄(h) and Qh × Q̄h, i.e.

v = (v, v̄) ∈ X(h)× X̄(h) and qh = (qh, q̄h) ∈ Qh × Q̄h. (2.9)

Throughout this chapter∇h : X(h)→ [L2(Ω)]d×d denotes the broken gradient (∇hv)|K :=
∇(v|K). On the space X(h) we introduce the discrete H1-norm

‖v‖2
dg :=‖∇hv‖2 +|v|2J ,
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where |·|J is the following jump semi-norm on X(h):

|v|2J :=
∑
F∈Fh

1

hF

∥∥JvK∥∥2

F
.

Similarly, on the product space X(h)× X̄(h) we introduce the discrete H1-norm

|||v|||2v :=‖∇hv‖2 +|v|2F ,

where |·|F is the following facet semi-norm on X(h)× X̄(h):

|v|2F :=
∑
K∈T

1

hK
‖v − v̄‖2

∂K .

Finally, on the space Qh × Q̄h we introduce the norm

|||qh|||2p :=‖qh‖2 +‖q̄h‖2
p ,

where ‖·‖p is the following norm on Q̄h:

‖q̄h‖2
p :=

∑
K∈T

hK‖q̄h‖2
∂K .

We use a . b to indicate a ≤ Cb where C is a positive constant depending only on d,Ω
and the shape-regularity of T . On occasion we will use inequalities of the form a ≤ C(s)b,
where C(s) is a positive constant depending only on d,Ω, shape-regularity of T and s,
where s ∈ [0, 1] corresponds to the order of the fractional Sobolev space H1+s(Ω)d. In
these cases, we will use the notation a .s b.

We conclude this subsection with the observation that

|v|J . |v|F , (2.10)

which follows from the triangle inequality. Note that eq. (2.10) implies

‖v‖dg . |||v|||v.

These inequalities will be used frequently in Section 2.2.
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2.1.4 The hybridized and embedded–hybridized discontinuous
Galerkin methods

The lowest-order HDG and EDG–HDG methods analyzed in [39] utilize the following finite
element spaces:

Xv
h :=

{
Xh × X̄h (HDG method),

Xh × (X̄h ∩ C0(Γ0)d) (EDG–HDG method),
(2.11a)

Qp
h := Qh × Q̄h. (2.11b)

The HDG and EDG–HDG methods differ only in their choice of velocity facet space, which
is discontinuous for the HDG method and continuous for the EDG–HDG method. The
remainder of the analysis is agnostic as to whether the HDG or EDG–HDG method is
considered, with the presented analysis holding for both methods.

The discrete formulation of eq. (2.1) seeks (uh,ph) ∈Xv
h ×Q

p
h such that

νah(uh,vh) + bh(vh,ph) = (f, vh) ∀vh ∈Xv
h, (2.12a)

bh(uh, qh) = 0 ∀qh ∈ Qp
h, (2.12b)

where ah : Xv
h ×Xv

h → R and bh : Xh ×Qp
h → R are the bilinear forms

ah(v,w) :=
∑
K∈T

∫
K

∇v : ∇w dx+
∑
K∈T

α

hK

∫
∂K

(v − v̄) · (w − w̄) ds

−
∑
K∈T

∫
∂K

[
(v − v̄) · ∂w

∂nK
+ (w − w̄) · ∂v

∂nK

]
ds,

(2.13)

bh(v, q) :=−
∑
K∈T

∫
K

(∇ · v)q dx+
∑
K∈T

∫
∂K

(v · nK)q̄ ds, (2.14)

and α > 0 is a penalty parameter. It was shown in [37, Lemma 4.2] that for sufficiently
large α the following coercivity result holds:

|||vh|||2v . ah(vh,vh) ∀vh ∈Xv
h. (2.15)

Let us also mention that inf-sup stability of bh was established in [39, Lemma 8]:

|||qh|||p . sup
vh∈Xv

h\{0}

bh(vh, qh)

|||vh|||v
∀qh ∈ Qp

h. (2.16)
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A consequence of the stability properties in eqs. (2.15) and (2.16) is that the discrete
problem eq. (2.12) is well-posed, see e.g. [6, Chapter 4]. Furthermore, let us introduce the
discrete reduced space

V v
h := {vh ∈Xv

h : bh(vh, qh) = 0 ∀qh ∈ Qp
h}

= {vh ∈Xv
h : vh ∈ XBDM

h and ∇ · vh = 0},

where XBDM
h is the lowest-order Brezzi–Douglas–Marini (BDM) space [6],

XBDM
h = {vh ∈ Xh : JvhK|F · nF = 0 ∀F ∈ Fh}.

Inf-sup stability of bh implies the best approximation result [7, Section 12.5]

inf
ṽh∈V v

h

|||u− ṽh|||v . inf
vh∈Xv

h

|||u− vh|||v, (2.17)

where u ∈ H1
0 (Ω)d is the velocity solution to eq. (2.1) and u = (u, u) ∈ X(h)×X̄(h). Also,

the discrete velocity solution uh ∈ V v
h to eq. (2.12) satisfies the discrete reduced problem

νah(uh,vh) = (f, vh) ∀vh ∈ V v
h . (2.18)

However, for vh ∈ V v
h it holds that vh ∈ L2

σ(Ω) (recall that L2
σ(Ω) is defined in eq. (2.3))

and therefore (f, vh) = (Pf, vh). Hence the reduced problem eq. (2.18) can equivalently be
written as

νah(uh,vh) = (Pf, vh) ∀vh ∈ V v
h . (2.19)

Analogously to eq. (2.4), the presence of Pf in eq. (2.19) will play an important role in the
pressure-robustness of our error estimates in Section 2.2.

2.1.5 Enrichment and interpolation operators

Our minimal regularity error analysis of the lowest-order HDG and EDG–HDG methods
will utilize an enrichment operator Eh with the following properties.

Lemma 2.1 (Enrichment operator). There exists a linear operator Eh : XBDM
h → H1

0 (Ω)d

such that for all vh ∈ XBDM
h we have

(i)
∫
F
{{vh}} ds =

∫
F
Ehvh ds for all F ∈ Fi.

(ii) ∇ · vh = ∇ · Ehvh.

11



(iii)
∑

K∈T h
2(k−1)
K |vh − Ehvh|2k,K . |vh|2J for all k ∈ {0, 1}.

(iv) ‖∇Ehvh‖ =‖Ehvh‖dg .‖vh‖dg.

An operator satisfying the statements in Lemma 2.1 was constructed in [28]. In [28] the
construction is outlined in detail for the two-dimensional case, but sketched only briefly
for the three-dimensional case. We present an alternative proof of Lemma 2.1 for the
three-dimensional case in Appendix A. Our construction is based on the conforming and
divergence-free finite element of [25] and is inspired by [34, Lemma 4.7], in which a similar
result is established for Crouzeix–Raviart finite element functions. We mention in passing
that our construction in Appendix A can also be adapted to the two-dimensional case by
using the two-dimensional finite element of [24].

Let Xc
h := {vh ∈ Xh ∩ C0(Ω)d : vh|∂Ω = 0} be the conforming analogue of Xh. Aside

from Eh, we will also use the following quasi-interpolation operator Ih to deduce optimal
rates of convergence for the HDG and EDG–HDG methods.

Lemma 2.2 (Quasi-interpolation operator). There exists a linear operator Ih : H1
0 (Ω)d →

Xc
h such that for all s ∈ [0, 1] and v ∈ H1

0 (Ω)d ∩H1+s(Ω)d we have∥∥∇h(v − Ihv)
∥∥ .s h

s‖v‖1+s . (2.20)

Proof. A proof of Lemma 2.2 can be found in [20, 42], although these works assume that Ω is
a Lipschitz domain. For the sake of completeness, we now show that the quasi-interpolation
operator of [20] still satisfies eq. (2.20) when it is not assumed that Ω is Lipschitz. The
quasi-interpolation operator of [20] is given by Ih = Ah ◦ Πh, where Ah : Xh → Xc

h is the
lowest-order averaging operator introduced in [27, Theorem 2.2] and Πh : H1

0 (Ω)d → Xh

the L2-orthogonal projector onto Xh. Because we are assuming that ∂Ω has codimension
one, every boundary vertex of the mesh is contained in some boundary face of the mesh.
As a result, by the arguments used in [27, Theorem 2.2]:∥∥∇h(vh − Ahvh)

∥∥ . |vh|J . (2.21)

Let v ∈ H1
0 (Ω)d ∩ H1+s(Ω)d. Using the triangle inequality, eq. (2.21), and a continuous

trace inequality [14, Lemma 1.49], we have∥∥∇h(v − Ihv)
∥∥ ≤∥∥∇h(v − Πhv)

∥∥+
∥∥∇h(Πhv − AhΠhv)

∥∥
.
∥∥∇h(v − Πhv)

∥∥+|Πhv|J
=
∥∥∇h(v − Πhv)

∥∥+|v − Πhv|J

.
(∑
K∈T

h−2
K ‖v − Πhv‖2

K +|v − Πhv|21,K
)1/2

.

(2.22)
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Finally, eq. (2.20) follows from eq. (2.22) and standard approximation properties of the
L2-orthogonal projector Πh (see e.g. [14, Section 1.4.4]).

2.2 Pressure-robust error analysis under minimal reg-

ularity

In [39], optimal and pressure-robust error estimates for the HDG and EDG–HDG methods
were derived assuming u ∈ H1

0 (Ω)d ∩H2(Ω)d. In this section, we carry out error analysis
for the more general case of u ∈ H1

0 (Ω)d ∩H1+s(Ω)d for s ∈ [0, 1].

2.2.1 Velocity error estimates

Thus far we have considered ah on the finite element space Xv
h (see eq. (2.11a)). The first

step in our analysis is to extend ah to the larger spaceXv(h) := X(h)×X̄(h) (see eq. (2.8)).
The main difficulty is that for v ∈ X(h) and K ∈ T we have only ∇v ∈ [L2(K)]d×d and
therefore ∇v does not admit a well-defined trace on ∂K. To deal with this problem, let
πK : [L2(K)]d×d → [P0(K)]d×d denote the L2-orthogonal projector onto [P0(K)]d×d. Hence
(G − πKG,H)K = 0 for all G ∈ [L2(K)]d×d and H ∈ [P0(K)]d×d. For any v,w ∈ Xv(h)
we now define

ah(v,w) :=
∑
K∈T

∫
K

∇v : ∇w dx+
∑
K∈T

α

hK

∫
∂K

(v − v̄) · (w − w̄) ds

−
∑
K∈T

∫
∂K

[
(v − v̄) · ([πK∇w]nK) + (w − w̄) · ([πK∇v]nK)

]
ds.

(2.23)

We will use this bilinear form in the following analysis. Observe that eq. (2.23) reduces
to the previous definition of ah (see eq. (2.13)) for v,w ∈ Xv

h. Moreover, the following
boundedness result holds on the extended space Xv(h).

Lemma 2.3 (Boundedness of ah). For all v,w ∈Xv(h) there holds

ah(v,w) . |||v|||v|||w|||v.
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Proof. By definition we have that

ah(v,w) =
∑
K∈T

∫
K

∇v : ∇w dx︸ ︷︷ ︸
I1

+
∑
K∈T

α

hK

∫
∂K

(v − v̄) · (w − w̄) ds︸ ︷︷ ︸
I2

+
∑
K∈T
−
∫
∂K

(v − v̄) · ([πK∇w]nK) ds︸ ︷︷ ︸
I3

+
∑
K∈T
−
∫
∂K

(w − w̄) · ([πK∇v]nK) ds︸ ︷︷ ︸
I4

.

An application of the Cauchy–Schwarz inequality yields |I1|+|I2| . |||v|||v|||w|||v. To bound
|I3| we first apply Cauchy–Schwarz to get

|I3| ≤|v|F
(∑
K∈T

hK‖πK∇w‖2
∂K

)1/2

. |v|F
(∑
K∈T
‖πK∇w‖2

K

)1/2

≤|v|F
(∑
K∈T
‖∇w‖2

K

)1/2

≤ |||v|||v|||w|||v.

(2.24)

For the second inequality in eq. (2.24) we used a discrete trace inequality, and for the third
inequality we used stability of πK . Similar reasoning shows that |I4| . |||v|||v|||w|||v. This
completes the proof.

The next ingredient in our analysis is to establish an upper bound on the consistency
error for the velocity solution of the method in eq. (2.12).

Lemma 2.4 (Consistency error for ah). Let u ∈ H1
0 (Ω)d be the velocity solution of eq. (2.1),

let u = (u, u), and let uh ∈Xv
h be the discrete velocity solution of eq. (2.12). Then for all

vh ∈Xv
h and wh ∈ V v

h it holds that

ah(u− uh,wh) .
{
|||u− vh|||v +|vh|G +

1

ν
osc(Pf)

}
|wh|F , (2.25)

14



where we have introduced the notation

osc(g)2 :=
∑
K∈T

h2
K‖g‖

2
K ∀g ∈ L2(Ω)d, (2.26)

|th|2G :=
∑
F∈Fi

hF
∥∥J∇hthKnF

∥∥2

F
∀th ∈ Xh. (2.27)

Proof. Let vh ∈Xv
h and wh ∈ V v

h . We set

zh = wh − (Ehwh, Ehwh) = (wh − Ehwh, w̄h − Ehwh).

Then

ah(u− uh,wh) =
[
ah(u, (Ehwh, Ehwh))− ah(uh,wh)

]
+ ah(u− vh, zh) + ah(vh, zh)

=
[
a(u,Ehwh)− ah(uh,wh)

]︸ ︷︷ ︸
I1

+ ah(u− vh, zh)︸ ︷︷ ︸
I2

+ ah(vh, zh)︸ ︷︷ ︸
I3

.
(2.28)

We first bound I1. Since wh ∈ V v
h we have wh ∈ XBDM

h with ∇ · wh = 0. Thus Ehwh ∈ V
by Item ii of Lemma 2.1. Using the reduced problems eq. (2.4) and eq. (2.19), the Cauchy–
Schwarz inequality, and Item iii of Lemma 2.1 with k = 0,

I1 =
1

ν
(Pf, Ehwh − wh)

≤ 1

ν
osc(Pf)

[∑
K∈T

h−2
K ‖Ehwh − wh‖

2
K

]1/2

.
1

ν
osc(Pf)|wh|J

.
1

ν
osc(Pf)|wh|F .

(2.29)

We now bound I2. Using Item iii of Lemma 2.1 with k = 1 we have

|||zh|||2v =
∥∥∇h(wh − Ehwh)

∥∥2
+|wh|2F . |wh|2F

so that |||zh|||v . |wh|F. Hence by Lemma 2.3 we have

I2 . |||u− vh|||v|||zh|||v . |||u− vh|||v|wh|F . (2.30)
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To bound I3 we use the definition eq. (2.23) of ah and integrate by parts element-wise.
Using that (∇2vh)|K = 0 as vh is piecewise linear, this results in

I3 =
∑
K∈T

α

hK

∫
∂K

(vh − v̄h) · (zh − z̄h) ds−
∫
∂K

(vh − v̄h) · ([πK∇zh]nK) ds︸ ︷︷ ︸
I3,1

+
∑
K∈T

∫
∂K

z̄h · ([∇vh]nK) ds︸ ︷︷ ︸
I3,2

.

(2.31)

Using the same arguments from Lemma 2.3 (namely those used in eq. (2.24)) one sees that

I3,1 . |vh|F |||zh|||v = |u− vh|F |||zh|||v . |||u− vh|||v|wh|F . (2.32)

Also, rewriting I3,2 in terms of facet integrals, applying Item i of Lemma 2.1, and using
the Cauchy–Schwarz inequality, we find

I3,2 =
∑
F∈Fi

∫
F

z̄h · (J∇vhKnF ) ds

=
∑
F∈Fi

∫
F

(w̄h − Ehwh) · (J∇vhKnF ) ds

=
∑
F∈Fi

∫
F

(w̄h − {{wh}}) · (J∇vhKnF ) ds

. |wh|F|vh|G .

(2.33)

Using eq. (2.32) and eq. (2.33) in eq. (2.31) we obtain

I3 .
[
|||u− vh|||v +|vh|G

]
|wh|F . (2.34)

Finally, using the bounds eqs. (2.29), (2.30) and (2.34) in eq. (2.28) yields the desired result
eq. (2.25).

With boundedness and consistency results established for the method eq. (2.12), we
can now derive our main error estimate.

Theorem 2.1 (Velocity error). Let u ∈ H1
0 (Ω)d be the velocity solution of eq. (2.1), let

u = (u, u), and let uh ∈Xv
h be the discrete velocity solution of eq. (2.12). Then

|||u− uh|||v . inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf). (2.35)
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Proof. Let vh ∈Xv
h. Owing to eq. (2.17) we can find ṽh ∈ V v

h with |||u−ṽh|||v . |||u−vh|||v.
Let wh = (uh− ṽh) ∈ V v

h . Using discrete coercivity eq. (2.15) along with the boundedness
and consistency results Lemmas 2.3 to 2.4,

|||wh|||2v . ah(wh,wh)

= ah(uh − u,wh) + ah(u− ṽh,wh)

.
{[
|||u− ṽh|||v +|ṽh|G

]
+

1

ν
osc(Pf)

}
|||wh|||v.

(2.36)

Therefore, dividing eq. (2.36) by |||wh|||v we arrive at

|||uh − ṽh|||v .
[
|||u− ṽh|||v +|ṽh|G

]
+

1

ν
osc(Pf). (2.37)

Using the triangle inequality and eq. (2.37) we obtain

|||u− uh|||v ≤ |||u− ṽh|||v + |||uh − ṽh|||v

.
[
|||u− ṽh|||v +|ṽh|G

]
+

1

ν
osc(Pf).

(2.38)

Also, by the triangle inequality and a discrete trace inequality we have

|ṽh|G ≤|ṽh − vh|G +|vh|G
.
∥∥∇h(ṽh − vh)

∥∥+|vh|G
≤ |||ṽh − vh|||v +|vh|G
≤ |||u− ṽh|||v + |||u− vh|||v +|vh|G .

(2.39)

Combining eqs. (2.38) to (2.39) and using that |||u− ṽh|||v . |||u− vh|||v we obtain

|||u− uh|||v .
[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf).

The desired result eq. (2.35) follows as vh ∈Xv
h is arbitrary.

Remark 2.1 (Pressure-robustness of the data oscillation term). As discussed in [34, Remark
5.9], the function 1

ν
Pf is independent of both the pressure p and the viscosity ν. This can

be seen by extending the domain of the Helmholtz projector P to [H−1(Ω)]d, and then
utilizing the fact that −ν∆u+∇p = f holds in the distributional sense. One finds that

1

ν
Pf =

1

ν
P(−ν∆u+∇p) = P(−∆u) ∈ L2(Ω)d, (2.40)
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since P(∇p) = 0. We refer the reader to [33, Section 3] for a more detailed discussion
of these ideas. A consequence of eq. (2.40) is that the data oscillation term appearing in
eq. (2.35) can equivalently be written as 1

ν
osc(Pf) = osc(P(−∆u)). Because this quantity

depends only on the velocity, the error estimate eq. (2.35) is pressure-robust. We emphasize
that eq. (2.35) would not be a pressure-robust error estimate if it contained 1

ν
osc(f) instead

of 1
ν
osc(Pf).

Our next step is to show that the interpolation error term appearing in Theorem 2.1
converges optimally with respect to the mesh size h.

Lemma 2.5 (Interpolation error). Let ψ ∈ H1
0 (Ω)d ∩ H1+s(Ω)d with s ∈ [0, 1], and set

ψ = (ψ, ψ). Then

inf
vh∈Xv

h

[
|||ψ − vh|||v +|vh|G

]
.s h

s‖ψ‖1+s . (2.41)

Proof. For each F ∈ Fi we introduce the patch ωF of elements sharing F ,

ωF :=
⋃
{K ∈ T : F is a face of K}.

Note that ωF is the union of exactly two elements. Now let vh ∈Xv
h and gF ∈ [P0(ωF )]d×d

be arbitrary. By a discrete trace inequality and the triangle inequality,

|vh|2G ≤
∑
F∈Fi

hF
∥∥J∇hvhK

∥∥2

F

=
∑
F∈Fi

hF
∥∥J∇hvh − gF K

∥∥2

F

.
∑
F∈Fi

‖∇hvh − gF‖2
ωF

.
∑
F∈Fi

[∥∥∇h(ψ − vh)
∥∥2

ωF
+‖∇ψ − gF‖2

ωF

]
. |||ψ − vh|||2v +

∑
F∈Fi

‖∇ψ − gF‖2
ωF
.

(2.42)
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Since vh ∈Xv
h and gF ∈ [P0(ωF )]d×d are arbitrary, eq. (2.42) yields that

inf
vh∈Xv

h

[
|||ψ − vh|||v +|vh|G

]
.
( ∑
F∈Fi

inf
gF∈[P0(ωF )]d×d

‖∇ψ − gF‖2
ωF

)1/2

︸ ︷︷ ︸
I1

+ inf
vh∈Xv

h

|||ψ − vh|||v︸ ︷︷ ︸
I2

.
(2.43)

A bound for I1 follows from the fractional order Bramble–Hilbert lemma [17, Theorem 6.1]
applied to the patches ωF :

I1 .s

( ∑
F∈Fi

h2s
F ‖∇ψ‖

2
s,ωF

)1/2

. hs‖ψ‖1+s . (2.44)

To bound I2 we take vh = (Ihψ, Ihψ) ∈ Xv
h where Ih is the quasi-interpolation operator

introduced in Lemma 2.2. We find that

I2 ≤ |||ψ − vh|||v =
∥∥∇h(ψ − Ihψ)

∥∥ .s h
s‖ψ‖1+s . (2.45)

Using the bounds eqs. (2.44) to (2.45) in eq. (2.43) yields the desired result.

An immediate consequence of Theorem 2.1 and Lemma 2.5 is the following error esti-
mate, which is pressure-robust and optimal in the discrete energy norm.

Corollary 2.1 (Pressure-robust error estimate). In addition to the assumptions of Theo-
rem 2.1, assume that u ∈ H1+s(Ω)d with s ∈ [0, 1]. Then

|||u− uh|||v .s h
s‖u‖1+s +

1

ν
osc(Pf).

Also, owing to eq. (2.26), the data oscillation term can be estimated as

1

ν
osc(Pf) ≤ h

∥∥∥∥1

ν
Pf
∥∥∥∥ .

Remark 2.2 (Convergence under H1-regularity). In the case of s = 0, where only H1-
regularity of u is assumed, Corollary 2.1 does not predict that |||u− uh|||v → 0 as h→ 0.
This can still be proven, however, using Theorem 2.1 and a density argument. Indeed, let
ε > 0. By definition, H1

0 (Ω)d is the closure of C∞0 (Ω)d under the H1-norm. As u ∈ H1
0 (Ω)d
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we can therefore find φ ∈ C∞0 (Ω)d with |u− φ|1 < ε. Setting φ = (φ, φ), the triangle
inequality and Lemma 2.5 then yield

inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
≤ |||u− φ|||v + inf

vh∈Xv
h

[
|||φ− vh|||v +|vh|G

]
= |u− φ|1 + inf

vh∈Xv
h

[
|||φ− vh|||v +|vh|G

]
. ε+ h‖φ‖2

≤ 2ε,

(2.46)

where the last inequality in eq. (2.46) holds for h sufficiently small. But ε > 0 is arbitrary,
and therefore eq. (2.46) implies that

lim
h→0

{
inf

vh∈Xv
h

[
|||u− vh|||v +|vh|G

]}
= 0. (2.47)

Using eq. (2.47) in Theorem 2.1 we see that |||u− uh|||v → 0 as h→ 0.

We now investigate convergence of the velocity in the L2-norm, by means of the Aubin–
Nitsche trick. In order to proceed we assume the domain Ω is such that the following
regularity holds (see e.g. [16]).

Assumption 2.1 (Regularity of the reduced Stokes problem). Let s0 ∈ [0, 1] be fixed. We
assume that for all g ∈ L2(Ω)d there holds φg ∈ H1+s0(Ω)d and∥∥φg∥∥1+s0

.s0 ‖g‖

where φg ∈ V is the solution to the reduced Stokes problem

a(φg, v) = (g, v) ∀v ∈ V.

Theorem 2.2 (Velocity error in the L2-norm). In addition to the assumptions of Corol-
lary 2.1 and under Assumption 2.1 we have

‖u− uh‖ .s0 h
s0
{

inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf)

}
(2.48a)

.s h
s+s0‖u‖1+s + h1+s0

∥∥∥∥1

ν
Pf
∥∥∥∥ . (2.48b)

Proof. Let φ ∈ V,φh ∈ V v
h solve the reduced problems

a(φ, v) = (u− uh, v) ∀v ∈ V, (2.49a)

ah(φh,vh) = (u− uh, vh) ∀vh ∈ V v
h . (2.49b)
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Set φ = (φ, φ). By Assumption 2.1 we have φ ∈ H1+s0(Ω)d and ‖φ‖1+s0
.s0 ‖u− uh‖.

Applying Corollary 2.1 to the reduced problems eq. (2.49) (for which the source term is
u− uh and the viscosity is one), we find that

|||φ− φh|||v .s0 h
s0‖φ‖1+s0

+ osc(P(u− uh))
≤ hs0‖φ‖1+s0

+ h‖u− uh‖
.s0 h

s0‖u− uh‖ .
(2.50)

Using eqs. (2.49a) to (2.49b) and some algebraic manipulations, we have

‖u− uh‖2 = (u− uh, u)− (u− uh, uh)
= a(φ, u)− ah(φh,uh)
= ah(φ,u)− ah(φh,uh)
= ah(u− uh,φ− φh)︸ ︷︷ ︸

I1

+ ah(φ− φh,uh)︸ ︷︷ ︸
I2

+ ah(u− uh,φh)︸ ︷︷ ︸
I3

.

(2.51)

To bound I1 we use Lemma 2.3 and eq. (2.50):

I1 . |||u− uh|||v|||φ− φh|||v .s0 h
s0‖u− uh‖ |||u− uh|||v. (2.52)

To bound I2 we use Lemma 2.4, Lemma 2.5 and Assumption 2.1. This yields

I2 .
{

inf
vh∈Xv

h

[
|||φ− vh|||v +|vh|G

]
+ osc(P(u− uh))

}
|uh|F

.s0

{
hs0‖φ‖1+s0

+ osc(P(u− uh))
}
|uh|F

.s0 h
s0‖u− uh‖|uh|F

≤ hs0‖u− uh‖ |||u− uh|||v.

(2.53)

To bound I3 we again use Lemma 2.4 along with eq. (2.50). We find

I3 .
{

inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf)

}
|φh|F

≤
{

inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf)

}
|||φ− φh|||v

.s0 h
s0‖u− uh‖

{
inf

vh∈Xv
h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf)

}
.

(2.54)
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Using the bounds eqs. (2.52) to (2.54) in eq. (2.51), and using Theorem 2.1 to bound
|||u− uh|||v, we obtain

‖u− uh‖2 .s0 h
s0‖u− uh‖

{
inf

vh∈Xv
h

[
|||u− vh|||v +|vh|G

]
+

1

ν
osc(Pf)

}
. (2.55)

Dividing eq. (2.55) by ‖u− uh‖ we obtain eq. (2.48a). Finally, eq. (2.48b) follows from
eq. (2.48a) and Lemma 2.5.

2.2.2 Pressure error estimate

Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) be the solution of eq. (2.1) and (uh,ph) ∈ Xv
h × Q

p
h the

solution of eq. (2.12). Let πh : L2(Ω)→ Qh be the L2-orthogonal projector onto Qh. Note
that (πhp − ph) ∈ Qh and therefore (p − πhp, πhp − ph) = 0. Hence by the Pythagorean
theorem, the pressure error can be decomposed as

‖p− ph‖2 =
∥∥(p− πhp) + (πhp− ph)

∥∥2

=‖p− πhp‖2 +‖πhp− ph‖2 .
(2.56)

The term‖p− πhp‖ is the best approximation error of p by functions in the discrete space
Qh under the L2-norm, and is unavoidably pressure-dependent. However, the following
theorem shows that the second term‖πhp− ph‖ can be bounded above by an error that is
dependent on the velocity only.

Theorem 2.3 (Pressure error). Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) solve eq. (2.1) and set u =
(u, u). Let (uh,ph) ∈Xv

h ×Q
p
h solve eq. (2.12). Then

‖πhp− ph‖ .
{
ν inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+ osc(Pf)

}
. (2.57)

Proof. Set rh := (πhp− ph) ∈ Qh. We utilize the auxiliary inf-sup condition established in
[39, Lemma 5], which tells us that

‖rh‖ . sup
wh∈XBDM

h ×(X̄h∩C0(Γ0)d)

(rh,∇ · wh)
|||wh|||v

. (2.58)

Consider wh ∈ XBDM
h × (X̄h ∩ C0(Γ0)d). Then JwhK|F · nF = 0 for all F ∈ Fh so that

− (ph,∇ · wh) = bh(wh,ph) = (f, wh)− νah(uh,wh). (2.59)
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On the other hand, since ∇ · wh = ∇ · Ehwh ∈ Qh we have

(πhp,∇ · wh) = (p,∇ · Ehwh)
= −b(Ehwh, p)
= −(f, Ehwh) + νa(u,Ehwh)

= −(f, Ehwh) + νah(u, (Ehwh, Ehwh)).

(2.60)

Set zh = wh − (Ehwh, Ehwh). Combining eq. (2.59) and eq. (2.60) we obtain

(rh,∇ · wh) = (f, wh − Ehwh)
− νah(uh,wh) + νah(u, (Ehwh, Ehwh))

= (f, wh − Ehwh)︸ ︷︷ ︸
I1

+ ν ah(u− uh, (Ehwh, Ehwh))︸ ︷︷ ︸
I2

−ν ah(uh, zh)︸ ︷︷ ︸
I3

.

(2.61)

Since wh ∈ XBDM
h and ∇ · (wh − Ehwh) = 0 we have that (wh − Ehwh) ∈ L2

σ(Ω) (recall
eq. (2.3)). As a result, I1 = (Pf, wh − Ehwh). Applying the Cauchy–Schwarz inequality
and Item iii of Lemma 2.1 with k = 0 therefore yields

|I1| . osc(Pf)|wh|J . osc(Pf)|||wh|||v. (2.62)

A bound for |I2| follows from Lemma 2.3 and Item iv of Lemma 2.1:

|I2| . |||u− uh|||v|||(Ehwh, Ehwh)|||v
= |||u− uh|||v‖Ehwh‖dg

. |||u− uh|||v|||wh|||v.
(2.63)

Also, the same arguments used in Lemma 2.4 show that

|I3| .
[
|||u− uh|||v +|uh|G

]
|||wh|||v. (2.64)

But for any vh ∈Xv
h, the triangle inequality and a discrete trace inequality yields

|uh|G ≤|uh − vh|G +|vh|G
.
∥∥∇h(uh − vh)

∥∥+|vh|G
≤ |||uh − vh|||v +|vh|G
≤ |||u− uh|||v +

[
|||u− vh|||v +|vh|G

]
.

(2.65)
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Combining eq. (2.64) and eq. (2.65) gives

|I3| .
{
|||u− uh|||v + inf

vh∈Xv
h

[
|||u− vh|||v +|vh|G

]}
|||wh|||v. (2.66)

Inserting the bounds eqs. (2.62), (2.63) and (2.66) into eq. (2.61), and using Theorem 2.1
to bound |||u− uh|||v, we obtain

(rh,∇ · wh) .
{
ν inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+ osc(Pf)

}
|||wh|||v. (2.67)

Finally, combining eq. (2.67) and the inf-sup condition eq. (2.58) we get

‖rh‖ .
{
ν inf
vh∈Xv

h

[
|||u− vh|||v +|vh|G

]
+ osc(Pf)

}
,

which is the desired result.

Corollary 2.2 (Pressure convergence rate). In addition to the assumptions of Theorem 2.3,
assume that (u, p) ∈ H1+s(Ω)d ×Hs(Ω) for some s ∈ [0, 1]. Then

‖p− ph‖ .s h
s‖p‖s + νhs‖u‖1+s + h‖Pf‖ . (2.68)

Proof. By standard approximation properties of the L2-orthogonal projector,

‖p− πhp‖ .s h
s‖p‖s . (2.69)

On the other hand, combining Theorem 2.3 and Lemma 2.5 we find that

‖πhp− ph‖ .s νh
s‖u‖1+s + h‖Pf‖ . (2.70)

Using the bounds eq. (2.69) and eq. (2.70) in the decomposition eq. (2.56) yields the desired
result in eq. (2.68).

2.3 Numerical examples

In this section we support our theoretical findings with numerical examples. Strictly speak-
ing, the examples that we consider are outside of the scope of our theory, because they
involve inhomogenous Dirichlet boundary conditions. Nevertheless, we will see that our
numerical observations agree with the theoretical predictions of Section 2.2.

All numerical examples have been implemented in NGSolve [41]. The penalty parameter
is taken as α = 6k2 where k is the polynomial degree of the velocity finite element space.
We discuss numerical results only for the EDG–HDG method; our findings for the HDG
method are very similar in all cases.
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2.3.1 Convergence under minimal regularity

We consider the Stokes problem on the unit square Ω = (0, 1)2 with f = 0 and ν = 1. We
impose Dirichlet boundary conditions on the discrete solution by interpolating the exact
solution. The exact solution is taken from [44, Example 4] and in polar coordinates is
given by

u =
3

2

√
r

 cos
(
θ
2

)
− cos

(
3θ
2

)
3 sin

(
θ
2

)
− sin

(
3θ
2

)
 , p = −6r−1/2 cos

(
θ

2

)
. (2.71)

We note that (u, p) ∈ H1+s(Ω)d ×Hs(Ω) for all 0 ≤ s < 1/2.

The computed velocity and pressure errors for the EDG–HDG method using the lowest-
order P 1 − P 0 discretization and the P 2 − P 1 discretization are shown in Table 2.1. Both
discretizations are seen to converge at the same rate. The velocity error in the discrete H1-
norm and the pressure error in the L2-norm are observed to converge as roughly h1/2. This
is consistent with the regularity of the exact solution and the predictions of Corollary 2.1
and Corollary 2.2. Finally, the velocity error in the L2-norm is observed to converge as
roughly h3/2. Because Ω is convex and therefore Assumption 2.1 holds with s0 = 1 (see
e.g. [36]), this observed convergence rate is consistent with Theorem 2.2.

2.3.2 Pressure-robust velocity approximation

To demonstrate pressure-robustness in the minimal regularity setting, we consider a Stokes
problem, taken from [44, Example 3], on the L-shaped domain Ω = (−1, 1)2\([0, 1]×[−1, 0])
and we vary the viscosity ν. Consider

ψ(θ) =
1

1 + λ
sin((1 + λ)θ) cos(λω)− cos((1 + λ)θ)

− 1

1− λ
sin((1− λ)θ) cos(λω) + cos((1− λ)θ),

and let λ = 856399/1572864 ≈ 0.54 and ω = 3π/2. Our exact solution (u, p) is given in
polar coordinates by

u = rλ

[
(1 + λ) sin(θ)ψ(θ) + cos(θ)ψ′(θ)
−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ′(θ)

]
, p = νp1 + p2,

where
p1 = rλ−1((1 + λ)2ψ′(θ) + ψ′′′(θ))/(1− λ), p2 = x3 + y3.
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Table 2.1: Computed errors for the minimal regularity test case of Section 2.3.1 using
the EDG–HDG method with different polynomial orders. In all cases, the discrete velocity
solution is divergence-free up to machine precision.

Degree Cells ‖u− uh‖ Rate |||u− uh|||v Rate ‖p− ph‖ Rate

P 1–P 0 24 7.2e-02 - 1.5e+00 - 5.8e+00 -
96 2.2e-02 1.7 8.1e-01 0.9 1.2e+00 2.3
384 7.6e-03 1.5 5.9e-01 0.5 8.2e-01 0.5
1536 2.8e-03 1.5 4.2e-01 0.5 5.8e-01 0.5
6144 9.8e-04 1.5 3.0e-01 0.5 4.1e-01 0.5

P 2–P 1 24 2.8e-02 - 8.4e-01 - 1.4e+00 -
96 7.6e-03 1.9 4.0e-01 1.1 5.2e-01 1.4
384 2.7e-03 1.5 2.9e-01 0.5 3.7e-01 0.5
1536 9.5e-04 1.5 2.0e-01 0.5 2.6e-01 0.5
6144 3.4e-04 1.5 1.4e-01 0.5 1.8e-01 0.5

Note that −∇2u +∇p1 = 0 and therefore −ν∇2u +∇p = f where f = ∇p2. Also, there
holds (u, p) ∈ H1+s(Ω)d ×Hs(Ω) for all 0 ≤ s < λ.

We compare the lowest-order EDG–HDG method to the lowest-order EDG method of
[39] (see also [30] on the EDG method). The EDG method, which uses a continuous facet
finite element space for both the velocity and pressure, is not pressure-robust [39]. We set
the viscosity to be either ν = 1 or ν = 10−5. The computed velocity errors for this example
are shown in Figure 2.1.

For the EDG–HDG method, the velocity error is observed to be independent of the
viscosity, confirming pressure-robustness. The velocity error for this method converges in
the discrete H1-norm as roughly h0.54. This is consistent with the regularity of u and
Corollary 2.1. Furthermore, according to [9, Section 5], on this domain Assumption 2.1
holds with s0 ≈ 0.54. Therefore, Theorem 2.2 predicts the velocity error in the L2-norm
to converge as roughly (h0.54)2 = h1.08, which is consistent with the empirical convergence
rates displayed in Figure 2.1.

When ν = 1 the velocity error for the EDG method is comparable to that of the EDG–
HDG method. However, when ν = 10−5 the velocity error for the EDG method increases
substantially, at least in the regime of large h. In this regime, we hypothesize that the
velocity error for the EDG method is dominated by the pressure best approximation error
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Figure 2.1: Computed velocity errors for the pressure-robustness test case of Section 2.3.2.
We compare the lowest-order EDG and EDG–HDG methods with ν = 1 and ν = 10−5.
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Table 2.2: Computed errors for the cracked domain test case of Section 2.3.3 using the
lowest-order EDG–HDG method. In all cases, the discrete velocity solution is divergence-
free up to machine precision.

Cells ‖u− uh‖ Rate |||u− uh|||v Rate ‖p− ph‖ Rate

1680 2.0e-03 - 4.5e-01 - 5.8e-01 -
6720 1.0e-03 1.0 3.2e-01 0.5 3.6e-01 0.7
26880 5.0e-04 1.0 2.3e-01 0.5 2.4e-01 0.6
107520 2.5e-04 1.0 1.6e-01 0.5 1.6e-01 0.6
430080 1.2e-04 1.0 1.1e-01 0.5 1.1e-01 0.5

scaled by the inverse viscosity. Recalling that p = νp1 + p2, we can estimate the pressure
best approximation error as

inf
qh∈Qh

‖p− qh‖ ≤ ν inf
qh∈Qh

‖p1 − qh‖+ inf
qh∈Qh

‖p2 − qh‖

.s νh
s‖p1‖s + h1‖p2‖1 ,

(2.72)

for any 0 ≤ s < λ. For h sufficiently large eq. (2.72) converges pre-asymptotically at a
rate of h1, while the asymptotic convergence rate of eq. (2.72) is hs. This behavior appears
to be reflected in Figure 2.1, where for ν = 10−5 the velocity error of the EDG method
pre-asymptotically converges at a faster rate than the EDG–HDG method.

2.3.3 Domain with a crack

We consider the Stokes problem on Ω = (−1/10, 1/10)2 \ ([0, 1/10) × {0}) with f = 0
and ν = 1. Notice that Ω has a crack along the positive x-axis. We use the same exact
solution from eq. (2.71). The computed velocity and pressure errors for the lowest-order
EDG–HDG method are shown in Table 2.2.

The velocity error in the discrete H1-norm and the pressure error in the L2-norm
eventually both converge as roughly h1/2. This is consistent with the regularity of the exact
solution and the predictions of Corollary 2.1 and Corollary 2.2. Furthermore, according
to [9, Section 5], on this domain Assumption 2.1 holds for any s0 < 1/2. Therefore,
Theorem 2.2 predicts the velocity error in the L2-norm to converge as roughly h1, which
is consistent with the empirical convergence rate seen in Table 2.2.
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Chapter 3

A technical inequality for
three-dimensional Guzmán–Neilan
finite element functions

An important tool in the analysis of Chapter 2 is the enrichment operator from Lemma 2.1.
In Chapter 4 we will also make use of an enrichment operator satisfying the statements
in Lemma 2.1. As discussed in Section 2.1.5, we have given a proof of Lemma 2.1 for the
three-dimensional case in Appendix A. Our proof in Appendix A is based on the three-
dimensional conforming and divergence-free finite element of Guzmán and Neilan [25].
The purpose of this chapter is to prove a technical inequality for functions in the three-
dimensional Guzmán–Neilan finite element space. This inequality is used in Appendix A
when proving Lemma 2.1.

To discuss the finite element space of [25], we must introduce some notation. Let
K ⊂ R3 be a tetrahedron. We use VK to denote the four vertices of K, while EK denotes
the six edges of K and FK denotes the four faces of K. We let V (K) denote the local
three-dimensional Guzmán–Neilan finite element space on K; this space is defined by [25,
eq. (3.9)], and we note that functions in V (K) are R3-valued. We will delve into the precise
definition of V (K) later on in this chapter, but for the time being we can ignore the precise
details behind how V (K) is defined.

Our construction in Appendix A makes crucial use of the fact that any v ∈ V (K) is
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uniquely determined by the unisolvent degrees of freedom [25, Theorem 3.5]

v(a) ∀a ∈ VK ,
〈v, s〉L2(e) ∀e ∈ EK , s ∈ P1(e),

〈v,κ〉L2(F ) ∀F ∈ FK ,κ ∈ P0(F ),

(3.1)

where Pk(D) is the space of R3-valued polynomials of degree at most k on D. The degrees
of freedom in eq. (3.1) naturally induce a norm‖·‖V ,K on V (K), which we define as follows.
For v ∈ V (K), we set

‖v‖2
V ,K := hK

∑
a∈VK

∣∣v(a)
∣∣2 +

∑
e∈EK

sup
s∈P1(e)
‖s‖L2(e)=1

∣∣〈v, s〉L2(e)

∣∣2
+ h−1

K

∑
F∈FK

sup
κ∈P0(F )
‖κ‖L2(F )=1

∣∣〈v,κ〉L2(F )

∣∣2 , (3.2)

where hK := diam(K). The factors of hK and h−1
K in eq. (3.2) are included for dimensional

consistency. In a similar fashion we can define a dimensionally consistent H1-norm on
V (K) as follows: For v ∈ V (K), we set

‖v‖2
H,K := h−2

K

∫
K

|v|2 dx+

∫
K

|∇v|2 dx. (3.3)

Notice that the norms ‖·‖V ,K and ‖·‖H,K are dimensionally consistent with one another

because both scale as h
1/2
K .

This entire thesis chapter is dedicated to proving the following inequality:

‖v‖H,K ≤ C‖v‖V ,K ∀v ∈ V (K), (3.4)

where C > 0 is a constant depending on the shape-regularity of K only. To the best of
the author’s knowledge, a proof of eq. (3.4) is not available anywhere in the literature.
However, the inequality in eq. (3.4) is quite useful because it allows one to estimate the
H1-norm of any function v ∈ V (K) in terms of its degrees of freedom in eq. (3.1). In the
context of this thesis, we make use of eq. (3.4) in Appendix A (specifically in eq. (A.4)),
when we prove that the enrichment operator of Lemma 2.1 satisfies Item iii.

The rest of this chapter is organized as follows. In Section 3.1 we introduce the necessary
mathematical machinery that will allow us to give the precise definition of the space V (K),
and we discuss some preliminary results concerning this space. In Section 3.2 we introduce
some projection operators on V (K) which will prove to be useful in the main analysis.
Finally, the main analysis is carried out in Section 3.3, where we give a proof of eq. (3.4).
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3.1 The local Guzmán–Neilan finite element space

In what follows we use the standard notation for Lebesgue and Sobolev spaces and their
norms. We frequently use the L2-inner-product, which on a three-dimensional (resp. one-
or two-dimensional) set D ⊂ R3 is denoted by (·, ·)D (resp. 〈·, ·〉D). We denote by‖·‖D the
L2-norm on D. We let Pk(D) denote the space of degree at most k polynomials on D, and
spaces of R3-valued functions are written in boldface:

Pk(D) := [Pk(D)]3, W 1,p(D) := [W 1,p(D)]3, C0(D) := [C0(D)]3, etc.

Let K ⊂ R3 be a tetrahedron. Following the notational conventions used in [25], the
four vertices of K are denoted by VK := {xi}4

i=1. The four faces of K are denoted by
FK := {Fi}4

i=1 and are labeled such that the face Fi is opposite to the vertex xi. The six
edges of K are denoted by EK := {ei,j}1≤i<j≤4 where ei,j := Fi ∩ Fj.
Remark 3.1 (Convention regarding the boundaries of these sets). We treat K as being an
open set, so that K is disjoint from its boundary ∂K. In contrast, a face F ∈ FK is treated
as containing its constituent three edges (hence F is a closed set), and an edge e ∈ EK is
treated as containing its constituent two vertices (hence e is also a closed set).

Remark 3.2 (Traces of functions). Since we are assuming that K is open, we have ∂K 6⊂ K.
However, a function f : K → R still admits a well-defined trace f |∂K : ∂K → R provided
that it is sufficiently regular. Given an integer k ≥ 0, we adapt the usual definition

Ck(K) := {g ∈ Ck(K) | Dαg is uniformly continuous for all |α| ≤ k}.

Then any f ∈ C0(K) extends continuously to K, which implies that f |∂K ∈ C0(∂K).
Similarly, in the context of Sobolev spaces, we have that if f ∈ H1(K) then f |∂K ∈
H1/2(∂K). With this understood, in what follows we will often consider the restriction to
∂K of functions whose domain is K.

3.1.1 The bubble functions

Following [25], in this subsection we introduce some important bubble functions defined on
the tetrahedron K. The barycentric coordinates on K are denoted by {λi}4

i=1 ⊂ P1(K),
and are the unique linear functions satisfying λi(xj) = δij for all vertices xj ∈ VK . Note in
particular that λi vanishes on the face Fi. The volume, face and edge bubble functions are
defined, respectively, as

bK :=
∏

1≤k≤4

λk ∈ P4(K), bi :=
∏

1≤k≤4
k 6=i

λk ∈ P3(K), bi,j :=
∏

1≤k≤4
k/∈{i,j}

λk ∈ P2(K).
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It can be verified that these bubble functions have the following properties.

• bK vanishes on ∂K. However, bK is not identically zero on K.

• bi vanishes on ∂K \ Fi. In particular, bi vanishes on all vertices and edges of K.
However, bi is not identically zero on Fi.

• bi,j vanishes on ∂K \ (Fi ∪ Fj). In particular, bi,j vanishes on all vertices of K, and
on all edges of K except for ei,j. However, bi,j is not identically zero on ei,j.

The rational face bubble functions are then defined, for 1 ≤ i ≤ 4, as

Bi := (bKbi)/
3∏

k=1

(λi + λi+k),

where for l > 4 the expression λl should be interpreted as λ1+(l−1 mod 4). Hence, for example,
λ5 := λ1 and λ6 := λ2. We also define ai := −|∇λi| < 0, and we let ni denote the outward
unit normal to Fi. The following result is established in [25, Lemma 2.1].

Lemma 3.1 (Rational face bubbles). For all 1 ≤ i ≤ 4, we have

Bi ∈ C2(K), Bi|∂K = 0, ∇Bi(xj) = 0 ∀1 ≤ j ≤ 4,

∇Bi|∂K\Fi
= 0,

∂Bi

∂ni
|Fi

= aibi, ∇Bi|Fi
∈ P3(Fi).

Finally, to each edge ei,j, where 1 ≤ i < j ≤ 4, we define the corresponding rational edge
bubble function

si,j :=
bKbi,j

2(λiλj + bi,j(λi + λj))(λi + λj)
(∇(λ2

j − λ2
i ) + 4(λi∇λj − λj∇λi)).

The important properties of si,j are as follows.

Lemma 3.2 (Rational edge bubbles). For all 1 ≤ i < j ≤ 4, we have

si,j ∈ C0(K) ∩W 1,∞(K), si,j|∂K = 0,

curl(si,j) ∈ C0(K) ∩W 1,∞(K), curl(si,j)|∂K = bi,j(∇λi ×∇λj).

Proof. The first property, si,j ∈ C0(K)∩W 1,∞(K), follows from the inequalities stated in
[25, Lemma A.1]. The last three properties are stated in [25, Lemma 2.3].
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3.1.2 The local spaces

We continue to follow the construction in [25], by now introducing the local spaces that are
used to build V (K). For m ≥ 2, we consider the local Nedelec space [35] of order m− 1,

Nm−1(K) := Pm−2(K) + {w ∈ Pm−1(K) | w · x = 0}
= {w ∈ Pm−1(K) | w · x ∈ Pm−1(K)}.

(3.5)

We use this space to define the following local space of divergence-free polynomials:

Qm(K) := {v ∈ Pm(K) | (v,ρ)K = 0 ∀ρ ∈Nm−1(K) and

〈v · ni, κ〉Fi
= 0 ∀κ ∈ Pm−1(Fi), ∀1 ≤ i ≤ 4}.

(3.6)

It is shown in [25, Section 3] that ∇ ·Qm(K) = {0}, so that these polynomials are indeed
divergence-free. Next, we define the local H(div;K)-conforming space (cf. [25, eq. (3.1)]),

M(K) := P1(K) +Q2(K) +Q3(K). (3.7)

The following result is proven in [25, Lemma 3.1].

Lemma 3.3 (Degrees of freedom for M (K)). The degrees of freedom in eq. (3.8) are
unisolvent on M(K):

v(xi) ∀xi ∈ VK , (3.8a)

〈v · nk, s〉ei,j ∀s ∈ P1(ei,j), 1 ≤ i < j ≤ 4, k ∈ {i, j}, (3.8b)

〈v · ni, κ〉Fi
∀κ ∈ P0(Fi), 1 ≤ i ≤ 4. (3.8c)

The next step is to define a space whose associated degrees of freedom involve tangential
moments on edges. For 1 ≤ i < j ≤ 4, let M (i,j)(K) := span({λ1, λ2, λ3, λ4} \ {λi, λj}).
Consider the local space (cf. [25, eq. (3.6)])

W (K) :=

{ ∑
1≤i<j≤4

curl(pi,jsi,j) | pi,j ∈M (i,j)(K)

}
. (3.9)

Using the product rule and Lemma 3.2, one sees that W (K) ⊂ C0(K) ∩W 1,∞(K).

Lemma 3.4 (Degrees of freedom for W (K)). The degrees of freedom in eq. (3.10) are
unisolvent on W (K):

〈w · ti,j, s〉ei,j ∀s ∈ P1(ei,j), 1 ≤ i < j ≤ 4. (3.10)

Here, ti,j is a unit tangent vector to the edge ei,j. Also, any function w ∈W (K) vanishes
on the degrees of freedom in eq. (3.8).
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Proof. Unisolvence of the degrees of freedom in eq. (3.10) is proven in [25, Lemma 3.3].
Next, let w ∈ W (K), so that we may write w =

∑
1≤i<j≤4 curl(pi,jsi,j) where pi,j ∈

M (i,j)(K). By [25, Lemma 3.3], we have

w|ei,j = pi,jbi,j(∇λi ×∇λj) ∀1 ≤ i < j ≤ 4, (3.11)

w · n|∂K = 0. (3.12)

Since edge bubbles vanish on all vertices, eq. (3.11) implies that w vanishes on the degrees
of freedom in eq. (3.8a). Finally, an immediate consequence of eq. (3.12) is that w vanishes
on the degrees of freedom in eqs. (3.8b) to (3.8c).

The last step is to define a local space whose associated degrees of freedom involve
tangential moments on faces. This space is taken to be (cf. [25, eq. (3.3)])

U(K) :=
4∑
i=1

U (i)(K), where U (i)(K) := curl(BiP0(K)× ni). (3.13)

Using the product rule and Lemma 3.1, one sees that U(K) ⊂ C1(K).

Lemma 3.5 (Degrees of freedom for U(K)). The degrees of freedom in eq. (3.14) are
unisolvent on U (K):

〈z × ni, q × ni〉Fi
∀q ∈ P0(Fi), 1 ≤ i ≤ 4. (3.14)

Also, any function z ∈ U(K) vanishes on the degrees of freedom in eq. (3.8) and eq. (3.10).

Proof. Unisolvence of the degrees of freedom in eq. (3.14) is proven in [25, Lemma 3.2].
Next, for any z ∈ U(K), it is also proven in [25, Lemma 3.2] that z vanishes on the degrees
of freedom in eq. (3.8). To prove that z vanishes on the degrees of freedom in eq. (3.10),
observe that by the product rule we can write

z =
4∑
i=1

(∇Bi)× (pi × ni),

where pi ∈ P0(K). But ∇Bi vanishes on all edges (since Bi ∈ C2(K) and ∇Bi|∂K\Fi
= 0

by Lemma 3.1), and it follows that z vanishes on the degrees of freedom in eq. (3.10).
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With the three auxiliary spacesM(K),W (K) andU(K) established, the local Guzmán–
Neilan space V (K) is defined to be their sum (cf. [25, eq. (3.9)]):

V (K) :=
[
M (K) +W (K) +U(K)

]
⊂ C0(T ) ∩W 1,∞(K). (3.15)

The degrees of freedom for V (K) are (recall eq. (3.1)) given in the following Theorem.

Theorem 3.1 (Degrees of freedom for V (K)). The degrees of freedom in eq. (3.16) are
unisolvent on V (K):

v(xi) ∀xi ∈ VK , (3.16a)

〈v, s〉ei,j ∀s ∈ P1(ei,j), 1 ≤ i < j ≤ 4, (3.16b)

〈v,κ〉Fi
∀κ ∈ P0(Fi), 1 ≤ i ≤ 4. (3.16c)

Proof. This is proven in [25, Theorem 3.5].

3.2 Projection operators

Motivated by the degrees of freedom considered in eqs. (3.8), (3.10) and (3.14), we introduce
three linear projection operators

ΠM ,K : V (K)→M(K), ΠW ,K : V (K)→W (K), ΠU ,K : V (K)→ U(K),

in the following way. For all v ∈ V (K), we require that

0 = (ΠM ,Kv − v)(xi) ∀xi ∈ VK , (3.17a)

0 = 〈(ΠM ,Kv − v) · nk, s〉ei,j ∀s ∈ P1(ei,j), 1 ≤ i < j ≤ 4, k ∈ {i, j}, (3.17b)

0 = 〈(ΠM ,Kv − v) · ni, κ〉Fi
∀κ ∈ P0(Fi), 1 ≤ i ≤ 4, (3.17c)

0 = 〈(ΠW ,Kv − v) · ti,j, s〉ei,j ∀s ∈ P1(ei,j), 1 ≤ i < j ≤ 4, (3.17d)

0 = 〈(ΠU ,Kv − v)× ni, q × ni〉Fi
∀q ∈ P0(Fi), 1 ≤ i ≤ 4. (3.17e)

The unisolvence of the degrees of freedom in eqs. (3.8), (3.10) and (3.14) ensures that the
projection operators ΠM ,K ,ΠW ,K and ΠU ,K are well-defined.

Let I : V (K)→ V (K) be the identity operator on V (K). How can we decompose I in
terms of the projection operators defined above? Since V (K) = M (K) +W (K) +U(K),
a reasonable guess would be that I = ΠM ,K + ΠW ,K + ΠU ,K . However, this is not the
case. The goal of this subsection is to figure out what the proper decomposition of I is.
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Definition 3.1 (Vanishing on degrees of freedom). Let v ∈ V (K). We shall say that

(i) v is M -vanishing if v vanishes on the degrees of freedom in eq. (3.8),

(ii) v is W -vanishing if v vanishes on the degrees of freedom in eq. (3.10),

(iii) v is U -vanishing if v vanishes on the degrees of freedom in eq. (3.14).

Let v ∈ V (K). Notice that by construction, (ΠM ,Kv − v) is M -vanishing, (ΠW ,Kv − v)
is W -vanishing and (ΠU ,Kv − v) is U -vanishing. Moreover, Lemma 3.4 states that any
w ∈ W (K) is M -vanishing, and Lemma 3.5 states that any z ∈ U(K) is both M -
vanishing and W -vanishing.

Lemma 3.6 (Characterization of the zero function). If v ∈ V (K) is simultaneously M -
vanishing, W -vanishing and U -vanishing, then v = 0.

Proof. Write v = vm + vw + vu for some vm ∈ M(K),vw ∈ W (K) and vu ∈ U(K).
Assume that v is simultaneously M -vanishing, W -vanishing and U -vanishing. Then

vm = v − vw − vu. (3.18)

All terms on the right-hand side of eq. (3.18) are M -vanishing, so vm = 0 by Lemma 3.3.
Thus

vw = v − vu. (3.19)

Both terms on the right-hand side of eq. (3.19) are W -vanishing, so vw = 0 by Lemma 3.4.
Hence vu = v is U -vanishing, so vu = 0 by Lemma 3.5. Therefore v = 0.

Corollary 3.1 (Factorization of the zero operator). There holds

0 = (I −ΠU ,K)(I −ΠW ,K)(I −ΠM ,K).

Proof. Let v ∈ V (K). Define

v1 := (I −ΠM ,K)v, v2 := (I −ΠW ,K)v1, v3 := (I −ΠU ,K)v2.

Our goal is to show that v3 = 0. Note that by definition v1 is M -vanishing. But then

v2 = v1 −ΠW ,Kv1, (3.20)
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and both terms on the right-hand side of eq. (3.20) are M -vanishing, so that v2 is M -
vanishing. Also note that by definition v2 is W -vanishing. Therefore v2 is both M -
vanishing and W -vanishing. But then

v3 = v2 −ΠU ,Kv2, (3.21)

and both terms on the right-hand side of eq. (3.21) are M -vanishing and W -vanishing.
Therefore v3 is M -vanishing and W -vanishing. But v3 is also U -vanishing by definition.
Hence by Lemma 3.6 we have that v3 = 0. This completes the proof.

We are now ready to deduce the correct decomposition of the identity.

Theorem 3.2 (Decomposition of the identity). The identity I on V (K) is given by

I = ΠM ,K + ΠW ,K(I −ΠM ,K) + ΠU ,K(I −ΠW ,K)(I −ΠM ,K).

Proof. Proving this result is now just a matter of algebra. We have:

I = ΠM ,K + (I −ΠM ,K)

= ΠM ,K + ΠW ,K(I −ΠM ,K) + (I −ΠW ,K)(I −ΠM ,K)

= ΠM ,K + ΠW ,K(I −ΠM ,K) + ΠU ,K(I −ΠW ,K)(I −ΠM ,K)

+ (I −ΠU ,K)(I −ΠW ,K)(I −ΠM ,K)︸ ︷︷ ︸
=0 by Corollary 3.1

.

We will use Theorem 3.2 in the next section.

3.3 The main analysis

We are now ready to prove eq. (3.4). Since we want the constant C in eq. (3.4) to depend
only on shape-regularity of the tetrahedron K, let us assume that K belongs to a shape-
regular family of triangulations (see e.g. [18, Definition 11.2]). Hence there is a constant
γ > 0 such that hK ≤ γρK , where ρK is the diameter of the largest ball inscribed in K and
hK = diam(K). In what follows, we will write a . b if a ≤ Cb where C is any constant
depending on γ only. We will write a ∼ b if a . b and b . a.
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3.3.1 The relevant norms and key estimates

We define on V (K) the scaled H1-norm ‖·‖H,K according to (recall eq. (3.3)):

‖v‖2
H,K := h−2

K

∫
K

|v|2 dx+

∫
K

|∇v|2 dx. (3.22)

Motivated by the degrees of freedom in eq. (3.16) we also define on V (K) the norm‖·‖V ,K
according to (recall eq. (3.2)):

‖v‖2
V ,K := hK

4∑
i=1

∣∣v(xi)
∣∣2 +

∑
1≤i<j≤4

sup
s∈P1(ei,j)
‖s‖ei,j =1

∣∣〈v, s〉ei,j ∣∣2

+ h−1
K

4∑
i=1

sup
κ∈P0(Fi)
‖κ‖Fi

=1

∣∣〈v,κ〉Fi

∣∣2 . (3.23)

The degrees of freedom in eqs. (3.8), (3.10) and (3.14) also motivate us to define on V (K)
the following semi-norms:

‖v‖2
M ,K := hK

4∑
i=1

∣∣v(xi)
∣∣2 +

∑
1≤i<j≤4
k∈{i,j}

sup
s∈P1(ei,j)
‖s‖ei,j =1

∣∣〈v · nk, s〉ei,j ∣∣2

+ h−1
K

4∑
i=1

sup
κ∈P0(Fi)
‖κ‖Fi

=1

∣∣〈v · ni, κ〉Fi

∣∣2 , (3.24a)

‖v‖2
W ,K :=

∑
1≤i<j≤4

sup
s∈P1(ei,j)
‖s‖ei,j =1

∣∣〈v · ti,j, s〉ei,j ∣∣2 ,
(3.24b)

‖v‖2
U ,K := h−1

K

4∑
i=1

sup
q∈P0(Fi)
‖q‖Fi

=1

∣∣〈v × ni, q × ni〉Fi

∣∣2 . (3.24c)

Note that for each Y ∈ {M ,W ,U} the semi-norm ‖·‖Y ,K is actually a norm on Y (K).

Lemma 3.7 (Properties of these norms). Let Y ∈ {M ,W ,U}. For all v ∈ V (K) we
have ∥∥ΠY ,Kv

∥∥
Y ,K

=‖v‖Y ,K ≤ CY ‖v‖V ,K , (3.25)

where CM =
√

2 and CW = CU = 1.
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Proof. The equality in eq. (3.25) follows immediately from the definitions of ΠY ,K (see
eq. (3.17)) and‖·‖Y ,K (see eq. (3.24)). The inequality in eq. (3.25) is a simple consequence
of the definition of ‖·‖V ,K and ‖·‖Y ,K (see eq. (3.23) and eq. (3.24)).

We now state three key estimates posed on the smaller spacesM (K),W (K) andU(K).
We postpone the proof of these estimates to the upcoming subsections.

Proposition 3.1 (Estimate for M(K)). For all v ∈M (K) we have

‖v‖H,K +‖v‖V ,K .‖v‖M ,K .

Proposition 3.2 (Estimate for W (K)). For all v ∈W (K) we have

‖v‖H,K +‖v‖V ,K .‖v‖W ,K .

Proposition 3.3 (Estimate for U(K)). For all v ∈ U(K) we have

‖v‖H,K .‖v‖U ,K .

We now show that these estimates, in combination with Theorem 3.2, yield the desired
result of this chapter stated in eq. (3.4).

Theorem 3.3 (Main estimate). The inequality in eq. (3.4) holds. That is to say,

‖v‖H,K .‖v‖V ,K ∀v ∈ V (K). (3.26)

Proof. Let v ∈ V (K). By Theorem 3.2 we can write

v = ΠM ,Kv + ΠW ,Kv1 + ΠU ,Kv2,

where v1 := v −ΠM ,Kv and v2 := v1 −ΠW ,Kv1. Hence by the triangle inequality

‖v‖H,K ≤
∥∥ΠM ,Kv

∥∥
H,K

+
∥∥ΠW ,Kv1

∥∥
H,K

+
∥∥ΠU ,Kv2

∥∥
H,K

. (3.27)

Now by Proposition 3.1 and Lemma 3.7 we have∥∥ΠM ,Kv
∥∥
H,K

+
∥∥ΠM ,Kv

∥∥
V ,K

.
∥∥ΠM ,Kv

∥∥
M ,K

=‖v‖M ,K .‖v‖V ,K . (3.28)

Similarly we have by Proposition 3.2 and Lemma 3.7 that∥∥ΠW ,Kv1

∥∥
H,K

+
∥∥ΠW ,Kv1

∥∥
V ,K

.
∥∥ΠW ,Kv1

∥∥
W ,K

=‖v1‖W ,K ≤‖v1‖V ,K . (3.29)
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But using the triangle inequality and eq. (3.28) we see that

‖v1‖V ,K ≤‖v‖V ,K +
∥∥ΠM ,Kv

∥∥
V ,K

.‖v‖V ,K . (3.30)

Therefore combining eq. (3.29) and eq. (3.30) we get∥∥ΠW ,Kv1

∥∥
H,K

+
∥∥ΠW ,Kv1

∥∥
V ,K

.‖v‖V ,K . (3.31)

Next, by Proposition 3.3 and Lemma 3.7 we have∥∥ΠU ,Kv2

∥∥
H,K

.
∥∥ΠU ,Kv2

∥∥
U ,K

=‖v2‖U ,K ≤‖v2‖V ,K . (3.32)

But by the triangle inequality, eq. (3.30) and eq. (3.31) we have

‖v2‖V ,K ≤‖v1‖V ,K +
∥∥ΠW ,Kv1

∥∥
V ,K

.‖v‖V ,K . (3.33)

Therefore combining eq. (3.32) and eq. (3.33) we get∥∥ΠU ,Kv2

∥∥
H,K

.‖v‖V ,K . (3.34)

Finally, using the inequalities in eqs. (3.28), (3.31) and (3.34) to bound the terms on the
right-hand side of eq. (3.27), we obtain the desired conclusion stated in eq. (3.26).

Having proven Theorem 3.3, the remainder of this chapter is dedicated to proving the
auxiliary inequalities stated in Propositions 3.1 to 3.3.

3.3.2 The reference tetrahedron

In what follows, it will be helpful to consider the so-called reference tetrahedron, which we
denote by K̂ ⊂ R3. K̂ is the unique tetrahedron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) and
(0, 0, 0). We can always find an affine map F (x) = Ax+ b, where A ∈ R3×3 and b ∈ R3,
such that

F |K̂ : K̂ → K

is a bijection. By shape-regularity it follows that (see e.g. [18, Lemma 11.1])

‖A‖ ∼ hK ,
∥∥A−1

∥∥ ∼ h−1
K ,

∣∣det(A)
∣∣ ∼ h3

K , (3.35)

where ‖A‖ is the operator norm of A induced by the Euclidean norm and likewise for∥∥A−1
∥∥. The vertices of K̂ are denoted by VK̂ := {x̂i}4

i=1 and are labeled such that xi =
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F (x̂i) for all xi ∈ VK . The faces of K̂ are denoted by FK̂ := {F̂i}4
i=1 while the edges of K̂

are denoted by EK̂ := {êi,j}1≤i<j≤4. Hence Fi = F (F̂i) and ei,j = F (êi,j) for all Fi ∈ FK
and ei,j ∈ EK .

We use hat notation for the barycentric coordinates {λ̂i}4
i=1 ⊂ P1(K̂) on K̂, and likewise

for the bubble functions b̂K̂ , b̂i, b̂i,j, B̂i and ŝi,j on K̂ (recall Section 3.1.1). Note that

λi = λ̂i ◦ F−1, (3.36)

and in particular this implies the relationships

bK = b̂K̂ ◦ F
−1, bi = b̂i ◦ F−1, bi,j = b̂i,j ◦ F−1,

Bi = B̂i ◦ F−1, si,j = A−T (ŝi,j ◦ F−1).
(3.37)

Finally, the (contravariant) Piola transform of a vector field v̂ : K̂ → R3 is defined as
(see e.g. [6, Section 2.1.3] or [18, Section 9.2]):

G(v̂) : K → R3, G(v̂) :=
A

det(A)
(v̂ ◦ F−1). (3.38)

Note that G : {v̂ : K̂ → R3} → {v : K → R3} is a linear bijection, so we can also speak
of the inverse Piola transform G−1.

3.3.3 The proof of Proposition 3.1

We break down the proof of Proposition 3.1 into several lemmas. The idea is to transform
via G−1 onto the reference tetrahedron, utilize that Proposition 3.1 trivially holds on the
reference tetrahedron by finite-dimensionality, and then transform back to the physical
tetrahedron.

Lemma 3.8 (Piola transform of M (K)). If v ∈M(K) and v̂ = G−1(v) then v̂ ∈M (K̂).

Proof. We first claim that, for all m ≥ 2, there holds (recall eq. (3.6))

G−1(Qm(K)) ⊂ Qm(K̂). (3.39)

Indeed, for any ρ̂ ∈Nm−1(K̂) (recall eq. (3.5)), one can verify that its so-called covariant
Piola transform H(ρ̂) := A−T (ρ̂ ◦F−1) satisfies H(ρ̂) ∈Nm−1(K). Using this fact, along
with the properties stated in [6, Lemma 2.1.6] and [6, Lemma 2.1.9], one then readily
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verifies that eq. (3.39) holds. To conclude, note that G−1(P1(K)) ⊂ P1(K̂). Recalling the
definition of M (K) (see eq. (3.7)), we consequently obtain

G−1(M(K)) = G−1(P1(K)) + G−1(Q2(K)) + G−1(Q3(K))

⊂ P1(K̂) +Q2(K̂) +Q3(K̂)

= M (K̂).

This is the desired result.

Lemma 3.9 (Norm estimate from K to K̂). If v ∈M (K) and v̂ = G−1(v) then

‖v‖H,K +‖v‖V ,K . h
−3/2
K

[
‖v̂‖H,K̂ +‖v̂‖V ,K̂

]
.

Proof. First, using [6, Lemma 2.1.8] and eq. (3.35), we straightforwardly obtain

‖v‖H,K . h
−3/2
K ‖v̂‖H,K̂ .

To bound ‖v‖V ,K let us write (recall eq. (3.23))

‖v‖2
V ,K = hK

4∑
i=1

∣∣v(xi)
∣∣2

︸ ︷︷ ︸
I1

+
∑

1≤i<j≤4

sup
s∈P1(ei,j)
‖s‖ei,j =1

∣∣〈v, s〉ei,j ∣∣2
︸ ︷︷ ︸

I2

+ h−1
K

4∑
i=1

sup
κ∈P0(Fi)
‖κ‖Fi

=1

∣∣〈v,κ〉Fi

∣∣2
︸ ︷︷ ︸

I3

.

(3.40)

We first bound I1. Using eq. (3.35) we find

I1 = hK

4∑
i=1

∣∣∣∣ A

det(A)
v̂(x̂i)

∣∣∣∣2 . h−3
K

4∑
i=1

∣∣v̂(x̂i)
∣∣2 ≤ h−3

K ‖v̂‖
2
V ,K̂ .

Next we bound I2. Fix 1 ≤ i < j ≤ 4 and s ∈ P1(ei,j) with ‖s‖ei,j = 1, and set ŝ :=

(det(A)−1AT (s ◦ F )) ∈ P1(êi,j). Using eq. (3.35), along with the fact that
∫
ei,j

1 dl ∼ hK
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by shape-regularity, we find that∣∣〈v, s〉ei,j ∣∣ . hK
∣∣〈v̂, ŝ〉êi,j ∣∣

≤ hK‖v̂‖V ,K̂‖ŝ‖êi,j
. h

1/2
K ‖v̂‖V ,K̂

∥∥∥det(A)−1ATs
∥∥∥
ei,j

. h
−3/2
K ‖v̂‖V ,K̂‖s‖ei,j

= h
−3/2
K ‖v̂‖V ,K̂ .

Since s ∈ P1(ei,j) with ‖s‖ei,j = 1 was arbitrary, it then follows that I2 . h−3
K ‖v̂‖

2
V ,K̂ .

Finally, we bound I3. Fix 1 ≤ i ≤ 4 and κ ∈ P0(Fi) with ‖κ‖Fi
= 1, and set κ̂ :=

(det(A)−1AT (κ ◦ F )) ∈ P0(F̂i). Using eq. (3.35), along with the fact that
∫
Fi

1 ds ∼ h2
K

by shape-regularity, we find that∣∣〈v,κ〉Fi

∣∣ . h2
K

∣∣∣〈v̂, κ̂〉F̂i

∣∣∣
≤ h2

K‖v̂‖V ,K̂‖κ̂‖F̂i

. hK‖v̂‖V ,K̂
∥∥∥det(A)−1ATκ

∥∥∥
Fi

. h−1
K ‖v̂‖V ,K̂‖κ‖Fi

= h−1
K ‖v̂‖V ,K̂ .

Since κ ∈ P0(Fi) with‖κ‖Fi
= 1 was arbitrary, it then follows that I3 . h−3

K ‖v̂‖
2
V ,K̂ . Using

these bounds for I1, I2 and I3 in eq. (3.40), we obtain

‖v‖2
V ,K . h−3

K ‖v̂‖
2
V ,K̂ .

This completes the proof.

Lemma 3.10 (Norm estimate for M(K̂)). For all v̂ ∈M(K̂) we have

‖v̂‖H,K̂ +‖v̂‖V ,K̂ .‖v̂‖M ,K̂ .

Proof. This is a consequence of equivalence of norms on finite dimensional spaces.

Lemma 3.11 (Norm estimate from K̂ to K). If v ∈M (K) and v̂ = G−1(v) then

‖v̂‖M ,K̂ . h
3/2
K ‖v‖M ,K .
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Proof. Let us write (recall eq. (3.24a))

‖v̂‖2
M ,K̂ =

4∑
i=1

∣∣v̂(x̂i)
∣∣2

︸ ︷︷ ︸
I1

+
∑

1≤i<j≤4
k∈{i,j}

sup
ŝ∈P1(êi,j)
‖ŝ‖êi,j =1

∣∣〈v̂ · n̂k, ŝ〉êi,j ∣∣2
︸ ︷︷ ︸

I2

+
4∑
i=1

sup
κ̂∈P0(F̂i)
‖κ̂‖F̂i

=1

∣∣∣〈v̂ · n̂i, κ̂〉F̂i

∣∣∣2
︸ ︷︷ ︸

I3

.

(3.41)

We first bound I1. Using eq. (3.35) we have

I1 =
4∑
i=1

∣∣det(A)A−1v(xi)
∣∣2 . h4

K

4∑
i=1

∣∣v(xi)
∣∣2 ≤ h3

K‖v‖
2
M ,K .

Next we bound I2. Fix 1 ≤ i < j ≤ 4 and k ∈ {i, j}. Note that by [6, eq. (2.1.94)] we

have nk = αk(A
−T n̂k) where αk =

∣∣A−T n̂k∣∣−1 ∼ hK . Now let ŝ ∈ P1(êi,j) with ‖ŝ‖êi,j = 1

and set s := (ŝ ◦ F−1) ∈ P1(ei,j). Using eq. (3.35), along with the fact that
∫
ei,j

1 dl ∼ hK
by shape-regularity, we find∣∣〈v̂ · n̂k, ŝ〉êi,j ∣∣ . h−1

K

∣∣〈(v̂ ◦ F−1) · n̂k, s〉ei,j
∣∣

= h−1
K α−1

k |detA|
∣∣〈v · nk, s〉ei,j ∣∣

. hK
∣∣〈v · nk, s〉ei,j ∣∣

≤ hK‖v‖M ,K‖s‖ei,j
. h

3/2
K ‖v‖M ,K‖ŝ‖êi,j

= h
3/2
K ‖v‖M ,K .

By arbitrariness of ŝ it follows that I2 . h3
K‖v‖

2
M ,K . Finally, we bound I3. Fix 1 ≤ i ≤ 4

and κ̂ ∈ P0(F̂i) with ‖κ̂‖F̂i
= 1, and set κ := (κ̂ ◦ F−1) ∈ P0(Fi). Using [6, Lemma 2.1.6],

and
∫
Fi

1 ds ∼ h2
K by shape-regularity, we find∣∣∣〈v̂ · n̂i, κ̂〉F̂i

∣∣∣ =
∣∣〈v · ni, κ〉Fi

∣∣
≤ h

1/2
K ‖v‖M ,K‖κ‖Fi

. h
3/2
K ‖v‖M ,K‖κ̂‖F̂i

= h
3/2
K ‖v‖M ,K .
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By arbitrariness of κ̂ it follows that I3 . h3
K‖v‖

2
M ,K . Using these bounds for I1, I2 and I3

in eq. (3.41) we obtain ‖v̂‖2
M ,K̂ . h3

K‖v‖
2
M ,K . This completes the proof.

Proposition 3.1 now follows from the above lemmas. Indeed, let v ∈ M (K) and set
v̂ = G−1(v). By Lemma 3.8 we have v̂ ∈M(K̂). Hence using Lemmas 3.9 to 3.11 we find

‖v‖H,K +‖v‖V ,K . h
−3/2
K

[
‖v̂‖H,K̂ +‖v̂‖V ,K̂

]
. h

−3/2
K ‖v̂‖M ,K̂ .‖v‖M ,K .

This completes the proof of Proposition 3.1.

3.3.4 The proof of Proposition 3.2

The proof of Proposition 3.2 is broken into several lemmas. As in the previous subsection,
the idea is to establish the result by transforming onto the reference tetrahedron.

Lemma 3.12 (Piola transform ofW (K)). If v ∈W (K) and v̂ = G−1(v) then v̂ ∈W (K̂).

Proof. Let v ∈W (K), so that by definition (recall eq. (3.9)) we can write

v =
∑

1≤i<j≤4

curl(pi,jsi,j),

where pi,j ∈ M (i,j)(K). Using [6, eq. (2.1.92)] (see also [18, Lemma 9.6]), and eq. (3.37),
we find that

G−1(v) =
∑

1≤i<j≤4

G−1(curl(pi,jsi,j))

=
∑

1≤i<j≤4

curl(AT (pi,jsi,j) ◦ F )

=
∑

1≤i<j≤4

curl((pi,j ◦ F )ŝi,j).

Finally, because pi,j ∈M (i,j)(K) (recall that M (i,j)(K) is defined above eq. (3.9)), it follows

from eq. (3.36) that (pi,j ◦ F ) ∈M (i,j)(K̂). Therefore from the definition of W (K̂) we see

that G−1(v) ∈W (K̂).

Lemma 3.13 (Norm estimate from K to K̂). If v ∈W (K) and v̂ = G−1(v) then

‖v‖H,K +‖v‖V ,K . h
−3/2
K

[
‖v̂‖H,K̂ +‖v̂‖V ,K̂

]
.
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Proof. The proof is identical to the proof of Lemma 3.9.

Lemma 3.14 (Norm estimate for W (K̂)). For all v̂ ∈W (K̂) we have

‖v̂‖H,K̂ +‖v̂‖V ,K̂ .‖v̂‖W ,K̂ .

Proof. This is a consequence of equivalence of norms on finite dimensional spaces.

Lemma 3.15 (Norm estimate from K̂ to K). If v ∈W (K) and v̂ = G−1(v) then

‖v̂‖W ,K̂ . h
3/2
K ‖v‖W ,K .

Proof. Let v ∈W (K) and set v̂ = G−1(v) ∈W (K̂). By [25, Lemma 3.3] it holds that

(v · n)|∂K = 0, (v̂ · n̂)|∂K̂ = 0.

This, in conjunction with the definition of ‖·‖W ,K (recall eq. (3.24b)), implies that

‖v̂‖2
W ,K̂ =

∑
1≤i<j≤4

sup
ŝ∈P1(êi,j)
‖ŝ‖êi,j =1

∣∣〈v̂, ŝ〉êi,j ∣∣2 , (3.42a)

‖v‖2
W ,K =

∑
1≤i<j≤4

sup
s∈P1(ei,j)
‖s‖ei,j =1

∣∣〈v, s〉ei,j ∣∣2 . (3.42b)

Fix 1 ≤ i < j ≤ 4 and ŝ ∈ P1(êi,j) with ‖ŝ‖êi,j = 1, and set s := (det(A)A−T (ŝ ◦F−1)) ∈
P1(ei,j). Using eq. (3.35), eq. (3.42b), and the fact that

∫
ei,j

1 dl ∼ hK by shape-regularity,

we find that ∣∣〈v̂, ŝ〉êi,j ∣∣ . h−1
K

∣∣〈v, s〉ei,j ∣∣
≤ h−1

K ‖v‖W ,K‖s‖ei,j
. h

−1/2
K ‖v‖W ,K

∥∥∥det(A)A−T ŝ
∥∥∥
êi,j

. h
3/2
K ‖v‖W ,K‖ŝ‖êi,j

= h
3/2
K ‖v‖W ,K .

(3.43)

Finally, combining eq. (3.42a) and eq. (3.43), we obtain ‖v̂‖W ,K̂ . h
3/2
K ‖v‖W ,K .
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Proposition 3.2 now follows from the above lemmas. Indeed, let v ∈ W (K) and set
v̂ = G−1(v). By Lemma 3.12 we have v̂ ∈W (K̂). Hence using Lemmas 3.13 to 3.15 we
find

‖v‖H,K +‖v‖V ,K . h
−3/2
K

[
‖v̂‖H,K̂ +‖v̂‖V ,K̂

]
. h

−3/2
K ‖v̂‖W ,K̂ .‖v‖W ,K .

This completes the proof of Proposition 3.2.

3.3.5 The proof of Proposition 3.3

The approach we take to prove Proposition 3.3 is different from that of Proposition 3.1
and Proposition 3.2. This is because for v ∈ U(K), it does not appear to hold (as far
as the author can tell) that G−1(v) ∈ U(K̂). We therefore prove Proposition 3.3 without
transforming onto the reference tetrahedron.

Let v ∈ U(K). By the definition of U(K) (see eq. (3.13)) and the product rule, we
can write

v =
4∑
i=1

(∇Bi)× (pi × ni),

where pi ∈ P0(K) and with no loss of generality pi · ni = 0. By the triangle inequality,

‖v‖H,K ≤
4∑
i=1

∥∥(∇Bi)× (pi × ni)
∥∥
H,K

.

Using the definition of ‖·‖H,K (see eq. (3.22)), one verifies that for each 1 ≤ i ≤ 4 we have∥∥(∇Bi)× (pi × ni)
∥∥
H,K

.
[
h−1
K |Bi|H1(K) +|Bi|H2(K)

]
|pi × ni| .

Moreover, utilizing eq. (3.37), [6, Remark 2.1.8] and eq. (3.35), we can estimate

|Bi|H1(K) =
∣∣∣B̂i ◦ F−1

∣∣∣
H1(K)

. h
1/2
K

∣∣∣B̂i

∣∣∣
H1(K̂)

. h
1/2
K .

Similar reasoning shows that |Bi|H2(K) . h
−1/2
K . We therefore obtain

‖v‖H,K . h
−1/2
K

4∑
i=1

|pi × ni| . (3.44)

47



Fix 1 ≤ i ≤ 4; it remains to estimate |pi × ni|. By shape-regularity
∫
Fi

1 ds ∼ h2
K , so that

|pi × ni| ∼ h−1
K ‖pi × ni‖Fi

. (3.45)

On the other hand, using Lemma 3.1 and the vector triple product formula, we see that

(v × ni)|Fi
= ((∇Bi)|Fi

× (pi × ni))× ni

= (
∂Bi

∂ni
|Fi

)(pi × ni)

= aibi|Fi
(pi × ni).

(3.46)

Here we recall that ai = −|∇λi|, which by eq. (3.36) and eq. (3.35) satisfies

|ai| =
∣∣∣∇(λ̂i ◦ F−1)

∣∣∣ =
∣∣∣A−T∇λ̂i∣∣∣ ∼ h−1

K . (3.47)

Let us also mention that shape-regularity implies∥∥∥b1/2
i (pi × ni)

∥∥∥
Fi

∼‖pi × ni‖Fi
. (3.48)

Indeed, eq. (3.48) is straightforwardly proven by a scaling argument where one transforms
onto the reference face F̂i. Combining now eqs. (3.46) to (3.48), we find

‖pi × ni‖2
Fi
∼ 〈bi(pi × ni),pi × ni〉Fi

∼ hK〈−aibi(pi × ni),pi × ni〉Fi

= hK〈v × ni,−pi × ni〉Fi
.

(3.49)

However, since pi ∈ P0(Fi), we see from the definition of ‖·‖U ,K (see eq. (3.24c)) that

〈v × ni,−pi × ni〉Fi
≤ h

1/2
K ‖pi‖Fi

‖v‖U ,K = h
1/2
K ‖pi × ni‖Fi

‖v‖U ,K , (3.50)

where ‖pi‖Fi
= ‖pi × ni‖Fi

follows from pi · ni = 0. Combining eq. (3.49) and eq. (3.50)
we get

‖pi × ni‖Fi
. h

3/2
K ‖v‖U ,K . (3.51)

Finally, combining eq. (3.44), eq. (3.45) and eq. (3.51) yields that ‖v‖H,K .‖v‖U ,K .
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Chapter 4

A new divergence-free discontinuous
Galerkin method for the steady
Navier–Stokes problem under
minimal regularity

In Chapter 2 we derived optimal a-priori error estimates for some lowest-order hybridized
DG methods in the context of the Stokes problem. The novelty of our analysis in Chapter 2
is that it is both pressure-robust (i.e. we are able to obtain velocity error estimates that
are pressure independent) and is valid when the exact solution has low regularity. This
chapter can be viewed as an extension of these results from Chapter 2 to the context of
the steady Navier–Stokes problem. The material presented in this chapter is somewhat
preliminary, and is part of an ongoing research project that is being undertaken by the
author at the time of writing this thesis. Nevertheless, some interesting results are available
at the present time, which is why this thesis chapter is included.

The first contribution of this chapter is to introduce a new lowest-order DG method
for the steady Navier–Stokes problem. The proposed method is essentially a combination
of the lowest-order formulation of the methods considered in [13] and [28]. Following [13]
we use a (lowest-order) H(div)-conforming finite element space for the velocity, while
the pressure space consists of piecewise constant functions. The method consequently
produces a discrete velocity solution that is exactly divergence-free. To ensure stability we
discretize the viscous and convective terms in the same way as [13]. However, to discretize
the source term we use the approach of [28], whereby a suitable divergence-preserving
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enrichment operator is utilized. The enrichment operator allows for the proposed method to
be well-defined for source terms with low-regularity (see Remark 4.1), and the divergence-
preserving property of the operator ensures that the method is pressure-robust.

After introducing the new DG method we proceed to analyze it. We first show that
the discrete problem admits a unique solution under a smallness condition on the problem
data. Building on the ideas developed in Chapter 2 for the Stokes problem, we then turn to
the derivation of optimal and pressure-robust a-priori velocity error estimates in a discrete
energy norm. We show that it is possible to derive such estimates under low regularity
assumptions on the exact solution. In particular, our analysis requires onlyH1+s-regularity
of the exact velocity solution for s ∈ (0, 1] in the two-dimensional case and s ∈ (1/2, 1] in
the three-dimensional case. To the best of the author’s knowledge, this is the first time
that pressure-robust velocity a-priori error estimates have been derived for a DG method in
the context of the steady Navier–Stokes problem under minimal regularity. We emphasize
that error estimates of this nature can be obtained quite easily in the high regularity case
of s ≥ 1, by combining the ideas presented in [13, 26]. The novelty of our analysis is that
it is valid in the minimal regularity setting where s < 1.

The rest of this chapter is organized as follows. In Section 4.1 we recall the weak
formulation of the steady Navier–Stokes problem and discuss some of its basic properties.
In Section 4.2 we introduce the proposed DG method and discuss some preliminary results
concerning the discretization. In Section 4.3 we study well-posedness of the resultant
discrete Navier–Stokes problem, and we show that it admits a unique solution under a
discrete smallness condition on the problem data. Finally, in Section 4.4 we derive the
pressure-robust velocity error estimates for the proposed method.

4.1 The steady Navier–Stokes problem

Let Ω ⊂ Rd with d ∈ {2, 3} be a connected and bounded domain with polyhedral bound-
ary. In this chapter we shall further assume for simplicity that Ω is a Lipschitz domain.
The steady incompressible Navier–Stokes problem seeks a velocity field u and kinematic
pressure field p such that

−ν∆u+ u · ∇u+∇p = f in Ω, (4.1a)

∇ · u = 0 in Ω, (4.1b)

u = 0 on ∂Ω, (4.1c)

where ν > 0 is a given constant kinematic viscosity and f is a given body force.
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We use the standard notation for Lebesgue and Sobolev spaces and their norms. Bold-
face notation is used for Rd-valued functions and function spaces; hence for example we
write H1

0 (Ω) := [H1
0 (Ω)]d. To define the weak formulation of eq. (4.1), we introduce the

following multilinear forms:

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(u,v) := (∇u,∇v), (4.2a)

b : H1
0 (Ω)× L2

0(Ω)→ R, b(v, q) := −(∇ · v, q), (4.2b)

c : H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω)→ R, c(w,u,v) :=

∫
Ω

(w · ∇u) · v dx. (4.2c)

Given f ∈ H−1(Ω), the weak formulation of eq. (4.1) seeks (u, p) ∈ H1
0 (Ω)× L2

0(Ω) such
that

νa(u,v) + c(u,u,v) + b(v, p) = 〈f ,v〉 ∀v ∈H1
0 (Ω), (4.3a)

b(u, q) = 0 ∀q ∈ L2
0(Ω). (4.3b)

To discuss the well-posedness of eq. (4.3), we mention the existence of constants Cp and
Cτ which depend only on Ω, such that (see [14, eq. (6.6)] and [14, Lemma 6.32])

Cp‖v‖2
1 ≤ a(v,v) ∀v ∈H1

0 (Ω), (4.4)∣∣c(w,u,v)
∣∣ ≤ Cτ‖w‖1‖u‖1‖v‖1 ∀w,u,v ∈H1

0 (Ω). (4.5)

It is known that under the smallness condition on the data

‖f‖−1

ν2
<
C2
p

Cτ
, (4.6)

the problem in eq. (4.3) admits a unique solution, see [14, Theorem 6.36] (strictly speaking
[14, Theorem 6.36] only considers the case of f ∈ L2(Ω), but the proof for the more
general case of f ∈ H−1(Ω) is identical). Moreover, introducing the reduced space of
divergence-free functions

V := {v ∈H1
0 (Ω) : b(v, q) = 0 ∀q ∈ L2

0(Ω)}
= {v ∈H1

0 (Ω) : ∇ · v = 0},

the velocity solution u ∈ V of eq. (4.3) equivalently satisfies the reduced problem

νa(u,v) + c(u,u,v) = 〈f ,v〉 ∀v ∈ V . (4.7)
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Finally, a useful feature of the trilinear form c is the skew-symmetric property

c(w,v,v) = 0 ∀w ∈ V , ∀v ∈H1
0 (Ω), (4.8)

see [14, Lemma 6.33]. If we now take v = u ∈ V as a test function in eq. (4.7), we see by
skew-symmetry that the convective term drops out, i.e. c(u,u,u) = 0, and we thus obtain

νa(u,u) = 〈f ,u〉. (4.9)

Combining eq. (4.9) with the coercivity result in eq. (4.4) yields the a-priori velocity energy
estimate

‖u‖1 ≤ (Cpν)−1‖f‖−1 , (4.10)

which will prove to be useful later on in our error analysis (see Remark 4.4).

4.2 The divergence-free discontinuous Galerkin method

In this section we introduce the new divergence-free DG method for the steady Navier–
Stokes problem in eq. (4.3).

4.2.1 Mesh related notation

Let T = {K} be a conforming triangulation of Ω into simplices {K}. Let K ∈ T . We
set hK := diamK, and the mesh size is defined as h := maxK∈T hK . We let Fi and Fb
denote the interior and boundary faces of T respectively, and we set Fh = Fi ∪ Fb. Note
that we do not define the collection Fh of mesh faces using a quotient set, as we did in
Section 2.1.2. This is because we are assuming that Ω is a Lipschitz domain, and therefore
cracks are not present in the domain, so that the quotient set construction is unnecessary.

For F ∈ Fh we let hF := diamF . On an interior face F = ∂K1∩∂K2 we let nF denote
the unit normal pointing from K1 to K2, while on a boundary face F ⊂ ∂K ∩ ∂Ω we let
nF denote the outward unit normal to Ω. We shall also consider the jump operator J·K
and average operator {{·}}, which are defined in the same way as Section 2.1.2. As always,
the ambiguity in the ordering of K1, K2 in these definitions will be unimportant.

52



4.2.2 Discrete spaces and norms

The divergence-free DG method that we propose is based on the following lowest-order
finite element spaces on Ω:

Xh := {vh ∈H(div; Ω) : vh|K ∈ P1(K) ∀K ∈ T and vh · n = 0 on ∂Ω}, (4.11a)

Qh := {qh ∈ L2
0(Ω) : qh|K ∈ P0(K) ∀K ∈ T }, (4.11b)

where Pk(D) is the space of polynomials with degree at most k on D and Pk(D) :=
[Pk(D)]d. In other words, Xh is the lowest-order Brezzi–Douglas–Marini (BDM) space [6],
which consists of all piecewise linear vector-valued functions whose normal component is
continuous across interior faces and vanishes on boundary faces. Likewise, Qh is the space
of all piecewise constant functions with zero mean.

It will be convenient to introduce the extended velocity space

X(h) := Xh +H1
0 (Ω), (4.12)

and we define on this space the discrete H1-norm ‖·‖dg according to

‖v‖2
dg :=‖∇hv‖2 +|v|2J ∀v ∈X(h),

where ∇h is the usual broken gradient operator [14, Section 1.2.5], and |·|J is the following
jump semi-norm:

|v|2J :=
∑
F∈Fh

1

hF

∥∥JvK∥∥2

F
∀v ∈X(h).

4.2.3 Discrete bilinear and convective forms

To discretize the bilinear form a defined in eq. (4.2a), we use the symmetric interior penalty
method [1]. That is, we consider the discrete bilinear form ah : Xh ×Xh → R defined by

ah(uh,vh) :=

∫
Ω

∇huh : ∇hvh dx−
∑
F∈Fh

∫
F

({{∇huh}}nF ) · JvhK ds

−
∑
F∈Fh

∫
F

({{∇hvh}}nF ) · JuhK ds+
∑
F∈Fh

α

hF

∫
F

JuhK · JvhK ds,

(4.13)

where α > 0 is a penalty parameter. If α is taken sufficiently large we have the coercivity
result (see [14, eq. (6.17)])

Cpd‖vh‖2
dg ≤ ah(vh,vh) ∀vh ∈Xh, (4.14)
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with Cpd > 0 a constant depending on Ω and mesh shape-regularity only. Also, arguing
similarly to that of Lemma 2.3, it is not hard to show that ah is bounded on Xh:∣∣ah(vh,wh)

∣∣ ≤ Ca‖vh‖dg‖wh‖dg ∀vh,wh ∈Xh, (4.15)

with Ca > 0 a constant depending on Ω and mesh shape-regularity only.

Our discretization of the velocity-pressure coupling is based on the discrete bilinear
form bh : Xh ×Qh → R given by

bh(vh, qh) := −
∫

Ω

(∇ · vh)qh dx. (4.16)

We then have the inf-sup stability result (see e.g. [46])

sup
vh∈Xh

bh(vh, qh)

‖vh‖dg

≥ β∗‖qh‖ ∀qh ∈ Qh, (4.17)

with β∗ > 0 a constant depending on Ω and mesh shape-regularity only. In what follows
we will also need the discrete reduced space, which is defined as

Vh := {vh ∈Xh : bh(vh, qh) = 0 ∀qh ∈ Qh}
= {vh ∈Xh : ∇ · vh = 0}.

Finally, we define the discrete convective form ch : X(h) ×X(h) ×Xh → R using a
standard upwinding discretization [14, Section 6.2]:

ch(w,u,vh) :=

∫
Ω

(w · ∇hu) · vh dx+
1

2

∫
Ω

(∇ ·w)(u · vh) dx

+
∑
F∈Fi

∫
F

(1

2
|w · nF | JvhK− (w · nF ){{vh}}

)
· JuK ds.

(4.18)

Note that X(h) ⊂H(div; Ω) and therefore it makes sense to speak of ∇·w for w ∈X(h).
An elementwise integration by parts argument reveals that ch has the stability property

ch(w,vh,vh) =
1

2

∑
F∈Fi

∫
F

|w · nF | JvhK2 ds ≥ 0 ∀w ∈X(h), ∀vh ∈Xh, (4.19)

which should be viewed as a discrete analogue of the skew-symmetric property in eq. (4.8).
Lastly, we will require for the remainder of this chapter that the following assumption hold.
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Assumption 4.1 (Lipschitz continuity property of ch). We assume that ch satisfies the
following Lipschitz-continuity property. For all w1,w2,u ∈X(h) with ∇·w1 = ∇·w2 = 0
there holds∣∣ch(w1,u,vh)− ch(w2,u,vh)

∣∣ ≤ Ct‖w1 −w2‖dg‖u‖dg‖vh‖dg ∀vh ∈Xh, (4.20)

with Ct > 0 a constant depending on Ω and mesh shape-regularity only.

Assumption 4.1 always holds in the two-dimensional case (d = 2). This is proven in
[12, Proposition 4.2], and the authors of [12] also claim that the results in their paper
can be easily extended to the three-dimensional case. Note also that an inequality very
similar to eq. (4.20), but in the context of hybridized DG methods, was proven for the
three-dimensional case in [8, Proposition 3.4]. It is therefore expected that by following
the ideas in [12, Proposition 4.2] and [8, Proposition 3.4], one should be able to prove that
Assumption 4.1 always holds in three-dimensions. However, this has not been verified at
the time of writing this thesis, and therefore eq. (4.20) is stated as an assumption.

4.2.4 Enrichment operator

Let Eh : Xh → H1
0 (Ω) be any operator satisfying the statements in Lemma 2.1. For

example, Eh could be the enrichment operator constructed in Appendix A. Alternatively
Eh could be the enrichment operator from [28]. Recall that we used the operator Eh in
Chapter 2 as a theoretical tool for deriving a-priori error bounds. In contrast, in this
chapter we will actually use the operator Eh in the very definition of our numerical scheme
(see eq. (4.22a)).

Note that by Item iii with k = 0 and Item iv of Lemma 2.1, the operator Eh satisfies

‖Ehvh − vh‖ ≤ CLh‖vh‖dg , ‖Ehvh‖1 ≤ CE‖vh‖dg , (4.21)

for all vh ∈ Xh, with CL, CE > 0 constants depending on Ω and mesh shape-regularity
only. We will make use of the constants CL and CE in the following analysis.

4.2.5 The proposed discrete method

We are now ready to state the proposed divergence-free DG method for the problem in
eq. (4.3). The proposed method reads: Find (uh, ph) ∈Xh ×Qh such that

νah(uh,vh) + ch(uh,uh,vh) + bh(vh, ph) = 〈f ,Ehvh〉 ∀vh ∈Xh, (4.22a)

bh(uh, qh) = 0 ∀qh ∈ Qh. (4.22b)
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Several remarks about this method are in order.

Remark 4.1 (Duality pairing). Recall that we are assuming f ∈ H−1(Ω). The duality
pairing 〈f ,Ehvh〉 in eq. (4.22a) is therefore well-defined since Ehvh ∈H1

0 (Ω). We empha-
size that, in contrast, the expression 〈f ,vh〉 does not make any sense because vh /∈H1

0 (Ω)
in general. This is one way of motivating why the operator Eh is present in eq. (4.22a).
We refer the interested reader to [3, Section 6], [26, Section 5.2] and [28, 29, 33, 34, 45]
for examples of other finite element methods that use an operator similar to Eh in the
discretization of the source term. It is possible to avoid the use of Eh in eq. (4.22a), but
in order to do so we would need some additional regularity assumptions on f . If, for ex-
ample, we assumed that f ∈ L2(Ω), then we could use

∫
Ω
f · vh dx in the right-hand side

of eq. (4.22a).

Remark 4.2 (Divergence-free). The condition in eq. (4.22b) is equivalent to requiring that
∇·uh = 0. Therefore, any discrete velocity solution to eq. (4.22) is indeed divergence-free.

Remark 4.3 (Implementation). In order to implement the method in eq. (4.22) on a com-
puter, it is necessary to be able to compute 〈f ,Ehφh〉 where φh belongs to some com-
putational finite element basis for Xh. Unfortunately, because all known constructions of
Eh are very complicated, this is a highly non-trivial task. Consequently, at the time of
writing this thesis, the method in eq. (4.22) remains unimplemented. However, in [28] the
authors have successfully implemented a computer code that is able to compute quantities
of the form 〈f ,Ehφh〉, with the computation of Ehφh requiring only O(1) operations. This
suggests that it should be realistically possible (albeit difficult) to implement the method
in eq. (4.22) on a computer. This is a task that we leave to future work.

4.3 Discrete well-posedness

Recall that we are able to guarantee the existence and uniqueness of a solution to the con-
tinuous steady Navier–Stokes problem in eq. (4.3) provided that the small data condition
in eq. (4.6) holds. In a similar vein, the following Theorem ensures that the discrete prob-
lem in eq. (4.22) admits a unique solution, provided that a discrete small data condition
holds. The argument is based on Banach’s fixed point theorem, and is similar to previous
arguments appearing in the literature (see e.g. [12, Theorem 4.7] and [14, Theorem 6.43]).

Theorem 4.1 (Discrete well-posedness). Under the discrete small data condition

‖f‖−1

ν2
<

C2
pd

CtCE
, (4.23)
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we have that eq. (4.22) admits a unique solution (uh, ph) ∈ Xh × Qh. Moreover, we have
the a-priori stability estimates

‖uh‖dg ≤
CE‖f‖−1

νCpd
, β∗‖ph‖ ≤ νCa‖uh‖dg + Ct‖uh‖2

dg + CE‖f‖−1 . (4.24)

Here we recall that the constants Cpd, Ca, β∗, Ct and CE are defined in eq. (4.14), eq. (4.15),
eq. (4.17), eq. (4.20) and eq. (4.21) respectively.

Proof. We first prove the existence and uniqueness of a velocity solution to the following
reduced problem: Find uh ∈ Vh such that

νah(uh,vh) + ch(uh,uh,vh) = 〈f ,Ehvh〉 ∀vh ∈ Vh. (4.25)

We shall view the spaces Xh and Vh as being endowed with the norm‖·‖dg. Let V ′h denote
the dual space of Vh. For fixed wh ∈ Vh, let S(wh) : Vh → V ′h be the linear operator

〈S(wh)uh,vh〉 := νah(uh,vh) + ch(wh,uh,vh).

Using eq. (4.14) and eq. (4.19), we observe that S(wh) enjoys the coercivity property

〈S(wh)vh,vh〉 ≥ νCpd‖vh‖2
dg ∀vh ∈ Vh.

We can therefore apply the Lax–Milgram lemma (see e.g. [14, Lemma 1.4]) to deduce that
S(wh) is an isomorphism from Vh onto V ′h, whose inverse satisfies the bound∥∥S(wh)

−1
∥∥
op
≤ (νCpd)

−1, (4.26)

where ‖·‖op denotes the operator norm. Moreover, letting F ∈ V ′h be given according
to 〈F ,vh〉 := 〈f ,Ehvh〉, we see that eq. (4.25) is equivalent to the operator equation
S(uh)uh = F , which in turn is equivalent to uh = S(uh)

−1F . Therefore, to prove that
eq. (4.25) admits exactly one solution, we just need to show that the map vh 7→ S(vh)

−1F
admits exactly one fixed point. By Banach’s fixed point theorem, it suffices to show that
the map vh 7→ S(vh)

−1F is a contraction. Let us now show this. For vh,wh ∈ Vh we note
the algebraic identity

S(vh)
−1 − S(wh)

−1 = S(vh)
−1
[
S(wh)− S(vh)

]
S(wh)

−1.

We can therefore estimate∥∥S(vh)
−1F − S(wh)

−1F
∥∥

dg
≤
∥∥S(vh)

−1
∥∥
op

∥∥S(wh)− S(vh)
∥∥
op

∥∥S(wh)
−1
∥∥
op
‖F ‖V ′h .
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Using eq. (4.26) and the bound ‖F ‖V ′h ≤ CE‖f‖−1, we then obtain

∥∥S(vh)
−1F − S(wh)

−1F
∥∥

dg
≤
CE‖f‖−1

(νCpd)2

∥∥S(wh)− S(vh)
∥∥
op
.

But using the Lipschitz continuity property in eq. (4.20), we can further estimate

∥∥S(wh)− S(vh)
∥∥
op

= sup
rh∈Vh

∥∥∥[S(wh)− S(vh)
]
rh

∥∥∥
V ′h

‖rh‖dg

= sup
rh∈Vh

sup
ṽh∈Vh

∣∣∣〈[S(wh)− S(vh)
]
rh, ṽh〉

∣∣∣
‖rh‖dg‖ṽh‖dg

= sup
rh∈Vh

sup
ṽh∈Vh

∣∣ch(wh, rh, ṽh)− ch(vh, rh, ṽh)
∣∣

‖rh‖dg‖ṽh‖dg

≤ Ct‖wh − vh‖dg .

Combining the above inequalities we see that∥∥S(vh)
−1F − S(wh)

−1F
∥∥

dg
≤
CtCE‖f‖−1

(νCpd)2
‖wh − vh‖dg ,

which shows that vh 7→ S(vh)
−1F is a contraction under the small data condition

CtCE‖f‖−1

(νCpd)2
< 1,

which is equivalent to eq. (4.23). In this case, we deduce that eq. (4.25) admits a unique
solution uh ∈ Vh. Moreover, taking uh as a test function in eq. (4.25), one readily obtains
(with the help of eq. (4.14) and eq. (4.19)) the desired a-priori stability estimate

‖uh‖dg ≤
CE‖f‖−1

νCpd
.

Lastly, to recover the pressure ph, consider the linear functional l : Xh → R given by

l(vh) := 〈f ,Ehvh〉 − νah(uh,vh)− ch(uh,uh,vh).

By eq. (4.25) we have l(vh) = 0 for all vh ∈ Vh. Consequently, inf-sup stability of bh yields
(see e.g. [40, Lemma 6.4]) the existence of a unique pressure function ph ∈ Qh such that

l(vh) = bh(vh, ph) ∀vh ∈Xh.

58



It can now be deduced that (uh, ph) solves eq. (4.22) uniquely. Finally, to obtain the
desired stability bound for ‖ph‖ we can again appeal to inf-sup stability:

β∗‖ph‖ ≤ sup
vh∈Xh

bh(vh, ph)

‖vh‖dg

= sup
vh∈Xh

l(vh)

‖vh‖dg

≤ νCa‖uh‖dg + Ct‖uh‖2
dg + CE‖f‖−1 .

The proof is finished.

4.4 Error analysis of the method

Having studied well-posedness of the discrete method in eq. (4.22), we now turn to the
derivation of error estimates.

4.4.1 Extension of the bilinear form ah

Recall that the bilinear form ah in eq. (4.13) is defined only on the finite element space Xh

(see eq. (4.11a)). The first step in our analysis is to extend ah to the larger space X(h) (see
eq. (4.12)). The main difficulty is that for v ∈ X(h) we have only ∇hv ∈ [L2(Ω)]d×d and
therefore ∇hv does not admit a well-defined trace on the mesh faces. We will deal with this
problem by mimicking the ideas used in Section 2.2.1. Let πh : [L2(Ω)]d×d → [P0(Th)]d×d
denote the L2-orthogonal projector onto [P0(Th)]d×d, where we are introducing the space
of piecewise constant matrices

[P0(Th)]d×d := {Gh ∈ [L2(Ω)]d×d : Gh|K ∈ [P0(K)]d×d ∀K ∈ T }.

For the sake of clarity, let us note that for any G ∈ [L2(Ω)]d×d and K ∈ T we have

(πhG)|K =
1

|K|

∫
K

G dx,
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i.e. (πhG)|K is simply the component-wise mean of G on K. For any v,w ∈X(h) we now
define

ah(v,w) :=

∫
Ω

∇hv : ∇hw dx−
∑
F∈Fh

∫
F

({{πh(∇hv)}}nF ) · JwK ds

−
∑
F∈Fh

∫
F

({{πh(∇hw)}}nF ) · JvK ds+
∑
F∈Fh

α

hF

∫
F

JvK · JwK ds.

(4.27)

We will use this bilinear form in the following analysis. Observe that eq. (4.27) reduces
to the previous definition of ah (see eq. (4.13)) for v,w ∈ Xh. Moreover, the following
boundedness result holds on the extended space X(h).

Lemma 4.1 (Boundedness of ah). For all v,w ∈X(h) there holds∣∣ah(v,w)
∣∣ ≤ Cã‖v‖dg‖w‖dg ,

with Cã > 0 a constant depending on Ω and mesh shape-regularity only.

Proof. We omit the proof as it is entirely analogous to that of Lemma 2.3.

4.4.2 A data-oscillation-type quantity

In what follows it will be convenient to introduce the data-oscillation-type quantity

R(u) := sup
vh∈Vh

1

‖vh‖dg

∫
Ω

(u · ∇u) · (Ehvh − vh) dx, (4.28)

where u ∈ H1
0 (Ω) is the velocity solution of eq. (4.3). Note that R(u) ∈ R is simply the

dual norm of the linear functional

Vh 3 vh 7→
{∫

Ω

(u · ∇u) · (Ehvh − vh) dx
}
∈ R.

Since Vh is finite dimensional, we therefore have that R(u) <∞.

4.4.3 The main error estimate

Our main error estimate for the method in eq. (4.22) is the following.
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Theorem 4.2 (Velocity error estimate). Suppose that the small data conditions in eq. (4.6)
and eq. (4.23) hold. Let u and uh be the unique velocity solutions of eq. (4.3) and eq. (4.22)
respectively. Assume further the smallness condition on the solution norms,

2Ct
νCpd

(
‖u‖1 +‖uh‖dg

)
< δ (4.29)

where δ ∈ (0, 1) is any fixed constant. Here we recall that the constants Cpd and Ct are
defined in eq. (4.14) and eq. (4.20) respectively. Then we have the error estimate

‖u− uh‖dg ≤ C1 inf
vh∈Vh

‖u− vh‖dg +
C2

ν
R(u), (4.30)

where the constants C1 and C2 depend only on Ω, mesh shape-regularity and δ.

Proof. Let vh ∈ Vh be arbitrary, and set wh := uh−vh ∈ Vh. Using the discrete coercivity
result in eq. (4.14) and the discrete problem in eq. (4.22), we have

νCpd‖wh‖2
dg ≤ νah(wh,wh)

= νah(uh,wh)− νah(vh,wh)

= 〈f ,Ehwh〉 − ch(uh,uh,wh)− νah(vh,wh).

(4.31)

However, note that Ehwh ∈ V since ∇·Ehwh = ∇·wh = 0 (recall Item ii of Lemma 2.1).
Taking Ehwh as a test function in the reduced problem eq. (4.7), we then obtain

νa(u,Ehwh) + c(u,u,Ehwh) = 〈f ,Ehwh〉. (4.32)

Combination of eq. (4.31) and eq. (4.32) yields two terms I1 and I2 that we shall bound
separately:

νCpd‖wh‖2
dg ≤ ν

[
a(u,Ehwh)− ah(vh,wh)

]︸ ︷︷ ︸
I1

+
[
c(u,u,Ehwh)− ch(uh,uh,wh)

]︸ ︷︷ ︸
I2

. (4.33)

We first bound I1. Note that a(u,Ehwh) = ah(u,Ehwh) since JuK|F = JEhwhK|F = 0
for all F ∈ Fh. Letting zh := (Ehwh −wh), we can therefore write

I1 = ah(u,Ehwh)− ah(vh,wh) = ah(u− vh,Ehwh)︸ ︷︷ ︸
I1,1

+ ah(vh, zh)︸ ︷︷ ︸
I1,2

.
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By Lemma 4.1 and eq. (4.21) we can bound I1,1 according to∣∣I1,1

∣∣ ≤ CãCE‖u− vh‖dg‖wh‖dg . (4.34)

On the other hand, using the definition eq. (4.27) of ah and the fact that πh(∇hvh) = ∇hvh,
we can decompose I1,2 as

I1,2 =

∫
Ω

∇hvh : ∇hzh dx−
∑
F∈Fh

∫
F

({{∇hvh}}nF ) · JzhK ds︸ ︷︷ ︸
I1,2,1

−
∑
F∈Fh

∫
F

({{πh(∇hzh)}}nF ) · JvhK ds+
∑
F∈Fh

α

hF

∫
F

JvhK · JzhK ds︸ ︷︷ ︸
I1,2,2

.

We claim that I1,2,1 = 0. Indeed, integrating by parts elementwise, and using the fact that
(∇2vh)|K = 0 as vh is piecewise linear, one can verify that∫

Ω

∇hvh : ∇hzh dx =
∑
F∈Fi

∫
F

({{∇hvh}}nF ) · JzhK + (J∇hvhKnF ) · {{zh}} ds

+
∑
F∈Fb

∫
F

({{∇hvh}}nF ) · JzhK ds.

(4.35)

Plugging eq. (4.35) into the definition of I1,2,1, and using Item i of Lemma 2.1 along with
the fact that (J∇hvhKnF ) is a constant on any F ∈ Fi, we obtain

I1,2,1 =
∑
F∈Fi

∫
F

(J∇hvhKnF ) · {{zh}} ds

=
∑
F∈Fi

∫
F

(J∇hvhKnF ) · (Ehwh − {{wh}}) ds

= 0.

(4.36)

Next we consider I1,2,2. To begin, note that the same arguments used to prove Lemma 4.1
straightforwardly show that

∣∣I1,2,2

∣∣ ≤ C̃|vh|J‖zh‖dg with C̃ a constant depending on Ω and
mesh shape-regularity only. Note also that |vh|J = |u− vh|J ≤ ‖u− vh‖dg. Moreover,
by the triangle inequality and the second inequality in eq. (4.21) we have that ‖zh‖dg ≤
(1 + CE)‖wh‖dg. Putting all of this together we get the bound∣∣I1,2,2

∣∣ ≤ C̃(1 + CE)‖u− vh‖dg‖wh‖dg . (4.37)
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Combining the results in eq. (4.34), eq. (4.36) and eq. (4.37) we obtain

|I1| ≤ Ĉ‖u− vh‖dg‖wh‖dg , (4.38)

with Ĉ a constant depending on Ω and mesh shape-regularity only.

Next we bound I2. Using the definition of c (recall eq. (4.2c)) we can write

I2 =

∫
Ω

(u · ∇u) ·Ehwh dx− ch(uh,uh,wh). (4.39)

Since ∇ · u = 0 and JuK|F = 0 for all F ∈ Fh, we notice from the definition of ch (recall
eq. (4.18)) that ∫

Ω

(u · ∇u) ·wh dx = ch(u,u,wh). (4.40)

Combining eq. (4.39) and eq. (4.40), and using the definition of R(u) (recall eq. (4.28)),
we obtain

I2 =

∫
Ω

(u · ∇u) · (Ehwh −wh) dx+
[
ch(u,u,wh)− ch(uh,uh,wh)

]
≤ R(u)‖wh‖dg +

[
ch(u,u,wh)− ch(uh,uh,wh)

]
.

(4.41)

Moreover, the triangle inequality and Lipschitz continuity of ch (recall eq. (4.20)) results
in ∣∣ch(u,u,wh)− ch(uh,uh,wh)

∣∣ ≤ ∣∣ch(u,u,wh)− ch(uh,u,wh)
∣∣

+
∣∣ch(uh,u− uh,wh)

∣∣
≤ 2Ct

(
‖u‖dg +‖uh‖dg

)
‖u− uh‖dg‖wh‖dg

≤ 2Ct
(
‖u‖1 +‖uh‖dg

)
‖u− uh‖dg‖wh‖dg .

(4.42)

Combining the bounds in eq. (4.41) and eq. (4.42) we obtain

I2 ≤ R(u)‖wh‖dg + 2Ct
(
‖u‖1 +‖uh‖dg

)
‖u− uh‖dg‖wh‖dg . (4.43)

Having obtained suitable bounds for I1 and I2, we are now almost finished. Plugging
the bounds eq. (4.38) and eq. (4.43) in to eq. (4.33), we get

νCpd‖wh‖2
dg ≤ νĈ‖u− vh‖dg‖wh‖dg +R(u)‖wh‖dg

+ 2Ct
(
‖u‖1 +‖uh‖dg

)
‖u− uh‖dg‖wh‖dg .

(4.44)
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Dividing eq. (4.44) by νCpd‖wh‖dg yields

‖wh‖dg ≤
Ĉ

Cpd
‖u− vh‖dg +

1

νCpd
R(u) +

2Ct
νCpd

(
‖u‖1 +‖uh‖dg

)
‖u− uh‖dg . (4.45)

Using the triangle inequality, eq. (4.45), and the smallness condition eq. (4.29), we have

‖u− uh‖dg ≤ ‖u− vh‖dg +‖wh‖dg

≤ (1 +
Ĉ

Cpd
)‖u− vh‖dg +

1

νCpd
R(u)

+
2Ct
νCpd

(
‖u‖1 +‖uh‖dg

)
‖u− uh‖dg

≤ (1 +
Ĉ

Cpd
)‖u− vh‖dg +

1

νCpd
R(u) + δ‖u− uh‖dg .

(4.46)

Since δ ∈ (0, 1) we can rearrange eq. (4.46) to get

‖u− uh‖dg ≤
1

1− δ
(1 +

Ĉ

Cpd
)‖u− vh‖dg +

1

1− δ
1

νCpd
R(u). (4.47)

The desired result in eq. (4.30) now follows from eq. (4.47) as vh ∈ Vh is arbitrary.

Remark 4.4 (Smallness condition on the solution norms). Owing to the stability estimates
for‖u‖1 and‖uh‖dg in eq. (4.10) and eq. (4.24), we see that the smallness condition on the
solution norms in eq. (4.29) is guaranteed to hold whenever we have

‖f‖−1

ν2
· 2Ct
Cpd

[ 1

Cp
+
CE
Cpd

]
< δ.

In other words, eq. (4.29) will always hold provided that ν−2‖f‖−1 is sufficiently small. In
this sense eq. (4.29) is similar to the small data conditions in eq. (4.6) and eq. (4.23).

Remark 4.5 (Pressure-robustness). The error estimate in eq. (4.30) is pressure-robust in
the sense that it does not contain any terms that involve the pressure (cf. for example
the error estimate in [12, Theorem 4.8], which is not pressure-robust). The estimate in
eq. (4.30) does however depend on the viscosity through a factor of ν−1. While this might
seem problematic, it is important to keep in mind that all of the theory in this chapter is
based on smallness assumptions of the form ν−2‖f‖−1 ≤ C. In other words, for any of the
theory in this chapter to be applicable, the viscosity cannot be too small. Because of this,
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the presence of ν−1 in eq. (4.30) is not particularly concerning. Also, it seems unlikely that
the theory in this chapter could possibly be developed in a way that circumvents the need
for assumptions of the form ν−2‖f‖−1 ≤ C, since for example the continuous problem in
eq. (4.3) need not have a unique solution if the viscosity is sufficiently small.

The error estimate in eq. (4.30) is only useful if we understand the behavior of R(u).
In particular, we would like to know whether R(u) goes to zero (and at what rate) as
the mesh size h goes to zero. At the time of writing this thesis we have only a partial
answer to this question, which goes as follows. Suppose we have the additional regularity
u ∈ L∞(Ω). We can then use the Cauchy–Schwarz inequality and the first inequality in
eq. (4.21) to estimate, for any vh ∈ Vh,∫

Ω

(u·∇u)·(Ehvh−vh) dx ≤‖u‖L∞‖∇u‖‖Ehvh − vh‖ ≤‖u‖L∞‖∇u‖CLh‖vh‖dg . (4.48)

By the definition of R(u) (recall eq. (4.28)) we consequently obtain that

R(u) ≤ CLh‖u‖L∞‖∇u‖ . (4.49)

When can we actually say that u ∈ L∞(Ω)? Here is one possibility. When d = 2 we have
the continuous Sobolev embedding (see e.g. [18, Theorem 2.31])

H1+s(Ω) ↪→ L∞(Ω)

for any real number s ∈ (0, 1]. For d = 3 we have only (see e.g. [18, Theorem 2.31])

H1+s(Ω) ↪→ L∞(Ω)

for s ∈ (1/2, 1]. This discussion, in combination with Theorem 4.2, yields the following.

Corollary 4.1 (Convergence rate). Let the hypotheses of Theorem 4.2 hold. Suppose also
that u ∈H1+s(Ω), where s ∈ (0, 1] when d = 2, and s ∈ (1/2, 1] when d = 3. Then

‖u− uh‖dg ≤ C̃1h
s‖u‖1+s +

C̃2

ν
h‖u‖2

1+s ,

where the constants C̃1 and C̃2 depend only on Ω, mesh shape-regularity, δ and s.

Proof. We estimate the two terms on the right-hand side of eq. (4.30). We use C to denote a
generic constant that depends only on Ω, mesh shape-regularity and s. By inf-sup stability
of bh we have the best-approximation result (see e.g. [7, Section 12.5])

inf
vh∈Vh

‖u− vh‖dg ≤ C inf
vh∈Xh

‖u− vh‖dg .
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Also, by standard approximation properties of the BDM space (see e.g. [18, Chapter 22]),
or alternatively using Lemma 2.2, we have

inf
vh∈Xh

‖u− vh‖dg ≤ Chs‖u‖1+s .

Moreover, by eq. (4.49) and the continuous embedding H1+s(Ω) ↪→ L∞(Ω), we have

R(u) ≤ CLh‖u‖L∞‖∇u‖ ≤ Ch‖u‖2
1+s .

The desired conclusion follows from eq. (4.30) and these bounds.

Corollary 4.1 predicts optimal rates of convergence in the discrete H1-norm for the
method in eq. (4.22). When d = 2 Corollary 4.1 requires only that u ∈H1+s(Ω) for some
s > 0. However, when d = 3 the applicability of Corollary 4.1 is limited to the higher
regularity case of u ∈H1+s(Ω) for some s > 1/2. Addressing the case of s ∈ (0, 1/2] when
d = 3 is a topic for future work.

Remark 4.6 (Future work). How might we be able to generalize Corollary 4.1 to the case of
s ∈ (0, 1/2] when d = 3? Here is one possible approach. We can modify the argument used
in eq. (4.48), by instead using Hölder’s inequality and the Sobolev embedding H1(Ω) ↪→
L4(Ω) (which is valid in three-dimensions), to estimate∫

Ω

(u · ∇u) · (Ehvh − vh) dx ≤‖u‖L4(Ω)‖∇u‖‖Ehvh − vh‖L4(Ω)

≤ C‖u‖2
1‖Ehvh − vh‖L4(Ω) .

By the definition of R(u) (recall eq. (4.28)) we consequently obtain that

R(u) ≤ C‖u‖2
1 sup
vh∈Vh

‖Ehvh − vh‖L4(Ω)

‖vh‖dg

.

If we could then establish an inequality of the form

‖Ehvh − vh‖L4(Ω) ≤ Chr‖vh‖dg (4.50)

for some r > 0, the same arguments used in Corollary 4.1 would then yield that

‖u− uh‖dg ≤ C̃1h
s‖u‖1+s +

C̃2

ν
hr‖u‖2

1 ,

for any s ∈ (0, 1] when d = 3. We see therefore that it suffices to investigate whether
eq. (4.50) holds. Note also that eq. (4.50) is very similar to the first inequality in eq. (4.21),
and it therefore seems plausible that eq. (4.50) could hold for some suitable choice of r.

66



Chapter 5

Conclusions and future work

In Chapter 2 we analyzed two lowest-order HDG methods for the Stokes problem, while
requiring only H1+s-regularity of the exact velocity solution for any s ∈ [0, 1]. A salient
feature of the analysis is that it allows for the case of a domain with cracks. The key
ingredient in the analysis is a suitable upper bound on the consistency error of the HDG
methods, which we have derived by means of a divergence-preserving enrichment operator.
We give an explicit construction of this enrichment operator in Appendix A, and here
we rely crucially on a technical inequality that is established in Chapter 3. The resultant
error estimates in Chapter 2 for the velocity are pressure-robust and optimal in the discrete
energy norm. We also obtained an error bound for the pressure that is dependent on the
velocity only. Our theoretical findings are supported by various numerical examples.

In Chapter 4 we extended the ideas in Chapter 2 to the setting of the steady Navier–
Stokes problem. We proposed a new divergence-free DG method for the steady Navier–
Stokes problem and showed that the resultant discretized problem is well-posed under
a smallness condition on the problem data. We also presented an error analysis of the
method, where we obtained error estimates for the velocity that are pressure-robust and
optimal in the discrete energy norm. The presented analysis requires only H1+s-regularity
of the exact velocity solution for any s ∈ (0, 1] in the two-dimensional case. However, an
interesting consequence of the nonlinear convective term is that in three-dimensions the
presented analysis only holds for s ∈ (1/2, 1].

The research presented in Chapter 4 is still in a preliminary stage, and there is still
much more that can be done in this area. To begin with, the method in eq. (4.22) has
not yet even been implemented. As discussed in Remark 4.3, it is likely that the method
could be implemented in practice, but it may be very difficult to do so because of the
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complicated definition of Eh. An interesting question is whether the method in eq. (4.22)
could somehow be redefined in such a way that it remains valid for low-regularity source
terms f ∈ H−1(Ω), and retains its other desirable properties (e.g. pressure-robustness,
convergence behavior), but does not require Eh to be used explicitly in any computations.
Avoiding Eh altogether in this sort of way would make implementation a much easier task.
Another question is whether an HDG or EDG–HDG analogue of the method in eq. (4.22)
could be proposed and analyzed. An EDG–HDG analogue would be particularly appealing
as upon static condensation it would require fewer global unknowns in the discrete problem.

From a theoretical analysis standpoint, there are also still many tasks to carry out
regarding the DG method introduced in Chapter 4. The most obvious task is to address
whether the convergence result in Corollary 4.1 can be extended to s ∈ (0, 1/2] in three-
dimensions, and we discuss a possible route for this in Remark 4.6. Also, analogously to the
discussion in Remark 2.2, another task is to investigate whether we have ‖u− uh‖dg → 0

as h → 0 in the s = 0 case where only H1-regularity of the exact velocity solution is
assumed. A final question to ask is whether error estimates in the L2-norm for the velocity
and the pressure can be derived, perhaps in a similar fashion to what we have for the
Stokes problem in Theorem 2.2 and Theorem 2.3.
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Appendix A

Enrichment operator

We prove here Lemma 2.1 for the three-dimensional case (d = 3). We shall use the angled
bracket notation 〈·, ·〉D; this is simply used to denote the L2-inner-product on a domain D
with dimension strictly less than d = 3.

For K ∈ T we recall from Section 2.1.2 that FK,h ⊂ Fh denotes the four faces of K.
Also, let EK denote the six edges of K and VK the four vertices of K. The collection
of all mesh edges is written as Eh := ∪K∈T EK = Eb ∪ Ei where Eb denotes the boundary
edges and Ei the interior edges. Likewise, the collection of all mesh vertices is written
as Vh := ∪K∈T VK = Vb ∪ Vi where Vb denotes the boundary vertices and Vi the interior
vertices. For an interior edge e ∈ Ei, we define the average of a function v on e as

{{v}}e :=
1

|Te|
∑
K∈Te

vK |e,

where Te := {K ∈ T : e ∈ EK} denotes the collection of elements having e as an edge and
vK := v|K . On boundary edges e ∈ Eb, it will be convenient to define {{v}}e := 0. Similarly,
for an interior vertex a ∈ Vi, the average of a function v on a is defined as

{{v}}a :=
1

|Ta|
∑
K∈Ta

vK(a),

where Ta := {K ∈ T : a ∈ VK} denotes the collection of elements having a as a vertex. On
boundary vertices a ∈ Vb it will be convenient to define {{v}}a := 0. Finally, throughout
this proof we continue to use the definition eqs. (2.6) to (2.7) of the average operator on
faces.

75



For K ∈ T , let V (K) denote the local three-dimensional Guzmán–Neilan finite element
space defined by [25, eq. (3.9)]. This space has the properties [25, Lemma 3.4]

[P1(K)]3 ⊂ V (K), V (K) ⊂ [W 1,∞(K) ∩ C0(K̄)]3,

∇ · V (K) ⊂ P0(K), V (K)|∂K ⊂ [P3(∂K)]3.

Moreover, a set of unisolvent degrees of freedom for v ∈ V (K) is given by [25, Theorem 3.5]

v(a) ∀a ∈ VK , (A.1a)

〈v, w〉e ∀e ∈ EK , w ∈ [P1(e)]3, (A.1b)

〈v, w〉F ∀F ∈ FK,h, w ∈ [P0(F )]3. (A.1c)

For K ∈ T we now define the local operator EK : XBDM
h → V (K) as follows. For

vh ∈ XBDM
h we require that

(EKvh)(a) = {{vh}}a ∀a ∈ VK , (A.2a)

〈EKvh − {{vh}}e, w〉e = 0 ∀e ∈ EK , w ∈ [P1(e)]3, (A.2b)

〈EKvh − {{vh}}, w〉F = 0 ∀F ∈ FK,h ∩ Fi, w ∈ [P0(F )]3, (A.2c)

〈EKvh, w〉F = 0 ∀F ∈ FK,h ∩ Fb, w ∈ [P0(F )]3. (A.2d)

The degrees of freedom eq. (A.1) imply that the operator EK is well-defined. We then
define Eh : XBDM

h → H1
0 (Ω)d by (Ehvh)|K = EKvh for all vh ∈ XBDM

h . Utilizing the
inclusion V (K)|∂K ⊂ [P3(∂K)]3 one can show that JEhvhK|F = 0 for all F ∈ Fh, and thus
Ehvh ∈ H1

0 (Ω)d holds. It remains to verify that Eh satisfies Items i to iv from Lemma 2.1.

That Item i holds is an immediate consequence of eq. (A.2c). To prove Item ii, consider
the space P0,h := {qh ∈ L2(Ω) : qh|K ∈ P0(K) ∀K ∈ T } of piecewise constant functions.
Let vh ∈ XBDM

h and qh ∈ P0,h. Then element-wise integration by parts and eq. (A.2c)
shows that ∫

Ω

(∇ · Ehvh)qh dx =
∑
F∈Fi

∫
F

(Ehvh · nF )JqhK ds

=
∑
F∈Fi

∫
F

({{vh}} · nF )JqhK ds

=

∫
Ω

(∇ · vh)qh dx,

(A.3)

76



where the last equality in eq. (A.3) follows from the fact that JvhK|F ·nF = 0 for all F ∈ Fh.
Item ii now follows from eq. (A.3) as ∇ · Ehvh,∇ · vh ∈ P0,h and qh ∈ P0,h is arbitrary.

To prove Item iii, fix k ∈ {0, 1} and vh ∈ XBDM
h . Consider K ∈ T and set vK := vh|K

and zK := (EKvh)− vK . Since vK ∈ [P1(K)]3 ⊂ V (K), there holds zK ∈ V (K). A scaling
argument (see Chapter 3 – in particular we are making use of the inequality eq. (3.4))
utilizing the degrees of freedom eq. (A.1) then shows that

h
2(k−1)
K |zK |2k,K .

∑
a∈VK

hK
∣∣zK(a)

∣∣2 +
∑
e∈EK

sup
κh∈[P1(e)]3

‖κh‖e=1

∣∣〈zK , κh〉e∣∣2
+
∑

F∈FK,h

1

hK
sup

κh∈[P0(F )]3

‖κh‖F =1

∣∣〈zK , κh〉F ∣∣2
≤
∑
a∈VK

hK
∣∣{{vh}}a − vK(a)

∣∣2
︸ ︷︷ ︸

I1

+
∑
e∈EK

∥∥{{vh}}e − vK∥∥2

e︸ ︷︷ ︸
I2

+
∑

F∈FK,h

F∈Fi

1

hK

∥∥{{vh}} − vK∥∥2

F
+
∑

F∈FK,h

F∈Fb

1

hK
‖vK‖2

F

︸ ︷︷ ︸
I3

.

(A.4)

Because ∂Ω has codimension one, every boundary vertex of the mesh is contained in
some boundary face of the mesh, and likewise for boundary edges. As a result, the same
arguments used in [34, Lemma 4.7] show that

I1 .
∑
a∈VK

∑
F∈Fa

1

hF

∥∥JvhK∥∥2

F
, (A.5)

I2 .
∑
e∈EK

∑
F∈Fe

1

hF

∥∥JvhK∥∥2

F
, (A.6)

where Fa ⊂ Fh denotes the collection of all mesh faces having a as a vertex, and Fe ⊂
Fh denotes the collection of all mesh faces having e as an edge. We note that, due to
midpoint continuity of Crouzeix–Raviart elements, there is no term analogous to I3 in [34,
Lemma 4.7]. Fortunately, it is easy to see that we can bound I3 by means of

I3 .
∑

F∈FK,h

1

hF

∥∥JvhK∥∥2

F
. (A.7)
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Using the bounds eqs. (A.5) to (A.7) in eq. (A.4), and summing over K ∈ T , one obtains∑
K∈T

h
2(k−1)
K |Ehvh − vh|2k,K .

∑
F∈Fh

1

hF

∥∥JvhK∥∥2

F
= |vh|2J ,

so that Item iii holds. Lastly, Item iv follows from Item iii with k = 1 and the triangle
inequality:

‖∇Ehvh‖ ≤
(∑
K∈T
|vh − Ehvh|21,K

)1/2

+
(∑
K∈T
|vh|21,K

)1/2

. |vh|J +
(∑
K∈T
|vh|21,K

)1/2

.‖vh‖dg .

This completes the proof of Lemma 2.1.
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