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Abstract

In recent research, the self-supervised video representation learning methods have achieved
improvement by exploring video’s temporal properties, such as playing speeds and temporal
order. These works inspire us to exploit a new artificial supervision signal for self-supervised
representation learning: the change of video playing speed. Specifically, we formulate two
novel speediness-related pretext tasks, i.e. speediness change classification and speediness
change localization, that jointly supervise a shared backbone for video representation learn-
ing. This self-supervision approach solves the tasks altogether and encourages the backbone
network to learn local and long-ranged motion and context representations. It outperforms
prior arts on multiple downstream tasks, such as action recognition, video retrieval, and
action localization.
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Chapter 1

Introduction

With the advent of convolutional neural networks and other machine learning technologies
[44, 63, 32, 68, 87], the field of computer vision has achieved rapid development in re-
cent years. Traditional problems involving still images, for example, semantic segmentation
[70, 50, 77], object recognition [73, 15, 33] can be solved by end-to-end machine learning
methods with good performance. As a result, engineers have created countless applications
[64, 23, 36, 83, 92] that bring convenience to our daily lives by combining neural network al-
gorithms with modern hardware. For example, face recognition technology replaces manual
password input on our cellphone or realizes automatic driving by combining object recogni-
tion and depth detection technology. Thanks to the modern fast GPU computing [57] and
new network architectures such as separable convolutional layers and knowledge distillation
[35, 34, 28, 27] , the inference processes are significantly boosted to real-time and satisfy the
engineering requirements.

There are many applications in computer vision field that require as an input a sequence
of still images, that is videos, as opposed to a single image. For example, if our task is to
identify an object’s action, then the information in the temporal dimension is beneficial. For
example, yoga is a popular physical exercise with slow movement, and it will be easier to
distinguish it from other actions if the network learns the pace. Learning of pace requires
the input to be a video, as opposed to a single image.

Researchers are working towards neural networks can solve complex video-based tasks such
as human action recognition [65, 41]. Human action recognition is essential for multiple ap-
plications including human-computer interaction [14], patients behaviour monitoring [21, 25],
automated surveillance [7, 74], video summarization and labelling [5, 90, 6, 16]. In auto-
mated surveillance, for example, the monitoring system of the production line can alert the
workers if the cameras detect irregular actions to avoid safety hazards. Teaching computers
to understand human motion can also expand the human-computer interaction methods.
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More and more TV manufacturers introduced their smart TV with motion-sensing cameras.
The sensors can detect human activities, so the users do not need a traditional TV remote
anymore. Instead, they can change the TV volumes or pause the video through simple hand
movements.

Figure 1.1: An image from Samsung product news. Users can control the new Samsung smart TV with hand movements.

Therefore, the input to many tasks in computer vision (action recognition, list some others
as well) is a sequence of image frames, and a neural network architecture has to be modified
to adapt to the temporal dimension of the input. In 2013, Ji et al. [38] proposed to use a
three-dimensional convolutional network for action classification without any processing on
the video. Two papers on the new model architecture published in 2014 [39, 71] played a key
role in video processing related research, and several model designs that will be introduced
later are extended from these two methods. Researchers have developed many approaches
to dealing with video input, but there are still two problems: lack of annotated video data
and long training time. One approach to solve these two problems is self-supervised video
representation learning.

Representation learning is a concept inherited from traditional computer vision methods.
The workflow of traditional computer vision algorithms can be summarized as following
steps. First, perform feature extraction on the areas of interest in the image (or video)
and use fixed-size vectors to represent them. Then choose a linear classifier [3] based on
the extracted representation, and perform the training and prediction. One of the factors
in deep learning becoming popular in the early days is simplifying the traditional pipelines
to enable end-to-end learning. The neural network learns all the intermediates between the
inputs data and final outputs and all steps are trained simultaneously instead of sequentially.
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However, when researchers try to deploy deep learning algorithms into tasks in specific fields
[61], they soon encounter the problem of insufficient data. Therefore, researchers introduce
deep video representation learning by borrowing the idea from traditional algorithms, but
now the representation vectors become the intermediate feature layer output of the model.
First, we need to design a task named pretext task, so that the labels for this tasks are easy
to generate automatically, without the need for human annotation. These automatically
generated labels will be used to train network for the pretext task [54, 52]. Since video com-
prises a series of semantically related frames, it has seful spatial and temporal features. The
temporality of these frames implies specific inference rules and physical logic: for example,
the movement of objects should be smooth, and the gravity of the earth should be downward.
Our hypothesis is that even if the pretext task has no practical application [31], the neural
network can complete this task only by learning a useful spatial-temporal representation in
its feature layers. Then we can transfer the learned representation to other meaningful tasks
like action classification through sharing the weights of the features layers and finetuning
with annotated data.

In summary, video representation learning has two applications. The main application is to
enhance neural network performance and reduce the training time by transferring knowledge
from abundant unannotated data to neural networks when we have insufficient annotated
video data for training. Many papers [30, 8, 81], prove that a good pretext task can help video
representation learning to obtain reliable data transfer abilities. Secondly, the representation
network can help us compare and calculate the similarity among two different video clips
by calculating their representation vectors’ similarity score (e.g. dot product) [8]. Usually,
we can consider two video clips similar if they contain the same actions in different envi-
ronments. The same actions should have similar spatial-temporal features and the feature
representation network should output close feature vectors for these action. Calculating the
similarity between two video clips helps us perform video retrieval [49, 8] (searching similar
video clips from other videos rather than the query video) and temporal action localization
[8, 24] (finding the occurring time of the query action in a single long video). The former
task can be used for a video recommendation system [9], and the latter task can help us to
summarize the video contents [85].

1.1 Video Representation Learning

Representation learning is essential in multiple computer vision tasks such as object recog-
nition, 3D model reconstruction, or robot navigation. Typically, we want the machine to
learn a representation that includes crucial information related to the input context. But
there is no restriction on feature format, and the definition usually depends on the type of
problem or method. The traditional hand-crafted image feature descriptors such as SIFT
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[51] define the features as small image patches that help identify the objects. The image
features are usually computed from some regions with interest points like corners, edges or
ridges. Similarly, researchers also proposed many hand-crafted spatio-temporal descriptors
for video representation, such as histograms of oriented 3D Spatio-temporal gradients to
build HOG3D descriptor [43] or looking for Spatial-temporal interest points (STIP [46]).
In 2013, Wang et al. [79] proposed improving dense trajectories (IDT) descriptors, which
achieved the best results among all hand-crafted video representation learning approaches.
However, hand-crafted methods have significant drawbacks. First, selecting which features
are valid for the target task is necessary, which means engineers have to decide or filter
features through a lengthy trial and error process. Second, we might also need to manually
tune a large group of parameters in the algorithm to get the best results. As the difficulty
of the task increases, the cost of the selection and finetuning can be prohibitive.

Deep learning is successful in computer vision to a large degree because intermediate en-
gineering feature design steps are down automatically with neural networks. While most
neural networks were designed for still images, there is increasing research in designing neu-
ral networks for video tasks. The most obvious way to take sequential image data is by
changing the 2D convolutional layers to 3D. Many well-established networks for video repre-
sentation learning inherit the designs of some popular image processing neural networks such
as C3D [71] (based on VGG network [63]) and I3D [10] (based on Google Inception network
[67]). The transformer is a widespread technique in the natural language processing field,
and since we can consider the video inputs as sequences, researchers have also tried to build
video transformers. For example, Arnab et al. from the Google research introduced their
ViViT [6] video transformer recently, and the performance is comparable to the previous
convolutional neural network approaches.

Unlike the traditional methods, the deep learning approach trains the neural networks with
many image samples to discover the latent patterns in images and automatically work out
the most defining features. Although the trade-offs are higher computing requirements and
longer training time, modern engineers prefer the deep learning approach, which performs
far better than traditional methods. Also, the development of convolutional neural networks
has had a significant influence in recent decades. This bursting trend has been enabled by
a big improvement in GPU computing power and an increased amount of data available for
training neural networks.

The main problem of all supervised video representation learning is the lack of annotated
video data. We need enough annotated data to apply supervised learning. However, labelling
video data is time-consuming and expensive. Compared to image annotation, the burden of
processing video data is much heavier because the annotators have to pay close attention to
the timeline if they want to crop out the target action from the raw videos. Furthermore,
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sometimes it isn’t easy to obtain data in certain areas. For example, patient data is often
protected by law in healthcare, making it difficult to collect related data such as patient’s
video recording. The large number of network parameters also cause a long training time.
Take training C3D [71] with Tesla K40 GPUs as an example; the training set UCF101 [65]
is a relatively small action recognition dataset with 9K videos but the training time for one
epoch is more than 19 hours when the input dimension is 16 frames of 256x256. By using
a network pretrained on a pretext task for multiple downstream applications, we can save
computational time.

1.2 Self-supervised Methods

Self-supervised video representation learning teaches neural networks to extract helpful video
features from the abundant un-annotated videos by performing a particular task that doesn’t
need manual annotation work. Instead, the data samples are transformed or sampled in order
to automatically obtain labels for some task which is not the final task of interest. This task
is named the pretext task because our aim is not developing a classifier for this self supervised
task. Instead, we want our network to learn an efficient latent representation of the videos
so that we can use this video representation in the network training with the downstream
tasks, where the downstream task is actually the task we are interested in. Downstream
tasks, such as action recognition, are typically more challenging than the pretext tasks,
and require user annotation effort to construct ground truth. A good pre-trained network
should help us extract useful video features from the original videos and reduce the train-
ing time significantly. Thus, the evaluation of the self-supervised network is based on how
well we can fine tuned it using annotated datasets to perform one or more downstream tasks.

Fully supervised training is more straightforward but challenging to guarantee performance
and versatility if the training dataset is small. The annotation work for video-based tasks
like action recognition is much heavier than the traditional image labelling because the
workers need to watch the whole video for each sample to annotate all query actions’ time
boundaries accurately. In the industry, acquiring high-quality annotated video data is very
time-consuming and costly. However, the unannotated videos are relatively easy to col-
lect through the internet. The main benefit of self-supervised learning is unbounded video
datasets at the pre-train stage. Pre-training with unannotated but related videos can help
our networks learn critical features, thus increasing the training efficiency of the downstream
tasks. Self-supervised training is also an excellent solution for industry projects when devel-
opers don’t have much-annotated data at the start time. This strategy can help them make
an early delivery while still waiting for more annotated data.

We can describe self-supervised video representation learning as a two-stage training strategy
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to solve complicated video-based tasks like human action recognition. The first stage will
be self-supervised training the network through a pre-designed task that applies appropri-
ate transformation on the original video to automatically generate an effective supervisory
signal based on the transform itself or certain constraints(i.e. the pretext task). Then, we
can freely take advantage of billions of video data from any source. In the second stage,
we will evaluate the video representation learning performance by finetuning the pre-trained
network from the first stage for a specific video-related job such as action recognition, video
retrieval (i.e. downstream task). Of course, we still need an annotated dataset during the
finetuning. However, this two-stage training routine benefits us to reuse the pre-trained
network for different downstream tasks. Also, compared to fully supervised training using
the annotated dataset, starting from the self-supervised pre-trained network will reduce the
converge time significantly.

Figure 1.2: An image of two stage training

1.2.1 Pretext Tasks

As shown in Figure1.2, we compose the network in two parts: a encoder or backbone part,
a convolutional neural network used to transform the input video clip into a latent feature
vector; and a decoder part which uses the feature vector to do the inference task such
as classification or regression. At the first stage, we want our network to learn the video
representation of unannotated data through a specific simple task named pretext task. The
core requirement for the pretext task is that for each video sample, one can generate target

6



labels automatically. Also, the learned representation should be easily adaptable for other
tasks unknown during training for the pretext task. For example, we can ask the network to
classify whether the input video clip (a sequence of video frames) is in order or shuffled [54,
84]. Each video sample contains a multiple of frames. We can sample three frames, and if they
are extracted in continuous order, we label it as positive; otherwise, if they are shuffled, the
label is negative. Then, we can program our data sampler to shuffle the video clip randomly
and generate a binary label on the fly. The network can only complete order classification
tasks when it understands the underlying video content and learns representative Spatio-
temporal features. Therefore, after the pretraining with such a pretext task, we can use the
encoder weights of the network as the initial weights for other tasks like action recognition.

1.2.2 Downstream Tasks

Usually, the downstream tasks are applications uses to evaluate the quality of features learned
by self-supervised learning. The downstream task can be a classification or detection task
and can benefit from the pretrained models when annotated training data are insufficient.
For video representation learning, the most common downstream task is action recognition
or video classification. Another usual downstream task is video retrieval: given a query
video and a set of candidate videos, select the video which corresponds to the query most.
Typically, the videos are returned as a ranked list of candidates and scored via retrieval
metrics. For the evaluation of pretext task pretraining, the retrieval metric is usually the
similarity scores among the feature vectors of query and candidate.

The primary evaluation method of our pretext task design is using the pre-trained net-
work for downstream task training. This type of evaluation is a case of transfer learning.
A good pretext task design should learn a video representation that needs a little training.
We will build a new classifier on top of the backbone, and the training of downstream tasks
includes two approaches: linear classifier and finetuning. We can either freeze all param-
eters in the pre-trained backbone and only train the small linear classifier to perform the
downstream task or finetune all parameters simultaneously but limit the number of train-
ing epochs. The finetuning method is more common in self-supervised video representation
learning [84, 8, 81]. For example, the usual epoch number for finetuning action recognition
tasks is 20-30 epochs for a large dataset like Kinnetics400, or 200-300 epochs for a smaller
HMDB51. The performance on downstream tasks can reflect the efficiency of our pretext
task design. Usually, a harder pretext task will improve downstream task performance.
However, the network may also need a lot of time to converge at the pretraining stage if the
pretext task is too hard, making self-supervised learning less useful.
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1.3 Contributions

Recently, [8, 81] suggested video speediness classification as an efficient pretext task for video
representation learning. This idea was inspired by the fact that the human viewer can often
quickly notice if the playing speed of a video jumps up. Sped up a video reduces the playing
FPS (frame per second), thus reduces the smoothness of the object’s movement. The jiggling
effect is disturbing to the viewer because we usually know the motion dynamic of actions
or sports. The setting of speediness classification is simple: each data sample is a frame
sequence with a fixed length and is extracted from the original video at a random start point
for every p frame. The range of integer p is defined, and the network has to classify the value
of p. Therefore, the data sampler can generate the input data and target label at the same
time. Experiments prove results proved that speediness classification is a reliable pretext
task, and Wang et al. [81] claimed they got the best result when defining p within [1, 4].

However, the speediness classification does not use the relationship among the different play-
ing speeds, i.e. the motion dynamic increases as the p increases. For the frame sequences
sampled from the same action, same object but different speediness, only the sampling meth-
ods cause the differences between the features, not the contexts. The network should focus
on these differences because if some features change more than others as the playing speed-
iness changes, these features are more likely to come from the moving object, which is more
critical to representation learning. Converting the speediness classification to regression can
help reveal the speediness relationship, but it will also unnecessarily increase the hardness
of the pretext task [8]. It is hard to quantify the speediness of the frame sequence precisely
because the object in the video can also affect the speediness. However, we assumed that
if the speediness is changed within the frame sequence, then the features extracted from
such sequence must relate to the speediness change. We can call such frame sequence as
speediness changing clip and the previous ones as the constant clip. If the network can learn
features from both types of sequence, it may help to develop better video representation.

Therefore, we design two different approaches to learn the features of speediness change clips:

(1) The first approach is extending the previous method. On top of the pretext task de-
signed by [81], we add four new classes: two speediness jump-up classes and two speediness
drop-down classes. The speediness is increased (jump-up) or decreased (drop-down) at the
middle of the sequence in these new classes. And speediness change is further classified by
the extent of the change: it can be one-level change (e.g. sampling rate changes from 1
to 2, or 3 to 2) or two-level change (e.g. 2 to 4, 3 to 1). Same to [81], we still have four
regular speediness classes start from p = 1 to p = 4, so there are eight classes in total. The
sampling probabilities are uniform for each category, and the pretext task is classifying the
input frame sequence into these eight classes.
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(2) The second approach is a combination of speediness-change classification and localiza-
tion. The clip creating method is similar to the first approach, but we randomly select the
change point of changing speediness clip instead of fixing it at the middle of the sequence.
Thus, the network has two branches of classifiers to perform speediness change classification
and localization simultaneously. However, if we use the same settings in the first approach,
task may be too difficult and the training may not converge. Therefore, we reduce the num-
ber of classes to three by merging the categories with the same speediness change pattern.
The network only has to classify the changing pattern as constant, jump-up or drop-down.
The speediness-change localization task asks the network to predict the speediness-change
position in the sequence. Each constant speediness sample will be mapped to a dummy
localization label.

We further apply contrastive learning [12] to regularize the classification for both approaches.
We evaluated each pretext task by two downstream tasks: action recognition and video re-
trieval on HMDB51 [45] and UCF101 [65] datasets. We also did the ablation study on both
approaches to assess each sub-component in pretext tasks. Our experiments show that both
approaches outperform the previous methods on modern video representation networks, and
the second multi-task approach is even better than the first one.

1.4 Thesis Organization

In the next chapter, we will further introduce some basic concepts about modern convolu-
tional neural networks, self-supervised learning, and contrastive learning. Chapter 2 also
introduces more previous self-supervised video representation learning methods, and some
popular neural network architecture for video representation learning including the models
we used for this work.

Chapter 3 describes our first pretext task: speediness change classification. Chapter 4 de-
scribes our multi-task approach, which combines the classification and localization task of
speediness change. The experiment details and results of both methods are in Chapters 3 and
4, respectively. Chapter 5 summarizes and concludes our work in this thesis and proposes
some possible future research directions.
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Chapter 2

Related Work

2.1 Convolutional Neural Network

The convolutional neural network (CNN) is a feed-forward neural network. Its artificial
neurons can respond to the neighbour units in the coverage area. Therefore, it has excellent
performance for image processing. The convolutional neural network includes convolutional
layers with corresponding pooling layers for learning the features. Also, we need a few fully
connected layers to perform the final classification or regression task [47]. This design en-
ables convolutional neural networks to extract the two-dimensional spatial features of the
input data. Compared with other deep learning structures, convolutional neural networks
can give better performance on image-related tasks. We can use back-propagation algo-
rithms to train this type of network. Furthermore, convolutional neural networks need to
consider fewer parameters than other feed-forward neural networks, making it an attractive
deep learning structure.

Figure 2.1: LeNet-5 architecture as published in the original paper [47].

In 1989, Yann LeCun et al. published a convolutional neural network structure named
LeNet [47]. From the current point of view, LeNet is a small network. However, LeNet is
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a milestone in the CNN network structure, defining the modern CNN network structure for
the first time and demonstrating its application in image classification. The paper defines
the basic framework of Convolutional Neural Network: Convolutional Layer + Pooling Layer
+ Fully Connected Layer. Compared with the fully connected layer, the convolutional layer
has two advantages: local connection and weight sharing. When the human eye observes the
outside world, it first observes the local information of the object and then obtains the global
knowledge through the local feature, that is, recognizes what the object is. So if we design a
neural network according to this principle, every neuron does not need to perceive the global
image. Instead, each neuron only perceives the local image area. Then, the network can
obtain comprehensive information at a higher level by synthesizing these neurons that sense
different parts. First, the convolutional layer uses convolution to achieve local connections.
Then each neuron in the output data convolves the image with the same convolution kernel
(shared weight) and adds the same bias. In the classic fully connected layer, a neuron needs
to correspond to a weight and a bias. But in convolutional layers, each neuron corresponds to
the same convolution kernel and the same bias, significantly reducing the parameter amount.

The operation performed in the convolutional layer is called convolution. Each convolu-
tion operation multiplies each element on the convolution kernel with the corresponding
input data (pixels), adds all the results, and then moves the convolution kernel by one stride
until the convolution kernel traverses the input data. Sometimes, we want to pad the input
matrix with fixed data (such as zero) before the convolution operation. Padding helps the
network to keep information at the borders and preserve the height and width of the feature
map. It allows us to design deeper networks. Without padding, reduction in volume size
would reduce too quickly. We can call the input and output data of the convolutional layer
a feature map. In the convolutional layer, each convolution kernel extracts a feature, so the
number of convolution kernels is equal to the number of output feature maps. To calculate
the height and width of output feature map (C,H,W ), assume we have input size (c, h, w),
C kernels with size (c, kh, kw), padding p, stride s:

(H,W ) =
(h,w) + 2p− (kh, kw)

s
+ 1 (2.1)

The pooling layer usually follows a convolutional layer to reduce the data size. The pooling
layer also has a pooling window to move the feature map. Pooling operation calculates the
maximum or average value in the pooling window in each move, so the pooling layer typi-
cally has no parameters to learn. The pooling layer sub-samples the image to retain helpful
information and to be robust to small position changes. When the input data has a slight
deviation, the pooling will still return the same result.
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In 2012, Krizhevsky and Hinton launched AlexNet. They won the ILSVRC (ImageNet
Large-Scale Visual Recognition Challenge) that year with an absolute advantage of 10.9 per-
centage points above second place, which aroused many scholars’ research on deep learning.
At that time, the computing power of AlexNet is not as strong as it is now. The GTX
580 used by AlexNet has only 3GB of video memory, but it has completed a significant
breakthrough on ImageNet [15]. AlexNet uses a dual GPU framework. Many of the current
deep learning frameworks have this ability. Still, at the time, it was only possible to design
a larger and deeper network by manually implementing the underlying code. AlexNet uses
ReLU instead of Tanh as the activation function to solve the problem of gradient disap-
pearance and speed up the network convergence. The stride in AlexNet’s pooling operation
is smaller than the pooling kernel size, so adjacent pooling areas have overlapping parts.
This operation is called overlapping pooling. According to the author, this operation can
reduce the index top-1/top-5 error rate by 0.4%/0.3% and reduce over-fitting. In terms of
data enhancement, the authors randomly crop the training image from 256 × 256 to 224
× 224. They cut image patches from the four corners and the center of the image during
the test and performed mirror flipping. They collect ten patches and average the results of
these patches to calculate the final prediction result. Due to the continuous development of
GPU power, AlexNet appears too ”small” for many tasks. However, the above improvements
made by the author are worthy of reference. For example, when training a model and the
structural design of the model itself, we can use additional training techniques such as data
reinforcement and dropout to improve the efficiency of the training model.

In 2014, Google proposed the Inception network and built GoogLeNet [68] based on it.
Inception ”deepened” the network by building Conv Layer Groups (or blocks), which com-
bine multiple convolutional layers plus activation function. The author pointed out that
the most direct way to improve the expressive ability of the model is to increase the ”size”
of the model, which in turn will lead to two problems: the larger the model, the larger is
the number of network parameters, and the easier it is to overfit and to require a larger
dataset, but the construction cost of a large dataset is very high; the larger the model, the
greater the demand for computing resources, which is unacceptable in practical tasks. The
author believes that the primary method to solve these two problems is changing the fully
connected and convolutional layers to a sparse network structure. The Inception module
contains parallel convolutional layers with kernel sizes of 1×1, 3×3, 5×5 and pooling layers.
Then they concatenate the feature maps obtained by the subsequent input. The author
hopes that the deep Inception Module in the model can capture higher abstraction. The
density of the convolutional layer in the Inception is gradually reduced to capture features
of a larger area. Therefore, the deeper the Inception, the more the output channels of the
convolutional layers. But this will increase the amount of calculation significantly. So the au-
thors suggests deploying the convolutional layers with a kernel size of 1×1. These layers can
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increase non-linearity to improve the network’s expressive ability and simultaneously reduce
dimensionality, decreasing the calculation cost. Since the Inception Module maintains the
same input and output size, GoogLeNet can be modularized according to task requirements.

Figure 2.2: Residual learning: a building block [32]

In 2015, Kaiming He proposed ResNet [32] to solve the degradation problem in neural net-
works (i.e. the problem that with more layers, CNNS have a larger training/test errors).
Furthermore, the proposed residual block significantly improves the learning ability of neural
networks. The author presents residual learning to solve the degradation problem. For a
stacked-layer structure (Conv Layer Group), we define the input as x, the learned feature
as H(x), and now we hope it can learn the residual F (x) = H(x) − x so that the original
learning feature becomes F (x) + x. The reason for this is that residual learning is easier
than learning original features directly. When the residual is 0, the layer group only performs
identity mapping at this time; at least the network performance will not decrease. In fact,
the residual will not be 0, making the layer group learn new features based on the input
features to have better performance.

Figure 2.3: A deeper residual function F for ImageNet. Left: a building block (on 56×56 feature maps) for ResNet34. Right:
a “bottleneck” building block for ResNet-50/101/152. [32]
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Since the residual block does not require additional parameters and calculations, Kaiming
conducted multiple sets of controlled experiments to prove the effectiveness of the network
structure. However, suppose the depth of the model is to continue to increase. In that case,
it needs to be improved: the original residual block (shown on the right side of the figure
2.3) is enhanced to bottleneck block to reduce the parameters and calculations of the model.
ResNet is modified based on the VGG network [63] and added residual learning. For 18-layer
and 34-layer ResNet, it performs residual learning between two layers. When the network is
deeper, it performs residual learning between three layers.

Figure 2.4: A table of architectures for ImageNet. Building blocks are shown in brackets, with the numbers of blocks stacked.
Downsampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2 [32]

Around 2017, researchers became interested in lightweight neural networks, i.e. networks
with less parameters. Standard methods include designing lightweight network models or
compressing trained complex networks (such as pruning, etc.). At this time, Google proposed
a lightweight model: MobileNet [35], which became the baseline model that people often use
for comparison. In MobileNet, the authors use depthwise separable Convolution to design a
lightweight network. Furthermore, users can change the network width (channels) and input
resolution according to their needs by setting the two hyperparameters: width multiplier
and Resolution Multiplier. Thus, the users can trade off the model between latency and
accuracy according to the actual scene.

As shown in Fig 2.5, depthwise separable Convolution splits standard convolution into two
parts: depthwise convolution and pointwise convolution. The shape of each filter in the
original standard convolution is (Dk, Dk,M), where M is the channel number of the input
feature map. Each filter performs convolution on the input feature map, and the output
shape is (Dout,Dout, 1). If there are N filters, the output Shape is (Dout,Dout,N). On the
other hand, in the depthwise convolution stage, the shape of each depthwise convolution fil-
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Figure 2.5: The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise
convolution in (c) to build a depthwise separable filter. [35]
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ter is (Dk, Dk, 1), and there are M filters in total. Therefore, the shape of the output result
is (Dout,Dout,M). Next, in the pointwise convolution stage, each pointwise convolution
filter has the shape (1, 1,M) and N filters in total. Thus, the shape of the output result
is (Dout,Dout,N). Accordingly, we can calculate that the required parameter of standard
convolution is Dk ×Dk ×M ×N and the required parameter of depthwise separable convo-
lution is Dk×Dk×M +M ×N = M ∗ (Dk×Dk +N . Compared with standard convolution,
the reduced number of parameters is N − 1×Dk ×Dk −N .

2.2 Self-supervised Learning for Images

Self-supervised learning allows us to derive various labels from data without additional cost.
This motivation is very straightforward. The cost of generating a data set with ”clean”
(no noise) labels is high, but unlabeled data is produced all the time. In order to use a
large amount of unlabeled data, one solution is to set a reasonable learning goal to obtain
the supervision signal from the target data itself. Self-supervised tasks (also called pretext
tasks) allow us to deploy the supervision loss function. Most of the time, are not interested
in the final performance of the pretext task. We are only interested in the learnt latent
representations. We hope that these representations can cover good semantic or structural
meanings and benefit various downstream practical tasks. For example, we can randomly
rotate images and train a model to predict how each input image is rotated. This rotation
prediction task is artificially constructed, so the actual accuracy is not essential, just like we
treat auxiliary tasks. However, we expect the model to learn high-quality latent variables for
real-world tasks using a small amount of labelled data. Actually, all generative models can
be regarded as self-supervised. However, their goal is different: generative models focus on
creating a variety of realistic pictures, while self-supervised representation learning focuses
on generating good features that are generally helpful for multiple tasks. Researchers have
put forward many ideas for self-supervised representation learning of images. The common
workflow is to train a model on one or more pretext tasks that use unlabeled images and then
use an intermediate feature layer of the model to provide input for the multi-class logistic
regression classifier of the ImageNet classification task or other downstream tasks. Some
researchers have recently proposed using labelled data to train supervised learning while
using unlabeled data to train self-supervised pretext tasks with shared weights [88, 66].

The first type of pretext tasks is image transformation recognition. We expect that sub-
tle distortions on the image will not change its original semantics or geometric form. We
can think that the slightly deformed image is the same as the original image, so it is ex-
pected that the learned features are invariant to the deformation operation. Dosovitskiy
et al. published in 2015 ”Exemplar-CNN” [19] using unlabeled image patches to create an
alternative dataset. They sampled images at different locations and different scales to obtain
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N 32*32 patches. They only select patches from areas with large gradients because these
areas contain edges and are more likely to contain objects or parts of objects. After obtain-
ing the base patches, they deform each patch by applying various random transformations
(translation, rotation, scaling, etc.). The deformed patches obtained from the same initial
patch are regarded as belonging to the same class. Their pretext task is to teach the network
to distinguish between the different classes. We can create as many classes as we need and
do not require manual annotation.

Figure 2.6: left: Exemplary patches sampled from the unlabeled dataset. Right: In the upper left corner is the original patch
of a deer. After applying the random transformation, various deformed patches are produced. In the pretext task, all these
tiles should be classified into the same category. [19]

Rotating the entire image is another low-cost method to modify the input image while
keeping the semantic content unchanged. Each input image is first randomly rotated by
multiples of 90 degrees, corresponding to [0°, 90°, 180°, 270°]. Then, Gidaris et al. [22] train
the CNN model to predict the rotation class, which is a 4-classification problem. In order
to recognize the same image rotated by different angles, the model must learn to recognize
high-level target parts (such as the head, nose, and eyes) and recognize the relative positions
of these parts instead of only recognizing local patterns. The pretext task enables the model
to learn the semantic concepts of objects in this way.

The second type of self-supervised learning task extracts multiple patches from an image
and requires learning the position relationship between these patches. A paper published
by Doersch et al. in 2015 [17] formalized the pretext task as predicting the relative position
between two random patches in the same image. In order to recognize the relative positions
of different parts, the model needs to understand the spatial environment of the target. The
patch sampling method used for training is as follows. The first patch is randomly sampled
without referring to any image content. Then it is considered that the first patch is in the
center of a 3*3 grid, and the second patch is sampled from 8 locations adjacent to the first
patch. In order to avoid that the model only captures low-level unimportant signals (for
example, connecting a straight line that crosses a boundary or pairing local patterns), they
apply additional noise through data augmentation: (1) increase the gap between patches (2)
small position jitter (3) randomly down-sample some patches, and then up-sample them to
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Figure 2.7: Self-supervised learning by rotating the entire image. The model learns to predict how many degrees the picture
is rotated. [22]

achieve robustness to pixelation (4) randomly discard two of the three colour channels or
convert green and red colour on patches to grey to remove the chromatic aberration, which
may cause trivial solution.

Figure 2.8: Self-supervised learning by predicting the relative
position of two random patches

Figure 2.9: The algorithm receives two
patches in one of these eight possible spa-
tial arrangements, without any context, and
must then classify which configuration was
sampled. [17]

Generative modelling as a pretext task is to reconstruct the original input while learning
meaningful latent representations. Generative Adversarial Networks (GAN) can learn the
mapping from simple latent variables to complex data distributions. Many studies have
shown that the latent space of this generative model can capture semantic changes in data.
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For example, when we use face data to train GAN, some latent variables are related to
features such as facial expressions, glasses, and gender [89]. The denoising autoencoder will
learn to restore the original image based on the partially damaged, or random noise image
[78]. The inspiration for this design stems from the fact that even if there is noise, humans
can easily identify objects in the picture, which shows that the algorithm can extract key
visual features and separate them from the noise. Thus, we can train the context encoder
to fill in a certain piece of the image [59]. Let M̂ be a binary mask, where value 0 means
discarding the pixel, and a value of 1 means keeping the input pixel. The shape of the dele-
tion area defined by the mask is arbitrary. We can use a combination of L2 reconstruction
loss and adversarial loss to train the model:

L(x) = Ladv(x) + Lrecon(x) (2.2)

Lrecon(x) = ‖(1− M̂)� (x− E(M̂ � x))‖2
2 (2.3)

Ladv(x) = max
D

Ex[logD(x) + log(1−D(E(M̂ � x)))] (2.4)

where � means elementwise product, D(.) is the decoder and E(.) is the encoder as Fig.
2.10

Figure 2.10: Context Encoder. The context image is passed through the encoder to obtain features which are connected to
the decoder using channel-wise fully-connected layer. The decoder then produces the missing regions in the image. [59]

2.3 Self-supervised Contrastive Learning

Contrastive self-supervised learning technology is a promising method, which builds repre-
sentations by learning to encode things that make two things similar or different. Generative
self-supervised learning requires the model to reconstruct the image or part of the image.
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This type of task is relatively complicated and requires pixel-level reconstruction. The im-
age encoding in the middle must contain much information. Compared with generative
self-supervised learning, the task of contrastive learning is less complicated. At present,
contrastive learning seems to be in a state of ”no clear definition but guiding principles.” Its
guiding principle is: by automatically constructing similar and dissimilar instances, and it is
required to acquire a representation learning model. This model attracts similar instances
closer to the projection space, and dissimilar instances are repelled in the far distance in the
projection space. The key points are how to construct similar and dissimilar instances and
construct a representation learning model structure that can follow the above guidelines.
However, the main difficulty of self-supervised contrastive learning is that we do not know
which ones are the target class and which ones are other classes. There is no way to deter-
mine which pictures should go to maximize similarity and which ones should go to minimize
similarity.

Figure 2.11: Contrastive learning can be used for supervised learning and self-supervised learning. Here we will discuss the
self-supervised contrastive learning only [42]

SimCLR [11] is a classic work in the field of self-supervised learning. The SimCLR (4×)
model can achieve 76.5% of top 1 accuracy on ImageNet (Fig 2.12), which was 7 points
higher than the SOTA model at the time. If this pretrained model is finetuned with 1%
of ImageNet labels, SimCLR can reach 85.5% of top 5 accuracy. This is very impressive
accuracy with so little supervised information.

As mentioned earlier, contrastive learning is self-supervised learning. We do not label the
data, so we need to construct similar data (positive examples) and dissimilar data (negative
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Figure 2.12: CImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised
methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50. [11]

examples) automatically. For a certain picture, we randomly select two transformations from
the set of possible data augmentation operations T (Fig 2.13) : t ∈ T and t′ ∈ T , which
act on the original image respectively to form two augmented new images (x, x′). Those are
mutually positive examples. During training, any other image in the batch can be used as
a negative example of x or x′. In this way, contrastive learning hopes to acquire a certain
representation model, which can map the picture to a certain projection space, and narrow
the distance of positive examples in this space, and push the distance of negative examples
farther. In other words, the representation model is forced to ignore surface factors and learn
the internal consistent structural information of the image, that is, to learn certain types of
invariance, such as occlusion invariance, rotation invariance, and colour invariance. SimCLR
proves that if a variety of image augmentation operations can be integrated simultaneously,
the difficulty of the contrastive learning model task will be increased, and the contrastive
learning effect will be significantly improved.

SimCLR proposed projection head, which uses a learnable non-linear projection between
representation and contrast loss, and the effect is excellent. The advantage of using a learn-
able network is to avoid the loss of similarity calculation and lose some critical features
during training. The paper uses a very simple single-layer MLP with ReLU activation func-
tion as a non-linear projection. For an image xinput in batch, the corresponding augmented
images are xi and xj respectively, then the data pair (xi, xj) is a positive example, and any
other augmented images in batch are negative examples. After f(g(·)) transformation, the
augmented image is projected into the latent space. We hope that the positive examples are
attracted closer, and the negative ones are farther away in the representation space. It is
generally achieved by defining a suitable loss function. But we first need a metric function
to judge the distance between two vectors in the projection space. Generally, the similarity
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Figure 2.13: Studied augmentation methods in SimCLR paper. [11]

Figure 2.14: A simple framework for contrastive learning of visual representations. Two separate data augmentation operators
are sampled from the same family of augmentations (t ∼ Tand t′ ∼ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·) are trained to maximize agreement using a contrastive loss.
After training is completed, we throw away the projection head g(·) and use encoder f(·) and representation h for downstream
tasks. [11]
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function is used as the metric. Specifically, the similarity calculation function takes the dot
product after the regularization or the Cosine similarity between the vectors:

S(zi, zj) =
zTi zj

(‖zi‖2‖zj‖2)
(2.5)

The object function of SimCLR is InfoNCE loss [75]. The corresponding InfoNCE loss for
an input example is:

Li,j = −log (exp(S(zi, zj)/τ)∑2N
k=1 1[k 6=i]exp(S(zi, zk)/τ))

(2.6)

Where 1[k 6=i] ∈ 0, 1 is an indicator function evaluating to 1 if and only if k 6= i and τ denotes
a temperature hyperparameter. (zi, zj) denotes a positive pair and (zi, zk) denotes a negative
pair.It can be seen that the numerator part of this function encourages the higher similarity
of positive examples (the closer the distance in the representation space); the denominator
part encourages the lower the vector similarity between any negative examples (the farther
the distance). Thus, guided by the InfoNCE loss function, the model can be trained to
achieve our desired goal in the optimization process.

SimCLR takes the data in the batch as a negative example. SimCLR’s experiments also
proved that in the contrastive learning based on negative examples, the more negative ex-
amples, the better the effect of the contrastive learning model. We cannot enlarge the batch
size infinitely. So a realistic idea is: when we choose negative examples, we are no longer
limited to finding negative examples in the batch but the entire unlabeled training data. In
the collection, randomly select data of any size as a negative example during model training.
This idea is more straightforward to look at, but it is not easy to implement. In 2020, He
et al. proposed the typical method of selecting negative examples in the entire training set
named MoCo [31].MoCo uses a queue to store and sample negative samples. The queue
stores the used feature vectors of previous batches. These stored feature vectors can be
used for later optimization steps to enhance the effect of InfoNCE loss. Moco V2 [12] is
an improved version of MoCo after absorbing SimCLR’s Projector structure and more dif-
ficult image augmentation methods. These changes significantly improve the performance
of MoCo framework.The augmentation method, encoder structure, projector structure, sim-
ilarity calculation method, and InfoNCE loss function of MoCo V2 are similar to SimCLR.
The most important feature and innovation is the lower branch of the two-branches network.
As shown in Fig 2.14, the input of the contrastive learning framework is a pair of augmented
examples. The framework also has a two-branch network: the upper branch network will
handle the input augmented by transformation t (the primary augmentation), and the lower
branch network will handle the input augmented by transformation t′ (the secondary aug-
mentation). The upper and lower branches in SimCLR are symmetrical, and the two can
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share parameters, while the MoCo V2 lower branch network parameter update uses a mo-
mentum update mechanism.

Figure 2.15: A batching perspective of two optimization mechanisms for contrastive learning. Images are encoded into a
representation space, in which pairwise affinities are computed. [12]

The lower branch of Moco V2 is also composed of two non-linear mappings of sequence
encoder and projector. The structure of these two components is consistent with the corre-
sponding structures of the upper branch, but it has its own set of parameters. The update
of this set of model parameters does not use the conventional loss function backpropagation
to update the gradient but uses the following Moving Average mechanism to update:

θk = mθk + (1−m)θq (2.7)

θq is the model parameters of the upper branch, θk is the model parameters of the lower
branch, and m is the weight adjustment coefficient. When the model training starts, the
θq is randomly initialized. The upper branch model parameters θq are updated through the
backpropagation gradient when processing the batches. After θq changes, the framework
uses the above announcement to update the parameters set θk corresponding to the lower
branch. Generally, the m will take a large value (0.9 or even 0.99). It means that relative to
the upper branch parameters, the lower branch parameters change slowly and steadily, from
the random value to the θq update bit by bit, and iterate to the optimal value in careful
small steps.

MoCo V2 uses a memory bank to keep all processed batches as negative samples. Thus,
Moco V2 maintains a large negative example queue. When loss function requires positive
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and negative examples, K negative examples will be taken from this queue. The value of
K can be adjusted as needed, but unlike SimCLR it has not been limited to the batch size.
The momentum update structure of the lower branch has two functions: one is project-
ing the second augmented image to the corresponding representation space, then providing
the representation vector as a positive example to the query vector from the upper branch
(extracted from the first augmented image). The second function continuously updates the
negative examples in the queue: put the feature vectors from the latest batch into the queue,
and the vectors from the oldest batch are out of the queue.

The momentum updating of MoCo V1 and V2 is very similar to the updating method
for the target Q-network in deep Q-learning [56]. Experiments show that if parameter m in
the momentum update formula is small, the effectiveness of contrastive learning will drop
sharply. On the other hand, only when the parameters of the positive and negative exam-
ples of the lower branch change slowly and steadily (large m), a better training result can
be achieved. The reason can be due to the slowly updated model parameter θk, which gives
relatively stable and uniform changes to the representation vectors from different batches in
the queue, increasing the latent representation space’s consistency.

The core idea of SimCLR and MoCo are similar, but compared to SimCLR, MoCo V2
uses data resources more effectively while using fewer hardware resources. The training
batch size of SimCLR needs to be 4096 to achieve the best performance in the paper; on the
other hand, MoCo V2 cleverly uses the momentum and memory bank mechanisms to make
self-supervised contrastive learning have better results with limited hardware resources.

2.4 CNNs for Video Representation Learning

In the era of deep learning, the main workload of video action understanding is how to design
a suitable deep network rather than manually designing features. We need to consider two
aspects when designing such a deep network: (1) what model can best capture timing and
spatial information from existing data. (2) how to reduce the required computation without
sacrificing too much accuracy.

2.4.1 Temporal Information Fusion and 2D CNN

Organizing temporal information is a critical point in building a video understanding model
based on 2D-CNNs. [40] summarizes the methods for combining temporal information over
the video frames (Fig 2.16):

1. Single frame only considers the characteristics of the current frame and only merges
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Figure 2.16: Explored approaches for fusing information over temporal dimension through the network. Red, green and blue
boxes indicate convolutional, normalization and pooling layers respectively. In the Slow Fusion model, the depicted columns
share parameters. [40]

the information of all frames in the final stage.

2. Late fusion uses two feature extraction networks with shared parameters to extract
features from two video frames separated by 15 frames. It is also in the final stage that the
prediction results of these two frames are combined.

3. Early fusion performs feature fusion on ten consecutive frames in the first layer.

4. Slow fusion’s temporal perception field is larger, including inter-frame information fu-
sion in multiple layers. This method is a compromise between early fusion and late fusion.

In the final prediction stage, we can uniformly sample some segments from the video (usually
ten segments). Then we can predict the classes of the sampled segments, and the average
or vote across all segments will be the final prediction result. However, using 2D CNN for
feature extraction at a single frame level then fusing can not model the temporal order of the
actions. The temporal order is an important factor to distinguish the actions. For example,
sometimes an action can be a reverse of another action (e.g. ”open a door” and ”close a
door”). Considering that the fusion method cannot collect the temporal structure informa-
tion [10], we must rethink the new temporal information extraction method. Furthermore,
we know that these fusion methods are all manually designed ways to fuse features between
frames, while deep learning networks only play a role in extracting single frame features.
Therefore, this approach may not be effective. We expect to design a deep network that can
perform end-to-end learning, utilizing both temporal and spatial information.

We know that optical flow is a manually designed feature of motion information in tra-
ditional CV, so the two-stream network [62] combines the RGB image and optical flow of
the video as input. In the two-stream network, we also need to sample the entire video
sequence to get several segments. Then we calculate the optical flow information from each
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segment as the motion information to describe the movement of the action and then sam-
ple a frame from this segment to be used as an RGB representative (usually the middle
frame, the segment length is usually 10), which characterizes the appearance information of
the entire segment. The classification results are obtained in the motion stream and RGB
appearance stream, respectively. Finally, the two-stream fusion of the respective classifica-
tion results is performed in the last layer to obtain the prediction result of the entire segment.

Here we need to pay attention to some technical details. Our optical flow needs to be
calculated in two directions. For each frame, the optical flow in the x-direction and the
optical flow in the y-direction will be generated. If the fragment length L = 10, we will
have 20 optical flow channels for each segment, so the input tensor size of our motion
stream is (batchsize, height, width, 20), and the input tensor size of appearance stream is
(batchsize, height, width, 3). Therefore, motion flow cannot directly use the ImageNet pre-
trained weights to initialize because the input channel of the pre-trained model on Ima-
geNet is usually three. However, we can use the convolution kernel (e.g. kernel shape is
(H,W, 3, 64)) of the first convolution layer in the ImageNet pre-trained model (such as [63]),
average the dimension of the RGB input channel (which is the third dimension in the ex-
ample), then get a size (H,W, 1, 64) tensor. We can use this tensor to initialize the first
layer of our motion stream so that although our motion stream has 20 input channels, the
parameters of all channels are initialized to the same. After the conversion of the first layer,
other subsequent layers can continue to use the pre-trained VGG layer. Therefore, the final
output tensor shapes of the motion stream and appearance stream are the same.

Figure 2.17: Two-stream architecture for video classification. [62]

The problems of the two-stream network include the computational complexity of calcu-
lating the optical flow, the content and the label in the sampled segments that may not
match, and the long-term dependence on the accuracy of the optical flow information. How-
ever, a significant advantage of the dual-stream network is that we can use the ImageNet
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pre-trained model as a good parameter initialization because both streams use 2D convolu-
tional networks for feature extraction.

2.4.2 3D-CNNs to Separable Convolution

So far, we have tried to apply a 2D convolution operation to a single video frame for feature
extraction and then stack it on the time axis to obtain the final feature containing temporal
information. However, if the convolution operation can extract the temporal information
while extracting the spatial information, there is no need to stack the temporal features
manually. Therefore, C3D [71] uses 3D convolution to obtain video features. In 3D convolu-
tion, each convolution kernel has three dimensions, two are used in the spatial domain, and
the other is sliding convolution on the time axis. The convolution kernels used in C3D are
all the same size 3× 3× 3, and it does not involve any hand-designed feature input, so it is
completely end-to-end trainable. The authors tried to design the network to be increasingly
deeper, finally reaching the SOTA result at that time.

Figure 2.18: 2D and 3D convolution operations. [71]

Figure 2.19: C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax
output layer. [71]

However, the biggest problem is that C3D has many parameters, which leads to the need for
a large amount of labelled data for training. Moreover, 3D convolution is difficult to pre-train
on large-scale image data sets such as ImageNet, which means it has to train from scratch.
If the data set is small, then C3D often produces severe overfitting. With the continuous
launch of large-scale video action understanding data sets, such as the launch of Kinetics
[41], this problem has been alleviated. Carreira and Zisserman [10] further proposed inflating
all the 2D convolution filters in an Inception network [68] into 3D convolutions named I3D,
and inherit the two streams ideas of [62]: use two networks to take both RGB and optical
flow as input, then averaged their predictions. However, I3D is still computationally heavy,
making the deployment diffcult and convergence slow. Also, they are more likely to overfit
as they have more parameters than their 2D counterparts.
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Since 3D CNNs have large computational costs, researchers have been interested in explor-

Figure 2.20: Bottleneck building blocks of Residual Unit and Pseudo-3D. [60]

ing more efficient models. The technique to save computation is to replace 3D convolution
with separable convolutions. Mobile Nets, which have particularly efficient architecture for
2D image based tasks, achieve excellent performance with separable convolutions.The 3D
version is similar, except the idea is applied to the temporal dimension instead of the spatial
dimention. Pseudo-3D ResNet [60] continues the residual design of ResNet 2.20. This strat-
egy allows the network to be designed deeper, with fewer parameters, but the performance
can reach the SOTA results. Not only that, but P3D makes us notice that the number of
parameters can be greatly reduced by decomposing 3D convolution into 2D (spatial)+1D
(temporal) convolution. This operation also makes it possible to pretrain on the image data
set (although this pre-training may not be as intuitive as a 2D network).

Figure 2.21: Residual network architectures for video classification considered in [72]. (a) R2D are 2D ResNets;
(b) MCx are ResNets with mixed convolutions (MC3 is presented in this figure); (c) rMCx use reversed mixed convolutions
(rMC3 is shown here); (d) R3D are 3D ResNets; and (e) R(2+1)D are ResNets with (2+1)D convolutions. For interpretability,
residual connections are omitted.
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In [72], the authors proposed the R(2+1)D network. The author compared a series of
different 2D+1D decomposition operations, including a series of 2D+3D operations. The
difference from P3D ResNet is that R(2+1)D uses units with the same structure, as shown
in 2.4.2, unlike P3D, which has three different residual blocks designs. This design simplifies
the design while achieving the SOTA performance.

2.5 Self-supervised Video Representation Learning

Video is a series of semantically related single-frame two-dimensional images superimposed
on the time axis, and it is not easy to extract temporal semantic information. Various exper-
iments have proved that existing deep networks do not perform well in extracting temporal
semantic features. The main reason is that the amount of labelled video data is insufficient,
so self-supervised learning has gradually received attention in video understanding. The in-
sufficient amount of annotated video data does not necessarily reflect the lack of annotations
at the video level. There may be many video-level data with action tags, but these videos
may not have been cropped, and there is too much unrelated content in the video. It requires
intensive manual labour to accurately locate the time when the action occurs in the video.
Furthermore, such self-supervised learning can help the networks to learn representations
from unlabelled data. Therefore, researchers have recently investigated the transferability of
learned video representations from self-supervised tasks to downstream tasks such as action
recognition or video retrieval.

Figure 2.22: An overview of methods for learning characterization by verifying the sequence of video frames. (A) Data
sampling process; (b) The model is a three-tuple conjoined network where all input frames share weights. [54]
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The video frames will naturally be arranged in chronological order. Researchers have pro-
posed some self-supervised tasks, hoping that a good representation can be learned from the
correct frame ordering. One of the ideas is to verify the order of the frames [54]. The pretext
task is used to determine whether the frame sequence in the video is arranged in the correct
time sequence (time sequence check). The model needs to track and infer the small motion
of the object in the entire frame to complete this task.

The training frame is sampled from a window with large motion changes. Each sample
gets 5 frames (fa, fb, fc, fd, fe), the order of the timestamp is a < b < c < d < e. In addition
to these five video frames, we also created a positive tuple (fb, fc, fd) and two negative tuples:
(fb, fa, fd) and (fb, fe, fd). The pretext task is a binary classification that asks the network
to predict whether the temporal order of the input tuple is correct.

Similar work is O3N (Odd-One-Out Network) [20], in which the self-supervision task is
also based on the verification of video frame sequences. Given N+1 input video fragments,
the video frames in one of the fragments are scrambled and therefore have the wrong frame
order, while the remaining N fragments maintain the correct time order. The O3N network
learns to predict which video clip is scrambled. In their experiment, the input contained six
video segments, and each fragment contained six frames.

The idea of contrastive learning is very effective in the field of self-supervised learning.
Models such as MoCo [12] and SimCLR [11] have reached SOTA or even surpassed su-
pervised learning in ImageNet image classification tasks. CoCLR [30] was proposed by
Oxford University, which draws on a two-stream network and uses optical flow information
to aid self-supervision. As mentioned before, we need both positive and negative samples
for each instance to build an input pair for contrastive learning. The authors proposes a
self-supervised co-op training method called CoCLR, which stands for ”Co-training and Con-
trastive learning of visual representation.” to use other complementary views of the data.
The authors chooses the RGB video frame and optical flow as two views. As shown in Fig.
2.23, the positive instances obtained from the stream can be used to ”bridge” the gaps be-
tween instances of RGB video clips. Conversely, the positive instances obtained from RGB
video clips can be linked to optical flow clips of the same action. As a result, the CoCLR
algorithm exceeds the performance obtained using InfoNCE for RGB instance-based training
only. The paper mainly uses the supplementary information provided by another view to
improve the RGB and Flow network representation. In order to make inferences, we can
choose to use only the RGB network or the Flow network or use both networks at the same
time.

The CoCLR algorithm is carried out in two stages: initialization and rotation. First, use
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Figure 2.23: Two video clips of a golf-swing action and their corresponding optical flows. In this example, the flow patterns
are very similar across different video instances despite significant variations in RGB space. This observation motivates the
idea of co-training, which aims to gradually enhance the representation power of both networks, f1(·) and f2(·), by mining hard
positives from one another. [30]

InfoNCE loss to independently train two models with different views and establish and op-
timize their respective projection spaces. After training through the InfoNCE loss method,
the RGB and flow networks have gained a stronger ability to learn representation than the
randomly-initialized network. Then alternate using one network to sample positive pairs for
another network, here we take flow to RGB as an example:

• First, obtain the sample of the optical flow.

• Send it to the Flow network to extract features.

• Compare the feature with the features extracted by other flow samples.

• Select the flow top K similar instances in the space (here K is a hyperparameter).

• Then we use these K samples with similar flow features as positive pairs to update the
projection space for contrastive learning in the RGB network.

The paper uses two downstream tasks on the datasets UCF101 and HMDB51, action recog-
nition and video retrieval, to evaluate the CoCLR framework. The experiment shows that
the latest technology or equivalent performance is superior to other self-supervised methods,
and the data usage efficiency is significantly improved; that is, less data is required for self-
supervised pre-training.

Recent works like SpeedNet or Pace Prediciton [8, 81] demonstrated that teaching networks
the speediness of motion in videos through playing speed classification. Based on simple
physics, executing the same task at different speeds causes different motion dynamics. Thus,
we can simulate this phenomenon easily by playing videos at different playing rates. The
hypothesis is that the networks can only perform playing speed classification tasks when they
understand the video content and distinguish the non-trivial motion features (the trivial mo-
tion includes motionless, subtle actions etc.). The core idea of playing speed classification is
sampling frame clips from original videos using two different frame sampling rates: (1) orig-
inal FPS and (2) downsampling by skipping one frame. They define the frame clips sampled
with actual rate as standard speed clip, and the clips sampled with latter rate as fast speed
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clip. During the training, the data loader will randomly sample both frame clips with the
constant length as input to the encoder networks, then predicting the input’s sampling rate
from the encoder’s output feature. Traditionally, the learning of motion dynamic was made
explicit by computing optical flow between the video frame pairs and identifying the region
where several vital attributes (i.e., magnitude and orientation) occurred and changed among
the frames. Unfortunately, the cost of computing dense optical flow among the video frames
is prohibitive and time-consuming.

Figure 2.24: SpeedNet architecture, is trained to classify an input video sequence as either normal speed, or sped up. [8]

In SpeedNet’s downstream experiments, they transferred the pre-trained weights of stan-
dard 3D-CNN (C3D[71], R21D[72] etc.) using Kinetics 400 [41]’s RGB frames then finetuned
with the smaller action recognition dataset such as UCF101[65] and HMDB51[45]. They also
trained another network that takes per frame average flow magnitude from the Kinetic 400
as input to serve as a flow baseline. The finetuning results of SpeedNets exceed the flow
baseline and other prior works and showed that the networks learn reliable spatial-temporal
representation.

2.6 Downstream Tasks and Related Datasets

2.6.1 Action Recognition

The research of action recognition is mainly based on the recognition of video data, which
mainly includes gesture recognition, sports recognition, and target recognition. Research
in all these directions is inseparable from representative video datasets. However, unlike
the very mature and commonly used data sets in image recognition, such as MNIST and
ImageNet, the data sets in the field of action recognition are relatively limited and usually
take a large amount of hard disk space.

UCF sports action dataset [65] is a data set mainly about sports. This data set is also
a relatively high-quality data set. The disadvantage is that the number of each type of data
is relatively small. In the beginning, there were only 13 regular sports actions. However, as
the performance of the video understanding network improved, UCF added other non-sports
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actions (such as makeup, dancing, etc.) to the data set and subsequently launched UCF50
(containing 50 categories) and UCF101 (containing 101 categories).

Figure 2.25: UCF101 class examples. [65]

The HMDB dataset [45] has 51 categories, and each category has 100-200 sets of data on
average. From the view of data volume and category, it can be seen that it has relatively
rich data, but this data set is also built by some movie scenes and daily videos taken by
cameras, so the background is relatively complicated, and there are also motion blur and
scene switching contents. Therefore, this data set may be more suitable for target recog-
nition and target detection. As an action recognition task, it is more difficult than UCF101.

The Kinetics series of datasets [41] are popular benchmarks in action recognition. As it
is a database for downloading YouTube videos, some of the original videos may be removed
or modified. Therefore, the data sets used by different users will be slightly different, and
it is almost impossible to reproduce the results of others completely. Each video sample
of Kinetics data corresponds to an annotation, and the average video length is about 10s.
The annotation content includes category name, YouTube video ID (for downloading), video
start time (timestamp in YouTube original video), video end time (timestamp in YouTube
original video), which dataset it belongs to (training/validation/test set). The Kinetics
dataset includes a wide range of categories, with 400 categories (Kinetics400) when it was
just launched in 2017. Later, 600 and 700 classes versions (Kinetics600 and Kinetics700)
were introduced to test larger neural networks.

2.6.2 Video Retrieval

In video retrieval, we input a query video, and then get related videos from a large video
set [1]. The specific operation is to use the network to extract the feature vector of the
query video and then compare it with the feature vector extracted from other data in the
dataset, select the closest sample, and verify whether it is similar to query video in semantics
(or belongs to the same class). Similar to contrast learning, Euclidean distance can also be
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Figure 2.26: Illustration of HMDB51 examples. [45]
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used as the calculation of similarity. When this task is used as an evaluation metric for
self-supervised learning, it does not require any follow-up training. So the video retrieval
can be a good evaluation of the quality of the video representation extracted by the model.
The evaluation method is checking whether there are video clips with the same action label
in the Top-K samples (usually K ∈ [10, 20, 50] [8, 81]) closest to the query video in the rep-
resentation space.

All action recognition datasets introduced above can be used for video retrieval as well.
However, there are still some specialized video retrieval datasets (such as MSRVTT [69] or
YouCook2 [4]) include the text description of the query. The input of the system can be
both video and text or text only. The network has to model both visual data and text data
to make the prediction. This thesis will not discuss these video retrieval datasets.
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Chapter 3

Speediness Change Classification

3.1 Introduction

When we design pretext tasks for self-supervised learning, the first thing to consider is what
kind of tasks the model can complete only after acquiring knowledge about video features.
For example, the experimental results of the previous work, Speed Net [8], show that the
binary classification of normal speed and double speed video can be completed only after
the model has learned the spatiotemporal features well.

But Speed-Net’s binary classification task is too simple: it only classifies normal playback
speed and double playback speed. We believe that such pretext tasks are not enough to
explore the relationship between video playback speed classification and spatiotemporal fea-
ture learning. When designing pretext tasks, one rule of thumbs is that if we use a more
complex pretext task, the network may learn a better representation space. Therefore, we
think it is worth exploring whether Speed-Net’s pretext task can improve the efficiency of
self-supervised learning when more speed transformations are added. The most obvious way
is to add more speediness classes to the system, such as 3x and 4x sped-up video clips,
to explore the spatial-temporal features further. Wang et al. [81] achieve better results in
downstream tasks through this approach.

On the surface, video clips of different speeds are obtained by data loader using different
sampling rates when capturing video frames. But we can also view it as a transformation
of a fixed-length video clip in the temporal dimension. Changing the speed is just one of
the easiest ways to change. We asked whether it is possible to improve the efficiency of
self-supervised learning by adding a new temporal transformation method to the previous
classification task. Therefore, we designed two new speed transformation methods in the
first experiment: speed jumping up and speed jumping down. When generating pretraining

37



clips from the original video, we changed the playback speed (i.e. frame sampling rate)
at a certain point in the clip. The speed can be either increased (speed jumping up) or
decreased (speed jumping down), and we ask the network to classify these two transforma-
tions and other constant speeds. The subsequent downstream task evaluation shows that
the two newly added transformations are beneficial for the self-supervised learning of video
representations.

3.2 Speediness Change Classes

Similar to the previous works, we will not use all video frames in one epoch in order to avoid
overfitting. Let V = {vi}Ni=1 be a video set containing N videos. Each video contains a ran-
dom number of frames T = {ti}mi=1,m > 0. To obtain a single input sample to the network
from video set vi, we sample a frame clip ci at a random start point tstart with constant
length K from the original video. For a clip ci sampled from video vi, our speediness-aware
(awareness of the difference among playing speeds) self-supervision strategy aims to learn
a spatiotemporal encoder Fθf parameterized by θf that maps ci to speediness-aware rich
feature fi.

In mechanics, we define the rate of change of the velocity of an object with respect to
time as acceleration. However, it is impossible to quantify the video scene’s dynamic clearly
because the shifting of pixels may not reflect the objects’ actual movement speed. Therefore,
similar to the SpeedNet, we are not targeting to predict the object’s exact acceleration in a
video. Typically, there are three usual types of change of pace in our daily life: acceleration
(speed jump-up), deceleration (speed jump-down), and constant (no change of pace). We
want to design serval frame sampling strategies to mimic these three motion dynamics and
randomly apply them to the video clips. Our pretext task will be asking the network to
reveal which sampling strategy the speed pattern of the input belongs to. The speediness
pattern we used for this approach includes:

Constant Speeds: The first pattern will be sampling video clips with a constant frame
rate. To increase the variety, the playing speed rate of the video clips will include both the
actual rate and the sped-up rate. As shown in the Fig[3.1], we will sample this class’s clips
by different downsampling rates p. If p = 1, the clips are sampled consecutively from the
video (i.e. the playing speed is the same as the original). If p > 1, we sample video frames
from the original video for every p frames, so the clips’ motion will look like ”sped-up”. As
mentioned in Wang’s paper[81], it is worth trying out the up-sampled video clips (i.e. slow
down the playing speed), but in this case, we need to obtain intermediate frames by inter-
polation. The interpolation process is costly, and the interpolation error may also affect the
inference. Wang slow down the playing rate by inserting repeating frames to the clip. This
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Figure 3.1: Example of sampling constant speed clips with clip length K = 4 from the
original video frames. The samples start at random start points with random sampling
rates.

method can slow down the motion visually but has significant compatibility issues with our
proposed approach. Repeating frames can be considered as zero speed, so their interpolation
method is sampling the clips with p = 0 and p = 1 alternatively, instead of sampling with
0 < p < 1. Since our experiments also aim to identify the clips with variable playing speed,
altering sample rates is similar to our speed jump definition. Therefore, we only consider
the sampling rates p≥1 here.

Similar to the Pace Prediction[81] we select the downsampling rate from 1 to 4 for this
class. Wang’s experiments indicate that more speediness classes can cause prediction task to
become too difficult for the network and it fails to learn useful semantic features. Therefore,
we follow Wang’s maximum constant playing rate as the start. In the later experiments, we
also carefully tune the speed-up gap to control the hardness and look for the best settings
of the pretraining.

We do not use descriptive words like ”normal” or ”fast” to describe the video clips sampled
with different playing speed rates because the FPS of the video depends on the recording
device; it can vary from 8 FPS to 60 FPS or even more. However, we are still asking the
network to predict the sampling rate in this approach, which means using the sampling rate
as a subclass.

Speed jump-up: Our second sampling pattern tries to simulate the acceleration of the
motion. It is difficult to create a smooth, realistically accelerated clip from the video. There-
fore we are going to apply different sampling rates when creating a video clip. To sample
an accelerating clip, we first select two different sampling rates r1, r2 and r1 < r2 from our
constant speed class sampling range, denoted by pj = (r1, r2), j = r2 − r1, 0 < j < 3. Pa-
rameter j is the gap between two sampling rates which also represents the extent of speed
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Figure 3.2: Example of sampling speed jump-up clips with clip length K = 8.

jump-up. We are using parameter j as the subclass of the speed jump-up clips, and we limit
this parameter 0 < j < 3 to reduce the difficulty of the task. Before the sampling, we choose
the parameter j firstly, we use uniformed random sampling from1 to 3 for this parameter in
our experiments. Then random sample available (r1, r2) pairs based on j (e.g. since we set
the range of p between 1 to 4, if j = 1 then available r1 is 1 to 3 and r2 = r1 +1, if j = 2 then
available r1 is 1 to 2 and r2 = r1 + 2.) In this approach we always let the change of speed
happened at the middle of the clip ci[

K
2

], where ci[k] stands for the image at time position
k of clip ci. During the sampling of the clip ci with length K(usually a power of 2), we use
smaller sampling rate r1 for the first half of the clip ci[0 : K

2
], and use larger sampling rate

r = 2 for the second half of the clip ci[
K
2

: K] (Fig[3.2]).

Figure 3.3: Example of sampling speed jump-down clips with clip length K = 8.

Speed jump-down: The third pattern is speed jump-down, which is simulating the de-
crease of the motion dynamic. The method to generate training samples is similar to the
speed jump-up pattern except the first sampling rate r1 is greater than the second one:
pj = (r1, r2), j = r1 − r2, 0 < j < 3. The change of speed happens at the same place as for
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the speed jump-up (ci[
K
2

]). Sampling speed jump-down clips are still using the same range of
p which is 1 to 4. As shown in the Fig[3.3], if j = 1 then available r1 is 2 to 4 and r2 = r1−1,
if j = 2 then available r1 is 3 to 4 and r2 = r1 − 2.

We uniformly sample all three transform patterns above during the iteration of the video set.
Then we uniformly sample the speediness rate p for the constant speed pattern or the speed
jump-up parameter j for the speed jump-up/speed jump-down pattern. We will discuss the
detail of the sampling method in the implementation section later. Finally, we are asking
the network to predict both the pattern class of the clip and the subclass (i.e. the value of
p or j) by using a linear classifier on top of the learned features. The clip size K in Fig[3.4]
is only for visualization, we use larger clip size K = 16 in our implementation which is a
popular clip size in the previous works.

Figure 3.4: A visualization of the classification network in the first approach. For
each video sample, we select the transform pattern randomly and generate corresponding
video clip with random start frame. The final classifier layer will output a probability
distribution over all possible transform patterns.
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3.3 Contrastive Learning Module

Similar to Pace-Prediction [81], we use the strategy of contrastive learning. It originate from
Noise-Contrastive Estimation loss (NCE loss) [26] and targets to recognize the positive sam-
ples from a group of negative samples. If we can define a can further regularize the feature
learning. We aim to define a simple binary problem to be solved by the network and store
the knowledge through embedding the features from encoder to a latent vector space. The
NCE loss can help repel the negative groups from the positive samples in the latent vector
space.

An essential issue of contrastive learning is the strategy of designing positive and nega-
tive example pairs. We hope the extracted knowledge will help the feature learning process,
and use the learned embedding space to regulate the encoder’s output. For example, the
previous work, Pace Prediction [81], proposed two sampling strategies, same context and
same pace. For the same context, if the sample pair comes from the same video (different
speed transformation), it is positive; the others are negative. For the same pace strategy, if
the sample pair has the same speed transformation (from different videos), it is a positive
pair even the clips come from different videos. Our data loader will sample a pair of clips
for each input video: one query clip (the primary clip) and a key clip (a sample positive to
the query clip). The starting frames of the clips are randomly selected separately.

Based on their experiment results, we chose the same context strategy because the InfoNCE
loss 3.2 we used for contrastive learning is more powerful as we have more negative samples
to pair with the query clip. The maximum number of possible negative pairs is limited by
the speed transformation in the same pace strategy. On the other hand, we can use all clips
from other videos to assemble negative pairs if we choose the same context strategy.

Due to the limitations of GPU, we use the MoCo V2 approach [12] to perform contrastive
learning. Our data loader will randomly sample a pair of video clips (query and key) from a
video in each iteration. We randomly select a speed change class in the previous subsection,
then apply the corresponding speed transformation to the query clip and generate the label.
We also randomly apply a speed transformation to the key clip, same or different from the
query clip, but without generating the labels because only the query clip will perform speed
change classification.

Like MoCo V2, our model also consists of the upper and lower branches. Each branch
contains a backbone and a projection head. We respectively input query sample and key
sample to the upper and lower branches, then combine the projection vectors output by each
branch to form a positive pair for the calculation of InfoNCE loss [75]. It should be noted
that the key sample only participates in contrastive learning, so the data loader does not
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need to generate the label of the key sample. Instead, we only input the feature map from the
query backbone to the subsequent speed change classifier, then calculate the cross-entropy
loss [2] with the classifier’s result and the query sample’s label.

Since the original work is established for image inputs, we modify the MoCo V2 frame-
work to adapt the video clip inputs by replacing the original backbones of upper and lower
branches to 3D CNNs with 3D pooling layers (e.g. R21D [72], C3D [71]). In addition, we
also use 3D convolutional layers to replace the original projection head. We will introduce
the details of the network design in later subsection 3.4.

3.4 Network Design and Training Details

3.4.1 Network Overview

Here’s a complete neural network visualization for our pretraining. At the beginning of each
iteration, the backbone M and projection network Mp in the lower branch will be updated by
the upper branch’s parameters using the equation (2.7). In each branch, we fix the number
of frames in each input clip to 16, then feed the clip to a 3D CNN backbone. We only use the
query feature from the upper branch to calculate the cross-entropy loss of the speediness-
change classification. At the same time, the query feature and key feature are input to the
corresponding projection network. We combine the latent vectors from the two projection
networks into a positive sample pair for calculating NCE loss.

3.4.2 Projection Network

Like MoCo-v2, we embed the video representation from the backbone to a latent vector
space through a projection network. The projection network extracts the target information
(content, speediness, etc.) from the video representation and produces the latent vector
to form the positive sample pair. We use the projection network design in the previous
work COCLR [30]. Fig 3.6 is a visualization of our projection networks in upper and lower
branches. The dimension of the latent vector dimproj is a hyperparameter, and we set it to
128, as same as the previous work.The projection vectors from the upper and lower branches
will form a positive sample pair since the two input clips are from the same video.
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Figure 3.5: A visualization of the classification network in the first approach combining
with the MoCo-V2 contrastive learning framework

Figure 3.6: A visualization of the projection networks in the upper and lower branches.
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3.4.3 Loss Functions

Speediness change classification

For this task, we adopt the same-batch training strategy [8] during training, where each
batch contains all transformed clips for each speediness change class from each video sample.
The motivation is that, as the batch includes all possible transforms, the model will rely on
perceiving global motion consistency of the input clips rather than context information or any
other artificial cues to solve the task. We use the cross-entropy loss [2] for the optimization.
Assume that there are B samples in one batch, P is the speediness-change predictions from
the upper branch and y are the labels, the speediness-change classification loss Lcls is,

Lcls(P, y) =
1

B

B∑
i=1

(−
c∑
i=1

yi × log(Pi)) (3.1)

Contrastive loss

We also use the InfoNCE [11, 12] as the loss function for contrastive learning (Lctr). In each
iteration, the loss function Lctr will use the positive vector pair from the two-branch network
and N negative vector pairs by combining the query vector and all negative samples in the
memory bank. The hyperparameter N is the maximum capacity of the memory bank, and
we set it to 2048 in all experiments. Identical to the COCLR [30], we use dot product as the
vector similarity metric S(zi, zj).

Lctr(vq, vk) = −log (exp(S(vq, vk)/τ)∑K
i=1 exp(S(vq, vk)/τ))

(3.2)

Joint optimization.

Our self-supervision strategy trains the upper branch backbone Q to generate video repre-
sentations that are reliable for both pretext tasks and the same-content contrastive learning.
We achieve this by jointly optimizing our network with the multi-loss function,

L = Lcls + λLctr (3.3)

where λ ∈ [0, 1] are the individual weights on the losses. Usually we set the λ between
[0.25, 0.5], since the contrastive loss is working similar to a regularization term at here.
We first set λ to 0.5 to make two loss terms have similar initial values. Then, we reduce
this parameter to 0.25 to get better performance on finetuning for action recognition tasks
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through validation. The joint optimization promotes the model to learn speediness-aware
rich features that embed the global-local motion patterns and the context information of the
video.

3.5 Experiments and Results

3.5.1 Implementation Details and Datasets

To evaluate the efficacy of our proposed method, we choose the following video understand-
ing benchmark datasets that are popularly used for action recognition, i.e. UCF101 [65]
and HMDB51 [45]. For UCF101 and HMDB51, we use the training/testing split 1 for a fair
comparison to prior works. During the pretraining stage, we use 10% of the training set for
validation.

UCF101 action recognition dataset is introduced by [65] in 2012. It includes 13,320 videos,
around 27 hours in total. The dataset includes 101 different classes, and the content mainly
covers five categories of actions: human-object interaction, human body movements, human-
human interaction, playing musical instruments, sports. Videos of each category are divided
into 25 groups, and each group contains 4-7 videos. The videos from the same group have
similar characteristics, such as background, characters, etc. All videos are from YouTube,
25FPS sample rate, and the average video duration is 7.21 seconds.

The HMDB dataset [45] is one of the most important datasets in the current research field of
action recognition, focusing on human behaviour. Brown University released the HMDB51
dataset in 2011. Most of the videos in this dataset come from movies, and some come from
online video libraries such as YouTube. The database contains 6849 short videos, 30FPS,
divided into 51 categories of human actions, and each class has at least 101 samples.

Although the HMDB dataset has fewer classes, it’s a more challenging dataset than UCF101
because the HMDB classification requires the model to learn detailed temporal features of
human actions. Compared with HMDB51, UCF101 has one characteristic or shortcomings.
The model can classify UCF Sports well using only the spatial features of the scene because
many sports activities are carried out in typical scenarios. Such as swimming sports are
always in the water, football games are usually played on grass, and skiing on snow. Also,
the different samples in the same category are likely to come from the same video group
thus have a similar background. Therefore, simply using the UCF database to evaluate the
model is not enough to see whether the model has learned good temporal features.

When pretraining with UCF101, we use 25-fps source frames for both pretrained and eval-
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uation datasets. The practically-used fps of source videos affect the video clip’s time-span
for a fixed temporal dimension. The smaller the fps is, the longer time-span the video clip
covers. In our experiments, we use UCF101 for pretraining and UCF101, HMDB51 in the
action classification task. As the source videos of UCF101 and HMDB51 are 25-fps, all the
pretraining and evaluation datasets are prepared with 25-fps.

Common augmentations are applied on input video clips, including color jittering (ran-
domly change the brightness, contrast and saturation, p = 0.8), random cropping, random
gray-scale (convert the frames to gray-scale images, p = 0.2), Gaussian blur (blurring the
frames with Gaussian filter, p = 0.5) and horizontal flipping (p = 0.5). The parameter p is
the probability of applying the augmentation to the individual sample.

In model pretraining stage, we use the training set of UCF101 without any annotations.
Stochastic gradient descent(SGD) is used for optimization with an initial learning rate of
0.01. For UCF101, the model is pretrained with a batch size of 32 for 400 epochs, and the
learning rate is decayed by 0.1 at the 150th, 250th and 350th epoch when the loss plateaus.
We let λ1=1.0, λ2=0.25 in (4.3). For all self-supervised pretraining and downstream tasks,
we set the length of input video clip ln as 16 with a resolution of 112× 112. For contrastive
learning, we use the same settings as the MoCo-v2. The maximum capacity of the memory
bank K = 2048. The temperature τ = 0.07, the momentum updating weight m = 0.999 and
the dimension of the latent projection space is dimproj = 128.

We use several downstream tasks to evaluate the effectiveness of our method.

(1) Action recognition: The model design for the Action recognition tasks has the same
backbone (feature encoder) as the pretrained model, so we can directly load the pretrained
weights to the action recognition network. Then we append an adaptive spatial-temporal
average pooling layer and a fully-connected layer after the pretrained backbone for action
recognition. The data processing part will be the same as the pretraining; the only difference
is that now we use the cross-entropy loss of action classification to optimize the network.
The model is finetuned end-to-end on the training set of UCF101, HMDB51 for 200 epochs
with a batch size of 16. We optimize with SGD with an initial learning rate of 0.01, which
is decayed by 0.1 at the 80th and 160th epoch when the loss plateaus.

After the finetuning stage, we have to infer the action labels for the videos in the test-
ing set. To facilitate evaluation and comparison with previous works, we follow the inference
protocol in [81, 37, 80]. First, we sample ten 16-frames clips uniformly from each testing
video in the UCF101 and HMDB51. We only apply constant center cropping on the frames
for each clip and no other data augmentations. Secondly, we input the clips to the finetuned
model and get classification probabilities. At last, we average the softmax probabilities of
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all clips in the video to generate the predicted action label.

(2) Video retrieval: We also follow the previous work’s evaluation protocol for the video
retrieval task [81, 37, 80]. Although this task does not require a finetune stage, we must
infer the 1-D feature vector for each testing video using the pretrained backbone. After
inputting the frame clip, we extract the 3-D feature output from the backbone (the encoding
part) then apply a 3-D average pooling to obtain the 1-D feature. For each video in the
query set or retrieval target set, we uniformly sample ten crops then extract and average the
ten features.

Before performing the nearest-neighbour retrieval, we first normalize the features using the
training set’s statistics. Then, cosine distance is utilized as the similarity metric. Next,
query videos are taken from the test split of UCF101 or HMDB51, and all the videos of the
train split are considered retrieval targets. Finally, we consider a query video is correctly
classified if its k-nearest neighbours contain at least one video from the correct class. We
evaluate our method on UCF101 and HMDB51 with K = 1, 5, 10, 20 and 50. Recall at
top-K (R@k) is used as the evaluation metric.

3.5.2 Ablation Study

To determine the positive effects of each pretext task, we conduct ablation studies with
R(2+1)D [72] network and evaluate with action recognition task on UCF101. In this section,
we fix the random seeds and we use the training/testing split 1 in the UCF101 dataset and
10% of the training set is used as a validation set during the pretraining. We re-implement
the pace prediction work [81] with the constant speediness classes [1, 4] as a baseline (i.e.the
speediness-change classes without the speed jump-up classes and speed jump-down classes).
We also re-implement the MoCo-v2 and using only the same context contrastive learning as
the pretext task (CL). The primary purpose of this experiment is to serve as a baseline for
combining speediness pretext tasks and contrastive learning. At last, we have a fine-tuned
action recognition network with random initialized backbone (without pretext pretraining)
to observe how pretext task pretraining help the action recognition task.

We have to train our re-implementation since the original author did not give the com-
plete code and model parameters. Still, from the results of finetuning, our re-implement
results are close to the original paper or even higher. After that, we first try to combine the
previous constant speeds classes and speediness change classes for pretraining. According to
the results of finetuning, the classification of action recognition has improved after adding
new categories, just like the hypothesis.

However, the help of these four new categories is minimal because the accuracy rate is
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Table 3.1: Ablation studies of our first approach on action recognition task - its sensitivity to the new speed jump-up and
speed jump-down classes, the individual contribution of each pretext task. “baseline”, “SC” and “CL” respectively denotes the
pace prediction baseline, our speediness change classification task and contrastive learning.

Method Pretrain Classes UCF101 (Accuracy %)

Random Init – 57.9

baseline constant speed 75.1
SC speed jump 72.8
SC constant speed & speed jump 75.8
CL – 75.6

baseline + CL constant speed 76.7
SC + CL constant speed & speed jump 77.2

only enhanced by 0.7% under the same environment and parameters. And when we only use
the new four speediness changes classes as the classification task of the pretraining, the result
of finetuning drops to 72.8%. For the above results, our analysis is that the new speediness
change classification is an oversimplified pretext task. From the second row of table 3.1, we
can observe that even if the model does not know the constant speediness information, it
can still complete the speediness change classification task.

We believe that the reason is that the model mainly focuses on the spatial information
before and after the speed change point when completing the task. Although we added a
little disturbance (-1/+1) to the speed change position, it can still be regarded as an artificial
signal due to the low randomness. Therefore, the model does not need to pay attention to
the entire input clip when inferring; only some frames and speed change points are enough
to complete the task.

When the classification task combines constant speed classes and speed change classes, the
model needs to extract more temporal information from the input clips to reduce loss. How-
ever, due to the existence of speediness change points, the task’s difficulty drops rapidly in
subsequent epochs, which weakens the representation of the feature. Therefore, it doesn’t
help much for the following action recognition task.

The second part of the table 3.1 shows the experimental results of combining contrastive
learning with speediness classification. The results are in line with our expectation: the
same context contrastive learning strengthens the feature representation of the model in
the spatial dimension. Applying the MoCO-v2 framework can make the model have higher
action recognition accuracy after finetuning on the UCF101 database. The improvement
on the baseline setting is +1.6, which is consistent with the results on the original paper
[81]. For our method, the improvement brought by contrastive learning is relatively low
(+1.4). Speediness change classification also requires the model to learn spatial features to
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recognize changes in playback speed, which may overlap with the information obtained from
contrastive learning.

We initially conjectured that adding contrastive learning would reduce the model’s per-
formance on the original pretext task. This is because the model needs to simultaneously
minimize the classification task’s loss functions and the contrastive loss. However, whether
it is the baseline or our method, the accuracy of the original speediness classification has
significantly been improved after adding the contrastive learning module. We think the cause
is that the model has obtained more information in the spatial dimension of the video from
contrastive learning. This extra spatial information can help the model better understand
the temporal order and speediness of the video, and the speediness classification is improved
by better temporal reasoning.

3.5.3 Evaluation of Self-supervised Representation Learning

To examine the effectiveness of the proposed speediness-aware pretext tasks, we transfer the
learned representation to the downstream tasks, including video action recognition, video
retrieval and video action localization. For fair and faithful comparison, we pick the current
state-of-the art methods that utilize only RGB frames as conjectured that.

Table 3.2: Comparison with SOTA self-supervised approaches on action recognition task with benchmark datasets.

Method Pretrained Resolution Backbone UCF101 HMDB51

Shuffle[55] UCF101 227×227 CaffeNet 50.2 18.1
VCOP [84] UCF101 112×112 R(2+1)D 72.4 30.9
VCP [53] UCF101 112×112 C3D 68.5 32.5

PacePred [81] UCF101 112×112 R(2+1)D 75.9 35.9
PRP [86] UCF101 112×112 R(2+1)D 72.1 35

TempTrans [37] UCF101 112×112 R(2+1)D 81.6 46.4
PSPNet [13] UCF101 112×112 R3D 70.0 33.7
PSPNet [13] UCF101 112×112 R(2+1)D 74.8 36.8

STS [80] UCF101 112×112 R(2+1)D 77.8 40.7

Speediness Change UCF101 112×112 C3D 71.3 36.3
Speediness Change UCF101 112×112 R3D 70.7 37
Speediness Change UCF101 112×112 R(2+1)D 77.2 41.6
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Figure 3.7: Normalized confusion matrix for HMDB51 dataset finetuning
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Action recognition.

Table 3.2 shows that our speediness change classification task achieves compatible results
over the previous self-supervised methods on both benchmark datasets. We also plot the
normalized confusion matrix of HMDB51 dataset classification result for the finetuned R21D
model (Figure 3.7). The Y-axis represents the true labels and the X-axis represents the
predicted labels (we use class ID on the X-axis). With the same backbone, our models
pretrained on UCF101 outperform the original Pace Prediction network [81] and PSPNet [13].
Our method exceeds all previous work when the backbone is the classic C3D [71] and R3D
[72] network. But on the R(2+1)D network [72], our speediness-change classification is
far surpassed by the latest work: the temporal transformation classification method [37].
Temporal Transformation classification adds other special video frame arrangements such
as random, loop and temporal warping based on different playing speeds. And use two
classifiers to determine the video playback speed and frame motion type. The pretext task
design in this paper inspired our following approach: speediness-change classification and
localization (Chapter 4).

Video retrieval.

Table 3.3 presents the results of performing video retrieval task on UCF101. We use the
models pretrained on the training split of UCF101. Identical to the previous works ([81, 86,
37, 84, 53] etc.), we uniformly sample ten 16-frames clips from the testing videos as query
clips. The retrievals are computed on the videos from the training split for each query clip.
The top-k nearest neighbours are queried by computing the cosine distances between two
feature vectors. Unlike contrastive learning, the feature vectors here are not coming from
the projection network. Instead, we apply 3D average pooling on the backbone network’s
outputs to get a 1D feature vector. A query is correctly classified if the query class is included
in the top-k neighbour. We report the average accuracy for each k value here. Although
our video retrieval results underperform the Pace Prediction, they are compatible with other
previous works for all backbones.
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Table 3.3: Comparison with SOTA self-supervised approaches on video retrieval Recall with UCF101 and HMDB51 dataset.

Method UCF101/HMDB51
(Pretrained on UCF101) R@1 R@5 R@10 R@20 R@50

Backbone: AlexNet

Jigsaw [58] 19.7/– 28.5/– 33.5/– 40.0/– 49.4/–
OPN [48] 19.9/– 28.7/– 34.0/– 40.6/– 51.6/–

Backbone: C3D

VCOP [84] 12.5/7.4 29.0/22.6 39.0/34.4 50.6/48.5 66.9/70.1
VCP [53] 17.3/7.8 31.5/23.8 42.0/35.5 52.6/49.3 67.7/71.6

PacePred [81] 31.9/12.5 49.7/32.2 59.2/45.4 68.9/61.0 80.2/80.7
PRP [86] 23.2/10.5 38.1/27.2 46.0/40.4 55.7/56.2 68.4/75.9

Speediness Change [ours] 26.2/11.2 45.9/30.8 53.6/44.4 62.9/57.8 3.2/77.1

Backbone: R3D

VCOP [84] 14.1/7.6 30.3/22.9 40.4/34.4 51.1/48.8 66.5/68.9
VCP [53] 18.6/7.6 33.6/24.4 42.5/36.6 53.5/53.6 68.1/76.4

PacePred [81] 23.8/9.6 38.1/26.9 46.4/41.1 53.5/56.1 69.8/76.5
PRP [86] 22.8/8.2 38.5/25.8 46.7/38.5 55.2/53.3 69.1/75.9

TempTrans [37] 26.1/– 48.5/– 59.1/– 69.6/– 82.8/–
MemDPC [29] 20.2/7.7 40.4/25.7 52.4/40.6 64.7/57.7 –/–
PSPNet [13] 24.6/10.3 41.9/26.6 51.3/38.8 62.7/54.6 67.9/76.8

Speediness Change [ours] 23.3/11.5 41.6/28.3 52.2/40.6 60.6/54.7 73.3/74.4

Backbone: R(2+1)D

VCOP [84] 10.7/5.7 25.9/19.5 35.4/30.7 47.3/45.8 63.9/67.0
VCP [53] 19.9/6.7 33.7/21.3 42.0/32.7 50.5/49.2 64.4/73.3

PacePred [81] 25.6/12.9 42.7/31.6 51.3/43.2 61.3/58.0 74.0/77.1
PRP [86] 20.3/8.2 34.0/25.3 41.9/36.2 51.7/51.0 64.2/73.0

Speediness Change [ours] 22.5/10.1 37.3/26.2 48.1/36.7 59.0/50.7 72.5/69.4
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Chapter 4

Multi-task: Speed Change
Classification and Localization

4.1 Introduction

The previous chapter introduced speediness change classification, a new pretext task for self-
supervised learning of video representation. To evaluate the performance of the new pretext
task, we use the pretrained backbone for the two downstream tasks of action recognition and
video retrieval. The evaluation results show that our model is compatible with the original
Pace Prediction baseline and previous work.

However, we found from the ablation study that the gap between our new method and the
baseline is not evident. After pre-training with our newly added speediness change classes,
the finetuning result of the backbone has only increased by 0.5%. We believe that the first
pretext task we designed did not effectively improve the pre-training. We review our method
in Chapter 3 and find two main drawbacks: (1) The playing speed changing point is always
next to the center frame, which can be an artificial signal or trivial feature for learning; (2)
grouping the speed change clips by speed change j = r1 − r2 makes the definition of each
speed change class ambiguous.

Therefore, we have improved the original speediness-change classification task. At first,
we adjust the method of generating the speediness-change clip: the speed transition may
occur anywhere in the middle part (between 1/3 and 2/3) of the clip. And we require the
model to make a more fine-grained speed classification to increase the difficulty. Secondly,
we propose a new pretext task: speediness-change localization. We add a new linear classi-
fier to the original network in parallel. After defining the possible range of speed transition,
we ask the model to determine between which two frames the speed transition occurs. Fi-
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nally, we repeat the downstream task experiment and ablation study for new pretext tasks.
The experimental results are better than the results of our first method and prove that the
modified speediness-change classification and speediness-change localization are helpful to
increase the pre-training efficiency of self-supervised learning.

4.2 Speed Change Recognition

Our ablation study in chapter 3 shows that the new variational speediness transformation
will improve video representation learning at the pretext task stage, compared to the previ-
ous work Pace Prediction [81]. However, the improvement is minor. Therefore, we revisited
the speediness-change classification in Chapter 3 and found inadequacies.

The first drawback of our original setting is that the transition points of the speeds are not
sufficiently random: the speediness-change clip sampling always changes the pace around the
center frame of the video clip. This construction method may be an artificial signal because
the model can focus only on the central frame of the clips. Once a noticeable change of
frame difference is detected near the center frame, classifying speediness-change classes can
be easy. The system may rely on this trivial feature as more video clips are processed.

Secondly, in the previous chapter, we group all clips with the same playing speed change
j = r1−r2 into one category, such as (1, 2), (2, 3), (3, 4) are classified to speed jump-up(j = 1).
But this grouping can make the speediness-change classes very hard to learn. The varied
appearance across different initial speeds make our speed change classes have a significant
variance, and our model struggles to capture the critical features of each speed change class.

Therefore, we decompose our previous speed change classification; each possible initial
speed r1 and second speed r2 pair will be treated as individual classes. For example, if the
possible playing speeds are still in [1, 2, 3, 4], the previous jump-up (j = r1 − r2 = 1) class
will be decomposed to three jump-up classes (1, 2), (2, 3), (3, 4), and the previous jump-up
(j = 2) class will be decomposed to two jump-up classes (1, 3), (2, 4). The constant speed
classes will remain the same, so the total number of classes is 42 = 16 classes. Our ablation
study shows that we can get better downstream task results if we reduce the possible playing
speeds to r1, r2 ∈ 1, 2, 3, so our final number of speediness-change classes is 9, listed in (4.1).

Also, our new clip generator will uniformly randomly sample the speed change point among
the middle 1

2
part of the clip. If the length of the clip is not divisible by 3, we round K

3
and

2K
3

down to an integer. For example, if the input length is 16, the speediness-change point is
randomly decided between the fifth and tenth frames. We do not want a range larger than
1
3

because the model may not have enough frames to infer the speed of r1 or r2. Since our
speediness-change point is now varied across different input clips, we add a new pretext task
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named speediness-change localization and stack it with speediness-change classification. We
introduce the detail of speediness-change localization in section 4.3.

Figure 4.1: Comparing the coarse-grained speediness-change classes and fine-grained speediness-change classes.

4.3 Localizing the Speed Change

As explained in section 4.2, we will randomly choose the speed change position ci[m] in
the clip for our second approach. The random positioning augments the input clips for
the speediness-change classification, avoids the overfitting and removes the possible artificial
signal. We cannot set the change point too early or late; otherwise, the network may not
acquire enough information from the first or second part of the clip to infer the speed.

After pretraining the backbones with our new speediness-change classification, we get im-
proved finetuning results. Therefore, we develop a new idea: use the model to locate the
speediness-change position as a pretext task parallel to the speediness-change classification.
The localization task can find the dividing frame of the first and second speeds, which is
helpful for the classification task. Furthermore, the classification task will learn about dif-
ferent playing speeds, which helps the localization task notice the temporal difference of the
first and second parts in the input clip.

We hypothesize that these tasks can complement each other by finding the speediness-change
location and identifying the two playing speeds. The parallel pretext tasks will help the pre-
training process converge quickly and allow the model to learn more fine-grained (more
motion change details) features. Besides, the transformations in past works are mainly ap-
plied at the whole clip or video level and provide coarse-grained labels for supervision. In
contrast, the proposed method operates at a local temporal point (i.e. where the speed
change occurs). This distinction encourages our approach to exploit frame-wise temporal
coherence and capture more fine-grained motion changes.
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Figure 4.2: Visualization of speediness-change localization labels.

In our implementation, we sample the speediness-change position m from the range [K
3

: 2K
3

]
which is also the label for the localization task. We use discrete classification to localize
the speed change point instead of regression since it is hard to use real numbers to describe
frame positions.

We add one dummy class label for the constant speed clips (when r1 = r2, the localiza-
tion label will always be the dummy label), so the total number of the labels is K

3
+ 1. The

label for the acceleration localization is even more fine-grained than the labels in the clas-
sification task. Thus, it drives the network to perceive more subtle and fine-grained motion
changes and complements the representation learning of the shared backbone.

4.4 Network Design and Training Details

4.4.1 Overview

Here’s a visualization of our new pretraining process, Figure 4.3. The overall structure
remains the same as in the previous chapter, and we still apply the MoCo-V2 framework
with the projection networks. The main difference is that the network will use the output
feature from the backbone Q to perform two parallel pretext tasks. First, the original
speediness-change classifier is replaced by the fine-grained one, as described in section 4.2.
We add an extra fully-connected layer parallel to the speediness-change classifier to perform
the speediness-change localization. The speediness-change localization is interpreted as a
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classification problem, and we are trying to find out which frame is the start of the second-
speed (r2) part of the input frame.

Figure 4.3: Visualization of our new multi-tasks pretraining.

4.4.2 Multi-task Classifiers

We list the pretraining classes we used in our final model in Figure 4.4. The speediness-
change classes are similar to the new classes described in section 4.2. Since we use 16-frame
input clips, our speediness-change localization has seven possible outputs. The range of
speediness-change point, or the start frame of the second part, is fixed between the fifth and
tenth frames. We need one more dummy class for the constant speed clips, in which it is
impossible to find the speediness-change point.

Figure 4.4: The training classes for our speediness-change classification and localization pretext tasks.
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4.4.3 Loss Functions

Fine-grained speediness change classification

For this task, we reuse the same loss function for our coarse-grained speediness-change clas-
sification in Chapter 3. The only difference is the number of classes. We still use the
cross-entropy loss [2] for the optimization. If the range of playing speeds r1, r2 ∈ [1, 2, 3],
number of classes csc will be 9. Assume that there are B samples in one batch, P is the
predictions from the upper branch and y are the labels, the fine-grained speediness-change
classification loss Lsc is,

Lsc(P, y) =
1

B

B∑
i=1

(−
csc∑
i=1

yi × log(Pi)) (4.1)

Speediness change localization

We don’t want the output of speediness-change localization to be floating point numbers;
otherwise, it will be hard to generate corresponding input clips and labels. So instead, we
convert the localization problem to finding the start frame of the second speed. Therefore,
speediness-change localization is a classification problem, and we can still optimize it with
cross-entropy loss. If the length of input clip K = 16, number of classes cloc will be 7, as
visualized in 4.4. Assume that there are B samples in one batch, P is the predictions from
the upper branch and y are the labels, the fine-grained speediness-change localization loss
Lloc is,

Lloc(P, y) =
1

B

B∑
i=1

(−
cloc∑
i=1

yi × log(Pi)) (4.2)

Joint optimization.

Similar to the final loss function in Chapter 3, We jointly optimize our network with the
multi-loss function for completing the speediness-change classification and localization tasks
and the contrastive learning,

L = Lloc + Lsc + λLctr (4.3)

where λ ∈ [0, 1] are the individual weights on the losses for contrastive learning. However,
we get our best validation results when we set the λ = 0.5 for the new pretraining approach.
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We test unbalanced weights for speediness-change localization and classification tasks, but
the finetuning results do not outperform the balanced setting. Therefore, the loss weights of
these two pretext tasks are the same (1.0).

4.5 Experiments and Results

4.5.1 Implementation Details and Datasets

We continue to use the implementation and hyperparameters we used in Chapter 3. The
pretraining dataset is still UCF101. First, we pretrain the backbones using the same op-
timization (SGD) and scheduler settings for 400 epochs. Then we finetune the pretrained
backbones for the action recognition task using UCF101 and HMDB51. We also test the
output features from the pretrained backbones to evaluate the quality of representation
learning. The details of the two downstream tasks: action recognition and video retrieval,
are described in section 3.5.1. All settings and the downstream tasks (action recognition and
video retrieval) evaluation protocol are the same as section 3.5.1, except the loss weights for
contrastive learning λ = 0.5 now.

However, we use a different clip sampling strategy in our new approach. The clip generator
will uniformly sample the clips with temporal transformations for each speediness-change
class in the previous method. Since we have two pretext tasks now, we must modify the
sampling method. We can uniformly sample either the speediness-change location within the
defined range (middle part frames and dummy class) first, then uniformly sample the avail-
able speediness-change class (r1, r2), or do it in reverse. The former sampling strategy can
make the backbones pretrained with more speed-change clips and less constant speed clips
because the generator will produce the constant speed clips only when the first sampler gives
a dummy label. The later strategy will define the speediness-change first. If r1 = r2, the
speediness-change location sampler will only produce a dummy label. We test both sampling
strategies and pick the former one in the end, based on the downstream task evaluation.

4.5.2 Ablation Study

Firstly, we run a series of pretraining experiments to find out the best settings for our
pretraining process and use the finetuning accuracy of UCF101 action recognition as an
evaluation metric. We deploy both pretext tasks (speediness-change classification and lo-
calization) in these experiments to compare different settings. The results are listed in the
table 4.1.
As section 4.5.1 mentioned, we want to decide which pretext task label will be defined first,
localization or classification. Row 1 in the table 4.1 shows that the finetuning accuracy drops
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Table 4.1: We try to find the best settings for our pretext tasks and better sampling strategy through finetuning the pretrained
model on UCF101 action recognition dataset. We use both pretext tasks in these experiments (speediness-change classification
and localization).

Primary Sampling Speediness Pretext Tasks UCF101 (Accuracy %)

classes 1,2,3 fine-grained classification + localization 78.2

locations 1,2 fine-grained classification + localization 79.3

locations 1,2,3 fine-grained classification + localization 79.7

locations 1,2,3,4 fine-grained classification + localization 78.9

down when defining the speediness-change class first. We believe the drop is caused by in-
sufficient pretraining on the speediness-change localization. Defining the speediness-change
class first is more likely to generate a constant speed clip. Class-primary uniform sampling
has a 1/3 chance to produce a constant speed clip, and location-primary uniform sampling
only has a 1/7 probability of making a constant speed clip. Unlike the clips with speediness-
change, the constant speed clips with dummy speediness-change localization labels do not
help improve the localization task. More speediness-change clips will lead the model to learn
the motion details through the localization task. This experiment is also evidence to prove
how our new speediness-change localization task and speediness-change clips improve the
effectiveness of video representation pretraining.

We tried different playing speed pools (the possible values for r1 and r2) for fine-grained
speediness-change classification. When we reduce the playing speeds pool to [1, 2], the fine-
tuning accuracy drops to 79.3%. The fine-grained speediness-change classification with a
small playing speeds pool might become a too-easy task for pretraining because the number
of classes reduces to four ([(1, 1), (2, 2), (1, 2), (2, 1)]). At the same time, the probability of
generating speediness-change clips is reduced to 0.5, so our model has less effective pretrain-
ing samples for the localization task.

However, the finetuning accuracy decreases after increasing the pool size to [1, 2, 3, 4]. Since
the number of classes will exponentially increase or decrease with different playing speed
pools, increasing the pool size to four can enhance the complexity and hardness of the classi-
fication task. It will also increase the hardness of the localization task because each possible
position has more variations (combination of different speeds). For a harder pretext task,
we might need more pretraining epochs or a more complex backbone [6].

Table 4.2 includes and compares the ablation study with our different speediness-change
tasks. We borrow the baseline experiment results from Chapter 3 (random initialize, Pace
Prediction re-implement and contrastive learning). We also add the finetuning results of
the models pretrained by our previous speediness-change classification in Chapter 3 but re-
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Table 4.2: Ablation studies of our new approach on action recognition task - demonstrate the effectiveness of our new fine-
grained speediness-change classification and localization. “baseline”, “SC” and “CL” respectively denotes the pace prediction
baseline, our speediness change classification task and contrastive learning. We rename the classification pretext task in Chapter
3 to coarse-grained classification, in order to distinguish it from the fine-grained classification we introduced in this Chapter.

Method Pretrain Classes UCF101 (Accuracy %)

Random Init – 57.9

baseline constant speed 75.1
CL – 75.6
SC coarse-grained classification 75.8
SC fine-grained classification 77.5
SC fine-grained classification + localization 79.7

baseline + CL constant speed 76.7
SC + CL coarse-grained classification 77.2
SC + CL fine-grained classification + localization 81.6

name it to coarse-grained classification to avoid confusion. The evaluation shows that both
new pretext tasks improve the pretraining process, with or without the contrastive learning
module. Our final version model achieves 81.6% action recognition accuracy on the UCF101
dataset.

4.5.3 Evaluation of Self-supervised Representation Learning

Same as Chapter 3, we apply new pretext tasks to different 3D-CNN backbones (R(2+1)D
[72], R3D [72], C3D [71]) and evaluate the pretrained model with two downstream tasks,
action recognition finetuning and video retrieval. After finetuning, we compared the model’s
performance on downstream tasks with our method in Chapter 3 and previous work that
only use RGB video clips as input.

Action Recognition

Both the R3D and C3D models pretrained using our new pretext tasks outperform the
previous work in the table 4.3 on the UCF101 classification task. The performance of
the R(2+1)D backbone on UCF101 is also comparable to SOTA, Temporal Transforma-
tion [37].Furthermore, all backbones far outperform all previous work in the list on another
commonly used action recognition database, HMDB51.

Again, we plot the HMDB51 classification task’s normalized confusion matrix for the fine-
tuned R21D model. We compare the new matrix to the similar plot in Chapter 3 (Fig. 3.7,
the colours on the diagonal pixels are deeper in the new plot (Fig. 4.5b), which means the
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Table 4.3: Comparison with SOTA self-supervised approaches on action recognition task with benchmark datasets.

Method Pretrained Resolution Backbone UCF101 HMDB51

Shuffle[55] UCF101 227×227 CaffeNet 50.2 18.1
VCOP [84] UCF101 112×112 R(2+1)D 72.4 30.9
VCP [53] UCF101 112×112 C3D 68.5 32.5

PacePred [81] UCF101 112×112 R(2+1)D 75.9 35.9
PRP [86] UCF101 112×112 R(2+1)D 72.1 35

TempTrans [37] UCF101 112×112 R(2+1)D 81.6 46.4
PSPNet [13] UCF101 112×112 R3D 70.0 33.7
PSPNet [13] UCF101 112×112 R(2+1)D 74.8 36.8

STS [80] UCF101 112×112 R(2+1)D 77.8 40.7

Ours (Chapter 3) UCF101 112×112 C3D 71.3 36.3
Ours (Chapter 3) UCF101 112×112 R3D 70.7 37
Ours (Chapter 3) UCF101 112×112 R(2+1)D 77.2 41.6

Ours (Chapter 4) UCF101 112×112 C3D 78.3 43.8
Ours (Chapter 4) UCF101 112×112 R3D 79.0 57.1
Ours (Chapter 4) UCF101 112×112 R(2+1)D 81.6 51.5

new pretraining method improves the classification accuracy of the finetuning. Based on the
confusion matrix plots, the R21D model pretrained by the new speediness multi-tasks deliv-
ers better feature representation for some hard human interactions such as kissing, kicking
a ball etc.

This proves that the video representation learned by our new method has good transfer-
ability between different databases. The original paper of R3D and R(2+1)D [72] suggests
that the R3D network is more likely to produce training error because the spatial-temporal
decomposition implemented by R(2+1)D eases the optimization. The new pretext tasks we
introduced in this chapter reduce the performance gap between R3D and R(2+1)D, which
indicates that optimizing the speediness-change classification and localization at the same
time will not worsen convergence but helps the model’s learning process.

Video Retrieval

Same as Chapter 3, we use the pretrained backbones to generate the video representation
vectors for the UCF101 and HMDB51 datasets (4.4). We compare the vectors through cosine
similarity to find the nearest neighbours to perform video retrieval task. The performance
of the three backbones in video retrieval is significantly improved compared to the method
in Chapter 3. These results show that our new approach can better learn the temporal
and spatial features of the video in the pretraining stage. Our new video retrieval results
are compatible with the previous works. All top-K recall scores on the HMDB51 dataset

63



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Predicted label

brush_hair
cartwheel

catch
chew
clap

climb
climb_stairs

dive
draw_sword

dribble
drink

eat
fall_floor
fencing
flic_flac

golf
handstand

hit
hug

jump
kick

kick_ball
kiss

laugh
pick
pour

pullup
punch

push
pushup

ride_bike
ride_horse

run
shake_hands

shoot_ball
shoot_bow
shoot_gun

sit
situp
smile

smoke
somersault

stand
swing_baseball

sword
sword_exercise

talk
throw

turn
walk

wave

Tr
ue

 la
be

l
Confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) HMDB51 dataset finetuning result from Chapter 3
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Table 4.4: Comparison with SOTA self-supervised approaches on video retrieval Recall with UCF101 and HMDB51 dataset.

Method UCF101/HMDB51
(Pretrained on UCF101) R@1 R@5 R@10 R@20 R@50

Backbone: AlexNet

Jigsaw [58] 19.7/– 28.5/– 33.5/– 40.0/– 49.4/–
OPN [48] 19.9/– 28.7/– 34.0/– 40.6/– 51.6/–

Backbone: C3D

VCOP [84] 12.5/7.4 29.0/22.6 39.0/34.4 50.6/48.5 66.9/70.1
VCP [53] 17.3/7.8 31.5/23.8 42.0/35.5 52.6/49.3 67.7/71.6

PacePred [81] 31.9/12.5 49.7/32.2 59.2/45.4 68.9/61.0 80.2/80.7
PRP [86] 23.2/10.5 38.1/27.2 46.0/40.4 55.7/56.2 68.4/75.9
Ours 30.9/15.1 50.3/33.7 59.1/46.6 67.7/62.3 80.3/79.7

Backbone: R3D

VCOP [84] 14.1/7.6 30.3/22.9 40.4/34.4 51.1/48.8 66.5/68.9
VCP [53] 18.6/7.6 33.6/24.4 42.5/36.6 53.5/53.6 68.1/76.4

PacePred [81] 23.8/9.6 38.1/26.9 46.4/41.1 53.5/56.1 69.8/76.5
PRP [86] 22.8/8.2 38.5/25.8 46.7/38.5 55.2/53.3 69.1/75.9

TempTrans [37] 26.1/– 48.5/– 59.1/– 69.6/– 82.8/–
MemDPC [29] 20.2/7.7 40.4/25.7 52.4/40.6 64.7/57.7 –/–
PSPNet [13] 24.6/10.3 41.9/26.6 51.3/38.8 62.7/54.6 67.9/76.8

Ours (Chapter 3) 23.3/11.5 41.6/28.3 52.2/40.6 60.6/54.7 73.3/74.4
Ours (Chapter 4) 30.0/15.8 46.9/35.2 47.1/48.5 65.8/61.7 76.9/79.2

Backbone: R(2+1)D

VCOP [84] 10.7/5.7 25.9/19.5 35.4/30.7 47.3/45.8 63.9/67.0
VCP [53] 19.9/6.7 33.7/21.3 42.0/32.7 50.5/49.2 64.4/73.3

PacePred [81] 25.6/12.9 42.7/31.6 51.3/43.2 61.3/58.0 74.0/77.1
PRP [86] 20.3/8.2 34.0/25.3 41.9/36.2 51.7/51.0 64.2/73.0

Ours (Chapter 3) 22.5/10.1 37.3/26.2 48.1/36.7 59.0/50.7 72.5/69.4
Ours (Chapter 4) 24.7/12.6 42.0/31.4 51.7/43.7 61.2/57.6 73.4/76.1

from our UCF101-pretrained R3D backbone outperform all previous works with the same
backbone, proving the transferability of learned video feature representation.

4.5.4 Visualization Analysis

To gain a better understanding of what spatial-temporal features are learned during pre-
training, we visualize the salient regions that contribute the most to the proposed tasks,
with the class activation mapping (CAM) [91] technique. Similar to [82], we add some small
modifications to let the original CAM method adapt the video clip inputs. Specifically, we
sample some video clips from the UCF101 videos and extract the feature maps before average
pooling layers in the projection networks of the pretext tasks (the tasks in Chapters 3 and
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4). The backbone architectures for both pretext tasks are R21D network [72] and without
supervised finetuning. We average the feature map along the channel dimension and then
resize the compressed features along spatial dimensions to the size of original video frames
and overlay on them.

In Fig. 4.6, the middle frame of each clip (Fig. 4.6a) is used to visualize heatmaps. The
examples of both pretexts tasks suggest a strong correlation between highly activated re-
gions and the dominant moving objects in the scene. The first and the second examples
are bad cases for the previous pretext task (Fig. 4.6b). The activated regions in these two
examples deviate from the main moving object to the background. In Fig. 4.6c, we can
notice that these bad cases are improved by the model pretrained with the new multi-tasks
pretext task, which explained the improvement in accuracy of UCF101 classification.

We also notice that Chapter 3’s approach concentrates on the fine-grained motions in the
background. Such as the fourth example of Fig. 4.6b, the highly-activated region covering
the drums indicates that the model was attracted by the trivial movement of the drum kit
(trembling). In comparison, the multi-tasks approach has more significant salient regions
over the dominant moving object in the video. To complete the speediness localization, the
model must pay more attention to the action of the main subject in the video instead of the
background.

66



(a) Middle frames of the clips from the UCF101 videos.

(b) Speediness Change Classification (Chapter 3)

(c) Speed Change Classification and Localization (Chapter 4)

Figure 4.6: Visualization of salient regions for each speediness-aware pretext task
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Chapter 5

Conclusion and Future Work

We propose a series of new pretraining methods for self-supervised video representation
learning in this thesis. Our speediness-change classification and localization pretext tasks
help 3D-CNN backbones to learn critical video features. These speediness-aware pretext
tasks, particularly the speediness-change localization task, are easy-to-implement and ef-
fective individually in video representation learning. For performance gains, they can also
complement prior self-supervision arts for image representation learning such as MoCo-V2.
The pretraining backbone captures fine-grained motion and context features by deploying
these tasks together, leading to competitive or SOTA performances on multiple downstream
video understanding tasks.

Our extensive experiments and ablation studies in Chapter 4 demonstrate how our fine-
grained speediness-change classification and localization improve the effectiveness of pretrain-
ing to get better action recognition accuracies than baseline or coarse-grained speediness-
change classification. In addition, all pretrained 3D-CNN backbones show good dataset
transferability in the downstream tasks. However, due to the limitation of computing re-
sources, we do not pretrain the backbones with large-scale video datasets like Kinetics or
Activity-Net. Therefore, we plan to examine whether our speediness pretext tasks can help
models learn more comprehensive video features through pretraining the backbones with
large-scale datasets or videos extracted from the web in the future. We are also interested
in replacing the 3D-CNN backbones with vision transformer networks (e.g. [6]). The vision
transformer is a novel architecture for image and video representation learning, inspired by
the classic transformer design [76] in the natural language processing area. This new ar-
chitecture and its variations demonstrate exemplary performance on Image-net or Knietcis
datasets in recent papers [6, 18]. We wish to experiment whether using the vision transformer
as a backbone could bring improvements to our self-supervised learning framework
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[75] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-
trastive predictive coding. CoRR, abs/1807.03748, 2018.

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[77] Olga Veksler. Regularized Loss for Weakly Supervised Single Class Semantic Segmenta-
tion, pages 348–365. 10 2020.

[78] Pascal Vincent, Hugo Larochelle, Y. Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. pages 1096–1103, 01 2008.

[79] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In
2013 IEEE International Conference on Computer Vision, pages 3551–3558, 2013.

[80] Jiangliu Wang, Jianbo Jiao, Linchao Bao, Shengfeng He, Wei Liu, and Yun-Hui Liu.
Self-supervised video representation learning by uncovering spatio-temporal statistics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[81] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation
learning by pace prediction. In European conference on computer vision, pages 504–
521. Springer, 2020.

75



[82] Jinpeng Wang, Yuting Gao, Ke Li, Yiqi Lin, Andy J Ma, Hao Cheng, Pai Peng, Feiyue
Huang, Rongrong Ji, and Xing Sun. Removing the background by adding the back-
ground: Towards background robust self-supervised video representation learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 11804–11813, 2021.

[83] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, Shengping Zhang, and
Xiaojun Tong. Pix2vox: Context-aware 3d reconstruction from single and multi-view
images. CoRR, abs/1901.11153, 2019.

[84] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-
supervised spatiotemporal learning via video clip order prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10334–
10343, 2019.

[85] Xiang Yan, Syed Zulqarnain Gilani, Mingtao Feng, Liang Zhang, Hanlin Qin, and Ajmal
Mian. Self-supervised learning to detect key frames in videos. Sensors, 20(23), 2020.

[86] Yuan Yao, Chang Liu, Dezhao Luo, Yu Zhou, and Qixiang Ye. Video playback rate
perception for self-supervised spatio-temporal representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6548–
6557, 2020.

[87] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[88] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-
supervised semi-supervised learning. CoRR, abs/1905.03670, 2019.

[89] Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain autoencoders: Unsuper-
vised learning by cross-channel prediction. CoRR, abs/1611.09842, 2016.

[90] Bin Zhao, Maoguo Gong, and Xuelong Li. Hierarchical multimodal transformer to
summarize videos, 2021.

[91] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learn-
ing deep features for discriminative localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2921–2929, 2016.

[92] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593,
2017.

76


	Introduction
	Video Representation Learning
	Self-supervised Methods
	Pretext Tasks
	Downstream Tasks

	Contributions
	Thesis Organization

	Related Work
	Convolutional Neural Network
	Self-supervised Learning for Images
	Self-supervised Contrastive Learning
	CNNs for Video Representation Learning
	Temporal Information Fusion and 2D CNN
	3D-CNNs to Separable Convolution

	Self-supervised Video Representation Learning
	Downstream Tasks and Related Datasets
	Action Recognition
	Video Retrieval


	Speediness Change Classification
	Introduction
	Speediness Change Classes
	Contrastive Learning Module
	Network Design and Training Details
	Network Overview
	Projection Network
	Loss Functions

	Experiments and Results
	Implementation Details and Datasets
	Ablation Study
	Evaluation of Self-supervised Representation Learning


	Multi-task: Speed Change Classification and Localization
	Introduction
	Speed Change Recognition
	Localizing the Speed Change
	Network Design and Training Details
	Overview
	Multi-task Classifiers
	Loss Functions

	Experiments and Results
	Implementation Details and Datasets
	Ablation Study
	Evaluation of Self-supervised Representation Learning
	Visualization Analysis


	Conclusion and Future Work
	Bibliography

