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Abstract

One of the most ubiquitous processes in nature is the interaction of matter and an

electromagnetic field which is well described using the spin-boson model. These light-

matter interactions are specified by an interaction strength which is nominally fixed by

nature. However, superconducting circuits are able to devise systems using microfabricated

quantum devices to increase the dimensionless coupling strength α. The coupling strength

is defined as α = Γ01/π∆ where Γ01 is the decay rate and ∆ is the transition frequency of

the system. As the strength increases and the rate of interaction approaches the frequency

of the system, the light-matter interactions enter the ultra-strong coupling (USC) regime

where α ∼ 0.1. Approximations that are often made to simplify the spin-boson model begin

to break down in the USC regime making the analysis of these systems challenging. We

demonstrate a flux tunable coupler with potential to explore these dynamics by coupling

a persistent current qubit (PCQ) as artificial atom to an open transmission line (TL)

as source of continuous bosonic modes. The tunable coupler is able to both decouple

the PCQ from the TL as well as enable the USC regime of interactions with a coupling

range spanning from αmin = 2.4 × 10−4 to αmax = 1.2 × 10−1. The future objective is to

directly explore the time-domain properties of the USC regime and to open new research

approaches to relativistic quantum information (RQI) by using the tunable coupler as a

switching function.
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Chapter 1

Introduction

Superconducting circuits are microfabricated quantum devices that make use of supercon-

ducting metal films to carry electrical signals and perform operations. Their quantum

properties make them uniquely suited to drive the development of emerging technologies

and open new directions for experimental research. These circuits have flexible designs that

can be implemented to create quantum devices such as magnetometers, photon detectors,

and quantum computers that are of particular interest in today’s technological landscape.

Josephson junctions, a critical element of these instruments, are structures that consist of

two superconductors separated by a weak link in order to harness the quantum properties

of superconducting electrons. The junctions have unique properties including a non-linear

inductance which can be used to generate a two-level system (TLS) that can be applied as

qubit.

One such device that employs Josephson junctions is the flux qubit [20]. A flux qubit

consist of a loop of superconducting metal that uses these junctions as well as the prop-

erty of quantized magnetic flux to create a controllable two-level system. Flux qubits are

characterized by macroscopic states such as current flowing continuously through its super-

conducting loop. These states are relatively straightforward to both control and measure.

On the other hand, flux qubits do have some drawbacks compared to other quantum de-

vices. Due to these continuous current states, flux qubits are quite sensitive to flux noise

generated by ambient magnetic fields, which induce undesired currents and disrupt the
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system.

Flux qubits are often coupled to other flux qubits or waveguides for state initialization

and exchange of information. Furthermore, it is desirable to be able to tune this coupling

during operation of the flux qubit to achieve specific functionality. Developing methods

of tuning the interactions and coupler designs for flux qubits has been an ongoing area of

research that can open new avenues in quantum computing and fundamental investigations

in quantum mechanics.

1.1 Ultra-strong Coupling in Superconducting Cir-

cuits

An atom interacting with an electrodynamic field is a fundamental physical process that

is formally described as a TLS interacting with bosonic modes. This so called light-matter

interaction is well described by the spin-boson model [17]. In nature, these interactions

are generally characterized by the fine structure constant (∼1/137) which defines the in-

teraction strength. On the other hand, the coupling strength can be increased in a prop-

erly engineered electromagnetic environment where we find that new phenomena such as

quantum Rabi oscillations occur and new hybridized descriptions of light and matter are

required [7, 15]. The spin-boson model is a useful for describing these interactions across

a range of coupling strengths that can be classified into different regimes based on their

distinct properties. In the strong coupling regime, the spin-boson model can be simplified

using the rotating-wave approximation [14] to make analytic solutions more viable. How-

ever, as the strength of interaction increases, the system enters the ultra-strong coupling

(USC) regime, where these approximations begin to break down.

Superconducting circuits are one such experimental test bed where we can tune the in-

teraction strength to explore the USC regime of the spin-boson model. With these circuits,

the USC regime has been achieved experimentally by coupling artificial atoms initially to

an electrodynamic cavity [1, 18] and later to a continuum of light in an open transmis-

sion line [8]. However, these previous works only approximate the coupling strength they
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achieve by applying models that use the RWA to microwave spectroscopy rather than di-

rect measurement of the dynamics such as the relaxation time. The reason this was not

explored further was due to a design limitation: the coupling strength could not be turned

off in their setups. In the USC regime, all the interactions take place in the order of a

few nanoseconds which makes direct measurement very challenging. A solution for this is

to implement a tunable coupler that can enter the USC regime to allow the light-matter

interactions to occur, and then decouple the system to freeze the qubit state and enable

measurement of the system. This allows for direct observation of the interaction properties

in the USC regime. A tunable coupler such as this also has potential in other experiments

around quantum computation and relativistic quantum information [24, 27].

1.2 Outline of Thesis

In this thesis, we demonstrate a tunable coupler for controlling the coupling between an

open transmission line and a two-level system in the form of a flux qubit. The device,

which was fabricated and tested at the University of Waterloo, shows promise as a tool for

exploring the USC regime.

In Ch. 2, we introduce relevant topics in the area of coupling within superconducting

circuits. We describe the development of flux qubits and their properties as a two-level sys-

tem. Next, we elaborate on the spin-boson model to characterize the interactions between

a bath of photons that can be generated with a transmission line and the artificial atoms

that can be created in superconducting circuits. We then discuss coupling regimes in the

spin-boson model ranging from weak coupling to USC. Finally, we establish the motivation

for the tunable coupler by showing an experimental protocol that can directly measure the

dynamics of the USC regime.

In Ch. 3, we present a tunable coupler device for mediating light-matter interactions.

The calibration, model fitting, and coupling range are presented for the device. We demon-

strate that the coupler is able to effectively turn off the interactions as well as enter the

USC regime. This chapter has been prepared for publication.
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Chapter 2

Background on Superconducting

Circuits and Coupling to Open

Waveguides

2.1 Superconducting Circuits

Superconductivity is a quantum phenomenon where certain metals display the remarkable

behaviour of having zero resistance at low temperature. As described by Bardeen-Cooper-

Schrieffer (BCS) theory [2], below a critical temperature Tc the electrons in superconductors

form Cooper pairs, which are able to move without dissipation through the superconductor.

The Cooper pairs are described by a wavefunction ψ = |ψ|eiϕ where |ψ| is related to the

density of Cooper pairs and ϕ is the phase of the wavefunction through the superconductor.

Josephson junctions are devices consisting of two separate superconductors connected by

a weak barrier such as an insulator or a non-superconducting metal through which the

Cooper pairs can tunnel as shown in Fig. 2.1. The electron pairs passing through the

Josephson junctions are specified by the Josephson relations using the phase difference

between the two superconductors γ = ϕ1 − ϕ2. The first relation is the tunneling current
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through the junction described by

I = Ic sin γ, (2.1)

where Ic is the maximum allowed current through the junction without breaking supercon-

ductivity, known as the critical current. The second relation describes the voltage across

the junction as

V = φ0
∂γ

∂t
, (2.2)

where φ0 = Φ0/2π is the reduced flux quantum derived from the flux quantum Φ0 = h/2e.

As a result of the parallel-plate geometry of the junction, there is also a capacitance C

that forms at the junction. These relations can also be rearranged to treat the junction

like an inductor to find

V = L
dI

dt
(2.3)

which gives the inductance

L =
φ0

Ic cos γ
. (2.4)

We find that the junction has a non-linear inductance that is dependant on the phase.

This non-linear inductance is what makes these junctions uniquely suited to be used as a

qubit as we will discuss later.

We can quantize the energy in superconducting circuits and formulate a useful Hamilto-

nian for systems with Josephson junctions using circuit quantization methods. These follow

very similar to canonical quantization which involves transforming kinetic and potential

energy of a system along with its classical coordinates into quantum operators character-

ized by their commutation relations. We have that the electric energy of the junction is

stored in the capacitor is

T =
1

2
CV 2 =

1

2
Cφ2

0γ̇
2. (2.5)

We can determine the potential energy in the junction by considering the the work done

with respect to the changing phase. Assuming we have a phase γ1 at time t1 and γ2 at

time t2, we find

∆E =

∫ 2

1

IV dt =

∫ 2

1

IdΦ =

∫ γ2

γ1

Ic sin γd(Φ0
γ

2π
) = −φ0Ic∆cos γ. (2.6)
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Figure 2.1: (a) Depiction of a Josephson junction. They are formed by separating two

superconductors with a weak barrier such as a very thin insulator. A current I = Ic sin γ

flows through the junction. (b) A circuit diagram of a Josephson junction. The junction

is often just displayed as an X with the capacitance and non-linear inductance inferred.

The change in energy of the junction is independent of the path, so we can thus write this

as a potential energy

U = −φ0Ic cos γ. (2.7)

We can develop a Lagrangian from these energies that satisfies the Euler-Lagrange equa-

tions as

L = T − U =
1

2
Cφ2

0γ̇
2 + φ0Ic cos γ, (2.8)

and find the conjugate momentum p of the coordinate variable γ to be

p =
∂L

∂γ̇
= Cφ2

0γ̇. (2.9)

The Legendre transform can be applied to find the Hamiltonian

H =
p2

2Cφ2
0

− φ0Ic cos γ. (2.10)

As we would with circuit quantization, the classical variables p and γ are converted to

quantum operators p̂ and γ̂ with the commutation relationship [p̂, γ̂] = −iℏ. We now

introduce the energies Ec = (2e)2/2C as the charging energy and Ej = φ0Ic as the Joseph-

son energy. These two energies are characteristic parameters that can be easily used to
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describe the junction. The final Hamiltonian becomes

Ĥ =
Ec

ℏ2
p̂2 − Ej cos γ̂. (2.11)

2.2 Flux qubits

Superconductors also undergo another phenomenon called the Meissner effect, where all

magnetic fields are expelled from the superconducting material. A consequence of this

property is that through a closed loop of superconducting material the magnetic flux is

quantized. As with traditional conductors, current passing through the superconductor

induces flux through a loop. When this is combined with any external sources of flux Φext

we have

Φ = Φext + LI, (2.12)

with L the inductance of the loop. Flux quantization constrains the flux passing through

a loop to integer values of a flux quantum Φ0 as introduced in the previous section.

The flux quantization property can be combined with the Josephson effect to generate

flux qubits, which are a type of quantum device that creates a controllable two-level system.

One of the early versions of a flux qubit is the RF-SQUID, a large superconducting loop

interrupted by a a single junction as seen in Fig. 2.2(a). There is a phase relationship that

arises from the Josephson junction and the flux through the superconducting loop. This is

a direct result of the inherent wavefunction of the superconductor, where the phase must be

periodic and continuous. For an RF-SQUID, the phase around the loop of superconductor

obeys the condition

γ = −2π
Φ

Φ0

, (2.13)

which then can be expanded using Eq. (2.12) to get

γ = −2πf − LsqIsq
φ0

, (2.14)

where f = Φext/Φ0 is the external dimensionless flux passing through the loop, Lsq =

Lg + Lk the inductance of the RF-SQUID, with Lg the self inductance of the loop and Lk

7



a) b)

γ
.

X

f I

L

C

Figure 2.2: (a) Circuit diagram for an RF-SQUID: a superconducting loop with a single

Josephson junction γ. The junction has capacitance C, the current circulating the loop is

I, and the geometric inductance of the loop is L. The flux through the loop is quantized

as f = Φext/Φ0. (b) Potential energy U vs phase γ for the RF-SQUID at f = 1
2
forming a

double well potential.

the kinetic inductance arising from the motion of Cooper pairs, and Isq is the circulating

current. For the loop we also have the current

Isq = Ic sin γ + φ0Cγ̈. (2.15)

We can proceed with the same steps beginning at Eq. (2.5) to derive the Hamiltonian

for the RF-SQUID. We begin with the kinetic energy T and potential energy U of the

system, then introduce the Lagrangian and the conjugate momentum, and finally perform

the Legendre transform to recover the Hamiltonian. We have the same kinetic energy

T =
1

2
Cφ2

0γ̇
2, (2.16)

as before. We determine the potential energy by accounting for both the energy of the

junction described in Eq. (2.7) and the energy stored in the self-inductance of the loop

U = 1
2
LsqI

2
sq, and substitute Eq. (2.14) into the system to produce

U = −φ0Ic cos γ +
φ2
0

2L
(γ + 2πf)2. (2.17)
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With this we find the Hamiltonian as

H =
Ec

ℏ2
p2 − EJ cos γ +

φ2
0

2L
(γ + 2πf)2. (2.18)

Due to the quadratic second term, the RF-SQUID has a deep potential minima when

the screening parameter β = LIc/φ0 is large. When we set f = 1
2
+ n with n an integer, a

double well potential forms and the SQUID has degenerate lowest-energy states as seen in

Fig. 2.2(b). This result shows that the non-linear inductance of the Josephson junction can

be used to generate anharmonicity in the system to transform the RF-SQUID into a two-

level-system (TLS). Therefore, it is feasible to use RF-SQUID as a qubit. The drawback

of the RF-SQUID is that in order to create appropriate potential wells for the system,

the geometric inductance and hence the size of the loop must be large. This large size

make the any device made using an RF-SQUID highly sensitive to flux noise which leads

to decoherence in the generated qubit.

A solution to this issue was proposed in the form of the persistent current qubit (PCQ)

which instead utilizes three Josephson junctions in loop as seen in Fig. 2.3(a). The

junctions γ1 and γ3 are identical with Josephson energy EJ , while γ2 is called the αpcq

junction (distinct from the coupling strength α) and is made smaller with a Josephson

energy αpcqEJ with αpcq < 1. This new design has a much smaller loop size so the self-

inductance can be neglected in the updated phase relationship. This relation becomes

γ1 + γ2 + γ3 = −2πf. (2.19)

The condition in Eq. (2.19) can be used to constrain the Lagrangian to retain only two

degrees of freedom γ1 and γ3. With this constraint in place, the Hamiltonian becomes

H =
ℏ2

2
EcpC̃

−1pT + U(γ1, γ3), (2.20)

where p = (p1, p3) is the set of conjugate momenta to the phases, C̃ is the capacitance

matrix given as

C̃ =

[
1 + αpcq αpcq

αpcq 1 + αpcq

]
, (2.21)
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Figure 2.3: (a) The circuit diagram for a persistent current qubit (PCQ) with three Joseph-

son junctions γi. The flux through the loop is quantized as f = Φext/Φ0. (b) Potential

energy vs phase for the PCQ with a double well potential in the center. The two wells

correspond to different states of current flowing in opposite directions.

and U(γ1, γ3) is the potential energy

U(γ1, γ3) = −EJ(cos γ1 + αpcq cos(2πf + γ1 + γ3) + cos γ3). (2.22)

The PCQ is named as such because this design results in a persisting current circulating

through the superconducting loop. Just like with the RF-SQUID, there is a resulting

double-well potential in the PCQ that is now periodic in γ1 and γ3 as illustrated in Fig.

2.3(b). The two different wells correspond to macroscopic states when the current is flowing

in opposite directions, either clockwise or anti-clockwise. These different currents have well

defined phases and are referred to as flux states. When f = 1
2
, the well becomes symmetric,

making the energy levels degenerate and allowing for tunnelling between the two flux states.

Neglecting higher energy levels and treating this as a two level system, the Hamiltonian

can be written in this flux basis as

H = −ℏ∆
2
σx −

ℏϵ
2
σz, (2.23)

with ℏ∆ is the energy for the minimum TLS gap, ℏϵ is the energy difference between the

two potential wells, and σx, σz are the Pauli operators. We have that

ϵ =
2IpΦ0

ℏ
(f − 1

2
), (2.24)
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where Ip is the persistent current in the loop. When the external flux is f = 1
2
the qubit

is positioned at what is known as the symmetry point where the energy difference is at a

minimum ∆. In general for an arbitrary flux bias f , the frequency for the energy gap of

the PCQ is

ω10 =
√
∆2 + ϵ2. (2.25)

In the energy eigenbasis, the Hamiltonian is written as

H = −ℏω10

2
σz. (2.26)

2.3 Ultra-Strong Coupling in Superconducting Cir-

cuits

2.3.1 Spin-Boson Model

The spin-boson model [17] is a useful model for describing solid state systems, chemical

reactions, and most notably for our purposes, the interactions between light and matter.

The model relates spins, such as a two-level system, to bosons, such as a bath of photons

under various conditions. The photon bath is represented as a set of harmonic oscillators

and can be treated as a continuous or discrete set depending on the system involved. These

interactions have a coupling value α which gauges the strength of the interactions and has

several implications for the behaviour of the system [15]. In nature, the electromagnetic

coupling strength between elementary charged particles is ∼1/137 and is known as the fine

structure constant. This relatively small coupling strength emerges from a perturbative

treatment of quantum electrodynamics and is used to describe processes such as photon

absorption or emission by a charged particle. However, Purcell discovered in 1946 that

light-matter interactions can be controlled to suppress or intensify the coupling in different

electromagnetic environments [25]. For instance the interaction strength can be altered

using an photonic resonator coupled to an artificial atom. For large enough values of

coupling strength (α ∼ 0.1), the system enters what is known as the ultra-strong coupling

(USC) regime of light-matter interactions.
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For a two-level system coupled to a bosonic bath, the Hamiltonian is written as

ĤSB = Ĥ0 + Ĥint =
ℏ∆
2
σ̂z +

∑
k

ℏωkâ
†
kâk + σ̂x

∑
k

gk(âk + â†k), (2.27)

where Ĥ0 is the first two terms of the Hamiltonian corresponding to the two-level system

using Eq. (2.26) and the bosonic bath respectively, and Ĥint corresponds to the third term

(the interaction term). The frequency ∆ corresponds to the two-level system splitting, σz

and σx are the Pauli operators, θ = arctan(∆
ϵ
) is determined by the qubit bias, and ωk,

â†k, âk are frequency, creation, and annihilation of the kth mode of the harmonic oscillator.

The term gk represents the coupling strength between the TLS and the bath. The values

for gk can be described by a spectral density function and in an ohmic environment can be

simplified as [21]

J(ω) =
2π

ℏ2
∑
k

g2kδ(ω − ωk) = πωα, (2.28)

where α is a dimensionless constant used to describe the coupling of the system. Using the

Born-Markov approximation [32], this interaction term can be related to the level splitting

∆ of the system through the relaxation rate Γ01 of the TLS to the bath with the relation

α = Γ01/π∆. (2.29)

The coupling strength given by these equations has strong implications for the system

as a whole. There are four distinct regimes of light-matter interaction that result from this

model: weak coupling, strong coupling, ultra-strong coupling (USC), and non-perturbative

USC [15]. The weak coupling regime is characterized by coupling g that is smaller than

the losses of the system so the energy is dissipated before interactions can occur. In the

strong coupling regime, light-matter interactions take place but qubit relaxation rate is

much smaller than the transition frequency Γ/∆ ≪ 1. Here the coupling is strong enough

for quantum Rabi oscillations to occur. The dynamics of this regime are often described

using the rotating wave approximation (RWA) which assumes that, at the symmetry point

where we only have transverse coupling, the fast oscillations of counter-rotating terms in

the interaction Hamiltonian will average out and are discarded. What is left is called the

Jaynes-Cummings Hamiltonian given by [14]

HJC =
ℏ∆
2
σz + ℏωa†kak + g(σ+a+ σ−a

†), (2.30)
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where σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| are ladder operators of the qubit. This formulation

describes coherent interaction transferring conserved excitations between the TLS and the

bath.

The interactions enter the USC regime as Γ/∆ ≳ 0.1. In this regime, the counter-

rotating terms that were discarded previously in the Jaynes-Cummings Hamiltonian be-

come relevant and the previous approximation is not applicable. With this simplification

missing, analyzing the dynamics of the system becomes far more challenging. We must

begin treating light and matter in terms of hybrid states instead of distinct entities [7].

In the USC regime, the Born-Markov approximation continues to hold. Beyond this how-

ever, as the relaxation rate starts to exceed the qubit gap Γ/∆ ≳ π
2
the system enters

the non-perturbative USC regime. Here, the Born-Markov approximation no longer holds

and the relationship of Eq. (2.29) becomes a lower bound for the system coupling α. In

this regime, higher order perturbative processes begin to dominate the interaction and the

system is characterized by photons dressing the atoms even in their ground state.

2.3.2 Flux Qubit Coupled to a Waveguide

One way to explore the interactions described and the different coupling regimes by the

spin-boson model is through specially designed superconducting circuits. We can generate

a bosonic bath in the form of a waveguide and an artificial atom in the form of a flux qubit

to probe their interactions. Based on the formulations of Sec. 2.2, we see that PCQs biased

at their symmetry point already have a Hamiltonian of the form seen in the spin-boson

model. In addition to this, we will now show how a coupled waveguide is introduced into

this system.

Transmission lines (TL) are a type of electrical component such as coaxial cables that

are used to conduct electromagnetic signals and transfer energy. Ideal lines are character-

ized by their characteristic impedance Z0 =
√
l0/c0 using the inductance and capacitance

per unit length, and the transmission of voltage and current through the line are described

by the well-known telegrapher’s equations [11]. Superconducting circuits often make use of

co-planar waveguides (CPW), which are a form of transmission line consisting of a center

conductor separated from a ground plane by a gap of dielectric material as seen in Fig. 2.4.
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CPWs are quite simple to manufacture, and, like all transmission lines, efficiently carry

power down the signal line through its interacting electric and magnetic fields.

Like other circuit elements, transmission lines can be quantized. The infinitely long

(open) transmission line is treated as a series of LC circuits as shown in Fig. 2.5. The

Hamiltonian is determined by starting with the system charging energy stored in the ca-

pacitance and the magnetic energy stored in the inductance of each point. The result is

then

H =

∫ ∞

−∞
dx

(
q(x, t)2

2c0
+

(∂xΦ(x, t))
2

2l0

)
, (2.31)

where q(x, t) is the charge density and Φ(x, t) is the magnetic flux at a given position x

and time t. The Hamiltonian can be transformed in terms of the charge density operator

q̂(x, t) and its canonical momentum Φ̂(x, t) which follow the typical commutation relation

[q̂(x, t), Φ̂(x′, t)] = −iℏδ(x− x′). Using these, the transmission line is quantized as

Ĥ =
∑
k

ℏωk(â
†
kâk +

1

2
), (2.32)

where ωk is the frequency corresponding to mode k, â†k and âk are the ladder operators

with relationships to the charge and flux operators as

q̂(x, t) = i
c0√
2L

∑
k

√
ℏωk

[
âke

i(kx−ωkt) − â†ke
−i(kx−ωkt)

]
, (2.33)

Φ̂(x, t) =
1√
2Lc0

∑
k

√
ℏ
ωk

[
âke

i(kx−ωkt) + â†ke
−i(kx−ωkt)

]
, (2.34)

with L the length of the transmission line. The transmission line is now of the form of

a quantum harmonic oscillator similar to the bosonic bath in the spin-boson model. One

can easily convert the charge operator to voltage by dividing by c0 for measurement and

control purposes.

Next we consider the coupling between this transmission line and flux qubit. This

result can be obtained by looking at the specific case for a four junction PCQ galvanically

connected to an open transmission line as illustrated by Fig. 2.6. The transmission line

is formed of an infinite series of LC resonators as before and the PCQ is considered a
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lumped element inserted into the series at x = 0. With this setup, the time-independent

Hamiltonian is solved as [21]

H =

∫ ∞

−∞
dx

(
q(x)2

2c0
+

(∂xΦ(x))
2

2l0
+ δ(x)

1

l0
∂xΦ(x)φ0γ4

)
+

1

2l0∆x
(φ0γ4)

2 +Hqb, (2.35)

with δ(x) the Dirac delta function and Hqb is the qubit Hamiltonian described by Eq.

(2.26). We see that this has the same form as a qubit plus Eq. (2.31) with two additional

terms.

The fourth term, which can be seen outside the integral, is a renormalization to the

qubit term that causes a shift in the potential. Replacing l0∆x = Z0/ω and subbing in a

general value of Z0 = 50 Ω, we obtain the qubit renormalization as

Hrenorm ∼ ℏω
ℏ

16Z0e2
γ24 ∼ 5.2ℏωγ24 , (2.36)

with ω ∼ 2π(1−8) GHz. This value is much smaller than typical potentials for flux qubits

of

Ej/ℏ = 250− 800 GHz, (2.37)

and can thus be neglected in the Hamiltonian.

The third term which, falls inside the integral, arises from the shared junction γ4

and represents the interaction between the qubit and the transmission line Hint. After

integration we obtain

Hint =
1

l0
∂xΦ(0)φ0γ4. (2.38)

The interaction term can be used to estimate the coupling strength of the the system. If

we substitute the time-independent form of Φ̂ operator from Eq. (2.34) into the interaction

term the result is

Hint =
1

l0
φ0γ4

∑
k

√
ℏ

2Lc0ωk

k (âk + âk) . (2.39)

Further, assuming the system is near the symmetry point (θ ∼ π
2
), the interaction term in

Eq. (2.27) from the spin-boson model was found to be

Hint = σ̂x
∑
k

gk(âk + â†k). (2.40)
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Figure 2.6: A quantized transmission line where additional lumped element components

can be inserted into the yellow box. A lumped element PCQ is depicted below this that

can be coupled to the transmission line.

By comparison of these two equations and applying k = ωk

c
, we see that the coupling

strength for mode k is

gk =
1

l0
φ0|γ410|

√
ℏωk

2Lc0c2
, (2.41)

with γ410 = ⟨1|γ4|0⟩ the matrix element of the phase operator and c = 1√
l0c0

the speed of

light through the transmission line. It is clear that this interaction strength stems from

both the qubit and the transmission line properties, with strong dependence on the shared

junction.

2.3.3 Previous Coupler Designs

One important challenge that arises when coupling a flux qubit to a waveguide is being able

to mediate this coupling and control how strongly the two systems interact. In order to

characterize the dynamics of the different regimes in the spin-boson model, we must control

the coupling constant α through some means so that it can be analyzed over a range of

values. Furthermore, as we will discuss in the next section, mediating the coupling is

necessary for such experiments like measuring relaxation rate which occurs too quickly to

measure directly in the USC regime.
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In this section we will look at several tunable coupler designs for flux qubits that have

been previously presented in literature. First, rather than looking at a flux qubit coupled

directly to a waveguide, to gain some additional intuition and prior context on couplers, we

will look at designs for tunable couplers between two flux qubits. A pair of early designs

used either an auxiliary RF- or DC-SQUID to mediate the interactions between the flux

qubits [4, 23]. The circuit diagram for these couplers can be seen in Fig. 2.7 (a) and (b)

where there are two PCQs separated by an RF-SQUID and DC-SQUID respectively. We

will now look a little closer at the case of the RF-SQUID where the coupling arises from

classical mutual inductance. The effective mutual inductance between the two qubits is

Meff =
M1M2

Lsq

, (2.42)

where Mi is the coupling from each qubit to the mediating SQUID and 1/Lsq is the sus-

ceptibility of the SQUID. We also have

1

Lsq

=
dIsq
dΦext

. (2.43)

Putting these together with the standard inductance relation returns

Φ2 =MeffIp1 =
M1M2

Lsq

Ip1 =M1M2
dIsq
dΦext

Ip1 , (2.44)

with Φ2 the flux in the second qubit and Ip1 the persistent current through the first qubit.

This demonstrates a relationship between the state of the two qubits. The coupling strength

of this interaction is

g =MeffIp1Ip2 . (2.45)

This shows that the coupling strength between the two qubits can be mediated by changing

dIsq/dΦext. Through Eq. (2.15) and Eq. (2.14), this value can be tuned to establish some

control over the coupling strength.

This concept for using a SQUID to mediate coupling can also be used to couple to a

transmission line. A diagram showing this method of coupling is shown in Fig. 2.7(c).

A different variation of this coupler was implemented in Ref. [8] where coupling between

a flux qubit and a transmission line was demonstrated up to the non-perturbative USC
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Figure 2.7: Various tunable coupler designs from previous work. The couplers generally

work by generating a tunable mutual inductance between the current in qubit 1 and the

target component. (a) Two flux qubits mediated by an RF-SQUID. (b) Two flux qubits

mediated by an DC-SQUID. (c) A flux qubit coupled to a transmission line with an RF-

SQUID (d) A flux qubit coupled to a transmission line with a galvanically coupled RF-

SQUID.
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regime (α ≳ 1/2). A circuit diagram for this design can be seen in Fig. 2.7(d) where a flux

qubit is galvanically connected to a transmission line. The coupling can be approximated

byMIp withM the mutual inductance between the qubit and the transmission line and Ip

the persistent current of the qubit. The mutual inductance is dominated by the non-linear

Josephson inductance LJ of the shared junction as discussed in Sec. 2.3.2. When the

current flowing through the junction is much smaller than its critical current (I ≪ Ic), the

Josephson inductance behaves as a linear inductor with LJ ≈ φ0/Ic.

There are four junctions γ1-γ4 in the main qubit loop with γ4 replaced by an RF-SQUID.

This SQUID acts as a tuning device by acting effectively as a junction with critical current

that varies between |Ic4+Ic5| - |Ic4−Ic5|. Thus there is a range from a minimum inductance

LJ,min =
φ0

|Ic4 + Ic5|
, (2.46)

to the maximum inductance

LJ,max =
φ0

|Ic4 − Ic5|
, (2.47)

which corresponds to the achievable range of coupling. The device is operated by changing

the fluxes fϵ = Φϵ/Φ0 and fβ = Φβ/Φ0 through the two superconducting loops. The flux

in the coupling SQUID fβ mediates the coupling to the transmission line while fϵ is used

to control the PCQ in the system. The design is capable of achieving very large coupling;

however the minimum inductance is not small enough to adequately decouple the flux

qubit from the TL. The decoupling can be improved with larger junctions, but these are

not feasible for standard fabrication techniques.

2.4 Proposal for USC Time-domain Testing

The USC regime of light-matter interactions is an area of research that still has much to

be explored including the time-domain dynamics of this regime. As discussed in Sec. 2.3.1,

the rotating-wave approximation for the spin-boson model breaks down in the USC regime

and the Jaynes-Cummings Hamiltonian can no longer be applied to simplify the system.

As a result, analytic models of the interactions only produce estimates of the coupling
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strength and the time-domain dynamics. In this section, we propose an experiment for

directly measuring the time-domain dynamics.

In quantum computation, one of the most important characteristics of a qubit is its

relaxation time T1 which describes the time taken for a qubit to transition from its excited

state to the ground state. This relaxation of a TLS to a coupled waveguide demonstrates

the dynamics of the system and can be used as a measurement of the coupling strength.

In contrast to analytic models that use the RWA, a T1 measurement will be a direct

measurement of the interactions without involving approximations. However, the light-

matter interactions that occur in the USC regime, including relaxation, take place over very

short time scales at a rate comparable with the frequency of the photons being exchanged.

For microwaves in the GHz range, this time scale is on the order only a few nanoseconds.

To work around this constraint, a system with tunable coupling must be able to effectively

decouple the TLS from the transmission line in order to freeze the qubit state and prevent

further relaxation.

The tunable coupler we propose for performing this experiment is a two-loop flux qubit

coupled to a transmission line where the flux fβ = Φβ,ext/Φ0 controls the coupling strength

and flux fϵ = Φϵ,ext/Φ0 controls the two-level system. The two-level system is a PCQ that

must to be biased at its symmetry point where a symmetric double well potential forms.

There is also readout resonator that is inductively coupled to the PCQ. We introduce a

protocol to measure the relaxation rate as shown in Fig. 2.8. The protocol is performed

as follows:

• Step 1: The flux biases fβ and fϵ are set to a symmetry point of the qubit with weak

coupling. The qubit starts in its ground state before being excited with a π pulse

through fϵ.

• Step 2: The flux biases are fast tuned to a new symmetry point that has stronger

coupling. This process is done faster than the qubit evolution or relaxation to ensure

the state is unchanged during the process.

• Step 3: The qubit remains at this symmetry point for a delay time dt, during which

the qubit relaxes toward its ground state through the interactions that have a strength

21



1

Time

Stage

f�

f�

R
ea
d
o
u
t

2 3 4 5 6

π

dt

Figure 2.8: Diagram of the experimental protocol for measuring the relaxation rate, T1, of

the qubit when coupled to the transmission line. This procedure as described in the text

will allow characterization of the very short timescale interactions of the USC regime.

α.

• Step 4: The flux biases are fast tuned back to the weak coupling point of step 1 to

switch the coupling off and stop the qubit from further relaxation.

• Step 5: The qubit is adiabatically tuned to an off-symmetry point where the energy

states become flux-like state for readout. This process should be done slower than

the evolution of the qubit Hamiltonian at the qubit frequency, but faster than the

relaxation rate to keep the state frozen.

• Step 6: Readout is performed with pulses sent to a feedline that is coupled to the

readout resonator.

This procedure is repeated with variable time delays and coupling strengths to characterize

the relaxation rate in USC regime. In addition, other tests along the same vein can be

done to further explore the USC regime. We can measure qubit dephasing using a Ramsey

experiment protocol, and we can measure the tunnelling frequency of flux states[28].
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Chapter 3

Tunable Coupler for Mediating

Interactions of a Two-Level System

to a Waveguide from Weak to

Ultra-Strong Coupling

Ultra-strongly coupled light-matter interactions [15, 17] enabled through specially designed

electromagnetic environments are exciting for their emerging applications in the funda-

mental study of the spin-boson model [28], non-linear optics [16], and relativistic quantum

information processing [26, 27, 24, 30]. Recent advancements in superconducting circuit

design allow us to exceed the natural limit of light-matter coupling to explore the ultra-

strong coupling (USC) regime of these interactions [29, 3, 8]. Often, these designs are

constrained to a single coupling strength, which limits their experimental capability. We

present a device capable of mediating the light-matter coupling between a two-level system

(TLS) and a waveguide achieving a large range of coupling. Akin to the general spin-boson

model of light-matter interactions, the coupling strength between a TLS and a waveguide

can be described as [8]

α =
Γ01

π∆
, (3.1)
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where Γ01 is the relaxation rate and ∆ is the energy level splitting of the TLS. We demon-

strate a coupling strength α from 2.4× 10−4 to 1.2× 10−1 between a TLS and waveguide.

This enables exploring the interaction over a span of several qualitatively distinct regimes

including the USC regime (α ∼ 0.1) where the relaxation rate becomes comparable to the

splitting frequency and the rotating wave approximation (RWA) breaks down [14, 21]. The

device is designed to use fast-switchable coupling to perform direct measurements of these

short time scale interactions.

The tunable coupler we introduce in this section couples a TLS implemented as a

persistent current qubit (PCQ) [20] to an open transmission line (TL). Unlike previous

work that explored the USC regime using flux qubits [8], our design not only enables the

USC regime, but also has the distinct advantage that it can effectively decouple the TLS

and the TL. This is done by using a second PCQ as the coupler. The circuit diagram

shown in Fig. 3.1(a) illustrates a TL with two superconducting loops and six junctions γi.

The first loop a is 4-junction PCQ that forms the qubit loop and has an external flux bias

fϵ = Φϵ,ext/Φ0 with Φ0 = h/2e the magnetic flux quantum. The second loop is a 3-junction

PCQ that forms the coupling loop and is biased by a flux fβ = Φβ,ext/Φ0. Further details

on the qubit circuit and it’s use with the circuit model are discussed in Appendix A. For

the TLS, we have a Hamiltonian of the form

H = −ℏ∆
2
σx −

ℏϵ
2
σz, (3.2)

where ∆ is the minimum gap, σx and σz are the Pauli matrices, and ϵ = 2IpΦ0

ℏ (fϵ − fϵ,sym)

with and Ip the persistent current in this loop. The flux fϵ,sym is the bias through the ϵ-loop

that produces the minimum qubit gap known as the symmetry point. For an arbitrary flux

biasing, the Hamiltonian results in a gap frequency of

ω10 =
√
∆2 + ϵ2, (3.3)

which is equal to ∆ at the symmetry point. It is necessary to operate the qubit at its

symmetry point to form a symmetric double well potential characteristic of PCQs which

ensures that the light-matter coupling is transverse.

The coupler design relies on the effective quantum inductance of the coupling loop to

mediate the light-matter interaction. Qualitatively, the interaction between the qubit loop
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Figure 3.1: (a) The circuit diagram including the qubit loop, the coupling loop, and the

transmission line in the form of a current Ib. The fluxes fβ and fϵ are external biases that

pass through the coupling loop and qubit loop respectively. (b) An SEM image of the

tunable coupler device. Note that the layout of the bias lines shown use a single arm ′L′

shape while the tested device was a variation that uses a two arm ′T ′ shape. (c) An SEM

image of the full device. The ends of the transmission line are connected to a VNA for

measurement and the bias lines are connected to external voltage sources.
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and the TL can be considered analogous to the interaction between two flux qubits [4, 31].

They interact through an effective mutual inductanceMeff controlled by the coupling loop.

We have that Meff = MtlsMtl/Lβ where Mtls (Mtl) is the mutual inductance between the

coupling loop and TLS (TL) and 1/Lβ is the susceptibility of the coupling loop. We have

1/Lβ = 1
Φ0
∂Ig/∂fβ where Ig is its ground state current, so the coupling loop was optimized

for a large range of 1/Lβ that can be tuned by changing fβ. Further, Mtls and Mtl are

predominantly supplied by the inductance of the shared junctions γ4 and γ5 respectively

[21, 8].

A scanning electron microscope (SEM) image of the device shown in Fig. 3.1(b) depicts

the qubit loop, the coupling loop, and the TL. The flux is controlled via two bias lines

that are used to independently bias each loop as will be shown in the following discussions.

The design includes a DC-SQUID that is inductively coupled to the qubit loop that can

be used for readout of the TLS, though it was not used for this test. The full device and

the experimental setup are displayed in Fig. 3.1(c) where it is shown that the bias lines

are each driven with an external voltage source and the signal through the TL is measured

with an Agilent E5071C vector network analyzer (VNA) connected to either end of the

line.

The flux crosstalk between the bias lines and the two superconducting loops must now

be determined to enable independent control of fβ and fϵ. The system can be calibrated by

measuring the periodicity of the flux through each loop. The signal transmission through

the TL at a single frequency is measured as voltage is swept on both of the bias lines.

Voltage applied to each line sends a current that induces flux through the two loops and

tunes the qubit gap ω10. When the detuning, δ = ωs − ω10, between the signal frequency

and the qubit gap approaches zero, the photons are absorbed producing a visible dip in

the transmission. These dips form a closed contour when performing a 2D sweep of fβ

and fϵ which are called frequency contours. The frequency contours occur near (fβ, fϵ) =

(0.5 + n, 0.5 +m) for integer values of n and m.

The crosstalk can be evaluated as a matrix operation on the input voltages at the bias

lines following the relationship(
fβ +

1
2

fϵ +
1
2

)
=

(
Wββ Wβϵ

Wϵβ Wϵϵ

)−1(
Vβ

Vϵ

)
+

(
V0,β

V0,ϵ

)
, (3.4)
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Figure 3.2: (a) |S21| response as a function of Vϵ and Vβ in the bias lines at 7.5 GHz showing

5 frequency contours. Two translation vectors W⃗1 and W⃗2 demonstrate the period of the

device. The periodicity vectors are factor of 10 less than subsequent tests resulting from

a smaller resistance used between the voltage source and the bias line. (b)-(d) Frequency

contours of the coupler when the signal frequency ωs is set to 4.5, 6.0, 8.1 GHz respectively.

The red line overlay shows the simulated contour after model fitting. See main text.

where fi is the flux in each loop, Wij are the elements of the crosstalk matrix, Vi are

the applied voltages, and V0,i are the offset voltages corresponding to the circuit biased

at (fβ, fϵ) = (0.5, 0.5). The crosstalk matrix was determined by scanning over a wide

range of voltages, and then using an image analysis routine to determine the periodicity

of the data [6]. Likewise, image inversion symmetries were used to measure the voltage

offset. Fig. 3.2(a) shows the transmission through the TL for ωs = 7.5 GHz versus applied

voltage as well as two extracted translation vectors W⃗1 = (Wββ,Wϵβ) and W⃗2 = (Wβϵ,Wϵϵ)

which demonstrate the expected periodicity of the system. The two translation vectors

W⃗1 and W⃗2 show the bias increase by one flux quantum in the coupling and the qubit

loops respectively. When extracting these vectors, high resolution images of the frequency
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contours were gathered to increase accuracy. Fig. 3.2(b)-(d) shows additional scans at

various frequencies that illustrate how the contours change with frequency. The frequency

contours seen in these additional scans do not directly correspond to a feature in Fig.

3.2(a) due to change in the electronics setup.

With the system calibrated, transmission spectroscopy measurements can be made by

sweeping fϵ at different values of fβ as shown in Fig. 3.3(a)-(c). Unlike standard flux qubits,

fϵ,sym is not generally at fϵ = 0.5 due to an effective bias resulting from the neighbouring

persistent current in the coupling loop. At fβ = 0.5, the current in the coupling loop

goes to 0 and we recover a nominal PCQ where the symmetry point of the qubit loop is

at fϵ = 0.5. We can determine fϵ,sym for each fβ by measuring the fϵ dependent qubit

splitting frequency from the spectroscopy and then fitting to Eq. (3.3). As evidenced by

Fig. 3.3(a)-(c), the flux in the coupling loop also impacts ∆ and to a lesser extent Ip of

system.

The device parameters are extracted by fitting the qubit splitting data ω10 to values

simulated by a circuit model. The circuit model produces the qubit splitting for given flux

values and predicts the coupling of the device. The model is in good agreement with the

data as seen by the transmission in Fig. 3.2(b)-(d) and the qubit frequency fits of Fig.

3.3(d).

After fϵ,sym is determined for each fβ value, we use these coordinates to characterize

the coupling range of the device by measuring the transmission versus signal frequency and

power. The transmission t follows the equation [22]

t =
1− r0 + ( δ

γ10
)2 + 2Nin

γ10
+ ir0

δ
γ10

1 + ( δ
γ10

)2 + 2Nin

γ10

, (3.5)

where δ = ωs − ∆ is the detuning of the signal frequency from the qubit gap, γ10 is the

dephasing rate, r0 ≡ Γ10/2γ10 with Γ10 the relaxation rate, and Nin is the average number

of incoming photons per second. The transmission spectra were fit to extract the relax-

ation rates and the qubit gap as these describe the coupling strength between TLS and

TL. The transmission response at different powers for (fβ, fϵ) = (0.41, 0.433) is displayed

in Fig. 3.4. The data is fit globally to all powers P in dBm. For each P the parameter Nin

is constrained to Nin = 10(P−A)/10−3/ℏωs where the attenuation A is a parameter of the

fit. This photon number dominates the fit when the power at the qubit exceeds the single
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Figure 3.3: (a)-(c) Spectroscopy data measuring |S21| as a function of fϵ and ωs at several

fβ values shows changing gap frequency ω10 and fϵ,sym. The dashed line displays the fit to

Eq. (3.3). (d) Fitting of the qubit gap versus fϵ for various fβ values using a circuit model.

The qubit gap frequencies are determined by fitting the transmission peak for different

coordinates of (fβ,fϵ).
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photon regimes the start of which can be seen at −24 dBm as the transmission suppression

begins to decrease.

The coupling of this tunable system can now be fully characterized as depicted in

Fig. 3.5 and compared to the circuit model simulation. The data produced by the circuit

model fit are shown in the solid lines and predict the behaviour of this device well. In Fig.

3.5(a) plots for both the qubit splitting ∆ and fϵ,sym versus fβ are shown. The relaxation

rate Γ01 compared to fβ is shown in Fig. 3.5(b) which can be seen to approach the qubit

splitting frequency ∆. Finally, the coupling strength α is plotted in Fig. 3.5(c) following

Eq. (2.29). The minimum value of Γ01 = 37 MHz is measured at fβ = 0.36 while the

maximum value was measured to be Γ01 = 1.6 GHz at fβ = 0.44. These produce a range

of values for α where αmin = 2.4 × 10−4 and αmax = 1.2 × 10−1 respectively which is an

on-off ratio of 500 or 2.7 orders of magnitude.

This result demonstrates that the device is able to decouple the TLS and the TL as

well as enable the USC regime at α ∼ 0.1 [8, 15]. By changing the flux bias through the

coupling loop, we can effectively turn the coupling on or off based on the needs of an exper-

iment. Furthermore, as we see from the simulated data, the coupling can be extrapolated

to achieve αmax = 0.32 which approaches the non-perturbative USC regime [8, 15]. The

minimum coupling is likely below the experimental value as well. The dip transmission

spectra for fbeta ≈ 0.365 is not distinguishable from the background noise and thus no

smaller coupling is measured. At this decoupling point, the interaction strength between

the TL and the qubit loop is very small which causes any dip in transmission to have a

very narrow width and become dominated by the residual dephasing. The total dephasing

can be observed in the values of r0 which are plotted on the inset for Fig. 3.5(b). When r0

is close to 1, the total dephasing is dominated by relaxation of the TLS to the TL, however

when r0 is close to 0, the residual dephasing takes over. We see that near our decoupling

point, the value of r0 is very small and the residual dephasing dominates.

This device exhibits considerable control over the coupling between a TLS and a waveg-

uide which has immediate impact in several subsequent experiments. Most fundamentally,

the coupler can be used to explore the time-domain properties of USC regime of light-

matter interactions. Experiments are proposed [28] where the qubit is excited, fast-tuned

to the USC regime to interact with the TL for a given time, and then decoupled to readout
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Figure 3.4: Plots of the transmission response |S21| versus signal frequency for multiple

powers (dBm) at a symmetry point (fβ, fϵ) = (0.41, 0.433) with qubit splitting of 6.1 GHz.

The power saturates near −30 dBm where the minimum transmission starts to become

apparent. The peaks are fit simultaneously using Eq. (3.5) to determine the qubit gap and

the relaxation rate. (a) The magnitude of the response. (b) The phase of the response.
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Figure 3.5: The extracted versus simulated data of key parameters for the coupled system.

The measurements sweep through values of fβ while fϵ is tuned to ensure the qubit loop

remains at its symmetry point. (a) The qubit gap frequency. The inset shows values for

fϵ,sym. (b) The relaxation rate Γ01 measured by fitting spectroscopy data using Eq. (3.5).

The inset displays r0 values which are used to calculate the relaxation rate and residual

dephasing of the system. (c) The coupling α01 between the TLS and the TL. The coupling

ranges from αmin = 2.1 × 10−4 and αmax = 0.098 which shows large tunablility and entry

into the USC regime.

the state. The device is designed to use fast-tuning pulses applied at the bias lines to

perform this protocol which can provide direct measurement of the relaxation rate in the

USC regime rather than estimates like Eq (3.5) that use the RWA. Further, the device can

be used for relativistic quantum information (RQI) investigations by acting as the experi-

mental realization of a switching function [13]. Switching functions are often implemented

when making theoretical predictions in RQI, but are very challenging to implement experi-

mentally as they essentially require instantly isolating an atom from its surroundings. This

tunable coupler demonstrates the isolation of an artificial atom from its environment, and

subsequent tests hope to show this can be done over very short times scales of the order

of a few nanoseconds. We are also preparing an RQI test in which two of these couplers

allow spatially separate qubits to interact with a single transmission line over very short

time scales. With suitable initialization and fast-switching pulses, this setup holds promise

for demonstrating entanglement harvesting from vacuum [24, 27]. Lastly, the device has

application in photon packet production where the TLS can be excited and then coupled
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to the TL using a fast pulse to generate versatile shaped single photons [12, 9].

In summary, we describe and implement a system whereby a TLS is tunably coupled

to a waveguide from a decoupling point up to the USC regime. The two superconducting

loops can be calibrated to account for flux crosstalk using the periodic nature inherent in

PCQs. The spectroscopic data is used to determine the symmetry points of the system

and the qubit splitting frequencies are in very good agreement with our modelling. Finally.

the transmission at the symmetry points is fit to characterize coupling strength between

the TLS and the waveguide. The tunable coupler can be applied to a broad range of ex-

periments that demand the controlled interaction between a qubit and a waveguide.
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Chapter 4

Conclusion

4.1 Summary

We presented in this thesis a tunable coupler that is able to mediate light-matter inter-

actions from a decoupled state to the ultra-strong coupling (USC) regime. Light-matter

interactions are well described by the spin-boson model. However, typical approximations

such as the rotating wave approximation (RWA) begin to break down as the coupling

increases into the USC regime. Achieving this regime enables explorations into the fun-

damental physics of these intense interactions and relativistic quantum information (RQI)

experiments. In order to tune the coupling strength and enter the USC regime, we showed

that artificial atoms can be coupled to a bosonic bath in a superconducting circuit. The

coupling is controlled using a quantum inductance that mediates an effective mutual induc-

tance between the persistent current qubit (PCQ) and the transmission line (TL) which

can be used to tune their interaction strength into the USC regime.

Unlike previous coupler systems within superconducting circuits, the device we pre-

sented has the key advantage of having a large tunablility and being able decouple the

two-level system (TLS) from the transmission line. This tunability is achieved using a

PCQ as a coupling loop that, when biased with an external magnetic flux, controls the

interaction strength between the TLS and the TL.
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The tunable coupler device uses two bias lines to control the flux through both the qubit

loop and the coupling loop. The proximity of these two loops results in large flux crosstalk

between them that must be accounted for when operating the system. The crosstalk was

successfully calibrated by measuring the periodicity of the two superconducting loops with

respect to the voltage applied at each bias line. After calibration, the symmetry points were

measured from spectroscopy data gathered for a range of flux bias values in the coupling

loop. At each symmetry point, the transmission through the TL was measured at several

powers and the response data was fit in order to extract the coupling strength. The final

results of this investigation showed that the interaction strength generated by this tunable

coupler ranges from αmin = 2.4× 10−4 to αmax = 1.2× 10−1.

4.2 Outlook

With the successful demonstration of the USC regime in a tunable coupler capable of also

decoupling the system, our next goal is to perform time-domain measurements of the qubit

dynamics in the USC regime. The tunable coupler can be used to directly measure the

relaxation rate, the dephasing rate, and the tunneling frequency of the TLS. In the USC

regime, the interactions occur on such small time scales, that it is challenging to measure

them while the system is in the USC regime. Instead, the measurement protocols rely on

letting the state evolve in the USC regime and then decoupling the system to freeze the

qubit state for measurement.

The tunable coupler device opens new research directions in RQI by realizing an ex-

perimental switching function. Experiments proposed for RQI require very fast, short

interactions between an artificial atoms and a TL that are only achievable in the USC

regime with a fast-tunable coupler. A superconducting circuit that uses two of the tunable

coupler devices has been designed to perform this experiment in the near future.
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Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross. Circuit quantum

electrodynamics in the ultrastrong-coupling regime. Nature Physics, 6(10):772–776,

October 2010. Number: 10 Publisher: Nature Publishing Group.

[19] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S.

Tsai. Quantum Coherent Tunable Coupling of Superconducting Qubits. Science,

316(5825):723–726, May 2007. Publisher: American Association for the Advancement

of Science.

[20] T. P. Orlando, J. E. Mooij, Lin Tian, Caspar H. van der Wal, L. S. Levitov, Seth

Lloyd, and J. J. Mazo. Superconducting persistent-current qubit. Physical Review B,

60(22):15398–15413, December 1999. Publisher: American Physical Society.

[21] B. Peropadre. Nonequilibrium and Nonperturbative Dynamics of Ultrastrong Cou-

pling in Open Lines. Physical Review Letters, 111(24), 2013.

[22] B Peropadre, J Lindkvist, I-C Hoi, C M Wilson, J J Garcia-Ripoll, P Delsing, and

G Johansson. Scattering of coherent states on a single artificial atom. New J. Phys.,

15(3):035009, March 2013.

38



[23] B. L. T. Plourde, J. Zhang, K. B. Whaley, F. K. Wilhelm, T. L. Robertson, T. Hime,

S. Linzen, P. A. Reichardt, C.-E. Wu, and John Clarke. Entangling flux qubits with a

bipolar dynamic inductance. Physical Review B, 70(14):140501, October 2004. Pub-

lisher: American Physical Society.

[24] Alejandro Pozas-Kerstjens and Eduardo Mart́ın-Mart́ınez. Harvesting correlations

from the quantum vacuum. Physical Review D, 92(6):064042, September 2015. Pub-

lisher: American Physical Society.

[25] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Physical

Review Journals, 69:674–674, June 1946.

[26] G. Romero, D. Ballester, Y. M. Wang, V. Scarani, and E. Solano. Ultrafast Quan-

tum Gates in Circuit QED. Physical Review Letters, 108(12):120501, March 2012.

Publisher: American Physical Society.

[27] Grant Salton, Robert B. Mann, and Nicolas C. Menicucci. Acceleration-assisted en-

tanglement harvesting and rangefinding. New Journal of Physics, 17(3):035001, March

2015. Publisher: IOP Publishing.

[28] Jiahao Shi. Fast Switchable Ultrastrong Coupling Between Superconducting Artificial

Atoms and Electromagnetic Fields. August 2019. Accepted: 2019-08-23T15:25:58Z

Publisher: University of Waterloo.

[29] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,

S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a super-

conducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167,

September 2004. Number: 7005 Publisher: Nature Publishing Group.

[30] Yimin Wang, Chu Guo, Guo-Qiang Zhang, Gangcheng Wang, and Chunfeng Wu. Ul-

trafast quantum computation in ultrastrongly coupled circuit QED systems. Scientific

Reports, 7(1):44251, March 2017. Number: 1 Publisher: Nature Publishing Group.

[31] Steven J. Weber. Coherent Coupled Qubits for Quantum Annealing. Physical Review

Applied, 8(1), 2017.

39



[32] U. Weiss. Quantum dissipative systems (series in modern condensed matter physics;

v. 13). In Quantum Dissipative Systems, pages 1–4. World Scientific, May 2008.

40



APPENDICES

41



Appendix A

Circuit Model Description for the

Tunable Coupler

The tunable coupler device we introduce consists of a two-loop flux qubit galvanically

coupled to an open transmission line as shown in Fig. 3.1(a). The TLS is generated in

the first loop called the qubit loop. The qubit loop consists of a 4-junction PCQ with an

external flux bias fϵ = Φϵ,ext/Φ0 that couples to the transmission line through the quantum

inductance of the coupling loop. The coupling loop is 3-qubit PCQ with an external flux

bias fβ = Φβ,ext/Φ0. To maximize the mutual inductance, junctions 4 and 5 of the coupling

loop are connected to the qubit-loop and the waveguide respectively.

As with other flux qubits, the flux through the superconducting loops is quantized and

follows a relation based on the phase of the junctions. The two loops are constrained by

γ1 + γ2 + γ3 + γ4 + 2πfϵ = 0,

γ4 + γ5 + γ6 − 2πfβ = 0,
(A.1)

where γi is the phase across junction i. The circuit can be solved using the same Hamilto-

nian formulation as the PCQ in Eq. 2.20 so we have

H =
1

2φ2
0

pppT C̃−1ppp+ U, (A.2)
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where C̃ is the capacitance matrix, ppp is the momentum vector, and U is the potential

energy stored in system. We can use Eq. A.1 to constrain the potential so that we are left

with only 4 degrees of freedom. Thus we are left with the potential

U = −ϕ0[Ic1cosγ2 + Ic1cosγ2 + Ic3cos(γ1 + γ2 + γ3 + 2πfϵ)

+ Ic4cosγ4 + Ic5cosγ5 + Ic6cos(γ4 + γ5 − 2πfβ)]. (A.3)

The capacitance matrix C and momentum ppp are similarly constrained to 4 degrees of

freedom.

The Hamiltonian is numerically generated as a matrix by using Eq A.2. The momentum

coordinates are introduced into the model using the relation

pi = ℏni. (A.4)

where ni is the charge number on each island of the circuit. The maximum number of

charges is be restricted to a small number to decrease the size of matrix that needs to be

solved. The Hamiltonian is diagonalized to find the the qubit frequency at symmetry ∆

and the relaxation rates Γ01. With this model, the circuit can be simulated and optimized

for our experiment. Circuit parameters are chosen such that the qubit frequencies are

within the operation range of our setup and the tunable coupler enables coupling in the

USC regime.
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