
On the Design of 2D Human Pose
Estimation Networks using

Accelerated Neuroevolution and
Novel Keypoint Representations

by

William McNally

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2022

© William McNally 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: James Little
Professor, Dept. of Computer Science,
University of British Columbia

Supervisors: John McPhee
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Alexander Wong
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal Member: David Clausi
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal Member: John Zelek
Associate Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal-External Member: William Melek
Professor, Dept. of Mechanical and Mechatronics Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Chapters 3 and 4 contain material from two multi-author papers for which I was the lead
author. As the lead author, I was responsible for conceptualizing the studies, carrying
out all code development (except as indicated in the co-author contributions below), and
drafting and submitting the manuscripts. My co-authors, which included my colleague
Kanav Vats (PhD Candidate) and my supervisors Prof. McPhee and Prof. Wong, provided
guidance throughout the process and feedback on draft manuscripts. The references for
the two papers are provided below:

1. McNally, W., Vats, K., Wong, A. and McPhee, J., 2021. EvoPose2D: Pushing
the boundaries of 2D human pose estimation using accelerated neuroevolution with
weight transfer. IEEE Access, 9, pp. 139403-139414.

Contribution of K. Vats: implemented the PoseFix post-processing algorithm.

2. McNally, W., Vats, K., Wong, A. and McPhee, J., 2022. Rethinking keypoint
representations: Modeling keypoints and poses as objects for multi-person human
pose estimation. Submitted to ECCV 2022. arXiv preprint arXiv:2111.08557

Contribution of K. Vats: technical review and assisted with exploratory experiments.

iv

https://ieeexplore.ieee.org/abstract/document/9559918
https://ieeexplore.ieee.org/abstract/document/9559918
https://ieeexplore.ieee.org/abstract/document/9559918
https://arxiv.org/abs/2111.08557
https://arxiv.org/abs/2111.08557
https://arxiv.org/abs/2111.08557

Abstract

Motion capture is a very useful technology that is employed across many industries. Biome-
chanical analysis, film production, video game development, and virtual reality are among
its diverse applications. However, traditional marker-based motion capture systems are
limited by their invasiveness, excessive cost, and lack of portability. Human pose estima-
tion represents a promising markerless alternative, where 3D human poses are estimated
from RGB images obtained using single or multi-camera setups. The estimation of 2D poses
serves as the main foundation for these systems. As such, the development of accurate and
efficient 2D human pose estimation algorithms is critical to the overall advancement of
markerless motion capture, and that is the focus of this thesis.

Two novel convolutional neural networks for 2D human pose estimation are presented,
one for each of the two multi-person estimation paradigms (i.e., single-stage and two-stage).
Motivated by the recent use of neural architecture search for convolutional neural network
design, a novel neuroevolution framework is introduced and is leveraged in the design of
a computationally efficient heatmap-based human pose estimation network for use in the
two-stage paradigm. The neuroevolution was accelerated by a novel weight transfer scheme
that relaxes the complete function-preservation constraint imposed by previous methods.

Recognizing the drawbacks of heatmaps, including the inherent issue of quantization
error and the excessive computation required to generate and post-process large heatmap
fields, two novel heatmap-free keypoint representations are introduced for modeling key-
point locations more efficiently. Drawing inspiration from single-stage object detectors, the
representations are centered around modeling individual keypoints and sets of spatially re-
lated keypoints (i.e., poses) as objects. It is found that pose objects lend themselves well to
single-stage human pose estimation, and a method is introduced that jointly learns human
pose objects and keypoint objects and fuses the detections to exploit the strengths of both
object representations.

At the time of development, both networks achieved state-of-the-art accuracy in their
respective categories on the most established multi-person human pose estimation bench-
marks when scaled. Moreover, they are more computationally efficient than previous net-
works as shown by having fewer parameters, fewer floating-point operations, and faster
inference speed. The two-stage model is recommended for accuracy-critical scenarios with
large computational budgets, whereas the single-stage model is more efficient and has
greater potential for future research. It is hoped that these new models advance the cur-
rent state of markerless motion capture systems based on human pose estimation.

v

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. John McPhee and Prof.
Alexander Wong, for their incredibly dependable support and invaluable mentorship. I
would also like to thank my committee members – Profs. David Clausi, John Zelek, and
William Melek for providing helpful feedback during my comprehensive exam and through
the completion of my research. A special thanks to Profs. Clausi and Zelek for involving
me in the Sports Analytics Research Group and its related projects – I thoroughly enjoyed
the discussions held during the weekly meetings.

I also want to thank the current members and alumni of the Motion Research Group
and the Vision and Image Processing Lab, especially Dr. Brokoslaw Laschowski and Kanav
Vats, for their frequent and fruitful collaborations. Finally, I would like to acknowledge the
organizations and programs who funded this research or provided computational resources,
including the University of Waterloo, the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), the Canada Research Chairs (CRC) Program, Compute Canada,
the Waterloo Artificial Intelligence Institute, the TPU Research Cloud (TRC) Program,
Microsoft Azure, and NVIDIA.

vi

Dedication

This thesis is dedicated to my family. To my parents Karen and John, my sister Tess, and
my brother Ed: thank you for your support and encouragement over the years.

vii

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Limitations of Marker-based Motion Capture 1

1.2 Human Pose Estimation: Markerless Motion Capture using RGB Video and
Deep Learning . 2

1.3 Research Overview . 6

1.4 Thesis Outline . 7

2 Background 9

2.1 Datasets . 9

2.1.1 Microsoft COCO . 10

2.1.2 CrowdPose . 12

2.1.3 PoseTrack . 13

2.2 Related Work . 14

2.2.1 Human Pose Estimation . 14

2.2.2 Object Detection . 23

2.2.3 Neural Architecture Search . 27

2.3 Discussion . 31

viii

3 EvoPose2D: A Two-Stage Human Pose Estimation Network Designed
using Neuroevolution Accelerated with Weight Transfer 33

3.1 Introduction . 34

3.2 Neuroevolution Acceleration via Weight Transfer 36

3.3 Neuroevolution Design . 38

3.3.1 Search Space . 38

3.3.2 Fitness . 40

3.3.3 Evolutionary Strategy . 42

3.3.4 Large-batch Training . 42

3.3.5 Compound Scaling . 43

3.4 Experiments . 44

3.4.1 Large-batch Training of Human Pose Networks on TPUs 44

3.4.2 Neuroevolution Experiments . 47

3.4.3 Comparisons with the State of the Art 50

3.5 Discussion . 53

4 KAPAO: Modeling Keypoints and Poses as Objects for Single-Stage Hu-
man Pose Estimation 56

4.1 Introduction . 57

4.2 Keypoints and Poses as Objects . 59

4.2.1 Architectural Details . 60

4.2.2 Loss Function . 63

4.2.3 Inference . 65

4.2.4 Limitations . 65

4.3 Experiments . 66

4.3.1 Microsoft COCO Keypoints . 68

4.3.2 CrowdPose . 71

4.3.3 Error Analysis . 73

ix

4.3.4 Qualitative Comparisons . 74

4.3.5 Ablation Studies . 78

4.3.6 Video Inference Demos . 81

4.4 Discussion . 82

5 Conclusion 86

5.1 Summary of Contributions . 86

5.2 Future Work . 88

References 92

x

List of Figures

1.1 Sample keypoint heatmap predictions. 5

2.1 Classification of 2D human pose estimation models. 15

2.2 Comparison of two-stage and single-stage multi-person human pose estima-
tion approaches. 18

2.3 Common CNN topologies used in human pose estimation. 19

2.4 Two influential bottom-up approaches to multi-person pose estimation. . . 22

2.5 Deep learning-based object detection architectures. 24

2.6 Overview of neural architecture search. 28

3.1 Accuracy vs. FLOPs: EvoPose2D compared to state-of-the-art two-stage
methods. 36

3.2 Two examples of weight transfer used in the proposed neuroevolution. . . . 38

3.3 Neuroevolution search space diagram. 39

3.4 Large-batch training losses. 46

3.5 Neuroevolution results. 49

4.1 Accuracy vs. Inference Speed: KAPAO compared to state-of-the-art single-
stage methods. 59

4.2 Illustrating the essence of KAPAO. 61

4.3 Schematic of the KAPAO methodology. 62

4.4 Sample targets used for training KAPAO. 64

xi

4.5 Error type analysis on COCO val2017 . 75

4.6 Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 24021). 77

4.7 Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 49759). 78

4.8 Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO
image 326248). 79

4.9 The influence of keypoint object bounding box size on learning. 80

4.10 Keypoint object fusion rates by keypoint type. 81

4.11 KAPAO’s accuracy-speed trade-off for various input sizes. 81

4.12 KAPAO video inference screenshots. 83

4.13 KAPAO inference on a depth image. 83

xii

List of Tables

3.1 Module configuration for the common ancestor network. 40

3.2 Large-batch training results. 47

3.3 Architectural details for EvoPose2D-S, designed using neuroevolution. . . . 50

3.4 Scaling coefficients for EvoPose2D-M and L. See Eq. 3.5 for details. 50

3.5 EvoPose2D compared to state-of-the-art two-stage methods on COCO and
PoseTrack. 52

4.1 KAPAO hyperparameters. 67

4.2 KAPAO compared to state-of-the-art single-stage methods on COCO val2017. 69

4.3 KAPAO compared to state-of-the-art two-stage and single-stage methods
on COCO test-dev. 72

4.4 KAPAO compared to state-of-the-art two-stage and single-stage methods
on CrowdPose. 73

4.5 Accuracy improvement resulting from fusing keypoint objects with pose ob-
jects. 80

xiii

Chapter 1

Introduction

Motion capture is the process of digitally encoding the movements of humans and/or
objects. Such data has numerous applications that can broadly be grouped into three cat-
egories: surveillance, control, and analysis [1]. Surveillance applications include intelligent
security systems (e.g., recognizing abnormal activities in crowds, like in an airport [2, 3]).
Control applications are widespread in the entertainment industry, where motion capture
is used to control digital avatars for animation [4], virtual reality [5], and filmmaking [6].
Analysis applications are diverse and exist across many industries. Examples include clin-
ical gait analysis [7], the biomechanical analysis of athletes [8], next-generation sports an-
alytics [9, 10], and the validation of mobile robots [11, 12]. The sheer number of potential
applications makes motion capture data highly valuable. However, traditional marker-
based motion capture systems possess several limitations that prevent many applications
from coming to fruition.

1.1 Limitations of Marker-based Motion Capture

Traditional marker-based motion capture systems (e.g., Vicon, Qualisys, OptiTrack, etc.)
use numerous infrared cameras to triangulate the 3D positions of spherical retroreflective
markers placed on target subjects and/or objects. Although these systems are considered
the “gold standard” for motion capture technology [13], they suffer from three main draw-
backs: lack of portability, invasiveness, and cost. These limitations are discussed in more
detail below.

1

1. First, the use of markers prohibits “in-the-wild” applications such as biome-
chanical analysis outside the lab. In the field of sports biomechanics, athletes must
be recruited to participate in motion capture experiments held in research laborato-
ries. Besides being inconvenient for the athletes, these experiments may cause the
athletes to behave differently than they would in their natural sporting environment.
The ability to perform biomechanical analysis in the wild therefore has implications
to biomechanical research, as well as sports broadcasting, with the potential to pro-
vide biomechanical analytics to commentators in real-time and enhance the overall
viewing experience.

2. Second, fitting markers on a human subject is invasive and time-consuming.
If markers are placed over clothing they can move relative to the body, leading to
position error. To minimize position error, a subject may be asked to wear very
tight clothing, or remove their clothing altogether such that the markers can be
placed directly on the body. Even then, the skin can translate relative to anatomical
landmarks. A less invasive alternative involves using custom-fit motion capture suits
on which markers can be placed. However, these suits are expensive and do not
fully resolve the issues with position error. Furthermore, there is potential for the
markers/suit to interfere with the natural biomechanics of the subject. This raises
questions regarding the integrity of the collected data.

3. Finally, marker-based motion capture systems are prohibitively expensive.
Most applications require numerous redundant cameras to track markers that may
disappear behind body parts or other obstructions. If the activity requires a large
space, more cameras are required to cover the entire capture volume. The 2K Motion
Capture Studio is one of the largest motion capture studios in North America and is
used for recording video game animations. It consists of 144 Vicon Vantage cameras
that cost thousands of dollars each [14].

1.2 Human Pose Estimation: Markerless Motion Cap-

ture using RGB Video and Deep Learning

Given the limitations of marker-based motion capture systems, markerless motion capture
using RGB video and image processing algorithms is an attractive alternative, and is a
highly researched area in the field of computer vision. Early approaches to markerless mo-
tion capture used hand-designed feature descriptors (e.g., histograms of oriented gradients
(HOG) [15], scale-invariant feature transforms (SIFT) [16], etc.) to extract local features

2

from RGB images and detect human body parts [17, 18, 19]. These custom-engineered fea-
ture descriptors demanded careful designs that were sensitive to different body parts yet
resistant to input variations (e.g., skin pigment, lighting, clothing, etc.). Recent advances
in computer hardware and software, as well as the ubiquity of imaging data available online,
has fostered the development of methods based on deep learning [20], and more specifi-
cally, convolutional neural networks (CNNs) for artificial visual perception [21]. These
data-driven approaches automatically learn image features that are more tolerant to input
variations and thus have led to significant improvements over classical image processing
techniques, including the early part-based models used for markerless motion capture. In-
deed, deep learning and CNNs in particular have transformed the entire field of computer
vision. It is widely contended that the momentous transition into the “deep learning era”
was marked by the influential work of Krizhevsky et al. [22], who popularized the use of
graphics processing units (GPUs) for large-scale CNN training, and ultimately developed
a CNN (AlexNet) that went on to win the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [23] by an astounding margin.

CNNs have been central to the advancement of markerless motion capture technol-
ogy. In essence, they are a type of artificial neural network that are specially equipped
to process 2D data (e.g., image data). In brief, they contain a hierarchical arrangement
of image filters that produce features that are pertinent to a particular visual perception
task (e.g., locating human joints). The convolutional layer is the main component of a
CNN. It applies a set of image filters (i.e., kernels) to an input tensor (e.g., an image)
using discrete 2D convolution [24]. The output tensor contains the filtered results, called
feature maps. The kernel weights control the filtering mechanism. Depending on the ar-
rangement of its weights, a kernel may blur the input, sharpen it, or detect edges [24]. The
power of deep learning is harnessed by learning the optimal kernel weights directly from
the data by minimizing a loss function representing the error. The network optimization
(i.e., “training”) is performed by iteratively updating the network weights using optimiza-
tion algorithms like stochastic gradient descent (SGD) or Adam [25], which implement
back-propagation [26] to efficiently compute the weight gradients. By stacking several
convolutional layers in series, the intermediate feature maps become increasingly represen-
tative. In actuality, modern CNNs contain hundreds of convolutional layers and millions
of learnable parameters (i.e., weights) [27]. Remarkably, CNNs have surpassed human
experts in their ability to understand images in several instances [28, 29, 30, 31, 32, 33]. It
is worth noting that new deep learning architectures inspired by the Transformer [34] used
in natural language processing and built entirely on attention mechanisms (i.e., without
convolution) are swiftly making their way into computer vision (e.g., Vision Transformer
(ViT) [35], Swin Transformer [36], etc.). However, CNNs maintain a dominant presence in

3

computer vision at the time of writing due to their efficiency and simplicity. Furthermore,
recent research suggests that when CNNs are “modernized” using the training algorithms
and architectural traits of recent transformers, they can outperform said transformers on
multiple benchmarks [37].

As it pertains to this thesis, researchers have exploited CNNs to perform markerless
motion capture in the form of human pose estimation – the frame-by-frame detection
and localization of human joints and other anatomical landmarks, often referred to as
keypoints, in RGB images and video [38]. Traditionally, the study of human pose estimation
has focused on estimating 2D poses by localizing sets of keypoints in the image coordinates
(i.e., 2D human pose estimation [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59]). Keypoint locations are commonly modeled using heatmaps [41], which
are 2D fields representing the per-pixel likelihood for the existence of keypoints. Target
heatmaps are generated by centering Gaussians on the ground-truth keypoint locations,
and then a human pose estimation network (i.e., a CNN) is trained to predict the heatmaps
by minimizing a mean squared error loss over thousands of training examples. The equation
used to generate a target heatmap Sk ∈ Rh′×w′

corresponding to a ground-truth keypoint
of class k located at (x′

k, y
′
k) is given by:

Sk(x
′, y′) = 255 exp

(−(x′ − x′
k)2 − (y′ − y′k)2

2σ2

)
(1.1)

with x′, x′
k ∈ [0, w′] and y′, y′k ∈ [0, h′]. h′ and w′ are the height and width of the target

heatmap, respectively. Heatmaps are commonly parameterized with σ = h′

32
pixels (px)

[51]. Figure 1.1 illustrates the appearance of heatmap predictions using the human pose
estimation network developed in Chapter 3. A separate heatmap is predicted for each
keypoint type, and the arguments of the maximum heatmap response are used to predict
the keypoint locations in the heatmap coordinates. The keypoints are then transformed
back to the coordinates of the original input image I ∈ Rh×w. An example 2D pose
prediction is overlaid on the input image in the left of Figure 1.1.

Multiple people may appear in an image and 2D human pose estimation algorithms
should be able to handle such cases. There are two main approaches that address multi-
person estimation; they are categorized by whether they use one or two inference stages.
Two-stage approaches detect all the people in the image first using a person detector
and then estimate poses in the second stage using a single-person human pose estimation
network (i.e., like the one used to generate the heatmaps in Figure 1.1). In contrast,
single-stage approaches estimate the poses for all the people in the image following a single
forward pass. This gives rise to a trade-off: two-stage methods can achieve higher accuracy,

4

Figure 1.1: Sample keypoint heatmap predictions made using EvoPose2D, the 2D human pose
estimation network developed in Chapter 3. From left to right: input image with the predicted
2D pose overlaid, sample heatmap predictions for the nose, left shoulder, right hip, and right
ankle. The input image was sourced from the Microsoft COCO dataset [60].

but single-stage methods are more computationally efficient, especially when the number
of people in the image is large.

The focus on 2D human pose estimation as opposed to 3D has largely been a con-
sequence of data availability: gathering large amounts of diverse images from online
sources and manually labeling the 2D keypoint locations is relatively straightforward, but
this process cannot be extended to 3D keypoints since it is not feasible for humans to
precisely annotate the depths of image keypoints. Instead, marker-based motion cap-
ture systems have been used to build datasets (e.g., Human3.6M [61], HumanEva [62],
MPI-INF-3DHP [63]) to support the development of 3D human pose estimation algo-
rithms [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].
These algorithms estimate 3D positions from RGB images and as such, they represent a
promising step in the direction of viable markerless motion capture for humans.

Significant progress has been made in 3D human pose estimation by virtue of 2D human
pose estimation. A strong use case for the latter has emerged due to the fact that motion
capture datasets lack diversity: all the images are collected from a single environment,
and motions are recorded for a finite number of subjects performing a finite set of actions
or gestures. As a result, 3D human pose estimation algorithms that naively map RGB
images to 3D pose by training on motion capture datasets directly do not generalize well
to new environments, subjects, or movements. Researchers have instead opted to use 2D
human pose estimation models in the design of 3D human pose estimation algorithms
because they have greater generalizability from training on diverse image datasets. A
common approach is to “lift” 2D poses to 3D using a neural network. In the simplest
implementation, the input to the neural network is an estimated 2D pose and the output is

5

the 3D pose prediction for the same frame [67]. The 3D prediction is therefore conditioned
on the 2D pose information rather than the original RGB image. In other words, 3D poses
can be estimated for any image that can be processed by the underlying 2D model. To help
resolve the ambiguities associated with lifting 2D poses to 3D, temporal information has
been exploited using multi-frame sequences of 2D poses as input to sequential deep learning
models (e.g., recurrent neural networks [73, 87], 1D CNNs [75, 78], and transformers [81,
82, 83]). The methods that achieve the highest 3D reconstruction accuracy triangulate
2D poses from multi-view images using epipolar geometry [88, 89, 76, 79]. In any case,
it is apparent that 2D human pose estimation is a vital component of 3D human pose
estimation algorithms and as such, it is an important facet of markerless motion capture.

1.3 Research Overview

Evidently, 2D human pose estimation is an important precursor to 3D human pose esti-
mation. The development of accurate and efficient 2D human pose estimation algorithms
is therefore critical to the overall advancement of markerless motion capture technology,
and such is the focus of this thesis. The pivotal role of 2D human pose estimation is
underscored by the fact that the accuracy of 2D pose estimates directly influences the
accuracy of 3D pose reconstructions [67]. Moreover, 2D human pose estimation models
are responsible for the majority of the computational cost accrued in 3D human pose es-
timation pipelines; the models used to estimate 2D poses from images can be orders of
magnitude more computationally expensive than the models used to lift 2D poses to 3D.
To illustrate, a state-of-the-art 2D human pose estimation model introduced by Cheng et
al. [54] (HigherHRNet) runs at approximately 1 frame per second on an NVIDIA TITAN
Xp GPU [58]. For comparison, the 2D-to-3D pose lifting model of Pavllo et al. [75] runs
at approximately 150k frames per second (FPS) on the same GPU.

A practical performance target for any computer vision algorithm is for it to run at
least as fast as the input video frame rate (i.e., in “real-time”), which ranges from 24 to 60
FPS for most applications. Seemingly, this is already a challenge in human pose estimation
using workstations with powerful GPUs (as evidenced by the speed of HigherHRNet on a
TITAN Xp GPU). There is also a desire to make this technology portable and accessible
to everyone, and so a more ambitious goal is to have these algorithms run in real-time on
mobile devices (i.e., on smartphones and tablets). This poses an even greater challenge
given the limited computational resources available on mobile devices compared to GPU
workstations and servers. In summary, there remains ample room to improve the compu-
tational efficiency of 3D human pose estimation algorithms from a practical standpoint,

6

and if such is the objective, improving the efficiency of the underlying 2D human pose
estimation models should be prioritized given their substantial computational demand.

The size and speed of a CNN can be improved without modifying the network archi-
tecture using compression techniques such as pruning [90], quantization [91] and Huffman
coding [92]. For example, Han et al. [93] reduced the storage required by AlexNet by 35×,
from 240MB to 6.9MB, without loss of accuracy and observed a speedup of 3× to 4× on
CPU and GPU. Importantly, such compression techniques are model-agnostic, meaning
they can be applied to any model or architecture. This research instead focuses on the
design of CNN architectures that are inherently more efficient.

To this end, two 2D human pose estimation models were developed as a part of this
thesis, one for each of the multi-person estimation paradigms (i.e., two-stage and single-
stage). In the two-stage paradigm, a novel neuroevolution framework was used in the
design of a heatmap-based human pose estimator. A new flexible weight transfer scheme
was introduced to accelerate the neuroevolution, where pretrained weights in a parent
network are transferred to mutated child networks to improve the weight initialization in
future training cycles. The weight transfer method is simpler and has fewer constraints
than network morphisms [94] and function-preserving mutations [95], and led to a six-fold
reduction in the neuroevolution runtime. While two-stage approaches are generally more
accurate, single-stage approaches have simpler implementations and are more efficient for
multi-person estimation. Furthermore, recent research has highlighted the computational
inefficiencies associated with the heatmap keypoint representation [96, 97]. Motivated by
this, new keypoint representations are introduced in this thesis by modeling individual
keypoints and entire poses as objects. The pose object representation lends itself well
to single-stage human pose estimation, and so a novel heatmap-free single-stage human
pose estimation network was engineered around the idea. In the context of CNN design,
there is often a trade-off between computational efficiency and accuracy, but the most
impactful contributions lead to improvements in both. Notably, both the proposed models
achieve state-of-the-art accuracy in their respective categories on widely used human pose
estimation benchmarks while being more computationally efficient than previous methods.
An outline of the thesis is provided in the next section.

1.4 Thesis Outline

Chapter 2 provides a review of the literature. Section 2.1 describes the relevant datasets and
the AP/AR accuracy metrics that are used for the evaluations in the subsequent chapters.

7

Section 2.2 provides a summary of the recent work in 2D human pose estimation, object
detection, and neural architecture search.

Chapter 3 introduces EvoPose2D, a human pose estimation network for two-stage in-
ference that was designed using a novel accelerated neuroevolution method exploiting a
simple yet effective weight transfer scheme. This research represents the first application of
neuroevolution to human pose estimation (i.e., 2D or 3D), and more generally, the first ap-
plication of neural architecture search to human pose estimation in which state-of-the-art
accuracy has been achieved.

Chapter 4 introduces KAPAO, an entirely new method for single-stage human pose es-
timation that does away with computationally expensive heatmaps and uses new keypoint
representations in which individual keypoints and poses are modeled as objects. Chapters 3
and 4 each include a brief introduction describing the motivation behind the research, a de-
scription of the proposed methodology, supporting experiments and analysis of the results,
and a final discussion. Section 4.4 discusses the advantages/disadvantages of EvoPose2D
and KAPAO and provides potential use cases for each.

Chapter 5 concludes the thesis with a summary of the research and the contributions
made to the field of human pose estimation. Finally, recommendations are made and
potential areas for future work are discussed.

The figures in this thesis are best viewed in colour. In all tables, the best results are
emphasized with bold typeface. Unless “3D” is explicitly referenced, any further discussion
of human pose estimation henceforth relates to 2D human pose estimation.

8

Chapter 2

Background

This chapter discusses the relevant background for the research presented in Chapters 3
and 4. An overview of human pose estimation datasets is provided first, placing emphasis
on the datasets used for training and validating the models developed in this thesis. A
discussion of the related work is then given for the areas of human pose estimation, object
detection, and neural architecture search.

2.1 Datasets

Two-dimensional human pose estimation using deep learning was made possible in large
part by the release of public image datasets containing annotations for the coordinates of
human joints and other anatomical keypoints. Leeds Sports Pose (LSP) [98] and FLIC [99]
were two of the first datasets of this type and were formed of images containing a single
person. LSP contained 2k images of humans playing sports gathered from the online image
repository Flickr, and the images were annotated with 14 keypoints. The FLIC dataset
is slightly larger, containing 5k images extracted from popular Hollywood movies, with
annotations for 11 upperbody keypoints. LSP was later extended to 10k images [100].

The early success of deep learning-based human pose estimation [40, 41] on LSP and
FLIC spurred the release of larger datasets to support the development of human pose
estimation models with greater capacity and generalizability. The MPII Human Pose
Database [39] is arguably the first large-scale benchmark for 2D human pose estimation.
It contains 25k images collected from 410 YouTube videos, including 40k person instances
annotated with up to 16 keypoints.

9

The MPII dataset has been widely popular; however, it focuses primarily on single-
person human pose estimation and does not consider person detection, which is an im-
portant component of deploying human pose estimation models in the real world. As a
result, several large-scale multi-person human pose estimation datasets were subsequently
released to benchmark end-to-end human pose estimation pipelines, including the detection
of potentially numerous people, the estimation of their poses, and in some cases person
tracking [101]. Microsoft COCO Keypoints [60], AI Challenger [102], PoseTrack [101],
CrowdPose [103], and COCO-WholeBody [104] are examples of multi-person human pose
estimation datasets (listed in chronological order of publication). Microsoft COCO Key-
points is the most established and frequently used dataset for benchmarking multi-person
human pose estimation algorithms at the time of writing. It introduced robust accuracy
metrics to handle the new multi-person estimation protocol. The COCO metrics were
subsequently adopted by the more recent datasets. Microsoft COCO, CrowdPose, and
PoseTrack were used in the development of the models presented in this thesis and are
described in more detail in the following sections.

2.1.1 Microsoft COCO

The Microsoft COCO dataset [60] (COCO) is the one of the most commonly used datasets
for benchmarking the performance of object detection, instance segmentation, and multi-
person human pose estimation (referred to as keypoint detection by the dataset creators)
models. COCO contains over 200k labeled images and an additional 123k unlabeled images
to support semi-supervised and self-supervised methods. For the object detection and
instance segmentation tasks, over 500k object instances comprising 80 object categories
were annotated with bounding boxes and segmentation masks. For keypoint detection,
over 250k person object instances were additionally labeled with up to 17 keypoints each,
including the nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and ankles. Between
the training and validation subsets, over 1.7M labeled keypoints are publicly available for
model development.

The models developed in this thesis were trained on the train2017 split containing
118k images and 150k person instances. Validation was performed on the val2017 split
containing 5k images and 6.3k person instances. Additional testing was performed on the
test-dev split, which contains 41k images. The labels for test-dev are not public and
image predictions must be uploaded to an evaluation server to obtain the test results.

The accuracy metrics adopted for keypoint detection on COCO are based on common
object detection metrics [105]. It is helpful to first describe the object detection metrics

10

to better understand the metrics used for keypoint detection. The main object detection
metric is called the average precision (AP) and is based on the intersection over union
(IoU), a similarity measure between two bounding boxes. More explicitly, the IoU is the
intersection area divided by the union area between a ground-truth (b) and detected (b̂)
object bounding boxes:

IoU =
area(b ∩ b̂)

area(b ∪ b̂)
. (2.1)

A detected object is considered to be a true positive (tp) if its IoU with a ground-truth
annotation is greater than some threshold α. If the IoU is less than α, the detected
object is considered to be a false positive (fp). A ground-truth object can only have one
corresponding true positive detection and any extra detections are considered to be false
positives. The number of false negatives (fn) equals the number of ground-truth objects
minus the number of true positives. The precision (p) and recall (r) metrics may then
computed as follows:

p =
tp

tp + fp
r =

tp

tp + fn
. (2.2)

Each detected object has an associated confidence score, and detections that fall below
a user-defined confidence threshold may be removed. Naturally, using a lower confidence
threshold results in more false positives, lower precision, and higher recall. A precision-
recall curve p(r) is generated for a given IoU threshold α by sorting the detections across
all the images by confidence score and evaluating the precision and recall over the full
range of confidence thresholds (i.e., from 0 to 1) [105]. The average precision at the IoU
threshold α (APα) is the area under the precision-recall curve:

APα =

∫ 1

0

p(r) dr . (2.3)

In practice, interpolation methods are used over a series of recall bins as p(r) is not guar-
anteed to be monotonically decreasing. For COCO, 101 recall bins are used.

The primary COCO metric, referred to simply as the average precision (AP), is equal
to APα averaged over ten IoU thresholds: α ∈ {0.50, 0.55, ..., 0.95}. For the object detec-
tion and instance segmentation tasks, the AP is averaged again over the object categories.
This metric has previously been called the mean average precision (mAP); however, COCO
makes no distinction between the nomenclature and assumes the mean of the object cate-
gories is computed when applicable.

AP.50 and AP.75 correspond to the AP computed for the individual IoU thresholds of
0.50 and 0.75, respectively. APS is the AP computed for small objects (area ≤ 322), APM

11

is for medium objects (322 < area ≤ 962), and APL is for large objects (area > 962), as
measured in the original image coordinates in units of pixels. The average recall (AR) is
equal to the maximum recall (i.e., when the confidence threshold is set to 0) averaged over
the IoU thresholds and object categories. It is computed for a fixed number of detections
per image. For object detection and instance segmentation, the number of detections is
100. For keypoint detection, the number of detections is 20.

At the core of the described object detection metrics is the IoU, which effectively rep-
resents a measure of similarity between a detected and ground-truth object bounding box.
The IoU is also used in the instance segmentation task to generate the same metrics, except
the areas are computed using the object segmentation masks as opposed to the bounding
boxes. It follows that the same metrics can be adopted for keypoint detection using an
analogous similarity measure for human poses. The Object Keypoint Similarity (OKS)
was introduced for this purpose. It is a summation of Gaussian-scaled Euclidean distances
between the ground-truth and predicted keypoints of a human pose. More explicitly, it is
defined as follows:

OKS =

∑K
i=1 exp(−d2i /2s2k2

i)δ(νi > 0)∑K
i=1 δ(νi > 0)

(2.4)

where K is the number of keypoint types (K=17 for COCO), di are the Euclidean distances
between the ground-truth and predicted keypoints (units of pixels, computed in the original
image coordinates), and νi are visibility flags of the ground-truth keypoints (ν = 0: not
labeled, ν = 1: labeled but not visible, and ν = 2: labeled and visible). The Gaussian
standard deviation ki is specific to the keypoint type and is scaled by the area of the
person bounding box s, measured in pixels. For each keypoint type, ki reflects the standard
deviation of human annotators when labeling keypoints of type i and is computed from
a set of 5k redundantly annotated images [60]. A perfectly predicted pose has an OKS
of 1; however, only 70% of human annotated keypoints fall within a keypoint similarity
exp(−d2i /2s2k2

i) > 0.85 [106, 60].

The OKS directly replaces the functionality of IoU and is used to generate the same
AP/AR metrics for the keypoint detection task with the exception of APS, which is not
considered as no keypoints were labeled for the small person instances.

2.1.2 CrowdPose

CrowdPose [103] is a multi-person human pose estimation dataset containing an abundance
of images with heavy occlusion caused by crowded scenes with overlapping people. It is

12

considered a more challenging dataset, especially for two-stage human pose estimation
methods that rely on isolating individual people using person detectors. The dataset
was designed with the help of a metric called the Crowd Index, introduced to assess the
crowding level in images and computed using the labeled keypoint and bounding box
data [103]. The Crowd Index was evaluated for all the images in COCO [60], MPII [39],
and AI Challenger [102], and it was found that these datasets were dominated by uncrowded
scenes (Crowd Index ≤ 0.1).

To form the CrowdPose dataset, a total of 30k images were uniformly sampled by
Crowd Index. For consistency, all the images were relabeled with 14 keypoints, including
the top of the head, neck, shoulders, elbows, wrists, hips, knees, and ankles. The Crowd
Indices were recomputed and the dataset was subsampled to 20k high quality images
containing approximately 80k person instances. The 20k images were randomly split into
10k training images, 2k validation images, and 8k test images. A protocol frequently used
in the literature is to train on the 12k images in the combined trainval split and then
evaluate on the 8k held out test images. The dataset accuracy metrics are consistent with
COCO and include AP, AP50, and AP75. APE, APM , and APH are additionally considered
for images with easy (0-0.1), medium (0.1-0.8), and hard (0.8-1) Crowd Index.

2.1.3 PoseTrack

PoseTrack [101] is a large-scale benchmark for multi-person human pose estimation and
person tracking in video. The dataset contains 1,356 video sequences and 46k frames an-
notated with 15-keypoint poses and person identifiers for tracking. In total, the dataset
includes 276k annotated person instances. While person tracking is an integral component
of deploying human pose estimation models for practical applications, tracking algorithms
typically run on top of human pose estimation models and are developed independently [51].
This thesis focuses on the design of human pose estimation models specifically, and there-
fore person tracking falls outside the scope of this research. Nonetheless, the PoseTrack
dataset was used to assess the generalizability of some of the developed models for single-
frame multi-person pose estimation, which is one of the three official challenges of the Pose-
Track dataset (multi-frame multi-person pose estimation and multi-person pose tracking
are the other two). For convenience, the dataset was converted to COCO format and the
COCO evaluation toolbox was used to compute the standard AP/AR evaluation metrics.
Specifically, the 2018 version of the dataset was used with the v0.45 labels. The training
split contains 97k person instances and the validation split contains 45k person instances.

13

2.2 Related Work

2.2.1 Human Pose Estimation

Two-dimensional human pose estimation is popular topic in computer vision that deals
with the autonomous localization of human joints and other anatomical keypoints in RGB
images and video [40, 41, 39]. More broadly, it is a form of keypoint detection, a family of
computer vision algorithms concerned with localizing keypoints regardless of whether or
not they are anatomically-based (e.g., Li et al. [107] detect keypoints on vehicles). Emerg-
ing as one of the most highly researched topics in the literature, keypoint detection plays an
important role in several computer vision applications, including 2D and 3D human pose
estimation [57, 75], hand pose estimation [108, 109], action recognition [110, 111, 112],
object detection [113], multi-person tracking [101, 114], facial and object landmark detec-
tion [115, 116, 117, 118, 119], and sports analytics [120, 96]. Of these diverse applications,
2D human pose estimation is one of the most representative keypoint detection tasks and
is widely considered a fundamental problem in computer vision. It has several direct down-
stream applications, including pose-based action recognition [121, 111, 110] and pose-based
human tracking [122, 101, 51]. Moreover, as highlighted in the previous chapter, it is the
precursor to 3D human pose estimation, which serves as a potential alternative to invasive
and expensive marker-based motion capture.

An overview of the various types of 2D human pose estimation models is provided.
Following the chronology of the literature, the methodologies can broadly be grouped
into earlier single-person models and the more recent multi-person models. Single-person
models are stratified further into traditional methods that use part-based pictorial struc-
tures versus those that use deep learning. Multi-person approaches are predominantly deep
learning-based but can be grouped into two categories based on whether they use two-stage
inference (i.e., including a person detector) or single-stage inference. Figure 2.1 provides
an overview of the model classifications and references for each. The following sections
review the literature for each type.

Part-Based Models (Pre-Deep Learning)

Interest in the idea of using image processing to detect human features dates back to
as early as 1973, when Fischler and Elschlager [123] introduced pictorial structures, a
deformable part model, to recognize facial attributes in photographs. Coincidentally, the
first publication from Dr. Geoffrey E. Hinton, a highly influential scientist in the deep
learning community, dealt with the problem of arranging arbitrary sets of rectangles into a

14

2D Human Pose
Estimation

Single-Person
Models

Multi-Person Models
(Deep Learning)

Single-Stage
[45-48, 54, 56, 58,
155, 156, 162-166,

171-173]

Two-Stage
[44, 50-53, 55, 57,

59, 159, 235]

Part-Based
[17-19, 98-100,

125, 126, 128-136]

Deep Learning
[40-43, 142, 143,

145-154]

Figure 2.1: A classification of human pose estimation models and references for each type.

puppet-like figures [124] (1976). Hinton went on to contribute to a landmark 1987 work that
popularized the backpropagation algorithm [26]. Motivated by the early work of Fischler
and Elschlager, in 2000 Felzenszwalb and Huttenlocher [17] proposed an efficient global
matching algorithm for pictorial structures and applied it to predict articulated human
poses using a geometric human body model made up of object parts. The primitive object
part models consisted of manually defined rectangles with fixed aspect ratios, an average
colour, and colour variance. They later refined their method by learning the object model
parameters from 10 example training images using maximum likelihood estimation [18].

The vast majority of methods leading up to the deep learning era were based around de-
formable part models / pictorial structures but used competing machine learning methods
for detecting body parts and modeling their connections [125, 126, 127, 128, 129, 130, 131,
132, 100, 133, 134, 135, 136, 19, 99]. To highlight a few, Ronfard et al. [126] trained support
vector machines (SVMs) [137] to classify image patches based on features extracted using
Gaussian filters; Ramanan and Sminchisescu [127, 128] used conditional random fields; An-
driluka et al. [131] used shape context descriptors to train AdaBoost [138] classifiers; and
Pishchulin et al. [19] conditioned pictorial structures on poselets [139] based on histograms
of oriented gradients [15]. With the introduction of CNNs that automatically learn image
features directly from image data, hand-engineered part-based models have since become
obsolete. There was also a shift towards regressing keypoints locations as opposed to de-
tecting body parts due to the public release of large keypoint datasets like LSP [98, 100],
FLIC [99], and MPII [39].

15

Single-person Human Pose Estimation using Deep Learning

One of the first uses of deep learning in 2D human pose estimation came in 2014, when
Toshev and Svegedy [40] regressed keypoint coordinates directly from RGB images using
a 7-layer CNN. Their method, called DeepPose, invoked a cascaded approach that refined
keypoint predictions over successive stages. By learning features directly from the image
data, DeepPose laid the foundation for a series of CNN-based methods offering superior
performance over previous part-based models that relied on hand-crafted part feature de-
scriptors. Its use of iterative keypoint refinement also had a significant influence on future
works [42, 45, 43, 50, 53].

In the same year, Tompson et al. [41] argued that the direct regression of pose vec-
tors from images was a highly non-linear and difficult to learn mapping. Indeed, the
regression of pose vectors requires the use of fully-connected layers and therefore does not
exploit the translational equivariance property of convolutions to its full potential [140].
Fully-convolutional networks that output dense representations exploit this property more
effectively, which may facilitate the learning of spatial mappings [141]. Tompson et al.
therefore introduced the notion of keypoint heatmaps, which model keypoint locations
using 2D fields containing Gaussians with small variances centered on the keypoint co-
ordinates (see Figure 1.1 for sample heatmap predictions). They trained their network
using a mean squared error (MSE) loss that minimized the error between the predicted
and target heatmaps and then predicted keypoint locations using the arguments of the
predicted heatmaps maxima. Numerous researchers immediately took inspiration from the
heatmap representation: Carreira et al. [142] refined heatmap predictions with iterative
error feedback; Hu and Ramanan [143] regressed heatmaps using a hierarchical rectified
Gaussian model; Rafi et al. [144] regressed similar binary belief maps; and Bulat and Tz-
imiropoulos [145] regressed heatmaps using a CNN cascade consisting of two connected
subnetworks. Another contribution of Tompson et al. was the fusion of feature maps
learned from different input resolutions [146]. The use of heatmaps and multi-scale fusion
proved to be effective techniques for human pose estimation and continue to be used in
many state-of-the-art models [50, 52, 53].

In 2016, two seminal single-person methods using iterative heatmap refinement in a
multi-stage fashion with intermediate supervision were introduced. Wei et al. [42] intro-
duced Convolutional Pose Machines, which used numerous identical convolutional stages
that operated directly on heatmaps from previous stages. At each stage, the spatial con-
text of the heatmaps provided disambiguating cues for the next stage. Shortly thereafter,
Newell et al. [43] made use of repeated top-down, bottom-up processing in “hourglass”
convolutional modules. This style of CNN architecture was popularized by U-net [147], a

16

semantic segmentation model for biomedical imaging, in the year prior. However, the hour-
glass modules built on the success of the recently published ResNet [27] using numerous
skip connections and residual sub-modules, and were stacked with intermediate supervision
to iteratively refine heatmaps. The Stacked Hourglass network garnered a good deal of
attention and several works extended it directly or used the hourglass module as a building
block in new approaches [148, 149, 150, 151, 152, 153, 154].

Quantitative comparisons on the MPII dataset give perspective to the rapid advance-
ment attributed to deep learning and CNNs: one of the last pictorial structures models, that
of Pischulin et al. [19], provided an accuracy of 44.1 PCKh (percentage of correct keypoints
detected within 50% of the head segment length); the first deep learning heatmap-based
method of Tompson et al. [41] provided an accuracy 76.9 PCKh; the Stacked Hourglass
method of Newell et al. [43] provided an accuracy of 90.9 PCKh. This represents a relative
accuracy improvement of over 100% in the span of three years.

Two-Stage Multi-Person Human Pose Estimation

As previously mentioned in Section 2.1, single-person human pose estimation has largely
been succeeded by multi-person human pose estimation, which integrates person detection
and is more representative of how human pose estimation models are deployed in practice.
Methods for multi-person human pose estimation generally fall into two categories: single-
stage methods (e.g., [45, 46, 47, 155, 54, 56, 156, 58]) and two-stage methods (e.g., [42,
43, 50, 51, 52, 57, 59]). Figure 2.2 provides an overview of the two approaches. Two-stage
methods emerged as a natural extension of single-person human pose estimation, where off-
the-shelf person detectors (e.g., Faster R-CNN [157], YOLOv3 [158], etc.) were used in the
first stage to detect the people in the image, and single-person human pose estimators were
run over the detections in the second stage. Two-stage methods are commonly referred to
as being top-down for this reason. The model developed in Chapter 3 is an example of a
two-stage multi-person human pose estimation model.

Since two-stage human pose estimation methods use preexisting person detectors, recent
research has focused on improving the accuracy and efficiency of the single-person human
pose estimators used in the second stage. In one of the first top-down approaches, Papan-
dreou et al. [159] used Faster R-CNN [157] to detect person bounding boxes and developed
a human pose estimator to predict disk-shaped heatmaps around each keypoint and offset
fields that point towards the exact keypoint position within each disk, aggregating them
in a weighted voting process. They also introduced OKS-based non-maximum suppres-
sion (NMS) to remove redundant pose detections during post-processing. A pose-based

17

Input Image

Human Pose
Estimator

x N

Two-Stage Multi-Person Human Pose Estimation

Single-Stage Multi-Person Human Pose Estimation

Person
Detector

Human Pose
Estimator

Figure 2.2: High-level comparison of two-stage and single-stage multi-person human pose es-
timation approaches. Two-stage approaches first detect the people in the image using a person
detector and then run a single-person human pose estimator N times, where N is the num-
ber of detected people. Single-stage approaches predict N poses following a single forward pass
through the human pose estimation network. The input image was sourced from the CrowdPose
dataset [103]. The detections and poses were generated using the human pose estimation model
developed in Chapter 4.

NMS algorithm was also proposed in Regional Multi-Person Pose Estimation (RMPE) [44]
around the same time.

Remarking the computational inefficiencies associated with stacking repeated modules
in the hourglass network, Chen et al. [50] introduced the Cascaded Pyramid Network
(CPN), a holistically designed network (i.e., without identical module stacking) including
a feature pyramid network [160] with a ResNet-50 [27] backbone. Intermediate supervi-
sion was applied at each level of the feature pyramid to progressively refine the heatmap
predictions. The CPN included an adjacent network that further refined the heatmaps
produced by the feature pyramid and efficiently combined them across multiple scales. As
a result, the CPN outperformed an 8-stage hourglass network at less than a third of the
computational cost [50]. The CPN placed first in the 2017 COCO Keypoints Challenge.

A year later, Xiao et al. [51] introduced a remarkably simple human pose estimation
model that added three transpose convolutions to ResNet [27]. The authors reported small
performance gains over CPN while using a single-branch architecture and no intermediate
supervision. However, the use of more accurate person detections raises questions regarding
the fairness of the comparisons. Nonetheless, there is no arguing that the SimpleBaseline

18

(a) Hourglass / U-net (b) CPN

(c) SimpleBaseline (d) HRNet

feature
maps

conv.
unit

down
samp.

trans.
conv.

up
samp.

sum

Figure 2.3: Common CNN topologies used in the second stage of the two-stage multi-person
human pose estimation pipeline. (a) Hourglass / U-net [147] module used in the Stacked Hourglass
Network [43]. (b) Cascaded Pyramid Network (CPN) [50], including GlobalNet feature pyramid
(left) and adjacent RefineNet (right). (c) SimpleBaseline [51] single-branch architecture. (d)
HRNet [52] multi-branch architecture. Figure adapted from [52].

model of Xiao et al. [51] has faster inference speed than the CPN due to its architectural
simplicity. While no speed comparisons were made in the original paper, it is observed
that SimpleBaseline runs 6.4× faster on a TITAN Xp GPU1.

Sun et al. [52] later observed that most existing methods must recover high-resolution
features from low-resolution feature embeddings. In another holistically designed network
called HRNet, they showed that high-resolution features can be maintained throughout
the whole network and as a result, they reported better accuracy using fewer floating
point operations (FLOPs) compared to SimpleBaseline. Further comparisons presented in
Chapter 3 contradict these findings. Using the TensorFlow Profiler API, it is found that
HRNet-W48 actually uses more FLOPs than SimpleBaseline (ResNet-152). Furthermore,
HRNet-W48 runs significantly slower on a TITAN Xp GPU due to its complex multi-
branch architecture that combines feature maps across multiple scales (see Table 3.5 for

1SimpleBaseline ran at 47 FPS versus 7.3 FPS for the CPN. Excludes person detection. Averaged
over 1k inferences using a batch size of 1, horizontal flipping, ResNet-50 backbone, and an input size of
384x288. TensorFlow 2.3 was used for the SimpleBaseline implementation and TensorFlow 1.15 was used
for the CPN implementation.

19

details). Figure 2.3 compares the various CNN topologies that are used in human pose
estimation, including the Hourglass, CPN, SimpleBaseline, and HRNet models.

Intrigued by the fact that multi-stage pose estimation networks (e.g., Convolutional
Pose Machines [42] and Stacked Hourglass [43]) seemingly underperform on the COCO
benchmark despite showing good performance on MPII, Li et al. [53] revisited the multi-
stage design with the multi-stage pose network (MSPN). Repurposing the CPN feature
pyramid as a single stage in a multi-stage design, they achieved state-of-the-art accuracy on
COCO. However, their architecture was computationally inefficient as a result of stacking
several large modules together. Two-stage top-down methods generally perform worse in
crowded scenes due the ambiguity caused by overlapping person detections. To combat
this issue, Khirodkar et al. [59] introduced the Multi-Instance Pose Network (MIPNet),
which allowed for predicting multiple pose instances from a single bounding box. As a
result, MIPNet performed better than HRNet on datasets with greater occlusion, including
CrowdPose [103] and OCHuman [161].

Single-Stage Multi-Person Human Pose Estimation

In contrast to two-stage methods, single-stage methods predict the poses of every person
in an image following a single forward pass through the human pose estimation network
(see Figure 2.1 for high-level differences between single-stage and two-stage methods).
Single-stage methods are less accurate than their two-stage counterparts, but usually per-
form better in crowded scenes [103] and are often preferred because of their simplicity
and efficiency, which becomes particularly favourable as the number of people in the im-
age increases. Single-stage approaches vary more in their design compared to two-stage
approaches. For instance, they may:

(i) detect all the keypoints in an image and perform a bottom-up grouping into human
poses [162, 163, 164, 45, 46, 54, 155];

(ii) unify person detection and keypoint estimation, which is similar to the model devel-
oped in Chapter 4, Mask R-CNN [47], Point-Set Anchors [165], and FCPose [166], all
of which extend object detectors to perform human pose estimation; or

(iii) use alternative keypoint/pose representations (e.g., predicting root keypoints and
relative keypoint displacements [48, 156, 56])

Widely regarded as the first single-stage bottom-up approach to multi-person human
pose estimation, Pishchulin et al. [162] proposed DeepCut to partition a set of body part

20

(keypoint) hypotheses generated with CNN-based part detectors. The formulation was
cast as an integer linear program that operated over a fully-connected graph of pairwise
probabilities. However, the minimum cost multicut problem is known to have NP-hard
complexity [167], and the solution required hours of processing [45]. The algorithm was
improved a year later with DeeperCut [163], which used stronger part detectors, image-
conditioned pairwise terms, and a new optimization method to reduce the runtime by
orders of magnitude. Still, the processing time per image was on the order of minutes [45].
Iqbal and Gall [164] used a similar integer linear programming approach to DeepCut while
using Convolutional Pose Machines to detect keypoints.

In a more efficient bottom-up scheme, Cao et al. [45] extended Convolutional Pose
Machines by additionally predicting “part affinity fields” that encoded the orientations
of body segments. Colloquially known as OpenPose [168], their method detected all the
keypoints in an image using heatmaps and used the jointly learned part affinity fields to
perform a greedy bottom-up parsing over a set of bipartite matchings to predict human
poses. The required processing time was orders of magnitude less than DeeperCut, and
they achieved real-time multi-person inference on a GPU for the first time. OpenPose also
placed first in the inaugural COCO Keypoints Challenge in 2016. Around the same time,
Newell et al. [46] extended the Stacked Hourglass Network in another bottom-up approach
that jointly learned keypoint heatmaps and associative embedding tags that were used to
group the detected keypoints into poses. The person tags were cleverly learned without
explicit labeling using a novel two-piece grouping loss that “pushed” tag values in distinct
poses away from each other and “pulled” tag values within a single pose together. Figure 2.4
illustrates the intuition behind the use of associative embedding tags and part affinity fields
for bottom-up human pose estimation.

Kreiss et al. [155] extended the concept of part affinity fields to estimate composite
fields called Part Intensity Fields and Part Association Fields (PifPaf). With the incorpo-
ration of a scale dependent Laplacian L1 loss [170], their approach outperformed previous
methods on low resolution images. Cheng et al. [54] repurposed HRNet for bottom-up
human pose estimation by adding a transpose convolution to double output heatmap reso-
lution (HigherHRNet) and using associative embeddings for keypoint grouping. They also
implemented multi-resolution training to address the scale variation problem. In doing so,
HigherHRNet achieved new state-of-the-art accuracy for a single-stage model on COCO.
Jin et al. [171] proposed an alternative method for directly learning bottom-up keypoint
grouping. Their differentiable Hierarchical Graph Grouping (HGG) took keypoint candi-
dates as graph nodes and clustered them using a multi-layer graph neural network model
that was trained end-to-end. Luo et al. [172] used HigherHRNet as a base and proposed
scale and weight adaptive heatmap regression (SWAHR), which scaled the ground-truth

21

Stacked Hourglass

VGG

Heatmaps + Associative Embeddings

(a) Associative Embeddings

(b) Part Affinity Fields

Bipartite
Matching

conv.
block

conv.
block

conv.
block

conv.
block

Stage 1 Stage t (t ≥ 2)

Figure 2.4: Two influential methods for the bottom-up parsing of keypoints into poses: (a)
Associative Embeddings [46] and (b) Part Affinity Fields [45]. VGG is a CNN feature extrac-
tor [169]. Figure adapted from [46, 45].

heatmap Gaussian standard deviations based on the person scale and introduced a novel
loss to help balance the foreground/background loss weighting. Their judicious modifica-
tions provided significant accuracy gains over HigherHRNet and comparable performance
to many two-stage methods. Again using HigherHRNet as a base, Brasó et al. [173] pro-
posed CenterGroup to match keypoints to person centers using a fully differentiable atten-
tion mechanism that was trained end-to-end together with the keypoint detector.

Straying away from bottom-up keypoint grouping, He et al. [47] used the Mask-RCNN
instance segmentation model for human pose estimation by predicting keypoints using
one-hot masks. Papandreou et al. [48] predicted keypoint heatmaps along with relative
displacements from parent joints in the kinematic tree structure. Nie et al. [156] introduced
the single-stage multi-person pose machine (SPM), which incorporated a root keypoint for
each person and encoded the relative positions of the remaining keypoints via displacement
maps. Wei et al. [165] proposed Point-Set Anchors, which adapted the RetinaNet [174]
object detector using pose anchors instead of bounding box anchors. Mao et al. [166]
adapted a different object detector (FCOS [175]) with FCPose, using dynamic filters [176]
to process person detections and provide a favourable accuracy-speed trade-off. Using an

22

HRNet backbone, Geng et al. [56] predicted person center heatmaps and 2K offset maps
representing offset vectors for the K keypoints of a pose candidate centered on each pixel.
They also disentangled the keypoint regression (DEKR) using separate regression heads
and adaptive convolutions.

2.2.2 Object Detection

Object detection involves detecting instances of physical objects in images and classify-
ing them. Detections are made by estimating rectangular bounding boxes that enclose
object extents. Based on the review in the previous section, it is apparent that there is
much overlap between the tasks of object detection and human pose estimation. After all,
body segments, keypoints, and poses may be thought of as objects even if they do not
conform to the intuitive notion of a physical object. Earlier part-based models for human
pose estimation adopted object detectors directly for body part detection. Several more
modern approaches extend object detectors for keypoint detection. Notably, McNally et
al. [96] model keypoints as objects directly in the development of an automatic scoring
system for steel-tip darts. Conversely, keypoint detectors have been repurposed for object
detection. Multiple groups of researchers have proposed to model objects as points by
regressing bounding box centers and corners using heatmaps [177, 113, 178]. Coinciden-
tally, two of these methods [113, 178] were published at the same time and share the same
name: CenterNet. One version of CenterNet was applied to multi-person pose estima-
tion [113]. Clearly, there is significant crossover between the two streams of research and
object detection methods should therefore be explored as a means for advancing human
pose estimation.

Before the deep learning era, traditional object detection methods scanned image re-
gions using multi-scale sliding windows and extracted HOG [15], SIFT [16], or Haar-like
features [179, 180]. SVMs [137] and AdaBoost [138] were commonly used to classify the
extracted features into target object classes. Deformable part models were used to cre-
ate more complex and precise feature representations [181]. In line with other research
areas in image recognition, deep learning approaches leveraging CNNs have overshadowed
traditional object detection methods. Analogous to human pose estimation, deep learning-
based object detection methods are categorized into two groups based on whether they
use one or two inference stages. Figure 2.5 provides an overview of the different architec-
tural components in single-stage and two-stage CNN-based detectors. A modern detection
architecture contains a backbone CNN feature extractor (e.g., VGG [169], ResNet [27],
MobileNetV2 [182], etc.), a “neck” that amalgamates feature maps from various stages
of the backbone (e.g., feature pyramid networks (FPN) [160], Path Aggregation Network

23

Two-Stage Object Detectors

Single-Stage Object Detectors

Backbone Neck Dense Prediction Sparse Prediction

Input Image

Figure 2.5: The various architectural components in modern CNN-based object detectors.
Figure inspiration taken from [186].

(PAN) [183], BiFPN [184], NAS-FPN [185]), and a network head for dense or sparse pre-
diction. Single-stage detectors with dense detection heads provide bounding box and class
predictions for all locations in multi-scale output grids. Conversely, two-stage extract a
sparse set of region proposals and classify them in a separate stage.

Two-stage Object Detectors

Popularized by the R-CNN family of networks (R-CNN [187], Fast R-CNN [188], Faster
R-CNN [157], R-FCN [189], Mask R-CNN [47], Cascade R-CNN [190], and Libra R-
CNN [191]), two-stage object detectors generate a sparse set of candidate object locations
(i.e., region proposals) in the first stage and classify each candidate into a foreground object
class or background in the second stage. The original R-CNN detection framework [187]
first used selective search [192] to extract around 2k class-independent region proposals
per image. AlexNet [22] was then used to produce 4096-dimensional feature vectors for
each region, which were classified using class-specific linear SVMs. An additional bounding
box regressor was used to improve localization performance. Despite providing a relative
mAP improvement of 30% on the PASCAL VOC 2012 benchmark [193], R-CNN possessed
several drawbacks: the feature extractor input size was fixed to 227×227 due to the use
of fully-connected layers, each component required separate training, and processing 2k
region proposals was time consuming (13 s/image on a GPU). He et al. [194] proposed to
speed up R-CNN using shared computation. They computed a feature map for the entire
input image and then classified each region proposal by extracting fixed-length feature
vectors from the shared feature map using a spatial pyramid pooling (SPP) layer based on
spatial pyramid matching [195]. SPP-net accelerated the R-CNN framework 10 to 100×

24

at test time, but still suffered from having to train its components separately.

Girshick [188] unified the training of the feature extractor and classifier with Fast R-
CNN. Similar to SPP-net, fixed-length feature vectors were extracted from each region
proposal using a region of interest (RoI) pooling layer (a special case of the SPP layer
that has only one pyramid level). Each feature vector was then fed into a sequence of
fully-connected layers before branching into two output layers: one for producing softmax
probabilities for the object categories and the other for encoding refined bounding box
positions. The entire procedure (excluding region proposal generation) was optimized end-
to-end using a multi-task loss. As a result, Fast R-CNN was 10× faster than SPP-net at
test time and was also more accurate.

Finally, Ren et al. [157] integrated region proposals into the convolutional pipeline us-
ing a Region Proposal Network (RPN). The fully-convolutional RPN operated on features
produced by the detection backbone and densely predicted object bounds and objectness
scores at each position using template anchor boxes. The top-300 scoring region proposals
were then classified in a similar manner as in Fast R-CNN. Due to sharing of convolutional
layers, the Fast R-CNN and RPN were optimized end-to-end in an alternating fashion.
The resulting Faster R-CNN network was an order of magnitude faster than Fast R-CNN,
which used selective search to generate the region proposals. Improvements to Faster
R-CNN were inevitably proposed: fully-convolutional classification eliminated costly fully-
connected layers (R-FCN [189]); feature pyramid networks (FPN [160]) made better use
of multi-scale feature maps; Cascade R-CNN [190] implemented a sequence of detectors
trained with increasing IoU thresholds; and Libra R-CNN [191] alleviated training imbal-
ance at the sample, feature, and objective level. The use of dense prediction and anchor
boxes in the RPN greatly influenced imminent single-stage approaches.

Single-Stage Object Detectors

The more recent single-stage detectors unify the two-stage detection process by simul-
taneously classifying objects and regressing their locations over a dense grid. Popu-
lar single-stage detectors include the “You Only Look Once” (YOLO) family of detec-
tors [196, 197, 158, 186, 198, 199], the Single Shot MultiBox Detector (SSD) [200], and
RetinaNet [174].

The basic idea behind YOLO is that feature maps produced by the backbone are
converted directly to a dense output grid. Each output grid cell contains information
regarding a candidate detection, including the confidence that an object exists (objectness),
the class probabilities, and the bounding box estimate. A grid cell is responsible for

25

predicting a target object if the center of the target object lies inside the grid cell (i.e.,
when the grid is overlaid on the input image). In the original YOLO network [196],
two 7×7 output output grids were used for redundancy. During training, the grid whose
cell had the highest current IoU with the target object was assigned to be responsible
for making the prediction. This led to specialization amongst the output grids, where
each grid became better at predicting certain sizes, aspect ratios, or classes. Due to its
architectural simplicity, YOLO provided an admirable accuracy-speed trade-off. Using the
VGG backbone, YOLO ran 3× faster than Faster R-CNN on GPU (21 FPS versus 7 FPS)
but was less accurate by 6.8 mAP on the PASCAL VOC 2007 test set.

Inspired the anchor boxes used in the RPN, Liu et al. [200] incorporated anchor boxes
into the Single-Shot MultiBox Detector (SSD). In a similar manner to YOLO, SSD gener-
ated scores for the presence of objects in each grid cell, but instead of predicting bounding
boxes directly, it predicted adjustments to the anchor boxes to better match the object
shape. Additionally, SSD used multi-scale output grids stemming from multiple feature
maps with different resolutions to naturally handle objects of various sizes. Remarkably,
SSD had comparable inference speed to YOLO and was more accurate than Faster R-CNN.
YOLOv2 [197] later adopted the anchor box strategy, using k-means clustering to find op-
timal anchor box sizes. Other strategies, including batch normalization and multi-scale
training, led to further accuracy improvements. While YOLOv2 performed better than
SSD on the PASCAL VOC metric (IoU = 0.5), it was 7.2 AP less accurate than SSD on
COCO (IoU = 0.5:0.95), which was an indication that it had good recall but less precise
bounding box localization. Meanwhile, the two-stage Faster R-CNN with FPN was 7.4 AP
more accurate than SSD on COCO [160].

Single-stage object detectors were initially considered to be a justifiable trade-off: they
provided lower accuracy but better computational efficiency compared to two-stage detec-
tors. Lin et al. [174] discovered that the extreme foreground-background class imbalance
destabilized the training of single-stage detectors and was responsible for their inferior ac-
curacy. To remedy the issue, they proposed the Focal Loss, which added a simple scaling
factor to the standard cross entropy criterion. Using the Focal Loss to train a new dense
detector called RetinaNet, they surpassed the accuracy of all existing two-stage detectors
while matching the speed of previous single-stage detectors. Recent iterations of the YOLO
detector have also surpassed the accuracy of two-stage detectors, interestingly without us-
ing the Focal Loss [158, 186, 198]. It was hypothesized that YOLO may already be robust
to the problem the Focal Loss addresses due to the use of separate objectness and class
predictions [158].

Like single-stage object detection methods, single-stage human pose estimation meth-
ods have the potential to be much faster than their two-stage counterparts. However,

26

current state-of-the-art single-stage human pose estimators are heavily burdened by the
processing of large heatmaps [54, 56, 172, 173]. As a result, their inference speed leaves
much to be desired.

2.2.3 Neural Architecture Search

Although deep learning models are typically developed (trained and validated) on work-
stations or servers with specialized hardware such as GPUs and Tensor Processing Units
(TPUs), they are frequently deployed on mobile devices for portable applications. The
computational resources of mobile devices are generally much less than workstations and
servers and so large deep learning models, such as those used in human pose estimation,
quickly overtax the limited storage, battery power, and processors on mobile devices. As
a result, a considerable amount of engineering has revolved around reducing the computa-
tional burden of running deep learning models on mobile devices, including the development
of model reduction techniques such as network quantization [91] and pruning [201]. While
these methods have facilitated mobile deployment, they have not solved the problem com-
pletely. Researchers continuously seek to design network architectures that are inherently
more efficient, in an effort to push inference on mobile devices towards real-time.

The design principles of efficient deep learning models are centered around minimiz-
ing the size of the network and its computational complexity. The former relates to the
number of model parameters and the latter to the number of floating point operations
(FLOPs), sometimes referred to as multiply-accumulate operations (MACs). The number
of parameters and operations may be reduced without significantly hindering accuracy by
making judicial modifications to the network architecture; this is the premise of human-
principled neural network design. For example, the use of pointwise convolutions and the
advent of depthwise separable convolutions [202, 203] have vastly improved the efficiency
of CNNs [204, 205, 206, 207, 182].

In parallel to these human-principled advances, there has been a growing interest in
the use of machine-driven methods to design efficient architectures by optimizing accuracy
within predefined architectural search spaces. This process is known as neural architecture
search (NAS) [208, 209, 210, 211]. NAS methods eliminate human bias and permit the
automated exploration of diverse network architectures that often transcend human intu-
ition and provide greater accuracy using less computation. Moreover, networks designed
using NAS often have fewer parameters [212], which reduces the need for expensive main
memory access on embedded hardware designed with small memory caches [182].

The implementation of NAS algorithms is three-pronged: they require the design of a

27

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A ∈ A

performance
estimate of A

Figure 2.6: Overview of neural architecture search (adapted from [210]). A search strategy
samples an architecture A from search space A. The architecture is evaluated using a performance
estimation strategy, and the search strategy uses that information to sample better architectures.

search space, implementing a search strategy (i.e., an optimization method), and use of
a performance estimation strategy [210] (see Figure 2.6). Brief summaries of the litera-
ture relating to each of these components are provided in the remainder of this section.
Since its inception, most NAS implementations have addressed the automated search of
architectures for the task of image recognition and are consequently concerned with CNNs.

Search Spaces

The search space design is a critical component of the NAS methodology because the
search space encompasses the set of feasible solutions that may be sampled by the search
strategy. Neural architecture search spaces are broadly grouped into two categories: global
and cell-based search spaces [210, 211].

Since CNN architectures are a form of directed acyclic graph, a sensible global search
space is that of chain-structured neural networks [210, 211]. A chain-structured neural
network is encoded as a single-branch comprising a sequence of layers, where layer Li

receives input from layer Li−1 and its output serves as the input to layer Li+1. The network
may then be parameterized by the number of layers, the type of operation used in each layer
(e.g., convolution, pooling, or more advanced variants thereof), and the hyperparameters
associated with each operation (e.g., kernel size, number of filters, stride, etc.). Each
additional layer increases the size of the search space exponentially.

Cell-based search spaces are built on the observation that most effective human-designed
CNN architectures include repetitions of fixed convolutional blocks, or cells. These cells
are connected within a predefined macroarchitectural template to form larger architectures.
Besides dramatically reducing the size of the search space, searching for cells has the added
benefit of being scalable and generalizable across datasets and tasks, as the cells can be
flexibly stacked together to generate networks ranging in size and depth. Zoph et al. [213]

28

popularized the cell-based search space with NASNet, which included normal and reduction
cells. A key insight in their approach was that the cell topologies learned on CIFAR-10 [214]
(a small-scale image classification dataset) effectively transferred to ImageNet [23] (a large-
scale image classification dataset). State-of-the-art accuracy was achieved on both datasets
using a smaller and more computationally efficient network than previous human-designed
networks.

Performance Estimation Strategies

To guide the search, a performance value must be assigned to a sampled architecture. A
straightforward way of assigning a performance value is to train the network from scratch
and then evaluate its accuracy on a held-out validation set. However, training many net-
works from scratch is extremely computationally intensive and can require thousands of
GPU days [208, 213, 215, 216]2. Instinctively, this has led to a body of research focused
on strategies for speeding up performance estimation. Proxy metrics have frequently been
used to estimate performance based on lower fidelities of the actual performance. Examples
include training for fewer epochs [213], on lower resolution images [217], on a subset of the
data [218], or using fewer filters and/or cells [213, 216]. Performance proxies generally un-
derestimate performance, which isn’t a problem provided that the ranking of the sampled
architectures is consistent with the ranking of their full-scale counterparts. Alternatively,
full-scale performance may be estimated in the early stages of training using learning curve
extrapolation. Domhan et al. [219] used a weighted combination of 11 parametric learning
curve models to terminate poorly performing architectures and speed up a hyperparameter
optimization. Others have leveraged architectural meta-data and partial learning curves
to predict which architectures were the most promising [220]. Taking this idea a step fur-
ther, surrogate models have been trained to predict performance based on architectural
meta-data alone [221, 222]. Recently, state-of-the-art accuracy in image classification was
achieved by searching on lower resolution images and then using compound scaling to ap-
propriately scale the depth, width, and resolution of the discovered network in a synergistic
manner [223].

Search Strategies

Numerous search strategies have been used, of which reinforcement learning and evolution-
ary algorithms have been the most prominent [211].

222,400 GPU days for [208], 2,000 GPU days for [213], 2,600 GPU days for [215], and 3,150 GPU days
for [216].

29

Reinforcement learning (RL) [224] is a learning algorithm where an agent interacts with
an environment through sequential decision making with the objective of maximizing its
future return. The agent learns to improve its decision-making through multiple interac-
tions with the environment. As such, RL is well-suited for NAS [209, 208, 225, 213], where
the agent (search algorithm) makes decisions to modify the state (neural architecture) so
as to maximize the return (accuracy on the validation set).

A drawback to the RL search strategy is the excessive computational demand; some of
the first implementations required thousands of GPU days [208, 213]. To address this issue,
Pham et al. [226] used an RL-based controller to search for an optimal subgraph within
a larger supergraph. The supergraph embodied the entire search space and weights were
shared between the sampled architectures, thus reducing the amount of training required.
Methods based around this idea are collectively referred to as one-shot architecture search3.
As an alternative to using an RL-based controller, Liu et al. [228] sampled subgraphs in a
differentiable manner using learnable parameters that weighted the sampled edges.

A popular alternative to reinforcement learning is neuroevolution, a form of neural ar-
chitecture search that harnesses evolutionary algorithms [215, 218, 229, 230, 95, 231, 216].
Evolutionary algorithms represent a broad class of global optimization algorithms that
evolve a population of individuals using biologically inspired mechanisms, namely selec-
tion, recombination, and mutation. After the population is initialized, an optimization step
(i.e., one generation) proceeds as follows: parents are selected for reproduction, offspring
are created by applying recombination and/or mutation operators, and the fitness of each
offspring is evaluated. The selection algorithm favors individuals with higher fitness; the
recombination algorithm mixes the genes of the parents to create superior offspring; and
the mutation algorithm adds diversity to the gene pool. In turn, the fitness is maximized
over several generations. In the context of NAS, the population is a set of neural archi-
tectures. Often in practice, only mutation is used [211]. Examples of mutations include
adding or removing a layer or skip connections [95], or altering a layer type or its hyperpa-
rameters [218]. The fitness is typically an estimate of the accuracy on the validation set.
The underlying principles of all neuroevolution methods are more or less the same. Where
the differences lie is in the way the neural architecture is encoded, and choices regarding
the population initialization and size, selection algorithms, and mutations.

To speed up the search process, evolutionary algorithms often build on the principle
of network morphisms [94] to transfer the weights of the parent networks to the mutated
children. In essence, network morphisms mutate the network architecture to add new
operations such that the network output remains unchanged (i.e., network morphisms

3Not to be confused with one-shot learning [227].

30

are “function-preserving”). Due to the function-preserving constraint, network morphisms
require intricate implementations, but ultimately enable the child networks to be trained
for just a few epochs by “fine-tuning” the network weights to accommodate the mutation.
Elsken et al. [230] and Wistuba [95] demonstrated the effectiveness of network morphisms
and weight transfer by generating state-of-the-art CNNs on CIFAR-10 in just 1 and 0.5
GPU days, respectively.

The important distinctions between neuroevolution methods that leverage weight trans-
fer and one-shot approaches that leverage weight sharing [226, 228] are briefly discussed.
In one-shot methods that use weight sharing, the search is performed over a single training
run of the supergraph. Subgraphs are selected, evaluated using the supergraph weights,
and then ranked. The best performing subgraph is finally trained from scratch. One-shot
methods are based around the hypothesis that the ranking of the candidate subgraphs cor-
relates with their true ranking following final training. However, Yu et al. [232] observed
the correlation to be weak, and ultimately found that ENAS [226] and DARTS [228] per-
form no better than random search. Moreover, some one-shot methods require the entire
supergraph to be kept in memory, which limits the size of the search space. These issues are
not a concern in neuroevolution, where the candidate architectures are trained separately
and thus do not share weights.

Due to a lack of fair comparisons, it remains unclear as to which search strategy is best.
Many of the available experiments differ significantly in terms of search space, search dura-
tions, and training methodologies. In one instance, Real et al. [216] conducted a controlled
comparison of evolution and reinforcement learning approaches and found that evolution
can obtain better results faster with the same hardware, especially at the earlier stages
of the search. This finding is especially relevant when fewer computational resources are
available. Moreover, in a recent benchmarking of NAS algorithms, neuroevolution methods
were among the top performing algorithms and consistently outperformed reinforcement
learning and random search [233].

2.3 Discussion

The abundant use of heatmaps in human pose estimation is noteworthy, if not stagger-
ing. Their early adoption and observed utility may have induced a methodological bias
to which subsequent researchers, perhaps unknowingly, have been subjected. Regardless
of the apparent heatmap prowess, alternative methods for modeling keypoint locations
should at least be considered and explored. Supporting this notion, recent research has
elucidated some of the limitations of heatmaps, including the inherent issue of quantization

31

error and the excessive computation required to generate and post-process large heatmap
fields. In a recent heatmap-free approach to human pose estimation, Li et al. [97] proposed
to disentangle the horizontal and vertical keypoint coordinates such that each coordinate
was represented using a one-hot encoded vector. This representation saved computation
and permitted an expansion of the output resolution, thereby reducing the effects of quan-
tization error and eliminating the need for refinement post-processing. In another recent
work, researchers introduced the residual log-likelihood (RLE), a novel loss function for
direct keypoint regression based on normalizing flows [234], and matched the accuracy of
state-of-the-art heatmap-based methods [235]. Direct keypoint regression has also been
attempted using transformers [236].

The similarities between keypoint detection and object detection has led to alternative
heatmap-free keypoint detection approaches that extend object detectors [47, 165, 166].
Outside the realm of human pose estimation, Xu et al. [117] regressed anchor templates of
facial keypoints and aggregated them to achieve state-of-the-art accuracy in facial align-
ment. In sports analytics, McNally et al. [96] encountered the issue of overlapping heatmap
signals in the development of an automatic scoring system for darts, and instead chose to
model keypoints as objects using small square bounding boxes. Inspirations from object
detection may prove to be useful in human pose estimation as well.

Despite continuous efforts devoted to hand-designing human pose estimation networks
that provide superior performance and computational efficiency, to date there are but
a few peer-reviewed works [237, 238] (and some non-peer-reviewed [239, 240]) that use
NAS in the design of human pose estimation networks. Notably, none have managed
to improve upon the state-of-the-art in terms of accuracy. This presents a compelling
research opportunity. Considering the wide range of potential applications for human pose
estimation and motion capture on smartphones, the dearth of NAS research in human
pose estimation is even more compelling. The ability of NAS to generate efficient networks
yielding state-of-the-art accuracy has been demonstrated repeatedly for the task of image
classification [212, 223]. Several engineering advancements, such as the use of one-shot
models and network morphisms, have made NAS possible on single-GPU workstations by
reducing the search time to less than a single GPU day [210, 95, 226]. With regards to
network morphisms, an opportunity is presented to develop a less restrictive weight transfer
scheme that is not constrained by complete function-preservation.

The computational demands of NAS will continue to diminish as the field matures,
which will inevitably lead to increased use in more complex visual perception tasks, in-
cluding human pose estimation. As an illustration, NAS was recently used to design state-
of-the-art semantic segmentation and object detection models [241, 185]. The extension of
NAS to human pose estimation is thus very encouraging and highly anticipated.

32

Chapter 3

EvoPose2D: A Two-Stage Human
Pose Estimation Network Designed
using Neuroevolution Accelerated
with Weight Transfer

Neural architecture search has proven to be highly effective in the design of efficient convo-
lutional neural networks that are better suited for mobile deployment than hand-designed
networks. Hypothesizing that neural architecture search holds great potential for human
pose estimation, this chapter explores the application of neuroevolution, a form of neural
architecture search inspired by biological evolution, to the design of a two-stage human pose
estimation model. Additionally, a flexible weight transfer scheme is proposed to accelerate
the neuroevolution. In experiments, the neuroevolution produces a network design that
is more efficient and more accurate than previous hand-designed human pose estimation
networks. In fact, the generated networks process images at higher resolutions using less
computation than previous hand-designed networks at lower resolutions, providing an op-
portunity to push the boundaries of human pose estimation. The base network designed via
neuroevolution, referred to as EvoPose2D-S, achieves comparable accuracy to SimpleBase-
line [51] while being 50% faster and 12.7x smaller in terms of file size. When scaled appro-
priately, EvoPose2D-L achieves higher AP than HRNet-W48 [52] on the Microsoft COCO
Keypoints benchmark while being 4.3x smaller and having comparable inference speed.
The source code is publicly available at https://github.com/wmcnally/evopose2d.

33

https://github.com/wmcnally/evopose2d

3.1 Introduction

As reviewed in Chapter 2, the use of deep learning [20], and specifically deep CNNs [21],
has been prevalent in human pose estimation [40, 41, 43, 45, 50, 51, 52]. The most accurate
human pose estimation methods use a two-stage, top-down pipeline, where an off-the-shelf
person detector is first used to detect human instances in an image, and a heatmap-
based single-person human pose estimation network is run over the detections to obtain
keypoint predictions for each person [50, 51, 52]. The research presented in this chapter
focuses on the latter stage of this two-stage pipeline; however, the presented methodology
is applicable to the design of single-stage human pose estimation methods (e.g., [45, 54, 58])
as well. Specifically, preprocessed person detections produced by a Faster R-CNN object
detector [157] are used in the first stage, and a new heatmap-based single-person human
pose estimator is developed for the second stage. At the time of development, HRNet [52], a
CNN that makes extensive use of multi-branch and multi-scale feature mixing, represented
the state of the art in two-stage human pose estimation, providing the highest accuracy
on the Microsoft COCO Keypoints dataset.

The study presented in this chapter explores the application of neuroevolution [242], a
form of neural architecture search inspired by biological evolution, to human pose estima-
tion for the first time. Despite the widespread success of neural architecture search in many
areas of computer vision [223, 243, 241, 185, 244, 245, 246], the design of human pose es-
timation models has primarily been led by human designers as opposed to machine-driven
methods. In a few cases, other neural architecture search methods such as reinforcement
learning [240, 237] and differentiable architecture search [239, 238] have been leveraged in
the design of human pose estimation networks, albeit with limited success. While these
machine-designed networks exhibited superior computational efficiency as a result of hav-
ing fewer parameters and mathematical operations, none managed to surpass the best
performing hand-designed networks in terms of accuracy. Furthermore, independent stud-
ies have identified neuroevolution as one of the most effective search strategies, surpassing
reinforcement learning and random search in its ability to find better architectures using
less computation [233, 216].

Network morphisms [94] and function-preserving mutations [95] are techniques that
reduce the computational cost of neuroevolution. In essence, these methods iteratively
mutate networks and perform weight transfer in such a way that the function of the net-
work is completely preserved upon mutation. In other words, the output of the mutated
network is identical to that of the parent network. Ergo, the mutated child networks
need only be trained for a relatively small number of steps compared to when training
from a randomly initialized state. As a result, these techniques are capable of reducing

34

the search time to within a practical time frame – a matter of GPU days. However,
function-preserving mutations can be challenging to implement and also restricting (e.g.,
the complexity of the network cannot be reduced [95]). Motivated to address these draw-
backs, a new flexible weight transfer scheme is proposed that (1) is less restrictive, (2) has a
simple implementation, and (3) is effective in accelerating neuroevolution. The new weight
transfer scheme is exploited in conjunction with large-batch training on high-bandwidth
TPUs to run fast neuroevolutions within a search space tailored towards human pose es-
timation. The neuroevolution produces a base human pose network that has a relatively
simple design, provides state-of-the-art accuracy when scaled, and uses fewer floating-point
operations and parameters than the best performing networks in the literature (see Figure
3.1). The research contributions of this study are summarized below:

• A new weight transfer scheme is proposed to accelerate a neuroevolution, and neu-
roevolution is used in the design of a human pose estimation model for the first
time. In contrast to previous neuroevolution methods that exploit weight transfer,
the proposed weight transfer method is not constrained by complete function preser-
vation [95, 94]. Despite relaxing this constraint, supporting experiments indicate that
the level of functional preservation afforded by the proposed weight transfer scheme
is sufficient to provide fitness convergence, thereby simplifying neuroevolution and
making it more flexible.

• Empirical evidence is presented to support the use of large-batch training (i.e., batch
size of 2048) in conjunction with the Adam optimizer [25] to accelerate the training
of human pose networks with no loss in accuracy. The benefits of large-batch train-
ing are reaped in subsequent neuroevolution experiments by maximizing training
throughput on high-bandwidth TPUs.

• A search space conducive to human pose estimation is proposed and the above con-
tributions are leveraged to run a fast (∼1 day using eight v2-8 TPUs) full-scale
neuroevolution of a population of human pose networks. A computationally efficient
human pose estimation model is produced that achieves state-of-the-art accuracy on
the most widely used benchmark dataset when scaled appropriately.

As a final preface to this study, it is noted that it is often difficult to make fair com-
parisons with previous human pose estimation methods due to discrepancies in training
algorithms and the use of model-agnostic enhancements. Examples include the use of dif-
ferent learning rate schedules [52, 53], more data augmentation [53, 247], loss functions
that target more challenging keypoints [50], specialized post-processing steps [248, 249], or

35

0 10 20 30 40 50
FLOPs (G)

68

70

72

74

76
CO

CO
 V

al
id

at
io

n
AP

XS

S

M

L

W32-256x192

W48-256x192
W48-384x288

R50-256x192
R101-256x192

R50-384x288

R152-384x288

EvoPose2D
HRNet
SimpleBaseline

Figure 3.1: Accuracy vs. FLOPs: A comparison of the accuracy, size, and computational cost of
EvoPose2D, SimpleBaseline [51], and HRNet[52] at different scales. The circle size is proportional
to the network file size. EvoPose2D-S provides comparable accuracy to SimpleBaseline (ResNet-
50), is 12.7x smaller, and uses 4.9x fewer FLOPs. At full-scale, EvoPose2D-L obtains state-of-the-
art accuracy using 2.0x fewer FLOPs and is 4.3x smaller compared to HRNet-W48. In contrast
to SimpleBaseline and HRNet, EvoPose2D does not make use of model-agnostic enhancements
such as ImageNet pretraining and half-body augmentation [52].

more accurate person detectors [53, 249]. These discrepancies in training algorithms can
potentially account for reported differences in accuracy. To fairly compare with state-of-
the-art methods, SimpleBaseline [51] and HRNet [52] were re-implemented in this work and
all networks were trained under the same settings using the same software and hardware.

3.2 Neuroevolution Acceleration via Weight Transfer

Suppose that a pretrained parent neural network is represented by the function P
(
x; θ(P)

)
,

where x is the input to the network and θ(P) are its learned parameters. The foun-
dation of the proposed neuroevolution framework lies in the process by which the un-
known parameters θ(C) in a mutated child network C are inherited from θ(P) such that
C
(
x; θ(C)

)
≈ P

(
x; θ(P)

)
. That is, the output, or function of the mutated child network is

36

similar to the parent, but not necessarily equal. To enable fast neural architecture search,
the degree to which the parent’s function is preserved must be sufficient to allow θ(C) to be
trained to convergence in a small fraction of the number of steps normally required when
training from a randomly initialized state.

To formalize the proposed weight transfer in the context of 2D convolution, let
W (l) ∈ Rkp1×kp2×ip×op denote the weights used by layer l of the parent network, and
V (l) ∈ Rkc1×kc2×ic×oc the weights of the corresponding layer in the mutated child net-
work, where k is the kernel size, i is the number of input channels, and o is the number of
output channels. For the sake of brevity, consider the special case when kp1 = kp2 = kp,
kc1 = kc2 = kc, and op = oc, but note that the following definition is easily extended to
when kp1 ̸= kp2, kc1 ̸= kc2, or op ̸= oc. The inherited weights VW are given by:

V
(l)
W =



W
(l)
p:p+kc, p:p+kc, :ic, :

(ic < ip) ∧ (kc < kp)

W
(l)
p:p+kc, p:p+kc, :, :

(ic ≥ ip) ∧ (kc < kp)

W
(l)
:, :, :ic, :

(ic < ip) ∧ (kc ≥ kp)

W (l) (ic ≥ ip) ∧ (kc ≥ kp)

(3.1)

where p = 1
2
(kp − kc). V

(l)
W is transferred to V (l) and the remaining non-inherited weights

in V (l) are randomly initialized. An illustration of the weight transfer between two con-
volutional layers is shown in Figure 3.2. In principle, the proposed weight transfer can
be used with convolutions of any dimensionality (e.g., 1D, 2D, or 3D convolutions), and
is permitted between convolutional operators with different kernel size, stride, dilation,
input channels, and output channels. Thus, it is highly flexible. More generally, it can be
applied to any operations with learnable parameters, including batch normalization [250]
and fully-connected layers.

In essence, the proposed weight transfer method relaxes the function-preservation con-
straint imposed in [94, 95]. In practice, it is observed that the proposed weight transfer
preserves the majority of the function of deep CNNs following mutation. This permits the
application of network mutations in a simple and flexible manner while maintaining good
parameter initialization in the mutated network. As a result, the mutated networks can
be trained using fewer iterations, thereby accelerating the neuroevolution.

37

W
(3 x 3 x 32 x op)

V
1

(5 x 5 x 16 x oc1)

randomly
initialized weights

V
2

(3 x 3 x 64 x oc2)

V
W1

V
W2

Figure 3.2: Two examples (W → V1, W → V2) of the weight transfer used in the proposed
neuroevolution framework. The output channels of the convolutional filters or omitted for clarity.
The trained weights (shaded in blue) in the parent convolutional filter W are transferred, either
in part (VW1) or in full (VW2), to the corresponding filters (V1, V2) in two separate mutated
child networks following Eq. 3.1. The weight transfer extends to all output channels in the same
manner as depicted for the input channels.

3.3 Neuroevolution Design

This section includes the engineering details for the neuroevolution implementation that
uses weight transfer scheme introduced in the previous section to accelerate the evolution
of a population of human pose networks. While this study focuses on the application of
human pose estimation, it is noted that the neuroevolution approach is generally applicable
to all types of deep networks.

3.3.1 Search Space

Neural architecture search helps moderate human involvement in the design of deep neural
networks. However, neural architecture search is by no means fully automatic. To some
extent, our role transitions from a network designer to that of a search designer. Decisions
regarding the search space are particularly important because the search space encompasses
all possible solutions to the optimization problem, and its size correlates with the amount
of computation and time required to run an exhaustive search. As such, it is common to

38

Module

1

...
Module

7

heatmaps

Stem

Conv.

Search Space

Block

1

...
Block

N

B

Net

Head

image

Figure 3.3: Neuroevolution search space diagram.

exploit prior knowledge to reduce the size of the search space and ensure that the sampled
architectures are tailored towards the task at hand [213].

Motivated by the simplicity and elegance of the SimpleBaseline architecture [51], an
optimal human pose estimation backbone is evolved using a search space inspired by [212,
223]. Specifically, the search space encompasses a single-branch hierarchical structure
that includes seven modules stacked in series. Each module is constructed of chain-linked
inverted residual blocks [182] that use an expansion ratio of six and squeeze-excitation [251].
The neuroevolution seeks to find the optimal kernel size, the number of inverted residual
blocks, and the number of output channels for each module. Considering the newfound
importance of spatial resolution in the deeper layers of human pose networks [52], the stride
of the last three modules are also included in the search space. To complete the network,
an initial convolutional layer with 32 output channels precedes the seven modules, and
three transpose convolutions with kernel size of 3x3, stride of 2, and 128 output channels
are used to construct the network head. Each transpose convolution doubles the spatial
resolution of the feature maps. For example, if the output of Module 7 had a spatial
resolution of 8×6, then the size of the output heatmaps would be 64×48. A diagram of
the search space is provided in Figure 3.3.

Table 3.1 shows the module configuration for the common ancestor network used in the
neuroevolution experiments. The kernel size options used were 3x3 and 5x5. The maximum
number of blocks was set to four. The maximum number of output channels were set to
the values in the common ancestor network (given in rightmost column of Table 3.1).

Each module was encoded into an integer quartet, representing its number of blocks,
kernel size, number of output channels (as a multiple of 8), and stride, respectively. Ar-

39

Component
Blocks
NB

Kernel
Size

Stride
Output
Shape

Module 1 1 3 1 (h2 ,
w
2 , 16)

Module 2 2 3 2 (h4 ,
w
4 , 24)

Module 3 2 5 2 (h8 ,
w
8 , 40)

Module 4 3 3 2 (h
16 ,

w
16 , 80)

Module 5 3 5 1 (h
16 ,

w
16 , 112)

Module 6 4 5 2 (h
32 ,

w
32 , 192)

Module 7 1 3 1 (h
32 ,

w
32 , 320)

Table 3.1: Module configuration for the common ancestor network.

chitectures were sampled using a 7×4 integer array, referred to as the genotype. The
mutations used included increasing/decreasing the number of blocks by 1, changing the
kernel size, increasing/decreasing the stride by 1, and increasing/decreasing the number of
output channels by 8. During the neuroevolution, the genotypes are cached to ensure that
no genotype was sampled twice. The mutation function is provided in Algorithm 1. The
search space can produce 1014 unique architectures.

3.3.2 Fitness

To strike a balance between computational efficiency and accuracy, the multi-objective op-
timization minimizes a fitness function including the validation loss and the number of net-
work parameters. Given a human pose network represented by the function N

(
x ; θ(N)

)
,

the loss Li for a single RGB input image I ∈ Rh×w×3 and corresponding target heatmap
S ∈ Rh′×w′×K is given by:

Li(N , I) =
1

K

K∑
k=1

δ(νk > 0)
∥∥N (

I | θ(N)
)
k
− Sk

∥∥2

2
(3.2)

where K is the number of keypoints and ν represents the keypoint visibility flag1. The
target heatmaps S are generated by centering 2D Gaussians with a standard deviation of h′

32

pixels on the ground-truth keypoint coordinates and normalizing to a maximum intensity

1More details available at https://cocodataset.org/#keypoints-eval.

40

https://cocodataset.org/#keypoints-eval

Algorithm 1: Neuroevolution mutation
Input: parent genotype gp, ancestor genotype ga, genotype cache G

Output: mutated child genotype gc

gc ← gp

while gc ∈ G or gc = gp do

gc ← gp

i, j ← randint(7), randint(4)

if j = 0 then

if gc[i, j] = 1 then

gc[i, j] += 1 // increase the number of blocks

else if gc[i, j] = 4 then

gc[i, j] −= 1 // decrease the number of blocks

else if randint(2) > 0 then

gc[i, j] += 1 // increase the number of blocks

else

gc[i, j] −= 1 // decrease the number of blocks

else if j = 1 then

gc[i, j]← {3, 5}[randint(2)] // mutate the kernel size

else if j = 2 then

gc[i, j]← randint(ga[i, j] + 1) // mutate the number of output channels

else if j = 3 and i ≥ 4 then

if gc[i, j] = 2 and sum(gp[:, j]− 1) = 4 then

gc[i, j] −= 1 // decrease the stride

else if gc[i, j] = 1 and sum(gp[:, j]− 1) < 4 then

gc[i, j] += 1 // increase the stride

G.append(gc)

of 255 (see Eq. 1.1). The network loss is computed as:

L(N) =
1

N

N∑
i=1

Li(N , Ii) (3.3)

41

where N is the number of image samples in the dataset. Finally, the fitness J of a network
N is computed on the validation dataset by:

J (N) =

(
T

n(θ(N))

)Γ

L(N) (3.4)

where n(θ(N)) is the number of network parameters, T is the target number of parameters,
and Γ controls the fitness trade-off between the number of parameters and the validation
loss. Minimizing the number of parameters instead of the number of FLOPs permits
indirectly minimizing the FLOPs while not penalizing mutations that decrease the stride
of the network.

3.3.3 Evolutionary Strategy

The proposed evolutionary strategy proceeds as follows. In “generation 0”, the genotype
of the common ancestor network is manually defined and the decoded ancestor network is
trained from scratch for e0 epochs. In generation 1, λ child genotypes are generated by
mutating the ancestral genotype according to Algorithm 1. The child network architectures
are decoded from the mutated child genotypes and all weights in the child networks are
randomly initialized. Then, the weight transfer scheme described in Section 3.2 is used to
transfer the trained weights from the ancestor to the children. For batch normalization
layers, the non-transferred weights are initialized with the means of the parent. When a
new block is added as a result of a mutation, the weights from the parent module’s last
block are copied to the new block in the child. The child networks are then trained for e
epochs (e≪ e0). At the end of generation 1, the µ networks with the best fitness from the
pool of (λ + 1) networks (children + ancestor) become the parents in the next generation.
In generation 2 and beyond, the mutation→ weight transfer→ training process is repeated
and the top-µ networks from the pool of (λ + µ) networks (children + parents) become
the parents in the next generation. The evolution continues until manual termination,
typically after the fitness has converged.

3.3.4 Large-batch Training

Even with the computational savings afforded by weight transfer, running a full-scale
neuroevolution of human pose networks using a standard input size of 256x192 would not
be feasible within a practical time-frame using common GPU resources (e.g., an 8-GPU

42

server). To reduce the search time to within a practical range, large batch sizes were
exploited when training the human pose networks on TPUs.

It has been shown that training using large batch sizes with stochastic gradient descent
causes a degradation in the quality of the model as measured by its ability to generalize
to unseen data [252, 253]. The difference in accuracy on training and test sets, sometimes
referred to as the generalization gap, can drop by as much as 5% (absolute change in
accuracy) as a result of using large batch sizes (> 256) [253]. Recently, Goyal et al. [254]
implemented measures for mitigating the training difficulties caused by large batch sizes,
including linear scaling of the learning rate, and an initial warm-up period where the
learning rate was gradually increased. Deep learning methods are often data-dependent
and task-dependent, so it is unclear whether the training measures imposed by Goyal et
al. for image classification apply in the general case. It is also unclear whether the learning
rate modifications are applicable to optimizers that use adaptive learning rates. Adam [25]
is an example of such an optimizer that is widely used in human pose estimation.

Maximizing training efficiency using large-batch training is critical when the computa-
tional demand of training is very high, such as in neural architecture search. Therefore,
in an effort to maximize training throughput on TPUs, this study investigates the train-
ing behaviour of human pose networks using large batch sizes and the Adam optimizer.
Section 3.4.1 provides supporting experiments, where the learning rate was linearly scaled
with the batch size and gradually ramped-up during the first few epochs, following [254].
The experimental results demonstrate that the training regimen can be used to train hu-
man pose networks up to a batch size of 2048 with no loss in accuracy. The largest batch
size previously used to train a human pose network was 256, which required 8 GPUs [53].
Large batch sizes are then exploited in the subsequent neuroevolution experiments.

3.3.5 Compound Scaling

It has recently been shown that scaling a network’s input resolution, width (i.e., the number
of ouput channels), and depth (i.e., the number of layers) together provides greater benefits
than scaling either of these dimensions individually [223]. Motivated by this finding, the
base network designed using neuroevolution is scaled to different input resolutions using
the following depth (cd) and width (cw) coefficients:

cd = αϕ cw = βϕ ϕ =
log r − log rs

log γ
(3.5)

43

where rs is the search resolution, r is desired resolution, and α, β, γ are scaling parameters.
The scaling parameters presented in [223] (α = 1.2, β = 1.1, γ = 1.15) are used for
convenience, but it is hypothesized that better results could be obtained if these parameters
were tuned.

3.4 Experiments

This section first presents the results from large-batch training experiments (Section 3.4.1)
that examine the training behaviour of human pose networks using large batch sizes and the
Adam optimizer on TPU hardware. These preliminary experiments support the subsequent
neuroevolution experiments (Section 3.4.2), which use a large batch size to reduce the
search time.

3.4.1 Large-batch Training of Human Pose Networks on TPUs

For the large-batch training experiments, the SimpleBaseline model of Xiao et al. [51] was
re-implemented and trained on the Microsoft COCO Keypoints dataset. The SimpleBase-
line network stacks three transpose convolutions with 256 channels each and kernel size of
3x3 on top of a ResNet-50 backbone, which was pretrained on ImageNet [23]. The experi-
ments were run at an input resolution of 256×192, yielding output heatmap predictions of
size 64× 48. According to the TensorFlow profiler used, the model has 34.1M parameters
and 5.21G FLOPs.

Implementation Details

The following experimental setup was used to obtain the results for all models trained on
COCO in this chapter. Additional implementation details for neuroevolution and Pose-
Track training are provided in the next section.

TensorFlow 2.3 and the tf.keras API were used for implementation. The COCO Key-
points dataset was first converted to TFRecords for TPU compatibility (1024 examples per
shard). The TFRecord dataset contained the serialized examples including the raw images,
target keypoint locations, and the person bounding boxes. The labeled bounding boxes
were used during training (including validation loss computation), and the preprocessed
bounding box detections were used during testing. More details on the person detections

44

are provided under the Testing heading. The dataset was stored in a Google Cloud Stor-
age Bucket where it was accessed remotely by the TPU host CPU over the cloud network.
Thus, all preprocessing (i.e., including target heatmap generation, image transformations,
and data augmentation) was performed on the TPU’s host CPU. A single-device v3-8 TPU
(8 TPU cores, 16GB of high-bandwidth memory per core) was used for training, validation,
and testing.

Preprocessing. The RGB input images were first normalized to a range of [0, 1] then
centered and scaled by the ImageNet pixel means and standard deviations. The images
were then transformed and cropped to the input size of the network using the bounding
boxes. During training, random horizontal flipping, scaling, and rotation were used for
data augmentation. The exact data augmentation is provided in the source code.

Training. The networks were trained for 200 epochs using bfloat16 floating-point format,
which consumes half the memory compared to the commonly used float32 data type. The
loss represented in Eq. (3.3) was minimized using the Adam optimizer [25] with a cosine-
decay learning rate schedule [255] and L2 regularization with 1e−5 weight decay. The base
learning rate lr was set to 2.5e−4 and was scaled to n

32
lr, where n is the global batch size.

Additionally, a warm-up period was implemented by linearly increasing the learning rate
from lr to n

32
lr over the first five epochs. The validation loss was computed after every

epoch using the ground-truth bounding boxes.

Testing. The common two-stage, top-down pipeline was used during testing [50, 51, 52].
The person detections were generated using Faster R-CNN [157] and were the same as
those used in [51, 52]. The detected bounding boxes provide an AP of 56.4 on COCO
val2017 and 60.9 on COCO test-dev [51] for the person object category. The standard
testing protocol was followed: the predicted heatmaps from the original and horizontally
flipped images were averaged and the keypoint predictions were obtained after applying a
quarter offset in the direction from the highest response to the second highest response.

Large-batch Training Results

The batch size was doubled from an initial size of 256 until the memory of the v3-8 TPU
was exceeded. The maximum batch size attained was 2048. The loss curves for the cor-
responding training runs are shown in Figure 3.4. While the final training loss increased
marginally with the batch size, the validation losses converged in the later stages of train-
ing, signifying that the networks provide similar accuracy. The AP values provided in
Table 3.2 confirm that the networks can be trained using batch sizes up to 2048 with no

45

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70
Tr

ai
ni

ng
 L

os
s

n = 256
n = 512
n = 1024

n = 2048
n = 2048 (no warmup)
n = 2048 (lr n

32 = 0.002)

40 60 80 100 120 140 160 180 200
Epoch

25

27

29

31

33

35

37

39

Va
lid

at
io

n
Lo

ss

Figure 3.4: Training (top) and validation (bottom) losses during training of SimpleBaseline
(ResNet-50) [51] on a v3-8 Cloud TPU using various large batch sizes and learning rate schedules.

loss in accuracy. It is hypothesized that the increase of 0.6 AP over the original Simple-
Baseline implementation (AP of 70.4) was due to training for longer (200 epochs versus
140). Additionally, the importance of warm-up and learning rate scaling is highlighted
in the bottom section of Table 3.2; when training at the maximum batch size, removing
warm-up resulted in a loss of 1.3 AP, and removing learning rate scaling resulted in a loss
of 0.7 AP.

While preprocessing the data online using the TPU host CPU provides flexibility for

46

Batch
size (n)

Warm-up Scale lr
Training

Time (hrs)
AP

256 Y Y 7.20 71.0

512 Y Y 5.42 71.0

1024 Y Y 5.25 71.2

2048 Y Y 5.32 71.0

2048 N Y 5.35 69.7

2048 Y N 5.33 70.3

Table 3.2: Training times and final AP for large-batch training of SimpleBaseline on Cloud
TPU. The original implementation reports an AP of 70.4 [51]. The bottom two rows highlight
the importance of warm-up and scaling the learning rate when using large batch sizes.

training using different input sizes and data augmentation, it ultimately caused a bottleneck
in the input pipeline. This is evidenced by the training times in Table 3.2, which decreased
after increasing the batch size to 512, but leveled-off at around 5.3 hours using batch sizes
of 512 or greater. The training time could be reduced substantially if preprocessing and
augmentation were included in the TFRecord dataset, or if the TPU host CPU had greater
processing capabilities. It is also noted that training these models for 140 epochs instead
of 200, as in the original implementation [51], reduces the training time to 3.7 hours.
Bypassing validation after every epoch reduces the training time further. For comparison,
training a model of similar size on eight NVIDIA TITAN Xp GPUs takes approximately
1.5 days [50].

3.4.2 Neuroevolution Experiments

The neuroevolution described in Section 3.3 was run under various settings on an 8-CPU,
40 GB memory virtual machine that called on eight v2-8 Cloud TPUs to train several
generations of a human pose network population. COCO train2017 and val2017 were
used for network training and fitness evaluation, respectively. The input resolution used
was 256x192, and the target number of parameters T was set to 5M. Other settings, in-
cluding Γ, λ, and µ, are provided in the legend of Figure 3.5 (top). ImageNet pretraining
was exploited in the neuroevolution by seeding the common ancestor network using the
same inverted residual blocks as used in EfficientNet-B0 [223] (module configuration pro-
vided in Table 3.1). The ancestor network was trained for 30 epochs, and the proposed
weight transfer scheme was used to quickly fine-tune the mutated child networks over just

47

5 epochs. A batch size of 512 was used to provide near-optimal training efficiency (as per
the results in the previous section) and prevent memory exhaustion mid-search (limited
to v2-8 TPU nodes that have half the memory compared to v3-8 nodes). No learning
rate warm-up was used during neuroevolution, and the only data augmentation used was
horizontal flipping. All other training details are the same as in Section 3.4.1.

Figure 3.5 (top) shows the convergence of fitness for three independent neuroevolutions
E1, E2, and E3, which had runtimes of 1.5, 0.8 and 1.1 days, respectively. The gap between
the fitness (solid line) and validation loss (dashed line) was larger in E2 and E3 compared
to E1, indicating that smaller networks were favored more as a result of decreasing Γ.
After increasing the number of children from 32 in E2 to 64 in E3, it became apparent
that using fewer children may provide faster convergence, but may also cause the fitness
to converge prematurely to a local minimum. Figure 3.5 (bottom) plots the validation loss
against the number of parameters for all the sampled genotypes. The prominent Pareto
frontier near the bottom-left of the figure provides confidence that the search space was
thoroughly explored.

To explicitly demonstrate the benefit of the proposed weight transfer scheme, E3 was
run without weight transfer using the same training schedule. As shown in Figure 3.5
(top), the fitness did not decrease below that of the ancestor network. It stands that the
child networks would need to be trained at least as long as the ancestor network (30 epochs
in this case) to achieve the same level of convergence without using the proposed weight
transfer scheme. As a result, the neuroevolution runtime would increase six-fold.

The network with the lowest fitness from neuroevolution E3 was selected as the base-
line network, and is referred to as EvoPose2D-S. Its architectural details are provided in
Table 3.3. Notably, the overall stride of EvoPose2D-S is less than what is typically seen in
hand-designed human pose networks. The lowest spatial resolution observed in the network
is 1

16
the input size, compared to 1

32
in SimpleBaseline [51] and HRNet [52]. The output

heatmaps are twice as large as a result. Another observation is that the optimal number
of output channels in the first five modules were found to be equal to the upper bounds,
so it is possible that a better architecture could be obtained if these limits were increased.

The baseline network EvoPose2D-S was scaled to various levels of computational ex-
pense. A lighter version (EvoPose2D-XS) was created by increasing the stride in Module
6, which halved the number of FLOPs. Using the compound scaling method described in
Section 3.3, EvoPose2D-S was scaled to an input resolution of 384x288 (EvoPose2D-M),
which is the highest input resolution used in top-down human pose estimation. In an ef-
fort to push the boundaries of human pose estimation, the input resolution was scaled to
512x384 with EvoPose2D-L. Even at this high spatial resolution, EvoPose2D-L has roughly

48

0 200 400 600 800 1000
Fitness Function Evaluations

25

26

27

28

29
Fi

tn
es

s,
Va

lid
at

io
n

Lo
ss

 (-
-)

E1: = 0.04, = 32, = 4
E2: = 0.07, = 32, = 4
E3: = 0.07, = 64, = 4
E3 (no weight transfer)

2 3 4 5 6
Parameters (M)

26

28

30

32

34

Va
lid

at
io

n
Lo

ss

E1
E2
E3

Figure 3.5: Top: Tracking the network with the best fitness in three independent neuroevo-
lutions. The dashed line represents the validation loss of the network with the lowest fitness.
Γ: fitness coefficient controlling trade-off between validation loss and number of parameters. λ:
number of children. µ: number of parents. Bottom: Validation loss versus the number of network
parameters for all sampled networks.

49

Component Blocks
Kernel
Size

Stride
Output
Shape

Stem Conv - 3 2 (h2 ,
w
2 , 32)

Module 1 1 3 1 (h2 ,
w
2 , 16)

Module 2 3 3 2 (h4 ,
w
4 , 24)

Module 3 2 5 2 (h8 ,
w
8 , 40)

Module 4 4 3 2 (h
16 ,

w
16 , 80)

Module 5 2 5 1 (h
16 ,

w
16 , 112)

Module 6 4 5 1 (h
16 ,

w
16 , 128)

Module 7 2 3 1 (h
16 ,

w
16 , 80)

Head Conv 1 - 3 2 (h8 ,
w
8 , 128)

Head Conv 2 - 3 2 (h4 ,
w
4 , 128)

Head Conv 3 - 3 2 (h2 ,
w
2 , 128)

Final Conv - 1 1 (h2 ,
w
2 , K)

Table 3.3: The architecture of our base 2D human pose network, EvoPose2D-S, designed via
neuroevolution. With h = 256, w = 192, and K = 17, EvoPose2D-S contains 2.53M parameters
and 1.07G FLOPs.

Model Input Size ϕ cd cw

EvoPose2D-M 384× 288 2.90 1.70 1.32

EvoPose2D-L 512× 384 4.96 2.47 1.60

Table 3.4: Scaling coefficients for EvoPose2D-M and L. See Eq. 3.5 for details.

half number of FLOPs compared to the largest version of HRNet. The scaling parameters
were computed for EvoPose2D-M and L following Eq. 3.5 and are provided in Table 3.4; cd
scales the number of blocks in each module, rounded to the nearest integer, and cw scales
the number of output channels used in each block, rounded to the nearest multiple of eight.

3.4.3 Comparisons with the State of the Art

Following the neuroevolution experiments, the family of EvoPose2D networks were trained
from scratch (i.e., without ImageNet pretraining) on COCO as per the implementation
described in Section 3.4.1. The accuracy of EvoPose2D is compared to state-of-the-art

50

methods on COCO and PoseTrack.

Microsoft COCO Keypoints

To directly compare EvoPose2D with the best methods in the literature, SimpleBaseline
ResNet-50 (SB-R50) and HRNet-W32 were re-implemented following Section 3.4.1. In the
re-implementation of HRNet, a strided transpose pointwise convolution was used in place
of a pointwise convolution followed by nearest-neighbour upsampling. This modification
was required to make the model TPU-compatible, and did not change the number of pa-
rameters or FLOPs. The accuracy of the re-implementation is verified against the original
in Table 3.5.

Comparing EvoPose2D-S with the SB-R50 re-implementation without ImageNet pre-
training, it was found that EvoPose2D-S provides comparable accuracy on COCO val2017

but is 50% faster and 12.7x smaller (see Table 3.5). EvoPose2D-S is also compared to a
baseline that stacks the EvoPose2D network head on top of EfficientNet-B0 [223], and it is
found that while EvoPose2D-S is 20% slower due to its decreased stride, its AP is 1.8 points
higher and it is 2.2x smaller. Compared to the HRNet-W32 (256x192) re-implementation,
EvoPose2D-M is more accurate by 1.5 AP while being 23% faster and 3.9x smaller.

Despite not using ImageNet pretraining, EvoPose2D-L achieves state-of-the-art AP on
COCO val20172 (with and without PoseFix [248]) while being 4.3x smaller than HRNet-
W48. Since EvoPose2D was designed using the COCO validation data, it is especially
important to perform evaluation on COCO test-dev. In Table 3.5, it is shown that
EvoPose2D-L also achieves state-of-the-art accuracy on COCO test-dev, again without
ImageNet pretraining.

Since the development of EvoPose2D, two hand-designed top-down models have man-
aged to match the accuracy of EvoPose2D-L on COCO test-dev using the same experi-
mental protocol (i.e., using no external data, the same person detections, and no model-
agnostic post-processing enhancements). The Multi-Instance Pose Network (MIPNet) [59]
addressed the problem of overlapping bounding boxes and occlusion by allowing the human
pose estimator to predict multiple poses from a single bounding box. The other method
was RLE [235], a heatmap-free method that was briefly discussed in Section 2.3.

2Higher AP has been reported using HRNet with model-agnostic improvements, including a better
person detector and unbiased data processing [249].

51

Method PT Input Size
Params
(M)

FLOPs
(G)

Size
(MB)

FPS
(GPU)

AP AR

COCO val2017

CPN [50] Y 256× 192 27.0 6.20 − − 68.6 −
SB-R50 [51] Y 256× 192 34.0 5.21† 137† 67.7† 70.4 76.3
SB (R-101) [51] Y 256× 192 53.0 8.84† 214† 45.1† 71.4 77.1
SB (R-152) [51] Y 256× 192 68.6 12.5† 277† 34.4† 72.0 77.8
HRNet-W32 [52] N 256× 192 28.5 7.65† 119† 29.0† 73.4 78.9
HRNet-W32 [52] Y 256× 192 28.5 7.65† 119† 29.0† 74.4 79.8
HRNet-W48 [52] Y 256× 192 63.6 15.7† 259† 21.7† 75.1 80.4
MSPN [53] Y 256× 192 120 19.9 − − 75.9 −
SB (R-152) [51] Y 384× 288 68.6 28.1† 277† 24.9† 74.3 79.7
HRNet-W32 [52] Y 384× 288 28.5 16.0† 119† 22.7† 75.8 81.0
HRNet-W48 [52] Y 384× 288 63.6 35.3† 259† 16.2† 76.3 81.2
HRNet-W48* [248] Y 384× 288 63.6 35.3† 259† 16.2† 77.3 82.0
SB-R50 N 256× 192 34.1 5.21 137 67.7 70.6 77.3
HRNet-W32 N 256× 192 28.6 7.65 119 29.0 73.6 80.0
EfficientNet-B0‡ N 256× 192 5.82 0.60 23.9 123 68.4 75.2
EvoPose2D-XS N 256× 192 2.53 0.47 10.8 136 68.0 75.0
EvoPose2D-S N 256× 192 2.53 1.07 10.8 102 70.2 76.9
EvoPose2D-M N 384× 288 7.34 5.59 30.7 35.8 75.1 81.0
EvoPose2D-L N 512× 384 14.7 17.7 60.6 15.9 76.6 82.3
EvoPose2D-L* N 512× 384 14.7 17.7 60.6 15.9 77.5 82.5

COCO test-dev

CPN [50] Y 384× 288 - - - - 72.1 78.5
SB (R-152) [51] Y 384× 288 68.6 28.1† 277† 24.9† 73.7 79.0
HRNet-W48 [52] Y 384× 288 63.6 35.3† 259† 16.2† 75.5 80.5
HRNet-W48* [248] Y 384× 288 63.6 35.3† 259† 16.2† 76.7 81.5
EvoPose2D-L N 512× 384 14.7 17.7 60.6 15.9 75.7 81.7
EvoPose2D-L* N 512× 384 14.7 17.7 60.6 15.9 76.8 81.7

PoseTrack val2018

SB-R50 Y 256× 192 34.1 5.21 137 67.7 54.3 59.9
EvoPose2D-S Y 256× 192 2.53 1.07 10.8 102 55.1 60.6
HRNet-W32 Y 256× 192 28.6 7.65 119 29.0 58.7 64.3
EvoPose2D-M Y 384× 288 7.34 5.59 30.7 35.8 60.4 64.3

Table 3.5: Comparison of EvoPose2D against state-of-the-art methods on COCO and PoseTrack
datasets. The pycocotools package was used for evaluation. For COCO, the models in the bot-
tom sections were implemented as per Section 3.4.1. For PoseTrack, all models were implemented
as described in Section 3.4.2 (see PoseTrack heading). PT: ImageNet pretraining for COCO,
and COCO pretraining for PoseTrack. *: including PoseFix post-processing [248]. ‡: EvoPose2D
network head stacked on top of EfficientNet-B0. †: recalculated for consistency. Network file
size based on float32 models. Frames per second (FPS) averaged over 1k forward passes on a
TITAN Xp GPU using a batch size of 1.

52

PoseTrack

For evaluation on PoseTrack, all networks were initialized with the weights pretrained on
COCO and the networks were fine-tuned on PoseTrack train2018 (97k person instances).
The final layers of the networks were modified to accommodate the different number of
keypoints (K=15). All training details are consistent with Section 3.4.1, except the fine-
tuning process was run for 20 epochs and early-stopping was used. The models were
validated on val2018 (45k person instances) using the ground-truth bounding boxes. As
shown in Table 3.5, the relative performance of EvoPose2D compared to the state of the
art is consistent with the COCO dataset: EvoPose2D-S and EvoPose2D-M provide higher
accuracy than SB-R50 and HRNet-W32, respectively, despite having fewer parameters and
FLOPs, and faster inference speed.

3.5 Discussion

In this chapter, a simple yet effective weight transfer scheme was proposed and was used
to accelerate a neuroevolution of computationally efficient human pose networks for use in
the two-stage, top-down human pose estimation paradigm. The search space design drew
inspiration from the simplicity of the single-branch human pose estimation architecture
introduced by Xiao et al. [51] and the computational benefits of inverted residual convolu-
tional modules and squeeze-excitation [182, 251, 212, 223]. Using a multi-objective fitness
function to balance the number of network parameters with pose estimation accuracy, the
neuroevolution produced a baseline network (EvoPose2D-S) that has a favorable accuracy-
speed trade-off compared to existing models and is better suited for mobile deployment due
to its fast inference speed and small file size. When scaled, EvoPose2D achieved new state-
of-the-art accuracy on the predominant multi-person human pose estimation benchmark
dataset: Microsoft COCO Keypoints.

This research represents the first application of neuroevolution to human pose esti-
mation, and more generally, the first application of neural architecture search to human
pose estimation where state-of-the-art accuracy has been achieved. The utility of neu-
ral architecture search as a general network design tool is thus further supported by this
research. However, the importance of the search space design choices should not be over-
looked. Although the search space used was capable of producing 1014 unique network
architectures, prior knowledge of efficient hand-designed networks greatly influenced the
search space design and ultimately limited its expressiveness, especially as it relates to
the topologies (i.e., macroarchitectures) of the sampled networks. For instance, HRNet

53

makes liberal use multi-branch and multi-scale feature aggregation [43, 50, 52], but these
macroarchitectural traits cannot be manifested by the search space used in this study. In
some sense, the EvoPose2D search space gives rise to a search for an optimal microarchi-
tecture within a template macroarchitecture. As such, the proposed neuroevolution could
be viewed as an extensive hyperparameter search. It may be contended, however, that all
neural architecture searches are generalizations of hyperparameter searches. Importantly,
the proposed search space led to the discovery of a state-of-the-art human pose network and
the utility of the proposed weight transfer scheme in accelerating the search was effectively
demonstrated.

The human bias induced when selecting a macroarchitectural template in neural archi-
tecture search is arguably unavoidable. Moreover, it would be naive not to exploit prior
knowledge to narrow the search space and promote the sampling of architectures that are
specialized for the task at hand. EvoPose2D is representative of how prior knowledge can
be used effectively in neural architecture search. However, a dilemma is presented: the
architectural optimization is always subject to the constraints imposed on the search space,
and softening the search space constraints is a costly endeavour. Further, there is evidence
to suggest that large search spaces are not only more expensive, but detrimental to the
effectiveness of the search strategy [256, 232, 257]. These search space design challenges
underscore the merits of human intuition and human-principled design. Humans are able
to think outside the box when it comes to new network designs and methodologies for
solving a problem; NAS algorithms will always be constrained by the search space. For
example, in the heatmap-based search space of EvoPose2D, there is no potential for the
neuroevolution to produce a more efficient representation for modeling keypoint locations.
As pointed out in Section 2.3, heatmaps are costly to generate and post-process, yet their
use is generally accepted as standard practice.

Perhaps the most consequential insight brought to light by this study is the importance
of directly measuring inference speed as opposed to using FLOPs as a proxy for the same.
Often, researchers seek to create more efficient network architectures by reducing the num-
ber of FLOPs (e.g., FLOPs are often included in NAS optimization criteria [223, 258, 256]).
Moreover, there are countless examples in the literature where researchers make compar-
isons and draw conclusions about computational efficiency based on FLOPs alone. In
their defense, such comparisons are supported by studies like that of Canziani et al. [259],
who analyzed some of the first CNNs used for ImageNet classification and concluded that
the number of operations was a reliable estimate of inference time. In the present study,
it was found that EvoPose2D-L and HRNet-48 have comparable inference speeds on a
GPU despite EvoPose2D-L having half the number of FLOPs, which shows that the re-
lationship between FLOPs and inference time is not so straightforward. In hindsight, it

54

was found that recent architectural innovations such as skip connections [27] and squeeze-
excitation [251] improve accuracy using fewer FLOPs but ultimately create inference-time
bottlenecks because their hardware implementations are less efficient compared to stan-
dard convolution operations [260]. The choice of inference hardware is also a factor. In
the previously cited study of Canziani et al., an NVIDIA Jetson TX1 was used for the
evaluations. The TX1 is a low-power embedded visual computing system with limited
memory (4 GB). As a result, memory-intensive networks (e.g., VGG [169]) run slower on
the TX1. To illustrate, VGG19 (20 GFLOPs) was the slowest model tested and had an
inference time of ∼155 ms per image using a batch size of 16. For comparison, ResNet-50
(3.9 GFLOPs) had an inference time of ∼55 ms. When sufficient memory bandwidth is
available, however, such as on a v3-8 TPU, VGG19 runs faster than ResNet-50 (1.4 ms
versus 2.5 ms per image using a batch size of 256) [261]. In fact, on TPUs VGG19 even
runs faster than “efficiently designed” CNNs such as MobileNetV2 (0.30 GFLOPs) and Ef-
ficientNetB0 (0.39 GFLOPs) [261]. These contradicting results, in addition to the results
presented in this chapter, highlight the importance of measuring inference speed directly
and on target hardware, if possible.

Although neural architecture search is a powerful tool for optimizing CNN architectures,
unavoidable search space constraints limit the discovery of novel approaches and different
ways of conceptualizing the problem at hand. In the next chapter, human intuition is
used to develop novel heatmap-free keypoint representations that model keypoint locations
more efficiently than heatmaps. A human-principled network design approach is taken to
develop a single-stage human pose estimation model that exploits the proposed keypoint
representations. The inference speed and accuracy of the proposed model are directly
compared to several state-of-the-art single-stage methods on the same hardware.

55

Chapter 4

KAPAO: Modeling Keypoints and
Poses as Objects for Single-Stage
Human Pose Estimation

In keypoint estimation tasks such as human pose estimation, heatmap-based regression has
been the dominant approach despite possessing notable drawbacks: heatmaps intrinsically
suffer from quantization error and require excessive computation to generate and post-
process. Motivated to find a more efficient solution, this chapter presents a new heatmap-
free keypoint estimation method in which individual keypoints and sets of spatially related
keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based
detection framework. Hence, the method was named KAPAO, for Keypoints And Poses
As Objects. KAPAO was applied to the problem of single-stage multi-person human pose
estimation by simultaneously detecting human pose objects and keypoint objects and fusing
the detections to exploit the strengths of both object representations. In experiments, it
was found that KAPAO is significantly faster and more accurate than previous single-
stage human pose estimation methods, which suffer greatly from heatmap post-processing.
Moreover, the accuracy-speed trade-off is especially favourable in the practical setting when
not using test-time augmentation (TTA). The largest model, KAPAO-L, achieves an AP
of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation
while being 3.1× faster than the next best single-stage model (CenterGroup [173]), whose
accuracy is 1.5 AP less using the same test settings (i.e., without TTA). Furthermore,
KAPAO excels in the presence of heavy occlusion. On the CrowdPose test set, KAPAO-L
achieves competitive accuracy for a single-stage method with an AP of 68.9. The source
code is publicly available at https://github.com/wmcnally/kapao.

56

https://github.com/wmcnally/kapao

4.1 Introduction

As reviewed in Chapter 2, the most common method for estimating keypoint locations
involves generating target fields referred to as heatmaps by centering 2D Gaussians with
small variances on the target keypoint coordinates. Deep convolutional neural networks
are then used to regress the target heatmaps on the input images, and keypoint predictions
are made via the arguments of the maxima of the predicted heatmaps [41]. If a peak in the
heatmap surpasses a predefined confidence threshold, then a keypoint is detected. The vast
majority of human pose estimation models, including the one developed in the previous
chapter, model and predict keypoints this way.

While strong empirical results have positioned heatmap regression as the de facto stan-
dard method for detecting and localizing keypoints, there are several known drawbacks.
First, these methods suffer from quantization error, where the precision of a keypoint pre-
diction is inherently limited by the spatial resolution of the heatmap. Larger heatmaps
are therefore advantageous, but require additional upsampling operations and costly pro-
cessing at higher resolutions [57, 54, 56, 172]. Even when large heatmaps are used, special
post-processing steps are required to refine keypoint predictions, which can slow down infer-
ence [43, 50, 54, 56, 172]. Second, when two keypoints of the same type (i.e., class) appear
in close proximity to one another, the overlapping heatmap signals may be mistaken for a
single keypoint. Indeed, this is a common failure case [45]. As discussed in Section 2.3, re-
searchers have started investigating alternative, heatmap-free keypoint detection methods
because of these drawbacks [96, 97, 236, 235, 117].

In this chapter, a new heatmap-free keypoint detection method is introduced and is
applied to single-stage multi-person human pose estimation. The proposed method builds
on recent research showing how keypoints can be modeled as objects within a dense anchor-
based detection framework by representing keypoints at the center of small square keypoint
bounding boxes [96]1. In preliminary experimentation with human pose estimation, it was
found that this keypoint detection approach works well for human keypoints that are
characterized by local image features (e.g., the eyes), but the same approach is less effective
at detecting human keypoints that require a more global understanding (e.g., the hips).
To this end, a new pose object representation is introduced to help detect sets of keypoints
that are spatially related. In the overall approach, keypoint objects and pose objects are

1I was the lead author of this paper. In this work, we encountered the issue of overlapping heatmap
signals in the development of an automatic scoring system (DeepDarts) for steel-tip darts. To address
this issue, we introduced the concept of modeling keypoints as objects using small square bounding boxes.
This keypoint representation proved to be highly effective and served as the inspiration for KAPAO. The
source code for DeepDarts is publicly available at https://github.com/wmcnally/deep-darts.

57

https://github.com/wmcnally/deep-darts

detected simultaneously and the detections are fused using a simple matching algorithm
to exploit the benefits of both object representations. By virtue of detecting pose objects,
person detection and keypoint estimation are effectively unified, leading to a highly efficient
single-stage approach to multi-person human pose estimation.

KAPAO uses a recent implementation of the “You Only Look Once” (YOLO) dense de-
tection network [198, 199] as its backbone. It includes a highly efficient network design that
has been iteratively improved over several years of research and engineering. Because of its
efficient network design, and the fact that it is not burdened by generating large and costly
heatmaps that are subject to quantization error, KAPAO compares favourably against re-
cent single-stage human pose estimation models in terms of accuracy and inference speed,
especially when not using test-time augmentation (TTA), which is more representative of
how these models are deployed in practice. As shown in Figure 4.1, KAPAO achieves an
AP of 70.6 on the Microsoft COCO Keypoints validation set without TTA with an average
latency of 54.4 ms (forward pass + post-processing time). Compared to the state-of-the-art
single-stage model HigherHRNet + SWAHR [172], KAPAO is 5.1× faster and 3.3 AP more
accurate when not using TTA. Compared to CenterGroup [173], which is faster and more
accurate than HigherHRNet + SWAHR when not using TTA, KAPAO is still 3.1× faster
and 1.5 AP more accurate. Moreover, pose objects are highly generalizable and can even
be detected in depth images. In Section 4.3.6, several inference video demos are provided,
including one where KAPAO detects pose objects in depth images with high confidence
without having been trained on such images. The research contributions of this work are
summarized below:

• A new pose object representation is proposed that extends the conventional object
representation by additionally including a set of keypoints associated with the object.
Supporting experiments demonstrate how to learn the pose object representation
using a multi-task loss.

• A new approach to single-stage multi-person human pose estimation is developed
by simultaneously detecting keypoint objects and human pose objects and fusing the
detections to exploit the strengths of both object representations and improve the
accuracy of the predicted poses. Compared to previous state-of-the-art methods,
which all use heatmaps, the proposed heatmap-free method is significantly faster
and more accurate on the Microsoft COCO Keypoints benchmark when not using
test-time augmentation.

58

0 50 100 150 200 250 300
Average latency on TITAN Xp GPU (ms)

62

64

66

68

70

72

CO
CO

 v
al

20
17

 A
P

(w
ith

ou
t T

TA
)

DEKR-W32

DEKR-W48

HigherHRNet-W32

HigherHRNet-W32

HigherHRNet-W48

SWAHR-W32

SWAHR-W48
CenterGroup-W32

CenterGroup-W48

KAPAO-S

KAPAO-M

KAPAO-L

Figure 4.1: Accuracy vs. Inference Speed: KAPAO compared to state-of-the-art single-stage
multi-person human pose estimation methods DEKR [56], HigherHRNet [54], HigherHRNet +
SWAHR [172], and CenterGroup [173] without test-time augmentation (TTA). The raw data are
provided in Table 4.2. The circle size is proportional to the number of model parameters.

4.2 Keypoints and Poses as Objects

In the proposed approach to multi-person human pose estimation, a dense detection net-
work is trained to simultaneously predict a set of keypoint objects {Ôk ∈ Ôk} and a set
of pose objects {Ôp ∈ Ôp}, collectively Ô = Ôk

⋃
Ôp. The concept behind each object

type is briefly introduced, along with the relevant notation. All units are assumed to be
in pixels unless stated otherwise.

A keypoint objectOk is an adaptation of the conventional object representation in which
the coordinates of a keypoint are represented at the center (bx, by) of a small bounding box
b with equal width bw and height bh: b = (bx, by, bw, bh). The hyperparameter bs controls
the keypoint bounding box size (i.e., bs = bw = bh). There are K classes of keypoint
objects, one for each keypoint type in the labeled dataset [96].

Generally speaking, a pose object Op is considered to be an extension of the conven-
tional object representation that additionally includes a set of keypoints associated with
the object. While pose objects should be useful in related tasks such as facial and object

59

landmark detection [117, 262], they are applied herein to human pose estimation via de-
tection of human pose objects, comprising a bounding box of class “person,” and a set of
keypoints z = {(xk, yk)}Kk=1 that coincide with anatomical landmarks.

Both object representations possess unique advantages. Keypoint objects are special-
ized for the detection of individual keypoints that are characterized by strong local features.
Examples of such keypoints that are common in human pose estimation include the eyes,
ears and nose. However, keypoint objects carry no information regarding the concept of a
person or pose. If used on their own for multi-person human pose estimation, a bottom-up
grouping method would be required to parse the detected keypoints into human poses. In
contrast, pose objects are better suited for localizing keypoints with weak local features
as they enable the network to learn the spatial relationships within a set of keypoints.
Moreover, they can be leveraged for multi-person human pose estimation directly without
the need for bottom-up keypoint grouping.

Recognizing that keypoint objects exist in a subspace of a pose objects, the KAPAO
network is designed to simultaneously detect both object types with minimal computational
overhead using a single shared network head. During inference, the more precise keypoint
object detections are fused with the human pose detections using a simple tolerance-based
matching algorithm that improves the accuracy of the human pose predictions without
sacrificing any significant amount of inference speed. The essence of the KAPAO algo-
rithm is illustrated in Figure 4.2. The following sections provide details on the network
architecture, the loss function used to train the network, and inference.

4.2.1 Architectural Details

A diagram of the KAPAO pipeline is provided in Figure 4.3. It uses a deep convolutional
neural networkN to map an RGB input image I ∈ Rh×w×3 to a set of four output grids Ĝ =
{Ĝs | s ∈ {8, 16, 32, 64}} containing the object predictions Ô, where Ĝs ∈ Rh

s
×w

s
×Na×No :

N (I) = Ĝ. (4.1)

Na is the number of anchor channels and No is the number of output channels for each
object. N is a YOLO-style feature extractor that makes extensive use of Cross-Stage-
Partial (CSP) bottlenecks [263] within a feature pyramid [160] macroarchitecture. To
provide flexibility for different speed requirements, three sizes of KAPAO models were
trained (i.e., KAPAO-S, KAPAO-M, and KAPAO-L) by scaling the number of layers and
channels in N . Relative to KAPAO-L, the number of layers and channels in KAPAO-M

60

Figure 4.2: Illustrating the essence of modeling keypoints and poses as objects for single-stage
multi-person human pose estimation. Top-left: conventional object detection. Top-right: pose
object detection (extending the conventional object to include a set of keypoints). Bottom-left:
keypoint object detections overlaid in yellow. Bottom-right: result of the fusing keypoint objects
with the pose objects (fused keypoints represented in yellow).

were scaled by 2/3 and 3/4, respectively. Similarly, the number of layers and channels in
KAPAO-S were scaled by 1/3 and 1/2, respectively [198, 199].

Due to the nature of strided convolutions, the features in an output grid cell Ĝsi,j are
conditioned on the image patch Ip = Isi:s(i+1),sj:s(j+1). Therefore, if the center of a target

object (bx, by) is situated in Ip, the output grid cell Ĝsi,j is responsible for detecting it. The
receptive field of an output grid increases with s, so smaller output grids are better suited
for detecting larger objects. To give full play to this behaviour, the anchor boxes are also
configured such that larger anchor boxes are used with the smaller grids. More details on
the anchor box sizes are provided in Section 4.3.

61



8

16

32

64
NMS(Op)

NMS(Ok)

φ(Op’

, Ok’

)

I G

‸

‸

‸ ‸

‸

‸

‸

‸

‸

(G,G)
‸

P
‸

Figure 4.3: KAPAO uses a dense detection network N trained using the multi-task loss L to
map an RGB image I to a set of output grids Ĝ containing the predicted pose objects Ôp and
keypoint objects Ôk. Non-maximum suppression (NMS) is used to obtain candidate detections
Ôp′ and Ôk′, which are fused together using a matching algorithm φ to obtain the final human
pose predictions P̂. The Na and No dimensions in Ĝ are not shown for clarity.

The output grid cells Ĝsi,j contain Na anchor channels corresponding to anchor boxes

As = {(Awa , Aha)}Na
a=1. A target object O is assigned to an anchor channel via tolerance-

based matching of the object and anchor box sizes. This provides redundancy such that the
grid cells Ĝsi,j can detect multiple objects and enables specialization for different object sizes
and shapes. Additional detection redundancy is provided by also allowing the neighbouring
grid cells Ĝsi±1,j and Ĝsi,j±1 to detect an object in Ip [198, 199].

The No output channels of Ĝsi,j,a contain the properties of a predicted object Ô, including
the objectness p̂o (the probability that an object exists), the intermediate bounding boxes
t̂′ = (t̂′x, t̂

′
y, t̂

′
w, t̂

′
h), the object class scores ĉ = (ĉ1, ..., ĉK+1), and the intermediate keypoints

v̂′ = {(v̂′xk, v̂′yk)}Kk=1 for the human pose objects. Hence, No = 3K + 6.

Following [199, 198], an object’s intermediate bounding box t̂ is predicted in the grid
coordinates and relative to the grid cell origin (i, j) using:

t̂x = 2σ(t̂′x)− 0.5 t̂y = 2σ(t̂′y)− 0.5 (4.2)

t̂w =
Aw

s
(2σ(t̂′w))2 t̂h =

Ah

s
(2σ(t̂′h))2. (4.3)

This detection strategy was extended in this work to the keypoints of a pose object. A
pose object’s intermediate keypoints v̂ are predicted in the grid coordinates and relative
to the grid cell origin (i, j) using:

v̂xk =
Aw

s
(4σ(v̂′xk)− 2) v̂yk =

Ah

s
(4σ(v̂′yk)− 2). (4.4)

62

The sigmoid function σ facilitates learning by constraining the ranges of the object prop-
erties (e.g., v̂xk and v̂yk are constrained to ±2Aw

s
and ±2Ah

s
, respectively). To learn t̂ and

v̂, losses are applied in the grid space. Sample targets t and v are shown in Figure 4.4.

4.2.2 Loss Function

A target set of grids G is constructed and a multi-task loss L(Ĝ,G) is applied to learn the
objectness p̂o (Lobj), the intermediate bounding boxes t̂ (Lbox), the class scores ĉ (Lcls),
and the intermediate pose object keypoints v̂ (Lkps). The loss components are computed
for a single image as follows:

Lobj =
∑
s

ωs

n(Gs)

∑
Gs

BCE(p̂o, po · IoU(t̂, t)) (4.5)

Lbox =
∑
s

1

n(O ∈ Gs)

∑
O∈Gs

1− IoU(t̂, t) (4.6)

Lcls =
∑
s

1

n(O ∈ Gs)

∑
O∈Gs

BCE(ĉ, c) (4.7)

Lkps =
∑
s

1

n(Op ∈ Gs)

∑
Op∈Gs

K∑
k=1

δ(νk > 0)||v̂k − vk||2 (4.8)

where ωs is the grid weighting, BCE is the binary cross-entropy, IoU is the complete
intersection over union (CIoU) [264], and νk are the visibility flags of the target keypoints
vk. When Gsi,j,a represents a target object O, the target objectness po = 1 is multiplied
by the IoU score to promote specialization amongst the anchor channel predictions [196].
When Gsi,j,a is not a target object, po = 0. In practice, the losses are applied over a batch
of images using batched grids. The total loss L is the weighted summation of the loss
components scaled by the batch size Nb:

L = Nb(λobjLobj + λboxLbox + λclsLcls + λkpsLkps). (4.9)

63

t
x

t
x

v
y1

v
x1

t
h

t
y

t
h

t
w

t
y

t
w

grid cell
target

human pose

object

y = p
o
,

t
x
, t

y
 , t

w
 , t

h
 , c

1
 , ... , c

K+1
 , v

x1
 , v

y1
 , ... , v

xK
 , v

yK

keypoint
object

y = 1, 0.2, 0.7, 5.5, 8.8, 1, 0, ..., 0, -0.4, 3.7, ..., 0.6, -4.1

p

o
t
x

t
y
 t

w
 t

h
 c

1
 c

2
 c

K+1
 v

x1
 v

y1
v

xK
v

yK

y = 1, 0.3, 0.7, 0.4, 0.4, 0, 0, ..., 1, ..., 0, ?, ?, ... ?, ?

p

o
t
x

t
y
 t

w
 t

h
 c

1
 c

2
 c

15
 c

K+1
 v

x1
 v

y1
 v

xK
 v

yK

(left knee)

(right ankle)

no object y = 0, ?, ?, ..., ?, ?

p

o
t
x

t
y
 v

xK
 v

yK

(nose)

Figure 4.4: Sample targets used to train KAPAO, including a human pose object (blue), key-
point object (red), and no object (green). The “?” values are not used in the loss computation.
In this example, a 10x10 output grid is overlaid on the input image. A single anchor box channel
is assumed for clarity. The center of the pose object bounding box lies in grid cell G5,4, so that
cell is responsible for its prediction. Sample target values for the No output channels of three
grid cells are shown below the image.

64

4.2.3 Inference

The predicted intermediate bounding boxes t̂ and intermediate keypoints v̂ are mapped
back to the original image coordinates using the following transformation:

b̂ = s(t̂ + [i, j, 0, 0]) ẑk = s(v̂k + [i, j]). (4.10)

Ĝsi,j,a represents a positive pose object detection Ôp if its confidence p̂o ·max(ĉ) is greater

than a threshold τcp and arg max(ĉ) = 1. Similarly, Ĝsi,j,a represents a positive keypoint

object detection Ôk if p̂o · max(ĉ) > τck and arg max(ĉ) > 1, where the keypoint object
class is arg max(ĉ)− 1.

To remove redundant detections and obtain the candidate pose objects Ôp′ and the
candidate keypoint objects Ôk′, the sets of positive pose object detections Ôp and positive
keypoint object detections Ôp are filtered using non-maximum suppression (NMS) applied
to the pose object bounding boxes with the IoU thresholds τbp and τbk

2:

Ôp′ = NMS(Ôp, τbp) Ôk′ = NMS(Ôk, τbk). (4.11)

Finally, the human pose predictions P̂ = {P̂i ∈ RK×3} for i ∈ {1...n(Ôp′)} are obtained
by fusing the candidate keypoint objects with the candidate pose objects using a distance
tolerance τfd. To promote correct matches of keypoint objects to poses, the keypoint
objects are only fused to pose objects with confidence p̂o ·max(ĉ) > τfc:

P̂ = φ(Ôp′, Ôk′, τfd, τfc). (4.12)

The keypoint object fusion function φ is defined in Algorithm 2, where the following
notation is used to index an object’s properties: x̂ = Ôx (e.g., a pose object’s keypoints ẑ
are referenced as Ôp

z).

4.2.4 Limitations

A limitation of KAPAO is that pose objects do not include individual keypoint confidences,
so the human pose predictions typically contain a sparse set of keypoint confidences P̂i[:, 3]
populated by the fused keypoint objects (see Algorithm 2 for details). If desired, a complete
set of keypoint confidences can be induced by only using keypoint objects, which is realized

2τck and τbk are scalar thresholds and are used for all keypoint classes.

65

Algorithm 2: Keypoint object fusion (φ)

Input: Ôp′, Ôk′, τfd, τfc

Output: P̂

if n(Ôp′) > 0 then

P̂← {0K×3 | ∈ {1...n(Ôp′)}} // initialize poses

ζ ← {0 | ∈ {1...n(Ôp′)}} // initialize pose confidences

for (i, Ôp) ∈ enumerate(Ôp′) do

ζi = Ôp
po ·max(Ôp

c)

for k ∈ {1...K} do
P̂i[k]← (Ôp

xk , Ôp
yk , 0)

P̂∗ ← {P̂i ∈ P̂ | ζi > τfc}
if n(P̂∗) > 0 ∧ n(Ôk′) > 0 then

for Ôk ∈ Ôk′ do

k ← argmax(Ôk
c)− 1

Ck ← Ôk
po max(Ôk

c) // keypoint object confidence

di ← ||P̂∗
i [k, [1, 2]]− (Ôk

bx
, Ôk

by
)||2

m← argmin(d) // match index

if dm < τfd ∧ P̂∗
m[k, 3] < Ck then

P̂∗
m[k] = (Ôk

bx
, Ôk

by
, Ck)

else

P̂ = ∅ // empty set

when τck → 0 (demonstrated in a video inference demo described in Section 4.3.6). Another
limitation is that training requires a considerable amount of time and GPU memory due
to the large input size used.

4.3 Experiments

KAPAO was trained and tested on two multi-person human pose estimation datasets: Mi-
crosoft COCO Keypoints [60] and CrowdPose [103]. This section provides the experimental
details and test results. The accuracy and speed of KAPAO are compared against state-of-
the-art methods in Sections 4.3.1 and 4.3.2. An error analysis is provided in Section 4.3.3,
qualitative comparisons are made in Section 4.3.4, and certain design characteristics are

66

Hyperparameter Description Symbol Value(s)

output grid scales s {8, 16, 32, 64}
keypoint object bounding box size (px) bs 64

input image height, width (px) h, w 1280, 1280

G8 anchor boxes (width, height) (px) A8 {(19, 27), (44, 40), (38, 94)}
G16 anchor boxes (width, height) (px) A16 {(96, 68), (86, 152), (180, 137)}
G32 anchor boxes (width, height) (px) A32 {(140, 301), (303, 264), (238, 542)}
G64 anchor boxes (width, height) (px) A64 {(436, 615), (739, 380), (925, 792)}
loss weights for G8, G16 G32, and G64 ω {4.0, 1.0, 0.25, 0.06}
objectness loss weight λobj 0.7× (w/640)2 × 3/n(s)

bounding box loss weight λbox 0.05× 3/n(s)

class loss weight λcls 0.3× (K + 1)/80× 3/n(s)

pose object keypoints loss weight λkps 0.025× 3/n(s)

batch sizes for KAPAO-S, M, and L Nb 128, 72, 48

pose, keypoint obj. conf. thresholds τcp, τck 0.001, 0.2

pose, keypoint obj. IoU thresholds τbp, τbk 0.65, 0.25

maximum fusion distance (px) τfd 50

pose obj. conf. threshold for fusion τfc 0.3

Table 4.1: The hyperparameters used in the KAPAO experiments. n(s) is the number of output
grids.

empirically analyzed in Section 4.3.5.

PyTorch 1.9 was used for the implementation. For convenience, the KAPAO hyper-
parameters used to generate the results in this section are provided in Table 4.1 in the
order they appeared in the previous section. Other hyperparameters not referenced in
the text (e.g., the augmentation settings) are included in the source code. Many of the
hyperparameters were inherited from [199], where an evolutionary algorithm was used to
search for optimal values for object detection on COCO. Some hyperparameters, such as
the keypoint bounding box size bs and the keypoint loss weight λkps, were manually tuned
using a small grid search. The influence of bs is studied in Section 4.3.5.

67

4.3.1 Microsoft COCO Keypoints

Training. KAPAO-S/M/L were all trained for 500 epochs on COCO train2017 using
stochastic gradient descent with Nesterov momentum [265], weight decay, and a learning
rate decayed over a single cosine cycle [255] with a 3-epoch warm-up period [254]. The input
images were resized and padded to 1280×1280, keeping the original aspect ratio. Data
augmentation used during training included mosaic [186], HSV color-space perturbations,
horizontal flipping, translations, and scaling. The models were trained on four V100 GPUs
with 32 GB memory each using batch sizes of 128, 72, and 48 for KAPAO-S, M, and L,
respectively. Validation was performed after every epoch, saving the model weights that
provided the highest validation AP.

Testing. The inference parameters (τcp, τck, τbp, τbk, τfd, and τfc) were manually tuned on
the validation set using a coarse grid search to maximize accuracy. However, the results
were not overly sensitive to the inference parameter values. For test-time augmentation,
the input image was scaled by factors of 0.8, 1, and 1.2, and the unscaled image was
horizontally flipped. During post-processing, the multi-scale detections are concatenated
before running NMS. When not using test-time augmentation, rectangular input images
are used (i.e., 1280 px on the longest side), which marginally reduced the accuracy but
increased the inference speed.

Results. Table 4.2 compares the accuracy and latency (sum of the forward pass and post-
processing times) of KAPAO with state-of-the-art single-stage methods HigherHRNet [54],
HigherHRNet + SWAHR [172], DEKR [56], and CenterGroup [173] on val2017. Two
test settings were considered: (1) without any test-time augmentation (i.e., using a single
forward pass of the network), and (2) with multi-scale and horizontal flipping test-time
augmentation (TTA). The setting without TTA is representative of how these models are
deployed in practice, whereas TTA is used to maximize accuracy at the cost of inference
speed. All latencies were averaged over the 5k images in val2017 using a batch size of
1 and were measured on the same workstation housing a TITAN Xp GPU. Many new
insights are uncovered through evaluation of the forward pass (FP) and post-processing
(PP) times required by each method. It is noted that with the exception of CenterGroup,
no inference speeds were reported in the original works. Rather, FLOPs were used as an
indirect measure of computational efficiency. FLOPs are not only a poor indication of
inference speed (see Section 3.5 for discussion), but they are also only computed for the
forward pass of the network and so they do not provide an indication of the amount of
computation required for post-processing.

The post-processing and refinement of the large heatmaps and associative embeddings

68

Method TTA Input Size(s)
Params
(M)

FP
(ms)

PP
(ms)

Lat.
(ms)

AP AR

HigherHRNet-W32 [54] N 512 28.6 46.1 50.1 96.2 63.6 69.0

+ SWAHR [172] N 512 28.6 45.1 86.6 132 64.7 70.3

HigherHRNet-W32 [54] N 640 28.6 52.4 71.4 124 64.9 70.3

HigherHRNet-W48 [54] N 640 63.8 75.4 59.2 135 66.6 71.5

+ SWAHR [172] N 640 63.8 86.3 194 280 67.3 73.0

DEKR-W32 [56] N 512 29.6 62.6 34.9 97.5 62.4 69.6

DEKR-W48 [56] N 640 65.7 109 45.8 155 66.3 73.2

CenterGroup-W32 [173]* N 512 30.3 98.9 16.0 115 66.9 71.6

CenterGroup-W48 [173]* N 640 65.5 155 14.5 170 69.1 74.0

KAPAO-S N 1280 12.6 14.7 2.80 17.5 63.0 70.2

KAPAO-M N 1280 35.8 30.7 2.88 33.5 68.5 75.5

KAPAO-L N 1280 77.0 51.3 3.07 54.4 70.6 77.4

HigherHRNet-W32 [54] Y 256, 512, 1024 28.6 365 372 737 69.9 74.3

+ SWAHR [172] Y 256, 512, 1024 28.6 389 491 880 71.3 75.9

HigherHRNet-W32 [54] Y 320, 640, 1280 28.6 431 447 878 70.6 75.0

HigherHRNet-W48 [54] Y 320, 640, 1280 63.8 643 436 1080 72.1 76.1

+ SWAHR [172] Y 320, 640, 1280 63.8 809 781 1590 73.0 77.6

DEKR-W32 [56] Y 256, 512, 1024 29.6 552 137 689 70.5 76.2

DEKR-W48 [56] Y 320, 640, 1280 65.7 1010 157 1170 72.1 77.8

CenterGroup-W32 [173]* Y 256, 512, 1024 30.3 473 13.8 487 71.9 76.1

CenterGroup-W48 [173]* Y 320, 640, 1280 65.5 1050 11.8 1060 73.3 77.6

KAPAO-S Y 1024, 1280, 1536 12.6 61.5 3.70 65.2 64.4 71.5

KAPAO-M Y 1024, 1280, 1536 35.8 126 3.67 130 69.9 76.8

KAPAO-L Y 1024, 1280, 1536 77.0 211 3.70 215 71.6 78.5

Table 4.2: Accuracy and speed comparison with state-of-the-art single-stage human pose esti-
mation models on COCO val2017, including the forward pass (FP) and post-processing (PP).
Latencies (Lat.) averaged over val2017 using a batch size of 1 on a TITAN Xp GPU. *Uses
mmpose pytorch-lightning HigherHRNet implementation, which has faster forward pass time
than the original (37.9 ms versus 46.1 ms for HigherHRNet-W32).

69

produced by HigherHRNet-W32 require more processing time than the forward pass of
the network itself. Furthermore, the post-processing time of HigherHRNet correlates with
the size of the output heatmaps, resulting in very costly multi-scale inference when using
TTA. Despite using identical network architectures and inference code, SWAHR seemingly
adds significant computational overhead to HigherHRNet during post-processing, especially
when using the heavier W48 backbone. Upon further investigation, it was found that using
SWAHR results in more detections (i.e., fewer false negatives), which increases the accuracy
but has the side-effect of slowing down inference through additional heatmap refinement.

For DEKR, the post-processing time is slightly less than HigherHRNet without TTA
and significantly less when using TTA. The reason is two-fold: the heatmaps and offset
fields produced by the HRNet backbone in DEKR are half the size compared to HigherHR-
Net, and only the pose center heatmap requires refinement to obtain pose center candidates
while the 2K offset fields are indexed at the center heatmap maxima to predict poses. How-
ever, DEKR’s reduced post-processing time when using TTA is offset by a greater forward
pass time, which is suspected to be caused by its architectural complexities, including its
use of adaptive convolutions and separate regression heads for each keypoint.

KAPAO has the advantage of not using heatmaps, so the post-processing times of
HigherHRNet, HigherHRNet + SWAHR, and DEKR are at least an order of magnitude
greater than KAPAO-L when not using TTA. Furthermore, the post-processing time of
KAPAO depends less on the input size so it only increases by approximately 1 ms when
using TTA. Conversely, HigherHRNet and HigherHRNet + SWAHR generate and refine
large heatmaps with multi-scale testing and therefore require more than two orders of
magnitude more post-processing time than KAPAO-L when using TTA.

CenterGroup, which uses a HigherHRNet backbone, requires significantly less post-
processing time than HigherHRNet and DEKR because it skips heatmap refinement and
directly encodes pose center and keypoint heatmaps as embeddings that are fed to an
attention-based grouping module that predicts associations among the keypoints and cen-
ters. When not using TTA, CenterGroup-W48 provides an improvement of 2.5 AP over
HigherHRNet-W48, so the attention-based grouping module is more effective than asso-
ciative embeddings for learning the groupings of keypoints. However, the grouping module
is relatively slow. It is responsible for over 50% of the total forward pass time of Cen-
terGroup, which offsets the reduction in post-processing time. Still, CenterGroup has the
best accuracy-speed trade-off of the models discussed thus far. Equipped with an efficient
network architecture and near cost-free post-processing, KAPAO-L is 3.1× faster than
CenterGroup-W48 and 1.5 AP more accurate when not using TTA.

When using TTA, the AP of KAPAO-L is 1.7 points less than CenterGroup-W48, but

70

KAPAO-L is 4.9× faster. KAPAO-L also provides state-of-the-art AR, indicating that
it potentially provides more true positive detections and fewer false negatives. Because
KAPAO was trained on larger images, there is less benefit from multi-scale testing. Using
input sizes greater than 1280 provides less of a benefit as the dataset images are a maximum
of 640 pixels on their longest side. In effect, KAPAO reaps the benefits of multi-scale testing
without explicitly using it. If larger images were available, it is suspected that KAPAO
would benefit more from multi-scale testing where the other methods would not.

In Table 4.3, the accuracy of KAPAO is compared to single-stage and two-stage meth-
ods on test-dev. The results with the highest AP are reported (i.e., including TTA).
KAPAO-L achieves state-of-the-art AR and falls within 1.7 AP of best performing single-
stage method HigherHRNet-W48 + SWAHR while being 7.4× faster. Notably, KAPAO-L
is more accurate than the early two-stage methods G-RMI [159] and RMPE [44]. Moreover,
KAPAO-L is significantly more accurate than landmark single-stage methods like Open-
Pose [45, 168], Associative Embeddings [46], and PersonLab [48]. Compared to other single-
stage methods that extend object detectors for human pose estimation (Mask R-CNN [47],
CenterNet [113], Point-Set Anchors [165], and FCPose [166]), KAPAO-L is considerably
more accurate. Among all the single-stage methods, KAPAO-L achieves state-of-the-art
AP at an OKS threshold of 0.50, which could be an indication of better detection but less
precise keypoint localization.

4.3.2 CrowdPose

KAPAO was trained on the trainval split with 12k images and was evaluated on the 8k
images in test. The same training and inference settings as on COCO were used except the
models were trained for 300 epochs instead of 500 and no validation was performed. The
final model weights were used for testing. Table 4.4 compares the accuracy of KAPAO
against state-of-the-art methods. It was found that KAPAO excels in the presence of
occlusion, achieving competitive results across all metrics compared to previous single-
stage methods. The proficiency of KAPAO in crowded scenes is clear when analyzing
APE, APM , and APH : KAPAO-L and DEKR-W48 [56] perform equally on images with
easy Crowd Index (less occlusion), but KAPAO-L is 1.1 AP more accurate for both medium
and hard Crowd Indices (more occlusion).

71

Method Lat. (ms) AP AP.50 AP.75 APM APL AR

G-RMI [159]† - 64.9 85.5 71.3 62.3 70.0 69.7

RMPE [44]† - 61.8 83.7 69.8 58.6 67.6 -

CPN [50]† - 72.1 91.4 80.0 68.7 77.2 78.5

SimpleBaseline [51]† - 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 [52]† - 75.5 92.5 83.3 71.9 81.5 80.5

EvoPose2D-L [57]† - 75.7 91.9 83.1 72.2 81.5 81.7

MIPNet [59]† - 75.7 - - - - -

RLE [235]† - 75.7 92.3 82.9 72.3 81.3 -

OpenPose [45, 168] 74* 61.8 84.9 67.5 57.1 68.2 66.5

Mask R-CNN [47] - 63.1 87.3 68.7 57.8 71.4 -

Associative Embeddings [46] - 65.5 86.8 72.3 60.6 72.6 70.2

PersonLab [48] - 68.7 89.0 75.4 64.1 75.5 75.4

SPM [156] - 66.9 88.5 72.9 62.6 73.1 -

PifPaf [155] - 66.7 - - 62.4 72.9 -

HGG [171] - 67.6 85.1 73.7 62.7 74.6 71.3

CenterNet [113] - 63.0 86.8 69.6 58.9 70.4 -

Point-Set Anchors [165] - 68.7 89.9 76.3 64.8 75.3 -

HigherHRNet-W48 [54] 1080 70.5 89.3 77.2 66.6 75.8 74.9

+ SWAHR [172] 1590 72.0 90.7 78.8 67.8 77.7 -

FCPose [166] 93* 65.6 87.9 72.6 62.1 72.3 -

DEKR-W48 [56] 1170 71.0 89.2 78.0 67.1 76.9 76.7

CenterGroup-W48 [173] 1060 71.4 90.5 78.1 67.2 77.5 -

KAPAO-S 65.2 63.8 88.4 70.4 58.6 71.7 71.2

KAPAO-M 130 68.8 90.5 76.5 64.3 76.0 76.3

KAPAO-L 215 70.3 91.2 77.8 66.3 76.8 77.7

Table 4.3: Accuracy comparison with two-stage (†) and single-stage methods on COCO
test-dev. Best results (i.e., including TTA). DEKR results use a model-agnostic rescoring net-
work [56]. Latencies (Lat.) taken from Table 4.2. *Latencies reported in original papers [168, 166]
and measured using an NVIDIA GTX 1080Ti GPU.

72

Method Lat. (ms) AP AP.50 AP.75 APE APM APH

Mask R-CNN [47] - 57.2 83.5 60.3 69.4 57.9 45.8

AlphaPose [44]† - 61.0 81.3 66.0 71.2 61.4 51.1

SimpleBaseline [51]† - 60.8 81.4 65.7 71.4 61.2 51.2

SPPE [103] - 66.0 84.2 71.5 75.5 66.3 57.4

MIPNet [59]† - 70.0 - - - - -

OpenPose [45] 74.0* - - - 62.7 48.7 32.3

HigherHRNet-W48 [54] 1080 67.6 87.4 72.6 75.8 68.1 58.9

+ SWAHR [172] 1590 73.8 90.5 79.9 81.2 74.7 64.7

DEKR-W48 [56] 1170 68.0 85.5 73.4 76.6 68.8 58.4

CenterGroup-W48 [173] 1060 70.0 88.9 75.7 77.3 70.8 63.2

KAPAO-S 65.2 63.8 87.7 69.4 72.1 64.8 53.2

KAPAO-M 130 67.1 88.8 73.4 75.2 68.1 56.9

KAPAO-L 215 68.9 89.4 75.6 76.6 69.9 59.5

Table 4.4: Accuracy comparison with single-stage and two-stage (†) methods on CrowdPose
test, including TTA. DEKR results use a model-agnostic rescoring network [56]. Latencies
(Lat.) taken from Table 4.2. *Latency reported in original paper [168] and measured using
NVIDIA GTX 1080Ti GPU on COCO.

4.3.3 Error Analysis

While the AP and AR metrics are robust and perceptually meaningful (i.e., algorithms
with higher AP/AR are generally more accurate), they can hide the underlying causes of
error and are not sufficient for truly understanding an algorithm’s behaviour. For example,
the results presented in the previous section showed that KAPAO consistently provides
higher AR than previous single-stage methods and higher AP at lower OKS thresholds
(e.g., AP.50). The exact cause for this result cannot be understood through analysis of
the AP/AR metrics alone, but a potential explanation is that KAPAO provides more
precise person/pose detection (i.e., more true positives and fewer false positives and false
negatives), but less precise keypoint localization. To investigate this further, this section
provides a more in-depth analysis of the error using the error taxonomy and analysis code
provided by Ronchi and Perona [106].

Ronchi and Perona propose an error taxonomy for multi-person human pose estimation
on COCO that includes four error categories: Background False Positives, False Negatives,

73

Scoring, and Localization. False positives and false negatives were previously described in
Section 2.1.1. Scoring errors are due to sub-optimal confidence score assignment; they occur
when two detections are in the proximity of a ground-truth annotation and the one with
the highest confidence has the lowest OKS. Localization errors are due to poor keypoint
localization within a detected instance; they are further categorized into four types: Jitter :
small localization error (0.5 ≤ exp(−d2i /2s2k2

i) < 0.85); Miss : large localization error
(exp(−d2i /2s2k2

i) < 0.5); Inversion: left-right keypoint flipping within an instance; and
Swap: keypoint swapping between instances. The reader may refer to [106] for a more
detailed description of the error classifications.

Figure 4.5 plots the precision-recall curves for HigherHRNet-W48 [54], HigherHRNet-
W48 + SWAHR [172], DEKR-W48 [56], CenterGroup-W48 [173], and KAPAO-L at an
OKS threshold of 0.85 using the results without TTA. Recalling that APα is equal to
the area under the precision-recall curve generated at OKS = α, the coloured regions in
Figure 4.5 reflect the theoretical improvement in AP.85 as a result of sequentially rectifying
the aforementioned error types.

KAPAO-L provides the highest original AP.85 (represented by the white region). Fur-
thermore, KAPAO-L is less prone to Swap and Inversion errors, which can be attributed
to the pose object representation that models cohesive pose instances and eliminates the
need for bottom-up keypoint grouping algorithms that are prone to such errors. This is
further supported by DEKR having lower Swap error than the other three methods, which
all perform bottom-up keypoint grouping. Interestingly, DEKR has the most room for
improvement in assigning optimal confidence scores, which could be the motivation behind
using a model-agnostic scoring regression network to improve the AP in the original paper
(not included in these results). As previously hypothesized, KAPAO has more Jitter error
than some of the other methods as a result of having less precise keypoint localization.
Conversely, KAPAO-L provides better detection as shown by less improvement after cor-
recting the false positive and false negative errors. It is speculated that since KAPAO
was designed using an object detection network as its backbone, it is more optimized for
person/pose object detection and less optimized for keypoint localization compared to the
other single-stage human pose estimation methods. Rebalancing KAPAO to focus more
on keypoint localization is thus a recommended area for future work.

4.3.4 Qualitative Comparisons

KAPAO-L predictions from COCO val2017 are qualitatively compared with CenterGroup-
W48 without TTA. To systematically review cases where KAPAO-L performs better than

74

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

HigherHRNet-W48

w/o FN : 1.00
w/o Bkg. FP: .921
Opt. Score : .920
w/o Jit. : .904
w/o Inv. : .811
w/o Swap : .740
w/o Miss : .688
Orig. Dts. : .574

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

HigherHRNet-W48 + SWAHR

w/o FN : 1.00
w/o Bkg. FP: .950
Opt. Score : .947
w/o Jit. : .921
w/o Inv. : .818
w/o Swap : .743
w/o Miss : .697
Orig. Dts. : .569

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

DEKR-W48

w/o FN : 1.00
w/o Bkg. FP: .950
Opt. Score : .949
w/o Jit. : .919
w/o Inv. : .780
w/o Swap : .704
w/o Miss : .676
Orig. Dts. : .549

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

CenterGroup-W48

w/o FN : 1.00
w/o Bkg. FP: .950
Opt. Score : .947
w/o Jit. : .924
w/o Inv. : .825
w/o Swap : .756
w/o Miss : .718
Orig. Dts. : .595

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

KAPAO-L

w/o FN : 1.00
w/o Bkg. FP: .960
Opt. Score : .960
w/o Jit. : .940
w/o Inv. : .818
w/o Swap : .751
w/o Miss : .732
Orig. Dts. : .615

Figure 4.5: Error type analysis on COCO val2017 for HigherHRNet-W48 [54], HigherHRNet-
W48 + SWAHR [172], DEKR-W48 [56], CenterGroup-W48 [173], and KAPAO-L for an OKS
threshold of 0.85 (without TTA). Plots generated using the coco-analyze toolbox [106]. AP.85

values in legends given in decimals as opposed to percent.

75

CenterGroup-W48, and vice versa, the maximum OKS was found for each ground-truth
instance (OKSmax) using the top-20 scoring pose detections for each model. For each vali-
dation image, the difference between the summations of the OKS maxima was computed:

∆OKS = ΣOKSKAPAO−L
max − ΣOKSCenterGroup−W48

max (4.13)

∆ OKS is positive for images where KAPAO-L performs better than CenterGroup-W48.
Conversely, ∆ OKS is negative for images where CenterGroup-W48 performs better than
KAPAO-L. To plot partial poses using KAPAO-L, the keypoint object confidence threshold
τck was lowered to 0.01 to promote the fusion of keypoint objects and increase the frequency
of keypoint confidences in the predicted poses P̂ (see Section 4.2.4 for details). The τck
of 0.01 lowered the AP from 70.4 to 70.1. It also increased the post-processing time from
approximately 3 ms to 5 ms per image due to the increased number of keypoint objects
that are fused in Algorithm 2. Using these inference settings, KAPAO-L is still 1.0 AP
more accurate and 3.0× faster than CenterGroup-W48 on val2017.

It is observed that extreme values of ∆ OKS are associated with crowded images (> 20
people) containing a limited number of annotations (< 20 annotations). For these images,
ΣOKSmax is contingent on whether the ground-truth instances are predicted by the top-20
scoring detections and therefore an element of chance is involved. Figure 4.6 illustrates
such a scenario. The top-left image shows the ground-truth pose annotations (white);
the top-right image shows the top-20 scoring CenterGroup-W48 detections (orange); the
bottom-left image shows the top-20 scoring KAPAO-L detections (green); and the bottom-
right image shows the same KAPAO-L detections but only plots the fused keypoint objects
(light green). The top-20 KAPAO-L detections contain 8 of the 10 ground-truth instances
whereas the top-20 CenterGroup-W48 predictions contain 6. As a result, ∆ OKS = 2.06.
Because all the COCO keypoint metrics are computed using the 20 top-scoring detections,
false negatives are artificially inflated while true positives are artificially deflated. While it
is perplexing that the COCO metrics possess an element of randomness, it is conceivable
that over many images the randomness averages out and does not favour one model over
another. Moreover, the COCO dataset is sparsely populated with crowded images so these
rare cases likely have a negligible influence on AP/AR. The implications of only using
20 detections on datasets like CrowdPose may be more severe and worth investigating,
however.

To avoid the aforementioned issues with comparing OKS in crowded scenes, the fol-
lowing comparisons consist of images where OKSmax > 0.5 for all ground-truth instances
using both models. Figure 4.7 shows an example where KAPAO-L performs better than
CenterGroup-W48 (∆ OKS = +0.68). The keypoint grouping module of CenterGroup-

76

Figure 4.6: Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO image
24021, ∆OKS = 2.06). Top-left: ground-truth. Top-right: top-20 scoring CenterGroup-W48
predictions. Bottom-left: top-20 scoring KAPAO-L predictions (all keypoints). Bottom-right:
top-20 scoring KAPAO-L predictions (fused keypoint objects only).

W48 severely mixes up the keypoint identities (swap error). Swap error is a common
failure case for CenterGroup but an uncommon failure case for KAPAO due to its detec-
tion of holistic pose objects (quantitative errors provided in Figure 4.5). Figure 4.8 shows
the image with the lowest ∆ OKS (−0.66). For three of the ground-truth instances situ-
ated near the top of the frame, KAPAO predicts the locations of the nose, eyes, and ears
significantly lower than the ground-truth locations, resulting in lower OKS for these poses.
These errors are the result of the keypoint object bounding boxes being cut-off by the edge
of the frame such that the center of the keypoint object bounding box no longer coincides
with the actual keypoint locations. These errors could be rectified with relatively simple
alterations to the inference code in future work.

77

Figure 4.7: Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO image
49759, ∆OKS = +0.68). Top-left: ground-truth. Top-right: top-20 scoring CenterGroup-W48
predictions. Bottom-left: top-20 scoring KAPAO-L predictions (all keypoints). Bottom-right:
top-20 scoring KAPAO-L predictions (fused keypoint objects only).

4.3.5 Ablation Studies

The influence of the keypoint bounding box size bs, one of KAPAO’s important hyper-
parameters, was empirically analyzed. Five KAPAO-S models were trained on COCO
train2017 for 50 epochs using normalized keypoint bounding box sizes bs/max(w, h)
∈ {0.01, 0.025, 0.05, 0.075, 0.1}. The validation AP is plotted in Figure 4.9. The results are
consistent with the prior work of McNally et al. [96]: bs/max(w, h) < 2.5% destabilizes
training leading to poor accuracy, and optimal bs/max(w, h) is observed around 5% (used
for the experiments in Sections 4.3.1 and 4.3.2). In contrast to McNally et al., the accuracy

78

Figure 4.8: Qualitative comparison between KAPAO-L and CenterGroup-W48 (COCO image
326248, ∆OKS = −0.66). Top-left: ground-truth. Top-right: top-20 scoring CenterGroup-W48
predictions. Bottom-left: top-20 scoring KAPAO-L predictions (all keypoints). Bottom-right:
top-20 scoring KAPAO-L predictions (fused keypoint objects only).

in this study degrades quickly for bs/max(w, h) > 5%. It is hypothesized that large bs in
this application interferes with pose object learning.

The accuracy improvements resulting from fusing the keypoint objects with the pose
objects are provided in Table 4.5. Keypoint object fusion adds no less than 1.0 AP and over
3.0 AP in some cases. Moreover, keypoint object fusion is fast; the added post-processing
time per image is ≤ 1.7 ms on COCO and ≤ 4.5 ms on CrowdPose. Relative to the time
required for the forward pass of the network (see Table 4.2), these are small increases.

The fusion of keypoint objects by class is also studied. Figure 4.10 plots the fusion
rates for each keypoint type for KAPAO-S with no TTA on COCO val2017. The fusion
rate is equal to the number of fused keypoint objects divided by the number of keypoints

79

0.010 0.025 0.050 0.075 0.100
Norm. Keypoint Bounding Box Size bs/max(w, h)

50.0

52.5

55.0

57.5

CO
CO

 V
al

id
at

io
n

AP

Figure 4.9: The influence of keypoint object bounding box size on learning. Each KAPAO-S
model was trained for 50 epochs.

Method TTA
∆ Lat. (ms) / ∆AP
(COCO val2017)

∆ Lat. (ms) / ∆AP
(CrowdPose test)

KAPAO-S N +1.2 / +2.4 +3.3 / +2.9

KAPAO-M N +1.2 / +1.1 +3.5 / +3.2

KAPAO-L N +1.7 / +1.2 +4.2 / +1.0

KAPAO-S Y +1.7 / +2.8 +3.9 / +3.2

KAPAO-M Y +1.6 / +1.5 +4.4 / +3.5

KAPAO-L Y +1.4 / +1.1 +4.5 / +1.0

Table 4.5: Accuracy improvement when fusing keypoint object detections with human pose
detections. Latencies averaged over each dataset using a batch size of 1 on a TITAN Xp GPU.

of that type in the dataset. Because the number of human pose predictions is generally
greater than the actual number of person instances in the dataset, the fusion rate can be
greater than 1. As originally hypothesized, keypoints that are characterized by distinct
local image features (e.g., the eyes, ears, and nose) have higher fusion rates as they are
detected more precisely as keypoint objects than as pose objects. Conversely, keypoints
that require a more global understanding (e.g., the hips) are better detected using pose
objects, as evidenced by lower fusion rates.

Finally, the trade-off between accuracy and inference speed was investigated for various
input sizes. The AP on COCO val2017 was computed without TTA for max(w, h) ∈
{640, 768, 896, 1024, 1152, 1280}. Figure 4.11 plots the results for each model. For all three
models, reducing the input size to 1152 had a negligible effect on the accuracy but provided
a meaningful latency reduction. For KAPAO-M and KAPAO-L, using an input size of 1024
reduced the accuracy marginally but also reduced the latency by ∼30%.

80

ea
rs

ey
es

no
se

sh
ou

ld
er

s

el
bo

ws

an
kl

es

kn
ee

s

wr
ist

s

hi
ps

0.0

0.5

1.0

Fu
sio

n
Ra

te

Figure 4.10: Keypoint object fusion rates for each keypoint type. Evaluated on COCO val2017

using KAPAO-S without TTA.

10 20 30 40 50
Latency (ms)

55

60

65

70

CO
CO

 V
al

id
at

io
n

AP

KAPAO-S
KAPAO-M
KAPAO-L

Figure 4.11: Accuracy-speed trade-off for input sizes ranging from 640 to 1280. Evaluated on
COCO val2017 using a batch size of 1 on a TITAN Xp GPU.

4.3.6 Video Inference Demos

The source code includes five video inference demos. The first four demos run inference on
RGB video clips sourced from YouTube to demonstrate the practical use of KAPAO under
various inference settings. The final demo demonstrates the generalization of KAPAO by
running inference on a depth video converted to RGB. All reported inference speeds include
all processing (i.e., image loading, resizing, inference, graphics plotting, etc.).

Shuffle. KAPAO runs fastest on low resolution video with few people in the frame. This
demo runs KAPAO-S on a single-person 480p dance video using an input size of 1024. The
inference speed is ∼9.5 FPS on a workstation CPU (Intel Core i7-8700K), and ∼65 FPS
on the TITAN Xp GPU. A screenshot of the inference is provided in Figure 4.12 (top-left).

Flash Mob. KAPAO-S was run on a 720p flash mob dance video using an input size of

81

1280. A screenshot of the inference is shown in Figure 4.12 (top-right). On a workstation
housing a TITAN Xp GPU, the inference speed was ∼35 FPS.

Red Light, Green Light. This demo runs KAPAO-L on a 480p video clip from the
TV show Squid Game using an input size of 1024. For this demo, incomplete poses were
plotted based on keypoint confidence by setting τck = 0.01 (see Section 4.2.4 for details).
A screenshot of the inference is provided in Figure 4.12 (bottom-left). The GPU inference
speed varied between 15 and 30 FPS depending on the number of people in the frame.

Squash. KAPAO-S was run on a 1080p slow-motion squash video using an input size of
1280. A simple player tracking algorithm was implemented based on the frame-to-frame
pose differences. The inference speed was ∼22 FPS on the TITAN Xp GPU. A screenshot
is provided in Figure 4.12 (bottom-right).

Depth Videos. Finally, the robustness and generalization capabilities of KAPAO are
demonstrated by running inference with KAPAO-S on depth videos obtained from a fencing
action recognition dataset [266]. The depth information was converted to RGB format in a
480p video. A screenshot from the inference video, which ran at∼60 FPS on the TITAN Xp
GPU, is displayed in Figure 4.13. Despite the marked difference in appearance between the
depth images and the KAPAO training images, human poses were still detected with high
confidence. This interesting test result can be attributed to pose object representation
learning, where spatial relations between human keypoints are learned using large-scale
features and high-level context (e.g., like the edges making up the human shape). This
is further supported by the fact that fewer keypoint objects were detected in the depth
images.3

4.4 Discussion

This chapter introduced KAPAO, a new heatmap-free keypoint estimation method based
around modeling keypoints and poses as objects. A novel pose object representation was
introduced that could prove to be useful in a variety of keypoint detection tasks where
sets of spatially related object keypoints are of interest. It is concluded that KAPAO is
effectively applied to the problem of single-stage multi-person human pose estimation by
detecting human pose objects. Moreover, fusing jointly learned keypoint objects improved
the accuracy of the predicted human poses with minimal computational overhead using

3Acknowledgement is given to Kevin Zhu for recognizing that KAPAO can detect pose objects in depth
images.

82

Figure 4.12: KAPAO video inference demo screenshots. Top-left: shuffling demo. Top-right:
flash mob demo. Bottom-left: red light, green light demo. Bottom-right: squash demo. All video
clips were sourced from YouTube.

Figure 4.13: Pose objects generalize well and can even be detected in depth video. Shown here
is a screenshot of KAPAO-S running inference on a depth video obtained from a fencing action
recognition dataset [266].

83

a simple tolerance-based matching algorithm. As a result, KAPAO is significantly faster
than previous single-stage methods, which are impeded by heatmap post-processing and
bottom-up keypoint grouping. When not using test-time augmentation, KAPAO is consid-
erably more accurate than the state-of-the-art. Moreover, because KAPAO learns full pose
representations via pose objects, it is more robust to occlusion than bottom-up methods
that detect individual keypoints. This was evidenced by achieving new state-of-the-art
accuracy for a single-stage method on CrowdPose.

The six inference parameters may be viewed by some readers as an inconvenience.
However, the parameters were quickly tuned for maximum accuracy using a coarse grid
search, the accuracy is not overly sensitive to them, and further tuning is not required for
practical usage. It is noted that the inference demos all use the same inference parameters.
Moreover, if only pose objects are used, which marginally reduces the accuracy according
to Table 4.5, four of the inference parameters become trivial. For comparison, HigherHR-
Net [54] has three inference parameters and DEKR [56] has seven. Some readers may also
contend that the comparisons made in Table 4.2 are not fair comparisons because KAPAO
uses a larger input size compared to HigherHRNet and DEKR (1280 versus 640). It is
emphasized that in practical applications, accuracy and speed are the critical metrics. As
such, fair comparisons are ones that use the same training data and the same hardware
to measure speed. HigherHRNet and DEKR were specifically re-implemented on the same
hardware as KAPAO to measure their speed and make fair comparisons. In essence, the
computational efficiency afforded by KAPAO permits the use of larger input sizes while
maintaining superior inference speed. If KAPAO was trained on an input size of 640 (i.e.,
like HigherHRNet and DEKR), the accuracy would decrease slightly, but the latency would
improve dramatically. Specifically, the latency of KAPAO-L would decrease by 50% to 24
ms (comparable to the speed of KAPAO-S). The input size of 1280 was chosen to priori-
tize accuracy in this trade-off scenario since KAPAO is already fast enough for real-time
inference.

Compared to EvoPose2D, KAPAO has a simpler implementation as it does not require
pairing with a person detector. The requirement of using a person detector represents a
marked source of inefficiency. Exacerbating the issue, to maximize accuracy, two-stage
approaches typically use the most accurate person detectors available, which are large
CNNs that carry a significant computational burden. Preprocessed detections (provided
in [51]) were used to make fair comparisons in the EvoPose2D evaluations; however, the
original person detector was cited as being a Faster R-CNN [157] object detection network.
It was not disclosed what specific variant of Faster R-CNN was used (i.e., what backbone),
but it was found that a Faster R-CNN with a ResNeXt-101 [267] FPN [185] backbone
matched the reported AP of the one used in [51]. The detectron2 API [268] was used to

84

implement this network and it was found to have a forward pass time of 396 ms on the
TITAN Xp GPU (measured over COCO val2017 using a batch size of 1). The AP for the
person category was evaluated to be 56.6. This particular person detector is already 7×
slower than KAPAO-L (without TTA, see Table 4.2 for details). If a faster person detector
was used, it would likely be less accurate, which would degrade the overall accuracy of the
two-stage human pose estimation approach. Notably, Faster R-CNN with a regular ResNet-
101 FPN backbone provides a more favourable accuracy-speed trade-off (84 ms inference
and person AP of 55.7). Still, it is slower than KAPAO-L even before considering the
extra computation required by EvoPose2D. Depending on the number of people detected,
EvoPose2D may need to be run multiple times (batched inference could be exploited, but
would ultimately be limited by GPU memory).

These insights help put the computational advantages of KAPAO and other single-stage
methods into perspective. However, in accuracy-critical applications or scenarios with large
computational budgets (e.g., when processing is performed offline on multi-GPU worksta-
tions or servers), EvoPose2D is still the recommended approach to maximize accuracy.
Alternatively, if using cloud GPU instances, KAPAO may be preferred to minimize cloud
computing costs. KAPAO may also be preferred in speed-critical applications or when
computational resources are limited, such as on edge devices. If a potential application
is constrained to a single person centered in the frame, using EvoPose2D without a per-
son detector may be the preferred approach. However, doing so would require retraining
EvoPose2D using entire images as input instead of cropped person detections.

85

Chapter 5

Conclusion

This thesis research presented two novel human pose estimation models, one for each of
the multi-person estimation paradigms (i.e., two-stage and single-stage). Motivated by the
success of neural architecture search in image recognition, a novel accelerated neuroevo-
lution framework was introduced in Chapter 3 and was leveraged in the machine-aided
design of EvoPose2D, a parameter-efficient heatmap-based single-person human pose esti-
mation network. Recognizing the limitations of heatmaps and the drawbacks of two-stage
inference, new keypoint representations were introduced in Chapter 4 and an entirely new
approach to single-stage human pose estimation was engineered around these representa-
tions. At the time of development, both methods improved upon the state of the art in
their respective categories on the standard multi-person human pose estimation bench-
marks. EvoPose2D is recommended in accuracy-critical applications with large computa-
tional budgets, whereas KAPAO is recommended in speed-critical applications or when
fewer computational resources are available.

The developed models contribute to the overall advancement of the field of human pose
estimation and in turn, make progress towards the highly anticipated use of markerless
motion capture in the wild. The following sections summarize the research contributions
and give direction relating to potential paths for future work.

5.1 Summary of Contributions

The research contributions contained in this thesis include:

86

1. A method for accelerating the training of human pose estimation networks using
large batch sizes (up to a batch size of 2048) and adaptive learning rate optimizers,
including supporting experiments demonstrating no loss of generalization.

2. A simple and flexible weight transfer scheme for accelerating neuroevolution that
relaxes the complete function-preservation constraint imposed by previous weight
transfer methods.

3. A neural architectural search space for the design of efficient single-person heatmap-
based human pose estimation networks, including the required mapping for network
encoding / decoding.

4. An accelerated neuroevolution framework, including large-scale neuroevolution ex-
periments supporting the efficacy of the proposed weight transfer scheme.

5. EvoPose2D, heatmap-based human pose estimator for two-stage multi-person esti-
mation that was designed via neuroevolution and achieves state-of-the-art accuracy
when scaled.

6. A novel keypoint representation that models individual keypoints as objects using
small keypoint bounding boxes.

7. A novel pose object representation that extends the conventional object representa-
tion to include a set of keypoints.

8. A method for jointly learning keypoint objects and pose objects using a dense anchor-
based detection network and a multi-task loss.

9. KAPAO, a state-of-the-art hand-designed single-stage human pose estimator that
simultaneously detects human pose objects and keypoint objects and fuses the de-
tections to exploit the strengths of both object representations.

10. Extensive empirical analysis of KAPAO, including a thorough error analysis and
ablation experiments demonstrating the efficacy of keypoint-pose object fusion and
the benefits of both object representations.

11. A comprehensive evaluation of the accuracies, errors, and inference speeds of KAPAO
and other state-of-the-art single-stage methods HigherHRNet [54], HigherHRNet +
SWAHR [172], DEKR [56], and CenterGroup [173] using the same hardware.

87

5.2 Future Work

There are many potential applications that are centered around the use of this research
in the wild (e.g., biomechanical analysis at home, in a gym, on a golf course, etc.). It
would therefore be desirable to deploy the developed algorithms on mobile devices (i.e., on
smartphones and tablets). While such an undertaking is not particularly research-oriented,
a significant amount of engineering would be required to successfully deploy the developed
models on iOS and Android devices, including converting the models to TFLite or CoreML
format, quantizing the models to accelerate inference and reduce storage requirements, and
building iOS or Android applications around their desired use. Furthermore, evaluating the
inference speeds of the developed models on edge device hardware is of interest, especially
considering the influence that hardware selection has on the relative speeds of CNNs (see
discussion in Section 4.4). Extending the inference pipeline to perform monocular 3D
human pose estimation via pairing with a 2D-to-3D pose lifting network may also be
interest. The implementations and datasets used in this thesis focus on frame-by-frame
inference, so there is also an opportunity to develop methods for video estimation that
produce more temporally consistent results.

Given the distinct computational advantages of the single-stage approach, it is rec-
ommended that future research continue in this direction. Specific recommendations for
future research therefore relate to the KAPAO model and are discussed below.

Architectural Optimization for KAPAO

KAPAO uses a highly efficient YOLO-style CNN architecture that has been iteratively im-
proved over several years of research and engineering. However, its design improvements
have been centered around the task of object detection, not human pose estimation. Object
detection on COCO involves detecting 80 unique object classes. The YOLO architecture
design has therefore been tailored to accommodate a large number of object classes using
numerous detection grids and anchor boxes. As a result, the architecture may be unnec-
essarily complex for human pose estimation. With KAPAO, there are only two object
classes of concern: keypoint objects and pose objects. Furthermore, all keypoint objects
have the same bounding box size, which supports the use of fewer anchor boxes. Evidently,
there exists an opportunity to optimize the architecture for human pose estimation. It is
recommended that the accelerated neuroevolution method proposed in Chapter 3 be used
for the architectural optimization using a new search space built around KAPAO’s current
design. Additionally, a more thorough investigation into the balancing of the multi-task
loss weighting is recommended. The current results suggest that the loss favours pose

88

object detection over keypoint localization, as evidenced by higher overall AR and higher
AP at lower OKS thresholds.

Pose Objects with Keypoint-wise Confidence

As discussed in Section 4.2.4, one of the main limitations of KAPAO is that the current pose
object definition does not include keypoint-wise confidences. Instead, a single confidence,
given by p̂o · max(ĉ), is used to represent the confidence of the entire pose object. This
creates an issue when people appear partially in the frame (i.e., around the edges) as there
is no way of knowing which keypoints in the pose object actually exist in the frame. A
temporary solution involves lowering the keypoint object confidence threshold τck to be
near zero such that only keypoint objects are used (see inference demos in Section 4.3.6
for more details). While this approach is reasonably effective, it slows down inference and
degrades the accuracy as a result of using keypoint objects only. A more prudent solution is
recommended. The suggested approach involves extending the pose object representation
to include keypoint-wise confidences that can be learned using a binary cross-entropy loss
and the ground-truth keypoint visibility flags provided with the human pose estimation
dataset. Not only will this solution help with predicting partial poses, but it may also
increase the AP by using more authentic pose detection scoring (see Section 4.3.3 for details
on the influence of pose detection scoring on AP). The main challenge with this modification
is that another loss component would need to be added to the multi-task loss defined in
Section 4.2.2 and it would have to be balanced against the existing loss components. In
terms of the network architecture, the number of output channels No would increase by
K, but this alteration would have a negligible effect on the computational complexity.

Jointly Learning Human Segmentation Masks

Multi-task learning, or joint learning, can improve generalization using the domain in-
formation contained in the training signals of related tasks as an inductive bias [269].
Its benefits have been demonstrated in recent computer vision applications employing
CNNs [270, 271, 272, 273], as well as countless other works. Instance segmentation an-
notations are readily available in the COCO dataset [60], so there is an opportunity to
jointly learn human segmentation masks in addition to human pose. The learning of hu-
man segmentation masks may provide an inductive bias that improves learning efficiency
and the prediction accuracy of human poses. To jointly learn human segmentation masks
using KAPAO, the human pose object could be extended to include an additional set of

89

keypoints corresponding to the edges of the person segmentation. This approach for repre-
senting segmentation masks was adopted in Point-Set Anchors [165]; however, multi-task
learning was not exploited. The architectural modifications required for the implementa-
tion would have a negligible effect on the computational complexity. Similar to learning
keypoint-wise confidences for pose objects, another loss component would need to be added
to the overall multi-task loss and it would have to be balanced against the existing loss
components. An appropriate initial guess for the segmentation loss weight is the same
value as used for the weight of the pose object keypoint loss.

Pose-based Non-maximum Suppression

In cases where people appear in severe overlap (e.g., two people hugging, one person
standing behind another), their predicted pose object bounding boxes would be overlapping
as well. In the current implementation of KAPAO, if the amount of overlap falls above
the NMS threshold τbp, the pose object bounding box with the highest confidence is kept
while the other is discarded. On the surface, this functionality appears to be a flaw rather
than a feature. However, NMS is required to handle duplicate detections that occur due to
the redundancy measures built into KAPAO’s architecture (see Section 4.2.1 for details).
An opportunity is presented to improve the NMS algorithm using pose object keypoint
information. For example, when the bounding boxes of two people are severely overlapping,
it is likely that their poses will still be unique, and that information should be exploited to
determine whether the pose objects represent unique people or duplicate detections. Just
as OKS is used as a substitute similarity measure for IoU in the computation of AP, OKS
could also serve as a similarity measure between pose predictions in an advanced pose-based
NMS algorithm. Similar techniques have been exploited in previous studies [44, 159, 48, 56].

Keypoint Object Fusion using Self-Attention

The experiments provided in Section 4.3.5 empirically demonstrated that keypoint objects
are better suited for detecting keypoints with distinct local features (e.g., eyes, ears, etc.).
The keypoint object fusion method defined in Algorithm 2 is based on the simple idea
of matching keypoint objects to the nearest pose object keypoint of the same class. The
nearest pose object keypoint is overwritten by the keypoint object center if its proximity
falls within τfd pixels. While this distance-based matching algorithm proved to be reliable
for increasing the accuracy of the predicted human poses (see improvements reported in
Table 4.5), there is much room for improvement. The proposed algorithm can fail when
pose object keypoints are inaccurate, or when keypoints from multiple pose objects exist

90

in close proximity to one another. More complex matching algorithms should be consid-
ered for future iterations. Specifically, a deep learning-based approach could be used to
machine-learn the correct matching directly from the data. The self-attention layers used
in Transformers [34] model relations between entities in a global context. Hence, self-
attention represents a strong candidate for modeling the relations between keypoint and
pose object detections. Moreover, there is a precedence for using self-attention in single-
stage human pose estimation. CenterGroup [173] used multi-attention heads to associate
keypoints with pose centers in a heatmap-based approach. While the attention-based
grouping module provided significant accuracy improvements, it was slower than the CNN
used to produce the heatmaps themselves. An opportunity presents itself to develop an
efficient attention-based grouping module within the heatmap-free single-stage paradigm.

Two-stage Recurrent Inference using Shared Weights

It is well-documented that two-stage human pose estimation methods are more accurate
than single-stage methods. In accuracy-critical scenarios or scenarios where computational
cost is less critical (e.g., offline processing on high-powered multi-GPU workstations), two-
stage methods reign supreme. Because KAPAO additionally detects person bounding boxes
by virtue of pose objects, a unique opportunity presents itself: KAPAO could be configured
to run in two-stage mode using recurrent inference and shared weights. In essence, a first
pass would be used to obtain the person bounding boxes. The detected bounding boxes
would then be cropped from the original image, resized, and fed to KAPAO a second
time to predict the final poses. KAPAO could potentially be configured to run this way
without further training, providing a distinct advantage over traditional two-stage methods
(i.e., only one model needs to be trained instead of two). Additionally, the use of recurrent
inference reduces model storage requirements because the weights are shared by each stage.
Initial exploration into this idea is provided in the source code.

91

References

[1] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based
human motion capture and analysis,” Computer Vision and Image Understanding,
vol. 104, no. 2-3, pp. 90–126, 2006.

[2] Z. Wu, Y. Li, and R. J. Radke, “Viewpoint invariant human re-identification in cam-
era networks using pose priors and subject-discriminative features,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 5, pp. 1095–1108,
2014.

[3] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human ac-
tion recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 1, pp. 221–231, 2013.

[4] K. Pullen and C. Bregler, “Motion capture assisted animation: Texturing and syn-
thesis,” in PACMCGIT, 2002.

[5] M.-Y. Wu, P.-W. Ting, Y.-H. Tang, E.-T. Chou, and L.-C. Fu, “Hand pose estimation
in object-interaction based on deep learning for virtual reality applications,” Journal
of Visual Communication and Image Representation, vol. 70, p. 102802, 2020.

[6] C. Bregler, “Motion capture technology for entertainment [in the spotlight],” IEEE
Signal Processing Magazine, vol. 24, no. 6, pp. 160–158, 2007.

[7] A. Pfister, A. M. West, S. Bronner, and J. A. Noah, “Comparative abilities of mi-
crosoft kinect and vicon 3d motion capture for gait analysis,” Journal of Medical
Engineering & Technology, vol. 38, no. 5, pp. 274–280, 2014.

[8] Y. Chu, T. C. Sell, and S. M. Lephart, “The relationship between biomechanical
variables and driving performance during the golf swing,” Journal of Sports Sciences,
vol. 28, no. 11, pp. 1251–1259, 2010.

92

[9] M. Fani, H. Neher, D. A. Clausi, A. Wong, and J. S. Zelek, “Hockey action recognition
via integrated stacked hourglass network.,” in CVPRW, 2017.

[10] Z. Cai, H. Neher, K. Vats, D. A. Clausi, and J. Zelek, “Temporal hockey action
recognition via pose and optical flows,” in CVPRW, 2019.

[11] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing of humanoid
robots for imitating human motion capture data,” in IROS, 2009.

[12] M. W. Mehrez, K. Worthmann, J. P. Cenerini, M. Osman, W. W. Melek, and S. Jeon,
“Model predictive control without terminal constraints or costs for holonomic mobile
robots,” Robotics and Autonomous Systems, vol. 127, p. 103468, 2020.

[13] S. Kim and M. A. Nussbaum, “Performance evaluation of a wearable inertial motion
capture system for capturing physical exposures during manual material handling
tasks,” Ergonomics, vol. 56, no. 2, pp. 314–326, 2013.

[14] CNET, “Behind the scenes at an NBA 2K17 motion capture session.” https://www.

youtube.com/watch?v=yyGgKcRbQIU. Accessed September 2019.

[15] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005.

[16] D. G. Lowe, “Object recognition from local scale-invariant features,” in CVPR, 1999.

[17] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient matching of pictorial struc-
tures,” in CVPR, 2000.

[18] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recogni-
tion,” International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79, 2005.

[19] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Poselet conditioned pictorial
structures,” in CVPR, 2013.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[21] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time
series,” The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10, 1995.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in NeurIPS, 2012.

93

https://www.youtube.com/watch?v=yyGgKcRbQIU
https://www.youtube.com/watch?v=yyGgKcRbQIU

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in CVPR, 2009.

[24] R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital image processing,” 2009.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error propagation,” tech. rep., California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[28] J. Schmidhuber, U. Meier, and D. Ciresan, “Multi-column deep neural networks for
image classification,” in CVPR, 2012.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in ICCV, 2015.

[30] C. Lu and X. Tang, “Surpassing human-level face verification performance on lfw
with gaussianface,” in AAAI, 2015.

[31] X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang, C. Zhang,
and J. Sun, “Alignedreid: Surpassing human-level performance in person re-
identification,” arXiv preprint arXiv:1711.08184, 2017.

[32] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,” Nature,
vol. 542, no. 7639, pp. 115–118, 2017.

[33] A. Buetti-Dinh, V. Galli, S. Bellenberg, O. Ilie, M. Herold, S. Christel, M. Boretska,
I. V. Pivkin, P. Wilmes, W. Sand, et al., “Deep neural networks outperform hu-
man expert’s capacity in characterizing bioleaching bacterial biofilm composition,”
Biotechnology Reports, vol. 22, 2019.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

94

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16
words: Transformers for image recognition at scale,” in ICLR, 2021.

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin trans-
former: Hierarchical vision transformer using shifted windows,” ICCV, 2021.

[37] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for
the 2020s,” arXiv preprint arXiv:2201.03545, 2022.

[38] C. Zheng, W. Wu, T. Yang, S. Zhu, C. Chen, R. Liu, J. Shen, N. Kehtarnavaz, and
M. Shah, “Deep learning-based human pose estimation: A survey,” arXiv preprint
arXiv:2012.13392, 2020.

[39] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation:
New benchmark and state of the art analysis,” in CVPR, 2014.

[40] A. Toshev and C. Szegedy, “DeepPose: Human pose estimation via deep neural
networks,” in CVPR, 2014.

[41] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolutional
network and a graphical model for human pose estimation,” in NeurIPS, 2014.

[42] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-
chines,” in CVPR, 2016.

[43] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” in ECCV, 2016.

[44] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “RMPE: Regional multi-person pose
estimation,” in ICCV, 2017.

[45] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” in CVPR, 2017.

[46] A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learning for
joint detection and grouping,” in NeurIPS, 2017.

[47] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in ICCV, 2017.

[48] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and K. Murphy, “Per-
sonlab: Person pose estimation and instance segmentation with a bottom-up, part-
based, geometric embedding model,” in ECCV, 2018.

95

[49] M. Kocabas, S. Karagoz, and E. Akbas, “MultiPoseNet: Fast multi-person pose
estimation using pose residual network,” in ECCV, 2018.

[50] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid
network for multi-person pose estimation,” in CVPR, 2018.

[51] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and
tracking,” in ECCV, 2018.

[52] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning
for human pose estimation,” in CVPR, 2019.

[53] W. Li, Z. Wang, B. Yin, Q. Peng, Y. Du, T. Xiao, G. Yu, H. Lu, Y. Wei, and J. Sun,
“Rethinking on multi-stage networks for human pose estimation,” arXiv preprint
arXiv:1901.00148, 2019.

[54] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang, “HigherHR-
Net: Scale-aware representation learning for bottom-up human pose estimation,”
in CVPR, 2020.

[55] F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, “Distribution-aware coordinate rep-
resentation for human pose estimation,” in CVPR, 2020.

[56] Z. Geng, K. Sun, B. Xiao, Z. Zhang, and J. Wang, “Bottom-up human pose estima-
tion via disentangled keypoint regression,” in CVPR, 2021.

[57] W. McNally, K. Vats, A. Wong, and J. McPhee, “EvoPose2D: Pushing the boundaries
of 2d human pose estimation using accelerated neuroevolution with weight transfer,”
IEEE Access, 2021.

[58] W. McNally, K. Vats, A. Wong, and J. McPhee, “Rethinking keypoint representa-
tions: Modeling keypoints and poses as objects for multi-person human pose estima-
tion,” arXiv preprint arXiv:2111.08557, 2021.

[59] R. Khirodkar, V. Chari, A. Agrawal, and A. Tyagi, “Multi-hypothesis pose networks:
Rethinking top-down pose estimation,” in ICCV, 2021.

[60] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in ECCV, 2014.

96

[61] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,
pp. 1325–1339, 2013.

[62] L. Sigal, A. O. Balan, and M. J. Black, “Humaneva: Synchronized video and motion
capture dataset and baseline algorithm for evaluation of articulated human motion,”
International Journal of Computer Vision, vol. 87, no. 1-2, p. 4, 2010.

[63] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and C. Theobalt,
“Monocular 3d human pose estimation in the wild using improved CNN supervision,”
in 3DV.

[64] S. Li and A. B. Chan, “3d human pose estimation from monocular images with deep
convolutional neural network,” in ACCV, 2014.

[65] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis, “Sparseness meets
deepness: 3d human pose estimation from monocular video,” in CVPR, 2016.

[66] S. Park, J. Hwang, and N. Kwak, “3d human pose estimation using convolutional
neural networks with 2d pose information,” in ECCV, 2016.

[67] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline
for 3d human pose estimation,” in ICCV, 2017.

[68] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-fine volumetric
prediction for single-image 3d human pose,” in CVPR, 2017.

[69] B. Tekin, P. Márquez-Neila, M. Salzmann, and P. Fua, “Learning to fuse 2d and 3d
image cues for monocular body pose estimation,” in ICCV, 2017.

[70] C.-H. Chen and D. Ramanan, “3d human pose estimation = 2d pose estimation +
matching,” in CVPR, 2017.

[71] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel, W. Xu,
D. Casas, and C. Theobalt, “Vnect: Real-time 3d human pose estimation with a
single RGB camera,” ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–14, 2017.

[72] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, “Towards 3d human pose estimation
in the wild: a weakly-supervised approach,” in ICCV, 2017.

97

[73] M. R. I. Hossain and J. J. Little, “Exploiting temporal information for 3d human
pose estimation,” in ECCV, 2018.

[74] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang, “3d human pose
estimation in the wild by adversarial learning,” in CVPR, 2018.

[75] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3d human pose estimation
in video with temporal convolutions and semi-supervised training,” in CVPR, 2019.

[76] H. Qiu, C. Wang, J. Wang, N. Wang, and W. Zeng, “Cross view fusion for 3d human
pose estimation,” in ICCV, 2019.

[77] Y. Cheng, B. Yang, B. Wang, and R. T. Tan, “3d human pose estimation using
spatio-temporal networks with explicit occlusion training,” in AAAI, 2020.

[78] R. Liu, J. Shen, H. Wang, C. Chen, S.-c. Cheung, and V. Asari, “Attention mech-
anism exploits temporal contexts: Real-time 3d human pose reconstruction,” in
CVPR, 2020.

[79] Y. He, R. Yan, K. Fragkiadaki, and S.-I. Yu, “Epipolar transformers,” in CVPR,
2020.

[80] F. Huang, A. Zeng, M. Liu, Q. Lai, and Q. Xu, “DeepFuse: An IMU-aware network
for real-time 3d human pose estimation from multi-view image,” in WACV, 2020.

[81] A. Llopart, “Liftformer: 3d human pose estimation using attention models,” arXiv
preprint arXiv:2009.00348, 2020.

[82] W. Li, H. Liu, R. Ding, M. Liu, P. Wang, and W. Yang, “Exploiting temporal
contexts with strided transformer for 3d human pose estimation,” arXiv preprint
arXiv:2103.14304, 2021.

[83] C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and Z. Ding, “3d human pose es-
timation with spatial and temporal transformers,” arXiv preprint arXiv:2103.10455,
2021.

[84] K. Gong, J. Zhang, and J. Feng, “Poseaug: A differentiable pose augmentation
framework for 3d human pose estimation,” in CVPR, 2021.

[85] A. Bouazizi, U. Kressel, and V. Belagiannis, “Learning temporal 3d human pose
estimation with pseudo-labels,” in AVSS, 2021.

98

[86] N. D. Reddy, L. Guigues, L. Pishchulin, J. Eledath, and S. G. Narasimhan, “Tesse-
track: End-to-end learnable multi-person articulated 3d pose tracking,” in CVPR,
2021.

[87] K. Lee, I. Lee, and S. Lee, “Propagating LSTM: 3d pose estimation based on joint
interdependency,” in ECCV, 2018.

[88] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2 ed., 2004.

[89] K. Iskakov, E. Burkov, V. Lempitsky, and Y. Malkov, “Learnable triangulation of
human pose,” in ICCV, 2019.

[90] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on Neural Networks,
vol. 4, no. 5, pp. 740–747, 1993.

[91] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:
Towards lossless cnns with low-precision weights,” in ICLR, 2017.

[92] J. Van Leeuwen, “On the construction of huffman trees,” in ICALP, 1976.

[93] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[94] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” in ICML, 2016.

[95] M. Wistuba, “Deep learning architecture search by neuro-cell-based evolution with
function-preserving mutations,” in ECML PKDD, 2018.

[96] W. McNally, P. Walters, K. Vats, A. Wong, and J. McPhee, “DeepDarts: Modeling
keypoints as objects for automatic scorekeeping in darts using a single camera,” in
CVPRW, 2021.

[97] Y. Li, S. Yang, S. Zhang, Z. Wang, W. Yang, S.-T. Xia, and E. Zhou, “Is 2d
heatmap representation even necessary for human pose estimation?,” arXiv preprint
arXiv:2107.03332, 2021.

[98] S. Johnson and M. Everingham, “Clustered pose and nonlinear appearance models
for human pose estimation.,” in BMVC, 2010.

99

[99] B. Sapp and B. Taskar, “Modec: Multimodal decomposable models for human pose
estimation,” in CVPR, 2013.

[100] S. Johnson and M. Everingham, “Learning effective human pose estimation from
inaccurate annotation,” in CVPR, 2011.

[101] M. Andriluka, U. Iqbal, E. Insafutdinov, L. Pishchulin, A. Milan, J. Gall, and
B. Schiele, “Posetrack: A benchmark for human pose estimation and tracking,” in
CVPR, 2018.

[102] J. Wu, H. Zheng, B. Zhao, Y. Li, B. Yan, R. Liang, W. Wang, S. Zhou, G. Lin, Y. Fu,
et al., “Ai challenger: A large-scale dataset for going deeper in image understanding,”
arXiv preprint arXiv:1711.06475, 2017.

[103] J. Li, C. Wang, H. Zhu, Y. Mao, H.-S. Fang, and C. Lu, “Crowdpose: Efficient
crowded scenes pose estimation and a new benchmark,” in CVPR, 2019.

[104] S. Jin, L. Xu, J. Xu, C. Wang, W. Liu, C. Qian, W. Ouyang, and P. Luo, “Whole-
body human pose estimation in the wild,” in ECCV, 2020.

[105] R. Padilla, W. L. Passos, T. L. Dias, S. L. Netto, and E. A. da Silva, “A compar-
ative analysis of object detection metrics with a companion open-source toolkit,”
Electronics, vol. 10, no. 3, p. 279, 2021.

[106] M. R. Ronchi and P. Perona, “Benchmarking and error diagnosis in multi-instance
pose estimation,” in ICCV, 2017.

[107] P. Li, H. Zhao, P. Liu, and F. Cao, “RTM3d: Real-time monocular 3d detection from
object keypoints for autonomous driving,” in ECCV, 2020.

[108] U. Iqbal, P. Molchanov, T. Breuel Juergen Gall, and J. Kautz, “Hand pose estimation
via latent 2.5 d heatmap regression,” in ECCV, 2018.

[109] W. Huang, P. Ren, J. Wang, Q. Qi, and H. Sun, “Awr: Adaptive weighting regression
for 3d hand pose estimation,” in AAAI, 2020.

[110] W. McNally, A. Wong, and J. McPhee, “Action recognition using deep convolu-
tional neural networks and compressed spatio-temporal pose encodings,” Journal of
Computational Vision and Imaging Systems, vol. 4, no. 1, pp. 3–3, 2018.

[111] W. McNally, A. Wong, and J. McPhee, “STAR-Net: Action recognition using spatio-
temporal activation reprojection,” in CRV, 2019.

100

[112] K. Gavrilyuk, R. Sanford, M. Javan, and C. G. Snoek, “Actor-transformers for group
activity recognition,” in CVPR, 2020.

[113] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv preprint
arXiv:1904.07850, 2019.

[114] Y. Raaj, H. Idrees, G. Hidalgo, and Y. Sheikh, “Efficient online multi-person 2d pose
tracking with recurrent spatio-temporal affinity fields,” in CVPR, 2019.

[115] X. Dong, Y. Yan, W. Ouyang, and Y. Yang, “Style aggregated network for facial
landmark detection,” in CVPR, 2018.

[116] X. Wang, L. Bo, and L. Fuxin, “Adaptive wing loss for robust face alignment via
heatmap regression,” in ICCV, 2019.

[117] Z. Xu, B. Li, Y. Yuan, and M. Geng, “AnchorFace: An anchor-based facial landmark
detector across large poses,” in AAAI, 2021.

[118] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi, “Discovery of latent 3d
keypoints via end-to-end geometric reasoning,” in NeurIPS, 2018.

[119] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning of object
landmarks through conditional image generation,” in NeurIPS, 2018.

[120] R. Voeikov, N. Falaleev, and R. Baikulov, “Ttnet: Real-time temporal and spatial
video analysis of table tennis,” in CVPRW, 2020.

[121] G. Chéron, I. Laptev, and C. Schmid, “P-CNN: Pose-based cnn features for action
recognition,” in ICCV, 2015.

[122] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. Andres, and
B. Schiele, “ArtTrack: Articulated multi-person tracking in the wild,” in CVPR,
2017.

[123] M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial
structures,” IEEE Transactions on Computers, no. 1, pp. 67–92, 1973.

[124] G. Hinton, “Using relaxation to find a puppet,” in Proceedings of the 2nd Summer
Conference on Artificial Intelligence and Simulation of Behaviour, pp. 148–157, 1976.

[125] S. Ioffe and D. Forsyth, “Human tracking with mixtures of trees,” in ICCV, 2001.

101

[126] R. Ronfard, C. Schmid, and B. Triggs, “Learning to parse pictures of people,” in
ECCV, 2002.

[127] D. Ramanan, “Learning to parse images of articulated bodies,” in NeurIPS, 2006.

[128] D. Ramanan and C. Sminchisescu, “Training deformable models for localization,” in
CVPR, 2006.

[129] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive search space reduction
for human pose estimation,” in CVPR, 2008.

[130] M. Eichner, V. Ferrari, and S. Zurich, “Better appearance models for pictorial struc-
tures.,” in BMVC, 2009.

[131] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People detec-
tion and articulated pose estimation,” in CVPR, 2009.

[132] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-of-
parts,” in CVPR, 2011.

[133] Y. Wang, D. Tran, and Z. Liao, “Learning hierarchical poselets for human parsing,”
in CVPR, 2011.

[134] K. Duan, D. Batra, and D. J. Crandall, “A multi-layer composite model for human
pose estimation.,” in BMVC, 2012.

[135] L. Pishchulin, A. Jain, M. Andriluka, T. Thormählen, and B. Schiele, “Articulated
people detection and pose estimation: Reshaping the future,” in CVPR, 2012.

[136] Y. Tian, C. L. Zitnick, and S. G. Narasimhan, “Exploring the spatial hierarchy of
mixture models for human pose estimation,” in ECCV, 2012.

[137] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[138] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning
and an application to boosting,” Journal of Computer and System Sciences, vol. 55,
no. 1, pp. 119–139, 1997.

[139] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using 3d human
pose annotations,” in ICCV, 2009.

102

[140] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters for rotation
equivariant cnns,” in CVPR, 2018.

[141] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in CVPR, 2015.

[142] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik, “Human pose estimation with
iterative error feedback,” in CVPR, 2016.

[143] P. Hu and D. Ramanan, “Bottom-up and top-down reasoning with hierarchical rec-
tified gaussians,” in CVPR, 2016.

[144] U. Rafi, B. Leibe, J. Gall, and I. Kostrikov, “An efficient convolutional network for
human pose estimation.,” in BMVC, 2016.

[145] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolutional part
heatmap regression,” in ECCV, 2016.

[146] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using convolutional networks,” in CVPR, 2015.

[147] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in MICCAI, 2015.

[148] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and X. Wang, “Multi-context
attention for human pose estimation,” in CVPR, 2017.

[149] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning feature pyramids for
human pose estimation,” in ICCV, 2017.

[150] G. Ning, Z. Zhang, and Z. He, “Knowledge-guided deep fractal neural networks for
human pose estimation,” IEEE Transactions on Multimedia, vol. 20, no. 5, pp. 1246–
1259, 2017.

[151] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial posenet: A structure-
aware convolutional network for human pose estimation,” in ICCV, 2017.

[152] C.-J. Chou, J.-T. Chien, and H.-T. Chen, “Self adversarial training for human pose
estimation,” in APSIPA ASC, 2018.

[153] L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware network for
human pose estimation,” in ECCV, 2018.

103

[154] Z. Tang, X. Peng, S. Geng, L. Wu, S. Zhang, and D. Metaxas, “Quantized densely
connected u-nets for efficient landmark localization,” in ECCV, 2018.

[155] S. Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: Composite fields for human pose esti-
mation,” in CVPR, 2019.

[156] X. Nie, J. Feng, J. Zhang, and S. Yan, “Single-stage multi-person pose machines,”
in ICCV, 2019.

[157] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” 2015.

[158] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[159] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and
K. Murphy, “Towards accurate multi-person pose estimation in the wild,” in CVPR,
2017.

[160] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in CVPR, 2017.

[161] S.-H. Zhang, R. Li, X. Dong, P. Rosin, Z. Cai, X. Han, D. Yang, H. Huang, and
S.-M. Hu, “Pose2seg: Detection free human instance segmentation,” in CVPR, 2019.

[162] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler,
and B. Schiele, “DeepCut: Joint subset partition and labeling for multi person pose
estimation,” in CVPR, 2016.

[163] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, “DeeperCut:
A deeper, stronger, and faster multi-person pose estimation model,” in ECCV, 2016.

[164] U. Iqbal and J. Gall, “Multi-person pose estimation with local joint-to-person asso-
ciations,” in ECCV, 2016.

[165] F. Wei, X. Sun, H. Li, J. Wang, and S. Lin, “Point-set anchors for object detection,
instance segmentation and pose estimation,” in ECCV, 2020.

[166] W. Mao, Z. Tian, X. Wang, and C. Shen, “Fcpose: Fully convolutional multi-person
pose estimation with dynamic instance-aware convolutions,” in CVPR, 2021.

104

[167] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, “Correlation clustering in
general weighted graphs,” Theoretical Computer Science, vol. 361, no. 2-3, pp. 172–
187, 2006.

[168] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: real-
time multi-person 2d pose estimation using part affinity fields,” arXiv preprint
arXiv:1812.08008, 2018.

[169] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[170] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning
for computer vision?,” in NeurIPS, 2017.

[171] S. Jin, W. Liu, E. Xie, W. Wang, C. Qian, W. Ouyang, and P. Luo, “Differentiable
hierarchical graph grouping for multi-person pose estimation,” in ECCV, 2020.

[172] Z. Luo, Z. Wang, Y. Huang, L. Wang, T. Tan, and E. Zhou, “Rethinking the heatmap
regression for bottom-up human pose estimation,” in CVPR, 2021.

[173] G. Brasó, N. Kister, and L. Leal-Taixé, “The center of attention: Center-keypoint
grouping via attention for multi-person pose estimation,” in ICCV, 2021.

[174] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in ICCV, 2017.

[175] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object
detection,” in ICCV, 2019.

[176] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,”
NeurIPS, 2016.

[177] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,” in ECCV,
2018.

[178] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet: Keypoint
triplets for object detection,” in ICCV, 2019.

[179] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in CVPR, 2001.

105

[180] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object
detection,” in ICIP, 2002.

[181] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[182] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in CVPR, 2018.

[183] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in CVPR, 2018.

[184] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detec-
tion,” in CVPR, 2020.

[185] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “NAS-FPN: Learning scalable feature pyramid
architecture for object detection,” in CVPR, 2019.

[186] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accu-
racy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[187] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in CVPR, 2014.

[188] R. Girshick, “Fast R-CNN,” in ICCV, 2015.

[189] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based fully
convolutional networks,” NeurIPS, 2016.

[190] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality object de-
tection,” in CVPR, 2018.

[191] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra R-CNN: Towards
balanced learning for object detection,” in CVPR, 2019.

[192] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 154–171, 2013.

[193] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International Journal of Computer Vi-
sion, vol. 88, pp. 303–338, June 2010.

106

[194] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-
tional networks for visual recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[195] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” in CVPR, 2006.

[196] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in CVPR, 2016.

[197] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in CVPR, 2017.

[198] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4: Scaling cross
stage partial network,” arXiv preprint arXiv:2011.08036, 2020.

[199] G. J. et. al., “ultralytics/yolov5: v5.0,” Apr. 2021.

[200] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in ECCV, 2016.

[201] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation
for neural network pruning,” in CVPR, 2019.

[202] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
CVPR, 2017.

[203] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-
bile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[204] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

[205] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer,
“Squeezenext: Hardware-aware neural network design,” in CVPRW, 2018.

[206] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices,” in CVPR, 2018.

[207] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for
efficient cnn architecture design,” in ECCV, 2018.

107

[208] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in
ICLR, 2017.

[209] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network architectures
using reinforcement learning,” in ICLR, 2017.

[210] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,”
arXiv preprint arXiv:1808.05377, 2018.

[211] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architecture search,”
arXiv preprint arXiv:1905.01392, 2019.

[212] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in CVPR, 2019.

[213] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in CVPR, 2018.

[214] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Master’s
thesis, University of Toronto, 2009.

[215] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” in ICML, 2017.

[216] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in AAAI, 2019.

[217] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of imagenet
as an alternative to the cifar datasets,” arXiv preprint arXiv:1707.08819, 2017.

[218] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming approach to
designing convolutional neural network architectures,” in GECCO, 2017.

[219] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning curves,”
in IJCAI, 2015.

[220] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural architecture search
using performance prediction,” arXiv preprint arXiv:1705.10823, 2017.

[221] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” in ECCV, 2018.

108

[222] M. Wistuba and T. Pedapati, “Inductive transfer for neural architecture optimiza-
tion,” arXiv preprint arXiv:1903.03536, 2019.

[223] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in ICML, 2019.

[224] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[225] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise neural
network architecture generation,” in CVPR, 2018.

[226] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture
search via parameter sharing,” in PLMR, 2018.

[227] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–
611, 2006.

[228] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” in
ICLR, 2019.

[229] L. Xie and A. Yuille, “Genetic CNN,” in ICCV, 2017.

[230] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture search for
convolutional neural networks,” arXiv preprint arXiv:1711.04528, 2017.

[231] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural architecture
search via lamarckian evolution,” in ICLR, 2019.

[232] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the search
phase of neural architecture search,” in ICLR, 2020.

[233] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, “NAS-Bench-
101: Towards reproducible neural architecture search,” in ICML, 2019.

[234] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in
ICML, 2015.

[235] J. Li, S. Bian, A. Zeng, C. Wang, B. Pang, W. Liu, and C. Lu, “Human pose
regression with residual log-likelihood estimation,” in ICCV, 2021.

109

[236] K. Li, S. Wang, X. Zhang, Y. Xu, W. Xu, and Z. Tu, “Pose recognition with cascade
transformers,” in CVPR, 2021.

[237] H. Zhang, L. Wang, S. Jun, N. Imamura, Y. Fujii, and H. Kobashi, “CPNAS: Cas-
caded pyramid network via neural architecture search for multi-person pose estima-
tion,” in CVPRW, 2020.

[238] W. Zhang, J. Fang, X. Wang, and W. Liu, “Efficientpose: Efficient human pose
estimation with neural architecture search,” Computational Visual Media, vol. 7,
no. 3, pp. 335–347, 2021.

[239] S. Yang, W. Yang, and Z. Cui, “Pose neural fabrics search,” arXiv preprint
arXiv:1909.07068, 2019.

[240] X. Gong, W. Chen, Y. Jiang, Y. Yuan, X. Liu, Q. Zhang, Y. Li, and Z. Wang,
“AutoPose: Searching multi-scale branch aggregation for pose estimation,” arXiv
preprint arXiv:2008.07018, 2020.

[241] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei, “Auto-
DeepLab: Hierarchical neural architecture search for semantic image segmentation,”
in CVPR, 2019.

[242] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks
through neuroevolution,” Nature Machine Intelligence, vol. 1, no. 1, pp. 24–35, 2019.

[243] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and
J. Shlens, “Searching for efficient multi-scale architectures for dense image predic-
tion,” in NeurIPS, 2018.

[244] V. Nekrasov, H. Chen, C. Shen, and I. Reid, “Fast neural architecture search of
compact semantic segmentation models via auxiliary cells,” in CVPR, 2019.

[245] Z. Zhu, C. Liu, D. Yang, A. Yuille, and D. Xu, “V-NAS: Neural architecture search
for volumetric medical image segmentation,” in 3DV, 2019.

[246] B. Yan, H. Peng, K. Wu, D. Wang, J. Fu, and H. Lu, “LightTrack: Finding
lightweight neural networks for object tracking via one-shot architecture search,”
in CVPR, 2021.

[247] Y. Bin, X. Cao, X. Chen, Y. Ge, Y. Tai, C. Wang, J. Li, F. Huang, C. Gao, and
N. Sang, “Adversarial semantic data augmentation for human pose estimation,” in
ECCV, 2020.

110

[248] G. Moon, J. Y. Chang, and K. M. Lee, “Posefix: Model-agnostic general human pose
refinement network,” in CVPR, 2019.

[249] J. Huang, Z. Zhu, F. Guo, and G. Huang, “The devil is in the details: Delving into
unbiased data processing for human pose estimation,” in CVPR, 2020.

[250] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[251] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in CVPR, 2018.

[252] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: closing the
generalization gap in large batch training of neural networks,” in NeurIPS, 2017.

[253] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On
large-batch training for deep learning: Generalization gap and sharp minima,” in
ICLR, 2017.

[254] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,”
arXiv preprint arXiv:1706.02677, 2017.

[255] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm
restarts,” in ICLR, 2017.

[256] Y. Ci, C. Lin, M. Sun, B. Chen, H. Zhang, and W. Ouyang, “Evolving search space
for neural architecture search,” in ICCV, 2021.

[257] N. Wang, S. XIANG, C. Pan, et al., “You only search once: Single shot neural
architecture search via direct sparse optimization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[258] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu, K. Chen,
et al., “Fbnetv2: Differentiable neural architecture search for spatial and channel
dimensions,” in CVPR, 2020.

[259] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[260] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “RepVGG: Making VGG-
style convnets great again,” in CVPR, 2021.

111

[261] B. Laschowski, W. McNally, A. Wong, and J. McPhee, “Environment classification
for robotic leg prostheses and exoskeletons using deep convolutional neural networks,”
Frontiers in Neurorobotics, vol. 15, p. 730965, 2022.

[262] S. Jeon, D. Min, S. Kim, and K. Sohn, “Joint learning of semantic alignment and
object landmark detection,” in ICCV, 2019.

[263] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh,
“Cspnet: A new backbone that can enhance learning capability of cnn,” in CVPR,
2020.

[264] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU loss: Faster
and better learning for bounding box regression,” in AAAI, 2020.

[265] Y. Nesterov, “A method for solving the convex programming problem with con-
vergence rate o(1/k2),” Proceedings of the USSR Academy of Sciences, vol. 269,
pp. 543–547, 1983.

[266] F. Malawski and B. Kwolek, “Classification of basic footwork in fencing using ac-
celerometer,” in Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), 2016.

[267] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in CVPR, 2017.

[268] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https:

//github.com/facebookresearch/detectron2, 2019.

[269] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp. 41–75, 1997.

[270] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for multi-
task learning,” in CVPR, 2016.

[271] I. Kokkinos, “Ubernet: Training a universal convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory,” in CVPR,
2017.

[272] D. C. Luvizon, D. Picard, and H. Tabia, “2d/3d pose estimation and action recog-
nition using multitask deep learning,” in CVPR, 2018.

112

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[273] T. D. Le, D. T. Huynh, and H. V. Pham, “Efficient human-robot interaction using
deep learning with Mask R-CNN: detection, recognition, tracking and segmentation,”
in ICARCV, 2018.

[274] S. Yang, Z. Quan, M. Nie, and W. Yang, “Transpose: Keypoint localization via
transformer,” in ICCV, 2021.

[275] M. Dantone, J. Gall, C. Leistner, and L. Van Gool, “Human pose estimation using
body parts dependent joint regressors,” in CVPR, 2013.

113

	List of Figures
	List of Tables
	Introduction
	Limitations of Marker-based Motion Capture
	Human Pose Estimation: Markerless Motion Capture using RGB Video and Deep Learning
	Research Overview
	Thesis Outline

	Background
	Datasets
	Microsoft COCO
	CrowdPose
	PoseTrack

	Related Work
	Human Pose Estimation
	Object Detection
	Neural Architecture Search

	Discussion

	EvoPose2D: A Two-Stage Human Pose Estimation Network Designed using Neuroevolution Accelerated with Weight Transfer
	Introduction
	Neuroevolution Acceleration via Weight Transfer
	Neuroevolution Design
	Search Space
	Fitness
	Evolutionary Strategy
	Large-batch Training
	Compound Scaling

	Experiments
	Large-batch Training of Human Pose Networks on TPUs
	Neuroevolution Experiments
	Comparisons with the State of the Art

	Discussion

	KAPAO: Modeling Keypoints and Poses as Objects for Single-Stage Human Pose Estimation
	Introduction
	Keypoints and Poses as Objects
	Architectural Details
	Loss Function
	Inference
	Limitations

	Experiments
	Microsoft COCO Keypoints
	CrowdPose
	Error Analysis
	Qualitative Comparisons
	Ablation Studies
	Video Inference Demos

	Discussion

	Conclusion
	Summary of Contributions
	Future Work

	References

