Randomized quasi-Monte Carlo
methods with applications to
quantitative risk management

by

Frik Hintz

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Statistics

Waterloo, Ontario, Canada, 2022

©) Erik Hintz 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Shane G. Henderson
Professor, School of Operations Research & Information Eng.
Cornell University

Supervisors: Christiane Lemieux
Professor, Dept. of Stats. and Act. Sci.
University of Waterloo

Marius Hofert
Associate Professor, Dept. of Stats. and Act. Sci.
University of Waterloo

Internal Members: Adam Kolkiewicz
Associate Professor, Dept. of Stats. and Act. Sci.
University of Waterloo

Martin Lysy
Associate Professor, Dept. of Stats. and Act. Sci.
University of Waterloo

Internal-External Member: Yuying Li
Professor, School of Computer Science
University of Waterloo

11

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111

Abstract

We use randomized quasi-Monte Carlo (RQMC) techniques to construct computational
tools for working with normal mixture models, which include automatic integration routines
for density and distribution function evaluation, as well as fitting algorithms. We also
provide open source software with all our methods implemented.

In many practical problems, combining RQMC with importance sampling (IS) gives
further variance reduction. However, the optimal IS density is typically not known, nor
can it be sampled from. We solve this problem in the setting of single index models by
finding a near optimal location-scale transform of the original density that approximates
the optimal IS density for the univariate index.

Sampling from complicated multivariate models, such as generalized inverse Gaussian
mixtures, often involves sampling from a multivariate normal by inversion and from another
univariate distribution, say W, whose quantile function is not known nor easily approxi-
mated. We explore how we can still use RQMC in this setting and propose several methods
when sampling of W is only possible via a black box random variate generator. We also
study different ways to feed acceptance rejection (AR) algorithms for W with quasi-random
numbers.

RQMC methods on triangles have recently been developed by K. Basu and A. Owen. We
show that one of the proposed sequences has suboptimal projection properties and address
this issue by proposing to use their sequence to construct a stratified sampling scheme.
Furthermore, we provide an extensible lattice construction for triangles and perform a
simulation study.

v

Acknowledgements

First and foremost, I am deeply grateful to my doctoral supervisors, Dr. Christiane
Lemieux and Dr. Marius Hofert, who have supported me with their knowledge, insightful
comments, encouragement and endless patience in difficult times. I cannot imagine a better
supervision than the one Christiane and Marius have given me.

I would also like to thank Dr. Adam Kolkiewicz, Dr. Martin Lysy, Dr. Yuying Li and
Dr. Shane Henderson for agreeing to serve on the thesis committee and reading my thesis.

My career path would not have been possible without the support and encouragement
of my high school mathematics teacher, Winfried Schindele, who handed me my A-level
exam papers with the words: “This is your first step to success!”. I would also like to thank
Prof. Dr. Hajo Zwiesler and Prof. Dr. An Chen at the University of Ulm: It was Hajo
who convinced me to go to Canada for my graduate studies, and it was An who supervised
my Bachelor’s and Master’s theses and by doing so sparked my interest in research.

I would like to extend my gratitude to all my friends in Germany, Canada and elsewhere.
Without your warmth and support I would not have been able to make it through the many
difficult times in my PhD studies.

I am indebted to my partner Ashton, who constantly encouraged me to not give up
and supported me in any way he could - be it cooking food when I was working all night
or putting a smile on my face in my saddest moments.

Last but foremost, I am thanking my parents, Sirje and Fred, for their endless emotional
and financial support, their unconditional love and for helping me become the person I am
now, even though it meant moving across the ocean.

Dedication

Fiir meine Eltern,
Sirje und Fred.

For my parents,
Sirje and Fred.

vi

Table of Contents

List of Figures
List of Tables

List of Abbreviations

Introduction

Background
2.1 Monte Carlo and randomized quasi-Monte Carlo methods
2.2 Discrepancies and Koksma Hlawka inequality

2.3 The effective dimension and Sobol” indices

Multivariate normal variance mixtures and extensions

3.1 Normal variance mixture distribution function and density

3.2 Computing the distribution function
3.2.1 Reformulation of the integral
3.2.2 Variable reordering and RQMC estimation

3.3 Computing the (logarithmic) density

3.4 Fitting multivariate normal variance mixtures

3.5 Gamma-mixture models Lo

3.5.1 Distribution, density and quantile function of D2

vil

xiv

XV

13
15

3.5.2 Graphical goodness-of-fit assessment
3.6 Numerical examples L
3.6.1 Test distributionso o
3.6.2 Estimating the distribution function
3.6.3 Estimating the density function
3.6.4 Fitting normal variance mixture distributions
3.6.5 Application to financial data
3.7 Grouped normal variance mixtures
3.7.1 Estimating the distribution and density function
3.7.2 Sampling grouped normal variance mixtures
3.8 Fitting t and grouped t copulas oo L
3.8.1 Notations
3.8.2 Fitting the t copula: An EM-like algorithm
3.8.3 Fitting the grouped t copula

3.9 DiIscussSiono

Quasi-random sampling with black box or acceptance-rejection inputs
4.1 Methods for the black box setting
4.1.1 Methods based on the empirical quantile function
4.1.2 Methods based on a generalized Pareto approximation in the tail
4.2 Combining AR with RQMC
4.3 Application: Basket option pricing L.

4.4 DISCUSSION

Stratified single index importance sampling for rare event simulation
5.1 Variance analysis Lo
5.1.1 Optimal proposal densities under (S)SIS

5.1.2 SIS in multivariate normal models

viii

513 SISand RQMC . . . o oot 105

5.2 Calibration in practice L 105
5.2.1 Estimating the optimal transformation T 105

5.2.2 Finding the optimal density 0. 106

5.3 Numerical examples L 109
5.3.1 Linear Model Example 110

5.3.2 Tail probabilities of a Gaussian copula credit portfolio. 111

5.3.3 Tail probabilities of a t-copula credit portfolio 113

54 Concluding remarks L 115

6 RQMC on triangles 125
6.1 Background 126
6.2 Lattice constructions Lo oL 129
6.2.1 Triangular lattice construction of Basu and Owen 129

6.2.2 Extensible triangular lattice constructions 130

6.3 Triangular van der Corput sequence of Basu and Owen 132
6.4 Numerical experiments L oL 135

7 Conclusion 140
References 142

ix

List of Figures

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Integrand h for a 10-dimensional ¢ distribution with 2 degrees of freedom. .

Q-Q plot of the empirical quantiles D?(x;; p,) versus their theoretical
counterparts on ordinary scale (left) and log-log scale (right).

Average absolute errors of different estimators for Fix(x) as a function of n
for X ~ MVT,4(2,0,%), where for each n, 15 different settings for ¥ and «

are randomly chosen. Regression coefficients are in parentheses in the legends.

Average absolute errors of different estimators for Fx(x) as a function of n
for X ~ PNVM,(2,0,), where for each n, 15 different settings for ¥ and «

are randomly chosen. Regression coefficients are in parentheses in the legends.

Left: Variance of the integrand Var(g(U)) with and without variable re-
ordering. Right: Density plot of estimated variance ratios.

Estimated first order and total effect indices with and without reordering for
an inverse-gamma mixture in a setting with high variance reduction (top)
and increase in variance (bottom).o Lo

Run times based on three replications of 15 randomly chosen inputs b and
Y. in each dimension (left); run-time ratios relative to pStudent () (right). .

Estimated log-density of MVT,(v = 4,0, 1) (left) and PNVM,(a = 6,0, I,;)
(right) in d = 10 evaluated at n = 1000 points sampled from MVT,(v =
1,0, ;) (left) and PNVM(a = 2,0, 1) (right).

Estimates 7 computed by Algorithm 3.4.4 as a function of the number of
ECME iterations for multivariate ¢ distributions of different sample sizes
and dimensions. The symbols at the end of each curve denote the maximum
likelihood estimator of v as found by the ECME algorithm with analytical
weights and densities.

28

46

48

49

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2

4.3

4.4

Estimates 7 computed by Algorithm 3.4.4 as a function of the number of
ECME iterations for Pareto mixture distributions of different sample sizes
and dimensions. The symbols at the end of each curve denote the maximum
likelihood estimator of v as found by the ECME algorithm with analytical

weights and densities. oL o 56
Q-Q Plots of the empirical quantiles of the Mahalanobis distances D?(x;, f, f]),

1 =1,...,n, versus their theoretical quantiles for different models using a 5
stock portfolio with data from the SP500 data set. 57

Log-densities as functions of the Mahalanobis distance for four fitted normal
variance mixture models using a 15 stock REIT portfolio with data from the
SP500 data set from 2010-01-01 to 2012-12-31 after deGARCHing. 58

Estimated shortfall probabilities for different models for a 5 stock portfolio
with data from the SP500 data set (left); same probabilities standardized
by the normal case (right). 59

Estimated log-density of a grouped ¢ distribution with v = (3,6) in d =
2 (left) and v = (3,...,3,6,...,6) in d = 10 (right). Estimation with
dgnvmix () was carried out using a relative error tolerance of 0.01. The plot
also shows the log-density function of t4(3, 0, I;) and t4(6, 0, I;) for comparison. 65

Plot of the samples r.gnvm from a 5-dimensional grouped normal variance
MIXEUTe. e e e e e 67

Boxplots of absolute errors for the degrees-of-freedom (left) and correlation
parameter (middle) and of the run times (right) for a 7-dimensional ¢ copula. 71

Initial estimates (left) and MLEs (right) for the degrees-of-freedom param-
eters of a grouped t copula with 2 groups. 73

Estimated and realized absolute and relative errors when estimating the
quantile function of IG(1.2,1.2) using Algorithm 4.1.3 with ng = 7500, B = 20. 83

Mean squared errors as a function of n (left) and variances as a function of
d (right) when estimating ESgg5(L) for L = 17X where X ~ t4(1,0,%). . 85

Schematic description of AR-n. Gray coordinates in the same row corre-
spond to rejected coordinates. L oL 86

Schematic description of AR-d with consecutive (top) and blockwise (bot-
tom) coordinate assignment. Gray coordinates in the same row correspond
to rejected coordinates. 86

xi

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

2.3

5.4

2.5

5.6

2.7
2.8

6.1
6.2

Pairs plot of (Fy (W;), ®(Z;1), ®(Zi2)) ~ U(0,1)3, where the trivariate points
were sampled with AR-n (left) and with AR-d (right) for W ~ I'(1.2,1) and

Histogram of U; when constructed with AR-n (left) and AR-d (right). . . .

Mean squared errors as a function of n (left) and variances as a function of
d (right) when estimating ESgg5(L) for L = 17X where X ~ t4(v,0,).

Variances when estimating pi,, under a t copula with v = 2.2 dof, r = 0.01,
o = 0.2 (volatility for all stocks) as a functionof n.

Variances when estimating ., under a GIG mixture copula with A = 0.5,
B =0.3,r=0.01, 0 = 0.2 (volatility for all stocks) as a function of n. . . .

Variances when estimating ., under a stable mixture copula with o = 0.6,
B =1and vy = cos((r/2)a)"*, r = 0.01, o = 0.2 (volatility for all stocks) as
a function of n. (*) The experiment for “inversion” was only performed up
to n = 2 x 10*, so the regression coefficient was computed using a smaller
sample than the other coefficients.

Left: Calibrated densities for a® = 0.99, [= 5. Right: Run-times for each
method including pilot runs.o L oo

Mean relative errors when using pseudo-random numbers (left) and quasi-
random numbers (right) for a? = 0.7 (top) and o? = 0.99 (bottom).

Mean estimated variance when using pseudo-random numbers (left) and
quasi-random numbers (right) for o* = 0.7 (top) and o? = 0.99 (bottom). .

Plot of Transformed variable (T") vs Portfolio Loss (L) based on 10 000
observations (left) and OCIS density calibrated to [= 3000 (right).

Scatter plots of L vs Ty (left) and S; vs T3 (right) where [= 500 and v =5
(top) and v = 12 (bottom).

Optimally calibrated densities for I = 100 and the transformations 7 (left)
and Ty (right). o o

Estimates (left) and estimated variances (right) as a function of n for v = 5.

Estimates (left) and estimated variances (right) as a function of n for v = 12.

First 9 (left), 50 (middle) and 81 points when using b=3.
Triangular vdC points; n = 4 (left) and n = 16 (right).

xii

88
89

91

93

95

96

117

118

119

120

121

122
123
124

6.3
6.4

6.5

6.6

6.7

n = 4% points sampled from different methods. 136

5 independently randomized triangular Kronecker lattice point sets with 26

points each. 137
Test-functions f; (left), fo (middle) and f3 (right) used in the numerical
study. . .. 137
Absolute errors when integrating f; (left), fo (middle) and f; (right); re-
gression coefficients in the legend. o000 138

Estimates (left) and estimated variances (right) when integrating fi (top),
fo (middle) or f3 (right). For each n, B = 15 randomizations were used. . . 139

xiii

List of Tables

4.1

4.2

5.1

5.2

Average run times in seconds (top) and estimated efficiencies (bottom) when
computing various estimators with sample size n = 20 x 2'2 to estimate 1,
under a 9-dimensional GIG mixture copula with f =0.3 and A =0.5. .. 94

Average run times in seconds (top) and estimated efficiencies (bottom) when
computing various estimators with total sample size n = 20 x 2'° to estimate
e Under a 7-dimensional stable mixture copula with o = 0.9, f = 1 and

Estimates and CI halfwidths when estimating p; in the Gaussian Credit
Portfolio problem with A = 1000 obligors and d = 10 factors for various [
and methods. The last column displays average run-times. 113

Relative error reduction factors RE(MC)/RE(RQMC) for the Gaussian credit
portfolio with A = 1000 obligors and d = 10 factors for various [and meth-
ods. .. 113

Xiv

List of Abbreviations

AR acceptance-rejection.
CI confidence interval.
dof degrees of freedom.

ECME Expectation/Conditional Maximization Either.

EM expectation maximization.
GIG Generalized inverse Gaussian.

IG Inverse gamma.
iild independent and identically distributed.

IS Importance sampling.
LDS low-discrepancy sequence.

MC Monte Carlo.

ML Maximum likelihood.

MLE Maximum likelihood estimator.
MSE Mean squared error.

MVN Multivariate normal.

XV

MVT Multivariate ¢.
NRVG non-uniform random variate generator.
QMC Quasi-Monte Carlo.

RE Relative error.

RQMC Randomized quasi-Monte Carlo.

SIS Single-index importance sampling.

SSIS Stratified single-index importance sampling.

vdC van der Corput.

Xvi

Chapter 1

Introduction

A nearly omni-present problem in many disciplines is the approximation of an unknown
but existing expectation p = E(f(X)) where X is a random vector and f is a measurable,
integrable function.

Various integration methods exist to estimate p. Monte Carlo (MC) methods estimate
the unknown quantity by the sample average of n independent and identically distributed
(iid) copies of f(X). The central limit theorem implies the asymptotic convergence rate
O(1/y/n). This convergence speed is independent of the dimension of d of the problem,
which is a great advantage of MC methods; for instance, the product trapezoidal rule
yields errors in @(n~%?) for smooth integrands and is thus inferior to MC when the di-
mension of the problem is large. Assume that, after a suitable change of variable, we have
p=E(g(U)) where U ~ U(0,1)% is a vector of iid U(0, 1) random variables. The random
nature of the sampled copies inevitably leads to some areas of the integration domain be-
ing over-sampled and some other areas being under-sampled. Quasi-Monte Carlo (QMC)
methods tackle this issue employing a deterministic low-discrepancy point-set instead of a
purely random one. Low-discrepancy point-sets aim at filling the unit hypercube in a more
homogeneous way, and by doing so they can often reduce the integration error relative
to MC significantly. Randomized quasi-Monte Carlo (RQMC) methods additionally ran-
domize the deterministic low-discrepancy point set in a way that it does not lose the good
“low-discrepancy” and additionally satisfies that any vector in the point set is uniformly
distributed over the unit hypercube. This randomization not only can help improve the
performance of QMC methods, but also gives rise to an easy and reliable estimation of
the integration error. But do (R)QMC methods always perform better than their purely
random counterparts? Despite their success, there is no theoretical result based on which
one can uniformly answer this question with “yes”. The performance of (R)QMC methods

1

heavily depends on the integrand. The famous Koksma-Hlawka inequality suggests that if
the integrand is “sufficiently smooth” (to be made more precise in Chapter 2), the integra-
tion error when approximating p with QMC from above by O(log(n)?/n) where n is the
sample size; this is a faster convergence rate than MC. However, note that if d is large, this
bound is only of little practical relevance, as for large d and moderate n, the logarithmic
factor cannot be ignored. Also, many functions applied in practice are unbounded and
do not have finite variation, and yet (R)QMC methods perform often well to integrate
those. The question for which kind of problems (R)QMC methods outperform their MC
counterparts has gained a lot of attention in the literature and is still an active area of
research. Numerous examples suggest that (R)QMC performs well even for very high di-
mensional problems; see, for instance, [97] who successfully used RQMC methods for a
360-dimensional integration problem from finance. It is conjectured that (R)QMC meth-
ods can work well for (nominally) high dimensional problems when the effective dimension
of the integrand is small; that is to say, that the integrand can be well approximated by
lower dimensional functions. This was discussed, for instance, in [11], [95], [114] and [119].
A more rigorous discussion of (R)QMC methods will be given in Chapter 2.

The present thesis studies RQMC methods, along with applications thereof in quanti-
tative risk management.

Chapter 3 focuses on multivariate normal variance mixture models and extensions; these
are important classes of multivariate distributions widely used in risk management and
include the multivariate normal and ¢ distributions as prominent examples.

Evaluating multivariate distribution functions (such as the normal and the ¢) is a diffi-
cult, yet important problem that has gained much attention in the last couple of decades;
see, for instance, [34], [50], [35], [36], [37] as well as references therein for a discussion of
the estimation of multivariate normal and ¢ probabilities and recent work in [J] for the
evaluation of truncated multivariate ¢ distributions. To further illustrate how challenging
this problem is, we note that the R package mvtnorm (one of the most widely used packages
according to reverse depends, see [28]) and other R packages do not even provide function-
ality for evaluating the distribution function of the well-known multivariate ¢ distribution
for non-integer degrees of freedom (dof) v > 0.

In Section 3.2, we provide an RQMC algorithm to efficiently evaluate the joint distribu-
tion function of a normal variance mixture which is obtained by generalizing methods by
A. Genz and F. Bretz for evaluating the distribution function of the multivariate normal
and t distribution. In particular, we generalize a variable reordering algorithm originally
suggested by [39] and adapted by [36] which significantly reduces the variance of the in-
tegrand yielding fast convergence of our estimators. In addition to being able to handle

any normal variance mixture, the novelty of our approach is that within the integration
routine required to evaluate the joint distribution function, we use RQMC methods in a
way that better leverages the improved convergence properties of these methods compared
to MC sampling. Furthermore, we explore the synergy between these methods and the
variable reordering algorithm using the concept of Sobol” indices and effective dimension,
thus providing new insight into why the reordering algorithm works so well.

An equally important task is the evaluation of the joint density function, which is
often not available in closed form and requires numerical evaluation of an intractable one-
dimensional integral; this is the case, for instance, when the mixing random variable W
follows an inverse-Burr distribution. Since our goal is to provide algorithms that work for
any normal variance mixture, an efficient algorithm to approximate the joint (log)-density
function of X is needed. We tackle this by proposing in Section 3.3 a new adaptive RQMC
algorithm that mostly samples in certain important subdomains of the range of the mixing
variable to efficiently estimate the log-density of a multivariate normal variance mixture.
Even log-densities around —100 can be estimated efficiently.

This flexible algorithm turns out to be a key ingredient for the task of parameter
estimation. Here our contribution is to propose an algorithm that is general enough to
handle any normal variance mixture with bounded density function, as explained in Section
3.4. More precisely, we employ an Expectation/Conditional Maximization Either (ECME)
algorithm, which is a likelihood-based fitting procedure developed in [79]. This procedure
requires repeated evaluations of the log-density function of X, which is one of the reasons
why efficient algorithms for the latter are important when this density does not have a
closed form.

To the best of our knowledge, none of the three aforementioned tasks have been dis-
cussed in the literature in such generality where the only requirement is to have a compu-
tationally tractable quantile function for the mixing variable W. By specifying the latter,
our methods can be used to perform standard modeling tasks for multivariate normal vari-
ance mixtures well beyond the case of a multivariate ¢ distribution. To demonstrate this,
a real financial data set is analyzed using an inverse-gamma, a Pareto and an inverse-Burr
mixture at the end of Section 3.6. These contributions are published in [53]. All our
algorithms are implemented in the R package nvmix; see [104], [59], [55].

A possible limitation of normal variance mixtures is their radial symmetry, which in
a risk management context means that joint large losses are as likely as joint large gains.
In the case of a multivariate ¢ distribution, this can be overcome by allowing different
margins to have different dof. On a copula level, this leads to the notion of grouped ¢
copulas of [21] and generalized t-copulas of [32]. Motivated by these constructions, we

define in Section 3.7, grouped normal variance mixtures, a class of distributions which
includes ungrouped normal variance mixtures. The grouped case is even more complicated
than the ungrouped one, which can be seen by the fact that not even the density of a
grouped t distribution is available in closed form. We extend our algorithms from the
ungrouped case to the grouped case. In particular, we provide algorithms to estimate
the joint density and distribution function, thereby filling a gap in the existing literature.
These results have been published in [52].

An important task in risk management is the correct modelling of dependencies between
different risk factors. Copulas have become increasingly popular to model dependencies;
see, e.g., [85, Chapter 7], [30] and [90]. The ¢ copula, which is the implicit copula of a
multivariate ¢ distribution, is a very popular copula to model dependencies, as, in contrast
to the Gaussian copula, it is able to account for tail dependence. In Section 3.8, we
address the important problem of fitting grouped ¢ copulas to data. While the problem
of parameter estimation for the grouped ¢ copula was already studied in [21] and [82],
the computation of the copula density which is required for the joint estimation of all dof
parameters has not been investigated in full generality for arbitrary dimensions yet, which is
one gap we fill in this section. Furthermore, unlike [21], we suggest joint rather than group-
wise estimation of the degrees-of-freedom and show that this gives larger likelihood at the
parameter estimates. We also provide an expectation maximization (EM)-like algorithm
that works for many implicit copulas and apply it to t copulas. These results have been
published in [54].

In Chapter 4, we study problems where all but one component in a model can be sam-
pled via inversion and the remaining one, say W, only by calling a black box non-uniform
random variate generator (NRVG) or via acceptance-rejection (AR). Many practical prob-
lems of interest, such as the output of normal mixture models with complicated mixing
variable, fall under this umbrella.

The methods we propose for the black box setting in Section 4.1 are based on ap-
proximations of the quantile function of W. We consider the empirical quantile function,
which when used instead of the true quantile function amounts to sorting the W sam-
ples obtained from the NRVG in a way that the ordering matches the ordering of the
low-discrepancy point-set that would have been inverted. Another method in this black
box setting we are considering is to estimate the quantile function in the tail based on a
generalized Pareto distribution, which is justified by Pickands-Balkema-de-Haan Theorem
([29, Theorem 3.4.13]).

In the second setting, we explore different ways to feed a given AR algorithm with quasi-
random numbers to sample W. AR algorithms are typically not popular in RQMC as we do

4

not know a-priori how many coordinates are needed to accept a point. [37] consider using
smoothed rejection and weighted uniform sampling and show in their numerical results
that these outperform AR sampling in terms of convergence speed. [116] show that the
discrepancy with respect to the target distribution, i.e., the maximum difference between
the target distribution function and the empirical distribution function computed from n
observations obtained with their method has order n=® for 1/2 < a < 1. They improve
the error convergence rate by replacing the purely binary AR decision with weights, called
extended smoothed rejection. This circumvents integration of an indicator function.

Rather than altering the AR scheme by including weights or smoothing the integrand,
we focus on studying different ways to feed the AR algorithm with quasi-random numbers.
[122] study using a purely deterministic low-discrepancy sequence with constant dimen-
sion, that is, points in the sequence are skipped until acceptance, and derive discrepancy
properties. [91] consider RQMC and, similarly to [122], skip points in the randomized
low-discrepancy sequence until acceptance. They give a convergence result, error bounds
and a numerical study for AR with RQMC.

The two previous references have in common that they hold the dimension of the low-
discrepancy sequence (LDS) constant and effectively use a subset of size n of the first N
points in the sequence. In contrast, we also investigate the use of a point set of constant
(target) size where the number of coordinates of each point is increased until acceptance.
We prove unbiasedness results and show how to combine the methods from the two settings
in such a way that the non-monotonicity inherent in AR is removed.

Finally, we perform a numerical study with all methods presented. In particular, we
estimate the value of a Basket call option whose dependence is modelled with a normal
variance mixture copula, in particular an inverse-gamma and generalized inverse gaussian
mixture. This section is based on the submitted manuscript [56].

In Chapter 5, we consider the problem of rare event simulation in single index models,
where the univariate output f(X) depends on the random vector X mainly through some
univariate random variable T' = T'(X), called index. As we consider rare-event simulation,
so the event {|f(X)| > 0} has small probability, MC methods typically need to be com-
bined with variance reduction techniques as otherwise a very large number of samples is
required to obtain non-zero observations; the same holds for RQMC methods. Importance
sampling (IS) is a variance reduction technique frequently applied to rare-event analysis
in order to improve the reliability of MC estimators; see, e.g., [67] and [2]. The main
idea of IS is to draw samples from a proposal distribution that puts more mass on the
rare-event region of the sample space than the original distribution. As the efficiency of
IS depends heavily on the choice of the proposal distribution, finding a good proposal

distribution is a crucial step in applying IS. Unfortunately, there is no single best strategy
known for finding a good proposal distribution that works in every situation since the
nature of the rare event and what constitutes a good proposal distribution depends on
the problem at hand. As such, much of the existing work on IS in computational finance
finds effective proposal distributions by exploiting the structure of specific problems: [41]
develop IS methods to price path-dependent options under multivariate normal models;
[42, 43] estimate the Value-at-Risk of a portfolio consisting of stocks and options under a
normal and ¢-distribution; [109] estimate tail probabilities of equity portfolios under gener-
alized hyperbolic marginals with a ¢-copula assumption; [44] estimate tail probabilities of
credit portfolios under the Gaussian copula, [4, 13] consider t-copula models. As all these
IS techniques are exploiting specific properties of the problem at hand, they can achieve
substantial variance reduction but are typically specific techniques not applicable to other
problems without major modifications.

In the joint work [57], our collaborator Y. Taniguchi derived expressions for optimal IS
densities for sampling 7" in our single-index setting. Note that our framework is applicable
to a wide range of problems, as we do not make any assumptions on the integrand or any
distributional assumptions, other than assuming a single index model.

Furthermore, he showed that the estimators have zero variance when f(X) is com-
pletely determined by T' (to be made precise later) and explained how our conditional
sampling step reduces the effective dimension of the problem and therefore makes RQMC
particularly attractive in this setting. Further variance reduction is achieved by stratifica-
tion of T". As the optimal IS densities involve conditional expectations that are not known
in practice, the collaborator suggested using pilot runs to obtain a point-wise approxima-
tion of the optimal IS density, which can then be integrated and inverted numerically using
the NINIGL algorithm developed in [64].

The author of this thesis takes up this issue and we give more details on how such
pilot-runs can be implemented in practice. As numerically integrating and inverting the
optimal density is typically too time-consuming and sometimes prone to numerical errors,
we suggest finding an approximately optimal IS density in the same parametric family as
the original density. We detail this calibration stage, i.e., the process of estimating T, the
optimal density and a way to sample from it, in Section 5.2.

The numerical examples in Section 5.3 were implemented by us, we demonstrate that
our methods are applicable to a wide range of problems and achieve substantial variance
reduction. In this context, we consider the problem of tail probability estimation in Gaus-
sian and t-copula credit portfolio problems and show that our methods outperform those
of [44] and [13].

Finally, we note that the work closest to ours is the nonparametric partial importance
sampling (NPIS) method of [89]. Our method is similar to NPIS with w = 1 (where u
is defined as in [89]), in that both apply nonparametric IS only to the most important
random variable variable. However, SIS allows for a more general form for identifying the
important variable than NPIS, and the combination of IS and stratified sampling is not
considered in [89)].

In Chapter 6, we move away from RQMC methods on the unit cube [0, 1)¢ and instead
consider the problem of integrating functions over triangular domains.

The most recent approaches for constructing points with small discrepancy on a tri-
angle include the triangular van der Corput (vdC) and the triangular Kronecker lattice
developed in [6]. Both methods can be used to sample deterministic points with vanish-
ing parallelogram discrepancy, which is a discrepancy measure similar to the one used in
[10]. [6] also show that the parallelogram discrepancy of their lattice approach achieves
the optimal convergence order O(log(n)/n). [15] generalize the triangular van der Cor-
put sequence. Rather than focusing on discrepancy and Koksma—Hlawka like inequalities,
they study the absolute worst case integration error over a set of functions, and show that
their construction is almost optimal. Unlike the aforementioned references that attempt
to directly construct points on the triangle, [100] studies various transformations to map
a low-discrepancy sequence from the unit cube to any triangle.

A possible limitation of the lattice approach in [0] is that it is not extensible in the
sample size. Our contribution here is the development of an extensible lattice construction,
which, for certain sample sizes n, coincides with the non-extensible approach. Furthermore,
we prove that their triangular vdC sequence with n points projects onto 24/n points on
the z- and y-axis. Finally, we perform a numerical study comparing all methods, including
some of the methods described in [100]. We note that a numerical study has not been done
in either [6] or [45].

This project was in collaboration with G. Dong and the results will appear in [27].
All results presented in this chapter were contributed by the author of this thesis; the
collaborator’s work on using the triangular vdC sequence to construct a stratified sampling
scheme is omitted.

Chapter 7 concludes this thesis.

Chapter 2

Background

2.1 Monte Carlo and randomized quasi-Monte Carlo
methods

Quantities of interest in this thesis are (after a suitable transformation) expressed as in-
tractable integrals over the unit hypercube (0, 1)¢ for some d € N, i.e.,

= /(071)(1 g(u) du, (2.1)

where g : (0,1)4 — R is integrable. Monte Carlo (MC) methods approximate p in (2.1)
by the arithmetic average ¥ = (1/n) 3.1, g(U;) where Uy, ..., U, '~ U(0,1)%. An

asymptotic (1 — «)-confidence interval (CI) can be approximated for sufficiently large n by

[= 210200/ i + 21-0/204/Vn]

where z, = ®'(a) and & = \//aar(g(U)) =>" (g(U;) — '°)?/(n — 1). One can choose
n so that the length of this CI does not exceed a pre-determined absolute error tolerance.

Replacing the (pseudo-random) evaluation points Uy, ..., U, by a deterministic low-
discrepancy point set which aims at filling the unit hypercube in a more homogeneous
way, say P, = {vy,...,v,} C [0,1)% leads to a quasi-Monte Carlo (QMC) estimator
for p, say ™. QMC methods often provide better estimators than classical MC meth-
ods, the deterministic nature of the points in P, however does not allow for simple error
estimation via Cls as was done for the MC estimator }'“. To overcome this, one can

8

randomize the point set P, in a way such that the points in the resulting point set, say
P,, are uniformly distributed over (0,1)? without losing the low-discrepancy of the point
set overall. This leads to randomized QMC (RQMC) methods. In our algorithms, we
use a digitally-shifted Sobol’ sequence ([111]) as implemented in the function sobol(,
randomize = "digital.shift") of the R package qrng; see [62]. We remark that gener-

ating P, is slightly faster than generating Uy, ..., U, '~ U(0,1)? using R’s default pseudo

random number generator, the Mersenne Twister ([84]).

Given B independently randomized copies of P,, say f’n,b = {w1p,..., Upyp} for b =
1,..., B, one can construct B independent RQMC estimators of the form
1 n
(1R MC = Uu; b=1,...,B 2.2
Mb,n n Zzl g(,b)?) y Dy ()

and combine them to the RQMC estimator
1B

ﬂgQNIC E—— ﬂllj’?,ch (23)
B b=1

of p. An approximate (1 — «)-CI for p can be estimated as

rave _ zl,a/gc?ﬁEQMc/\/E, prave Zlia/Q&ﬂSQMC/\/E ; (2.4)
where
. &
A\ P @3

One can compute J*M° from (2.3) for some initial sample size n (e.g., n = 27) and
iteratively increase the sample size of each ;> in (2.2) until the length of the CI in (2.4)
satisfies a pre-specified error tolerance. In our implementations, we use B = 15, an absolute
default error tolerance ¢ = 0.001 (which can be changed by the user) and z;_4/2 = 3.5 (so
a ~ 0.00047); note that using ¢ quantiles gives almost the same Cls. By using groM¢
as approximation for the true value of u, one can also consider relative errors instead of

absolute errors.

Function evaluations from iterations that did not meet the tolerance can be recycled
as follows. Let Py, n, = {Uny11,--+;Un,tny} be the point set consisting of the n, low-
discrepancy points after skipping the first n;-many points. Furthermore, let B, ,,, =

9

{Wn 416, -+, Uny4nyp} be the bth randomly shifted version of P,, ,,, and let

1,12

N, = — Y g(w), b=1...B.

2 =
UEPn) ny b

If fi; ¢ does not meet the error tolerance, an estimator based on n; + ny points can be

calculated using only ns additional function evaluations based on

~RQMC ~RQMC

~RQMC __ ny X Fob,1,m, +ng X Fb.ny o bh=1 B

Mb,l,ng - _|_) — Ly .
np N2

In iteration ¢ this update is being done with n; = ing and ny = n; + ng in Step 3a of
our Algorithm 2.1.1 to estimate p from (2.1). That is, we start with initial sample size ny
and add another ny points in each iteration. We highlight that this update can be easily
implemented for a Sobol” sequence, as one can generate P, ,, efficiently without having
to generate P ,,; in R, this can be achieved by calling sobol(, skip = n1). We do not
lose any low-discrepancy properties of the randomized Sobol’ sequences as the resulting
estimator is mathematically equivalent to 422 = (1/B) Y1, fi, 5 e Where n* is the total
number of function evaluations in each randomization. We therefore leverage convergence
properties in n of Sobol” sequence based estimators. It is important to point out that the
reason why we can add points in this way without discarding previous function evaluations
is because the Sobol” sequence is extensible in n. That is, it is constructed as a sequence
in such a way that the first n points can be used as a low-discrepancy point set P, for any
n, with additional uniformity properties when n is a power of 2 (or a multiple of a power
of 2).

The update in our algorithm is conceptually different from updates in RQMC methods
suggested in the literature: For instance, the RQMC algorithm proposed in [36] to estimate
the distribution function of a multivariate ¢ distribution, therein referred to as QRSVN
algorithm, is based on a randomized Korobov rule (which belong to the wider class of
lattice rules; see [69] and [19]). The QRSVN algorithm also iteratively evaluates the
integrand at low-discrepancy points until the estimated error is small enough; however, it
does not move along the same sequence of low-discrepancy points from one iteration to
another. In iteration 7, their method computes an estimator based on a lattice of size p;
(a prime), and estimators from different iterations are combined as a variance-weighted
average. Ultimately, the QRSVN algorithm outputs a weighted average of B -¢* different
RQMC estimators based on different sample sizes (where i* denotes the number of iterations
needed until termination), whereas our algorithm outputs the average of B digitally-shifted
RQMC estimators based on the first n* points of a Sobol’ sequence. Hence, our methods

10

leverage properties of the Sobol” sequence with growing n rather than combining more and
more RQMC estimators of different sample sizes. Our proposed approach is thus superior
because the variance of RQMC estimators can be shown to be in O(n~°) with § > 1 (and
the smoother f is, the larger ¢ is). Hence for a given fixed computing budget of Bn function
evaluations that must be split between B and the size n for the point set P,, it is best to
try to take B just large enough so that we get a reasonable variance estimate, and then set
n as large as possible in order to further reduce the variance thanks to its O(n~?) behavior:
this is precisely what our approach does. Numerical results in Section 3.6.2 illustrate how
this leads to improved efficiency compared to the QRSVN algorithm.

Finally, our way of updating merely requires Bngy additional function evaluations in
each iteration, rather than Bp;,,. This typically leads to a smaller run-time, since only as
many function evaluations as needed are computed.

Algorithm 2.1.1 (RQMC algorithm for estimating ;. = f(o 1y g(u) du.)
Given €, B, ng, imax, estimate p = f((],l)d g(u) du via:

1. Set n = ng, i = 1, and compute jy »" = fi,'5, for b=1,..., B and i;;*"° from (2.2)

and (2.3).
2. Set € = 3.55'ﬂ5QMC with OA'[L};{QMC from (2.5).

3. While € > ¢ and ¢ < 7,5 do:

~RQMC b — 1

~RQMC __ /. ~RQMC
b,ing,(i+1)ng? - (+

(a) Set n = n + ny, compute /i il

flp e (i 1ymg)/ (8 1)

(b) Update Ak = (1/B)Y ;0 fipe"® and update & = 3.56 rouc with 6 rove
from (2.3).

(c) Seti=1i+1.

, B and set fi,

[RQMC

4. Return ji;;

Sometimes it is necessary to estimate log p rather than p; in particular, when p is small.
For instance, if 4 = f(x) where f(x) is the density function of X ~ NVMy(u, X, Fyy) eval-
uated at & € R?, of interest may be log(u) = log f() as this quantity is needed to compute
the log-likelihood of a random sample (which then may be optimized over some parameter
space). When p is small, using log 1 &~ log(ar?"¢) directly should be avoided. One should

11

instead compute a numerically more robust estimator for log i, a proper logarithm. To this
end, define the function LSE (for Logarithmic Sum of Exponentials) as

LSE(cy, ..., ¢,) = log (Z exp(ci)> = Cmax T lOg <Z exp(c¢; — cmax)> :
i=1

=1

where ¢y, ...,¢, € R and ¢pax = max{ci,...,¢,}. The right-hand side of this equation is
numerically more stable than the left-hand side as the sum inside the logarithm is bounded
between 1 and n, thereby avoiding overflow /underflow issues.

Let ¢;p = logg(u;p) for i = 1,...,n and b = 1,...,B. An estimator numerically

superior (but mathematically equivalent) to log(ar?M¢) is given by

finiog = —l0g(B) + LSE(A315: - - -+ A miog)s (2.6)

where
fipgoioy = —log(n) + LSE(c1p, ..., cnp), b=1,...,B. (2.7)
The standard deviation of 1,5, is estimated in the usual way by computing the sample
standard deviation of 15\, ..., fiph o, S0 that, as before, the integration error can be

estimated from the length of the CI in (2.4). A summary of the procedure to estimate
log p with a proper logarithm via RQMC is given in Algorithm 2.1.2.

Algorithm 2.1.2 (RQMC algorithm to estimate log ;1 where ;1 = f(o 1ya g(u) du.)

Given €, B, ng, imax, estimate log yu = log(f(o 1y g(u) du) via:

1. Set n = ng, i = 1, and compute ;215 = Hyomoteg 08 b = 1,..., B and i, §°
from (2.6) and (2.7).

—~

2. Set € = 3.50.raomc With 0.rquc as in (25)

n,log n,log

3. While € > ¢ and 7 < i, do:

(a) Set n = n + ng, compute ﬂ;?:;é?(i—i—l)no,log, b = 1,...,B and update ji\. =

—log(i + 1) + LSE(ifty,, s iy gmo (i 1yme) for 0=1,.... B.

(b) Update fi,5," = —log(B)+LSE(y 515 - - -+ i mieg) a0d update & = 3.56 ;ranc.

n,log
(c) Seti=1i+1.

RQMC
n,log *

4. Return i

12

Note that despite the fact that the problem under study here is a one-dimensional
integral, we refer to our algorithm as being in the RQMC family. We do so because
although the distinctive features of RQMC mostly have to do with how they design low-
discrepancy point sets in dimension larger than 1, another distinctive feature they have is
to make use of low-discrepancy sequences that are extensible in n, which is precisely what
we are exploiting in Algorithm 2.1.2.

2.2 Discrepancies and Koksma Hlawka inequality

The preceding discussion explains how (R)QMC methods can be used in practice. This
section shall give a brief overview of the main theoretical foundations of (R)QMC methods.

(R)QMC methods were motivated in the previous section as methods that fill the unit
hypercube in a more homogeneous or uniform way. The question how to assess “homogene-
ity” or “uniformity” arises naturally. The notion of discrepancy, a concept originating in
number theory, is crucial for (R)QMC methods. Consider an (a priori infinite) sequence of
points {v; };—1 2, whose uniformity is to be measured and denote by P, = {vy,...,v,} the
first n points of the sequence. For a,b € (0,1)%, the interval [a,b) = Hle[ai, b;) denotes
the d-dimensional hyperrectangle spanned by the lower left endpoint @ and upper right
endpoint b. If the point set P, is “uniform” the number of points in P, N [a,b) divided
by n should be close to A([a, b)) where A(-) denotes the Lebesgue measure. That is, the
empirical probability that a point in P, falls into [a,b) should be close to the Lebesgue
volume of [a, b). This motivates the star discrepancy D*(P,) of P,:

#(P. 1[0, b))

D*(P,) = sup
n

be(0,1)4

—A([0,0))]; (2.8)

here, #(A) denotes the cardinality of a countable set A. A different discrepancy mea-
sure arises when replacing 0 in the intervals [0,b) by a general a € (0,1)? with @ < b
componentwise; that is, one can consider the extreme discrepancy

#(FnNla, b))

n

D(P,) = sup

a,be(0,1)4:a<b

~ Ma, b))'. (2.9)

In this case, all rectangular subintervals of [0, 1]¢ are considered, not only those that are

anchored at the origin as was the case in (2.8). There are explicit formulas for D(P,)
and D*(FP,) for d € {1,2}, but for d > 2, calculating D(P,) and D*(P,) is very difficult.

13

However, if the supremum norm in (2.8) and (2.9) is replaced by the L? norm, we get the
L?-star discrepancy and L2-discrepancy given by

T*(P,)? = / <w —)\([O,b))) db, (2.10)

n
be(0,1)4

T(P,)? = / (#<P" 01a:8) _ \(ia, b)))2 da db: (2.11)

n

a,be(0,1)4:a<b

both T%(P,) and T'(P,) can be calculated using analytical formulas, see [76, Chapter 5]
and references therein.

A sequence of points {v;}iz12,.. is now called low-discrepancy sequence or quasi-random
sequence if D*(P,) = O (log(n) /n) a finite subset P, of such a sequence is then called
low-discrepancy point set. Note it is conjectured that for any d-dimensional deterministic
point set P, in (0,1)%, there is a constant B, such that D*(P,) > Bglog(n)4~!/n. If this
is true, one cannot do better than low-discrepancy sequences in terms of discrepancy. It is
also useful to know that if P, is a random point set, D*(P,) = O(y/loglogn/y/n). Thus,
low-discrepancy point sets do indeed “fill the hypercube in a more homogeneous way” than
purely random point sets if homogeneity is measured via discrepancies.

The discrepancy of a point set is closely related to the integration error obtained when
this point set is used to define a QMC rule. Consider again the estimator <M. The
famous Koksma-Hlawka inequality gives an upper bound on the integration error; see [58]:

|AQMC |

=l s~ [gw du

veP, (Ovl)d

< V™(g) D*(P); (2.12)

here, V"™ (g) denotes the variation of the function g in the sense of Hardy and Krause. A
few comments about the Koskma-Hlawka inequality are in order: First, note that V"¢(g)
is completely determined by the integrand g whereas D*(P,) is completely determined by
the point set P,. Equation (2.12) then suggests that in order to reduce integration error
a fruitful approach could be to employ a point set P, with smallest possible discrepancy.
Furthermore, if V' (g) < oo and P, is a low-discrepancy point set, Equation (2.12) implies
that the integration error is at most O (log(n)?/n) which is a better order than 1//n
achieved by MC methods. However, note that if the dimension of the problem d is large,
this bound is only of little practical relevance, as for large d and moderate n, the logarithmic
factor cannot be ignored. Furthermore, V" (g) < oo is a rather strong assumption often
not satisfied by integrands in practice. For instance, if ¢ models the payoff of an option,

14

g is unbounded and does not have finite variation in the sense of Hardy and Krause.
Even the very simple function g(x) = 14, 44,<1/2) does not satisfy V"(g) < oco. Lastly,
the Koksma-Hlawka inequality (2.12) can, in general, not be used to estimate an upper
bound of the integration error in practice, as neither D*(P,) nor V" (g) can be estimated
in practice. For more information about RQMC methods and their applications in the
financial literature, see, e.g., [92], [76] and [40].

2.3 The effective dimension and Sobol’ indices

While Equation (2.12) and the discussion thereafter might suggest that for large d and
moderate n, QMC may not lead to a better error behavior than MC in practice, numerous
examples in the literature have shown that QMC can significantly outperform MC methods
even in high dimensions; see, for instance, [97] who successfully used QMC methods for a
360-dimensional integration problem from finance or our own numerical results in Chap-
ter 3, where a high-dimensional distribution function is estimated via RQMC methods.

How is this possible? (R)QMC methods often work better if only a small number of
variables are important, see [118] and references therein for a discussion and examples. Let
us now formalize what it means to “have a small number of variables that are important”.

Sensitivity indices, such as Sobol’ indices, can help understand the importance of dif-
ferent variables of an integrand. Following [76, Ch. 6.3] and [112], we consider the ANOVA
decomposition of a (square integrable) function g : (0,1)% — R given by

gw)= > gilw),

IC{1,...d}

where

ow = [stwan =Y o, ww= [o du

JCI [071]d

here, k = #(I) and u_; is the vector w with components k& € I deleted. The g;’s only
depend on variables ¢ € [and are orthogonal: for I # J, f[o 1yd gr(u)gs(u) du = 0. If
I # (), g; has mean zero. The overall variance of the integrand can then be decomposed as

72 =Var(g(U) = Y o

15

where o7 = Var(gr(U)) = [0 91(w)? du. The number

of
=3 €01 (2.13)
is called Sobol’ index of I. It explains the fraction of the overall variance of the integrand
explained by the variables in [; if this number is close to 1, it means that most of the
variance is explained by g; and therefore by the variables in I. If I = {i} is a singleton,
St =5, is called a first order indez.

Another useful sensitivity index is the total effect index of variable [€ {1,..., d} given
by
1
Sr =~ > o (2.14)

IC{1,...d}:lel

which measures the relative impact of the component [and all its interactions. Care must
be taken when interpreting this value as Z?Zl St, > 1 in general since interactions are
counted several times. For instance, 0?1 o) is contained in Sr, as well as in Sty

Finally, the effective dimension in the superposition sense in proportion p € (0, 1] is
the smallest integer dg so that
1
= D dizp

I:|I|<ds

If the effective dimension is dg, the integrand can be well approximated by functions of
at most dg variables. Note that there are various different notions of effective dimension;
see, for instance, [76, Ch. 6] and references therein for more details. In Chapter 3.6.2, an
example with estimated Sobol” indices is given; there, a special 10-dimensional integrand
g is analyzed.

Now, why would a function with low effective dimension be better integrated via QMC
methods? The underlying intuition is the following: If g is mostly driven by dg dimensional
functions and the point set P, has good projection properties onto dg dimensions (so that
we do well when estimating [g;(u)du), the overall integration error is small despite the
nominal dimension being large. More formally, the decomposition of g into orthogonal
components gives rise to more general versions of the Koksma-Hlawka inequality in (2.12);
we only consider a stylized form and follow up with a heuristic argument:

2> g - [glw du

QMC

i < Y DBV (215)

IC{1,....d}

16

here, P, ; denotes the point set P, projected onto coordinates in I and V(-) denotes a
suitable norm; see, for instance, [19] for details. Heuristically, if the function g is such that
V(gr) is negligible for |I| > dg, we can estimate

|I&QMC . M’ < Z D*(Pn,1>v<gl)

and obtain a small integration error if the projections of P, onto components in I are low-
discrepancy point sets. This can then lead to an order of convergence of O (log(n)ds / n)
(as opposed to the slower convergence rate O (log(n)?/n)).

Whether or not having a small effective dimension is necessary or sufficient (or neither)
for superiority of QMC methods over MC methods is still an open problem; see, for instance,
[11], [95], [114] and [119]. Either way, the preceding discussion indicates that studying the
effective dimension of an integrand ¢ can help understand if (R)QMC methods perform
well when integrating g.

17

Chapter 3

Multivariate normal variance
mixtures and extensions

The multivariate normal and (Student) ¢ distributions are among the most widely used
multivariate distributions within applications in statistics, finance, insurance and risk man-
agement. Both belong to the class of normal variance miztures, where we say that a ran-
dom vector X = (Xj,...,Xy) belongs to this class, denoted X ~ NVMy(u, 3, Fiy), if, in
distribution,

X =p+VWAZ, (3.1)

where p € R? denotes the location (vector), ¥ = AAT for A € R™* is the scale (matriz)
(a covariance matrix), and W ~ Fy, is a non-negative random variable independent of
Z ~ Ni(0, I}) (where I}, € RF** denotes the identity matrix), which we can think of as the
mixing variable; see, for example, [85, Section 6.2]. Note that (X | W) ~ Ny(p, W), hence
the name of this class of distributions. This implies that if E(v/W) < oo, then E(X) = p,
and if E(W) < oo, then Cov(X) = E(W)X and Cor(X) = P (the correlation matrix
corresponding to X). Furthermore, note that in the latter case with A = I; (so when the
components of X are uncorrelated) the components of X are independent if and only if
W is constant almost surely and thus X is multivariate normal; see [85, Lemma 6.5]. The
multivariate ¢ distribution is obtained by letting W have an inverse-gamma distribution.
In what follows we focus on the case k = d in which A is typically the Cholesky factor
computed from a given ¥; other decompositions of ¥ into AAT for some A € R?? can be
obtained from the eigendecomposition or singular-value decomposition.

Working with normal variance mixtures (as with any other multivariate distribution)
often involves four tasks: sampling, computing the joint distribution function, computing

18

the joint density function as well as parameter estimation. Sampling is straightforward
via (3.1) based on the Cholesky factor A of X.

As mentioned in the introduction, evaluating multivariate distribution functions (such
as the normal and the t) is a challenging task. Furthermore, the joint density function of
X may not be available in closed form, as is the case for the inverse-Burr mixture discussed
later.

In the first six sections of this chapter, results of which are published in [53], we propose
efficient algorithms for computing the joint distribution function and joint density function
of a normal variance mixture, and also for estimating its parameters. The only requirement
we have for the normal variance mixture is that we must have access to a function that,
given a number between 0 and 1, returns the quantile of W for that input value. Note
that this does not imply the quantile function is available in closed form: it could instead
be that what we have access to is a numerical approximation for it. The assumption that
such “black-box” procedure is available to evaluate the quantile is something we refer to
as having a computationally tractable quantile function of W.

An extensive numerical study for all proposed algorithms is included in Section 3.6.
This section also includes a detailed investigation of why the reordering algorithm works
well with RQMC methods, as well as a data analysis with real-world financial data.

All presented algorithms are available in our R package nvmix (in particular, via
rovmix (), pnvmix (), dnvmix () and fitnvmix()); see [55], [59]. The following is an ex-
ample of its usage:

library("nvmix") # load package

d <- 3 # dimension

scale <- diag(d) # scale matriz
loc <- rep(0, d) # location wector
n <- 100 # sample size

; df <- 4.1 # degrees-of-freedom

x <- 1:d # evaluation point for density
gmix <- function(u, df) 1 / gqgamma(l-u, shape
rt <- rnvmix(n, gmix = gmix, loc = loc, scale

df/2, rate = df/2)
scale, df = df)
pt <- pnvmix(x, gmix = gmix, loc = loc, scale = scale, df = d4f)
dt <- dnvmix(x, gmix loc, scale scale, df = df)
fit_t <- fitnvmix(rt, gmix = gmix, mix.param.bounds = c(0.5, 10))

gmix, loc

Here, gmix is the quantile function of an inverse-gamma distribution with shape and
rate parameter df/2, so that the resulting mixture is multivariate ¢ with df degrees of

19

freedom. Note that the functions [r/p/d/fitlnvmix () only have access to the quantile
function of W in form of a “black box”.

An important quantity in multivariate modelling is the squared Mahalanobis distance
DX X;p,Y) = (X —p)"271(X —). It can be used to perform graphical goodness-of-fit
assessment. We provide methods to estimate the distribution and quantile function of D?
in Section 3.5. These methods in turn can then be used to construct a Q-Q plot.

Normal variance mixtures have the following limitation: When P = I, all k-dimensional
margins of X are identically distributed. In the case of a multivariate ¢ distribution, this
can be overcome by allowing different margins to have different dof. On a copula level, this
leads to the notion of grouped ¢ copulas of [21] and generalized t-copulas of [82]. Motivated
by this, we define, more generally, grouped normal variance mixtures in Section 3.7, a class
of distributions which includes the normal variance mixtures from (3.1). We extend the al-
gorithms for the ungrouped case to the grouped case. In particular, we provide algorithms
to estimate the joint density and distribution function, thereby filling a gap in the existing
literature; these results have been published in [52].

An important task in risk management is the correct modelling of dependencies between
different risk factors. Copulas have become increasingly popular to model dependencies.
Consider a d-dimensional random vector X on a probability space (€2, F,P) with joint
distribution function Fx(x) = P(X; < z1,...,Xg < 24) for € R? and continuous
marginal distribution functions Fj(z;) = P(X; < z;), z; € R for j = 1,...,d. Sklar’s
Theorem allows us to study the dependence among the components separately from the
margins. More precisely, there is a d-dimensional copula C' such that

Fx(x) = C(Fi(21),..., Fy(zq), xR

where a copula C' is defined to be a distribution function with standard uniform univariate
margins. For more about copulas, see, for instance, [85, Chapter 7], [30] and [90]. The ¢
copula, arising when X is multivariate normal, is a very popular copula to model depen-
dencies, as, in contrast to the Gaussian copula, it is able to account for tail dependence. In
Section 3.8, we address the important problem of fitting ¢ and grouped ¢ copulas to data.
While the problem of parameter estimation for the grouped ¢ copula was already studied
in [21] and [82], the computation of the copula density which is required for the joint
estimation of all dof parameters has not been investigated in full generality for arbitrary
dimensions yet, which is one gap we fill in this section. Furthermore, unlike [21], we suggest
joint rather than group-wise estimation of the degrees-of-freedom and show that this gives
larger likelihood at the parameter estimates. We also provide an EM-like algorithm that
can be applied to fit a wide range of copulas to data, and apply it to ¢ copula and skew-t
copula.

20

Section 3.9 concludes this chapter and gives some ideas for future research.

3.1 Normal variance mixture distribution function and
density

We assume that ¥ has full rank so that the density of X ~ NVMy(u, 3, Fiy) exists. Denote
by D*(x; 1, ¥) = (£ — pu) 'Sz —) the (squared) Mahalanobis distance of z € R? from
p with respect to (wrt) X. By conditioning on W and substituting w = Fy;, (u) (where
Fyy (u) = inf{w € [0,00) : Fyy(w) > u}, u € (0,1), denotes the quantile function of Fy),
the density of X can then be written as

(@) = [i) dFw) = [_m = (-—D2<”;;U“’E>) AF ()
(3.2)
B / ¢<2va;<u>>d|z| o (_%) - (3:3)

Note that this representation holds for the case when W is absolutely continuous, discrete
or of mixed type. In the former case, (3.2) equals

= /Ooo Wexp (—DQ(Q;—;/’Z)) fw(w) dw, (3.4)

where fy, denotes the density of W.

Furthermore, note that fx(x) is decreasing in the Mahalanobis distance D?(x; p,).
Thus

1

— 1 - d
fX(w) S fX(/J’) - (27T)d|2|]E (Wd/g)) € R) (35)

so that fx(z) is bounded if and only if E(W~%2) < .

Let F'x(a, b) denote the probability that X falls into the hyperrectangle spanned by the
lower-left endpoint @ and upper-right endpoint b, where a,b € R? for R = R U {—00, 00}
and a < b (interpreted componentwise), where we interpret non-finite components as the
corresponding limits. Note that the joint distribution function of X is a special case of
Fx(a,b) since Fx(x) :=P(X < z) = Fx(a,z) for a = (—o0,...,—00). In what follows

21

we write F'(a,b) instead of Fx(a,b) to simplify notation. For computing F(a, b) assume
(potentially after adjusting a,b) that g = 0 and that ¥ has full rank. By conditioning
and the substitution w = I, (u) we obtain that

Fx(a,b) =Pla < X <b)=Pla < VWAZ <b) =E (P(aNW < AZ < b/VW | W))

= E (2u(a/VIT.b/VT)) = / " by (a/ v, b/ Vo) dF(w)

0

_ /01 Oy <a/\/FV‘;(u),b/\/Fm‘7(u)> du, (3.6)

where ®x(a,b) =P(a <Y <b) for Y ~ Ny(0,X).

3.2 Computing the distribution function

As mentioned in the introduction, we assume that the quantile function Fjj; of W is
computationally tractable (possibly through an approximation). Assume furthermore that
the scale matrix ¥ has full rank; for the singular case, see [53, Appendix A].

ind.

One might be tempted to sample U; '~ U(0,1), i =1,...,n, and then approximate the
integral in (3.6) by the conditional Monte Carlo estimator

Fla.b) = 210 = 23 0 (ay R 0.6/ [Fir).

However, @y itself is a d-dimensional integral typically evaluated by RQMC methods,
so this approach would be time-consuming. Hence, the first step should be to approximate
®y. To this end, we follow [34] and start by expressing @y (and then F(a,b)) as integrals
over the unit hypercube. In the second part of this section, we derive an efficient RQMC
algorithm to approximate F(a,b) based on Algorithm 2.1.1. In particular, it details how
a significant variance reduction (and hence decrease in run time) can be achieved through
a variable reordering following an approach originally suggested by [39] for multivariate
normal probabilities and later adapted by [36] to work for multivariate ¢ probabilities.

The novelty of our approach for this problem is three-fold: first, our algorithm applies to
any normal variance mixture; second, it uses RQMC methods in a way that better leverages
their convergence properties, compared to previous work done for the multivariate normal
and ¢ distributions, and third, we include a detailed analysis (with our numerical results,
in Section 3.6.2) of why the reordering algorithm works well with RQMC methods.

22

3.2.1 Reformulation of the integral

We now address ®y. Let C' = (Cy;)¢,_; be the Cholesky factor of X, i.e., a lower triangular
matrix satisfying CCT = ¥. Denote by €} the kth row of C for k = 1,...,d. [34] (see
also [35], [36] and [37]) uses a series of transformations that rely on the lower triangular
structure of C' to produce a separation of variables as follows:

TE—I
u) dae

by bq 1
o (a,b):/ —exp(—
: a1 aq A/ (2m)4Z| 2
1 1
= (él — d1> / (ég — dg) . / (éd - dd) dud_1 N dul, (37)
0 0

where the d; and é; are recursively defined via

b — 312 G <CZJ + u;(é; — dj))
Cii ’

b
él _q)(c—il) ,éi:éi(ul,...,ui,l):cb

and d; is é; with b; replaced by a; for i = 1,...,d. Note that the final integral in (3.7) is
(d — 1)-dimensional.

With this at hand, we can write (3.6) as

1 1 1
F(a,b) = / g(u)du = /gl(uo) /92<U0, Up)- - /gd(uo, ooy Ug—1) dug_q ... dug, (3.8)
(0.1) 0 0 0
where
d
g(’l,l,) :Hgi(UO,...,’LLZ‘_1>, gi(uo,...,ui_l) :ei—di, 1= 1,...,d, (39)
i=1
for w = (ug,uy,...,uq_1) € (0,1)%. The e; are recursively defined by

b1
er=e(uy) = ——— | ,
o) (CHVFW(UO)>

1

b, i1 »
e; = ei(ug, ..., ui—1) = (C—“ (W — ;C’ijfb (d; + uj(e; — dﬂ))) , (3.10)

23

for i« = 2,...,d and the d; are e; with b; replaced by a; for ¢ = 1,...,d. We remark
that there is a typo (wrong bracket) in the corresponding formula for the special case of a
multivariate ¢ distribution in [30, p. 958].

Summarizing, the original (d+1)-dimensional integral is reduced to F'(a, b) = f(O,l)d g(u) du,
with the function g defined in (3.9) so that RQMC methods from Section 2.1 could be ap-
plied directly to the problem in this form to estimate F'(a,b). As pointed out in [37], the
transformations undertaken in this section to produce a separation of variables essentially
describe a Rosenblatt transform; see [106].

3.2.2 Variable reordering and RQMC estimation

Inspecting (3.8) and (3.10), we see that the sampled component u; of w in the jth integral
affects the ranges of all g, with k£ > j. Observe that permuting the order in a, b and X
does not affect the value of F(a,b) as long as the same permutation is applied to a, b
and to both the rows and columns of Y. It therefore seems to be a fruitful approach to
choose a permutation of @, b and ¥ such that g has, on average, the smallest range; g3
the second smallest, and so on. This has been observed in [39] in the context of calculating
multivariate normal probabilities and has been adapted by [36] to handle multivariate ¢
integrals. As in the latter reference, one can sort the integration limits a priori according
to their expected length of integration limits. This is more complicated than just ordering
a, b and X according to the lengths b; — a; (assuming all of them are finite) as the latter
does not take into account the dependence of the components in X. We generalize the
Gibson, Glasbey and Elston method for reordering according to expected ranges to work
for normal variance mixture distribution functions in Algorithm 3.2.1.

Algorithm 3.2.1 (Variable reordering) 1. Start with given a,b and .
2. Calculate or approximate p 4 = E(VIW).

3. a) Choose the first integration variable as

: , bj aj
t=argmin{ P | ———| - | ———— .
jE{l,d) { (M/WV Ejj) (N\/Wv ij) }
Swap components 1 and ¢ of @ and b and interchange both rows and columns
of ¥ corresponding to the variables ¢ and 1.

24

b) Update 011 ==/ 211 and le = Zjl/Cll for j = 1, Ce ,d. Set

J2! s0(s)ds

1= —= N
P(by) — P(an)
as expected value for uy, where

b
M\/WCH .

a1

=—1 and b=
M\/WCH !

a1

This is the same as E(Z | Z € [ay, by]) for Z ~ N(0,1).
4 Forj=2,....d,

a) Choose the jth integration variable as

by j—1 a j—1
.) pow | Aek=1 Cikys now > =1 Ciiyi
1 = argmin ¢ P

et \/El,l — > Ch \/El,l - > Ch

Swap components ¢ and j of @ and b and interchange both rows and columns
of ¥ corresponding to variables ¢ and 7 and interchange rows 7 and j in C.

b) Update ij = \/E]’j — Z?q;ll ka and Clj = C’L]] <le — ?c;ll CjkClk) for | =
J+1,...,d and set

J so(s)ds
yj=—2——,
(b;) — ®(ay)
where . -) -
P > i1 Cikyn S T > =1 Cini

a; = and b; =

C;; Cj;

From a simulation point of view, the particular value of u; will affect the ranges of all the
remaining d — 2 integrals. Indeed, each input w = (ug, ..., uq_1) ~ U(0,1)? is transformed
to a product of conditional probabilities: The first component, ug, is used to sample from
the mixing variable via inversion; ¢;(ug) is then the conditional probability of the first
component of the random vector X falling into (aq,b;) given that W = Fj;, (ug), that is
g1(ug) = P(X; € (a1,b1) | W = Fj7 (ug)). Next, uy is transformed to y; = @7 (d; +uy (e —
dy)), which is a realization of the random variable (X; | X; € (a1, b1), W = F}/ (ug)). Then,

25

g2(ug,ur) = P(Xy € (ag,b2) | X1 =1, W = F}j,(up)) and so on and so forth. As we are
conditioning on events of the form {X; = yy,..., X; =y, W = F}j, (uo)} for all subsequent
probabilities, this also explains why variable reordering can help decrease the variance: It
is designed in a way so that X; has smallest (expected) range, X, second smallest and
so on. In the explanation above, if by — a; is small, there is only little variability in 1
so that g(ug,u;) should be close to P(Xy € (ag,b2) | X1 € (a1,b1), W = F}j (ug)). We
point out that if Fy;, (u) is a non-zero constant for all v € (0,1) (corresponding to X being
multivariate normal), this is the original derivation in [39] who independently developed a
Monte Carlo procedure to approximate multivariate normal probabilities similar to [34].

Algorithm 3.2.1 is a greedy procedure that only reorders a,b, ¥ (and updates the
Cholesky factor C' accordingly). Changing the order in @, b and X does not introduce any
bias so that one can use a rather crude approximation for p, 5 for E(v/W) if the true mean
is not known. Note also that variable reordering needs to be performed only once before
applying RQMC to the integrand g in (3.9) so that the cost of reordering is low compared
to the overall cost of evaluating F'(a, b).

Our method to estimate F'(a,b) is summarized in Algorithm 3.2.2, where in Step 2
antithetic variates are employed as a simple variance reduction technique.

Algorithm 3.2.2
Given a,b, X, €, B, ng, imax, estimate F'(a,b) as follows:

1. Apply the reordering Algorithm 3.2.1 to the inputs a, b, 3.

2. Apply Algorithm 2.1.1 on the integrand (g(u) + ¢(1 — w))/2 with g from (3.9) and
reordered inputs.

In Section 3.6.2 it is shown through a simulation study that this (rather cheap) variable
reordering can yield a great variance reduction for the RQMC algorithm, Algorithm 3.2.2.
A detailed study as to why this works so well is included in Section 3.6.2.

Note that parallelization of our methods, i.e., estimation of F(a;,b;), i = 1,...,n,
simultaneously is difficult for two reasons: Reordering needs to be performed for each
input a;, b; separately so that Algorithm 3.2.1 needs to be called n times. Furthermore,
the structure of the integrand ¢ from (3.9) (see also (3.10)) does not allow for an efficient
implementation of common random numbers as all quantile evaluations ® () depend on
the limits @, b so that they cannot be recycled.

26

3.3 Computing the (logarithmic) density

We now turn to the task of computing the (logarithmic) density function of a normal
variance mixture. Let us first point out that the main reason why we need to be able
to evaluate the density function is for the fitting procedure, which is likelihood-based
and is explained in detail in Section 3.4. Now, since our goal is to be able to cover a
variety of normal variance mixtures, we cannot assume that the density function of X
is available in closed form. Indeed, a closed form for fx(x) exists in some cases (e.g.,
when W is an inverse-gamma or Pareto), but not in all cases (e.g., when W follows an
inverse-Burr distribution, a model actually used with success in Section 3.6.2). For those
latter cases, an efficient approximation is needed, as there is likely to be a repeated need
for evaluating the density (or log-density) within the fitting procedure. This also means
that fitting algorithms proposed for the multivariate ¢ cannot be directly adapted for the
general normal variance mixture case, as they would not include functionalities able to deal
with a density that does not exist in closed form. Below we propose an adaptive RQMC
algorithm to deal with those cases, which is based on the ideas presented in Section 2.1.

From (3.3) it follows that computing the density at x requires the evaluation of the

univariate integral p = fx(x) = fol h(u) du, where

2 — 1 o (D@ D)\
h(u) NI p() > € (0,1). (3.11)

To simplify notation, we write f(x) instead of fx () whenever confusion is not possible.
Furthermore, we assume that f() is finite; see also (3.5).

For likelihood-based methods one should compute the logarithmic density (or log-
density) rather than the density. Since f(x) is expressed as a univariate integral over (0, 1),
Algorithm 2.1.2, that is, RQMC methods combined with a proper logarithm as described
at the end of Section 2.1 on Page 11, can be applied directly to estimate log(u) = log f(x)
via RQMC. In fact, given inputs @1, ..., xy, the log-densities log f (1), ..., log f(xx) can
be estimated simultaneously by using the same realizations of W, i.e., using the same
Fyi/ (u;p) for all inputs @y, k= 1,..., N, until the precision is reached for all inputs. This
procedure, i.e. estimating log u directly based on (3.11) via RQMC, will be referred to as
the crude procedure.

It turns out that the crude procedure works sufficiently well for inputs @& with small to
moderate Mahalanobis distances, but deteriorates for larger Mahalanobis distances. The
reason is that the overall shape of the integrand & is heavily influenced by D?(x; u, X))
and for large values, most of the mass is concentrated in a small domain of (0,1). This is

27

(X-p)"=* (x-p) =10 o (X=w" T (X-p) =100 (X-p)"=™ (X -p) =1000

h(u)

0e+00 1e-07 2e-07 3e-07 4e-07 5e-07 6e-07 7e-07
h(u)

0e+00 le-12 2e-12 3e-12 4e-12 5e-12 6e-12 7e-12
h(u)

0e+00 1le-17 2e-17 3e-17 4e-17 5e-17 6e-17 7e-17
I

0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

o
°
o
N
°
=
o
>
o
3
-
o

u u u

Figure 3.1: Integrand h for a 10-dimensional ¢ distribution with 2 degrees of freedom.

illustrated in Figure 3.1 where the integrand h(u) is plotted against u in the special case
where X follows a multivariate ¢ distribution in dimension 10 with 2 degrees of freedom.
For instance, in the right-most plot, most of the mass is concentrated near 1. It thus seems
to be a fruitful approach to tailor the integration routine in a way so that it samples mostly
in this relevant domain around the maximum, giving rise to an adaptive algorithm. To this
end, we summarize some properties of the function A in the following lemma which can be
shown using elementary calculus.

Lemma 3.3.1

Let W have a continuous distribution supported on the whole positive real line. Then,
the function A from Equation (3.11) is continuous on (0, 1), satisfies A(0) = h(1) = 0 and
h(u) > 0 for u € (0,1). Furthermore, the maximum value of h on (0,1), i.e., hpax =
max{h(u) : v € [0,1]} is attained in the interior of (0, 1). The maximum is attained at

D(x: 1.2 27|S(Vd . D2 (g . 2)\ Y2 d
u* = Fw (%) with h(u*) = < b2l y (@:)) exp (—5), (3.12)

so that hpya.y is independent of the distribution of W. Finally, h is strictly increasing on
(0,u*) and strictly decreasing on (u*,1).

Equation (3.12) is crucial for the adaptive algorithm we propose: The value hyay, i.€.,
the height of the peak of the integrand h, is independent of the distribution of W as long
as W is continuous and supported on the whole positive real line. If W is continuous but
has bounded support, Ay, may need to be replaced by h(0) or A(1). If the mixing variable
W takes on finitely many values, the problem becomes trivial as the density becomes a
finite sum.

28

The idea is now to apply RQMC to a relevant region around u* from (3.12), which
can be done as follows: Given a threshold ey, with 0 < &4, < hAmayx, the structure of the
integrand h guarantees the existence of u; and u, (I for “left” and r for “right”) with
0 <wu <u* <wu, <1sothat h(u) > ey, if and only if u € (u;, u,). For instance, take

i = 1010g(hmax)/10g(10)—/"3th7 (3.13)

where ki, = 10 so that e, is 10 orders smaller than h.,. RQMC can then be used in the
region (u;, u,) by replacing every number v € (0, 1) by v' = w+ (u, —w)v € (w, u,) yielding
an estimate for log f;” h(u) du. For the remaining regions (0,u;) and (u,,1) we suggest
using a crude trapezoidal rule: If ey, < hpay those regions do not significantly contribute
to the overall integral anyway, so a rather cheap and quick procedure is recommended here.

It remains to discuss how the numbers u;, u*, u, can be computed. Recall that the only
information available about W is its quantile function Fjj, in form of a “black box” so
that u* from (3.12) cannot be computed directly. We suggest using a bisection algorithm
to solve the equivalent equation Fyj; (u) = &X'z /d. Starting values can be found using
a small number of pilot runs. Similarly, there is no direct formula for u; and u,. While
those can be expressed using Lambert’s W function, the lack of information about W does
not allow a direct computation. A bisection can be used here as well. Clearly, all pilot
runs and all quantile evaluations performed in the bisections should be stored so that those
expensive evaluations can be re-used.

It is clear from Figure 3.1 that the shape of the integrand heavily depends on @ through
its Mahalanobis distance, and this holds true for u;, u*, u, as well. As such, the adaptive
procedure just described does not allow for simultaneous estimation of log f(x1), ..., log f(xN)
directly, as the regions to which RQMC is applied differ from one input to another one. In
order to reduce run time, we suggest using the crude procedure on all inputs xq,..., Ty
with a small number of iterations (say, imax = 4) first and use the adaptive procedure only
for those inputs x; whose error estimates did not reach the tolerance. The advantage is
that only little run time is spent on estimating “easy” integrals. Furthermore, if i,,,, = 4,
B =15 and the initial sample size is ng = 128, such pilot run gives 7680 pairs (u, £} (u)).
These can be used to determine starting values for the bisections to find u;, u, and u*
and they can also be used to estimate the integral in the regions (0, ;) and (u,, 1) using a
trapezoidal rule with non-equidistant knots. The following algorithm summarizes our pro-
cedure, which is implemented in the R function dnvmix(, log = TRUE) of the R package
nvmix.

Algorithm 3.3.2 (Adaptive RQMC Algorithm to estimate log f(x;),...,log f(zN))
Given 1,..., TN , X, €, Episecy B, tmax, ktn, estimate log f(x;), =1,..., N, via:

29

1. Apply Algorithm 2.1.2 with at most i,y iterations on all inputs «;, [= 1,..., N.
Store all uniforms and corresponding quantiles Fyj, (+) in a list, say L.

2. If all estimates Nbg f(w ,l=1,..., N meet the error tolerance €, go to Step 4.
If not, we can assume Wlog (after reordering) that z,, s=1,... ., N'with1 < N' <N
are the inputs whose error estimates did not meet the error tolerance.

3. For each remaining input s, s = 1,..., N’, do the following:

(a) Determine Ay using (3.12) and eq, using (3.13).

(b) Find maximal u*!' and minimal u** in the list £ so that Fyj; (u*!) < 2! X 1x,/d <
F7 (u*r) (which implies u*! < u* < u*r). Use a bisection algorithm with start-
ing values u*! and u*" and a tolerance of s to find u*. Add any additional
uw's and Fyi; (u)’s computed in the bisection to the list L.

(c) Find the largest number ul(€ L and the smallest number ul) € £ such that

ul()<ul(2)<u h(ul)<5handh(ul)>5th Thenul)<u <u(2)<u
Similarly, find the largest number) € £ and the smallest number u!¥ € £
such that u* < ul? < o, h(uy @)) > ey and h(ur) < & Then u* < ut <
Uy < u?.

Then use a bisection to find w; (using starting values ul(l) and “5(2)) and u, (using
starting values up) and ug)) with a tolerance of epie.. Add any additional u’s
and I}, (u)’s computed in the bisection to the list L.

(d) Approx1rnate log fo u) du using a trapezoidal rule with knots], . .., u/, where
w; are those u’s in £ satlsfymg u < . Call the approximation fi(g) (IBS)

(e) Approximate log fulT h(u) du using a trapezoidal rule with knots uf, . .., u; where
uy; are those u’s in £ satisfying v > wu,. Call the approximation fi(,, 1) ().

(f) Apply Algorithm 2.1.2 where all uniforms v € (0, 1) are replaced by v' = u; +
(u, —up)v € (uy,u,). Call the output log pu. Then set log Mg) = log(u, —u;) +
@r which estimates log quT h(u) du.

(g) Combine

~RQMC ~ ~ ~
lulo(g;zf(ms) = LSE (/J“(Oﬂll)(ws)? M(ul,ur)(ws)a :u(uml)(ws)) .

4. Return ulogf(g) [=1,...,N.

30

Remark 3.3.3
Algorithm 3.3.2 can be applied to estimate a slightly larger class of integrals. Let

p= [e e (mfw) dFr(w) = [i) du

here, k,m > 0 are constant and ﬁ(~u) = cFy; (u) " exp (m/F (u)) for u € (0,1). A result
similar to Lemma 3.3.1 applies to h (replace d by k in the formula for v* in (3.12)). Thus,
after only slight adjustments to Algorithm 3.3.2, the latter can be used to estimate log(p)

efficiently. This will be useful in Section 3.4.

3.4 Fitting multivariate normal variance mixtures

In this section, we derive an expectation-maximization (EM)-like algorithm whose distinc-
tive feature is that it can estimate the parameters of any given normal variance mixture,
provided its density function is bounded. Its design is inspired by the ECME algorithm
used for fitting multivariate ¢ models, but is appropriately modified to allow for a general
mixing variable W. This requirement means that our approach must be able to handle
the case where the density fx(x) may not exist in closed form, and must therefore be
approximated. The fact that ECME-type algorithms break the optimization part into two
steps—and thus handle the parameters v of W’s distribution separately from p and >—
meshes very well with our assumption that all we may know about W is through access to
a “black-box” function for its quantile function. That is, since the step to find v is done
separately, we can easily make it adaptable to whether or not W’s distribution is such that
fx (x) exists in closed form. More precisely, in our R implementation, we assume the user
either provides a “black-box” function for the quantile function of W—in which case fx(x)
is approximated using the algorithm described in the previous section—or specifies that W
is constant, inverse-gamma, or Pareto, in which case fx(x) is evaluated exactly. Examples
provided in Section 3.6.2 demonstrate that the versatility of our algorithm, which we now
explain, does not come at the cost of decreased accuracy.

Assume X1, ..., X, ~ NVMy(p, 3, Fiy) with unknown location vector g and unknown

scale matrix ¥ where Fy has quantile function Fyj, (u;v) with unknown parameter vector
v € V of length p,, where the set V is such that E(W~%2) < oo for all v € V. This
assumption assures that the likelihood function is bounded; see also (3.5). For notational
convenience, let @ = (v, u, X~!) and denote by 8y the current value of @ in iteration k.

31

Before deriving our algorithm, we need some notation. The original log-likelihood is
given by

log L (v, 41, % X1, X)) =) _log fx(Xisv, p, %)

i=1

and the complete log-likelihood log L¢ can be written as

log L°(0; X1, ..., X, Wi, ..., W,) = Y _log fx w(Xi, W;; 6)

i=1

= Zlog fxyw (X | Wiy, 2) + Zlog Jw(Wisv),
=1 =1

(3.14)

where Wy, ..., W, are (unobserved) iid copies of W. Note that the first sum in (3.14)
contains the log-likelihood contributions of N4 (e, W;¥) and thus is almost the log-likelihood
of a normal distribution apart from potentially different W; (expected, for example, if W
is continuously distributed on the whole positive real line). The expected value of the
complete log-likelihood given the (observed) data Xj, ..., X, and current estimate 6y, is
then

Q(0;0,) =E(log L(0; X1,..., X, W1,..., W) | X1,..., X;0). (3.15)

As mentioned earlier, rather than trying to maximize Q(0;6y) over 0 as a classical EM
algorithm would do, we instead employ an ECME algorithm as developed in [79]; see also
references therein for more details on variations of the EM algorithm. In this way, and as
explained below, optimization is broken into two steps, which respectively deal with (g,)
and v.

The basic structure of our algorithm is as follows:

Algorithm 3.4.1 (ECME Algorithm for fitting normal variance mixtures: Main idea)
Given iid data X7,..., X,,, estimate p, >, v via:

1. Obtain an initial estimate 8y = (g, po, Xg).
2. For k=1,..., repeat until convergence:

(a) Update py and) by maximizing Q(0;6y) with respect to p and ¥ with v =
Vj_1 held fixed.

32

(b) Update vy by maximizing log L"¢(v, pg, Xx; X1, . .., X,,) with respect to v.

That is, in the k’th iteration, we first update g and ¥ by maximizing the expected
complete log-likelihood conditional on the observed data and then update v by maximizing
the original likelihood with respect to v with g and X set to their current estimates. This
is an ECME algorithm as we either maximize the expected complete log-likelihood or the
original likelihood; see also [30] for a discussion of an ECME algorithm for the multivariate
t distribution.

Let

We calculate Q(0;6y) from (3.15) in the following lemma:

Lemma 3.4.2
Q(6; 6;) from (3.15) allows for the decomposition Q(0; 6y,) = Qxw (@, 7% 0)+Qw (v; 0y),

where

Qxw(pn, X7 0;) = —% (nd log(27) — nlog(det(X71)) + Z(Dz(XZ-;)0k + dfki)),

i=1

Qu (v;0) =Y E(log fi(Wi;v) | Xi; 6;).

i=1
Proof. Starting from (3.15) and using (3.14) we obtain

Q(0;0,) =E(log L°(0; X1, ..., X, W1, ..., W) | X1,..., X,;0)

n

Z (log fxw (X | Wiz, 2) | X1,..., X3 0p)

=1

+Y E(log fr(Wiv) | X1, ..., X, 60;)
=1

= Z]E(log fxw (X [Wis u, 2) | X3 0r) + ZE(log Jw(Wisv) | X; 05)
=1

i=1

= Qxw(p, X755 6k) + Qw(v; 0y),

where the first expectation is taken with respect to Wy, ..., W, for given X;,..., X, and
0., and the last line of the displayed equation is understood as the definition of ¢ xw and

33

Qw. Using the fact that X | W ~ Ny(p, W), it is easily verified that

Qxw(p, X7 6k) = > E(log fxw (Xi | Wi; i, %) | Xi; 6)

=1

= —% (nd log(27) — nlog(det(X71)) + Z(DZ(X,; w, X)0k; + dfki)).

i=1

]

With Q(8;6y) at hand, we show in the following lemma how p and ¥ are updated in
Step 2a of Algorithm 3.4.1.

Lemma 3.4.3
Maximizing @Q(0; 6y) with respect to g and ¥ in Step 2a of Algorithm 3.4.1 gives the next
iterates

. ¢ 1 —
o = 25X g v = LS (X) (3.16)
Zi:l ki n i=1

Proof. By Lemma 3.4.2, Q(0;6y) = Qxjw(p, 271 6;) + Qw(v;6;) and p and ¥ do not
appear in Qw (v; 0y) so that we only need to maximize Q xw (g, X7"; 05).

The necessary conditions are %QX‘W(N,E”;O;J = 0 and %wa(u, Y16, = 0.
Using ;2 5, D*(Xi; p, B) = -2 (X, — p) one obtains that %wa(u, ¥716,) =0 if and
only if Zi:l Ok _1(X w) =0. Solving for p gives i1 as given in the lemma.For full
rank ¥, it holds that log det(X71) = . Since 2 D*(Xy u, %) = (X; —p)(X;—p) "

62 ox-1 a1
one gets g== 1QX|W(p,,Z ;0)) = 0 if and only if nX — Y7 0p(X — p)(X; —)T =0
which, after solving for 3, gives the formula for >, as given in the statement. m

Lemma 3.4.3 indicates that we need to approximate the weights dg;, 2 = 1,...,n, in

Step 2a of Algorithm 3.4.1. Note that
fxpw (@ | w) dFw (w) _ ¢(x; p, w)

dF) wlx) = = dFw(w), w >0,
i) x(@ MO
where ¢(x; p,) denotes the density of Ny(u, X) so that
1 <1
W; 0

- Ix (Xul/"k»zkﬂ/lc

(X b
/ ¢ is Mk, W k) de<w,I/k)

34

This yields

log(dx;) = log (/ i IZ:) dFw (w; Vk)> — log fx (X5; pi, X, Vi)
0

_10 ! 1 e _DQ(XHIJ’]C)EK‘) d
- o (o) 2y T\ 2R (wry))
0 \/<) Ey (u; vy) 42| By w \U; Vg

—lo 1 1 oxc _DZ(Xi;Hk,Ek;> "
lg</0 V (@2m) U (u; v Xk p(2F (u; vg))d) (3.17)

Estimation of the latter integral (corresponding to log fx(x)) was discussed in Algo-
rithm 3.3.2; the former integral differs from the latter only by a factor of Fjj (u)™!, and
can be estimated similarly; see Remark 3.3.3 for details.

Summarizing, the k’th iteration of the algorithm consists of approximating the weights
Oki, © = 1,...,n with v = vy held fixed (which are then used to update g and ¥ as in
(3.16)) and then updating v by maximizing the original likelihood log L°*¢(0; X1, ..., X,,)
as a function of v with g and ¥ set to their current estimates, i.e., we set

Vg1 = argmaxlog L®(v, pyy1, g1 X, -, X)) (3.18)
and solve this p,-dimensional optimization problem numerically. This optimization prob-
lem is the same optimization problem one would solve if g and ¥ were known (and given
by pr+1 and Yyq) and is a classical ingredient in ECME algorithms; for more details on
rates of convergence of the proposed ECME scheme, see [79, Section 4].

Solving the optimization problem in (3.18) is the most costly part of our algorithm,
as it involves estimating the likelihood using Algorithm 3.3.2 multiple times: Each call to
the likelihood function requires the approximation of n integrals, each of which results in
some random integration error. This results in an estimated log-likelihood function which
is itself random and can be “bumpy”, so having multiple local maxima. As such, typically
fast derivative-based methods can (but do not necessarily) fail to detect a global optimum.
This is why in our implementation, we use the R optimizer optim() which by default only
relies on function evaluations and works for non-differentiable functions. Note that the
dimension p,, of v is typically small so that this optimization problem is also numerically
feasible.

It turns out that estimating the weights d; is faster than solving (3.18) so that it
seems to be fruitful to first update p and X until convergence (with v = v held fixed)
and then update v. In fact, this can be done efficiently: The weights d; depend on X,

35

py and ¥, only through the Mahalanobis distances D?(X;; py, Xx). Once py and Y
are updated to, say, p) and X, (some of) the new weights ¢}, for the new Mahalanobis
distances D?(X;; p),,3,) can be obtained by interpolating the already calculated weights
dx; corresponding to the (old) Mahalanobis distances D?(X; px, Sg)-

It remains to discuss how a starting value 6, can be found. We suggest using po =
X, the sample mean vector, as an unbiased estimator for p. Denote by 5, the sample
covariance matrix (Wishart matrix) of Xi,...,X,. Since S, is unbiased for Cov(X) it
follows that E(S,) = E(W)X. The idea is now to maximize the likelihood given g = pg
and given ¥ = ¢ - S, with respect to v and ¢ (restricted to ¢ > 0) which is a (p, + 1)
dimensional optimization problem. That is, we find

(v*, ") = argmax L8 (v, po, ¢Sy; X1, ..., X,) (3.19)

v,c>0
numerically (again via R’s optim()) and set vy = v* and ¥ = ¢*S,, which is just a multiple
of the Wishart matrix. As this step is merely needed to obtain a starting value for v and

Y, this optimization can be done over a subset of the sample {Xj,..., X, } to save run
time.

The complete procedure is summarized in Algorithm 3.4.4. As convergence criterion
we suggest stopping once the maximal relative difference in parameter estimates is smaller
than a given threshold. We define the maximal relative difference by
|Vk,i - Vk+1,i|

d(Vy, Vpy1) = max

i=1,....pw ’Vk,z’ ’ Yk = (Vk’l’ T Vkqu)?

and similarly for g and .

Algorithm 3.4.4 (ECME algorithm for fitting normal variance mixtures)
Given iid input data X;,..., X, and convergence criteria ¢, €5 and ¢,, estimate p, X, v
via:

1. Starting value.
Set o = X, and solve the optimization problem (3.19) numerically to obtain v*
and ¢*. Set vy = v* and Xy = ¢*5,,.

2. ECME iteration.
For k=0,1,..., do:

(a) Update p and 3.
Set u,(gl) = py and ES) = k.
For[=1,..., do:

36

. Estimate new weights 5 (t+1) E(1/W; | X;; y,k ,Zg), v),i=1,...,n using
(3 17) and Algorithm 3. 3 2.

ii. Calculate the new iterates ug and E) using (3.16) with weights 5(l+1

1=1,.
It d((l+1)) < g, and d(E,(j),E,(fH)) < ey, set P = p,,(clﬂ), Yhy1 =
Z,(CZH and go to Step 2b.

(b) Update v.
Numerically solve the optimization problem (3.18) to obtain vy.

(c) If d(vg, Vks1) < €u, return the MLEs p* = pgiq1, ¥* = Xpiq and v* = vp .

Algorithm 3.4.4 is implemented in the function fitnvmix() of our R package nvmix.
The mixing variable is specified by providing a function to the argument gmix. In the
special case where W follows an inverse-gamma or Pareto distribution, the density function
is known in closed form which is used by fitnvmix () when called with argument gmix =
"inverse.gamma" or gqmix = "pareto".

Remark 3.4.5

We remark that by our assumption on the set V', Algorithm 3.4.4 is only applicable to
normal variance mixtures with bounded density. This is a limitation, since some widely
used normal mixture models do have unbounded density at the location.

The “unbounded likelihood problem” has been addressed, for instance, in [81]. To over-
come the problem of an unbounded likelihood function, one can use the correct likelihood,

defined by

n Xit+4
Lcorr<y7l’l’72;Xl7"‘7X’ﬂ) :H/ fX<w’V7l’l’72) dw’ <320)
X;—A;

where the (componentwise positive) A; € R? represent the roundoff error when mea-
suring X;. Being a product of probabilities, L™ is bounded by 1. The integrals in (3.20)
can be estimated using the methods from Section 3.2. However, moving from the original
likelihood to the correct likelihood means that for each call to the likelihood function, n d-
dimensional integrals instead of n 1-dimensional integrals need to be approximated. Thus,
if n and d are reasonably large, this approach might be computationally too expensive.

Numerical issues can arise even when the likelihood function is bounded. Indeed, in
Step 2(a)i, weights dp; = E(1/W; | X, 0x) are estimated and these can be quite large and
suffer from numerical estimation problems when X is close to pu.

37

In our implementation of Algorithm 3.4.4 in the R function fitnvmix(), we avoid
evaluating the density function at a potential singularity by “capping” the Mahalanobis
distance, that is, by replacing any appearing D?(X;, py, Xx) which is smaller than A by
A, where A > 0 is small (e.g., A = 1071%). The same “capping” approach was successfully
used in [93] in the context of estimating multivariate skewed variance gamma model pa-
rameters. We do not claim that this “capping” works for all normal variance mixtures with
bounded or unbounded density, and leave further investigation of this important problem
for future research.

3.5 Gamma-mixture models

For statistical purposes it is often interesting to study the distribution of the squared
Mahalanobis distance of X ~ NVMy(u, X, Fyy) given by D*(X; pu, X)) = (X —p) "2 1(X -
w). We write D? := D*(X; u,Y) if there is no confusion.

It follows readily from the stochastic representation (3.1) of X that, in distribution,
D* =W X2,

where X2 ~ x2. This immediately gives rise to a sampling algorithm to generate random
variates from D?. Since a y? distribution is a special case of a gamma distribution, it
follows that D* | W ~ T'(d/2,2W) where I'(o, 3) denotes a gamma distribution with
shape a > 0 and scale 3 > 0 which admits the density fr,g) (z) = (3°T(a)) tzo te=2/5
x > 0, and distribution function Fr(z;a,) = foz friap(t)dt for x > 0. The function
[(z) = [t* e " dt, z > 0 denotes the gamma function.

In the special case where W = 1 almost surely, D* ~ x2; if W follows an inverse-gamma
distribution so that X follows a multivariate ¢ with v > 0 degrees of freedom, it can be
easily seen that D?/d ~ F(d,v). For the general case where only F}; is available, we
can use methods similar to the ones developed so far to approximate the density and the
distribution function of D?.

3.5.1 Distribution, density and quantile function of D>

Using a conditioning argument similar to the normal variance mixture case, we obtain that

Fre(z) =P(D* <) =E (Fp(d/m) (%)) . x>0

38

This univariate integral can be approximated directly using an RQMC approach similar to
Algorithm 3.2.2. An implementation can be found in the function pgammamix () in the R
package nvmix.

In a similar fashion as in the derivation of Equation (3.3), the density of D? can be
calculated as fp2(z) = fol h(u) du for x > 0, where

1 9-1 T
= e o (o) e O

h

The functions A and h from Equation (3.11) differ only in constants with respect to u,
the functional form is identical. Algorithm 3.3.2 can then, with some slight modifications,
be used to estimate the density fpz(z) (or log fp2(x)); see also Remark 3.3.3. This is
implemented in the function dgammamix () in the R package nvmix.

Many applications, such as graphical goodness-of-fit assessment or random variate gen-
eration, rely on the quantile function of D?. Note that both the density and the distribution
function of D? can be estimated as discussed above; the quantile function can then be es-
timated by numerically solving the equation Fpz(q,) — u = 0 for g, where u € (0,1) is
given. We suggest using Newton’s method: In iteration k > 1, given a current iterate qq(lk),
the next iterate is given by

k
(k+1) _ (k) _ FD2(CI1(L)) —u
fp2(qu”)
= ¢ — sign(Fp2(¢{") — w;) exp {log (| Fp2(¢{?) — wil) — log fp2(¢{")} .

The second line is a numerically more stable version of the first. We remark that
(potentially) many calls to Fpz(-) and fp2(-) are necessary until convergence takes place.
We also note that in most applications, the quantile function has to be evaluated at multiple
inputs, say uq, ..., u,. In order to reduce run time, one can sort the inputs u; in increasing
order and also store all calls to Fp2(-) and fp2(-). These values can be used as starting
values for the next quantile calculation. If they are reasonably close to the true quantile,
the procedure enjoys local quadratic convergence so that only a few calls to Fpz(-) and
fp2(+) are needed. We note that Newton’s method can suffer from convergence problems;
in our numerical study, however, we have not seen such cases. Furthermore, Fp2(-) and
fp2(+) can be estimated simultaneously using the same realizations of W, and all those
realizations can also be stored so that they do not need to be generated more often than
necessary. This is implemented in the function qgammamix () in the R package nvmix; the
same idea can be exploited to estimate the quantile function of univariate normal variance
mixtures which is implemented in the function qnvmix().

39

3.5.2 Graphical goodness-of-fit assessment

With an (estimated) quantile function of D? at hand, we can produce QQ plots of the
observed mahalanobis distances versus their theoretical counterparts; this is implemented
in the function qgplot_maha() of the R package nvmix. Besides approximating the theo-
retical quantiles, the function also computes asymptotic standard errors as in [33, p. 35-36]
and a Bootstrap confidence interval for the empirical quantiles. Including these confidence
intervals helps address the problem of large variations in the ordered samples. As QQ
plots can merely be used as a first graphical assessment, the function additionally per-
forms statistical GoF tests. In particular, a Kolmogorov—Smirnov GoF test is performed
via ks.test () on the univariate Mahalanobis distances as well as an Anderson—Darling
GoF test in which case qgplot_maha() calls ad.test () from the R package ADGofTest; see
[8]. The p-values for testing the null hypothesis of having specified the correct distribution
and the values of the test-statistic are displayed on the second y-axis.

As an example, we sample 100 realizations from PNVM;(1.5,0,%) for a randomly
sampled correlation matrix ¥ and fit the corresponding mixture via fitnvmix():

set.seed(42)

d <-4

n <- 100

nu. <- 1.5

scale <- cov2cor(tcrossprod(matrix(runif(d * d), ncol = d)))

; x <- rnvmix(n, gqmix = "pareto", alpha = nu., scale = scale)

m.p.b <- c(0.1, 50)
(fit.parl <- fitnvmix(x, gmix = gmix = function(u, nu) (1-u)"(-1/nu), mix.param.
bounds = m.p.b))

Call: fitnvmix(x = x, gmix = gmix., mix.param.bounds = m.p.b)
Input data: 100 4-dimensional observations.
Normal variance mixture specified through quantile function of the mixing
variable
function (u, nu) (1 - u)~(-1/nu)
with unknown ’loc’ vector and unknown ’scale’ matrix.
Approximated log-likelihood at reported parameter estimates: -410.292900
Termination after 16 iterations, convergence detected.
Estimated mixing parameter(s) ’nu’:
[1] 1.412
Estimated ’loc’ vector:
[1] 0.03800 -0.11296 0.02966 0.01760
Estimated ’scale’ matrix:

40

[,1] [,2] [,3] [,4]
[1,] 0.8930 0.7701 0.7399 0.8916
[2,] 0.7701 0.8360 0.6491 0.7532
[3,] 0.7399 0.6491 0.8283 0.6019
[4,] 0.8916 0.7532 0.6019 1.0194

Next, we call gqgplot_maha() and produce Figure 3.2. Note that the return value of this
is an object of class "qgplot_maha" for which the methods plot () and print () are defined.
This object contains, among others, the theoretical quantiles computed via qgammamix (),
i.e., the quantiles of the hypothesized distribution of the Mahalanobis distance.

| set.seed(1)

2 qq.par <- qgplot_maha(x, gmix = "pareto", alpha = fit.pari$nu,
3 loc = fit.paril$loc, scale = fit.pari$scale, plot = FALSE)

1 plot(qq.par)

5 plot(qq.par, plot.pars = list(log = "xy"))

¢ print(qq.par)

Q = =
E . o 9 i © 7
- Asymptotic CI ® ---- Asymptotic CI O
Bootstrap Cl B - Bootstrap Cl 5
(=] (=]
= o =
o o o
T 5
n n
S © ©
1% ‘9' N © 1% — ©
2 o 1]
S E s -
=] 3 =2 S =
o ~ (=2 — ~
i} 5 [} 5
2 22 o | S
g g & v 8
a3 = S
1 1
o

e N e
@D @D
2 o | Qo
2 - 2
3 P 3
o e o | o e ., 2
T 0 T T T T T T T T 2
150 05 10 20 5.0 10.0 20.0 50.0 200.0

Theoretical quantiles Theoretical quantiles

Figure 3.2: Q-Q plot of the empirical quantiles D?(x;; u,2) versus their theoretical coun-
terparts on ordinary scale (left) and log-log scale (right).

Call: ggplot_maha(x = x, gmix = "pareto", loc = fit.parl$loc, scale = fit.paril$
scale

, plot = FALSE, alpha = fit.paril$nu)

Input: 100 squared Mahalanobis distances.

KS test: D = 0.06, p = 8.65e-01

41

AD test: D = 0.281, p = 9.52e-01.

The R Package nvmix

Computed results stored in the object:

- theoretical quantiles in $theo_quant;

- sorted, squared Mahalanobis distances in $maha?2;

- estimated, asymptotic standard errors in $asymptSE;

- Bootstrap CIs (estimated from 500 resamples) in $boot_CI;
- GoF test results in $testout;

3.6 Numerical examples

In this section we provide a careful numerical analysis of all algorithms presented. The
first part discusses the type of mixing distributions used; the second, third and fourth part
detail numerical examples for estimating the distribution function using Algorithm 3.2.2
with variable reordering as in Algorithm 3.2.1, estimating the log-density function using
Algorithm 3.3.2, and estimating parameters v, g and ¥ given a random sample using
Algorithm 3.4.4, respectively. The last part provides an application of our methods to a
multivariate financial data set.

3.6.1 Test distributions

For our numerical examples in Sections 3.6.2 to 3.6.4, we consider two distributions for
the mixing variable W, an inverse-gamma distribution (so that X is multivariate ¢) and a
Pareto distribution.

Inverse-gamma mixture Here W follows an inverse-gamma distribution with shape
and scale parameter v/2. The resulting distribution is the multivariate t distribution,
X ~ MVTy(v, pu, ¥) with positive degrees of freedom v; see, for instance, [71, Chapter 1].
Note that if v > 1, E(X) = p and if v > 2, Cov(X) = -*X. The multivariate ¢
distribution has the density

(Z/(g; +(Ci)7r/)2d)|z| (14 D@ p,5)v) ", weRre (3.21)

fx(x) = -

42

For the ECME procedure it is useful to calculate the weight E(1/W | X). Since
v D*(x;p, % 2
dt 716Xp (_((33,#7)+V)/)7 U)>0,

Jwix(w | x) o< fxyw (e | w) fw(w) ocw™ 2 -

W | X follows an Inverse gamma (IG) distribution, i.e., W | X ~ IG((d+v)/2, (D*(X; p,)+
v)/2). This implies

v+d
v+ DX p, %)
so that the weights dy; in Step 2(a)i of Algorithm 3.4.4 can be calculated analytically in
this case.

E(1/W | X) =

Pareto mixture In order to test our algorithms for a normal variance mixture distribu-
tion that has not been studied as extensively as the multivariate ¢ distribution we consider
W ~ Par(a, x,,) with density
IOA
fw(w) = awa—ﬁl, W > Ty
One can calculate that E(W*) exists with E(W*) = a/(a — k) if k < a. This implies for

the resulting normal variance mixture X = p + vVWAZ that E(X) = p for « > 1/2 and
Cov(X) = 245 for @ > 1. The density fx(x) = fx (@, X, o,) can be determined

using (3.4):
2(-
—d/2—a—1 exp (_D (w27 H, Z)) dw
w

fx(z) = —/—(2ﬂ)d’2’ /xm w

o 2(. —d/2—a Di@n®)
B - (D (m’ - 2)) / o ud/2+a—1 exp(—U) du
Grim \ 2 0
@ D2(p:) —d/2—« d D(x 5
= Oéxm ((wﬂl’l‘7)) '}/(OZ—F_,M) , wERd,
(2m)] 2 2 2,

where y(z;2) = [t*"'e~"dt for z,2 > 0 denotes the (lower) incomplete gamma func-
tion. Note that fx(x;u, X, a,zn) = fx(@; 1, %, o, 1) so that the scale parameter x,,
is redundant as the scaling can be achieved via scaling >. We can thus set z,, = 1 and
obtain

a D2(z; p, X))\ V2 d D?(z;p,Y) .,
S,) = ad R R allat] R¢,
fX(w7,u7 ,Oé) (27-‘-)d|2| < 9 A e + 27 9 , T &

(3.22)

43

We use the notation X ~ PNVM(a, p,) (“Pareto normal variance mixture”) for a ran-
dom vector X with density (3.22).

As in the case of an inverse-gamma mixture, it is possible to derive an expression for
E(1/W | X) in the Pareto setting. Note that

fwix(w | ®) o fxw(@ | w) fu(w) oc w™@F2H D exp (=D (@; p, 2) /(2w)) , w > 1,
so that using the density transformation formula we obtain for W = 1 /W that
Firx (@ | &) oc @02 exp(—w D (a: p, %) /2), @ € (0, 1).

Therefore, W' | X follows a (0,1) truncated gamma distribution with shape a + d/2
and scale 2/D*(X; u,Y). For more details on truncated gamma distributions, see [15];
Equation (2.12) therein implies that

Fr(lia+d/2+1,2/D*(X: 1, %)) 2a+d
Fr(la+d/2,2/ DX %)) D(Xip5)

E(/W[X)=

3.6.2 Estimating the distribution function

In the case where X follows a Multivariate ¢ (MV'T) distribution, denoted X ~ MVT4(v, u, ¥),
Algorithm 3.2.2 combined with the variable reordering Algorithm 3.2.1 can be used to es-
timate F'(a,b), and is implemented in the function pStudent () in the R package nvmix.

In this case, one can also use the QRSVN algorithm from [36], which is implemented in
the function pmvt () of the R package mvtnorm ([38]). The differences between these two
algorithms was explained in Section 2.1. Furthermore, our implementation relies on C
code, whereas pmvt () internally calls Fortran code.

We also note that the most natural competitor to our estimation procedure is the crude
estimator (1/n) Y27, T a<x,<p) where X; * NVM,(p, 2, Fyy). Tt was shown in [36] that

this estimator has a larger variance than the one based on the integrand g derived earlier.

Error behaviour as a function of the sample size

In order to assess the performance of our algorithm let us first consider estimated absolute
errors as a function of the number of function evaluations. Four settings are considered:
(pure) MC with and without reordering and RQMC (using a randomized Sobol’ sequence)
with and without reordering. In Figures 3.3 and 3.4, estimated absolute errors (estimated

44

le-02
1le-03

1e-03

1le-04

Estimated error
Dimension 5
Estimated error

le-04
Dimension 50
Estimated error
le-05
Dimension 500

le-05
1e-06

- PRNG wlo reordering (-0.49)
PRNG with reordering (-0.49)
-~ Sobol w/o reordering (-0.65)

- PRNG w/o reordering (~0.5) - PRNG w/o reordering (~0.5)
PRNG with reordering (-0.5) PRNG with reordering (~0.5)

---- Sobol w/o reordering (-0.57) ---- Sobol w/o reordering (-0.64)
| — Sobol with reordering (~0.66) —— Sobol with reordering (~0.76) ~ —— Sobol with reordering (~1.06)
T 1

2e+03 le+04 5e+04 2e+05 1le+06 2e+03 le+04 5e+04 2e+05 1le+06 2e+03 le+04 5e+04 2e+05 1e+06

1e-07

1e-06

Number of function evaluations Number of function evaluations Number of function evaluations

Figure 3.3: Average absolute errors of different estimators for Fx(x) as a function of n
for X ~ MVTy(2,0,3), where for each n, 15 different settings for ¥ and « are randomly
chosen. Regression coefficients are in parentheses in the legends.

as in Algorithm 3.2.2 via € in Step 4.3)) are reported for different sample sizes n (which
refer to the total number of function evaluations) in different dimensions using the four
aforementioned methods for the multivariate ¢t case and the Pareto mixture. For each
dimension and for each n we report the average estimated absolute error for 15 different
parameter settings. In each parameter setting, an upper limit is randomly chosen via
b ~ U(0,3v/d)? and a correlation matrix R is sampled as a standardized Wishart matrix
via the function rWishart () in RThe lower limit is set to @ = (—o0, ..., —00). The degrees
of freedom v in the MVT setting and the shape parameter o in the PNVM setting are set
to 2.

It is evident that RQMC methods yield lower errors than their MC counterparts. We
also report the convergence speed (as measured by the regression coefficient « of logé =
alogn + ¢ displayed in the legend): Variable reordering does not have an influence on the
convergence speed 1/4/n of MC methods; however, it does speed up the RQMC methods.
A possible explanation is that variable reordering can reduce the effective dimension. This
is discussed below in more detail.

The effect of variable reordering

Investigating the variance of the integrand It is interesting to further investigate
the effect of variable reordering as detailed in Section 3.2.2. To this end, the variance of

45

8 | g]

K] S

g ¢ g

> | i 4

& 3 4
s 3 S g 3 § s
S & @ 2 T A @ 53 2
g 8 5] T g S T 2
£ £ E E £ 3
i A 5 R 5

< o @

i 5)

- 3

—| -~ PRNG wlo reordering (-0.5) - PRNG wlo reordering (~0.5) - PRNGw/o reordering (~0.51)

- PRNG with reordering (-0.5) ° PRNG with reordering (~0.49) PRNG with reordering (~0.51)

@ _| -~ Sobol w/o reordering (-0.7) @ 4 Sobol w/o reordering (-0.55) ---- Sobol w/o reordering (-0.6)

& 7| — sobol with reordering (-0.68) & 7| — sobol with reordering (~0.84) & | — Sobol with reordering (-0.99)

T T T T T T T T T T T T T T T T T T g T T T T T T T T T 1
2e+03 le+04 5e+04 2e+05 1le+06 2e+03 le+04 5e+04 2e+05 1le+06 2e+03 le+04 5e+04 2e+05 1e+06
Number of function evaluations Number of function evaluations Number of function evaluations

Figure 3.4: Average absolute errors of different estimators for Fix(x) as a function of n for
X ~ PNVM,(2,0,%), where for each n, 15 different settings for ¥ and x are randomly
chosen. Regression coefficients are in parentheses in the legends.

S | A Without reordering o — Var(@u))/var(g(V))
e o With reordering
0
S < -
o
wn
8
3 o
c @
8 <
S 8
g s 2
B g
s 3 o =
E 3 o
k7]
w o
g
o
o
—
3
o
o
S o
° T T T T T T T T T
0 10000 20000 30000 40000 50000 0.0 0.5 1.0 1.5
Run (ordered according to Var(g(U))) Estimated variance ratio with versus without reordering

Figure 3.5: Left: Variance of the integrand Var(g(U)) with and without variable reordering.
Right: Density plot of estimated variance ratios.

the integrand ¢ from (3.9) given by

2

Var(g(U)) = /[S /[ol

is estimated, once with the original g without reordering, and once with g which is the
integrand ¢ after applying Algorithm 3.2.1 to the inputs a,b,¥. We use a randomized
experiment and do the following 50 000 times for an inverse-gamma mixture: Sample d ~
U({5,...,500}), v ~ U(0.1,5) and a, b, ¥ are randomly chosen as in the previous section.
The variance of the integrand is then estimated via the sample variance of g(Uy), . .., g(Un)
for N = 10000. Results can be found in Figure 3.5: The left plot displays estimated
variances of the integrand with and without variable reordering in each run. To make the
effect of the preconditioning step more visible, the runs have been permuted so that the
variance of the integrand when reordering was employed is increasing with the index of
the run. On the right, a density plot of the non-negative ratios Var(g(U))/ Var(g(U)) is
shown; it can be seen that the re-ordering gives typically a substantial variance reduction.
It can be confirmed that in the vast majority of cases, variable reordering substantially
decreases the variance of the integrand. In only 12 of the 50000 runs did the estimated
variance after reordering exceed the variance without reordering.

Effective dimension of the integrand As was seen in Figures 3.3 and 3.4, reordering
improves both MC and RQMC methods; the effect is however stronger for RQMC methods.
A possible explanation for this is that the variable reordering not only reduces the overall
variance of the integrand, o? = Var(g(U)), as seen in the previous part, but also the
effective dimension of the integrand; see Chapter 2. (R)QMC methods often work better
if only a small number of variables are important, see [118] and references therein for a
discussion and examples. Variable reordering, as explained in Section 3.2.2, was derived in
a way such that the first components are the most important ones.

The first order indices Sy;y and total effect indices St, for [€ {1,...,d} can be estimated
using the method of [96] which is implemented in the function sobolowen() in the R
package sensitivity; see [103]. Figure 3.6 shows estimated Sobol” indices in two settings:
In each setting, W ~ 1G(1/2,1/2) (so that X follows a multivariate ¢ distribution with 1
degree of freedom) and d = 10. The upper limit b and the scale matrix ¥ were found by
trial & error so that there is either a substantial variance reduction (top figure) achieved
by reordering or an increase in variance (bottom figure). In order to be consistent with
the definition of the integrand ¢ in (3.9), variables are called 0,...,d — 1 so that they
correspond to ug,...,us—;. For instance, in the top figure, one can read that S ~ 0.52
after reordering so that 52% of the variance of g can be explained by a function gy} (uo).

Inspecting the top figures where variable reordering led to a decrease in variance of
approximately 99% reveals that both first order and total effect indices are decreasing in
the dimension after variable reordering was performed. Also, the figure label includes the

47

o | o -#- Without reordering
IS) —e— With reordering
<
34

x

o

k<]

£ o

g ©

B

o

E 3 A

w
- |
3 A
o \ AT —— o >
= = & d———fo ——8——h-=0

T T T T !

0 2 4 6 8
w | -/~ Without reordering
=] —— With reordering
©

& o 7

8 A

£

S

2 <] &

o o

s

s 3
~ | o .

o \ - B ,
. ——o o/
o | AT —a—
o T T T T T
0 2 4 6 8

With/without reordering: Var(g(U)) = 0.00012 / 0.03096 ; sum of first order indices = 0.65 / 0.15

Figure 3.6: Estimated first order and total effect indices with and without reordering for
an inverse-gamma mixture in a setting with high variance reduction (top) and increase in

variance (bottom).

sum of the first order indices. After reordering, 65% (as opposed to 15%) of the overall
variance of the integrand is explained by components g; of g of exactly one variable,
hinting at the fact that the effective dimension decreased: The effective dimension in the

First order index

Total effect index

0.10 0.20 0.30

0.00

0.2 0.4 0.6

0.0

-Zx- Without reordering
—e— With reordering

-Zx- Without reordering
—— With reordering

- S A
A B—

o

@ - ok

T
4 6

With/without reordering: Var(g(U)) = 0.00245 / 0.00187 ; sum of first order indices = 0.33 / 0.44

superposition sense in proportion 65% decreased to 1 after reordering.

There are rare cases when variable reordering leads to an increase in variance: In the
bottom figures, the relative increase is about 31%. Here, the new ordering is clearly not
optimal and indices are not decreasing with the dimension. Given the nature of the greedy

procedure it is expected that in some cases, no improvement is achieved.

48

Run times

In this part we take a brief look at the run-times of Algorithm 3.2.2 combined with the
variable reordering Algorithm 3.2.1. We restrict our attention to the important multivariate
t case and compare run times of our implementation in pStudent() with the run times
of the above mentioned QRSVN algorithm described in [36] and provided by the function
pmvt () in the R package mvtnorm.

In order to get meaningful estimates of the CPU time, for each dimension d, the
following is done 15 times: Sample b and ¥ as before when estimating Var(g(U)), set
a = (—o0,...,—00) and v = 2. Then call pmvt() and pStudent () three times each and
average their CPU times obtained using the package microbenchmark of [86]. The above
procedure is done for an absolute error tolerance ¢ = 0.001 and the maximum number of
function evaluations is chosen such that both algorithms always terminate with the correct
precision.

Figure 3.7 shows the run times obtained. The symbols represent the corresponding
means whereas the lines show the largest /smallest CPU time measured for that dimension.
Note that pmvt() only works for dimensions up to 1000. Figure 3.7 shows that our
implementation significantly outperforms the existing standard which takes up to 8 times
more run time.

T
0

T
500

Dimension

o
—
+
o o o
&1+ pmwig
+ pStudent()
~ -
4 =
S § o
+ ; 7
&7 4 2
— > P n
g - s 2
K o -
g # >
I o
Z ? Ed o
=) K4 o <« 4
-3 5 =
5 2 v £
+ | 4 S
2 & =
0 Kd 2 o
Bd O
R4
¢
o
Ry ._‘.0"‘ N
=} . -
=} -~ -r?
5 4 ‘44-0-0—0”
= - -
[S)

200

T
400

Dimension

T
600

800

Figure 3.7: Run times based on three replications of 15 randomly chosen inputs b and X
in each dimension (left); run-time ratios relative to pStudent () (right).

49

3.6.3 Estimating the density function

In this section we test the performance of Algorithm 3.3.2 to estimate the log-density of
X ~MVT, (v, p, X) and X ~ PNVMy(a, p,). Note that the density is known in either
case and given in (3.21) and (3.22) so that estimated and true log-density values can be
compared.

We sample n = 1000 points from X ~ MVTy(v = 1,0, ;) in dimension d = 10 and
evaluate the density of MVT,(v = 4,0, I;) at the sampled points. The Pareto case is done
similarly. Figure 3.8 displays results obtained by the adaptive algorithm (Algorithm 3.3.2)
and by the crude (non-adaptive) Algorithm 2.1.2; the true log-density and the probability
P(D?*(X,0,I;) > m?) are also plotted. The latter probability gives an idea of how likely
it is to see a sample point & with Mahalanobis distance greater than m. For small Ma-
halanobis distances, both algorithms perform well. For larger ones the problem becomes
harder as the underlying integrand becomes more difficult to integrate (recall Figure 3.1
and the discussion thereafter) and the crude, non-adaptive version gives highly biased re-
sults. The adaptive version, however, is able to accurately estimate the log-density for any
Mahalanobis distance and is furthermore much faster (it takes only approximately 1 second
for a total of n = 1000 log-density estimations).

By inspecting the axes in Figure 3.8, one can see that our procedure performs well
even for very large Mahalanobis distances that would rarely be observed. For likelihood-
based methods, such as Algorithm 3.4.4, it is, however, crucial to be able to evaluate the
density function for a wide range of inputs. For instance, consider the problem where

ind.

a sample X,..., X,, ~ MVTy(v,0,1;) for unknown v is given. It is then necessary

to evaluate the log-density of X,..., X, at a range of values of v in order to find the
Maximum likelihood estimator (MLE). In fact, this was the motivation for performing the
experiments undertaken to produce Figure 3.8: The sample is coming from a heavy-tailed
multivariate ¢ distribution and the log-density function of a less heavy tailed multivariate
t distribution is evaluated at that sample. The same intuition lies behind the experiment
to produce the plot on the right of Figure 3.8.

3.6.4 Fitting normal variance mixture distributions

In this section we provide examples for our fitting procedure Algorithm 3.4.4. While in the
special case where W follows an inverse-gamma distribution (i.e., X ~ MVTy(v, u, Y) for
which the joint density function is available in closed form), ECME methods described in
[80] and [88] can be applied directly (implemented, for instance, in the function fit.mst ()

20

-10

____ P((X*M)Tzil()(*u)>m2) o P((X*u)Tzil(X*u)>m2) —
— est. log—density (adaptive, 2.84 sec) Q@ _ ~.. —— est. log-density (adaptive, 1.58 sec)
o -'+._est. log-density (non-adaptive, 30.95 sec) o] : - est. log—density (non—adaptive, 29.75 sec)
o _ x True log-density r g “x True log—density
@ - - °
- N
< I
< o <9 |
= e g
=& ! =
oA 27 z
[c X L 8¢
We g s 78
~ o -
=7 A Fe8 =g g
[I
z- Z
g g)
g o L2
cI\I - = 8 ‘T' -
[! [}
— -
5 o
o L
g \ Lg§ o > T
L} N 1 [-
l T T T T T T T T T T T T 1 o T T T T T T T T T T
0 100 300 500 700 900 1100 1300 2 4 6 8 10 12 14 16 18 20
m (Mahalanobis distance) m (Mahalanobis distance)

Figure 3.8: Estimated log-density of MVT,(v = 4,0, 1;) (left) and PNVM,(a = 6,0, I,)
(right) in d = 10 evaluated at n = 1000 points sampled from MVT,(v = 1,0, 1;) (left)
and PNVM(a = 2,0, ;) (right).

in the R package QRM; see [98]), this is not the case for a general normal variance mixture
distribution where the density function may not be available in closed form. In the latter
case, we do rely on Algorithm 3.4.4 in combination with our adaptive procedure described
in Algorithm 3.3.2 to estimate the log-density function. This is all done automatically in
the function fitnvmix () which merely needs a specification of the mixing distribution in
the form of its quantile function.

As in the previous sections, we consider an inverse-gamma and a Pareto mixture as
test cases. We chose these two distributions where the density function is known in closed
form so that we are able to investigate if optimizing the log-likelihood estimated via Algo-
rithm 3.3.2 (as opposed to using a closed formula for the log-likelihood) has a significant
effect on parameter estimates. In a practical setting where the density function is not
known in closed form (as is the case for the inverse-Burr mixture considered in the data
analysis done in Section 3.6.5) such comparison is not possible.

Our algorithm is tested in dimensions d € {10,50} for sample sizes n between 250 and
ind.

5000. In each setting, n random vectors X1,..., X, ~ MVT,(v = 2.5,0,%) are sampled

and then Algorithm 3.4.4 is used to estimate the parameters. We randomly choose ¥ as
DRD where R is a random Wishart matrix and D is diagonal with entries D;; s U(2,5)

ol

for e = 1,...,d. Results are displayed in Figure 3.9 where the estimate of v is plotted
as a function of the number of ECME iterations (see Step 2 of Algorithm 3.4.4). The
optimizations in Steps 1 and 2b of Algorithm 3.4.4 are based on the estimated log-likelihood
function via Algorithm 3.3.2.

As mentioned earlier, an ECME procedure for estimating parameters of a multivariate
t distribution is available in the function fit.mst (). The symbols at the end of the curves
in Figure 3.9 denote estimates obtained from this function. It can be confirmed that not
only does our procedure converge to the correct maximum likelihood estimate in the given
examples, but also that run times are reasonably small for this challenging problem. Note
that only few iterations are needed until convergence is detected.

A similar experiment is performed for the Pareto-mixture case, see Figure 3.10. Here,
the symbols at the end of each line display results obtained from Algorithm 3.4.4 using
analytical weights and densities, obtained by calling our function fitnvmix() with gmix
= "pareto".

The run times displayed in the legends of Figures 3.9 and 3.10 may seem counter-
intuitive; however, several factors influence run time: The larger the sample size n, the
more integrals need to be approximated and the higher the probability of observing ex-
treme Mahalanobis distances. Furthermore, the problem of estimating the log-density and
the weights becomes harder the larger the Mahalanobis distance of the input. However,
larger sample sizes can also lead to a quicker convergence of the weights in Step 2a of
Algorithm 3.4.4 and also to faster convergence of the estimates of the mixing variable in
Step 2b of Algorithm 3.4.4. Overall, as there are numerical approximations involved at
many levels, it will depend on the sample at hand how long the algorithm takes. This
explains why run times are not monotone in the sample size n.

3.6.5 Application to financial data

This section demonstrates an application of many of our methods and software to a real
financial data set. We consider daily return data from the 15 real estate investment trusts
(REITs) which are constituents of the SP500 index between 2010 and 2012 (n = 753 data
points in d = 15). The dataset SP500 is obtained from the R package qrmdata, see [60].
We first fit marginal ARMA(1,1) — GARCH(1,1) models and then fit normal variance
mixture models to the standardized residuals (“innovations”):

1 library("qrmdata") # for the data-set
2 library("qrmtools") # for returns()
s library("rugarch") # for fit.ARMA.GARCH()

o2

5

6

~

9

0

1

2

13

4

15

-

set.seed(123) # reproducibility
data("SP500_const") # load negative return data of the REITs in the SP500 index
time <- ¢("2010-01-01", "2012-12-31")
X <- SP500_const [pasteO(time, collapse = "/"),
SP500_const_info$Subsector == "REITs"]
X <- -returns(x)
deGARCHing
uspec <- rep(list(ugarchspec(distribution.model = "std")), ncol(X))
fit.ARMA.GARCH <- fit_ARMA_GARCH(X, ugarchspec.list = uspec, verbose = FALSE)
fits <- fit.ARMA.GARCH$fit
resi <- lapply(fits, residuals, standardize = TRUE)
X <- as.matrix(do.call(merge, resi))
colnames(X) <- colnames(x)

7 n <- nrow(X) # sample size

Four normal variance mixture models are considered: The multivariate ¢ (an inverse-
gamma mixture), a Pareto-mixture, an inverse-Burr mixture and the multivariate normal,
where X follows an inverse-Burr mixture if Fj (u,v) = (u='/*2 — 1)~/ (which is the
quantile function of 1/W where W ~ Burr(vy,1,) has distribution function Fyj () =
1 — (14 @) " for w > 0 and vy, 5 > 0). We highlight that in the inverse-Burr mixture
case, neither the density of the resulting mixture nor weights for our estimation procedure
are available in closed form, so that in this case, we indeed rely on our adaptive estimation
procedure Algorithm 3.3.2 to estimate the log-density function. Note that, with the excep-
tion of the inverse-Burr mixture, gmix can be provided as a string so that fitnvmix () uses
closed formulas for densities and weights as opposed to estimating them internally. Bounds
on the mixing parameter also need to be provided via the argument mix.param.bounds.

gmix_ <- list(constant = "constant",
inverse.gamma = "inverse.gamma",
inverse.burr = function(u, nu) (u~(-1/nul2])-1)"(-1/nul1]),
pareto = "pareto")
m.p.b_ <- list(constant = c(0, 1e8), # irrelevant
inverse.gamma = c(1, 8),
inverse.burr = matrix(c(0.1, 0.1, 8, 8), ncol = 2),
pareto = c(1, 8))

We remark that the multivariate normal case is trivial from an estimation point of view,
as the maximum likelihood estimators for g and > are merely the sample mean and the
sample variance, respectively; this case is included for the sake of comparison.

We fit the aforementioned distributions to the stock data using Algorithm 3.4.4, imple-

23

-

1

2

3

mented in the function fitnvmix ().

fit.results <- lapply(1:4, function(i)
fitnvmix (X, gmix = gmix_[[i]], mix.param.bounds = m.p.b_[[1]]))

For the inverse-gamma and Pareto-mixtures we find 7 = 5.65 and o = 1.64, respectively,
when using the closed form densities and weights; if weights and densities are estimated,
we found 7 = 5.62 (20 sec) and 7 = 1.61 (13 sec), respectively. Overall it is reassuring
that the estimates obtained from analytical and estimated weights and densities only differ
slightly; given the difficulty of the problem the run times also seem reasonable. For the
inverse-Burr mixture, we found & = (2.15, 3.61) after 30 seconds run-time.

To assess the fit of the different models, we construct QQ plots via qgplot_maha(); see
Figure 3.11.

qq.results <- lapply(1:4, function(i)
qqplot_maha(fitnvmix_object = fit.results[[i]]))

Clearly, the multivariate normal distribution (corresponding to constant W) provides
a poor fit to the data as the tail is heavily underestimated. Both the inverse-gamma
mixture and the inverse-Burr mixture provide an excellent fit to the data; the Pareto-
mixture however shows too heavy tails. These plots confirm our main motivation outlined
in the introduction: The multivariate normal is poorly suited for heavy-tailed return-data;
normal variance mixtures, however, are more flexible in that they allow for heavier joint
tails, often giving a better fit.

Next, we plot the fitted log-densities (computed using Algorithm 3.3.2 via the function
dnvmix) as functions of the Mahalanobis distances D?(zx; fi, ¥); see Figure 3.12.

1l.dens <- matrix(NA, ncol = 4, nrow = n)
mahas <- matrix(NA, ncol = 4, nrow = n)
for(i in 1:4) {
mahas[, i] <- sqrt(mahalanobis(X, center = fit.results[[i]]$loc,
cov = fit.results[[i]]$scale))
order.maha <- order(mahas[, il)
mahas[, i] <- mahas[order.maha, il # sorted for plotting
1l.dens[, i] <- dnvmix(X[order.maha,], gmix = gmix_[[i]],
loc = fit.results[[i]]$loc,
scale = fit.results[[i]]$scale,
nu = fit.results[[i]]$nu, log = TRUE)

54

Next, we use Algorithm 3.2.2 to estimate the joint quantile shortfall probability
Qu) :==P(Xy > Fy (u),...,Xa > Fx (u), ue(0,1).

In our context this is the probability that each of the 15 stocks yields a negative return
larger than their respective u quantile; for large u, Q(u) is the probability of a joint large
loss and a rare event. This quantity is often considered in risk management to quantify the
risk associated with joint extreme events. By radial symmetry of X ~ NVMy(u, 3, Fiy)
and continuity of the marginal distribution functions Fx., 7 =1,...,d, it follows that for
any u € (0,1),

Qu) =P(Xy > Fy (u),..., Xq> Fx,(u) = P(Xy < Fy (1 —u),...,Xqg < Fx (1 —u))
=P(Fx,(X1)<1l—wu,...,Fx,(Xg) <1l—-u)=C(1l—wu,...,1—u)

where C': [0,1]% — [0, 1] with C(u) = P(Fx,(X1) < uy, ..., Fx,(X4) < ug) is the copula of
X. Such copula can be evaluated with the function pnvmixcop (), which first calls gnvmix
() to estimate the quantiles F')‘(_J (u) and then calls pnvmix () with argument upper set to
the corresponding quantile estimates.

n. <- 50
u. <- seq(0.95, to = 0.999, length.out = n.)
u.matrix <- matrix(u., nrow = n., ncol = ncol(X))

set.seed(2)

tailprobs <- sapply(1:4, function(i) pnvmixcopula(
1 - u.matrix, qmix = gmix_[[i]], scale = cov2cor(fit.results[[i]]$scale),
nu = fit.results[[i]]$nu, control = list(pnvmix.abstol = le-5)))

In Figure 3.13 we plot the estimated quantile shortfall probability Q(u) for a range
of values of u for each fitted model separately. The figure on the right shows the same
probabilities @(u) standardized by the corresponding normal probability. The plots show
again that the Pareto-mixture is significantly more heavy tailed than the multivariate ¢
distribution: It yields significantly higher shortfall probabilities. Furthermore these plots
exemplify that our Algorithm 3.2.2 is also capable of estimating small probabilities despite
the increasing numerical difficulty when moving outwards in the joint tail.

95

3.4

3.2

3.0

2.8

2.6

— anvrmx forn=250 (7.55s)
- v,,m,m,x forn=500 (13.1s)
v,,m\,m,x forn=1000 (23.4s)
- v,,mwmx forn=2000 (49s)
Osinvmix fOr N =5000 (302.9'5)

d=10

Number of iterations

4.0

35

3.0

2.5

— Vﬁlnvmvx forn=250 (6.8s)
- vﬁmvm,x forn=500 (44.2s)
Vﬁlnvmlx forn=1000 (105.8s)
- v,‘mvm,x forn=2000 (85.85s)
~~= Dginumix for n =5000 (310.5 s)

d=50

Number of iterations

Figure 3.9: Estimates 7 computed by Algorithm 3.4.4 as a function of the number of
ECME iterations for multivariate ¢ distributions of different sample sizes and dimensions.
The symbols at the end of each curve denote the maximum likelihood estimator of v as
found by the ECME algorithm with analytical weights and densities.

— vmnvm,xforn 250 (4.7s) 24 — vm,,vm,xforn 250 (26.15)
- Vﬁlnvmvxforn 500 (10.9s) - vmnvm,xforn 500 (10.9s)
3 v.wm.x for n=1000 (26.8s) v,wm,x forn=1000 (24.4s)
- vm,wm,xforn 2000 (61.2s) - vm,wm,xforn 2000 (92.95s)
- vm,,vm,xforn 5000 (95.6s) - vm,.vm,xforn 5000 (112.4s)
n
o
[ee)
@
3
<> > o n
© © ©
o
< Lo S TET R T R W L & N
i B + [T} +
N 7 mmemrmrmimmimimieicicimicieioicieioioiols +
o e +
N T T T T

Number of iterations Number of iterations

Figure 3.10: Estimates 7 computed by Algorithm 3.4.4 as a function of the number of
ECME iterations for Pareto mixture distributions of different sample sizes and dimensions.
The symbols at the end of each curve denote the maximum likelihood estimator of v as
found by the ECME algorithm with analytical weights and densities.

o6

Multiv. normal Inverse—gamma mixture

=)
. o
@ - ---- Asymptotic CI gl % ° - Asymptotic CI © é'
Bootstrap Cl K O Bootstrap Cl @
S 1 -~
[°4 o o 3
i %3 !
i S =3)
& 87 K
=] . o o
g =7 0 I ° a
g ; 5 8 B ©
z o 3 E - N
@ 5 L o =}
[=% o Q -~
£ O £ o @
] > ®© S] g
0 o g » - 3
[l £ i
= 1
‘l% a
8 3 g
=]
g 2
s 7
o e o 2z
T T T T T T T T T T T T T 2
5 10 15 20 25 30 35 40 0 50 100 150 200 250
Theoretical quantiles Theoretical quantiles
Inverse—Burr mixture Pareto mixture
g g
- Asymptotic CI o\ ° - Asymptotic CI ° g
Bootstrap Cl 3 S Bootstfap Ci 2
2 s o =
— o
g - 7 3
o 5] —
[52] =e]
0 8 - <
g Tg ° !
= = o a
g - 15
2 34 & 2 &
T g T o o !
2 2 2 oS - 2
g g g ° 2
© o «© o
o c 9 [}
1 1
8 fa) o a
— o S o
0 — 73
2]
2 2
7 7
2 Qe
o - n o - N "
T T T T T A T T T X
0 100 200 300 400 500 0 500 1000 1500
Theoretical quantiles Theoretical quantiles

Figure 3.11: Q-Q Plots of the empirical quantiles of the Mahalanobis distances
D*(x;, f1,%), i = 1,...,n, versus their theoretical quantiles for different models using
a b stock portfolio with data from the SP500 data set.

57

o 1 .
Multiv. normal
Inverse—gamma mixture
Inverse—Burr mixture
Pareto mixture
o
N p—
|
' —l_<+
> T~ X ‘+
= - X
O -
2 2 A *
[) |
T
(@]
ke
o
@ p—
|
o)
o \
m p—
! o
T T T T
5 10 15 20

Mahalanobis distance D(x; W,)
Figure 3.12: Log-densities as functions of the Mahalanobis distance for four fitted normal

variance mixture models using a 15 stock REIT portfolio with data from the SP500 data
set from 2010-01-01 to 2012-12-31 after deGARCHing.

o8

o
o 8 K
AJ -1 = =1 --- Pareto mixture
o £ Inverse-Burr mixture
£ -
] o ! --- Inverse-gamma mixture
| m w7 —— Multiv. normal
< s o
T 2
2 .
= 8 3 W
o 8 4 o
% S
° i 8 N
T [Ted c N
P9 g 2
ERE) @
) = AN
VI j= '~
o Vi TN ~.o
ke s AR ~o
T - X TeellTises
© - S, Tsea
? | : e Tins s
o : 5 e P A
0 -~ Pareto mixture S« 4
Inverse-Burr mixture v
_ - -~ Inverse-gamma mixture x
. o
S —— Multiv. normal o
é B T T T T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
u u

Figure 3.13: Estimated shortfall probabilities for different models for a 5 stock portfolio
with data from the SP500 data set (left); same probabilities standardized by the normal
case (right).

29

3.7 Grouped normal variance mixtures

We define grouped normal variance mixtures via the stochastic representation
X = p +diag(VW)AZ, (3.23)

where W = (W, ..., Wy) is a d-dimensional non-negative and comonotone random vector
with W ~ Fyy, that is independent of Z. Denote by Fyj;(u) = inf{w > 0 : Fy(w) > u}
the quantile function of a random variable W. Comonotonicity of the W) implies the
stochastic representation

W= (W,,..., W) = (Fy.(U),..., Fy,(U), U~TU(0,1). (3.24)

If a d-dimensional random vector X satisfies (3.23) with W given as in (3.24), we
use the notation X ~ gNVM(u, S, Fyy) where Fyy(w) = P(W < w) for w € R? and
the inequality is understood component-wise. By moving from a scalar mixing rv to a
comonotone random vector, one obtains non-elliptical distributions well beyond the clas-
sical multivariate t case, giving rise to flexible modelling of joint and marginal body and
tail behaviours. The price to pay for this generalization are significant computational
challenges: Not even the density of a grouped t distribution is available in closed form.

At first glance, the definition given in (3.23) does not indicate any “grouping” yet.
However, Equation (3.24) allows one to group components of the random vector X such
that all components within a group have the same mixing distribution. More precisely,
let W be split into S sub-vectors, i.e., W = (Wy,..., Wg) where W}, has dimension
dy for k =1,...,5 and Zle d, = d. Now let each W), have stochastic representation
W, = (Fy, (U),...,Fy (U)). Hence, all univariate margins of the subvector W, are
identically distributed. This implies that all margins of the corresponding subvector X
are of the same type.

An example is the copula derived from X in (3.23) when Fy, = IG (v/2,14/2) for
k = 1,...,5; this is the aforementioned grouped ¢ copula. Here, different margins of
the copula follow (potentially) different ¢-copulas with different dof, allowing for more
flexibility in modelling pairwise dependencies. A grouped t-copula with S = d, that is
when each component has their own mixing distribution, was proposed in [115] (therein
called “individuated ¢ copula”) and studied in more detail in [$2] (therein called “t copula
with multiple dof”). If S = 1, the classical t-copula with exactly one dof parameter is
recovered.

For notational convenience, derivations in this section are often done for the case S = d,
so that the Fyy, are all different; the case S < d, that is when grouping is present, is merely

60

a special case where some of the Fyy, are identical. That being said, we chose to keep the
name “grouped” to refer to this class of models so as to reflect the original motivation for
this type of model, e.g., as in [21], where it is used to model the components of a portfolio
in which there are subgroups representing different business sectors.

Previous work on grouped ¢-copulas and their corresponding distributions includes some
algorithms for the tasks needed to handle these models, but were mostly focused on demon-
strating the superiority of this class of models over special cases such as the multivariate
normal or ¢ distribution. More precisely, in [21] the grouped ¢ copula was introduced and
applied to model an internationally diversified credit portfolio of 92 risk factors split into
8 subgroups. It was demonstrated that the grouped t copula is superior to both the Gaus-
sian and ¢ copula in regards to modelling the tail dependence present in the data. [82] also
study the grouped ¢ copula and, unlike in [21], allow group sizes of 1 (corresponding to
S = d in our definition). They provide calibration methods to fit the copula to data and
furthermore study bivariate characteristics of the grouped ¢ copula, including symmetry
properties and tail dependence.

We extend the algorithms for the ungrouped case to grouped case in the first subsection.
In particular, we provide algorithms to estimate the joint density and distribution function,
thereby filling a gap in the existing literature; these results have been published in [52] and
are implemented in the R package nvmix. Finally, we illustrate how the R pacakge nvmix
can be used to sample from grouped normal variance mixtures.

3.7.1 Estimating the distribution and density function

To simplify the notation, we use the shorthand notations Fy, (U) = (Fyy, (U), ..., Fyy (U)),
WP = diag(W), WP"(U) = diag(Fy, (U)); VW', (I/w)" as well as (1/vw)" are defined
similarly. Many properties of grouped normal variance mixtures are derived by conditioning
on the d-dimensional random vector W, or equivalently by conditioning on the underlying
univariate uniform rv U. Indeed,

X | W~ N, (u, \/WDE\/WD) or equivalently X | U~ Ny (,u,, \/WD(U)E\/WD(U)> .

One can see that W “mixes“ the covariance matrix of a multivariate normal and can be
regarded as a shock affecting all components of X.

Let —oco < a < b < oo componentwise (entries £00 to be interpreted as the corre-
sponding limits). Then F'(a,b) = P(a < X < b) is the probability that the random vector
X falls in the hyper-rectangle spanned by the lower-left and upper-right endpoints a and

61

b, respectively. If a = (—o0,...,—00), we recover F(a,x) = F(x) =P(X; <zy,..., Xy <
x4) which is the (cumulative) distribution function of X.

Assume wlog that p = 0, otherwise adjust a, b accordingly. Then
F(a,b) =Pla < VW AZ < b) = E[IP’((%/W)D(U) a < AZ < (Yyw)°(U) b U)]

1
= E[0s((Yvw)*(U) a, (vw)°(U) b) | = / @5 ((1/vw)°(w) @, (1/v)°(u) b) du,
0
(3.25)
where ®5(a,b) = Pla <Y < b) for Y ~ Nyg0,%) and we recall that AAT = %
Comonotonicity of the W; allowed us to write F'(a, b) as a (d+1)-dimensional integral; had

the W; a different dependence structure, this convenience would be lost and the resulting
integral in (3.25) could be up to 2d-dimensional (e.g., when all W; are independent).

Using the same sequence of transformations as in Section 3.2.1, we find that

1 1 1
F(a,b) = / g(u)du = / g1(up) / g2 (ug, uy)- - / ga(ug, ..., ug—1) dug_q ... duy,
(0,1)4 0 0 0

where
= Hgi(uo, cooti1), gi(ugy . uim1) =€ —dyy, i=1,...,d, (3.26)
for u = (ug,uy,...,uq_1) € (0,1)% The e; are recursively defined by
er =e1(ug) =P b ,
Ciiy/ Fiy, (uo)
e; = e;j(ug, ..., uiq) =@ Ci“ \/ﬂ ;Cw@ (dj +uj(e; — dj)) ,

for « = 2,...,d and the d; are e; with b; replaced by a; for i = 1,...,d. With the
integrand ¢ at hand, we can proceed as in Section 3.2.2 to estimate F(a,b). In particular,
first, a greedy re-ordering algorithm is applied to the inputs a, b, ». It re-orders the
components 1,...,d of a and b as well as the corresponding rows and columns in 3 in a
way that the expected ranges of g; in (3.26) are increasing with the index i fori =1,...,d,

62

just as in the normal variance mixture case, by applying Alg. 3.2.1 with a;/pu 4 replaced
by a;/p VI, and similarly for b; for j =1,...,d to account for the generalization.

Let us now focus on the density of X ~ gNVM(u,>, Fyy), where we assume that %
has full rank in order for the density to exist. The same conditioning argument used to
derive (3.25) yields that the density of X ~ gNVM,(u, 3, Fy) evaluated at & € R? can
be written as

I D (@ VW 0)SVWO)
S W) :
D (@; p VW () SVW (w))

exp | — 5 du

fx(x)=E

) / VIS T, By ()

_ / h(u) du, (3.27)

0

where D?(z; 1, %) = (£ — pu) 'S Yz — p) and the integrand h(u) is defined in an
obvious manner. Except for some special cases (e.g., when all W; are inverse-gamma with
the same parameters), this integral cannot be computed explicitly, so that we rely on
numerical approximation thereof.

From (3.27) we find that computing the density f(x) of X ~ gNVM, (i, X, Fw) eval-
uated at & € RY requires the estimation of a univariate integral just like in the ungrouped
case. We generalize Algorithm 3.3.2 to the grouped case, which is more complicated be-
cause the distribution is not elliptical, hence the density does not only depend on @ through
D?*(x, u,Y). Furthermore, the height of the (unique) maximum of 4 in the ungrouped case
can be easily computed without simulation, which helps the adaptive procedure find the
relevant region; in the grouped case, the value of the maximum is usually not available.
Lastly, S (as opposed to 1) quantile evaluations are needed to obtain one function value
h(u); from a run time perspective, evaluating these quantile functions is the most expensive
part.

Summarizing, we propose the following method to estimate log(f(x;)), i = 1,..., N,
for given inputs @, ..., xxy and error tolerance €.
Algorithm 3.7.1 (Adaptive RQMC Algorithm to estimate log(f(x1)),...,log(f(xn)).)
Given @1, ..., N, X, €, €, No, estimate log(f(x;)), [=1,..., N, via:

63

1. Compute ﬂﬁ)‘?ﬁfmi) no With sample size ng using the same random numbers for all input

xz;, 1 =1,...,N. Store all uniforms with corresponding quantile evaluations £y, in
a list L.

2. If all estimates ﬂﬁ)‘?;?m_)no, 1 =1,..., N, meet the error tolerance €, go to Step 4.

Otherwise let ,, s = 1,..., N with 1 < N’ < N be the inputs whose error estimates
exceed the error tolerance.

3. For each remaining input x,, s=1,..., N’, do:

(a) Use all pairs (u, Fy (1)) in £ to compute values of h(u) and set Ay, = maxyez h(w).
If the largest value of h is obtained for the largest (smallest) u in the list £, set
u* =1 (u*=0).

(b) If u* =1, set u, = 1 and if u* = 0, set u; = 0. Unless already specified, use
bisections to find u; and u, such that v, < u* < w, and u; (u,) is the smallest
(largest) u such that h(u) > ey, from (3.13) with hy,.y replaced by oo Starting
intervals for the bisections can be found from the values in L.

(c) If w; > 0, approximate log(Oul h(u) du) using a trapezoidal rule with proper
logarithm and knots), ..., u), where u are those u’s in £ satisfying u < w.
Call the approximation fi(o,u,) (). If u; = 0, set fi.,) = —o0.

(d) If u, < 1, approximate log(fulr h(u) du) using a trapezoidal rule with proper
logarithm and knots uf, ..., u, where u; are those u’s in L satisfying u > u,.
Call the approximation fi(,, 1)(xs). If u, = 0, set fi(y, 1)(xs) = —00.

(e) Estimate log(f;j’" h(u) du) via RQMC. That is, compute /52", via Algorithm 2.1.2

where every u;, € (0, 1) is replaced by u;, = u+ (ur —w)u;p € (wr, u,). Increase
n until the error tolerance € is met. Then set iy,) = log(u, — w;) + ﬂﬁ?};

which estimates log(quT h(u) du).
(f) Combine

~RQMC

Hiog f(zs) = LSE (ﬂ(O,ul)(xS)a ﬂ(uhur)(ms)? /l(ur,l)(xS))

4. Return fiiye 1=1,...,N.

This algorithm is implemented in the function dgnvmix(, log = TRUE) in the R pack-
age nvmix, which by default uses a Relative error (RE) tolerance.

The advantage of the proposed algorithm is that only little run time is spent on esti-
mating “easy” integrals, thanks to the pilot run in Step 1. If ng = 2!° and B = 15 (the

64

current default in the nvmix package), this step gives 15 360 pairs (u, Fy, (u)). These pairs
give good starting values for the bisections to find u;, u,. Note that no additional quantile
evaluations are needed to estimate the less important regions (0, ;) and (u,, 1).

[82] are faced with almost the same integration problem when estimating the density
of a bivariate grouped t-copula. They use a globally adaptive integration scheme from [99]
to integrate h. While this procedure works well for a range of inputs, it deteriorates for
input @ with large components.

We consider a grouped inverse-gamma mixture model, so a grouped t distribution, and
let X ~ gty (v, p, X). The density fffMP of X ~ gt (v, u, X) is not available in closed form,
so that here we indeed need to rely on estimation of the latter. The following experiment
is performed for X ~ gt,(v,0,;) with v = (3,6) and for X ~ gt,,(v,0,) where
v=_3,...,3,6,...,6) (corresponding to two groups of size 5 each). First, a sample from a
more heavy tailed grouped ¢ distribution of size 2500 is sampled (with degrees of freedom
v'=(1,2) and v/ = (1,...,1,2,...,2), respectively) and then the log-density function of
X ~ gt,(v,0,1;) is evaluated at the sample. The results are shown in Figure 3.14.

-40
1

-20
|
-60
|

log-density

-30
|

-40
|

- Estimated with integrate(): 6 sec '1
i

True density (df = 3) i
- True density (df = 6) '
VIS M 11 e) 1 e) e e e

107 10" 10° 10" 10? 10° 10* 10°

P
1 — Estimated with dgnvmix(): 8 se¢ \;?

-50

Mahalanobis Distance vx" x

log—density

-100 -80

-120

| — Estimated with dgnvmix(): 9'sec

-~ Estimated with integrate(): 1 sec
True density (df = 3)
- True density (df = 6)

d=10

TTTT T T T UNELELE R L) e e R T \{um‘
10° 10 10° 10° 10*

Mahalanobis Distance VX' x

Figure 3.14: Estimated log-density of a grouped ¢ distribution with v = (3,6) in d = 2
(left) and v = (3,...,3,6,...,6) in d = 10 (right). Estimation with dgnvmix () was carried
out using a relative error tolerance of 0.01. The plot also shows the log-density function of
tq(3,0, 1) and t4(6,0, I;) for comparison.

65

N

It is clear from the plots that integrate() again gives wrong approximations to f(x)
for input @ far out in the tail; for small input «, the results from integrate() and from
dgnvmix () coincide. Furthermore, it can be seen that the density function is not monotonic
in the Mahalanobis distance (as grouped normal mixtures are not elliptical anymore). The
plot also includes the log-density functions of an ungrouped d-dimensional ¢ distribution
with degrees of freedom 3 and 6, respectively. The log-density function of the grouped
mixture with v = (3,6) is not bounded by either; in fact, the grouped mixture shows
heavier tails than both the t distribution with 3 and with 6 dof.

3.7.2 Sampling grouped normal variance mixtures

To illustrate how the R package nvmix can be used to sample any grouped normal variance
mixture, assume X ~ gNVM; (0, %, Fy) where Wy ~ 1G(1,1), Wy =1 a.s., W3 ~ Exp(1),
W4 ~ Par(2,].) and W5 = Wl. That iS, marginally, Xl,X5 ~ tg, X2 ~ N(O,].), and X3
and X, are Exponential and Pareto mixtures. The following code samples 1000 iid copies
of X; see Figure 3.15 for a pairs plot of the sample. Note how different bivariate margins
are of quite different types; this cannot be the case for normal variance mixtures which are
elliptical; see [85, Chapter 6.

d <- 5 # dimension

df <- 2 # dof for margins 1, 5

n <- le3 # sample stize

A <- matrix(runif(d * d), ncol = d)

scale <- cov2cor(A %x% t(A)) # (random) scale matriz

; ## Group structure (here): Components 1+5 same group, all others individual

groupings <- c(1, 2, 3, 4, 1)

Specify mizing distribution for each group

gmix <- list(function(u, df) 1 / gqgamma(l-u, shape = df/2, rate = df/2),
function(u) rep(l, length(u)),
list("exp", rate = 1), function(u) (1-u)~(-1/2))

Sample

r.gnvm <- rgnvmix(n, groupings = groupings, gmix = gmix, scale = scale, df = df)

3.8 Fitting ¢t and grouped ¢t copulas

In this section, we address the problem of fitting ¢t and grouped ¢ copulas to data. In the
former case, we provide an EM like algorithm and compare it with three existing methods

66

I I I T I I | L1 1 1 1 1 1 o
% X % * * * % ¥ x X % N
* * * *
o
—
o
o
N
|
™
-
- _{x
| * %
o _]
|
*
*
x ¥
© -
N
N
|
=+« .
?—* * * *
** * * * * x ¥ -
* * * *
* % ** * * o
Sk % * % * **i — <
* *
X - ©
*; * 5
% 3¥ it
* & —
x 0 F LR x g ¥
o
— N
* * * * |
I I I I I I I I I I I I I I
=20 0 10 20 -4 0 2 4 =20 0 10

Figure 3.15: Plot of the samples r.gnvm from a 5-dimensional grouped normal variance
mixture.

67

to tackle this problem. For the grouped ¢ copula, we argue for joint maximization of the
copula log-likelihood and show that this gives higher likelihood than the group-wise fitting
suggested in [23]. Most of the results in this section are published in [54]; the fitting
algorithm for the grouped t copula was derived in [52].

3.8.1 Notations

Let F' be the joint distribution function of a d-dimensional random vector X with abso-
lutely continuous marginal distribution functions F; for j = 1,...,d. Denote by f and f;
the joint and marginal density functions. By Sklar’s theorem, the copula of X, that is, the
joint distribution function of the marginally uniform random vector (Fi(X1),. .., Fy(Xq4))
is unique and given by

C(u) = F(Ff (w),...,Fi (ug), w=(uy,...,uqg) € (0,1)%
The copula density follows to be

f(Ff(u1)7 s Fcf(ud>)
[15 fi(Ff (uy))

c(u) = . we(0,1)%

If X ~ MVTy(v,0,P) for a correlation matrix P, the copula of X is the ¢-copula,
denoted by Cf,7 p. If X ~ gt (v,0,P), the copula of X is the grouped ¢ copula, denoted

by C%,. The copula densities are denoted with smaller case letters as c!,, and ¢ p,
respectively.

3.8.2 Fitting the ¢t copula: An EM-like algorithm

Given Uy,...,U, '~ C’};’ p, the copula log-likelihood function is given by

log L(v, P; Uy, ..., U, Zlogcyp Zlong“VP Zzlogfj i),

i=1 j=1

(3.28)
where X;; = ¢, 1(U;;) fori =1,...,nand j = 1,...,d, f is the joint density of MVT(v, 0, P)

and the f; are univariate ¢, densities. Fitting the ¢ copula to data by means of Maxi-
mum likelihood (ML) estimation, i.e., maximizing log L, requires optimization of a (d(d —

68

1)/2 + 1)-dimensional log-likelihood function. This optimization problem has non-linear
constraints (as positive-semidefiniteness of P must be ensured), making this problem par-
ticularly hard. The R package copula (see [120], [70], [63] and [61]) currently uses such
ML procedure via the function fitCopula(), which searches for the optimum in the space
of all square matrices and rejects those that are not positive definite.

In the context of estimating skew-t copulas, [121] instead represent the Cholesky factor
L of P (a lower triangular matrix L such that LLT = P) using angles 6;; € [0,) for
j=1,...,i—2and 0,4 € [0,2m) for i = 2,...,d; see [12], Equation 12| for details.
The benefit of this transformation is that one can proceed by maximizing the copula
log-likelihood without imposing non-linear constraints (or rejecting non-positive definite
matrices). We refer to this method as “Full-MLE”. Note that the optimization problem
still has O(d?) parameters, making this procedure ill-suited for higher dimensions d.

If v is known, we see from (3.28) that maximizing log L is equivalent to maximizing

ind.

the term Y " log f(X;;v, P). As X; ~ MVT,(r,0, P), this is the same finding the ML

estimator of the scale matrix of a multivariate ¢ distribution, which can be done efficiently
using the EM algorithm; see [24], [102], and [85, Chapter 15.1]. This motivates maximizing
the profile log-likelihood, given by

log L*(v; Uy, ..., U,) =log L(v, P(v); Uy, ..., U,),

where P(V) is the ML estimator of P based on the samples X;, i = 1,...,n. Note that
log L* is only a function of v and thus univariate. As such, we were able to drastically

reduce the dimensionality of the optimization problem. We refer to this method as “EM-
MLE”

Another popular estimation method for ¢ copulas explained in [83, Appendix C] (see
also [23]) is to empirically estimate all pairwise Kendall’s tau p7;, 1 < i < j < d, and then
map these estimates to a correlation matrix P using P;; = sin(7pf;/2). With an estimate
of P at hand, the degrees-of-freedom v can be estimated by optimizing a univariate log-
likelihood function. We refer to this method as “Moment-MLE”.

The function fitStudentcopula() from the R package nvmix provides all previously
mentioned estimation methods. One can supply initial estimates for the degrees-of-freedom
v and bounds for it via the arguments df.init and df.bounds. In the following, we
use the function fitStudentcopula() to perform a simulation study to investigate the
performance of the three methods. For comparison, we also include the fitCopula()
function of the R package copula as a fourth method.

1 set.seed(1)

69

> methods <- c("Moment-MLE", "EM-MLE", "Full-MLE", "Full-MLE (’copula’)")

3 reps <- 50 # number of replications for each method

1 res <- array(, dim = c(length(methods), reps, 4),

5 dimnames = list(method = methods, rep = 1:reps,

6 c("loglik", "cpu", "df", "rhol2")))

7 for(i in 1:reps) {

8 U <- rStudentcopula(n, df = df, scale = scale) # sample

9 t.mm <- system.time(fit.mm <- fitStudentcopula(U, fit.method = "Moment-

MLE")) [1]

10 t.em <- system.time(fit.em <- fitStudentcopula(U, fit.method = "EM-MLE"))
(1]

1 t.fl <- system.time(fit.fl <- fitStudentcopula(U, fit.method = "Full-MLE"))
[1]

12 t.fl.cop <- system.time(fit.fl.cop <- fitCopula(

13 tCopula(dim = d, dispstr = "un"), U, method = "ml", estimate.variance =

FALSE,

14 start = c(fit.mm$scale[upper.tri(fit.mm$scale)], 5))) [1]

15 res[, i, "loglik"] <- c(fit.mm$max.11l, fit.em$max.1l, fit.fl$max.1l,

16 fit.f1l.cop@loglik)

17 res[, i, "cpu"] <- c(t.mm, t.em, t.fl, t.fl.cop)

18 res[, i, "df"] <- c(fit.mm$df, fit.em$df, fit.f1l$df,

19 fit.fl.cop@estimate[d*(d-1)/2+1])

20 res[, i, "rhol2"] <- c(fit.mm$scale[l, 2], fit.em$Pscale[1l, 2], fit.fl$scale
[1, 21,

21 fit.fl.cop@estimate[1])

Figure 3.16 confirms that all methods give reasonable estimates and that all meth-
ods perform similarly but differ significantly in run-time. Furthermore, the function
fitCopula() from copula is substantially slower than the “Full-MLE” method, while
giving almost identical results. The “EM-MLE” method is not much slower than “Moment-
MLE”.

3.8.3 Fitting the grouped ¢ copula

Moving from a t copula to a grouped ¢ copula means moving from a model with known
ind.

density to a model where the density needs to be estimated. Indeed, given Uy, ..., U, ~

70

0.6 0.8
0.10
15

[Bro-p1d
CPU time

]
|

0.04

0.2

0.02

- - 6 o ——

0.0
0.00

Moment-MLE ~ EM-MLE Full-MLE Full-MLE (‘copula’) Moment-MLE EM-MLE Full-MLE Full-MLE (‘copula’) Moment-MLE ~ EM-MLE Full-MLE Full-MLE (‘copula’)

Figure 3.16: Boxplots of absolute errors for the degrees-of-freedom (left) and correlation
parameter (middle) and of the run times (right) for a 7-dimensional ¢ copula.

C’zfp, the copula log-likelihood function is given by

n d

log L(v, PiU,, ..., U,) = Y log f(Xi;0,P) = Y > log f3(Xij;v), (3.29)
=1

i=1 j=1

where X;; = t;jl(Uij) fori=1,...,nand j=1,...,d, f is the joint density of gt (v, 0, P)
and the f; are univariate t,, densities.

[21] consider a grouped t copula where each group has size at least 2, so that all
subgroups are t copulas. The authors suggest to estimate the degrees-of-freedom separately
in each group. [82] consider the grouped ¢ copula with d groups (each group belongs to its
own group of size 1) and suggest to jointly estimate the d degrees-of-freedom parameters
by maximizing the copula log-likelihood. In both references, the matrix P is estimated by
estimating pairwise Kendall’s tau and using the approximate identity p; ~ 2 arcsin(p;;)/7
for i # j. Note that [82] relies on the integration method in [99], which we saw in the
previous section deteriorates when @ has large components.

With Algorithm 3.7.1 at hand, we can evaluate (3.29). Our method to estimate the
grouped t copula parameters (v, P) works as follows:

1. Estimate all pairwise Kendall’s tau and use the approximate identity p7; ~ 2 arcsin(p;;) /7

to form a correlation matrix P.

2. Find initial parameters 74 in all subgroups k with d; > 2 by maximizing the marginal
t-copula log-likelihoods. For groups with d, = 1, choose the initial estimate from
prior /expert, experience.

71

3. With initial estimates 7y, k = 1,...,5, where S is the number of groups, maximize
the copula log-likelihood log L from (3.29) over (v1,...,vs) numerically, where the
joint density f of gt,(v,0, P) is computed using Algorithm 3.7.1.

[21] stop after the second step, which means that their procedure fails to consider the
dependence between the groups correctly. We demonstrate this in the following simulation
using the function fitgStudentcopula() where we simulate, for each sample size, 10
realizations of the estimators in [21] (initial estimates) and the estimates produced by our
method (MLEs). Note that, in order to control for the effect of an estimated scale matrix,
we suppress its estimation by supplying it as argument scale.

ns <- c(50, 250, 500, 750, 1000) # sample sizes

reps <- 10 # number of repetitions for each sample size
d <- 4 # dimension

df <- c(3, 8) # degrees-of-freedom for each group

grp <- rep(1:2, each = 2) # 2 components in each group

; set.seed (1)

scale <- cov2cor(rWishart(1l, d, diag(d))[,,1]) # same known scale for all reps
fit.res <- array(, dim = c(length(us), reps, length(df), 2),
dimnames = list(n = ns, rep = l:reps, df = c("df1", "df2"),
est = c("init", "MLE")))
for(j in 1l:reps) {
set.seed(j)
sample <- rgStudentcopula(max(ns), groupings = groupings, scale = scale, df =
df)
for(i in seq_along(ns)){
fit <- fitgStudentcopula(u = sample[l:ns[i],], groupings = grp,
scale = scale, verbose = FALSE)
fit.res[i, j, , "init"] <- fit$df.init
fit.res[i, j, , "MLE"] <- fit$df

Figure 3.17 displays initial estimates on the left and MLEs on the right. As can be
seen from Figure 3.17, maximization of the copula log-likelihood jointly over all degrees-
of-freedom parameters improves the precision. For instance, even when n = 1000, the
initial estimates for df2 are much more fluctuating than the MLEs for df2. The price to
pay is a substantially longer run time, as the underlying procedure optimizes an estimated
log-likelihood.

72

8 14 A o Estimated dfl 844 0 Estimated dfl
A Estimated df2 A Estimated df2
— True dfl A — True dfl
0 | —— True df2 9 True df2
o o
S G
g & 5 & 3
£ B 5
g ale 4 :
s 9 A s = 842 g
g : ? H H
= A @ A a8 5
S a 219 S 4 A =
; f L
Il Il
A § ° °
w0 5 0w b
e 8 : g g P, . g
g g & 5] & g 8 & 8 © L §
(o)} (2]
\ T T T I \ T T T I
50 250 500 750 1000 50 250 500 750 1000
n n

Figure 3.17: Initial estimates (left) and MLEs (right) for the degrees-of-freedom parameters
of a grouped t copula with 2 groups.

3.9 Discussion

We introduced efficient algorithms to tackle important tasks for multivariate normal vari-
ance mixtures, such as estimating the distribution and log-density function as well as pa-
rameter estimation. Furthermore, we extended the algorithms to work for grouped normal
variance mixtures, and finally also addressed the problem of fitting ¢ and grouped ¢ copulas
to data. Due to the importance of multivariate normal variance mixtures for disciplines
such as actuarial science or quantitative risk management, these algorithms along with the
provided software are also widely applicable in practice. The results also exemplify the
superiority of RQMC methods even in very high dimensions over MC methods for this
class of problem.

A possible limitation of our methods is the assumption of a computationally tractable
quantile function of the mixing variable W. For more complicated distributions such
quantile function may not be available so that an avenue for future research could be
to modify our methods so that they work with a non-uniform random variate generator
(NRVG) for W (for instance, based on acceptance-rejection (AR) algorithms). While
sampling and estimating the distribution function is possible when instead of the quantile
function of W a NRVG for W is provided, this is not the case for estimating the log-

73

density (and thus for the fitting procedure) as our methods are adaptive and thus require
sampling in certain low-probability subregions of the support of W. We take up the issue
of combining NRVGs, including AR methods in Chapter 4.

The proposed “EM-MLE” method can be applied to a range of implicit copulas well
beyond the t-copula. All we need is a decomposition of the log-likelihood as in (3.28) and
that the first term involving the joint parameter matrix P can be maximized easily. This
is the case for normal variance mixture copulas, but also for more complicated models,
such as the skew-t copula. We plan on applying our “EM-MLE” method in the skew-¢ case
in future research; note that substantial complication arises when introducing moving the
skew-t copula, as there is no easy way to evaluate the quantile function of the univariate
skew-t distribution.

74

Chapter 4

Quasi-random sampling with black
box or acceptance-rejection inputs

Consider the problem of estimating the quantity
p=E(g(Y,W)) (4.1)

where ¢ : R — R is integrable and Y ~ Fy is a d-dimensional random vector indepen-
dent of the random variable W ~ Fy,. For instance, if Y is multivariate normal and W
follows a Generalized inverse Gaussian (GIG) distribution (see, e.g., [65] for an AR algo-
rithm to sample from GIG distributions), we could be estimating the expected shortfall of
a generalized hyperbolic distribution, a normal variance mixture.

We assume that there is an easy way to sample from Fy based on uniforms; e.g.,
based on the Rosenblatt transform ([106]). That is to say, assume there is a trans-
formation Ty : (0,1)%* — R? such that Ty (U) ~ Fy for U ~ U for constant
k> 0; if, e.g., Y ~ Ny(p,X) then £ = 0 and the function Ty (u) is given by Ty (u) =
A+ AP Huy),. .., ® 1 (uyg))" where A is such that AAT = 3.

In this section, we investigate how one can construct a RQMC estimator for p when
W cannot be sampled by inversion. More precisely, we assume that the (always existing)
quantile function Fyj, (u) = inf{z : Fy(x) > u} is intractable and instead we rely on other
methods for non-uniform random variate generation (NRVG), such as AR algorithms,
where at first glance it may seem hard to directly apply RQMC methods.

We investigate the above question under two sets of assumptions on what we mean by
the existence of a “NRVG” method for W.

75

1. Black-box case. Here, we assume that we have a (random) function Ry : N — R"
such that if Ry (n) = W for W = (Wy,...,W,) then W; '~ Fy fori=1,...,n. As

such, we have a “black box” function that returns samples from Fy, of any size. The
underlying sampling method could be based on MCMC, machine learning techniques
or methods based on a stochastic representation (SR), among others. In Section 4.1,
we propose methods that estimate the quantile function Fyj;, as well as re-ordering
strategies that make the output of Ry mimick the behavior of the underlying LDS.
We also perform a numerical study comparing our methods. We highlight the as-
sumption that we have only access to Ry, irrespective of whether or not W admits
a tractable density. If W does have a density that can be efficiently computed, other
methods that approximate the quantile function using this additional information
may be better suited; see [25] for a popular method. There are, however, examples
where this is not the case: if W follows a stable distribution, sampling is easy based
on the stochastic representation derived in [12], but not even the density function
can be computed without numerical integration.

2. AR algorithms for W, where the proposal (or envelope) distribution and the ac-
ceptance decision can be sampled by inversion of uniforms. The main difference to
the black-box setting is that here, we do have access to the underlying sampling
mechanism and can feed the AR sampler with a randomized low-discrepancy se-
quence (LDS). AR algorithms are typically not popular in RQMC as it is possibly
infinite-dimensional. Smoothed rejection and weighted uniform sampling is consid-
ered in [87], along with numerical results showing that these outperform AR sam-
pling in terms of convergence speed. It is shown in [116] that the F' discrepancy,
ie., sup, |F,(x) — F(x)|, where F,, and F' denote the empirical and theoretical dis-
tribution function, of a sample obtained via AR is in O(n™%) for 1/2 < o < 1. The
error convergence rate is improved by replacing the purely binary AR decision with
weights, called extended smoothed rejection. This circumvents integration of an in-
dicator function. Discrepancy properties of points produced by totally deterministic
AR methods, i.e., AR with a (non-randomized) Sobol” sequence are derived in [122].
A convergence result, error bounds and a numerical study for AR with RQMC is
given in [91]. What all previous references have in common is that they hold the di-
mension of the LDS constant and effectively use a subset of size n of the first N points
in the sequence. We investigate, among other things, whether there is a difference
between holding d constant (and thereby skipping points in the sequence) or hold-
ing n constant (thereby thinking of the first n points having potentially unbounded
dimension). This is the topic of Section 4.2.

76

To be clear, AR could even be an algorithm used within the black-box setting, but
given its prevalence, we choose to treat AR separately. We revisit this point at the end of
Section 4.2, where we combine ideas from both settings.

Section 4.3 applies the methods presented in Sections 4.1 and 4.2 to the problem of
estimating the price of a basket call option under a normal variance mixture copula de-
pendence. As mixing distributions, we use the inverse-gamma distribution (as its known
quantile function can be used as a benchmark) and the GIG distribution. In the latter
case, we also include the method based on numerical inversion of the density in [25], which
was shown to be efficient for the GIG in [77]. We perform the same experiment with the
aforementioned stable mixture, a model where the method in [25] cannot be easily applied
for sampling due to the lack of a tractable density. This section is based on [56].

4.1 Methods for the black box setting

Recall that the classical MC estimator i)' based on n samples for (4.1) can be written as

e = LN gy), i), (4.2

n n 4

ind.

where U; '~ U(0, 1)%* is independent of Wy, ..., W, ™ Fy obtained by calling Ry (n). To

simplify the notation, we henceforth assume k£ = 0; the case k£ > 0 is handled by replacing
d by d 4+ k in what follows. In order to be able to apply RQMC to the problem, we first
rewrite (4.1) as an integral over the unit hypercube. With a change of variable, we obtain

o= / 9(Ty (ur.a), Q(ugy1)) du, (4.3)
(0’1)d+1
where u = (u1.q, ugr1) with uy.g = (uq,...,uq), and we use the function @ : [0,1] — R as

a shorthand notation for the quantile function Fjj, for the remainder of this section.

If we were able to sample W via inversion, then RQMC sampling could be used to
estimate p using the following approach: Let pb,n = {up1,...,upn} C [0,1)4) where
Wp; = (Upjit,---sUpiatr) for b = 1,..., B, denote B independent randomizations of the
first n points of the low-discrepancy sequence (LDS) used; here we assume that the ran-
domization is such that each wu; ~ U(0,1)4"1. Then

R R
M[F;%MC - E Z g(TY(ub,i,l:d)7 Q(ub,i,d—i-l))a b=]-7 ey BJ (44>
i=1

7

and an RQMC estimator for 4 based on a total of nB points would be given by

ARQMC _
Hp n

ARQMC

Mm

b:

RQMC

The variance/error of figs, could then be estimated in the usual way.

However, we do not know @, so the estimators fi, ¢ in (4.4) cannot be computed.

In this section, we propose two different methods to apprommate ubQMC forb=1,...,B.
Both methods essentially replace (Q by an estimate thereof.

4.1.1 Methods based on the empirical quantile function

A simple ad-hoc method to approximate ji,"" could be to replace the @ values by a
random sample of Fj obtained by calling RW(Bn). More precisely, let W, for b =
1,...,B,i=1,...,n, denote the Bn iid samples from Fy, obtained by calling Ry (Bn).
Replacing Q(up;4+1) by Wy for b=1,...,B,i =1,...,n, is then equivalent to replacing
the last coordinate of the n points in pb,n by independent U(0, 1) variates. With W,; =

Q(Up;) where szlfg U ,1),b=1,...,B,i=1,...,n,b=1,..., B, we can write

[l R = Zg (Ty (upi1:a), Q(Uss))), b=1,...,B. (4.5)

From the inverse probability integral transform (see, e.g., [26, Theorem 2.1]), we know
that Q(U) for U ~ U(0,1) and R, (1) have the same distribution, namely Fy,. As such,
unbiasedness of ;)" (and therefore of (1/B) S) for p follows immediately.

Note that only the first d coordinates of Pb,n enter the estimation, so that the good
projection properties of coordinate d + 1 (and its interactions) are lost. Loosely speaking,
the last coordinate of the point set we are effectively using to integrate the function g
is unrelated with the first d. A better approach is to use the sampled W}, to construct
B empirical quantile functions Qn,b, b=1,...,B, and replace Q(U,;) by me(ub,i,dﬂ) =
W, (Tnup.;.0411)» Where, for b =1,..., B, we denote by Wy, ;), i = 1,...,n, the order statistics
of Wy, ., Wy, so Wiy < -+ < Wy (). We define

~b-eqf
fipy, " = ZQ(TY (wpir:a)s Wo(fnupsanl)s 0=1,..., B,
=1

78

where superscript “b-eqf” indicates that in each randomization b, the empirical quantile
function obtained in that randomization based on n samples is used (instead of Q). That is,
in each of the B randomizations (each of which requires n function evaluations), estimate
(@ by its empirical quantile function anb obtained from n independent samples from Fy
via a call to the black-box function Ry (n).

Note that as long as pb,n7d+1 = {up;a+1 1 = 1,...,n} is properly stratified, i.e., has
exactly one point in each interval of the form [j/n, (j + 1)/n) for j € {0,...,n — 1}, each
Whi, t =1,...,n will be sampled exactly once when using I5b n.d+1 to sample the empirical
quantile function Qy,. Hence an alternative way to describe the estimator ,ub °d that is
useful from an implementation perspective is to realize that if the last coordinate of a given
point uy; is the jth smallest value among those n last coordinates, we “stitch” W, ;) to
that ith point. Hence the last coordinate of ﬁbm is used to order the sample W1, ..., Wy ,.
Also note that if]51)7” is a digitally shifted or scrambled Sobol’ point set with n = b* points
or a randomly shifted rank-1 lattice, then]5b7n7d+1 is properly stratified; see [75].

The estimators ,ub “df forb=1,..., B are independent and as long as Pb,nvdﬂ is properly
stratified, they are also unbiased, see Proposition 4.1.1.

This alternative description gives rise to a slightly different estimator: Let r™(up; 4+1)

be the rank of up; 441 among up 1 4+1, - - -, Upnar+1. We then define the rank-based estimator
as
ﬂlz?-ék Z 9Ty (wpina), Weom(upia0))), 0=1,...,B. (4.6)

If an d+1 1s properly stratified, then ub k and /l};:sqf

used exactly once. Otherwise, unlike /LE sqf, ﬂ};’ Tk still uses every W, exactly once.

coincide, and each sample W} ; is

Proposition 4.1.1
Let b € {1,..., B} and let P, 4.1 be properly stratified. Then fig< (and therefore /i, D-eaf)
is unbiased for L.

Proof. Let i € {1,...,n}. We show that E(g(Ty (ws,,1:4), W, (ups.411))n)) = #- By defini-
tion, (Wpi1,-- -, Upiar1) ~ U(0,1)4 in particular, Y := Ty (up;1.4) ~ Fy is independent
of upiay1. Let 7™ (up;q11) = K (i) (a random variable) and note that (K(1),...,K(n)) is a
permutation of (1,...,n) chosen according to some distribution (which may not be uniform
because of the low-discrepancy properties of Pb,n). Then W, k() is an element chosen from
the list Wy,,..., W, according to some distribution, and the latter is an independent

79

random sample from Fyy. Hence, W), ;) and Y are independent, (Y, W, x)) ~ Fy x Fw
and the main claim follows by linearity of the expectation. m

The previous methods can be thought of as approximating the quantile function B
times, each based on n samples obtained from the black box. In order to base our sim-
ulation on a sampling mechanism closer to inversion and thereby mimicking more closely
the estimator in (4.4), we could instead construct a single rank-based quantile function
estimator based on the Bn outputs Wy,;,b = 1,...,B,¢ = 1,...,n. That is, instead of
reordering the n samples W;;, @« = 1,...,n according to up;q44+1 in each randomization
b=1,...,B, separately, we reorder the Bn realizations W;;, ¢ =1,...,n, b=1,...,B,
according to the ranks of the uy; 1. That is, we construct the estimator

Al B rk
— E g TY ubzld W(TB"(Ub,i,1)))7 b= 1,...,B, (47)
where 18" (up; g11) = k if uy; 441 is the kth smallest among the Bn uniforms uy 1 gy 1, - - -, U1 n.dr1,
-»UB1,d+1)---,UBn,d+1-

We can replace the ranks by the empirical quantile function computed from Ry, (Bn),
and obtain as an analog of i’ the estimator

AlBeqf = —Zg TY ubmd W([nBub7i71'\))7 b = 1, e ,B,

ind.

for a sample Wy, ..., W, g ~ Fy obtained by calling Ry (Bn). The superscript “1:B-eqf”

shall indicate that in all randomizations 1,..., B, the same quantile function estimator is
used. Note that ,ul Beeaf are not independent anymore for b =1, ..., B, the same applies to
~1:B-rk
lub n

4.1.2 Methods based on a generalized Pareto approximation in
the tail

The methods presented in the previous section are purely nonparametric and amount to
replacing the true quantile function) by an empirical estimate thereof. Empirical quantile
functions typically estimate quantiles away from the tail with reasonable accuracy; this does
not hold for the tails if W is unbounded. However, approximating the tail of) well is
crucial for an effective RQMC procedure to outperform MC.

80

In the following, assume that W is supported on [0,00) so that only the upper tail
needs to be estimated. Since this is typically the case in practice, this is a rather weak
assumption. If W is instead supported on R, the methods described here can be applied
to the positive and negative real line separately.

The main idea behind the methods presented in this section is the following: Given a
random sample from Fyy, estimate @ in the body (say, for u € (0,0.9)) by interpolation of
the empirical quantile function and in the (right) tail based on a fitted generalized Pareto
Distribution (GPD), which has a cumulative distribution function (cdf)

1—(1+%) Cte£0,
1 — exp (—g), if & =0,
where § > 0 and the support is z € [0,00) when £ > 0 and x € [0, —//£] when £ < 0.

Let F' be any cdf and let X ~ F. Denote by F,(z) = P(X —u < x| X > u) the
excess distribution over the threshold u. Under weak assumptions, the Pickands-Balkema-
de-Haan Theorem (see [29, Theorem 3.4.13]) implies that for large enough u one can
approximate F, by G¢ 3.

Gep(r) =

In practice, ¢ and 3 are estimated from given data. With estimates of &, u at hand, we
can compute Ggé analytically, which, appropriately scaled, provides us with an estimate
of F~!'. In what follows, assume Fy fulfills the assumptions underlying the Pickands-
Balkema-de-Haan Theorem, and denote by g¢ g the density of G¢ g. The following algorithm

returns a quantile function estimator Q) of Q).

Algorithm 4.1.2
Given Wy, ..., W, s Fy and « € (0,1), construct an estimator) for @) as follows:

1. Denote by W(yy, ..., W, the order statistics of Wy, ..., W,

2. Let T = W(wa)) and denote by N = [{i € {1,...,n'} : W; > T}| the number of
exceedances over T'. Let Wi = W44 — T for i =1,..., N be the excesses.
Then maximize the log-likelihood function

N
l(f)ﬁ) le ER) WN) - Zlogg&ﬂ(Wk)
k=1

with respect to £ and numerically over their ranges to obtain the MLEs é and B .

81

3. Return the function

) = (I = m) Wi syu) T 5W (g4, ifu <o,
)T+ § <(1_—“)_€ - 1) , otherwise,

11—«

where k = (0 +)u — [(n/ + 1)u].

Algorithm 4.1.2 does not give any error estimates, nor do we have an a-priori guess of
how large n should be. In order to obtain error estimates, one could use Algorithm 4.1.2
to obtain M independent estimators @m, m = 1,..., M, and estimate the error using
a CLT argument. That is, the (absolute) error of Q(u) = (1/M)M_ Q,.(u) for some
fixed u € (0,1) may be estimated via 3.5/vM x &, where 6 = sd(Q1(u), ..., Qu(u)). As
Qm (1) —Q(u) follows approximately a N(0, 52 /M) distribution, we can be 99.95% confident
that the error is within +3.5/v/M x 6.

With an error estimation procedure at hand, one can now construct the quantile func-
tion iteratively until a pre-specified error tolerance for the estimated absolute error is met.
That is, one can specify knots u},...,u,y € (0,1) and error tolerances €1, ...,ex > 0 and
construct the quantile function with more and more points until the error tolerance at all
knots is met. The choice of knots and error tolerances can be guided from the function g
so that important subdomains have little error, or one can put most of the knots uniformly
between 0 and 1 and the remaining ones in the tails. The main idea is summarized in the
following algorithm.

Algorithm 4.1.3
Givenng € N, a € (0,1), NRVG Ry, knots uj, ..., uly € (0,1), error tolerances €y, ..., ex >
0, maximum number of iterations i, B € N, construct an estimator) for () as follows:

1. Seti=1,and S, ={} for k=1,...,B.
2. Repeat

(a) Forb=1,...,B,
1. Set Sb = Sb U {Rw(no)}

ii. Call Algorithm 4.1.2 with input sample S;, to construct an estimated quan-
tile function Q.

~

(b) For k = 1,...,N set e, = 3.5/vVB x sd(Q1(u},),...,Qp(u})) as the estimated
error at knot uj.

82

—— Absolute error (estimated)
— —— Absolute error (true)
—— Relative error (estimated)
—— Relative error (true)

<] ©
o o
+ +
Q ()
— —
™ (90}
T T 4 T 4
T O T O
[&] — O —l
i i
g 8 g 8
P P
s & S 4 |
e, we, P A
T - T -
Q ()
— —l
(o} O
T - T -
@ | | | | | | 2 | |
00 02 04 06 08 10 le-05 1le-03 le-01
u 1-u (log-scale)

Figure 4.1: Estimated and realized absolute and relative errors when estimating the quan-
tile function of 1G(1.2,1.2) using Algorithm 4.1.3 with ny = 7500, B = 20.

(c¢) Seti=1i+1.
Until e, < e for k=1,..., N or i > imay.

3. Return the estimated quantile function Q°®#4(u) = (1/B) 20 | Qy(u).

The input argument i,,,, determines the maximum number of iterations allowed in case
convergence cannot be achieved. Note that the superscript “eqf-gpd” shall indicate that the
(interpolated) empirical quantile function is used in the body and a GPD approximation in
the tail. For an implementation, in any iteration ¢ > 1, results from the previous iterations
should be reused; for instance, the MLE (é , 5’) from a previous iteration can be used as
a starting value for the maximization of the log-likelihood function in the next iteration.
In practice one could also return the Qb, b=1,...,B, so that for any u € (0,1) one can
compute Q(u) along with an error estimate.

83

Given an estimated quantile function, say Q°@8P4 an RQMC estimator for p from (4.1)
is given by

Aeqf gpd Aeqf gpd
= 5 3 18)

where

fipn = = Zg Ty (wpira), Q8 (upsa11)), b=1,..., B,
i=1
and the inputs up; 441 and wy; 1.4 are as in the previous section. In contrast to the esti-
mators from Section 4.1.1, computing this estimator requires a two-stage procedure: First,
Algorithm 4.1.3 needs to be applied to compute the estimated quantile function @eqf‘gpd,
which will then, in the second stage, be treated as the “true quantile function“ when
computing the estimator j1°48rd,

Example 4.1.4 (Inverse-gamma example)

Consider W ~ IG(1.2,1). We use ng = 7500, B = 20, and uniform knots between 0.01 and
0.95 with relative error tolerance 0.025, one knot at 0.99 with relative error tolerance 0.075
and and another knot at 0.999 with relative error tolerance 0.1. The algorithm needed 10
iterations until convergence, so a total of 1350000 realizations of W. The approximation
is very accurate and the true quantile lies within the approximated error bounds. This
can be seen from Figure 4.1, which displays realized and estimated absolute and relative
erTors.

Example 4.1.5 (Expected shortfall of portfolio under a multivariate ¢ distribution)
The multivariate ¢ distribution is a normal variance mixture distribution and falls into the
general framework of this section, if we assume that the quantile function of an inverse-
gamma distribution is not available. We do this to compare our methods with the “best
possible” estimator from (4.4). Let p € R? and ¥ = AAT for some covariance matrix 3.
Recall that X ~ t4(v, u, X) has stochastic representation

X =p+ VWY, (4.9)

where W ~ 1G(v/2,v/2) independent of Y ~ N,4(0,X). For a continuous random variable
L ~ F with E(|L]) < oo and level o € (0,1) small, expected shortfall is the mean condi-
tional loss ES,(L) = E(L | L > F;*(a)). In our simulation, we assume that L = 17X
where X ~ t4(r,0,%); it follows from the closedness of normal variance mixtures that
L ~ t,(r,0,17X1). The value of u = ES,(L) := E(g(Y,W)) is known in closed-form; see
[85, Example 2.15]. This allows us to estimate the Mean squared error (MSE) and compare

84

it with the variance. For a range of values of the total number of function evaluations, we
report in Figure 4.2 the MSE and variance for various methods, each estimated by using
M = 50 independent copies of the estimators, each of which is based on B = 20 repetitions.
Here and in what follows, we use a digitally shifted Sobol’ sequence as implemented in the
R package qrng; see [62]. All RQMC based estimators, including MC-RQMC from (4.5),
outperform MC, though MC-RQMC gives only a moderate variance reduction. This is in
contrast to b-rk, which for small n gives MSE similar to inversion, which we recall would
not be available in a realistic setting where () is unknown.

163840.

8 Expected shortfall of the sum of 6 assets under a multivariate t. Expected shortfall of the sum of d assets under a multivariate t.
S
N V/ = Py o /X g
- @\\ 5 B - X/X =
2 o =
g l& 7 g x— :
B \& i g " 5
o [(S - |2
x = 8 x— n— = |@
cal N —, ;S i
S & = k<] / —_® <
5 o \@\@\ g . x - -
kel o R~ c
E N frgl S ok
v = © — + o
: 3 N 5 5 2 s i R
s 3 ° + @\ E ?E R e ©
I} o o] —_—— £
2 & L2 9
S 9 |-= MC(-1.04) \X\x = 84" /o/g% @ MC 3
S - MC-RQMC (-1.03)) T Vg = */A/ —#— MC-RQMC |§
~o— b-rk (-1.03) \0 £ N %0 /o o b-rk 2
< 1:B-eqf (-0.96) o3 3 4 > 1B-eqf |8
g | 1B-Tk(-1.09) S} 5w 12 / —— 1B-rk g
8 -4 eqf-gpd (-1.25) \ A 2 27, —£— eqgf-gpd |3
S |—e— inversion (-1.28) ° © 14 —e— inversion | &
T T T T T T T T T T T T T T §
le+04 2e+04 5e+04 1le+05 2e+05 5e+05 3 4 5 6 7 8 9 10 §
>
Number of function evaluations Dimension d

Figure 4.2: Mean squared errors as a function of n (left) and variances as a function of d
(right) when estimating ESgg5(L) for L = 1T X where X ~ t4(v,0,).

4.2 Combining AR with RQMC

Rather than working with a “black-box” NRVG Ry,, we assume in this section that W
can be sampled using AR and explore how we can apply RQMC in this setting. Recall
from (4.3) that we are interested in estimating p = E(g(Y,W)), so we need n samples
(Y;, W;) where W; ~ Fy,. When using AR, there is no a-priori bound on how many uniforms
are needed, so we have an a priori infinite-dimensional integration problem: If T,z denotes

85

Sample Y F~1' AR

)

Ll wg wip -.0 Ung | Urder Unde2
2 U1 U2 ... Uad | U2d+1 U2,d+2
3| us1 uz2 ... U4 | U3dr1l U3di2
41 ugn U2 ... Usg | Usdrr Uado
O | usy Us2 ... Us,d | Usd+1 Usd+2
6

Ug1 U2 ... Usd | Usd+1 UG,d+2

Figure 4.3: Schematic description of AR-n. Gray coordinates in the same row correspond
to rejected coordinates.

i Sample Y F-'* AR F!'' AR F! AR
Llug wie o0 Urg | Wigrr Uigre Uidrs Uided Uldes Uldye
2 | U1 Uz ... Ug | Unde1 U2dyo
3 Uz U2 ... U334 | U3d+1 U3,d+2
4 Ugyr Ugq2 ... Ugq | Usdyr Usdyo U4 dd3 U4d44
? Sample Y Ft ! Ft AR AR AR
Tl wig wio o0 g | Uider UL d+M+1
2 Ug1 U2 ... U2q | U2d+1 U2d+2 U d+3 U d+-M+1 U2 d4-M+2 U2 d+M+3
3l U1 Uz ... U3q | U3dil U3, d+M+1
41 ugr U2 ... Usq | Usdrl Udde2 Us gy N i+1 Uddy M+2

Figure 4.4: Schematic description of AR-d with consecutive (top) and blockwise (bottom)
coordinate assignment. Gray coordinates in the same row correspond to rejected coordi-
nates.

the AR transformation, we can write p = E(h(U)) = E(g9(Ty (Ur.a), Tar(U(a+1):00)) With
U ~ U(0,1)* and h appropriately defined. The integrand h is a non-monotone and
discontinuous function of its input uniforms, a result from the acceptance decision. This
can diminish the variance reduction effect of RQMC over MC.

We assume that W has density fy over (a,b) C R, we use the proposal density f having
the same support (a,b) with quantile function F~', and that ¢ = sup,¢ (.4 fw(2)/f(z) <
00.

A major difference between the application of RQMC and MC is that with the former,
we need to carefully assign which coordinate of the points is used to sample which random

86

variable, and there is typically more than one way to do so. As in the previous section,
we assume that the first d coordinates wy.4 of w € (0,1)* are used to sample from Fy-.
Algorithms 4.2.1 and 4.2.2 describe two AR methods to sample n copies of (Y ,W); a
schematic description is given in Figures 4.3 and 4.4. The former method, henceforth
referred to as AR-n, always uses coordinates {d + 1,d + 2} in the AR part, and moves
along the index ¢. If a point is rejected, just like the point in row ¢ = 1 in Figure 4.3, the
algorithm tries again with point ¢4 1. That is, when sampling n points we move along the
index of a randomized LDS with constant dimension d 4+ 2. In contrast, Algorithm 4.2.2
(AR-d) samples the ith point by moving along the coordinates {d + 1,d + 2,d + 3,...}
of the ¢th point in the sequence until it is accepted; see the top of Figure 4.4, where we
assume that coordinates d+2j5—1 and d+2j for j = 1,2,... are used for sampling from the
proposal and sampling from the AR decision, respectively. Another possibility to assign
the coordinates for the AR part is to consider two blocks of size M (chosen so that, with
high probability, M trials are sufficient to accept a point), where the coordinates in the
first block are used for the sampling in Step 2(a)i and the coordinates in the second block
determine the acceptance decision in Step 2(a)ii. This version of AR-d is illustrated at the
bottom of Figure 4.4.

Algorithm 4.2.1 (AR-n)
Let {uy,us,...,} C (0,1)%2 be a randomized LDS. Sample n copies of (Y, W) as follows.

1. Set =1, 0, ={}.
2. Fori=1,...,n,
(a) Repeat
i. Compute W = F~(u;4.1) and set U = u; 44o.
. fU > fw(W)/(cf(W)) set j =7+ 1 Else

Set O, = O, U {(Ty (w; 1.0, W)}
Set 7 = 7 + 1 and break;

3. Return O,,.

The main difference between AR-n and AR-d is that in the former approach, points in
the sequence are skipped, and, effectively, a subset of size n of the first N > n points in
the sequence is used to integrate g, whereas in AR-d we always use the first n points in
the sequence and move along the coordinates.

87

Algorithm 4.2.2 (AR-d)
Let {wy,us,...,u,} C (0,1)® be a randomized low discrepancy point-set. Sample n
copies of (Y, W) as follows.

1. Set O, = {}.
2. Fori=1,...,n,

(a) For j=1,2,...,
i. Compute W = F~!(u; g425-1).
i If wigyo; < fw(W)/(cf(W)):
A. Set O, = O, U{(Ty (wi1.0, W)}
B. Break.

3. Return O,,.

A potential advantage of AR-d over AR-n for numerical integration is that it really
only uses the first n points of the LDS rather than a subset of the first N > n points in

0.0 0.4 0.8
T R N N N |
" L+ s * L% -
*:‘5**"* R SRT| e T e 23
* POl I
AR G | e T S © ©
x* LTSRN I U T S i r o
* % * ok X g *
R D *
LTI MRl LM O S
PRIV R I R A B e -
Fo(W) [et e s 00
% ,, M
W R T S T ST TR e A e | o L <
P T L R ol P S e N IS (=)
E L R
R T A LR N]
S S T LA ek A
R Rk e Rt W | mor ‘*{* wxE T,
* * Fx * *
P Fa Tarxag % *:_g _g
P AS J S TR S
PR i wnt FUER RIS E
© Ea oy * T FAER T o *
I [e W R R
O |kx*x % K *y kK * Ha ko % ** ok
Vo ¥ era 2 PR R I °
I R P FTE e W T R, | |
Tk 5 8 A W % - —
5y % x * e +
P P q:)Y SRR P By [=)]
e AR TR 1 R - S I a
o K % Pt S
S I N * ORI o R F o [
Pl A Fokwe R R xR n 2]
* g xR, * Tk x Wk KK &
w7, Fax g K g P
oI P e IR T R
q k3 * H #
° *
P wx - o
F; wk * oy R ok x
*I@*x% e T T
*
R L NN BN . @ L @
Pt S A o %, < * Fake ¥ T <} =)
Ky ok # *
R x E e % ok
* PO T A L *
R R R St e
* * * #y 5
ST e P A S T T T e CDY
> S N R A < <
** > N S IR R Ha ° °
P SR L P S * a*
o E S he kK FE L g A K
* P PR S I * * *
o B e AR ek N, . - -
T b P T gt
S ox W b s
E R S #* ¥ % *
A A T T P L o L o
o o
T T T T T T T T T T T T
0.0 0.4 0.8 0.0 0.4 0.8

Figure 4.5: Pairs plot of (Fy (W;), ®(Zi1), ®(Zis)) ~ U(0,1)3, where the trivariate points
were sampled with AR-n (left) and with AR-d (right) for W ~ I'(1.2,1) and n = 28,

38

Sobol-n Sobol-d

12
J

|
|
|

0.8

Density
Density

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(z1) ®(z4)
Figure 4.6: Histogram of U; when constructed with AR-n (left) and AR-d (right).

the sequence. In order to highlight this point, assume that our integrand does not depend
on W and that n = 2. When estimating p based on AR-d, we will then use the first 2%
points of the underlying LDS and keep all its good projection properties. In contrast, using
AR-n, we only use a subset of size 2¥ of the first N > 2* points, thereby potentially loosing
some of the good projection properties of the LDS. This point is illustrated in Figure 4.5,
where we first sample (W;,Y;1,Yi2) where Y;; ~ N(0,1), j = 1,2, and W; ~ I'(1.2,1) for
i=1,...,n =27 and then set U; = (Fy (W), ®(Yi1), ®(Yiz)) for i = 1,...,n. By the
probability integral transformation, U; ~ U(0,1)3. Note that if we had used inversion to
sample the W;, the points would be exactly the original LDS. Note how Sobol’-d gives a
point set with better marginal uniformity than Sobol’-n, which is also confirmed in the
histogram of the first standardized coordinate in Figure 4.6. Note that if we had 2* bins
with £ <7 we would see a flat histogram on the right-hand side of this figure; here and in
what follows, we use the AR samplers for the Gamma distribution from [14] and [72] for
v > 1 and v < 1, respectively.

Next, we show in Propositions 4.2.3 and 4.2.4 that both algorithms produce point sets
with the correct distribution.

Proposition 4.2.3
Each x € O,, produced by Algorithm 4.2.1 has distribution Fy x Fy.

89

Proof. Tt suffices to show that the two numbers used to sample from the proposal and
the acceptance decision are independent U(0, 1) random variables. The rest follows from
the correctness of the AR algorithm; see, e.g., [32] for a proof. Let ¢ = (Y, W) € O,.
Then there is a j € {1,2,...} such that W = F~1(U;) and Uy < fi:(W)/(cf(W)) where

ind.

Uy = ;a1 and Uy = u; gy satisfy Uy, Uy ~ U(0, 1) by the randomization of the LDS. [

Proposition 4.2.4

Each x € O,, produced by Algorithm 4.2.2 has distribution Fy x Fy .

Proof. Since we assumed that the chosen LDS is randomized so that each w; ~ U(0, 1)1,
the coordinates u; 44, used in Step 2(a)i and 2(a)ii are independent U(0, 1) for j > 1. The
claim follows from the correctness of the AR algorithm. O]

Our investigation of AR-d was motivated by the argument that AR corresponds to
infinite-dimensional integration; see [10, p. 62-63], who also notes that “potential drawback
of AR methods, compared with the inverse transform method, is that their outputs are
generally neither continuous nor monotone functions of the input uniforms.” We can
address the monotonicity by using the rank transformations from the black box setting in
Section 4.1: that is, we re-order the outputs W7, ..., W, so that their order matches the
ordering of uy 441, ..., Upd+1- 0 = 2% this is exactly the b-rk method from Section 4.1
applied with the output of AR-d as a “black box”. Note that this makes the AR-d output
monotone in coordinate d + 1 of the underlying LDS. Note that with AR-n, we always use
u; 4+1 for some ¢ to sample from the envelope via inversion, so that the monotonicity in
this coordinate is already given.

Example 4.2.5 (Expected shortfall example continued)

We perform the same example as on page 84, but this time, using the AR based methods
instead of the black-box setting. See Figure 4.7. All AR based methods outperform pure
MC and MC-RQMC, and the convergence speed of AR-n and AR-d, 1:B-rk are almost as
high as for the method “inversion”, which we recall would not be available in a realistic
setting.

90

163840.

8 Expected shortfall of the sum of 6 assets under a multivariate t. Expected shortfall of the sum of d assets under a multivariate t.
o o
I L4 _® S | e |y
i §>/\ s S B ety |-
(] o s
& = e S
T & o |3
g 8\$\ £ g R
2 - _—
o v g ® ° =) /g/ O/v/+ %
. 8 @\ ‘ac: ° $/ %%¢§/& g
E g I ¢ é & 2 8 ea/ /g/Jr/éé/o g
g \ :).,_ o S <>/4»/%\/0/ =
o h g 8 /@ /g/x/ - g
3 8 £ 5 =+ X o e
2 2 |- MC(-1.04) o 5 o ¢ % /M’IC 2
g 18 \ rol S « & / A ° 5y
c 2 ¢ MC-RQMC(-1.03) s p > 8 $/+ __~" - MC-RQMC 2
i —¥— AR-d, 1:B-rk, blocks (- % \ S c / ° —#— AR-d, L:B-rk, blocks | £
5 9 |-= AR-d, 1:B-rk (-1.11) |z o + g/ —=- AR-d, 1:B-rk 8
2 Tl-s— AR-d, b-rk, blocks (-1.13) o 2 = | / —v— AR-d, b-rk, blocks | £
) y < o X) 5
° |-o- AR-d, b-rk (-1) g £ 3 i/g/ o AR-d, b-rk £
<< AR-d, blocks (-1.11) a o |3 2 / <~ AR-d, blocks kS
w | AR-d(-1.27) o o |w § |a —— AR-d g
8 - AR-n(-1.32) \v 2 = -~ AR-n =
© |—e— inversion (-1.28) & o) —6— inversion g
T T T T T T T T T T T T T T %
le+04 2e+04 5e+04 1le+05 2e+05 5e+05 3 4 5 6 7 8 9 10 }E
Number of function evaluations Dimension d

Figure 4.7: Mean squared errors as a function of n (left) and variances as a function of d
(right) when estimating ESgg5(L) for L = 1T X where X ~ t4(1,0,%).

4.3 Application: Basket option pricing

Consider the problem of estimating the value of a Basket call option with strike K, whose
payoff with maturity 7' = 1, can be expressed as

1
fee = € "E [max p ZSj - K,0 :

=1

we assume that the dependence of the log-normal assets S, j = 1,...,d, is modelled via
a t-copula. As such, the assets S; have stochastic representation

S, =FNU), U=F,(X;), j=1,....,d X ~t4(v,0,%);

here, ¥ is a correlation matrix. The ¢ copula is one of the most widely used copulas in
risk management; see, e.g., [23] for more. Pricing basket options is a popular problem to
perform RQMC experiments; see, e.g., [74]. The value of i, is not known, so we look at
the estimated variances for the following methods:

e MC: Use MC for W and Y;

91

e MC-RQMC: use MC for W and RQMC for Y, i.e., compute ™9™ in (4.5).

e AR-d: Use Algorithm 4.2.2) i.e., sample W based on AR whilst moving along the
coordinates of a point in the LDS until acceptance.

e AR-n: Use Algorithm 4.2.1, i.e., sample W based on AR whilst moving along the
index of the point in the LDS until acceptance.

e AR-d, b-rk: Use AR-d in each repetition b and additionally reorder the n samples
Wip, ..., Wy according to uipgi1,- .-, Unparr for b=1,..., B.

e AR-d, 1:B-rk: Use AR-d and sort all the nB sample points W1 1, ..., W,, g according
to UL 1,d+1y -+ Un,B,d+1-

e b-rk: Treat Ry as black-box and compute /i, x* from (4.6) for b=1,...,B.
e 1:B-rk: Treat Ry as black-box and compute ﬂif“rk from (4.7) forb=1,..., B.

e eqf-gpd: First, build gpd based estimate Q using samples obtained from the black
box Ry, then treat it as true @) and proceed with inversion; see f1°48P4 in (4.8).

e inversion: Compute the inversion based estimator fi; ** from (4.4) forb =1,..., B
using the true quantile function.

The last method “inversion” is not available in a realistic setting like the stable example at
the end of this section, but is included here to compare our methods with the best possible
one. All methods (except for MC) sample the multivariate normal random vector Y based
on inversion of a digitally shifted Sobol’ sequence.

The results in Figure 4.8 indicate that using RQMC for sampling Y gives at least a
modest variance reduction. Furthermore, treating the sampler as a black box and reorder-
ing the W samples as described in Section 4.1 gives further variance reduction. On the
right hand side we see the AR methods from Section 4.2 which all give lower variance
than the black-box methods; this makes sense as we are directly manipulating the sam-
pler with some rank reordering methods. AR-d, combined with the re-ordering methods,
outperforms AR-n.

Next, we alter this example so that we end up with a model where the quantile function
of W is not as easily available as the quantile function of the inverse-gamma distribution
(via qgamma()). To this end, we replace the t copula with a GIG-mixture copula. A
random vector X has a GIG-mixture distribution if it follows the stochastic representation
(4.9) with W ~ GIG(, \); see [65] for a definition and an AR algorithm.

92

Bsaket option with 4 assets under multivariate t.

1le-03
|
]

le-04

|
/.
I

Variance estimated from 50 independent realizations.

\l
o
~&- MC-RQMC (-0.89) 2 . =
Qg |-#- AR-d, 1:B-rk (-1.36) 0\ \i\o
& 1% AR-d, b-rk (-1.36) \E \+
= | AR-d (-1.32) o\ «
—#- AR-n (-1.51) \x
5 |o bork(-095) A
IS —|—+— 1:B-rk (-1.08) .
= [-A&— eqf-gpd (-1.36) 8
—6— inversion (-1.36)
T T T T T T T I
5e+03 le+04 2e+04 5e+04 le+05 2e+05 5e+05 le+06

Number of function evaluations

Figure 4.8: Variances when estimating ., under a t copula with v = 2.2 dof, » = 0.01,
o = 0.2 (volatility for all stocks) as a function of n.

93

The marginal distribution functions F}; of X; needed to compute the copula sample are
not known, so we denote by Fj(z) = (n+ 1)7' 3" | 1x,,<,} the empirical distribution
function of X, and instead compute the pseudo observations U; = (F’l (Xi1),---, ﬁ’d(Xid))
fori=1,...,n.

In this example, we also include the method runuran, implemented in the R package
with the same name [78]. By using the density function as input, it approximates the
distribution function numerically and builds an approximation of the quantile function
using splines; see [25]. It was demonstrated in [77] that this method works well for the
GIG distribution.

Figure 4.9 shows estimated variances as a function of n (left) and the number of assets
d (right); the lines for the methods runuran, eqf-gpd, 1:B-rk and b-rk are overlapping.
These are the best methods in terms of estimated variance. All RQMC based methods
outperform MC and MC-RQMC gives the smallest variance reductions while AR-d and
AR-n yield a modest variance reduction.

‘ runuran eqf-gpd 1:B-rk b-rk AR-n AR-d AR-d, b-rk AR-d, 1:B-rk MC-RQMC MC
CPU 0.342 3.965 0.545 0.545 0.541 0.530 0.532 0.553 0.548 0.542
REff 7.32 0.63 4.60 4.62 2.70 2.54 4.72 4.52 1.61 1.00

Table 4.1: Average run times in seconds (top) and estimated efficiencies (bottom) when
computing various estimators with sample size n = 20 x 22 to estimate i, under a 9-
dimensional GIG mixture copula with g = 0.3 and A = 0.5.

In the first row of Table 4.1, we show average run-times (in seconds) when computing
various estimators when n = 20x 22 and d = 9. All methods, with the exception of eqf-gpd
and runuran, take roughly the same time. Recall that with eqf-gpd, the idea is to estimate
the quantile function @) once only using Ry, and then use it as a true quantile function for
all subsequent simulations.The runuran method is the fastest. The second row of Table 4.1
shows relative efficiencies. The efficiency of a method is defined by (CPU - Var)~! and we
prefer methods with large efficiency. We estimate these efficiencies and standardize them
by the efficiency of pure MC. Method “eqf-gpd”, due to its long run time, is the least
efficient method, while the runuran method is most efficient, though we remark that it
is the only method displayed that had access to the density function of W. The black
box methods 1:B-rk and b-rk substantially outperform MC-RQMC, giving support for this
simple re-ordering scheme. The re-ordering also helps the AR-based methods.

Finally, we repeat the same experiment with the only change being that now we assume
that W follows a stable distribution; see [12] for a sampling algorithm for the stable dis-
tribution. Note that not even the density of a stable distribution can be easily computed,

94

Basket option with 4 assets and GIG—mixture copula.

<
o .
[0
(O] c
N S
| *\ g
g\x -8
o
| \O* %
S \gg}\ 2
c o —
g LA B ¢—¢ |3
c
> —&— MC (-1.01) % £
|- MC-RQMC (-1.19) o g
—=— AR-d, 1:B-rk (-1.71) o
$_—v— AR-d, b-rk (-1.72) S
o |- AR-d(-1.19) x |5
—%— AR-n (-1.08) o o
—+— b-rk (-1.73) N O
N~ |—A— 1:B-rk (-1.74) o
o
& 17— eqf-gpd (-1.73) \x g
Lo
[

I I I
5000 10000 20000 50000

Number of function evaluations

Figure 4.9: Variances when estimating p,,, under a GIG mixture copula with A = 0.5,
B =0.3,r=0.01, 0 = 0.2 (volatility for all stocks) as a function of n.

hindering the application of numerical integration schemes to approximate the quantile
function. In our simulation, we use the R package stabledist; see [20]. We use the func-
tion rstable() as a “black box” NRVG and the function gstable() to compare against
the inversion method; note that it relies on numerical integration. The results are displayed
in Figure 4.10, where we used the parameters o = 0.6, § = 1 and v = cos((7/2)a)/* for
the stable distribution so that the support is [0,00). Due to numerical problems with
gstable() it was only used for sample sizes up to 2 x 10%. See Table 4.2 for run times:
For the chosen sample size, even our eqf-gpd method is faster than inversion. Our rank
based methods are the most efficient methods in this example.

Basket option with 7 assets and stable mixture copula.

X %]

c

1 8 5

= % k¥

3 S E

G\vsg E

(3]

o | \ e 3

g 8 & \ 2

Q [v £

5 3 . \ 2
&

2 \ g £

v = o

_ % T S

o | MC(-099 k)

2 |- MC-RQMC (-0.95) g

& |- b-rk(-1.26) & A=

—%— 1:B-eqf (-1.26) \ ot

© —t— 1:B-rk (-1.26) Y 2

—A— — - K]

S _eqf gpd(*1.27) \ 2

& | inversion (*) (-1.35) * |>

I I I I I I I
5e+03 le+04 2e+04 5e+04 1e+05 2e+05 5e+05

Number of function evaluations

Figure 4.10: Variances when estimating .., under a stable mixture copula with o = 0.6,
B =1and v = cos((m/2)a)* r = 0.01, 0 = 0.2 (volatility for all stocks) as a function
of n. (*) The experiment for “inversion” was only performed up to n = 2 x 10*, so the
regression coefficient was computed using a smaller sample than the other coefficients.

96

‘ inversion eqf-gpd 1:B-rk b-rk MC-RQMC MC
CPU 23.8 4.4 0.4 0.4 0.4 0.4
REff 0.06 0.33 3.64 3.59 1.26 1.00

Table 4.2: Average run times in seconds (top) and estimated efficiencies (bottom) when
computing various estimators with total sample size n = 20 x 2! to estimate i, under
a 7-dimensional stable mixture copula with a = 0.9, 5 =1 and v = 1.

4.4 Discussion

We explored the question how RQMC can be applied to estimate p = E(g(Y,W)) when
all components but one can be sampled via inversion, and the remaining one W by calling
a NRVG only. Our proposed algorithms in the black box setting were motivated by the
fact that RQMC works best when combined with inversion, so that our methods aim at
mimicking this observation by exploiting the sample to estimate the quantile function. In
Section 4.2, we assumed the existence of an AR algorithm, and motivated an AR-d al-
gorithm that samples along the coordinates rather than moving along the sequence. Our
numerical results indicate that RQMC can still provide a substantial variance reduction
when combined with a NRVG. In particular we saw that the re-ordering methods outper-
form MC-RQMC (where we merely combine RQMC with pseudo-random sampling of W).
Furthermore, we saw that moving along the coordinates as we do in AR-d can give better
results than the previously proposed AR-n methods. With the methods in this section at
hand, we could extend the algorithms in Chapter 3 to estimate various quantities related
to multivariate normal variance mixture distributions, such as the distribution function.
Furthermore, we plan to address some questions of computational nature, such as explor-
ing efficient implementations of AR-d based on point sets that are easily extensible in the
number of coordinates, such as Korobov rules based on well-chosen generators a; see [75].
Finally, this section mostly focused on numerical comparisons of different RQMC-based
algorithms based on digitally shifted Sobol” sequences. In the near future we plan to study
settings under which it might be possible to obtain theoretical results demonstrating the
superiority of our proposed RQMC-based methods (perhaps based on scramblings rather
than shifts) over Monte Carlo. Here, the work [48] which focuses on quantile estimation
via RQMC may be a starting point.

97

Chapter 5

Stratified single index importance
sampling for rare event simulation

In this section, we consider the problem of rare event simulation: The goal is to estimate
the existing p = E(¥(X)) where ¥ : RY — R and X ~ Fx is such that P(J¥(X)| > 0)
is small. As mentioned in the introduction, plain MC or RQMC is often inefficient in
this setting, as a large number of simulations is required to obtain estimates with small
variance.

In many stochastic problems, the output of interest depends on an input random vector
mainly through a single random variable (or index) via an appropriate univariate transfor-
mation of the input. We exploit this feature by proposing an importance sampling method
that makes rare events more likely by changing the distribution of the chosen index. Let
T = T(X) be some univariate random variable, such as 3'X for some (well chosen)
B € RY, and assume sampling from X | T is feasible. If T has density f (resp., g) under
the original (resp., proposal) distribution (both distributions assumed to have the same
support Qr for now), let

i = 1/n) Y W(X)F(T)/g(T), T'"% g, X% Fxp(-|T=T), i=1....n.
i=1

If T’ explains much of the variability of the output, so if R? := Var(E(¥(X) | T'))/ Var(¥(X))
is large, we can choose g optimally and make the rare event more likely by changing the
distribution of X through changing the distribution of the univariate 7. Many high di-
mensional financial problems are of this nature; see, e.g., [11, 118, 119, 117].

98

In order to analyze our estimator, we work with the semi-parametric model
\I’(X) = m(T) + EXT

for some (unknown) transformation 7' : R? — R, where m®)(t) = E(W(X)* | T) for k € N
and ex 7 is a random error so that ex r | T has mean 0 and variance v*(t) = Var(¥(X) |
T =t). We say that U(X) has a strong single index structure if R? is large (say, R* >
0.9), and the resulting estimator is referred to as Single-index importance sampling (SIS)
estimator. If the proposal distribution ¢ allows for a simple way to evaluate the quantile
function G;l of g, we can further reduce the variance by applying equal stratification to

the support of T, i.e., instead of sampling T1, ..., T, ~ g, we can set T} = G71(U;) where
Ue = U(k/n,(k+1)/n) for k = 0,...,n —1 and G&(u) = inf{t € R : Gp(t) > u}

is the quantile function of T" under g. The resulting method is referred to as Stratified
single-index importance sampling (SSIS).

The performance of our procedure heavily depends on the choice of the transformation
T, which must be chosen such that i) sampling from X | T is feasible and ii) 7" explains
a lot of the variability of ¥(X), i.e., R? is as close to 1 as possible. The choice of the
transformation is clearly not unique. In our numerical examples, we typically assume that
T is a linear function of X, whose coefficients can be estimated via the average derivative
method of [113], which does not require the form of the function m(t¢) to be known.

In the joint work , the collaborator Y. Taniguchi derived expressions for the optimal
densities under SIS and SSIS, showed that the estimators have zero variance when R? = 1
and explained how our conditional sampling step reduces the effective dimension of the
problem and therefore makes RQMC particularly attractive in this setting. These results
are reviewed in Section 5.1. There, we will see that the optimal proposal distribution for
g under SIS is proportional to \/m®)(t)f(t) and this choice results in an estimator with
variance no larger than the plain MC estimator. The collaborator proposed using pilot
runs to estimate the optimal (S)SIS density, which can then be integrated and inverted
numerically using the NINIGL algorithm developed in [64].

The author of this thesis considers the problem of implementing (S)SIS in practice in
more detail. As mentioned in the introduction, relying on numerical routines like NINIGL
can be time-consuming and prone to numerical errors, as the input density is merely an
estimate of the true optimal density. We give more details on how to estimate the con-
ditional moment function using pilot-runs. Rather than feeding the approximated (S)SIS
densities to the NINIGL algorithm, we propose finding an approximately optimal g in the
same parametric family as f (e.g., a location-scale transform of the original density). We

99

detail this calibration stage, i.e., the process of estimating 7', the optimal density and a
way to sample from it, in Section 5.2. In the numerical examples in Section 5.3 performed
by the author of this thesis, we demonstrate that our methods are applicable to a wide
range of problems and achieve substantial variance reduction. After investigating a simple
linear model example, we consider the problem of tail probability estimation in Gaussian
and t-copula credit portfolio problems and show that our methods outperform those of [414]
and [13].

As our formulation of (S)SIS does not assume a specific ¥ or Fyx, it is applicable
to a wide range of problems and is efficient as long as the problem of interest has a
strong enough single-index structure. It also adapts to the problem through the design of
the one-dimensional transformation revealing the single-index structure and through the
choice of the proposal distribution. Besides its applicability to a wide range of problems,
our proposed method has the following advantages: First, as it applies IS only to the
univariate transformation variable, SIS is less susceptible to the dimensionality problem of
IS, which is discussed in [3, 68, 110]. This also simplifies the task of finding an optimal
proposal distribution. Second, SIS has a dimension reduction feature, so it enhances the
effectiveness of RQMC sampling methods. Third, by applying IS to a transformation of the
input random vector X, our proposal distribution amounts to changing the dependence
structure of the problem under study, which can have a significant advantage over methods
that only change the marginal distributions.

Concluding remarks are given in Section 5.4.
5.1 Variance analysis

To fix notation, recall we estimate p = E(¥(X)) via
= (1n) S WX (T, TR gr, X% Fxp(- |T=T), i=1....n,
i=1

where fr and gr denote the original and proposal densities for 7" with supports 2y =
(ting, tsup) (With possibly ting, tep € {£00}) and Q, and w(t) = fr(t)/gr(t) is the IS weight
function.

Furthermore, we model the output V(X)) as ¥(X) = m(7T) + ex 7, where

mW () =B(W(X)*|T), Elexr|T)=0, Var(exr|T)=*t)= Var(¥(X)|T).

100

We already introduced the coefficient of determination R? = Var(m(T))/ Var(¥(X)) (see,
e.g., [73]) and said that ¥(X) is a strong single-index model if R? is large. This can be
true for any model ¥(X), as we allow ex 7 to depend on X. However, a pure single index
model is a situation where ex r = er only depends on X through 7. In that case, it is
easy to see that E(U(X) | T) = m(T), so that overall the random variable W (X) depends
on X only through 7. However, we do not impose the assumption of a pure single index
model. Readers are referred to [101], [16] and [66] for more information on single-index
models.

Based on the representation of W(X) and using the law of total variance, we can write
Var(¥(X)) = Var(m(T)) + E(v*(T)) = Var(m(T)) + Var(ex 1), (5.1)

since E(v¥(T)) = Var(ex) —Var(E(ex 7 | T)) = Var(ex). We see that (5.1) decomposes
the variance of W(X) into two pieces: the one of the (random) systematic part, m(7T") and
the unsystematic error e x 1 of the model. Note that (5.1) holds irrespective of whether we
have a pure single index model or not.

In addition to applying IS on 7', we also propose to use stratification on 7" to further
reduce the variance; it will turn out that this essentially “stratifies away” Var(m(T)), the
variance of the systematic part of the model. More precisely, let Qf = (tinf, tsup) Where
possibly tiny = —o00 and tg,, = oo. The SSIS scheme splits 2y into n strata of equal
probability under g and draws one sample of T" from each stratum. Our estimator becomes

551 = (1/n) Z\I}(Xz)w(ﬂ)’ T, =Gy (U), Ui~U((i—1)/n,i/n),

and, as before, X, '~ Fxip(-|T=1T,) fori=1,...,n.

For our variance analysis below, it is useful to find an expression for Var(i)¢). Note
that the conditional moment functions m®* do not depend on whether we sample from fp
or gr. From (5.1) and the fact that Var(m(T)) = E(m(T))? — u? as well as E(v*(T)) =
E(m®(T)) — E(m(T))?, we find

nVar(f,) = Var(m(T)) + E(v*(T)) = E(m®(T)) — . (5.2)

As should be clear from the form of our estimators, their bias depends on the support
Q, of gp. We define

_ B SO 1 DR UP Y YN 1()
ILLSIS /Qg m(t)fT(t) dta SIS /ng (t)gT<t) dt MSIS? SSIS /(‘ng (t>gT(t) dt

101

Notice that jis depends on gr through the region 2,. The SIS and SSIS estimators are
unbiased only if gr is such that gr(t) > 0 whenever m(t) fr(t) > 0, but we do not impose
this unbiasedness assumption on gr here and will get back to this point later.

5.1.1 Optimal proposal densities under (S)SIS

We are now able to give properties of the (S)SIS estimators and the optimal (variance-
minimizing) proposal distribution of gr. As the objective of our IS techniques is variance
reduction, we call the practice of setting g to its optimal density or their approximation
as optimal calibration, and the resulting methods SIS* and SSIS*. The following is [57,
Prop. 2.1].

Proposition 5.1.1 (Variance-optimal SIS)
We have E(5®) = pgs and Var(@3®) = o2 /n. If E,(m?*(T)w*(T)) < oo, then /n(is —
fisis) — N(0,02,) as n — oco.

Suppose that U(xz) > 0 or ¥(x) < 0 for all ® € Qx. The density gr that gives an
unbiased SIS estimator with the smallest variance is

G2 (1) = MO fr(t), tE (tmt o), €= / " Sm@) () (5.3)

The variance of the optimal SIS estimator, denoted by ji$®®** is Var(iS®°t) = (¢ — p?)/n.

Remark 5.1.2 1. Proposition 5.1.1 implies that using optimal SIS gives variance no
larger than MC. Indeed, by Jensen’s inequality, n Var(gs's<*t) < E(m®/(T)) — u?,
which is equal to Var(j Mc) using (5.2). This inequality holds as an equality only
when m®)(t) is constant for all ¢ € Q.

2. If R? = 1 (corresponding to the strongest possible single index structure), then
Var(fi$5°rt) = 0: SIS provides a zero-variance estimator if m®(t) = (m(t))? for all ¢,
Wthh is equivalent to having v?(t) = 0 for all ¢, or equivalently, to having E(v*(T)) =
0 since v2(t) > 0 for all ¢. This is the same as asking Var(m(T'))/ Var(¥ (X)) = R* =
1. This is why choosing a function 7" such that the model is an as good fit as possible
is important for the SIS method to achieve significant variance reduction.

The following proposition gives the properties of the SSIS estimator and the optimal
(variance-minimizing) proposal distribution of gr; see [57, Prop. 2.2].

Proposition 5.1.3 (Variance-optimal SSIS)
It holds that E(iS%®) = ugs and, for large enough n, Var(is™®) = o2,/n + o(1/n). If

102

E, <|m()w(T)|2+6) < oo for some § > 0, 1555 is asymptotically normal as /n(i5" —

fsis) — N(0,02) for n — oo. Suppose that W(z) > 0 or ¥(x) < 0 for all € Qx and

that P;(v3(T) = 0, m(T) # 0) = 0. The density gr that gives an unbiased SSIS estimator
with the smallest variance is

g(j)“pts(t) = Cilv(t)fT(t)a te (tinf,tSUp>’ €= /tsup U(t)fT<t) dt. (5'4>

tinf

The variance of the optimal SSIS estimator 5%t is Var(asS'5or) = ¢2/n + o(1/n). If
Ps(v*(T) = 0, m(T) # 0) > 0, then fi$¥'5°** is biased.

Remark 5.1.4 1. Proposition 5.1.3 implies that using optimal SSIS gives asymptotically
a variance no larger than MC. Indeed, Jensen’s inequality implies that we have
Var(p55ert) < (1/n)E(v*(T)) + o(1/n) with equality only if v(¢) is constant for
all t € Qp. From (5.2) (and ignoring the o(1/n) term), this means Var(ji;5%"") <
Var (M), with equality only if v(t) is constant for all ¢ € Qr and Var(m (T)) =0,
which is unlikely to be the case since m(T") has been chosen specifically such that
R*~1.

2. If R? = 1 (strongest possible single index structure), then Var(ssiS.ert) = (), since

Var(fi SSIS) = 0 iff m@(t) = (m(t))? for all ¢, or equivalently v?(t) = 0 for all ¢t and
thus E(v?(T)) = 0, which means R? = 1.

3. Unless m(t) = 0, SSIS achieves variance reduction compared to SIS, as Var(i$®") <
Var(i15¥) for the same choice of gr. ThlS in turn implies that Var(p$s®ert) <
Var(55%°r*). The proposal densities g7 and ¢g7*"* defined in (5.3) and (5.4) give
estimators with smallest variance if W(x) ; 0 for all € €2, which holds for many
applications in finance (e.g., when W is an indicator and thus p a probability or when
U is the payoff of an option). If ¥ takes both positive and negative values, m(t) could
be 0 for some values of t. We can then improve the optimal calibration by setting
gr(t) = 0 whenever m(t) = 0. Since it is generally unknown and hard to estimate
which values of ¢ give m(t) = 0, this improvement may not be implementable.

4. The expression for Var(p;¥%°r*) implies that SSIS* “stratifies away” the variance

captured by the systematic part m(T') of the single-index model, so the variance of
the SSIS* estimator comes only from the error term e x r via v(t). If gr is not chosen
optimally, then Var(i3®) = o2./n + o(1/n) shows that we still make Var(m(T))
vanish by using stratification, but the contribution from v*(7) might be amplified
(compared to how it contributes to the MC estimator’s variance) if we do not choose

103

a good proposal density. Irrespective of the choice of gr it is true that the stronger
the fit of the single index model, the better (S)SIS works.

5. These results show that as long as the problem at hand has a strong single-index
structure and sampling from 7" and X | T is feasible, SIS and SSIS can be applied
and should give large variance reduction. As those conditions do not assume a specific
form for ¥ or for the distribution of X, SIS and SSIS are applicable to a wide range
of problems.

5.1.2 SIS in multivariate normal models

Suppose that X ~ Ng4(0, I;). A popular strategy for constructing a proposal distribution
under the Multivariate normal (MVN) model is to shift its mean vector of X, that is,
letting X ~ Ngy(n, I;) under the IS distribution for some 0 # 1 € R The following
proposition states that this type of IS can be achieved within our SIS framework by using
T(X) = 6" X where 0 is the normalized version of 1. Based on Proposition 5.1.1 and
Remark 5.1.2, this result thus implies that this popular mean-shifting strategy for MVN
models works well if the problem has a strong linear single-index structure based on the
specific choice of shift vector 7.

Proposition 5.1.5 (SIS in MVN models)

Let X ~ Ng4(0,1;) under the original distribution. Fix 0 # 8 € R? with 378 = 1.
Consider SIS with T(X) = 8" X. If g7 is the density of N(c,0?), then X ~ Ny(c3, I; +
(02 —1)BB7) in the IS scheme.

Proof. We use that (X | T =t) ~ Ng(Bt, I; — B8B") (see [47, Theorem 1]) to compute the
moment generating function of X. For a € R,

Ey(exp(a’ X)) = E, (E(exp(a' X) | T)) = E, <exp (aTﬁT + %aT(Id — ﬁﬂT)a)>
= Ey(exp(a’ BT)) exp <; (Is— BB)a <CaTﬁ +=(a'B)’0 >
< exp (%aﬁud _ BﬁT)a)> ~ exp (T(ef) + saT (s + (0" ~)80)

By uniqueness of the moment generating function, X ~ Ng(c¢B, I + (0% — 1)B87). H

104

Proposition 5.1.5 implies that X ~ Ny(cB, I;) if gr is chosen as the N(c, 1) density
(where we recall that the original distribution f7 is N(0, 1)), so that the previously men-
tioned mean-shifting strategy is a special case of IS (namely, by merely shifting the mean
of T instead of applying SIS*). If Var(7T) # 1 under g, the dependence structure of the
components in X does change in the IS scheme.

5.1.3 SIS and RQMC

It is widely accepted that the performance of RQMC is largely influenced by the effective
dimension of the problem. We saw in Section 3.6.2 the notion of the effective dimension
in the superposition sense (in proportion p). Another notion of effective dimension is the
truncation dimension; see [119]. Essentially, a problem has a low truncation dimension
when only a small number of leading input variables are important. Recall that X is sam-
pled indirectly in SIS, that is, 7" is generated first then X is drawn from F'x 7. Assuming
T is generated using the inversion method and via the first coordinate u; of w € [0, 1)**¢
(where k£ > 0 is problem dependent), the indirect sampling step of SIS transforms the
problem in such a way that the first input variable accounts for R? - 100% of the variance
of U(X), where R? = Var(m(T))/ Var(¥(X)). That is, the problem has a truncation
dimension of 1 in proportion R? under SIS. Therefore, if the fit of the single-index model
is good, say R? > 0.9, the indirect sampling step via T serves as a dimension reduction
technique and enhances the efficiency of RQMC.

5.2 Calibration in practice

To apply (S)SIS in practice, we must estimate the optimal transformation function 7" =
T(X) and construct an approximation g** for the optimal density g**. We call the stage
in which these two tasks are performed the calibration stage. Furthermore, the calibrations
in (5.3) and (5.4) require the knowledge of the conditional mean function and variance
function, respectively. As these are rarely known in practice, they must be estimated in

the calibration stage as well.

5.2.1 Estimating the optimal transformation 7

In what follows, we assume that T is a linear function of the components in X, i.e.,
T = BT X for some B € R% note that if X is multivariate normal, then 7 is univariate

105

normal and sampling from X | T is straightforward. To find 3 that maximizes R?, we use
the average derivative method of [113], which essentially allows us to estimate 3 as if we
met the assumptions of a linear regression. That is, we sample independent realizations

U(X;) =V, fori=1,...,n; (say, ny = 1000) and compute the sample covariance matrix
Y x x as well as the sample cross covariance of X,..., X, and (Uy,...,V,,), say Xx v
to obtain

B=2xxExu.

In some applications, we may use only a subset of the components in X; in later
examples, for instance, we only use the systematic risk factors in a credit model to build
our transformation 7. Sometimes one may even not need to estimate 3, for instance, if
it is clear that the d components in X are equally important, one can simply set B =

(1/v/d,...,1/V/d).

5.2.2 Finding the optimal density

The calibration in (5.3) requires the knowledge of the conditional second moment function
m®(t) = E(V*(X) | T =t) for all t € Qyp, which, of course, is not known; similarly, the
conditional variance function v? required for the calibration in (5.4) is not known either.
We now describe how to calibrate (5.3) in practice; the calibration of (5.4) can be done
similarly.

Our first ingredient is the construction of an estimate of m® () = E(V3(X) | T = t)
for all t € Q7; we suggest using plain MC for this purpose. To this end, let t; < --- <ty
be knots at which the function m® is to be estimated (e.g., M = 20 equally spaced points
in the relevant range). Choose some small pilot sample size n,,, (for example, 5% of the
total sample size n). For each t;, sample n,,-many realizations from X | 7' = t; and
estimate m® (t;) by its empirical equivalent for j = 1,..., M. Then utilize smoothing
splines (see, for example, [105]) and only those t; associated with a positive estimate to
construct an estimate M for all t € Qp; for those t where m(®(t) < 0, one can either
leave them as m(?(t) = 0 (which may lead to bias as discussed below) or set m® to be
some positive function (e.g., the error function) that resembles the lower tail of .

Having constructed an estimate for m®), we can set ¥ oc \/m®@(¢)f(t) for t € R.
However, g7* rarely belongs to known parametric families of distributions that are easily
sampled from. One can use numerical techniques such as the NINIGL algorithm to ap-

proximate the quantile function of a distribution given its unnormalized density; see [64].

106

This approach, however, has three drawbacks: i) sampling from a numerically constructed
density is time-consuming and can be prone to numerical problems; ii) the normalizing
constant needs to be estimated, and iii) bias can occur when ¢3** does not have the same
support as g5, Which in turn happens when M) (t) = 0 even though m®(¢) # 0 for some
set D with fD) dt > 0.

The third drawback can be alleviated if we can define () (¢) to be positive whenever
m®(t) is (for example, by assuming some lower and upper tail behaviour). Furthermore,
recall from Proposition 5.1.3 that (5.4) gives a biased estimator if Py(v*(T) = 0, m(T) #
0) > 0 which in some cases can be debiased. For instance, if v(t) > 0 for all ¢ € ;, but
the estimated v(t) = 0 for ¢ > t,.x for some ¢, € R and m(t) = ¢ for some constant ¢
for ¢ > tiax (for instance, if u is a probability, then typically m(t) = ¢ =1 for t > tpax). If

7y SSIS

(55" is constructed using v, we find
tmax o0
E(f,™) = / m(t)fr(t) dt = p — / m(t) fr(t) dt & p— Py(T > tax);
—o0 tmax

(55 can therefore be debiased by adding c¢P (T > tiax)-

The second drawback can be addressed by using weighted IS (so that the normalizing
constant cancels out); see [76, Section 4.5]. Alternatively, the normalizing constant can

be estimated as follows: Let g77,(t) = Vim@g(t) denote the unnormalized density, and
Ty,..., T, ™ g (obtained, for instance, using the NINIGL algorithm). Now construct

an estimate of the density of T, ..., T}, such as the kernel density estimator, and denote
this estimated density by h; note that A is normalized and that each of h(T;) /97, (T;) for
¢t =1,...,n is an estimator for the normalizing constant. As such, we suggest using the
sample med1an of {h(Tl)/ggfz(1)y B(Tn)/ggfg(T,)} as an estimator for the normalizing

constant.

The first drawback, that is, the construction of an approximation to the quantile func-
tion of g7 being both slow and potentially prone to numerical problems, is most severe.
Below, we propose an alternative method, namely by setting ¢7*'(t) = 1/of((t — k)/o)
for carefully chosen k € R and o > 0. In other words, we suggest using a location-scale
transform of the original density as proposal density and will therefore call this method
SIS“?. While this procedure does require estimation of k£ and o, it does not suffer from
any of the three aforementioned problems: i) if we can sample from f, we can also sample
from f((t — k)/o)/o; ii) there is no normalizing constant or density to be estimated; iii) if
f is supported on R, f and f((t — k)/o)/o have the same support, so that the resulting
estimator is unbiased.

107

The idea behind using a location-scale transform arises from the observation that in
many practical examples (as will be seen later) the optimal density has roughly the same
shape as the original density. As such, we try to find k and o so that 1/of((t—k)/o) is ap-
proximately g7 (t). Denote again by g77, (t) = /M3 (t) f(t) the unnormalized, estimated
optimal density and assume that the mode of fr is at zero (otherwise, shift accordingly).
Now find £* = argmax, 7", (t) numerically; this makes sure that the theoretical and approx-
imated densities have (roughly) the same mode, thereby both sample from the “important
region”. Having estimated k*, the next step is to compute ¢ such that it minimizes the
variance of the resulting estimator. More precisely, given a sample Ty,..., T, from f,
we can estimate the variance of the estimator for a given o as follows: Set Tl =k*+oT;

@ | T | = .
Ve and sample X; | T; for i = 1,...,n,,. The second moment of the

IS estimator (written as a function of the scale o) is then

and w; =

Npilot

V(ie) =) W(X)w!, o>0. (5.5)

i=1

We can now solve ¢* = argmin_., V(o) numerically. Note that due to the nature of a

location-scale transform, we only need to sample T, ..., T, . once. Intuitively, £* shifts

the density to the important region, while o* scales it appropriately. If computing V(o) is
very time consuming (for example, when the sampling of X | T is complicated), one can
set 0* = 1; the resulting method is then called SIS* instead of SIS*“.

Algorithm 5.2.1 (Calibration and estimation stage for estimating p via SIS*7)
Given knots 2y, ..., 1., a total pilot budget n,,, and knot-sample size n,,,., target sample
size n, estimate p via:

1. Estimation of the direction vector.
(a) Sample X; Wofxfori=1,... s Mpier a0d compute W(X;) =: W, 0= 1,..., N
(b) Compute Xx x and X x gand set ,é = E;({XEX7\I,.

2. Estimation of ¢* and o*.
(a) For each k =1,...,n,,, sample X) fxir(- | te) for j =1, Nyper.-

(b) Utilize smoothing splines' through (s, (1/Mume) 275" W(X;£)%), k=1, yiier,
to construct an estimate for m? (¢) for t € R.

n the case when W is an indicator, use a logistic regression (available, for instance, via the R function
glm()) with ny,. = 1 instead.

108

(¢) Find ¢* = argmax, /3 (t) f(t) numerically.
(d) Sample T1,...,T, " f and find 0* = argmin,., V(o) with the function V'

) = Mpilot

from (5.5) numerically.

3. Estimation of p.

nd. f(TZ)

/ i % el R
(a) Sample T},...,T! '~ f, set T; = ¢* + 0*T; and compute w; = T /ey o

1=1,...,n.
(b) Sample X; ™ fxip(- | T;) fori=1,...,n.
(c) Return 5% = (1/n) X", U (X,;)w;.

Remark 5.2.2 1. Algorithm 5.2.1 can be easily adapted to accommodate quasi-random
numbers and stratification.

2. The effort for the conditional sampling needed in Steps 2a, 2d and 3b is problem
specific — for some problems, samples of X | T = ¢; can be easily transformed to
samples from X | T' = t, for t; # to, making these steps very fast; in some other
problems, the conditional sampling is more involved.

3. Our proposed SIS method can also be combined with other VRTs. For instance, in
Section 5.3, we combine conditional MC (CMC) and SIS to estimate loss probabilities
of a credit portfolio whose dependence is governed by a t-copula.

5.3 Numerical examples

In this subsection, we perform an extensive numerical study to demonstrate the effective-
ness of our proposed methods. We start with a simplistic linear model example, in which
case calibration of the optimal densities can be done easily. This allows us to investigate
the effect of replacing g7 by ¢7**. Next, we apply our SIS and SSIS schemes to a credit
portfolio problem under the Gaussian copula model studied by [44]. The same financial
problem but this time using a more complicated t-copula model is studied at the end of

this subsection.

109

5.3.1 Linear Model Example

Let L = oT + ep where T ~ N(0,1), 7 | T ~ N(0,s%) and a? + s> = 1. L has a single
index structure when o? ~ 1 since R? = Var(m(T))/ Var(L) = Var(aT) = o?. Assume
interest lies in estimating the probability p; = P(L > 1) = ®(I) = E(L{z>;y) for some large
[; note that we can approximate the true value of p; efficiently with high precision since
L ~ N(0,1). Furthermore it is easily seen that p/(t) = P(L > 1| T =1t) = ® ((I — at)/s) for
[,t € R. Since the integrand W in this setting is an indicator, we find from Proposition 5.1.1

that g (t) oc \/pu(t) fr(t).

Unlike in this simplistic setting, p;(t) for ¢t € R is unknown in practice as discussed
in Section 5.2; thus, this setting serves as an excellent example to also compare whether
approximating ¢g7* by g7 has a significant effect on the accuracy of the estimators. Sam-
pling from the true optimal densities is performed using the R package Runuran of [78].
We consider the methods SIS*™ (constructed using known p;(t)), SIS* (approximated p;(t)
and NINGL), SIS* and SIS*?

For the two settings of a? € {0.7,0.99} (corresponding to a weaker and stronger single
index structure), we estimate p; for | € {3,4, ..., 7} using the five aforementioned methods.
For each value of [, the optimal density is calibrated separately. In all examples, we use a
sample size of n = 10° and a pilot sample size of 5 x 10*. We repeat the experiment 200
times.

Figure 5.1 displays on the left the optimally calibrated and approximated IS densities.
The true optimal density is bell shaped, so it is well approximated by a normal density. It
can be confirmed from the plot that in this case, all IS densities seem to cover the important
range. The right of Figure 5.1 displays a boxplot of run-times needed to estimate p;; note
that the run-time does not depend on « or [. This plot, however, should be interpreted
with caution as it highly depends on how the pilot runs are implemented.

Figure 5.2 displays mean relative errors and Figure 5.3 displays estimated variances;
recall that we know p; here. The relative errors for the different methods are similar, though
SIS*? seems to give smallest errors. A possible explanation might be that the simplicity
of that method (e.g., in terms of the support) relative to numerically constructing the
optimal density via NINGL might outweigh the benefit of the latter having slightly more
theoretical support. Furthermore, note that the IS methods perform much better when
R? = o? is larger, i.e., when the single index structure is strong, as expected.

110

5.3.2 Tail probabilities of a Gaussian copula credit portfolio

In this section, we study the effectiveness of the proposed methods for a credit portfolio
problem studied in [44], where the goal is to estimate the probability of large portfolio losses
under a normal copula model. We compare our proposed methods to the IS technique of
Glasserman and Li, to which we refer to as G&L IS.

Problem formulation

Suppose that Y, denotes the default indicator of the kth obligor with exposure ¢; and a
default probability of p, for £ =1,...,h. The incurred loss is then L = 22:1 crYy. Let

Vi = Lixso-101-pp)}s Xk = @21 + -+ agaZqg + bper, ~ N(0,1), k=1,... h,

where

h
(Z1,.. . Za) ~Na(0,14), £1,...,8, N0, 1), > ap; <1, b=
j=1

The ay; represent the kth obligor’s factor loadings for the d risky systematic factors; the
choice of by ensures Xj ~ N(0,1). Our goal is to estimate P(L > [) for small [> 0.

As in [44], we consider a portfolio with A = 1 000 obligors in a 10-factor model (i.e.
d = 10). The marginal default probabilities and exposures are p;, = 0.01- (1 +sin(167k/h))
and ¢y = ([5k/h])? for k = 1,... h, respectively. The marginal default probabilities vary
between 0% and 2% and the possible exposures are 1, 4, 9, 16 and 25, with 200 obligors
at each level. The factor loadings ay;’s are independently generated from a U(0, 1/ \/E)
Letting Z = (Zy,...,Z3)" and € = (e1,...,e,)", we write L = L(Z,€), i.e., the vector X
to which we have referred throughout this work is given by X = (Z,) for this example. We
investigate whether or not L has a single-index structure. Let T' = 0" Z where 8 € R? such
that 070 = 1, so T ~ N(0,1). We estimate 8 that maximize the fit by using the average
derivative method of [113]. The estimated @ has almost equal entries close to \/m This
makes intuitive sense, as each component of Z is likely to be equally important because
the factor loadings are generated randomly. The left side of Figure 5.4 shows the scatter
plot of (T,). The figure reveals the single-index model fits L well even in the extreme tail,
implying SIS based on this choice of T" will give substantial variance reduction. The right
side of Figure 5.4 displays the original density of T, the optimally calibrated SIS* density
as well as the estimated function p;(t). Note that the optimally calibrated density’s mode
substantially differs from the original one.

111

Proposed estimators

The method of [44] consists of a two-step procedure. In a calibration stage, an optimal
mean vector u € R? is found by solving an optimization problem minimizing the variance of
the resulting IS estimator. Next, one samples Z ~ Ny(u, I;) and computes the conditional
default probabilities py(Z) = P(Y, = 1 | Z) = ®((a] Z — x1)/by), which enter another
optimization problem used to find a number 6 € R so that g;(0, Z) are variance minimizing
default probabilities. Given Z, we know that Y7, ...,Y} are independent and can therefore
easily sample the loss via L = S0 ckl{vy<gi0(z)y where (Ui, ..., U,) ~ U(0,1)". Finally,
the estimator 1yy; - w(Z,L) where w denotes the IS weight function is an unbiased
estimator.

Our method SIS*? proceeds as described in 5.2.1; SIS* sets the scale to unity while the
SSIS methods also stratify. Once Z | T is sampled, we sample Y}, from pi(Z) independently.
We also include SIS* and SSIS*, where the function p;(t) is estimated as before and the
quantile function of the optimal distribution is estimated via the NINIGL algorithm, in
our experiments; see also Figure 5.4.

Comparison

We compare SIS and SSIS to G&L IS by computing estimates, standard errors and com-
putation times for { € {100, 1000, 2000, 3000,4000}. All methods require a calibration
stage. For this comparison, we optimize the proposal distributions at each loss level of [
separately and estimate the corresponding loss probability. Table 5.1 shows the estimated
probabilities along with half-widths of estimated confidence intervals (CI) in brackets. The
last column shows the average computational time of each method over all loss levels [.
All examples used n = 5000 samples and 1000 samples for the calibration.

We see that all our methods lead standard errors smaller than G&L IS, while the
estimated Cls for both methods are typically overlapping, supporting the correctness of
both approaches. Given the small run-time, unbiasedness and small estimated errors, we
can conclude that SSIS* is the best estimator for this problem. This supports our claim
that the optimal density of T" can be quickly and accurately approximated by a location
scale transform of fr. Note that SIS* and SSIS* are particularly slow, as it involves
numerically approximation the quantile function corresponding to the optimal gr.

112

1 | 100 1000 2000 3000 4000 Avg run-time (sec)

G&L IS 0.28 0.0079 0.00077 9.2e-05 1.1e-05 2.45
(0.0078) (0.00036) (4.1e-05) (6.3¢-06) (8.8¢-07)

SIS* 0.28 0.0081 0.00076 9.2e-05 1.1e-05 6.62
(0.0068) (0.00021) (2.1e-05) (2.4¢-06) (3.5¢-07)

SSIS* 0.28 0.0082 0.00077 9.5e-05 1.1e-05 12.56
(0.0046) (0.00014) (1.4e-05) (1.7e-06) (2.5¢-07)

SISH 0.28 0.0077 0.00074 8.6e-05 le-05 1.41
(0.0086) (0.00039) (4.2¢-05) (5.5¢-06) (6.8¢-07)

SSISH 0.28 0.008 0.00075 9.1e-05 1.1e-05 1.45
(0.0062) (0.00028) (2.9¢-05) (4e-06) (5.1e-07)

SISH 0.28 0.0082 0.00077 9.4e-05 1.1e-05 2.45
(0.0077) (0.00034) (3.3¢-05) (5.2¢-06) (4.6e-07)

SSISH? 0.28 0.0081 0.00075 8.9e-05 1.1e-05 2.2
(0.0059) (2e-04) (1.9¢-05) (2.3¢-06) (3¢-07)

Table 5.1: Estimates and CI halfwidths when estimating p; in the Gaussian Credit Portfolio
problem with h = 1000 obligors and d = 10 factors for various | and methods. The last
column displays average run-times.

5.3.3 Tail probabilities of a t-copula credit portfolio

In this section, we apply SIS to a credit portfolio problem under a ¢-copula model, which is
the model just studied with a multiplicative shock variable included. This ¢-copula model is
a special case of the models with extremal dependence studied in [4]. Unlike the Gaussian
copula, the t-copula is able to model tail dependence of latent variables, so simultaneous
defaults of many obligors are more likely under the ¢-copula model than under its Gaussian

Table 5.2: Relative error reduction factors RE(MC)/RE(RQMC) for the Gaussian credit

1

| 100

1000 2000 3000 4000

G&L IS
SIS*
SISH?
SSISH

1.5 1.5
1.3 1.3
1.6 1.5
1 1.1

1.5

1.2

1.9
1

1.5 1.6
1.7 1.5
1.7 1.6
1.1 0.9

portfolio with h = 1000 obligors and d = 10 factors for various [and methods.

113

copula counterpart.

Problem formulation

In the t-copula model, the latent variables X = (X, ..., X) follow a multivariate ¢ dis-
tribution, more precisely,

X =VWl(an1Zy + -+ -+ agaZa+ bre), k=1,...,h,

where W ~ IG(v/2,r/2) is independent of Zy,..., Zg, e, ~ N(0,1). Accordingly, we

define Y, = 1 (Xt (1—pp)}- We assume the same parameters as in the previous subsection,
except that now we have h = 50 obligors, and the two settings for the degrees-of freedom
ve{512}. Let Z=(Zy,...,Zy)" and € = (&1, ...,e1,). We consider two transformations.
For the first transformation, let Zy, = ®~(Fy (1)) and

Tl(W> Z7€> = BWZW +/8L|—Z7

where S € R and B € R? are such that 8%, + 3. B, = 1. Then, T} ~ N(0,1) since
Zw ~ N(0,1) is independent of Z.

Our second transformation relies on the random variable S)(Z,e) = P(L > | | Z,¢)
where we note that P(L >) = E(S;(Z,e)). Based on this and the fact that, given a
sample Z, g, the function S; can be computed analytically, [13] propose to use CMC, i.e.,
estimating P(L > [) by the sample mean of S;(Z;, €;) for independent Z;,e; fori =1,...,n.
We propose to use this CMC idea combined with SIS by using the transformation

T,=085Z

with Bg such that 84 Bs = 1, which implies Ty ~ N(0, 1).

The second method based on CMC, is very effective as the variable W which accounts
for a large portion of the variance of L, is integrated out. Furthermore, [13] additionally
employ IS on (Z,e) to make the event {L > [} more frequent using the cross-entropy
method; see [22, 107, 108]. We refer to Chan and Kroese’s method as C&K CMCHIS. The
numerical study in [13] demonstrates that C&K CMC+IS achieves substantial variance
reduction. We will show in our numerical examples below that combining their CMC idea
with our proposed single index IS method gives even greater variance reduction.

114

Fit of single-index models with and without conditional MC

We first investigate whether or not L and 5; have single-index structures. As before,
the coefficients 3 that maximize the fit of the single-index model are estimated using the

average derivative method of Stoker [113].

Figure 5.5 shows scatter plots of (71, L) and (75, S;) for v = 12 and v = 5. The figures
show that there is a strong association between 77 and L but the dependence is stronger
when v = 12 than when v = 4. When v = 4, there is a significant variation of L that cannot
be captured by the single-index model based on 7} in the right-tail. This observation holds
more generally; the smaller v (i.e., the stronger the dependence between the X;), the worse
the fit of the single-index model becomes in the right-tail. When investigating the fit of
(T3, 5)), recall that the main advantage of CMC is that W is integrated out; the resulting
estimators should be less sensitive to the degrees-of-freedom v, which is the case in the
plot. We can see that the fit of T5 is excellent even in the outer right-tail for all settings
of v and .

Comparison

We compare the original C&K CMC+IS from [13] with SIS with and without CMC. We
additionally investigate whether employing RQMC yields a variance reduction. To this end,
we estimate p; for [= 100 for various n and methods; see Figures 5.7 and 5.8. Variances
are estimated as the sample variance of B = 20 repetitions.

Note that for fixed v, the data for C&K CMCHIS are identical independent of which
transformation is used, so these lines can be used as reference. As expected, variances with
the CMC idea are smaller than without the CMC idea. Note further that all our (S)SIS
methods combined with 7} (which does not integrate out W) give smaller variances than
C&K CMCH+IS, which does integrate out W.

5.4 Concluding remarks

In this chapter, we developed importance sampling and stratification techniques that are
designed to work well for problems with a single-index structure, i.e., where the response
variable depends on input variables mostly through some one-dimensional transformation.
The main theme of our approach is to exploit the low-dimensional structure of a given prob-
lem in rare-event simulation by introducing a conditional sampling step on this important

115

transformed random variable and using optimal IS. Expressions for optimal densities of
said one-dimensional transformation which achieve minimum variance were derived by Y.
Taniguchi. The author of this thesis then provided a detailed description of a calibration
stage in practice, as the optimal density expressions cannot be computed in practice.

The theoretical framework and numerical examples suggest substantial variance re-
duction for problems having strong single-index structures. Our numerical experiments
revealed that the proposed methods outperform existing methods that were specifically
tailored to the Gaussian and t-copula credit portfolio problem. The success of our method
in this framework highlights the flexibility and wide applicability of our approach.

By combining our single-index framework with RQMC methods, we achieve even more
precise estimation results, thanks to the dimension reduction feature of our conditional
sampling step.

While our framework allows for non-linear transformations, these are typically difficult
to find and sample from, which is why the numerical examples assumed T to be linear.
The work in [94] could be helpful to find non-linear indices. We also note that there exist
many other low-dimensional structures studied in the literature and they may provide a
better fit than single-index models do. For instance, the structure assumed by the sufficient
dimension reduction can be seen as a multi-index extension of the linear single-index model;
see [16, 17, 1]. We would like to develop importance sampling techniques for problems based
on other low-dimensional structures in future research.

116

—— Original o ;
SIS N
= SIS*
N — sis
— sSIst° o |
N
n
9
3
0 |
2 5z "
f=4 o
8 o | I o
— "= :
o | !
p !
0 _| °
o - o o
2 — Sl o
o 8
o o I
T T T T T T T 3
T T T T T
-2 0 2 4 6 8 10 MC SIS** sis* sis* sIs*°

Figure 5.1: Left: Calibrated densities for o® = 0.99, [= 5. Right: Run-times for each
method including pilot runs.

117

MC estimators RQMC estimators

— MC — MC
—— sism —— sIs*
— SIs* — SIS
S — sis* S — sis*
i o - .o
3 sis™® g SIst°
- Stratified ---- Stratified
— <9 -]
s 74 s 3 4
o 3 o 3
o ~ o ~
2 Ny S £ S
o ‘\\ " > n
T o ~ s X o "
c — c —
s 1 s 7 4
[} 3 Q @
0 N\ 0
4 ‘ D
3 a
— —
3} (3]
o T T T T T & T T T T T
— —
3 4 5 6 7 3 4 5 6 7
| |
MC estimators RQMC estimators
— McC — MC
—— SIS* —— SIS*
— SIS* — SIS
5 — sis* s — sis*
1 1,0 1 < .o
3 SIS] A sist
- Stratified . ---- Stratified
- « - juct
s 74 s 3
o & o &
2 $ 2 &
ko] o] =]
ol " o i
@ B @ 3
c 3 s c 2 <]
s 1 S 7 4
(] 3 (5] @
= — s -
wn wn
4 5
3 3
— —
(3} [3¢]
o T T T T T o T T T T T
— —
3 4 5 6 7 3 4 5 6 7

Figure 5.2: Mean relative errors when using pseudo-random numbers (left) and quasi-
random numbers (right) for a? = 0.7 (top) and a? = 0.99 (bottom).

118

MC estimators RQMC estimators

— MC
—— Sls™
— SIs*
"
8 SIS S
T - F -
[N [
= - Stratified =
o = - @
=3 — 14 -
s 9 g 9 |
s 3 s 3
- ™~ °
2 S 2
: .
™
-,] s o
g < J & 9 |
§ 3 s 3
[} 5]
= =
s [se]
g 4 g4
[[
- -
< <
T - g 4
Q T T T T T Q T T T T T
3 4 5 6 7 3 4 5 6 7
| |
MC estimators RQMC estimators
— McC — MC
—— SIS*
— SIS*
"
8 sis S
+ x4 T e
(]]
- - Stratified — - Stratified
8 8
— L=}
s 2 s 9 |
3 [} I @
g = > g = >
2 o 3 o
2 o E T 2 T ——)
g 1 g I
£ ™ £ ™
b7 o (=1 7S N o
¢ 9 g <9 | S S
5 8 § 3 S
[} Q
= =
® - ™
g &
[]
— —
< <
g - g 4
2 T T T T T L T T T T T
3 4 5 6 7 3 4 5 6 7

Figure 5.3: Mean estimated variance when using pseudo-random numbers (left) and quasi-
random numbers (right) for a? = 0.7 (top) and a? = 0.99 (bottom).

119

— OCIS
—— Original Density

| — n()

15

3000

2000
1
1.0

L
3
o
Density

1000
1

-

0.5

0.0

O — eew

Figure 5.4: Plot of Transformed variable (T") vs Portfolio Loss (L) based on 10 000 obser-
vations (left) and OCIS density calibrated to [= 3000 (right).

120

200 300 400 500
| | | 1

100
|

200 300 400 500
| | | 1

100
|

T T,

Figure 5.5: Scatter plots of L vs T} (left) and S; vs Ty (right) where [= 500 and v = 5
(top) and v = 12 (bottom).

121

Q]
© —— OCISapp g. - —— OCISapp
---- locSIS [---- locSIS
locscaleSIS locscaleSIS
©
o | (6]
(= =
- O
= 2
S <
> = > o~
g 3. PR <
c o = < - o
@ S o o =2
[a] 5 a) 5]
c £
[S
L k7]
g
3 4 3 :
o o |
o (=}
T T T T T T T T
-5 0 5 10 -5 0 5 10

Figure 5.6: Optimally calibrated densities for [= 100 and the transformations T} (left)
and T; (right).

122

df=5,1=100, B = 20, dim = 60 df=5,1=100, B = 20, dim = 60

— OcsSIS
— locSIS
—— locscaleSIS
C&K CMC+IS

OcSIS
locSIS
locscaleSIS

C&K CMC+IS
---- RQMC

2e-08

0.0087
1
2e-09 5e-09

Estimate

0.0085
1
Transformation T,
Estimated variance

Transformation T,

5e-10

0.0083
1
le-10

T T T T T T T T T
20000 40000 60000 80000 120000 160000 50000 100000 150000

df=5,1=100, B = 20, dim = 60 df=5,1=100, B = 20, dim = 60

— OcsSIS
— locSIS locSIS
—— locscaleSIS locscaleSIS
C&K-CMCHIS C&K CMC+IS
“RQME—— o ---- RQMC

QOcsIs

2e-08

Estimate
0.0087
1
2e-09 5e-09

0.0085
1

Transformation T, and CMC
Estimated variance
5e-10

Transformation T, and CMC

0.0083
1

le-10

T T T T T T T T T
20000 40000 60000 80000 120000 160000 50000 100000 150000

Figure 5.7: Estimates (left) and estimated variances (right) as a function of n for v = 5.

123

df =12, 1=100, B = 20, dim = 60 df =12, 1=100, B = 20, dim = 60

2 OcSIS 3 — OcSIS
S - locSIS o] — locSIS
=) locscaleSIS © ~— locscaleSIS
/\/\ C&K CMC+IS © C&K CMC+IS
© — ? ---- RQMC
< p [}
o - N
= Q
e =8 . o
c @ c
L 2 5 o 2
T X © > o ©
E 8 E 5 i £
» o S 2 v S
w g E 2
© < z 3 <
S ~ wo LA =
o N
S
<
g 7
S 8
T T T T T T T T T
20000 40000 60000 80000 120000 160000 50000 100000 150000
n n
df =12, 1=100, B = 20, dim = 60 df =12, 1=100, B = 20, dim = 60
2 ocsIS] — 0OcsIs
S locSIS & 7 — locSIS
o locscaleSIS w0 ~~— locscaleSIS
C&K CMC+IS S C&K CMC+IS
@ o I . ---- RQMC o
o s N s
o
o o © O
2 = 7 2
o © g [
g 3 C 8 3 o
E & S o b s
? o = L =
w < © ©
E E o E
g s 4 9 A S
&1 : & :
o = =
g o
8 T
= 8
T T T T T T T T T
20000 40000 60000 80000 120000 160000 50000 100000 150000
n n

Figure 5.8: Estimates (left) and estimated variances (right) as a function of n for v = 12.

124

Chapter 6

RQMC on triangles

So far we have considered RQMC methods where the low discrepancy sequence was con-
structed on the unit cube [0,1)?. There are, however, also constructions over non-cubical
spaces, such as triangles and spheres, that enjoy wide applicability; see [5]. In this chapter,
we focus on the problem of integrating functions over triangles, a problem appearing in
computer graphics.

Recall from the introduction that [6] recently provided two constructions of points with
low discrepancy on the triangle, the triangular vdC sequence and the triangular Kronecker
lattice. Both their methods can be used to sample deterministic points with vanishing
parallelogram discrepancy, though only the lattice approach achieves the optimal order
O(log(n)/n); the parallelogram discrepancy measure is similar to the one used in [10]. A
potential limitation of their lattice approach is that it is not extensible: If an estimator is
constructed based on ny points and it is found that a larger sample size, say ny > n; is
needed to obtain an error small enough, one needs to generate a new point-set of size no,
rather than just adding no — ny points to the already constructed lattice.

The contributions of this chapter are the following: i) We provide an extensible rank-1
lattice construction for points in the triangle; ii) We show that the triangular vdC with n
points projects onto 24/n points on the z- and y-axis; and iii) we perform a numerical study
comparing all methods, including some of the transformation methods in [100], which has
not been done in either [6] or [45]. These results will be published in [27].

125

6.1 Background

Triangles

Let A, B,C € R% not on one line. We define the triangle spanned by A, B and C' as
3
A(A;B,C) == {/\1A+)\QB +)\30 | mln{/\]} Z O,Z)\j =]_} .

=1

We can without loss of generality consider A, B, C' € R%. We often construct the point
sets on special triangles, such as the equilateral triangle

Ap=A ((0,0), (1,0),(1/2,v3/2))
or the right-angle triangle
Ar=A((0,0),(0,1),(1,0)).

Assume we constructed points on the triangle A = A(A, B,C) and would like to map
them to the triangle A" = A(A’, B’, C"). This can be done as follows: Define the matrices

aq bl C1 all bll Cll
M(AN)=|ay by co and M(AN)=|d, bV, &1,
1 1 1 1 1 1

and let M (A, AN') = M(A)YM(A)™t. If the point & = (z,y) € A, then the point ' =
(«',y') € A" where (2/,y') are the first two components of the matrix-vector product

/

(', 2y =M, N) |y . (6.1)

8

—_ <

Discrepancy

We follow [6] and describe the discrepancy measures used. Let € R? be bounded and
denote by A the Lebesgue measure. Let Q be such that A(2) > 0; if Q2 lies on a flat subset,
define X\ as the Lebesgue measure with respect to the lowest-dimensional flat. Next, define
the normalized restriction of A to Q via Ao(S) = A(SNQ)/A(Q) for S € B(RY). For a point

126

set P, ={x1,...,x,} CQandset S CQ,let a(P,,S) =) cp lizesy be the number of
points of P, that fall into S and denote by 6,,(S; P,) = A\q(S) — a(P,; S)/n the signed
discrepancy of P, at S. Now let Q = A(A, B,C) where A, B,C € R% For A\j, Ay > 0, let
T, x,.c be the parallelogram with point C' and vectors A\;(A — C) and vector A\o(B — C).
Next, denote by

So ={Tvnc [0 <A <JJA=CJL0 <A <[|B=Cf}

the set of all such triangles anchored at C'. Define $4 and Sp analogously. The parallelo-
gram discrepancy is defined as

DF(P,; Q) = D,(SAUSpUSe, P, Q),

where
D, (S, P,,Q) = sup |0,(S; P,, Q).
Ses

The optimal discrepancy bound is O(logn/n). If we replace the set S4 U Sp U S¢ by
S = {[0,z) | x € [0,1)%} we obtain the discrepancy measure defined in [100], say D¢,
which resembles the star discrepancy typically considered in the classical QMC literature
over the cube. [6, Lemma 2.1] shows that if Q = A ((0,0), (0, 1), (1,1)), then DP°(P,,Q) <
2DFP(P,,Q); that is, if the parallelogram discrepancy vanishes, so does the one defined [100]
with at least the same rate.

Transforming a low-discrepancy point set from [0,1)? to A(A, B,C)

A natural and popular approach to sample points from some domain 2 is to find a mapping
¢ :[0,1)¢ — Q so that ¢(U) ~ U(Q) for U ~ U(0,1)¢, where d € N is fixed. That is, for
some integrable function f :) — R, we find

b= / f@) dz=2Q) [flg(w) du,

[0,1)4

where X denotes the Lebesgue measure. Let P, = {u1,...,u,} C [0,1)%. The Koksma-
Hlawka inequality originally appearing in [58] implies that

< D (P)VPE(f 0 9),

M S Flotw)

127

where D} denotes the star-discrepancy of a point set and V"* the variation in the sense
of Hardy and Krause. Note that V" (¢) < oo and V™ (f) < oo do not imply that
VIK(f o ¢) < oo; see [7] for conditions on ¢ and f.

For Q = Ag being a triangle, [100] give six possible transformations ¢ to map [0,1)?
to Ag. We mention two of them.

1. Transformation mirror. Take the point set on [0, 1)?, leave the points that are already
in A and reflect the other ones at (1/2,1/2). The resulting transformation is fast,
but discontinuous. As such, V*(f o ¢™") < oo cannot be guaranteed.

2. Transformation root. This transformation is due to [31] and given by

(b(ulv UJ?) = (1 - \/u_17 \/u_1u2>

This transformation is smooth and [7] show that V"(f o ¢) < oo for all functions

feC?*h).

A method to sample from any multivariate distribution is the inverse Rosenblatt trans-
form (also known as the conditional distribution method); see [106]. In order to sample
(Uy,Us) ~ U(AE), the idea is to first sample U; and then U, | Uy; see Algorithm 6.1.1.

Algorithm 6.1.1 (Inverse Rosenblatt transform to sample from U(Apg))
Sample (U, Us) ~ U(Ag) via:

ind.

1. Sample V;, Vo ~ U(0,1).

2. Set
U — V' V1/2, if V1 <1/2,
- v (1 =W)/2, otherwise.
3. Set

U, — VoUy tan /3, if Uy <1/2,
2 Vo(1 — Uy) tan /3, otherwise.

4. Return (Uy, Us).

Proposition 6.1.2
The point (Uy, Us) returned by Algorithm 6.1.1 satisfies (U, Us) ~ U(Ag).

128

Proof. We need to sample from (Uy, Us) ~ f where

2 if 0 <wup <1/2and us <wjtanm/3 or 1/2 <wuy; <1 and (1 —uy)tanw/3

fug,ug) = {_/3

0 otherwise.

The marginal pdf of U; is given by

ful tanm/3 2 du2 — 2u1 — 4“1 1f 0 S Ul S 1/2

_ 0 sinm/3 cosm/3
U) =
fUl(1) {fo(l—ul)tanﬂ'/3 2 du, = 2(1—wu1) — 4(1 o u1) if 1/2 < S 1,

sinw/3° 2 T “cosn/3
the corresponding distribution function is then

Fluy) 2u? if0<wu <1/2
u =
' 1—2(1—wu)? if1/2<u <1

We find F~1(vy) = /v1/2 if v; € [0,1/2] and F~(vy) = 1 — /(1 — v;)/2 otherwise.
As Uy = F71(1}) for Vi ~ U(0,1) in Algorithm 6.1.1, we find that U; has the correct
distribution.

Next, the conditional density function fy,, (uz | u1) is given by

e ITE if 0 <wyp <1/2 and up < uy tanm/3,
S ees/s = o s 1 1/2<un < Tandup < (1w tan/3.

It is easy to see that Us | Uy = uy ~ U(0, b(uy)) where b(u;) = uy tan /310 < uy < 1/2
and b(u;) = (1 — wy)tann/3 otherwise. Thus, Us in Algorithm 6.1.1 has the correct
distribution and the result follows from the inverse Rosenblatt transform; see [106]. O

6.2 Lattice constructions

6.2.1 Triangular lattice construction of Basu and Owen

K. Basu and A. Owen give a lattice construction for points on the triangle with optimal
discrepancy. To this end, let o € (0,27) be such that tan(a) is a quadratic irrational
number, i.e., tan(a) = (a + by/c)/d for b,d # 0 and ¢ > 0 not a perfect square. The point
set P, obtained by rotating the lattice (2n)~'/2Z? counterclockwise by a and intersecting
with A satisfies DF(P,, Agr) < Clog(n)/n. The following algorithm produces such a point
set.

129

Algorithm 6.2.1 (Basu and Owen Lattice)

Given target sample size n, o such that tan(«) is badly approximable (e.g., & = 37/8), a
random vector U ~ U(0,1)? (optional), an integer N and a target triangle A\, sample n
points as follows:

1. Let P={0,1,...,N —1}* and set ¢ < (x + U)/N for = € P.
2. Mapz +2x—1€[-1,1 forall z € P.

cosa —sino
sinaw cos«

3.Setaz<—<)azforalleP.

4. Set P, = PN Ag.
5. If |P,| # n, add or remove |P,| — n points in Ag to P,.
6. Map the points in P, to A using (6.1) and return.

Assume that we used a random vector U ~ U(0,1)? in Step 1. This randomizes the
otherwise deterministic points so that ~ U(A) for all « € P,, which follows readily
by observing that the density of each x is constant if a randomization is performed. In
Step 5, we can choose arbitrarily which points to add or remove. We remark that the

algorithm presented in [7, p. 757] differs slightly from Algorithm 6.2.1 in that their version
uses N = [v2n]| + 1 and the lattice {-N,..., N}%.

6.2.2 Extensible triangular lattice constructions

The construction in Algorithm 6.2.1 is non-extensible. In this section, we propose an
extensible scheme for which we make use of the one-dimensional van der Corput sequence.

Recall that the ith point of an extensible rank-1 lattice sequence with generating vector
z € 7% is defined as
u; = ¢p(i)z mod 1 € [0,1)%,
where ¢,(7) is the ith term of the van der Corput sequence in base b, and the mod 1
operation is applied component-wise; see [51].
If we want to use this idea to define a triangular Kronecker lattice sequence, then we

need to introduce some generalization of this idea beyond the rank 1 case. In particular,
the grid that needs to be generated, given by

N N-1 1 1 N)?
P={ - - ——0,—, ..., —
N N NN N

130

1.0
1
1.0

0.8
1
0.8
|
0.8
1

U

0.4 0.6
U,

0.4 0.6
U,

0.4 0.6

0.2
1
0.2
|
0.2
1

4o o o o o 0o O o o
©O 0o 0 0 0o 0 O 0 o
o o o o o 0o o o o
0O 0 0 0 0 0 O 0 0o
©O 0o 0 0 0o 0o O 0 o
o o o o o 0o o o o
0O 0 0O 0 0 0 0O 0 0o
©O 0o 0 0 0o 0 O O o
o o o o o 0o o o o

0.0
1
o
o
o
0.0
|
o
o
o
o
o
0.0
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

o
o

0.2 0.4 0.6 0.8 1.0

Uy Uy U,

Figure 6.1: First 9 (left), 50 (middle) and 81 points when using b = 3.

is a rank-2 lattice rather than a rank-1 lattice. We also note that the only reason why
Basu and Owen use a grid over [—1, 1]? instead of [0, 1)? seems to be that when they rotate
the points from the grid, they can just take the intersection with Apr without having to
perform any modulo 1 operation. However with our proposed approach to generate an
extensible grid, we will focus on generating points in [0, 1)%; we can then either make use
of modulo 1 operations or extend the grid to [—1,1]%.

First, we must choose the base b in which the grid will be constructed. The choice of
base b is such that whenever n is of the form 5% for some k > 1, the point set P, obtained
with this method will be exactly the same as if we had proceeded with the fixed-size
approach based on N = b*; see Proposition 6.2.3 below.

We then make use of the base b decomposition of i as i =, d;b7 to define the point

d d d d
w; = ((ui,l,um) — f(l, 1)+ f(o, 1)+ b—j(1, 1)+ b—j(o, 1)+ ..) mod 1. (6.2)

Note that the modulo 1 operation is only necessary for the second coordinate, as we
have the bound p p p
0 2 4
— 4+ =+ —-+4+...< 1
bR T
Figure 6.1 shows the first 9, 50, and 81 points obtained with this method when b = 3.
The points u; lie in [0, 1)%. Next, we rotate the points by o and can then proceed as in
Algorithm 6.2.1.

131

Algorithm 6.2.2 (Extensible Kronecker Lattice)
Given a,n,b, a random vector U ~ U(0,1)? (optional) and a skip s > 0, sample n points
in A as follows:

1. Set P, ={} and k = 0.
2. While |P,| < n,
(a) Compute digits d; such that k +s =3, d;}/ and compute u in (6.2).
(b) Set k+ k+1, u <+ 2(u+Umod1) —1 € [-1,1]
c

(
(d) If w € Ag, set P, = P, U{u}.

cosa —sin«
) u
sinae cosa

)
)Setu<—(
)

3. Map each u € P, to A using (6.1) and return.

Proposition 6.2.3
Let n = b*, k > 0 and s = 0. The sets P, of points obtained by Algorithms 6.2.1 with
N = b*¥ and Algorithm 6.2.2 coincide.

Proof. Assume wlog U = 0. Consider the set Q@ = {u; : i = 0,...,n — 1} where the
u; are as in (6.2). Then @ is a rank-2 lattice and can be written as Q = {(i/b*, j/b*) :
0 < i,j < bF}. This is exactly the rectangular grid in Step 1 of Algorithm 6.2.1. Since
the remaining operations (intersection and rotation) are identical in both algorithms, the
result follows. O

Remark 6.2.4

Algorithm 6.2.2 is based on a rank-2 lattice with generating vectors z; = (1,1), ze = (0, 1).
In our numerical experiments, we also consider a rank-1 lattice with generating vector
z = (1,182667); see [18, p. 26].

6.3 Triangular van der Corput sequence of Basu and
Owen

Recall that the ¢th point of the one-dimensional van der Corput sequence in base b is given
by u; = ¢p(i — 1) where the radical inverse function ¢, is defined as

o(i) = deb i =3 dibt e {0,1,... .

k>0 k>0

132

Similarly to how this sequence puts points at the left endpoints of intervals [b=™, b="1),
the triangular van der Corput sequence of [6] replaces the intervals by 0™ = 4™ congruent
sub-triangles and puts the points in the centers. Let T'= A(A, B,C) be the triangle we
wish to generate points on. Define the sub-triangle of 7" with index d for d € {0,1,2,3} as

BLC A4C A4B) - g
) Y

A A+B AL0) d=1,

B+A BJrC) 7 d — 2’ (63>

A (5
T(d) = E

A (C;A, CiB), d=3.

2

Let i > 0=3,.,d4", where the sum breaks after at most K; = [log,(i) + 1] digits. The
construction in [6] obtains its ith triangular point by mapping the integer i to the midpoint
(mdpt) of the triangle T(q,,. d,) = T(dy,...,dg,) recursively defined by T'(dy,dk+1) =
T(T(dy))(dgr1), where mdpt(A, B, C) = (A+ B+ C)/3 componentwise; see Figure 6.2 for
an example.

Algorithm 6.3.1 (Triangular vdC sequence of K. Basu and A. Owen)
Given input n > 1 and target triangle A(A, B, (), generate the first n points as follows:

1. Fori=1,...,n,

(a) Compute (do, ..., dg,) such that i — 1 =", dpd";
(b) Initialize A’ = A, B’ = B,C" = C)
(c) For j =0,..., K,
Update A(A', B',C") = T'(d;) using (6.3);
(d) Set x[i] = mdpt(A’, B, C");

2. Return x;

The discrepancy of the first n > 1 points was shown in [6, Theorem 3.3] to be bounded
above by 12/4/n, which means there is a gap to the optimal order O(log n/n). Nevertheless,
Algorithm 6.3.1 has some advantages: 1) it gives rise to an extensible sequence; ii) it can be
randomized; iii) it is easily implemented. However, the points suffer from poor projection
properties, as shown in the following proposition.

Proposition 6.3.2

Let T = A((0,0),(0,1),(1,0)) and denote by P, the point set consisting of the first n
points produced by Algorithm 6.3.1 for n = 4* and k > 2. Then the projections of P, onto
the z- and y-axis contain 2/n = 281 < n points.

133

e 4 e

— -

@ @

o 7 o

© ©

o o

X X

< <

o o 7

o~ o

c 7 o 7

o o

S S
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X1 X1

Figure 6.2: Triangular vdC points; n = 4 (left) and n = 16 (right).

Proof. Since n = 4*, each of the 4% subtriangles contains one point, and there are 2*
rows of subtriangles. In each row j, the midpoints of all upside triangles have the same
y coordinate, say y;i. Similarly, the midpoints of all downside triangles in the same row
have the same y coordinate, say y;2. Since there are only these two cases, the point set
projects on {y;; : j = 1,...,2% i = 1,2}, which has 2-2% = 2" elements. The z axis case
follows similarly.]

[45] generalize this method by replacing the support {0, 1,2,3} of the transformation
in (6.3) by {(0,0),(1,0),(0,1),(1,1)} = F%, where the input strings (from FJ* for some m
or F°) come from a digital net. They prove that their construction gives worst case error
in O((logn)?/n) for functions in C?(A). Furthermore, they show that their construction
includes the vdC sequence of Basu and Owen; see [15, p. 369].

As mentioned in [6], one can use scrambling to randomize the deterministic triangular
vdC sequence. Not only does this have the advantage that the integration error can be
estimated, it also makes sure that, with probability 1, the projections onto the x and y
axis contain n points.

134

6.4 Numerical experiments

Figure 6.3 displays four different triangular point sets, each with n = 4° = 1024 points. In
the case of the transformations “mirror” and “root”, the underlying w,,...,u, € [0,1)?
come from a deterministic Sobol” sequence. From these plots, it is evident that the “mirror”
transformation leaves the largest gaps and is visually outperformed by transformation
“root”. For the van der Corput point set on the top-right, one can immediately see that
this point set suffers from poor projection properties. This is not the case for the triangular
Kronecker lattice point set displayed on the bottom left.

Unlike the triangular vdC points, the lattice construction allows for an easy random-
ization by shifting the underlying grid by a uniform vector. Figure 6.4 displays five inde-
pendently randomized copies of the lattice points, each having a different color.

To test the performance of the different triangular constructions, we consider the three
test functions

filzy) = (Jz =yl +y)?,
fo(z,y) = cos(2mB + aqx + agy),
fa(z,y) = % +y*,

where = 0.4, d = —0.9, oy = €°, as = €%, a3 = 1.5 and estimate p; = IAE fi(z) de,
whose theoretical values are known for j = 1,2,3. The first two test functions were also
used in [100]. Note that f; has a singularity, while f5 is a smooth oscillatory function. Inte-
grating the function f3, being a sum of univariate functions, might reveal if the projection
properties of the point sets matter. As such, we can already anticipate that f5 is easier to
integrate. Figure 6.5 displays fi for £ = 1,2, 3 and the standard parameter settings.

Figure 6.6 displays absolute errors obtained when integrating f, for £ = 1,2,3 for
various sample sizes n between 2% and 2'° and various methods. The methods latticel
and lattice2 correspond to the rank-1 and rank-2 constructions.

So far, we have only looked at deterministic point sets. Next, we compare the following
randomized methods to estimate p1;: 1) PRNG + root; ii) rSobol’ + root, iii) rLatticel, iv)
rlattice2 and v) rvdC (randomized vdC). For each method and each sample size, B = 20
randomizations were used. The estimates are obtained as the sample average of the real-
izations, while the variance is estimated as the sample variance of the independent draws.
Figure 6.7 displays the results. Note that “rsobol+root” is typically the best performing
method, while the randomized lattice or vdC approach still significantly outperform MC.

135

X2

X2

00 02 04 06 08 10

00 02 04 06 08 10

Method 'Sobol' + mirror'

v
F

|
Yo

|
Sty
Ly
ﬁ?
*g&
::
A
’gl *,

i;’g%?wﬁ*’* AR
{ St
W,ﬁ{}& e %,
TSI ATt
[[[[[[
0.0 0.2 0.4 0.6 0.8 1.0
X1

X2

X2

00 02 04 06 08 1.0

00 02 04 06 08 1.0

Method 'vdC'

0.0

X1

Method 'lattice’

Figure 6.3: n = 4° points sampled from different methods.

136

X2

1.0

0.8

0.6

0.4

0.2

0.0

o) N
o 089 o 00 ©_ 0 00 g0 0°
0°g oo © 0 00 50 9 o %
oo o 0% o8
T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Xy

Figure 6.4: 5 independently randomized triangular Kronecker lattice point sets with 2°

points each.

Figure 6.5: Test-functions f; (left), fo (middle) and f5 (right)

o1, %2)

137

used in the numerical study.

Testfunction f, Testfunction f, Testfunction f

- 8 1
o
e H i
o 8
L 7 — N 4
g g s g4 5 3
s ?.. 4 s 3 s 5
@ e 2 8
R E]]
3 o 2
2 2 2
< < < B
4 s | 8
3] 87
& \
w |
VdC (-0.52) VdC (-1.13) VdC (-0,06)
— lattice2 (~0.72) — lattice2 (-1.11) - — lattice2 (-0.68)
— lattice1 (-0.51) @ | — laticel (-08) g | — latice1 (-0.54) ~
| — sobolRoot (-0.51) 2 | — SobolRoot (-1.08) T - — SobolRoot (-1.04) ~<
8 | — sobolMirror (-065) | & | — sobolMirror (-2) & | — SobolMirror (-1.02)
$ T B — B — R — T L — B — B — T R — L — L —
20 50 100 200 500 1000 5000 20000 20 50 100 200 500 1000 5000 20000 20 50 100 200 500 1000 5000 20000
n n n

Figure 6.6: Absolute errors when integrating f; (left), fo (middle) and f3 (right); regression
coefficients in the legend.

138

Testfunction f;

Testfunction f;

---- True value —— PRNG + root (-0.99)
—— PRNG + root —— rSobol + root (-1.25)
—— rSobol + root — rlLatticelalpO (-1.19)
—— rlLatticelalp0 —— rlatticel (-1.42)
\ — rlatticel] rLattice2 (-1.15)
9 rLattice2 87 vdC (-1.3)
Rl — rvdC
@
S
2
o g
g &
£ o °
B N 2
w o g Fl;' i
- i
v
o9 \
-
©
\ 8 .
\ T | \
V 2 \
T T T T T T T T T T T T T T T T T T
50 100 200 500 1000 2000 5000 20000 50 100 200 500 1000 2000 5000 20000
n n
Testfunction f, Testfunction f,
) ---- True value —— PRNG + root (-1.03)
3 4 —— PRNG + root 3 —— rSobol + root (-2.6)
S —— rSobol + root o 7 —— rLatticelalpO (-1.76)
—— rlLatticelalp0 - — —— rlatticel (-1.77)
S — rlatticel rLattice2 (—1.94)
27 rLattice2 rvdC (-1.88)
— rvdC w0
? 4
9’ [
S g
e e
© 2
T o S
£ 84 3 5
7 S —- e 94
i g 3
B @
S m N
2 N
T 3 \\
S &l N
3 4 -~ .
=
T
v
3 | -
= T 4
T &
T T T T T T T T - T T T T T T T T
50 100 200 500 1000 2000 5000 20000 50 100 200 500 1000 2000 5000 20000
n n
Testfunction f; Testfunction f;
© ---- True value - —— PRNG + root (-1.04)
91 - —— PRNG + root ~—— —— rSobol + root (-1.98)
° —— rSobol + root B —— rlatticelalpO (-1.68)
—— rlLatticelalp0 —— rlatticel (-1.69)
—— rlatticel] rLattice2 (-1.85)
rLattice2 & 7 rvdC (-2.01)
rvdC A
~
S
S -
° O
S
g
[} = I~
g g 9
£ 3 -
@ 2
w g g
S | £
3 | &
| 2
| 3 |
@
=
I
8
S
(=)
-
T 4
@
T T T T T T T T T - T T T T T T T T T
50 100 200 500 1000 2000 5000 20000 50 100 200 500 1000 2000 5000 20000

n

n

Figure 6.7: Estimates (left) and estimated variances (right) when integrating fi (top), fo
(middle) or f5 (right). For each n, B = 15 randomizations were used.

139

Chapter 7

Conclusion

In this thesis, we applied RQMC to a wide range of problems and saw that RQMC methods
are superior to MC even in high dimensions. We contributed a range of methods to work
with grouped and ungrouped normal variance mixtures in Chapter 3 and by doing so
filled many gaps in the literature. Due to the importance of these distributions in risk
management, our methods and, in particular our R package nvmix is widely applicable.

With the EM-like algorithm to fit the ¢ copula at hand, we plan on developing methods
to efficiently fit skew-t copulas. The major complication here is the lack of an available
quantile function.

In Chapter 4, we explored how NRVGs can be combined with RQMC methods. We also
studied AR methods combined with RQMC, in particular, AR-d, which samples along the
coordinates rather than moving along the sequence. We highlight that this AR scheme has
not gained much attention in the literature. Future research includes both computational
questions, such as exploring efficient implementations of AR-d based on point sets that are
easily extensible in the number of coordinates, and theoretical questions, such as whether
we can prove that our proposed RQMC-based methods outperform MC.

Our (S)SIS framework and our calibration algorithm from Chapter 5 applies to a wide
range of problems. As mentioned there, other low-dimensional structures may provide a
better fit than single-index models do.

Chapter 6 focused on the construction of low-discrepancy point-sets on triangles. The
numerical results indicated that mapping a bivariate Sobol’ sequence to a triangle via some
transformation can give excellent results, and in particular can outperform the methods
that were constructed on the triangle directly. Nevertheless, we saw that all our con-
structions outperform MC. Future research includes comparing efficient implementations

140

in terms of their computational time needed and exploring less obvious applications of
triangle sampling, such as in the realm of graphical rendering.

141

References

1]

K. Adragni and R. Cook. Sufficient dimension reduction and prediction in regression.
Phil. Trans.: Math., Phys. and Eng. Sci., 367(1906):4385-4405, 2009.

S. Asmussen and P. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, 2007.

S. Au and J. Beck. Important sampling in high dimensions. Structural Safety,
25(2):139-163, 2003.

A. Bassamboo, S. Juneja, and A. Zeevi. Portfolio credit risk with extremal depen-
dence: Asymptotic analysis and efficient simulation. Operations Research, 56(3):593—
606, 2008.

K. Basu. Quasi-Monte Carlo Methods in Non-Cubical Spaces. Stanford University,
2016.

K. Basu and A. Owen. Low discrepancy constructions in the triangle. SIAM Journal
on Numerical Analysis, 53(2):743-761, 2015.

K. Basu and A. Owen. Transformations and hardy—krause variation. SIAM Journal
on Numerical Analysis, 54(3):1946-1966, 2016.

C. Bellosta. ADGofTest: Anderson-Darling GoF test, 2011. R package version 0.3.

7. Botev and P. L’Ecuyer. Efficient probability estimation and simulation of the
truncated multivariate student-t distribution. In Proceedings of the 2015 Winter
Simulation Conference, pages 380-391. IEEE Press, 2015.

L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini. A koksma-hlawka inequal-
ity for simplices. In Trends in harmonic analysis, pages 33—46. Springer, 2013.

142

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

R. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed securities
using Brownian bridges to reduce effective dimension. Department of Mathematics,
University of California, Los Angeles, 1997.

J. Chambers, C. Mallows, and B. Stuck. A method for simulating stable random
variables. Journal of the American Statistical Association, 71(354):340-344, 1976.

J. Chan and D. Kroese. Efficient estimation of large portfolio loss probabilities in
t-copula models. European Journal of Oparerational Research, 205(2):361-367, 2010.

R. Cheng. The generation of gamma variables with non-integral shape parameter.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(1):71-75,
1977.

C. Coftey and K. Muller. Properties of doubly-truncated gamma variables. Commu-
nications in Statistics- Theory and Methods, 29(4):851-857, 2000.

R. Cook. Regression Graphics. Wiley, 1998.

R. Cook and L. Forzani. Likelihood-based sufficient dimension reduction. J. of the
American Statistical Association, 104(485):197-208, 2009.

R. Cools, F. Kuo, and D. Nuyens. Constructing embedded lattice rules for multi-
variate integration. SIAM Journal on Scientific Computing, 28(6):2162-2188, 2006.

R. Cranley and T. Patterson. Randomization of number theoretic methods for mul-
tiple integration. SIAM Journal on Numerical Analysis, 13(6):904-914, 1976.

Wuertz D., Maechler M., and Rmetrics core team members. stabledist: Stable Dis-
tribution Functions, 2016. R package version 0.7-1.

S. Daul, E. De Giorgi, F. Lindskog, and A. McNeil. The grouped t-copula with an
application to credit risk. Awailable at SSRN 1358956, 2003.

P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein. A tutorial on the cross-entropy
method. Annals of Operations Research, 134(1):19-67, 2005.

S. Demarta and A. McNeil. The t copula and related copulas. International statistical
review, 73(1):111-129, 2005.

A. Dempster and D. Laird, N. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1):1-38,
1977.

143

[25]

[26]
27]
28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Derflinger, W. Hormann, and J. Leydold. Random variate generation by numerical
inversion when only the density is known. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 20(4):1-25, 2010.

L. Devroye. Non-Uniform Random Variate Generation. Springer New York, 1986.
G. Dong, E. Hintz, and C. Lemieux. RQMC on triangles. Working paper, 2022.
D. Eddelbuettel. Counting CRAN Package Depends, Imports and LinkingTo, 2012.

P. Embrechts, C. Kliippelberg, and T. Mikosch. Modelling extremal events. British
actuarial journal, 5(2):465-465, 1999.

P. Embrechts, F. Lindskog, and A. McNeil. Modelling dependence with copulas.
Rapport technique, Département de mathématiques, Institut Fédéral de Technologie
de Zurich, Zurich, 2001.

K. Fang and Y. Wang. Number-theoretic methods in statistics, volume 51. CRC
Press, 1993.

B. Flury. Acceptance-rejection sampling made easy. SIAM Review, 32(3):474-476,
1990.

John Fox. Applied Regression Analysis and Generalized Linear Models. Sage Publi-
cations, 2015.

A. Genz. Numerical computation of multivariate normal probabilities. Journal of
computational and graphical statistics, 1(2):141-149, 1992.

A. Genz and F. Bretz. Numerical computation of multivariate t-probabilities with

application to power calculation of multiple contrasts. Journal of Statistical Compu-
tation and Simulation, 63(4):103-117, 1999.

A. Genz and F. Bretz. Comparison of methods for the computation of multivariate
t probabilities. Journal of Computational and Graphical Statistics, 11(4):950-971,
2002.

A. Genz and F. Bretz. Computation of multivariate normal and t probabilities, volume
195. Springer Science & Business Media, 20009.

A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. muvtnorm:
Multivariate Normal and t Distributions, 2019. R package version 1.0-11.

144

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

G. Gibson, C. Glasbey, and D. Elston. Monte Carlo evaluation of multivariate normal
integrals and sensitivity to variate ordering. Advances in Numerical Methods and
Applications, World Scientific Publishing, River Edge, pages 120-126, 1994.

P. Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer
Science & Business Media, 2013.

P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymptotically optimal impor-
tance sampling and stratification for pricing path-dependent options. Mathematical
finance, 9(2):117-152, 1999.

P. Glasserman, P. Heidelberger, and P. Shahabuddin. Variance reduction techniques
for estimating Value-at-Risk. Management Science, 46(10):1349-1364, 2000.

P. Glasserman, P. Heidelberger, and P. Shahabuddin. Portfolio value-at-risk with
heavy-tailed risk factors. Mathematical Finance, 12(3):239-269, 2002.

P. Glasserman and J. Li. Importance sampling for portfolio credit risk. Management
Science, 51(11):1643-1656, 2005.

T. Goda, K. Suzuki, and T. Yoshiki. Quasi-monte carlo integration for twice differen-
tiable functions over a triangle. Journal of Mathematical Analysis and Applications,
454(1):361-384, 2017.

W. Hardle, P. Hall, and H. Ichimura. Optimal smoothing in single-index models.
The Annals of Statistics, 21(1):157-178, 1993.

W. Harris and T. Helvig. Marginal and conditional distributions of singular dis-
tributions. Publications of the Research Institute for Mathematical Sciences, Kyoto
University. Ser. A, 1(2):199-204, 1965.

Z. He and X. Wang. Convergence analysis of quasi-monte carlo sampling for quantile
and expected shortfall. Mathematics of Computation, 90(327):303-319, 2021.

F. Hickernell. Lattice rules: how well do they measure up? In Random and quasi-
random point sets, pages 109-166. Springer, 1998.

F. Hickernell and H. Hong. Computing multivariate normal probabilities using rank-
1 lattice sequences. In Proceedings of the Workshop on Scientific Computing (Hong
Kong), pages 209-215, 1997.

145

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

F. Hickernell, H. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice sequences for
quasi-monte carlo quadrature. SIAM Journal on Scientific Computing, 22(3):1117—
1138, 2000.

E. Hintz, M. Hofert, and C. Lemieux. Grouped normal variance mixtures. Risks,
8(4):103, 2020.

E. Hintz, M. Hofert, and C. Lemieux. Normal variance mixtures: Distribution,
density and parameter estimation. Computational Statistics and Data Analysis,
157C:107175, 2021.

E. Hintz, M. Hofert, and C. Lemieux. Computational challenges of t and related
copulas. Journal of Data Science, 20(1):95-110, 2022.

E. Hintz, M. Hofert, and C. Lemieux. Multivariate Normal Variance Mixtures in R:
The R Package nvmix. Journal of Statistical Software, To appear, 2022.

E. Hintz, M. Hofert, and C. Lemieux. Quasi-random sampling with black box or
acceptance-rejection inputs. To appear., 2022.

E. Hintz, M. Hofert, C. Lemieux, and Y. Taniguchi. Single-index importance sam-
pling with stratification. https://doi.org/10.48550/arXiv.2111.07542, 2021.

E. Hlawka. Funktionen von beschréankter variation in der theorie der gleichverteilung.
Annali di Matematica Pura ed Applicata, 54(1):325-333, 1961.

M. Hofert, E. Hintz, and C. Lemieux. nvmix: Multivariate Normal Variance Mix-
tures, 2022. R package version 0.0-7.

M. Hofert and K. Hornik. grmdata: Data Sets for Quantitative Risk Management
Practice, 2016. R package version 2016-01-03-1.

M. Hofert, I. Kojadinovic, M. Maechler, and J. Yan. copula: Multivariate Dependence
with Copulas, 2020. R package version 1.0-0.

M. Hofert and C. Lemieux. ¢rng: (Randomized) Quasi-Random Number Generators,
2019. R package version 0.0-7.

M. Hofert and M. Méchler. Nested archimedean copulas meet R: The nacopula
package. Journal of Statistical Software, 39(9):1-20, 2011.

146

https://doi.org/10.48550/arXiv.2111.07542

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

W. Hormann and J. Leydold. Continuous random variate generation by fast numer-
ical inversion. ACM Trans. Model. Comput. Simul., 13(4):347-362, 2003.

W. Hormann and J. Leydold. Generating generalized inverse gaussian random vari-
ates. Statistics and Computing, 24(4):547-557, 2014.

H. Ichimura. Semiparametric least squares (SLS) and weighted SLS estimation of
single-index models. Journal of Econometrics, 58(1-2):71-120, 1993.

H. Kahn and A. Marshall. Methods of reducing sample size in Monte Carlo com-
putations. Journal of the Operations Research Society of America, 1(5):263-278,
1953.

L. Katafygiotis and K. Zuev. Geometric insight into the challenges of solving high-
dimensional reliability problems. Probabilistic Engineering Mechanics, 23(2-3):208—
218, 2008.

P. Keast. Optimal parameters for multidimensional integration. SIAM Journal on
Numerical Analysis, 10(5):831-838, 1973.

I. Kojadinovic and J. Yan. Modeling multivariate distributions with continuous
margins using the copula R package. Journal of Statistical Software, 34(9):1 — 20,
2010.

S. Kotz and S. Nadarajah. Multivariate t Distributions and Their Applications.
Cambridge University Press, 2004.

D. Kundu and R. Gupta. A convenient way of generating gamma random vari-
ables using generalized exponential distribution. Computational Statistics and Data
Analysis, 51(6):2796-2802, 2007.

T. Kvalseth. Cautionary note about R%. The American Statistician, 39(4):279-285,
1985.

P. L’Ecuyer. Quasi-monte carlo methods in finance. In Proceedings of the 2004
Winter Simulation Conference, volume 2, pages 1645-1655. IEEE, 2004.

P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214-1235, 2000.

C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer, 2009.

147

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

J. Leydold and W. Hormann. Generating generalized inverse gaussian random vari-
ates by fast inversion. Computational statistics & data analysis, 55(1):213-217, 2011.

J. Leydold and W. Hérmann. Runuran: R Interface to the 'UNU.RAN’ Random
Variate Generators, 2020. R package version 0.30.

C. Liu and D. Rubin. The ECME algorithm: a simple extension of EM and ECM
with faster monotone convergence. Biometrika, 81(4):633-648, 1994.

C. Liu and D. Rubin. ML estimation of the ¢ distribution using EM and its extensions,
ECM and ECME. Statistica Sinica, 5(1):19-39, 1995.

Sh. Liu, H. Wu, and W. Meeker. Understanding and addressing the unbounded
“likelihood” problem. The American Statistician, 69(3):191-200, 2015.

X. Luo and P. Shevchenko. The t copula with multiple parameters of degrees of
freedom: bivariate characteristics and application to risk management. Quantitative
Finance, 10(9):1039-1054, 2010.

R. Mashal and A. Zeevi. Beyond correlation: Extreme co-movements between
financial assets. https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/
BeyondCorrelation.pdf, 2002.

Ma. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 8(1):3-30, 1998.

A. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton University Press, 2015.

O. Mersmann. microbenchmark: Accurate Timing Functions, 2015. R package ver-
sion 1.4-2.1.

B. Moskowitz and R. Caflisch. Smoothness and dimension reduction in quasi-monte
carlo methods. Mathematical and Computer Modelling, 23(8-9):37-54, 1996.

S. Nadarajah and S. Kotz. Estimation methods for the multivariate ¢ distribution.
Acta Applicandae Mathematicae, 102(1):99-118, 2008.

J. Neddermeyer. Non-parametric partial importance sampling for financial derivative
pricing. Quantitative Finance, 11(8):1193-1206, 2011.

148

https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/BeyondCorrelation.pdf
https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/BeyondCorrelation.pdf

[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

R. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

N. Nguyen and G. Okten. The acceptance-rejection method for low-discrepancy
sequences. Monte Carlo Methods and Applications, 22(2):133-148, 2016.

H. Niederreiter. Random number generation and quasi-Monte Carlo methods, vol-
ume 63. Siam, 1992.

T. Nitithumbundit and J. Chan. ECM Algorithm for Auto-Regressive Multivariate
Skewed Variance Gamma Model with Unbounded Density. Methodology and Com-
puting in Applied Probability, 22:1-23, 2019.

C. Oates, M. Girolami, and N. Chopin. Control functionals for monte carlo inte-
gration. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(3):695-718, 2017.

A. Owen. Necessity of low effective dimension. Working paper, Stanford University,
2002.

A. Owen. Better estimation of small Sobol’ sensitivity indices. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 23(2):11, 2013.

S. Paskov and J. Traub. Faster valuation of financial derivatives. The Journal of
Portfolio Management, 22(1):113-123, 1995.

B. Pfaff and A. McNeil. QRM: Provides R-Language Code to Examine Quantitative
Risk Management Concepts, 2016. R package version 0.4-13.

R. Piessens, E. de Doncker-Kapenga, C. Uberhuber, and D. Kahaner. Quadpack: a
subroutine package for automatic integration, volume 1. Springer Science & Business
Media, 2012.

T. Pillards and R. Cools. Transforming low-discrepancy sequences from a cube to a
simplex. Journal of computational and applied mathematics, 174(1):29-42, 2005.

J.L. Powell, J.H. Stock, and T.M. Stoker. Semiparametric estimation of index coef-
ficients. Econometrica, pages 1403-1430, 1989.

R. Protassov. EM-based maximum likelihood parameter estimation for multivariate
generalized hyperbolic distributions with fixed A. Statistics and Computing, 14(1):67—
77, 2004.

149

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

G. Pujol, B. Iooss, and A. Janon. sensitivity: Global Sensitivity Analysis of Model
Outputs, 2017. R package version 1.15.0.

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2020.

C. Reinsch. Smoothing by spline functions. Nimerische Mathematik, 10(3):177-183,
1967.

M. Rosenblatt. Remarks on a multivariate transformation. The Annals of Mathe-
matical Statistics, 23(3):470-472, 09 1952.

R. Rubinstein. Optimization of computer simulation models with rare events. Euro-
pean Journal of Operational Research, 99(1):89-112, 1997.

R. Rubinstein and D. Kroesse. The cross-entropy method: a unified approach to
combinatorial optimization, Monte-Carlo simulation and machine learning. Springer
Science & Business Media, 2013.

H. Sak, W. Hormann, and J. Leydold. Efficient risk simulations for linear asset port-
folios in the t-copula model. Furopean Journal of Operational Research, 202(3):802—
809, 2010.

G. Schiieller, H. Pradlwarter, and P. Koutsourelakis. A critical appraisal of reliability
estimation procedures for high dimensions. Probabilistic Engineering Mechanics,
19(4):463-474, 2004.

I. Sobol’. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86—
112, 1967.

I. Sobol’. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and computers in simulation, 55(1-3):271-280,
2001.

T. Stoker. Consistent estimation of scaled coefficients. FEconometrica, 54(6):1461—
1481, 1986.

S. Tezuka. On the necessity of low-effective dimension. Journal of Complexity,
21(5):710-721, 2005.

150

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

G. Venter, J. Barnett, R. Kreps, and J. Major. Multivariate copulas for financial
modeling. Variance, 1(1):103-119, 2007.

X. Wang. Improving the rejection sampling method in quasi-monte carlo methods.
Journal of computational and applied Mathematics, 114(2):231-246, 2000.

X. Wang. On the effects of dimension reduction techniques on some high-dimensional
problems in finance. Operations Research, 54(6):1063-1078, 2006.

X. Wang and K. Fang. The effective dimension and quasi-Monte Carlo integration.
Journal of Complezity, 19(2):101-124, 2003.

X. Wang and I. Sloan. Why are high-dimensional finance problems often of low
effective dimension? SIAM Journal on Scientific Computing, 27(1):159-183, 2005.

J. Yan. Enjoy the joy of copulas: With a package copula. Journal of Statistical
Software, 21(4):1-21, 2007.

T. Yoshiba. Maximum likelihood estimation of skew-t copulas with its applications to
stock returns. Journal of Statistical Computation and Simulation, 88(13):2489-2506,
2018.

H. Zhu and J. Dick. Discrepancy bounds for deterministic acceptance-rejection sam-
plers. Electronic Journal of Statistics, 8(1):678-707, 2014.

151

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Monte Carlo and randomized quasi-Monte Carlo methods
	Discrepancies and Koksma Hlawka inequality
	The effective dimension and Sobol' indices

	Multivariate normal variance mixtures and extensions
	Normal variance mixture distribution function and density
	Computing the distribution function
	Reformulation of the integral
	Variable reordering and RQMC estimation

	Computing the (logarithmic) density
	Fitting multivariate normal variance mixtures
	Gamma-mixture models
	Distribution, density and quantile function of D2
	Graphical goodness-of-fit assessment

	Numerical examples
	Test distributions
	Estimating the distribution function
	Estimating the density function
	Fitting normal variance mixture distributions
	Application to financial data

	Grouped normal variance mixtures
	Estimating the distribution and density function
	Sampling grouped normal variance mixtures

	Fitting t and grouped t copulas
	Notations
	Fitting the t copula: An EM-like algorithm
	Fitting the grouped t copula

	Discussion

	Quasi-random sampling with black box or acceptance-rejection inputs
	Methods for the black box setting
	Methods based on the empirical quantile function
	Methods based on a generalized Pareto approximation in the tail

	Combining AR with RQMC
	Application: Basket option pricing
	Discussion

	Stratified single index importance sampling for rare event simulation
	Variance analysis
	Optimal proposal densities under (S)SIS
	SIS in multivariate normal models
	SIS and RQMC

	Calibration in practice
	Estimating the optimal transformation T
	Finding the optimal density

	Numerical examples
	Linear Model Example
	Tail probabilities of a Gaussian copula credit portfolio
	Tail probabilities of a t-copula credit portfolio

	Concluding remarks

	RQMC on triangles
	Background
	Lattice constructions
	Triangular lattice construction of Basu and Owen
	Extensible triangular lattice constructions

	Triangular van der Corput sequence of Basu and Owen
	Numerical experiments

	Conclusion
	References

