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Abstract

The transport of sediment is vital for ecological and climatological processes. Sediment
can either move up the shelf, or mix into the upper water column as nepheloid layers.
Internal solitary waves (ISWs) shoaling along sloped beds produce structures and currents
that transport sediment. The geometry of the wave and the bed influence the total flux
due to this transport, and whether or not the sediment forms nepheloid layers. Both
numerical and experimental investigations, at both the field and laboratory scales, have
been conducted with the goal of understanding the aforementioned relationship. Though
these investigations have a common goal, they approach it from differing perspectives.
Some focus on the mechanisms behind the ejection of sediment from the bottom boundary
layer (BBL); others focus on the sub-processes of shoaling; some report on the coincidence
of sediment and wave events in natural systems; others perform experiments that directly
study the interactions between waves and sediment.

This thesis describes three-dimensional, laboratory-scale DNS of an internal solitary
wave of depression (ISW-D) shoaling over a shallow linear slope (S & 0.05); it is primarily
concerned with describing the sub-processes of shoaling waves. The amplitude and width
of the initial waves are chosen so that the systems remain in the fission regime. An ISW-D
in this regime steepens, fissions into a nonlinear wave train, and forms a train of boluses;
as the wave does so, it interacts with the BBL to produce instabilities. Each stage has
qualitatively different instabilities, though of particular interest are vortices induced by
BBL instabilities during wave fission. The initial stages of the shoaling process, and the
instigation of pycnocline overturning are found to be two-dimensional. Additionally, once
three-dimensionalization does occur, it does so through independent processes during the
transition from the fission phase to the bolus phase, and once again during the degeneration
of the bolus. Implications for mixing, and sediment advection in coastal contexts are
discussed.
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Chapter 1

Introduction

Solitary waves are localized disturbances that maintain their form as they propagate. They
were first observed by Russell and a colleague in the middle of the 19*® century [35]. In the
hydrodynamic context they manifest as both surface waves and, if the fluid is stratified,
internal waves. As internal waves, they travel along density contours, and are frequently
observed in lakes, and coastal oceans [7, 23, 27]. By definition, solitary waves maintain
their form as they propagate, but, in natural systems, dispersion, aeolian forcing, tidal
forcing, wave-wave interactions, and wave-boundary interactions cause them to degenerate
into complex systems of nonlinear waves [27]. Accordingly, while the waves can be observed
directly, they can also be identified by structures produced during their degeneration, such
as trains of nonlinear waves, sand ripples along the coastal shelf, clouds of sediment in the
water column (nepheloid layers), and shoreward surges of dense fluid that travel along the
bottom boundary [7, 27]. The evolution and degeneration of these waves and associated
structures are central to the dissipation of planetary energy [20], as well as mineral and
nutrient cycles [7], and are thus discussed extensively in the literature.

Natural stratifications and bathymetries are complex and change with seasons and
geographical location [20, 27]. The large disparity between the wave scale and the scale at
which viscous dissipation takes place is also a complicating factor in natural environments.
As such, several scaled-down and simplified systems are used to study shoaling waves in
the experimental and theoretical literature. The most common stratifications are quasi-
two-layer stratifications (that is, stratifications with two homogoneous layers separated
by a sharp transition region), (piecewise) linear stratifications, and continuous nonlinear

stratifications [20]. Additionally, common domains include level rectilinear tanks [30],
tilted rectilinear tanks [10], level rectilinear tanks with finite hills [34, 17], level tanks
with linear ramps [I, 2, 1, 13], and level tanks with complex hills that mimic the rapid



change in slope at the continental shelf break [32, 12]. Broadly speaking, all lab-scale
investigations show a similar evolution for shoaling waves of depression: an incident wave
steepens, breaks, and subsequently produces pulsed surges of dense fluid known as boluses.
Adjusting the parameters of the initial wave, the stratification, or the domain geometry,
however, changes the specifics of wave breaking and bolus formation (and thus the specifics
of turbulent mixing and the potential for sediment transport) [1, 2, 1, 7, 27, 32, 12, 16].
Accordingly, a major objective is to understand and classify the changes to these specifics
in terms of the domain and wave parameters.

Linear—slope experiments work towards this objective by classifying systems according
to the relative steepness of the wave! to the slope of either a linear ramp in a level tank, or to
slope of the tank bottom if the domain is tilted. While the bathymetry of a system like the
continental shelf is more complex than a linear slope, the shallow angles and size of natural
internal solitary waves mean such an idealization is not a poor first approximation. For
further simplicity, many linear-slope experiments use single-component, quasi-two-layer
stratifications. As such, physical experiments are often analyzed using parameters and
notions from weakly nonlinear theory (henceforth WNL), often applied to strictly two-layer
systems; examples of these parameters will be discussed in Chapter 2. In sloped, quasi-two-
layer systems, the height of the pycnocline? above the bottom decreases across the domain.
In most configurations, the pycnocline changes from resting above mid-depth to resting
below mid-depth. Exact internal solitary wave theory, or DJL theory, then implies that an
initial internal solitary wave of depression (henceforth ISW-D) should reverse its polarity
(that is, become a wave of elevation) when waves pass the point at which the pycnocline is

at the mid-depth (henceforth transition point) [7, 32]. The reversal in polarity, combined
with sufficient nonlinear steepening that increases with the domain slope, can cause the
wave to break at, or near, the transition point [2, 7, 32]. This does not always occur; if

the domain slope is shallow, then steepening is slight, and the wave fissions into a wave
train instead. Despite the relatively gentle wave evolution, the fissioning case leads to
instabilities in the bottom boundary layer that can in turn induce breaking [16, 17]. The
wave breaking and fissioning situations represent two poles on the spectrum of linear-slope
experiments. The qualitative differences between these scenarios and their intermediates
have implications for turbulent mixing, bolus characteristics, and potential for sediment
resuspension and transport [4, 7, 27, 17].

Much of the linear-slope literature from 1980 to 2010 investigates laboratory-scale shoal-
ing ISWs using 1m-5m long tanks tilted at steep angles [7, 27]. This is due to technological

!This is roughly equivalent to the aspect-ratio of the wave.
2The sharp transition region in the density field.



limitations, as realistic systems® are on the order of tens of kilometres long, and have very
slight angles of inclination [7]. Most laboratories are, due to spatial limitations, unable to
use tanks longer than the length of a swimming pool; however, by appropriately scaling
the amplitude and width of the wave, they can get away with using shorter tanks. It is
then (in principle) simple for an experimentalist to control the angle of the slope, as they
can use ramps either inside or outside the tank to arbitrarily adjust the angle of inclina-
tion. At this point, the experimentalist is only limited by the sensitivity of their probes
(e.g., some ADVP probes are known to have trouble resolving the bottom boundary layer
(henceforth BBL) [17]). Nonetheless experimentalists are able to make accurate observa-
tions of these systems; it is then the job of the numericist to provide precise observations
via high-resolution simulations of the laboratory systems. Numericists, are limited even
more by technology, and it can take years to have the computational resources to exactly
simulate an experimental set-up. For instance, in 1988, Wallace and Wilkinson [13] were
able to perform sloped experiments in an 18m long tank (12m were flat, and 6m were
sloped), and then, in 2014, Arthur and Fringer [1] were able to perform three-dimensional
direct numerical simulations (henceforth DNS) of similar, slightly shorter systems (their
longest domain was flat for 1.675m, and sloped for 11m)?. Now, these statements are not
meant to unduly criticize the work of earlier experimentalists or numericists; indeed, the
narrative of linear—slope systems discussed above was only made possible by the rigorous
and detailed work of earlier scholars. The statements are meant to showcase the limitations
they faced, and to motivate the direction of present linear—slope work: three-dimensional
DNS of long tanks with extremely shallow angles of inclination.

As stated above, recent work uses longer tanks and shallower angles. This allows the
wave to fission, and it also draws out the fissioning process so researchers can observe
the turbulence generated by the BBL instabilities of the shoaling wave-train. Until the
2010s, DNS of shoaling systems has been mostly restricted to two dimensions, but modern
studies by Arthur and Fringer [1], Xu et. al. [17], Olsthoorn and Stastna [31], Sakai
et. al. [30], and Hartharn-Evans et. al. [20] have extended investigations into three
dimensions. A general theme is that wave-breaking on steep slopes, mixing, sediment
deposition, and bolus degeneration are three-dimensional [, 31]. Accurate accounting of
energetics and mass-flux therefore requires DNS of fully three-dimensional systems. On
the other hand, two-dimensional simulations using shallow slopes reveal mechanisms that
generate vortices capable of breaking the wave and producing boluses, suggesting that some
significant sub-processes can only be approximately understood in just two dimensions. Of
course, this notion can only be confirmed by contrasting two-dimensional systems to their

3In this thesis, this is taken to mean systems that mimic the geometry of the coastal shelf.
4As an aside, by using a longer sloped portion, they were able to observe more of the shoaling process.



three-dimensional extensions.

The present work is concerned with three-dimensional direct numerical simulations of
ISW-Ds in a quasi-two layer, single-component fluid shoaling on a shallow, linear slope.
The resolution of the simulations and accuracy of the high-order, pseudo-spectral solver
allow for detailed, qualitative descriptions of the instabilities triggered by, and the coher-
ent structures formed during, the shoaling process. Chapter 2 provides an explanation of
technical details with discussions regarding: using the several assumptions (including the
assumption of the validity of the Boussinesq approximation) to derive the incompressible
Navier-Stokes equations from the local conservation equations of momentum, mass, and
thermal energy; the pseudo-spectral numerical solver used in this investigation, SPINS,
and its alternatives; the initial conditions, boundary conditions, and the domain set-up;
the parameters used to characterize ISWs and slopes, and the experimental cases used
in this investigation; bed-stresses and how they are used to estimate sediment advection;
and, finally, a note on the identification and visualization of coherent vortices using the A,
criterion of Jeong and Hussain [21]. Chapter 3 is a report on the results of the simulations
performed. Briefly, the results are that the evolution has three qualitatively distinct phases
(wave incidence, fission, and bolus formation), and that these phases produce three sets of
qualitatively distinct instabilities (a prograde jet, a separation bubble, and lobe-cleft and
shear instabilities). The results highlight the relationship between the wave amplitude and
the instability intensity, and between the amplitude and the emergence of spanwise vari-
ation. The boundary layer stresses are also described. A summarization of the narrative
finishes the chapter. The final section, Chapter 4, begins with a discussion contextualiz-
ing the results within the broader literature, and ends with a brief speculation on future
laboratory-scale work, such as investigations with sediment—coupled models, and investi-
gations focused on the quantitative analysis of mixing and dissipation.



Chapter 2

Numerical Methods and Technical
Background

2.1 The Governing Equations

Fluid dynamics describes changes in fluid mass density (p), flow velocity (4 = (u,v,w)),
internal pressure (p), Temperature (7'), and occasionally concentrations of chemicals (n;,
where 7 is the index label of the chemical), due to conservative external forces and internal
processes. Any model of a fluid requires a system of equations that governs the evolution
of these variables, as well as an equation of state that expresses p as a function of p, T,
and—if applicable—n;; in simple cases, among which the present investigation is included,
n; is ignored, and we can write

p=fp1T), (2.1)

as the equation of state. The evolution equations used in this investigation will be the
famous incompressible Navier-Stokes equations (henceforth the NS equations).

A standard topic in an introductory fluid mechanics course is the derivation of the NS
equations from the equations for the local conservation of mass, momentum, and thermal



energy; Kundu and Cohen [26] present these conservation equations as

2Ly V=0, 2.2
p Dt + “ (2:2)
D_’ D = — —

pfqurF?ﬁ—F(V-ﬁ)pﬁ:V-T—Vﬁ, (2.3)

De - -
—=-V.-¢{—pV-u 2.4
D q—pV-i+o, (2.4)
respectively. In the above expressions, % = O, + @ - V is the material derivative, J; is

the partial derivative with respect to time, 7 is the internal stress tensor, 7 is the scalar
potential due to external body forces, e is the internal thermal energy density, ¢'is the heat
flux, and

2
¢ = 2555 — g,uuu

is the rate of viscous dissipation (i.e., the rate at which useful energy is irreversibly con-
verted to heat by internal friction).

Following the example of Kundu and Cohen [26], several simplifying assumptions will
be used to derive the NS equations from Equations 2.2-2.4. More involved derivations (that
nonetheless make some of the same assumptions) can be found in Spiegel and Veronis [37],
and in Batchelor [0].

The first assumption is that the fluid is Newtonian. That is, the stress tensor is assumed
to obey the following constitutive equation [20]:

2
Tij = = <p + gukkz) 0ij + 2pSi;, (2.5)

where p is the dynamic viscosity, d;; is the Kroenecker delta, and S;; = %(u” + uj;) is
the rate of strain tensor. Note that the Einstein summation convention is used, and that
u; ; = O;u; where 9; is the partial derivative with respect to the j™ Cartesian coordinate.

The next assumption is that surface gravity is the only body force acting on the fluid:
—Vr = pj, (2.6)

where ¢ is the gravitational acceleration. Substituting Equations 2.2, 2.5, and 2.6 into

Equation 2.3 gives
bi_ g L0 @) 1 gt v (2.7)
P i = p—gpV-u Pg T pV-U. .
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The third assumption is that the fluid is an ideal gas that obeys Fourier’s heat law.
This assumption is made by both Spiegel and Veronis [37], and by Kundu and Cohen [26].
Some readers may object to the ‘ideal gas’ portion of the assumption, since this thesis is
concerned with modelling oceanographic processes, and the ocean is very much not an ideal
gas. Indeed, a more general approach is employed by Batchelor [6] in his text. Nonetheless,
the ideal gas assumption allows for a simple and concise derivation, which is conducive to
clear exposition. With this in mind, the third assumption gives the following relations

[26, 37]:

De . DT

Dt~ P Dt

S DT
V-i=(C,—Cy)p—,

i=—kVT,

where C), is the isobaric heat capacity, C, is the volumetric heat capacity, and £ is a
proportionality constant. Substituting these relations into 2.4 eliminates e and ¢ from the
thermal energy equation, and yields

DT
"Dt

with v = pC,,. The thermal diffusivity of the fluid is then defined as k = k/~. This is not
necessarily constant because of the dependence on p.

= kV?T + ¢, (2.8)

The final assumption is that the Boussinesq approximation is valid. This is true of
systems where thermal' fluctuations are small, and where the effects of pressure waves are
negligible. Formally, this latter condition means

1. If U is a characteristic speed of the flow, and ¢ is the speed of sound in the fluid,
then the Mach number, M = U/c, must satisfy M < 1.3 [20]; that is, the effects of
sound waves are negligible.

2. L, < D, where D is a length scale over which density changes appreciably due to
pressure in the overlying fluid column? [26, 37]

3. The change in density over L, (Ap)is negligible compared to the static domain—
averaged density (po): |Ap/po] < 1 [37]

1Or chemical.
2e.g., this would not be satisfied at the bottom of the ocean.
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If these conditions hold, then the approximation posits that

1. Density fluctuations are due solely to thermal fluctuations®

2. The resultant fluctuations in density are negligible relative to the magnitude of the
density, except in the buoyancy term of the momentum equation

The second posit implies the inequality,

Sl < |V -,

1 Dp
p Dt

which in turn implies

Vi~ 0

when applied to Equation 2.2. That is, fluids for which the Boussinesq approximation is

valid are incompressible. This incompressibility immediately leads to a simplification of
Equation 2.7,

Du

Dt

Additionally, the viscous dissipation, ¢, is also simplified [20]:

= Vp + pg + pV2i. (2.9)

Dimensional analysis then implies
(b 2/LSz]SzJ vU
_ ~U << 1’
'y%f Cpp%{ C,oTL

where U is a characteristic velocity, L is a characteristic length, v = u/p is the kinematic
viscosity, and 07T is a characteristic variation in temperature. That is, ¢ can be ignored?,

and Equation 2.8 becomes

DT
D = kV2T. (2.10)

3If fluctuations in chemical concentrations are present, as in a double-diffusive system, then they also
contribute to density. In any case, the supposition is that density variations due to pressure fluctuations
are negligible compared to density variations due to fluctuations of the other intensive state variables.
4Indeed, this ratio is approximately 10~ !! using the parameters in Tables 2.1 and 2.2.



Next, decompose the density as

p(Z,t) = po + p'(Z,1),

where pg is the same variables defined above, and p’ contains all the fluctuations. Suppose
there exists a static fluid with uniform density pg. The pressure in the hypothetical static
fluid, po(Z), would satisfy

ﬁ]90 = —pog,

so substituting the resultant pressure decomposition,
p(E;t) = po(E) + 1/ (Z,1),
and the density decomposition into the momentum equation yields

/ _D 1 R /
(1 ; ﬂ) Du_ Loy 2ot vea
po) Dt Po Po

In the above, the hydrostatic pressure and density terms have cancelled each other out, and
v = u/po is now constant. The second posit of the Boussinesq approximation, |p’/po| < 1,
further simplifies the momentum equation to

Du 1~ /
Dt Po Po

As stated earlier, the buoyancy term still retains a factor of p’/pg. Kundu and Cohen [20)]

explain this heuristically by noting that gravity is the sole external force, and therefore has a

magnitude comparable to the magnitudes of shear-stress term (¢V?%) and the acceleration
ot

term (%7).

The Boussinesq approximation can be used to further simplify the energy equation.
Once again, the second assumption of the Boussinesq approximation yields

/

p/pp < 1=vy= (1 + ;i) poCp =~ poCh,
0

so Kk is a constant with the same units as v. More significantly, as a direct result of the
first assumption in the Boussinesq approximation,

P = f(T"),



where T” represents fluctuations about a static Tj defined by the equation of state for the
hydrostatic system discussed above. Because the fluid is an ideal gas, the dynamic system
obeys
p = apT,
and the static system obeys
po = apolo,
where a is a proportionality constant. Consequently,

8 / a / ! !
po+p = f(To,po) + —f(To,po)T + f(Toapo)p +0(T"p"),

oT ap
Po v 1 / I
—po— 27—y O(T
Po T02 + G,Top + ( p )7
Do v 1 / . . .
N po— 1"+ —=p', [Fluctuations are slight relative to p|
~ Py — %T’, [By first posit of the Boussinesq approximation]
0
That is, p’ o< T", and therefore
Dp 2
D"V

immediately follows from equation 2.10, the advection-diffusion equation for 7.

All told, the conservation equations have become the familiar incompressible Navier-
Stokes equations with diffusion.

Dii 1=
U Sp+ Liruvia, (2.11)
t Po Po
V-i=0, (2.12)
Dp 2
—£ = . 2.13
Dp = HVP (2.13)

Note that the primes on the density and pressure terms have been dropped for simplicity.

In the present investigation, the z-axis has a streamwise orientation and is aligned with
the floor of the tank, the z-axis is normal to (and points out of) the floor of the tank, and
the y-axis is then aligned according to the right-hand rule. The tank is tilted at an angle
0 relative to the surface of the Earth, so

G = —g(sin(0)i + cos(9)k), (2.14)
where 7 is the unit vector aligned with the z—axis, and k is the unit vector aligned with

the z—axis. For a visual reference, see Figure 2.1.
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2.2 Numerical Methods and Simulation Configuration

2.2.1 Numerical Model

Equations 2.11-2.13 are solved using the psuedo-spectral collocation method implemented
in the software library SPINS. SPINS was developed by Christopher Subich in his PhD
thesis [39]. Since then, this model has been under active development by the original
author and members of the Environmental and Geopshyical Fluid Dynamics group in
the Applied Mathematics Department of the University of Waterloo. Briefly, the model
discretizes spatial fields using an implementation of collocation, and it discretizes time
using a variable time—step, third order Adams-Bashforth method. It uses an exponential
filter to rapidly dampen energy at a cut-off length-scale®, but it can also be configured
to use hyperviscosity instead; in the present investigation only the exponential filter is
used. Alternatives to SPINS exist for the configuration used in this thesis, for example the
method of Cui [4, 12], SUNTANS [16], and MITgcm [31], all of which are finite-volume
methods of relatively low order (order is discussed below).

As a mathematical problem, collocation is a form of interpolation. A domain can be
discretized into a finite collection of points: e.g., a one-dimensional domain of length 1 can
be discretized as {z; = iAz}Y, with even spacing §, = 1/N. Continuing this example,
let u be some field variable known at a given time t. This u generates a list of N + 1
points {u;} = {u(x;)}. Then, an N*" degree polynomial can be interpolated from this set
of points, and this can be used to approximate the smooth function w [3, 39]. SPINS
implements derivatives using the fast Fourier transform (henceforth FFT), implmented
via the highly scalable FF'TW package, as opposed to using matrix-representations of the
differential operators in the original space [39].

In order to implement no slip boundary conditions, the grid must be modified to the
so—called Chebyshev grid in order to avoid the so—called Runge phenomenon [10]. This
clusters points near boundaries. While this restricts the size of the time-step it provides
additional resolution for boundary layer problems, such as those studied in this thesis.

The order, and thereby the accuracy of the model, is determined by N. When N is large,
a collocation method becomes a pseudo-spectral method. An advantage of collocation
methods over finite—element methods is the greater increase in accuracy gained by a given
increase in discrete degrees of freedom, N [3, 10]. Another advantage over finite-volume
and finite—element methods is the ability to explicitly evaluate the nonlinear advection
term on the grid [39]. Conversely, finite—element methods are better at handling domains

5In implementation, after a cut-off wavenumnber.
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with exotic geometry®, and they do not suffer from enhanced aliasing and ringing caused
by grid-sampling errors” [39]. All told, given the typically simple geometry of lab-scale
process-based studies, and given the power of modern computers, the speed and accuracy
of pseudo-spectral methods make them an excellent choice for investigating problems in
idealized geometries, such as those considered in this thesis.

The details of the time—stepping implementation (i.e., the specifics of the implenta-
tion of the variable time-step third—order Adams-Bashforth method) are taken as a well-
validated aspect of the model used. That being said, it is useful to understand the overall
approach SPINS uses to evolve the fluid fields. The simplest way to do this is to outline
the idea behind the evolution algorithm with a forwards—backwards Euler method [39]:

1 5 5 n

(1 — V)" = u™ + At <——v p*—m~vm+p—g>, (2.15)
Po Po

(1 —kV)p"t = p" + At <—ﬁ" vV p") : (2.16)

The superscript n denotes the discrete time, and At is the variable time-step determined
by the CFL condition. The RHS of each equation are evaluated explicitly using the fields
from the current time-step, and then serve as a forcing terms for their respective LHS. The
resulting linear problem is then solved implicitly, and the fields are evolved—this sort of
approach is known as a stiffly-stable or mized implicit-explicit algorithm.

Note that the system 2.15-2.16 is incomplete, since there is no evolution equation for the
pressure, p*. This is a consequence of incompressibility, which implies that p* is updated
instantaneously. SPINS resolves this issue by replacing 2.15 with the following predictor-
corrector method for the velocity fields [39]:

T ="+ At (-mﬁmﬁ—*), (2.17)
Po
]_ —
At—V*p* =V - i*, (2.18)
Po
1 >
(1 —vV2)a" ™ =" — At—Vp*. (2.19)
Po

Equation 2.17 solves for a predicted velocity, «* that is forced solely by advection and body
forces. That is, @* is not influenced by the internal stresses of pressure or viscosity, and

Swith triangular/tetrahedral elements being capable of discretizing almost any shape
"That being said, as long as the smallest features of the physical flow, i.e., the largest wavenumbers of
the physical flow, are resolved, then this is not a significant issue.
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does not need to be incompressible. The divergence of this predicted velocity then appears
on the RHS of Equation 2.18 as the forcing term in a Poisson problem for pressure, p*.
Physically, this is the pressure needed to enforce incompressibility between timesteps n and
n + 1. Indeed, the force derived from p* is applied to the predicted velocity on the RHS of
Equation 2.19 as a ‘corrector’ term. This scheme follows from Equation 2.15 assuming that
i) @ is incompressible, and ii) the discretized V2 and V- commute [39]. Assumption ii)
holds for a sufficiently large order, and away from the boundaries; complications can arise
when accounting for no-slip boundary conditions, but the details are beyond the scope of
this thesis.
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2.2.2 Initial Conditions, Boundary Conditions, and the Domain

Figure 2.1: A schematic of the initial conditions. The values of the domain parameters
can be found in Tables 2.1 and 2.2. The black curved line represents the middle of the
pycnocline, and the red (blue) curved line represents the upper (lower) bound of the pyc-
nocline. Note that i) the system is not to scale, and ii) the the cusps in the isopycnals are
artifacts of the drawing software used, and the true initial isopycnals are Gaussian curves
(see Equation 2.20).

The simulations are intended to mimic a simple laboratory-scale experiment. Namely,
they each use a domain that corresponds to a long, tilted, rectilinear flume with a dam-—
break to initialize the wave. Using a rectilinear domain greatly simplifies the numerics since
no mapped grids are necessary. In fact, the only deviation from a standard implementation
of Equations 2.11-2.13 was the choice to write gravity as oriented towards the bottom-left
of the tank (see Equation 2.14) as opposed to the usual § = —gl%.

The initial conditions of the system are given by

zcos(f) + zsin(f) — H exp (2—5) — 20
h Y

A
p/po=1-— TP tanh (2.20)
7= 0. (2.21)
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Equation 2.20 is a thin hyperbolic tangent stratification, where the initial perturbation of
the pycnocline has a Gaussian profile. A rough illustration of the domain and the initial
conditions can be seen in Figure 2.1. The parameters in Equation 2.20 are: Ap, the
bulk, vertical change in density; 6, the angle of inclination; H, the initial amplitude of the
Gaussian profile; L,,, the half-=width parameter of the Gaussian profile; zy, the undisturbed
height of the pycnocline; and h is the half-width of the pycnocline. The values of these
parameters can be found in Tables 2.1 and 2.2.

Though the physical system starts at rest, each component of the simulation initial
velocity is additively perturbed with white noise of the form

€p X

at every point in the domain. €, = 10~°m/s is the magnitude of the perturbation, and x is
a dimensionless random variable that follows a normal distribution with a mean of 0, and
a standard deviation of 1. The white noise is added to instigate instabilities by weakly and
randomly energizing the velocity fields; this simulates the random environmental fluctua-
tions that would perturb the fluid in a physical tank.

Ap Ly h 2o Po
() (em) (cm) (cm) (kg/m?*)

0.02 25.0 1.2 25.0 1000.0

Table 2.1: Parameters used in equation 2.20. With the exception of Ap and py, these are
visualized in Figure 2.1

The phenomena of interest require an interaction between the wave, topography, and
a viscous bottom boundary layer; as such, the velocity fields at the top and bottom of the
domain must have no-slip (i.e., homogeneous Dirichlet) boundary conditions. SPINS, the
psuedo—spectral solver used in this thesis, implements this via a Chebyshev grid in the
z direction. For simplicity, as well as computational efficiency, the velocity fields at the
remainder of the boundary obey free-slip (i.e., Neumann) boundary conditions. Finally,
velocity obeys the “no-pass” condition and density obeys the “no-flux” condition; i.e., they
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respectively satisfy @-n = 0 and 6,0 -n = 0 along every boundary, where 7n is the normal of
the boundary. As a point of interest, sediment-coupled models, where the sediment is taken
to be extremely fine, have been implemented in SPINS by adding an evolution equation for
the concentration of sediment, C, in addition to a flux-law for Cy at the bottom boundary
[34]. Other sediment models use a large eddy simulation (henceforth LES), a quadratic
stress law, and a Shields model® to represent large-grain sediment dynamics in an Eulerian
perspective [34].

In every case, the size of the domain is L, x L, x L, = 8.192mx0.256m x0.300m,
and it is discretized using a grid with N, x N, x N, = 8192 x 256 x 256 points. This
achieves an approximately 1lmm resolution across the domain (with a finer resolution near
the vertical boundaries, and a courser resolution in the interior), which is competitive
with the resolution of recent simulations [1] carried out with second order finite volume
codes. This resolution is approximately within 1 order of magnitude of the Kolmogorov
length scale, and it does not use a closure model for sub-filter scales, so the simulations
are essentially direct numerical simulations (henceforth DNS) [5].

That being said, extreme thinning of the pycnocline during overturning, and during
the degeneration of the bolus produces mild, temporary ringing at scales not damped by
the exponential filter. The ringing obfuscates any potential mixing calculations. As such,
this thesis is focused on the qualitative description of the systems, and uses visualizations
of the primary fluid fields and vortices? as proxy measurements of mixing.

2.3 Parameters and the Experimental Cases

2.3.1 Wave Parameters

Solitary waves are maintained by a balance of nonlinear steepening and non-hydrostatic
dispersion. By definition, nonlinearity is not captured by linear theories such as the shear-
free, long-wave!® Taylor-Goldstein equation. A simple model’! that does include these

8Shields models are discussed in Subsection 2.3.2. Briefly, they experimentally determine a critical
bottom stress that when exceeded leads to sediment transport or resuspension at a given Re.

9The calculations of the derivatives needed to detect vortices are also, to a lesser degree, obfuscated;
nonetheless, the bulk features of the coherent vortices are captured, and only fine details of the vortices
are in doubt. Furthermore, these bulk features are all that is needed for a qualitative analysis of the flow.

10The long-wave equation simply means that the vertical extent of the domain is much smaller than the
horizontal scale of a given wave.

Mwhich is one-dimensional in space and evolves in time
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effects is the Korteweg-de Vries (henceforth KdV) equation:

+ (co +an)5— + 58377

ot 0T Mgy T gy

where 7 is the isopycnal displacement, ¢q is the linear longwave speed, o ~ H/L, is the
nonlinearity parameter and 3 ~ (L,/2L,,)? is the dispersion parameter. These parameters
are taken to be small, but finite. In a two-layer system, with no background flow, Helfrich

il il =0, (2.22)

and Melville [21] relate the parameters as follows:
/2
gAphihy '

— (92rmie ] 2.23
0 < I+ ha ) (2.23)

3 hy—ho
= — 2.24
T2 h, (2:24)
p= C—ghlha, (2.25)

where ¢ is the magnitude of the gravitational acceleration, h; is the thickness of the top
layer, hs is the thickness of the bottom layer, and Ap is the difference in density between
layers. Since the tank is tilted, an estimate is needed for h;. Following the example of Xu
et. al. [10], let

20+ L./2

—s

This estimates the lower-layer thickness as an average between the height of the pycnocline
and half of the domain thickness. The thickness of the upper layer then immediately
follows, since hy = L, — hy. These values are used to calculate the ¢y that will be used to
define other variables below and in Table 2.2.

h1:

A powerful prediction of the KdV theory, is that waves of depression occur when h; >
hs, and waves of elevation occur when h; < hy. To see this, suppose np is a wave of
depression solution to Equation 2.22 when hy; > hy. Now, let ng = —np (i.e., its isopycnals
are deflected in the opposite direction of the isopycnals of 77p). Then,

ong ong Png
o Onp Inp 6’377/3
== ~(otam)G -0
=0.

That is, for each n that solves the KdV with a given «, there exists a solution —n that
solves the KdV with —a ( i.e., where the the heights of the top and bottom layers are
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swapped, and both waves are travelling in the same direction). Thus, the KdV equation
suggests that, along a linear slope, a wave of depression will switch to a wave of elevation
(i.e., switch polarity) at the point where the pycnocline passes mid-depth. This point is
known as the turning point, and it should not be confused with the interaction point, which
is where the pycnocline intercepts the slope.

This model is formally only valid in two-layer systems in the weakly nonlinear (hence-
forth WNL) and weakly dispersive regimes; those restrictions notwithstanding, KdV theory
and its extensions into less-weak regimes show good agreement with experimental results
[21]. As such, they are used to analyze experimental measurements and estimate parame-
ters such as the below-wave Stokes boundary layer thickness'? [4, 10],

0= 2\/ﬁ, (2.26)
Co

H
RBISW = COT (227)

and wave Reynolds number,

These variables use ¢y, which can be calculated with linear theory (e.g., the Taylor-
Goldstein equation), but showing that it is also the speed for WNL waves lends credence
to its use in estimating parameters for the highly nonlinear systems studied in this thesis.

A WNL theory, by definition, cannot capture the full effects of steepening and break-
ing!'?, since such a theory loses predictive power once the amplitude becomes too large.
As such, the study of breaking and degnerating ISWs over a flat bottom, and the study
of shoaling waves, requires inferences from exact solutions for the Dubreil Jacotin Long
(henceforth DJL) equation [33], or the analysis of a DNS.

The study of shoaling ISWs is largely concerned with classifying experiments by rel-
ative wave—slope geometry. In linear—slope experiments, the natural parameter for such
classifications is known as the Iribarren number [7],

o —tnf (2.28)
H/L,

It is the ratio of the bed slope to the wave slope. In the limit of I — oo, the bed slope is
essentially a vertical plane, in which case the wave is horizontally squeezed and vertically
stretched before reflecting; in the opposite limit, the bed slope is essentially flat, in which

12This will be used to calculate a bed pseudo-stress, 775w, which is defined in the next subsection.
3Indeed, the measured speed of the waves is approximately 7cm/s.

18



case the wave travels past unaltered. This implies that wave energy in large Ir systems
is mostly reflected, while wave energy in small Ir systems is mostly transmitted. The
resultant differences in the dynamics at the turning point are visualized clearly in Figure
3 from Nakayama et. al. [33], and in Figures 3-5 from Moore et. al. [32].

2.3.2 Bed stresses

A significant motivation for the study of shoaling internal waves and BBL instabilities is

to understand their potential for the transport and resuspension of sediment [7]. Early
experimental attempts to classify flows based on their resuspension potential used recti-
linear channels with nearly uniform flows passing over a layer of sediment [28]. Broadly

speaking, experimentalists measure the streamwise current, and the induced streamwise
bottom stress,,,, and note the threshold currents at which they observe either i) incipient
motion in the sediment layer, or ii) the ejection of sediment into the water column. This
model assumes parallel shear flow; another approach, concerned solely with resuspension,
considers whether or not the vertical velocity within the BBL is capable of overcoming a
sediment grain’s settling velocity [!]. The stress used for this model, 775w, is not a true
bed-stress; both it and 7. are to be precisely defined and discussed below.

These models are known as Shields models. They consider the dimensionless quantity

Ty
__ T 92.99
7 (e — p)gd’ (2.29)

where 7, is a bed stress, p; is the (mean) grain density, and d is the (mean) grain diameter.
Such models aim to find a critical o, such that ¢ > 0. guarantees either incipient/cross-bed
motion or ejection/resuspension of sediment [7].

This approach requires knowledge of the stress at the boundary. For field-scale studies,
this often requires the use of empirical stress laws. Fortunately, when using a DNS, an
analytic equation of stress can be used. According to Kundu and Cohen [20], the internal
stress tensor of a Newtonian fluid under the Boussinesq approximation is given by

Tij = —Ddij + 2pov.Sij,

where ¢ and j are indices of the spatial coordinates, d;; is the Kroenecker delta, and

Sij = 5 Wiy +u5i) = 5 (% i a;.) ’
7 )
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is the symmetric strain tensor. Using the coordinate system of the experimental domain,
and the Einstein summation convention, Cauchy’s first law states that the force on a unit
area due to internal stress is
Fy = m;n;,
where n; is the outward unit normal of the unit area.
At the bottom boundary, n; = ¢,;. Additionally, for cross-bed transport, the only
relevant components of F; are in the x and y directions. The no-slip boundary condition

then implies that the horizontal components of the force per unit area on the bottom
boundary are given by

Fi = 6.7,
= Tiz,
6t oo (8uz~ N 8w)
0z  Ox; )’
= —pdi. + P0V8Ui-
0z

The components of the stress tensor used to investigate thresholds for cross-bed (i.e.,
along-slope) transport are thus

8Ui
0z

where the derivative is evaluated at the bottom, and i is one of the horizontal components'*.
It may seem natural to use 7,, to determine the vertical force, and thus the potential for
sediment ejection from the boundary. However,

ow
Fz = - a0
D+ pov 02
9, 0
= —p— pov Ty ., [By incompressibility]
or Oy

(2.30)

Tz = PoV

The last line follows from the no-slip condition, which demands constant © = v = 0 along
the bottom boundary. Unfortunately, only the gradient of p, and not p itself, can be
deduced from the equations of motion [26]. Consequently, this force component and its
corresponding stress component(s), are of little practical use. As a result, a false stress

4Note that the indices in 2.30 are switched. This is due to a stylistic preference, and it is valid because
T;j is symmetric.
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referred to as the ‘ejection stress’ has been adopted by experimentalists [I, 2, 11]. As
discussed by Boegman and Stastna [7], and van Rijn [11], the ejection stress used to
investigate thresholds for sediment resuspension is

Trsw = po, (2.31)

where

w(z,y) = Inax w(x,y, 2),

and ¢ is the boundary layer thickness estimate given by Equation 2.26. Note that @ could
instead be the root-mean-square evaluated over the same z interval [I, 11]. This stress
roughly characterizes the vertical kinetic energy injected into the BBL by the flow from
the overlying water column. Regardless, both 7.; and 779y can be used to empirically
determine a threshold o, at which the desired type of sediment motion takes place. o. is
determined for a range of Re, and the resultant curve plotted on o-Re axes is known as a
‘Shields diagram,” which characterizes the Shields model [25].

Two factors prevent an implementation of a Shields model analysis in this investigation.
First, as will be discussed in Chapter 3, two events lead to the instigation of transverse
motion during the shoaling process. Thus, the assumption of parallel channel flow is
violated, and the Shields model with 7, = 7., loses applicability. However, the Shields
model concerned solely with resuspension, where 7, = 779w/, can still be used. This leads
to the second issue. Given that Equations 2.11-2.13 contain no sediment model, and that
ps and d in Equation 2.29 are thus unspecified, it is impossible to evaluate or even estimate
a Shields model using the experiments in the present investigation. That notwithstanding,
measuring these stresses gives an approximate idea of the potential for the simulated flows
to transport and resuspend sediment at a given stage of the shoaling process, and draws
attention to systems that should be reexamined using sediment—coupled models.
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Case H Co ) Rejsw Ir v K tan 6

(cm) (em/s) (mm) () () (m®sh)  (msh ()

Large 20.0 11.44 4.18 11440 0.0586 2.00-10"% 2.00-10"¢ 0.052
Medium 15.0 11.44  4.18 8578  0.0677 2.00-107% 2.00-107% 0.052
Small  10.0 11.44  4.18 5718  0.0829 2.00-107% 2.00-107% 0.052

Table 2.2: The table of cases. Note that the Schmidt number, Sc = v/xk = 1, for all cases.

2.4 Detecting Vortices

Vortices are coherent structures characterized by correlated circulations about a common
centre [22, 24, 25]. A classic topic in vortex dynamics is the interaction between point
vortices; this interaction can be analytically modelled using the Biot-Savart law [6]. This
can be extended to studying the interaction between tangles of infinitely long vortex fila-
ments. Such an approach can be used to approximate homogeneous, isotropic turbulence
at inertial and dissipative scales [13, 29], but it does not have applications beyond the
idealized or microscopic realms—let alone to a more complicated system such as a forced,
stratified fluid.

Shoaling waves have the potential to generate turbulence in the water column above and
below the wave. Characteristic of such flows are chaotic and intertwined vortices (coherent
structures characterized by correlated circulations about a common centre) that transport
kinetic energy from inertial large-scale features of the flow to small-scale features where
viscous dissipation dominates and converts the kinetic energy into heat. Intermediate
scale features inertially transfer kinetic energy between each other via vortices stretching
vortices of smaller (yet similar) size. Such intermediate interactions are formalized by triad
interactions in Fourier space [15], or by structure functions in physical space [13]. This
entire process is known as the energy cascade. The same vortices that drive this cascade
also boost the irreversible mixing of thermal and chemical energy. As such, the dynamics
of vortices has been a major focus in fluid physics.

The application of vortex methods to realistic systems, such as a shoaling wave system,
requires a sophisticated model of vortices and their interactions. Advances in computing
and measurements allow for detailed data sets that demand high-powered analytical tools
alongside a rigorous definition for a coherent vortex. Since the 1980s, several methods for
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identifying coherent vortices have been proposed, with the aforementioned applications in
mind [13, 25, 24, 15, 11]. Not all methods use physically robust definitions, and several
methods correspond to conditions that are just special cases of those used by other meth-
ods. As a slightly contrived example of a non-robust method, one definition states that a
coherent vortex is region with tightly coiled, circular streamlines; however, in a different
inertial frame the coils could become elliptical, and thus this region would no longer be
considered a vortex [25, 21]. As an example of an overly-broad definition, a coherent vortex
could be a region with a large bulk vorticity; however, layers in a sufficiently strong parallel
shear flow would also satisfy this definition.

The definition of a vortex utilized in this thesis is Galilean invariant (so that it works
in all inertial frames), and it encapsulates and generalizes the intuitive features of physical
vortices that inspired less-robust definitions [25]. That being said, it is only applicable in
three-dimensions, and is therefore unsuitable for some vortices that appear in large-scale
atmospheric and oceanographic dynamics that are dominated by the rotation of the Earth;
issues would also arise when applying this definition to effectively two-dimensional films,
such as the surface of a soap bubble. Before stating this definition, however, a few primary
quantities must be introduced.

Let the velocity field be represented by u;, where i is an index over an orthogonal basis
for the domain. Using tensor notation, the gradient of the velocity field is u; ;. Next, u; ;
can be decomposed as

u;; = S + (i,

where S;; is the symmetric rate of strain tensor, and (2;; is the anti-symmetric rotation
tensor [20]. Consider the eigenvalues of the tensor

SitSki + Qi s,

which are ordered by decreasing value: A, (m = 1,2,3). A vortex is then defined as a

region of the fluid where the second-largest eigenvalue satisfies Ay < 0 [24]. In practice,
visualizing vortices usually requires finding a small number € > 0 and setting Ay < €. This
is known as a thresholding problem, and is discussed in detail by Antonia [3], and more

recently by Dubief and Delcayre [15].

This definition has a heuristic physical interpretation. First, note that (excluding some
large-scale atmospheric flows, and two-dimensional flows) the pressure inside a vortex is
lower than the pressure of its surroundings. While the pressure minimum criterion was
once widely used to detect and define vortices, Jeong and Hussain [2/] noticed that: i) time-
varying strain can create a pressure minimum without any circulation, and ii) viscosity can
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erase a pressure gradient within a localized circulation. These observations directly follow

from
DSZ‘]'
Dt

which can be derived from the momentum equation (in the absence of body forces) [24].
A generalization of the pressure minimum condition follows by wilfully ignoring the time
derivative and the viscous stress term in the above equation. When ignoring body forces,
time dependency, and viscosity, the momentum equation (Equation 2.11) implies that
pi = 0. Thus, if S; Sk ; + € 12k ; has two negative eigenvalues within a connected region,
and because the RHS is the Hessian of pressure, the multi-variable second derivative test
implies a pressure at a minimum within that region. Furthermore, A\, is defined as the
second-largest eigenvalue of this tensor, so Ay < 0 therefore implies that S;;Sk; + ixS;
has two negative eigenvalues [241]. Thus, the intuitive notion of a pressure minimum within
a vortex is just a special case of Ay < 0 when the flow is steady and weakly viscous. For an
example of a Ao—vortex field (i.e., a collection of regions where Ay < 0) refer to Figure 2.2.
Here an arbitrary data set is used to demonstrate the Ao—vortex concept, and it is not used
anywhere else in this thesis. The temperature data visualized is borrowed with permission
from Hanson et. al. [18], but the three-dimensional figures are original. Notice that the
vortex rolls in panel b) correspond to overturning regions in the temperature field in panel

a).

— USijkk + SikSkj + QurClij = —Dij
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Figure 2.2: A visual demonstration of the A\y—vortex concept. Panel a) is a temperature
field taken from a data set unrelated to the experimental cases discussed in this thesis.
Panel b) depicts regions of the fluid where Ay < —0.0002.

2.5 Summary

This Chapter began with an outline of a derivation for the NS equations, which are used
to simulate the fluid systems. Next, it discussed details of how these equations are solved,
including: the boundary and initial conditions (which are needed to specify a linear—slope
system), an overview of the numerical algorithms employed by SPINS, and a discussion
of the numerical grid (which established that the simulations performed for this thesis are
DNS).

The latter half of the chapter was dedicated to discussing, and defining or deriving
the various parameters and quantities that will be used to analyze the simulations. Each
wave-slope system is characterized by the wave slope, S,, = /H/L, and the bed slope,
s = tanf; these quantities are then combined into Ir = s/S,, which have been used
to categorize the types of shoaling dynamics seen in other studies of linear—slope systems
[2, 33]. This parameter was therefore used to inform the design of the experiments; namely,
it shows that the wave-slope systems studied in this thesis are in the Fission regime. The
quantities used to analyze the BBL-wave interaction are: the bed stresses, 7., and 7.;
the ejection pseudo-stress, 775w, which can be used as an estimate for the potential of a
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wave to induce sediment resuspension; and, Ay, a quantity that satisfies Ay < 0 in regions
occupied by three-dimensional coherent vortices. These vortices are visual tools, and can
be used to qualitatively assess the mixing and sediment transport potential of a given wave.

The results of the simulations described in Table 2.2 can now be analyzed with the aid
of these quantities and with these fundamental concepts in mind.
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Chapter 3

Results of the Simulations

A shoaling wave of depression transforms as it interacts with the slope. The BBL beneath
the wave also transforms, and eventually the evolution of the BBL becomes an essential
component of the evolution of the wave. The transformation of the wave can be organized
into the following stages: i) incidence upon the slope, ii) fission along the slope, and iii)
bolus formation and degeneration near the intersection of the slope and the pycnocline [16].
For a visual example, refer to Figure 3.1, which depicts the evolution of the density field of
the Medium case. In Figure 3.1, the first stage corresponds to the transition from panels
a) to b), the second corresponds to the transition from b) to ¢), and the third corresponds
to the transition from c) to d). Of particular importance is the transition from c) to
d), during which BBL instabilities (if present) overturn the pycnocline and cause wave
breakdown (note the mixed pycnocline near = 3.75m in panel b) of Figure 3.2).

In each experimental case, these stages were observed to correspond, respectively, to
the following qualitatively distinct BBL instabilities: i) a prograde® jet, ii) a separation
bubble, and iii) lobe-cleft instabilities and shear-instabilities. This chapter is organized by
the stages and their instabilities: the first section begins by discussing the initial ISW-D,
and the the prograde jet; the second reports on the formation of separation bubbles, and
secondary vortex instabilities; the third section discusses the destruction of the wave by
way of bolus formation, and the concurrent generation of lobe-cleft and shear instabilities;
finally, the fourth section summarizes the narrative of the chapter.

Every section presents data from at least two of the three cases simultaneously; this
is done 1) to highlight the broad similarities of the stages described above, and ii) to use

lie., along the positive streamwise direction; likewise, retrograde indicates something that is against

the positive streamwise direction.
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the broad similarities to accentuate the differences in the manifestation of the BBL-wave
interactions caused by varying the amplitude of the wave. To spoil the punchline, the
Large case shows extremely violent overturning of the pycnocline due to vortices generated
by the wave-BBL interaction; the amplitude is then reduced by half (the Small case)
and the vortices are no longer present, and no overturning occurs; the Medium case has,
as its name suggests, an intermediate amplitude, and weaker vortices are present, and
they also overturn the pycnocline (though, as expected, with less violent results than the
Large case). As will be seen in the subsequent sections, the other instabilities also exhibit
similarities and differences when the wave amplitude is varied. Throughout, results from
these experiments will be compared with results from other numerical investigations (such
as Arthur and Fringer [1], Olsthoorn and Stastna, [34], and Xu et. al. [10]), and with
results from physical experiments (such as Ghassemi et. al. [L7], Moore et. al. [32], and

[43])-
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Figure 3.1: Evolution of the density field from the Medium case. Each panel contains a
vertical cross-section of the density field at y = 0.128m at a given time. a) shows the wave
during the prograde jet phase (t = 4s), b) shows the wave fissioning during the separation
bubble phase (¢t = 29s), c¢) shows the breakdown of the wave when the lead separation
bubble bursts (¢ = 45s), and d) depicts the bolus phase (¢t = 61s).
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Figure 3.2: Formation of a bolus during the transition from the fission phase to the bolus
phase in the Medium case. Each panel contains a vertical cross-section of the density field
at y = 0.128m at a given time. The wave degenerates into three boluses. a) is the density
field at ¢ = 45s, and b) is the density field at ¢ = 61s.
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3.1 The Prograde Jet Phase

ISWs fission from the initial disturbance of the pycnocline, which is larger in amplitude than
the ISW amplitude. The amplitude of the emerging ISWs increases with the amplitude of
the disturbance. All waves in the numerical experiments translate with nearly the same
speed; only the Large case leads to localized overturning during the adjustment phase
of evolution. This instability is not depicted, because it does not ultimately impact the
interaction between the wave and the BBL.. What will impact the interaction, however, are
the streamwise and vertical currents induced by the wave, which are very much dependent
on the initial amplitude.

In all cases, the shoaling wave of depression induces a prograde jet in the BBL within
three seconds of the lock release. Figure 3.3 shows the streamwise velocity field of each
case at the end of the strictly 2D portion of the evolution. The jet is the band of rightward
current in the BBL (the orange-red streak at the bottom of each tank). The magnitude
of the jet’s velocity increases as the wave shoals. The magnitude of, and the rate of, the
intensification of the jet increases with the initial amplitude of the wave; this can be seen
in Figure 3.3, as the horizontal flow induced by the jet in the Small case (panel c)) is an
order of magnitude weaker than the other cases.

At the stage depicted in Figure 3.3, the leading wave of elevation has already passed the
turning point, and the ISW-D is beginning to fission into a wave-train. The front portion
of each jet is under the leading wave of elevation, and they are each contracting into the
separation bubble typical of ISW-Es. For an example, of this process refer to Figure 3.4,
which depicts panel a) from Figure 3.3 after 2s have passed, and with a window? that
better shows the disparity in height between the separation bubble and the jet. After
pinching, the back of the jet will remain where it is, and it will be modulated by the newly
formed trailing waves; in the Large case, the eventual result is the presence of noticeable
undulations in the u field in the boundary layer near the turning point between t = 64s
and t = 68s. As will be discussed in greater detail in Section 3.4 and in Chapter 4, these
undulations might suggest a mechanism for formation of the sandwaves observed by Ma
[30]. However, as will also be discussed, the relative weakness of the current in the jet to
the wave-induced currents and to the current in the separation bubble, raises doubts about
this interpretation.

The rate of formation of a bubble increases with the amplitude of the initial wave. This
is sensible, as the amplitude of the wave determines the strength of the currents, and the
separation bubble instabilities would not form without the adverse shear current formed

2This window is both wider and shorter than that in Figure 3.3.
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by the remnants of the initial ISW-D [7, 9, 10, 14, 16]. The next section discusses the
evolution of these separation bubbles.

One order of business needs to be addressed before proceeding, and that is to describe
a type of figure that will be used repeatedly throughout this thesis. Consider Figure 3.5:
this is a ‘total evolution diagram’ (henceforth TED). It depicts: in panel a), the density
field at a given time; in panel b), the streamwise velocity at a given time; in panel c), the
transverse velocity field at a given time; in panel d), the ejection stress at a given time;
and, in panel e), time series of the root-mean-square of each of the bed stresses, where the
mean used is the domain average. Note that in panel e) a vertical grey line highlights the
time under consideration. These diagrams succinctly capture the essential information of
the system at a given moment (in panels a)-d)), and contextualize this information within
in the total evolution (using panel e)). Note that panels a)-c) are vertical cross-sections
at y = 0.128m while panel d) is a necessarily horizontal view of the bed (psuedo-)stress,
Tisw- As an aside, to keep the subject in the frame, the frame must translate with a speed
close to the speed of each wave; in each case, this is approximately 68.75% of the long wave
speed in deep water, ¢y, and it is calculated as discussed in Subsection 2.3.1.
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Figure 3.3: The cross-section of the streamwise velocity field at y = 0.128m, and ¢ = 24s
for each case. a) is the Large case, b) is the Medium case, and ¢) is the Small case.
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3.2 The Separation Bubble Phase

3.2.1 Formation of the Separation Bubble

The separation bubble at the front of each jet continues to contract during the fission
process. The bubbles initially sit near the front of the wave of elevation, as they have been
depicted [7]. As a bubble contracts, a band of ejection stress forms to the right of the
bubble, and then a stronger band of ejection stress forms to the left; an example of these
can be seen in the TED, Figure 3.6d) for the Small case (note that they are present in
all cases). As usual, a strong upwards current sits at the front half of the leading wave of
elevation; what is interesting, though, is that a sheet of vertical momentum branches off
of this current, and penetrates the boundary layer at the same location as the left band
of ejection stress. An example of this sheet can be seen in Figure 3.7, which is a depiction
of a horizontal cross-section at y = 0.128m of the vertical velocity field from the Medium
case. In this figure, two black arrows denote the location of the aforementioned bands of
stress. As can be seen in the figure, the contact point of the momentum sheet, highlighted
by the left black arrow, coincides with the left band of stress, as mentioned. Likewise,
the right band of ejection stress coincides with the contact point of the aforementioned
strong vertical current and the BBL, and this contact point is highlighted by the right
black arrow in Figure 3.7. The shape of the bands in Figure 3.6d), and the lack of a
transverse current in panel c¢) both indicate that the formation of a separation bubble is
a two-dimensional process. Additionally, no other case provides evidence of a transverse
current or of spanwise variation in any field during the formation of the initial separation

bubble.

Once the bubbles are approximately 35—40cm in width and 3—4cm in height, they begin
to induce smaller separation bubbles within themselves. Figure 3.8 depicts the bubbles at
this stage, via a vertical cross section (y = 0.128m) of the streamwise velocity field, for
each case. The streamwise currents of the internal separation bubbles are oriented opposite
to those of the parent bubbles, which are themselves oriented with the positive streamwise
direction; i.e., the parent bubbles have prograde currents, so the internal bubbles have
retrograde currents. When the internal bubbles begin to form, the previously discussed
band of ejection stress on the left of the bubble splits into two separate bands; the leftmost
band still bounds the parent bubble, and the inner band sits to the left of the internal
bubble. Two weaker bands also appear, and can be seen in the TED in Figure 3.9d); the
weak bands are the right boundaries of the separation bubbles. This can also be seen in
the other cases, though the bounding bands are stronger and weaker in the Large and
Small cases, respectively. The perfectly rectangular bands of ejection stress, the transverse
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current being weaker than O(107%)m/s, and the maximum spanwise standard deviation of
the streamwise velocity field being weaker than O(107*)m/s, across all cases, all suggest
that the formation of an internal separation bubble is a predominately two-dimensional
process, with weak three dimensional growth.

During the shoaling process, the leading wave of elevation in the Medium and Small
cases produces three internal separation bubbles, while in the Large case it only produces
two. The larger-amplitude cases produced larger internal separation bubbles with stronger
retrograde currents; it is only these larger and stronger bubbles that precede secondary and
higher instabilities® capable of generating significant spanwise variation. Indeed, the fields
of the Small case remain two-dimensional until the bolus phase, and it is only the larger
amplitude cases that produce coherent vortices and significant transverse currents during
the fission phase. The production and evolution of these vortices are discussed next.
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Figure 3.6: Total evolution diagram of the Small case at t = 41s.

3i.e., only their bubbles ‘burst’-a term to be explained in great detail in the next section
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Figure 3.7:  The cross-section of the vertical velocity field at y = 0.128m, with super-
imposed density contours for the Small case at ¢ = 41s. The contours are evenly spaced
between 992.2kg/m? and 100.8kg/m3. The black arrows highlight the location of the stress
bands from Figure 3.6d).
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at t = 47s.
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3.2.2 Bursting

An internal separation bubble unsteady region will move towards the back of the parent
bubble and the leading ISW-E. In the Small case, each internal separation bubble degen-
erates before it reaches the back of the parent bubble; in the other cases, at least one
internal separation bubble exits the parent bubble. When it does so, a portion of the
parent bubble will exit with it, and they have the potential to form a vortex. This latter
process is known as ‘bursting’ [10]. Consider the Large case first: in the transition be-
tween panel a) in Figure 3.8 (from the previous subsection) and panel b) in the TED in
Figure 3.10, the parent bubble is split by the internal bubble; the left portion of the parent
travels with the internal bubble up and to the left, away from the boundary layer. These
adjacent regions of opposite current constitute a vortex, which may experience transverse
instability; they are highlighted by a black square in panel b) of Figure 3.10. Indeed, the
nascent transverse currents of this instability can be seen in Figure 3.10c). This vortex
intensifies, and draws down the pycnocline that sits to its immediate left. As it does this
overturns the pycnocline, and subsequently generates a baroclinic vortex of the opposite
polarity; this vortex is generated by a portion of the retrograde current that was above
the parent bubble, but that was entrained during the burst. The opposing currents that
will go on to create the baroclinic vortex are highlighted by a white square in panel b) of
Figure 3.10. The overturning of the pycnocline generates strong density gradients in the
lower to middle water column. The result of this overturning can be seen to the left of
x = 2.5m in panels a)-d) of Figure 3.11 (a TED). While the vortex produced by the first
internal separation bubble does this, a second internal bubble forms, which can be seen
around x = 2.6m in Figure 3.10b). The bands of ejection stress about the second internal
bubble, seen in panel d), show spanwise variation; accordingly, the structure that emerges
appears less like a vortex than it does a burst of coherent motion growing out of the BBL.
The effects of this burst can be seen near z = 3m in panels a)-d) of Figure 3.11.

The scale and span of the coherent vortices generated can be appreciated by considering
the Ay vortex field in Figures 3.12 in and 3.13. These figures each contain false-colourings
of volumes where Ay <= 0.0002, though the latter figure also superimposes a volume of
the density field that conatains the pycnocline. The complex patterns in panel d) of Fig-
ure 3.11 overlap with the regions where the vortex field in Figure 3.12 touches the bottom
boundary. The large magenta vortices in the middle, which are the vortices formed by the
first separation bubble, produce the most ejection stress at this time (t = 39s). Meanwhile,
the green-grey-magenta cloud of vortices to the left stirs and mixes the pycnocline and even
induces spanwise structure in the pycnocline as it does so (see Figure 3.13). The smaller
cloud of vortices to the right corresponds to the burst from the second internal separation
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bubble; these vortices do not interact strongly with the pycnocline, but they do create
ejection stress in the bottom boundary layer. They also become trapped under the leading
wave of elevation. As the instabilities from the burst grow they begin to take the form of a
vortex, but, as can be seen in Figure 3.12, the region beneath the leading wave of elevation
rapidly becomes turbulent and the coherent structure disintegrates. The strong turbulent
spanwise motion also disrupts the formation of the third separation bubble that is observed
in the other cases. In Figure 3.11 it is clear that this whole process creates a spike in all
the bed stresses, between t = 37s and t = 52s; the trailing waves are much weaker, and do
not produce such intense structures, as is evidenced by the dip in the ejection stress when
the leading wave of elevation enters the bolus phase and its internal turbulent currents
begin to dissipate.

This process is similar, if less bombastic, for the Medium case. The first internal sepa-
ration bubble exits the parent bubble, and takes a portion with it. In this case, however,
this region does not travel upwards at all; additionally, the entrained portion is not com-
pletely detached from the parent bubble, as can be seen in Figure 3.14b) above x = 3.3m.
The opposing currents once again constitute a vortex which i) energizes weak transverse
currents, and ii) overturns the pycnocline above x = 3.1m in panel a). During overturning,
the vortex merges with the region of strong retrograde current between x = 3.0m and
r = 3.2m; as it does so, it induces weak transverse currents and vortical structures. The
weak, baroclinic overturning of the pycnocline once again generates a strong interaction of
the pycnocline and boundary layer, and stronger transverse currents than those from the
initial vortex produced by the bubble. These effects are most visible in panels a), d) and
e) from Figure 3.15. In a) the overturning leads to mixing across the pycnocline between
z = 3.1m and z = 3.6m; in d), the ejection stress between x = 3.8m and 4.0m is both
intense and exhibits strong spanwise variation; and, in e), there are clear spikes in the
ejection stress and in the transverse stress between ¢ = 49s and ¢ = 52s.

Under the leading wave, another separation bubble is produced; it can be seen in panel
b) of both Figure 3.14 (at « = 3.5m) and Figure 3.11 (at x = 3.9m). Its evolution is similar
to the first bubble, but it creates a weaker vortex. However, the vortex still interacts with
the pycnocline, which is now closer to the bottom (between z = 3.4m to z = 3.8m in
panel a)). The vortex created by the second bubble also induces transverse currents which
overtake and modulate the third bubble in the middle of its growth—showing that three-
dimensional growth, though slower, eventually dominates two dimensional growth in these
systems. Referring to panel d) of Figure 3.15, the greatest ejection stress is beneath the
leading wave. Additionally, there is a large spike in the domain-rms of the ejection stress at
this time—the largest value across all cases. Alongside the form of the transverse velocity,
this suggests that the chaotic currents induced by the final two bubbles reinforce each other
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while they drive the transition to turbulence under the wave. This is in stark contrast to
the large amplitude case, where—paradoxically—the strong, turbulent currents from the
second bubble prevent the generation of a third bubble, and in turn reduces the maximum
domain-rms of the ejection stress.

After bursting, the leading ISW-E begins the bolus phase, and the turbulent currents
beneath it begin to dissipate. As stated previously, though, the separation bubble under
the leading ISW-E never bursts in the Small case. Consequently, no turbulent currents
are present. In this case, the leading ISW-E continues to produce extremely small internal
separation bubbles that degenerate rapidly.

Though quite a bit of emphasis has been put into describing the process of bursting,
what may not be clear is the significance of the presence bursting and its products. As
has been stated repeatedly, bursting leads to vortex formation, which leads to turbulence
under the pycnocline and mixing across the pycnocline. Here, for perhaps the first time in
three dimensions, there is strong evidence that systems in the fission regime are not just
capable of mixing the water column, but they are also capable of doing so violently (as
can be seen in the three-dimensional figures, Figures 3.12 and 3.13, and near z = 2.4m in
Figure 3.11); that is, these waves are likely to be able to resuspend sediment and contribute
to nutrient transport throughout the water column. Then, because the shallow slope of the
coastal shelf [7] implies that fission-regime waves should be the most abundant waves in
this environment, fission—regime waves are likely to play crucial roles in the biogeological
cycles in the coastal ocean.
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Figure 3.10: Total evolution diagram of the 1A case at ¢t = 34s with annotations in panel
b). The black square highlights the opposing currents that create the first vortex, and
the white square highlights the opposing currents that create the baroclinic vortex that
overturns the pycnocline.
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Figure 3.11: Total evolution diagram of the Large case at ¢t = 39s.
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Figure 3.12: Three-dimesnional, volumetric depictions of vortices produced by the burst of
the first and second internal separation bubbles at ¢ = 39s in the Large case. Volumes with
vortices satisfy Ay < —0.0002. Numerically, the colourmap has Magenta regions closer
to A2 &~ —0.0002, green regions closer to A\ — —0.1 (this is a saturation choice, since
min(Ay) = —512.0), and white regions as the intermediate colour. Physically, magenta
regions can be roughly interpreted as having a weaker degree of three-dimensionalization,
and the white and green regions can be roughly interpreted as having a stronger degree of
three-dimensionalization.
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Figure 3.13: Same as the Figure 3.12, but with a three-dimensional, volumetric depiction
of density field about the pycnocline superimposed on the vortex field. Red regions are
more dense, blue regions are less dense, and grey regions are close to the reference density,
po. Once again, this is for the Large case.
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Figure 3.15: Total evolution diagram of the Medium case at ¢t = 50s.
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3.3 The Bolus Phase

As the wave evolves into a bolus, the parent bubble will come to occupy the entire region
beneath the wave. The chaotic currents under the wave from the previous phase begin to
dissipate. Consistent with Figure 9a from the experimental work of Ghassemi, et. al. [17],
the parent bubble was surrounded by a retrograde current near the bolus birth point. This
region does not persist, and, as can be seen in panel b) of Figure 3.16 (a TED), two patches
of prograde motion that rest on the 2 o’clock and 10 o’clock positions along the boundary
of the bolus are present during the final moments of the shoaling process. In a reference
frame moving with the wave, this becomes a region of backflow surrounding the bolus, with
peaks in retrograde current at the top, back, and front of the bolus; see Figure 3.17, which
depicts, from the Large case, a vertical cross-section (y = 0.128m) of the density field,
the streamwise velocity field (in a frame moving with the bolus), and the vertical velocity
field (in a frame moving with the bolus). Remarkably, this figure aligns with Figure 10 of
Wallace and Wilkinson [13] which infers this information from experimental measurements
of the relatively thin bolus boundary using technology from 1988.

In every case, as the bolus translates and shrinks, the retrograde current at the front
vanishes; an example of this can be seen in the TED, Figure 3.18b). During this time,
the bolus begins to act as a gravity current: the front of the bolus separates from the
bottom boundary; thus, at the front of the bolus, denser fluid moves over lighter fluid at
rest and the combined shear and buoyancy induce lobe-cleft instabilities [19]. At the same
time, the bolus leaks dense fluid out of its rear face, which creates regions of circulating
currents within the bolus core (see Figure 3.17). This circulating current entrains portions
of the density interface that bounds the bolus. Together, the shear across the boundary
combined with the aformentioned entrainment produce billows along the top and rear of
the bolus. Figure 3.20 depicts these billows from each case via a vertical cross-section of the
density field at y = 0.128m. They appear as intrusions along the top and rear of the bolus
boundary, which are regions of high shear. They do not appear to have the form the iconic
Kelvin-Helmholtz billows, as some intrusions do not curl up into themselves (see panels b)
and c)). Given that, earlier, the roll-up of the pycnocline by the baroclinic vortices was
two—dimensional, it is fair to ask if these billows are also two—dimensional. The answer to
that question lies in Figure 3.21, which depicts the lobe-cleft instabilties from each case
via a horizontal cross-section of the density field at z = 4.1mm. These figures show a
great degree of spanwise variation in the front of the bolus near the bottom boundary.
However, the next question to ask is whether or not the three-dimensional structure at the
front of the bolus reaches the top and back of the bolus (where the billows reside). Before
answering that question, quickly note that both of these figures are in excellent agreement
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with Figure 8 from Ghassemi, et. al. [17], which shows the same structures in the dyed
fluid of their late-stage boluses.

To answer the question of the spread of spanwise variation, refer to Figure 3.22, which
depicts the pycnocline about the bolus and the A\;—vortex field at ¢ = 60s in three dimen-
sions. Panel a) depicts the pycnocline about the bolus, and it is evident therein that the
spanwise structure of the lobe-cleft instabilities influences the three-dimensionalization of
the billows of the shear instabilities. Panel b) of the same figure shows the Ay—vortex field,
and panel ¢) shows the same superimposed over the pycnocline. In these panels, we see
vortex cores emerging from the clefts, and extending towards the back along the bolus
boundary; thus, it is the transverse roll-up from the lobe-cleft instabilities that produces
spanwise variation along the outer boundary of the bolus, and subsequently inducing span-
wise variation in the billows. The interior vortices highlight the turbulent nature of the
circulating currents within the bolus.

In the Small case, the processes that arise during bolus degeneration result in the
strongest transverse currents and ejection stress yet seen in this case. In fact, it is only
during bolus degeneration that this case exhibits any significant three-dimensional struc-
ture. This is apparent in panel e) of Figure 3.16 (a TED). On the other hand, while the
Large and Medium case both exhibited three-dimensional structure well before bolus de-
generation, this process caused an additional increase in quantities that indicate spanwise
variation. Panel e) of Figure 3.18, which corresponds to the Large case, shows a slight
increase in transverse bed stress after a period of slight decay. This is less obvious in panel
e) of Figure 3.19 (a TED), which corresponds to the medium case. Nevertheless the fact
remains that the Small case began to three-dimensionalize during bolus formation, and
this suggests that the other cases also undergo a second period of three-dimensionalization
independent of the burst.

Panel e) of Figure 3.18 shows a greater spike in ejection stress for the Large case at t =
62s, after the rapid decay between ¢ = 50s and ¢t = 55s. This does not indicate transverse
motion, but it does show a second period of excitation of the boundary layer. A similar
pattern should appear in Figure 3.19, but dynamic interaction between the pycnocline
and the currents produced during the bubble phase overshadow what is happening under
the bolus in the Medium case. Fortunately, these effects are isolated in the Small case,
and from the observations of that case it is clear that during the bolus phase, a second,
independent burst of activity manifests as growing transverse currents in the bolus, as
lobe-cleft instabilities at the front of the bolus, and as billow instabilities along the top
and rear of the bolus.

As the streamwise momentum dissipates once the bolus begins to degenerate, the dense
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fluid within will sink down the slope, and the drawback current will interact with the
trailing waves and boluses. Ghassemi et. al. [17] state that one wave of depression
corresponds to one bolus; however, in the present investigation, the singular initial ISW-
D produces three boluses before the end of the simulation—see panel b) in Figure 3.2.
The discrepencey between their results and the present results is likely due to their wave
generation mechanism, which is a paddle that produces a continuous train of nonlinear
waves. This continuous train would obfuscate the contribution of the much weaker trailing
waves which emerge during fission, and which produce the multiple boluses per initial wave
of depression observed during this investigation.
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Figure 3.16: Total evolution diagram of the Small case at ¢ = 54s.
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Figure 3.17:  The structure and flow of the the Large case leading bolus at ¢t = 53s

and y = 0.128m. Panel a) is the density field, panel b) is the streamwise velocity in
the frame of the bolus, and panel c) is the vertical velocity in the frame of the bolus.

¢, = 7.85cm/s and ¢, = 4.12mm/s are the components of the wave velocity with total
speed ¢ = 0.6875¢y = 7.87cm/s.
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Figure 3.18: Total evolution diagram of the Large case at ¢t = 64s.
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Figure 3.19: Total evolution diagram of the Medium case at ¢t = 61s.
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Figure 3.20: The cross-section of the density field at y = 0.128m for each case. a) is
the Large case at t = 59s, b) is the Medium case at t = 57s, and c¢) is the Small case at
t = 63s. Shear instabilities form along the boundary between the bolus and the top layer
of the fluid.
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Figure 3.21: The cross-section of the density field at z = 4.1mm for each case. a) is the
Large case at t = 59s, b) is the Medium case at ¢t = 57s, and ¢) is the Small case at t = 63s.
As the bolus approaches and travels past the attachment point of the pycnocline, it begins
to behave as a gravity wave and develops lobe-cleft instabilities.
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Figure 3.22: Three-dimensional, volumetric depictions of the pycnocline about the leading
bolus and regions where Ay < —0.0002 (i.e., Ay—vortex fields) about the leading bolus
at ¢ = 60s. These volumes are visualized with the same colorings used in Figure 3.13,
but with different opacity maps. Once again, in the density field red indicates a larger
density, and blue indicates a lower density; in the Ay plots, magenta regions indicate lower-
order instabilities (Ao &~ —0.0002) and green regions indicate higher-order instabilities
(Ay = —00). a) is solely the pycnocline, b) is solely the vortex field, and c) is the vortex
field superimposed on the pycnocline.
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3.4 Summary

Figure 3.23:  An idealization of the evolution of the streamwise velocity field during
shoaling. The letters ‘D’ and ‘E’ denote currents from waves of depression and elevation,
respectively; the number indicates the order of the wave (e.g., E2 is the second wave of
elevation). The red bubble with an ‘S’ represents the separation bubble. Warm (cool)
colours indicate prograde (retrograde) motion. Each idealized stage is paired with vertical
cross-sections (y = 0.128m) of the u and p fields from the Small case at representative
times (in counter-clockwise order, ¢t = 4s, at t = 35s, and at ¢ = 51s.)
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Figure 3.24: Time series of the root-mean square of various bed stresses, where the average
is performed over the whole domain. a) is the Large case, b) is the Medium case, and c) is
the the Small case.

In the fission regime, a shoaling ISW-D steepens, fissions near the turning point, and
then degenerates into a series of boluses. These inviscid processes change how the wave
interacts with the viscous BBL, and thus each can be paired with their own qualitatively
distinct instability*. This process is depicted in Figure 3.1 for the density field, and an
idealized version of the shoaling process (which includes the viscous formation of the sepa-
ration bubble) is depicted in Figure 3.23 for the streamwise velocity field; this latter figure
shows the fissioning of the ISW-D into a train of NL waves, followed by the growth of the
internal separation bubble, and the subsequent transformation by deformation of the first
three nonlinear waves into the first bolus. Another perspective on the overall process is
given by Figure 3.24, which shows, for each case, the time series of the domain-averaged
bed stresses. Note, in panel ¢), the independent spikes in the mean 775y, corresponding to
internal separation bubble formation and bolus degeneration. Similar spikes also appear
in panels a) and b), though the first group of spikes in each time series (corresponding
to internal bubble formation and separation bubble bursting) is much larger due to the
presence separation bubble bursting. With this broad overview of the shoaling process in

4The degeneration of the wave by boluses corresponds to two instabilities, but they are concurrent (in
agreement with experiments by Ghassemi et. al. [17]) and can be treated as a conceptual unit.
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the fission regime in mind, a summary of the chapter is presented below.

The first instability, the trailing prograde jet, never generates any secondary instabili-
ties, and consequently remains two-dimensional as the wave approaches the turning point.
When the leading ISW-D fissions, its streamwise velocity field provides an adverse shear
current that interacts with the currents of the leading ISW-E;, as is depicted in Figure 3.23.
In the BBL, the interacting currents ‘pinch’ the front of the prograde jet, and subsequently
generate a separation bubble with a prograde current that sits near the front of the leading
ISW-E. As a result of the pinch, the along-slope length scale of the separation bubble
is smaller than its vertical length scale. The bubble will continue to grow as the wave
shoals, and it will come to occupy more space under the leading ISW-E; this can also be
seen in Figure 3.23. Eventually, as the pycnocline is drawn towards the bed as the wave
approaches the interaction point, this growing bubble will displace the currents from the
nonlinear waves, transforming the patches of the streamwise velocity field of the first three
ISWs into the velocity field that surrounds the bolus (see the leftmost part of Figure 3.23).

Returning focus to the jet phase, note that after the pinch, the back portion of the jet
no longer travels with the wave-train, and remains behind the turning point, where it is
modulated into alternating patches of prograde and retrograde current by the wave-train.
It is tempting to think that this region of alternating current could produce the sand waves
observed by Ma et. al. [30], but the magnitudes of the currents in the modulated region
are approximately 1 order of magnitude less than the streamwise currents of the leading
wave and the separation bubble (see Figure 3.4), and it is uncertain how this disparity
would scale up to a shoaling system in the field.

The interaction between the BBL and the currents within the separation bubble gen-
erates smaller internal separation bubbles with retrograde currents; the opposing currents,
which have negligible transverse variation, produce two-dimensional vortices. The for-
mation of the internal bubbles produces the first spikes in ejection stress in Figure 3.24.
The shear across the boundary of the internal bubble—which varies with the amplitude
of the initial wave and thus with Rejsy —determines the strength of the induced vortices.
In turn, the strength of the vortices determines the strength of the induced transverse
currents, and thereby the significance and magnitude of spanwise variation. In all cases,
the vortex interacts with the pycnocline, but only a sufficiently strong vortex can induce
baroclinic vortices via overturning. The Large and Medium cases both produce sufficiently
strong vortices, but in the Small case, the draw-down produces nothing more than weak
entrainment of a bottom sliver of the pycnocline and a small mode-2 disturbance in the pyc-
nocline that propagates downslope. When present, the baroclinic overturning is analagous
to the advective breaking observed in the plunging and collapsing regimes; however, in
those larger-Ir regimes, the breakdown of the wave is due to inviscid, nonlinear steepening
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(i.e., ‘breaking’) as opposed to vortices generated by a BBL instability.

In the present experiments, the roll-up of the pycnocline, when it occurs, is initially two-
dimensional, but both the original and the baroclinic vortices quickly generate transverse
currents and the complex structures; examples of the complex structures from the Large
case can be seen in Figures 3.12 and 3.13. When the roll-up is present (i.e., in the Medium
and Large cases) vigorous stirring of the pycnocline results in mixing in addition to the
largest spikes in both ejection stress and transverse bed stress across cases (see panels a)
and b) of Figure 3.24). Hence, these systems and their vortices have a significant potential
to resuspend sediment behind the leading wave, near the turning point. That being said,
only the potential for sediment advection can be discussed, and it is not impossible to
believe that even the Medium case may have trouble advecting sediment with sufficiently
large and dense grains. This is a rich vein for future investigtion, thought this will be
discussed in more detail in Section 4.2.

The primary vortices are local instabilities, which means they travel downslope after
they are shed by the leading wave. However, remnants of spanwise currents and high-order
vortices are trapped underneath the leading wave, and they will become part of the trapped
core of the bolus; i.e., they will determine the initial degree of turbulence inside the bolus.
This is consistent with the experimental findings of Moore et. al. [32], which state that the
qualitative nature of the flow within the bolus is affected by the currents produced dur-
ing the breakdown of the parent wave. Adding some detail to this narrative, the present
investigation has found that as the leading ISW-E transforms into a bolus, the trapped vor-
tices slowly dissipate. Thereafter, a qualitatively distinct three-dimensionalization occurs:
dense fluid leaks out of the rear face and induces circulation within the bolus; the resultant
entrainment of the inner bolus boundary by the circulation, alongside longitudinal rolls
from lobe-cleft instabilities and billows from shear instabilities along the bolus boundary,
ultimately lead to the degeneration of the bolus. Mixing across the bolus boundary is
minimal during the degeneration, and the bottom stresses are relatively small compared
to those produced during bursting and overturning (Figure 3.24). Thus, a fission—regime
bolus can, at most, contribute to cross—bed transport and sediment deposition along the
bottom boundary [34]. This is in stark contrast to the vigorous overturning of, and mixing
across, the pycnocline during the bursting of the separation bubble.
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Chapter 4

Conclusions, and Future Work

4.1 Conclusions

The narrative regarding quasi-two—layer, linear—slope systems in the fission regime can
be distilled to the following conclusions: i) if a fissioning wave breaks down it does not
break down due to inviscid nonlinear wave processes, but rather due to baroclinic vortices
induced by secondary BBL instabilities; ii) the wave evolution is largely two-dimensional
until the pycnocline is overturned by baroclinic vortices; iii) three-dimensionalization of the
flow occurs twice due to qualitatively distinct mechanisms (once shortly after separation
bubble bursting, and once during bolus degeneration); iv) given a sufficiently large Re sy,
separation bubble bursting generates large, turbulent vortices that overturn the pycnocline
between the turning point and the interaction point; and, finally, v) the bolus is not a
significant source of cross-layer mixing. The significance of these conclusions is elucidated
by the context from the results of other linear—slope shoaling investigations.

As mentioned in Chapter 1, the shallow-slope fission regime has been somewhat un-
explored by numericists due to computational cost: to observe a wave shoal into a bolus
over realistically shallow slopes (0 € [7/180, 7/30]) requires long domains (L, = O(10)m).
Recent numerical work on the Fission regime has therefore employed moderate resolution
in three dimensions [4, 33], or high resolution in two dimensions [16]. These works have
reported conclusions similar to i), ii), and v). The work in this thesis is distinguished by
using a fine resolution® in three dimensions, and by probing the fission regime over a range
of amplitudes (H € [10cm,20cm). That is, this investigation provides detailed, mecha-

Lapproximately 1mm
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nistic insights into the previously known conclusions, because the BBL is well-resolved?
which allows for the observations of initially small BBL instabilities, their growing spanwise
variations, and how they interact with the bulk currents. Additionally, by accessing the
Small case through varying the amplitude, this investigation has found that the separation
bubble does not always burst (conclusion iv)), and that the bolus three-dimensionalizes
independently of separation bubble bursting and the subsequent pycnocline overturning
(conclusion iii)).

All linear—slope systems follow the general pattern of wave—incidence, wave breakdown
near the turning point, and bolus formation between the turning point and the interaction

point [1, 2, 4, 7, 17,20, 27, 33, 46]. The systems are phenomenologically differentiated by
the qualitative mechanisms of breaking, and parametrically differentiated by wave slope
(Sw), shore slope (S = tan#), and Rersw [2, 1, 7, 33]. Ir (the ratio of S to S,,) measures,

to first order, the degree to which incident wave energy is reflected or transmitted. When
Ir is large, the interaction between reflected and incident wave energy causes advective

breaking of the wave [2]; but, when it is small (Ir < O(0.1)), the wave self-interaction
causes the main wave to fission, and breakdown occurs only if BBL instabilities generate
barotropic vortices. In quasi-two—layer systems, Aghsaee et. al. [2] identified the advective

regimes (in order of decreasing Ir) of surging, plunging, and collapsing; they also noted
the presence of fissioning waves, which are not overturned by their own currents. In the
surging regime, the majority of wave energy is reflected, and the remaining transmitted
energy immediately forms a bolus; large billows can be produced during this process [, 33]
which have the potential mix fluid across the pycnocline. In the plunging regime, less energy
is reflected and the wave breaks backwards before forming a bolus (hence, Moore et. al.
label these waves ‘back-breakers’). Waves in the collapsing regime are similar, but they
break forward. Regardless, plunging and collapsing regime waves advectively overturn the
pycnocline, greatly increasing the cross-layer mixing [2, 4, 32]. Conversely, fissioning waves
have been observed to evolve gently without overturning, and were thus overlooked as a
source of significant mixing [2]. However, recent investigations highlight how structures
produced by BBL instabilities® (specifically, separation bubble bursting) can induce mixing
across the pycnocline via vortices [1, 16]. Indeed, the present investigation shows that,
given a sufficiently large Rejsw, vortices from BBL instabilities vigorously overturn the
pycnocline with potentially significant mixing, and large spikes in bed stresses near the
turning point.

When bursting can occur, latent spanwise variation (which manifests as O(107%)m/s

2The only “moderately” resolved portions of the domain are near the pycnocline, and even then this
only is true during extreme thinning during overturning and bolus degeneration.
3Note that Athur and Fringer did not attribute these structures to BBL instabilities [].
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alternating patches in the v field in the separation bubble) is amplified by the dominant
two-dimensional shear currents about the boundary of the internal separation bubble, and
later by the initially two-dimensional roll-up of the pycnocline. This is consistent with the
findings of Sakai et. al. [36]: they observed that vortex shedding events were preceded by
alternating patches of streamwise vorticity that were excited by shear along a prograde jet
in the BBL over a flat-bottom (i.e., untilted) system. Spanwise variation is instigated a
second time during bolus degeneration. In case Op5A—which did not exhibit bursting—
the initially two-dimensional shear current about the top boundary of the bolus, and the
intially two-dimensional circulating current produced by the leaking core of the bolus,
excited three-dimensional motion. The only three-dimensional structures not produced
by two-dimensional motion exciting latent three-dimensional modes were the lobe-cleft
instabilities; they were instead produced by buoyant plumes once the bolus passed the
the interaction point, placing its relatively dense core over relatively light fluid from the
upper slope. In a model that augmented SPINS with a sediment model, Olsthoorn and
Stastna [37] observed sediment resuspension to occur before three-dimensionalization of
their systems, which suggests that the intially two-dimensional barotropic vortex, i.e. the
breakdown event between the turning point and the interaction point, has the greatest
potential to resuspend sediment.

What does this mean for energy and sediment dynamics in a geophysical context?
Hartharn-Evans et. al. [20] showed that the plunging regime, and both the plunging
and collapsing regimes, are inaccessible for surface stratifications, and broad-tanh strati-
fications, respectively. Accordingly, since the coastal shelf slope is quite shallow [7], and
since the coastal shelf typically has a stratification dominated by a near-surface pycnocline
(with a mixed layer immediately adjacent to the surface) [27], fissioning and collapsing
waves would likely be the sole source of overturning in the upper water column. Addi-
tionally, for a shallow slope, only extremely small-amplitude ISWs would populate the
collapsing regime; thus, the correspondingly small Rersy suggests that the resulting cur-
rents would be unlikely to induce turbulence and associated mixing, or to induce bottom
stresses sufficiently strong for sediment resuspension (although, they could still induce
cross-bed transport) [34]. The capability of fissioning waves to induce overturning events
is therefore vital to the narrative that shoaling ISWs significantly contribute to turbulent
mixing and sediment resuspension on the coastal shelf [7]. Arthur and Fringer [!] note
that bolus degeneration and propagation produces significantly less mixing and dissipa-
tion than wave breakdown. In fact, they found that bulk mixing and dissipation of the
system could be well-approximated by the equivalent local measures at a point between
the turning point and the breaking point* [1]. Therefore, if fissioning waves were unable

4As noted by Ghassemi et. al. [17], the breaking point is downslope of the interaction point.
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to generate strong mixing across the pycnocline and turbulence via BBL instabilities, then
shoaling ISWs would only be able to transport sediment via the leaking core of a bolus.

4.2 Future Work

The phrases “potential for mixing” and “potential for sediment resuspension,” and their
sentiments, are repeated extensively throughout this thesis. Inferring mixing and sedi-
ment transport capability from bottom stresses, vortex fields, currents, and the results of
other studies is certainly a valid approach, but such claims ultimately must be verified
with quantitative results from numerical experiments. This raises the question: “why did
the present investigation neglect sediment—coupling and mixing calculations?” First, the
primary focus of the investigation was the degree of significance and presence of spanwise
variation in a shallow-slope system as wave-amplitude (and hence the tendency for turbu-
lence) was varied. This in itself is a large topic, and could inform the design of simulations
investigating sediment-coupling and mixing.

Second, the possible variations of experiments with sediment—coupled models could
yield several theses alone. The approach of Stastna and Olsthoorn is relatively straight-
forward to implement in SPINS, but the additional computational cost of resolving the
sediment field would have made simulating a three-dimensional fission regime system, with
a Rejsy that allows for bursting, prohibitively computationally expensive. Their method
also only applies to fine—grain sediment. As noted by Ma et. al. [30], the sediment beds
where sand waves are observed are often composed of course—grain sediment, and would
need a more complicated model, such as a Shields model, or a Lagrangian particle-tracking
method, to investigate. An immediate extension of the present investigation, and moti-
vated by the investigation by Hartharn-Evans et. al. [20], would be to use i) a more
oceanically relevant stratification, and ii) the model of Stastna and Olsthoorn to observe
the lab-scale dynamics of sediment clouds (a.k.a. nepheloid layers) as the pycnocline is
adjusted. Such a model would require perhaps twice the resolution in the z-grid (and thus
approximately twice the resources) to resolve sediment clouds in the middle to upper water
column; a necessarily small mass diffusivity would further increase the cost.

Third, the exponential filter used by SPINS was unable to suppress ringing during cer-
tain portions of the evolutions where the density interfaces thinned (i.e., during pycnocline
overturning and bolus degeneration). Though ringing did not significantly affect the bulk
evolution of the system, it would obfuscate any mixing calculations based on the sorting
algorithm of Winters et al [11]. The most immediate solution to this problem would be to
increase the vertical and streamwise resolutions. Unfortunately, as mentioned in Chapter
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2, the vertical no-slip boundary condition requires the use of a Chebyshev grid, and in-
creasing the vertical resolution therefore comes with diminishing returns. More precisely,
the Chebyshev grid bunches points near the vertical boundaries, and spaces them out in
the middle of the water column; as such, choosing a grid so that the tank interior has suf-
ficiently many points to resolve small features at all times therefore increases the number
of points near the boundaries many times over—meaning that the computational cost can
become very expensive very easily.

An alternative solution to increasing the resolution, is to repeat the experiments from
this thesis with stronger filter parameters, or with hyperviscosity in lieu of an exponential
filter; then, it is possible to draw conclusions about mixing and dissipation by comparing
the trends in these variables across cases with different filters or hyperviscosity. In any
case, this approach is a significant undertaking. The experiments in this thesis each took
under two weeks to complete on the ComputeCanada Graham cluster; each run used 256
parallel processes and 512GB of memory to produce 44 outputs for 4 fields. As such,
repeating the experiments with 2 filter variations would require approximately 12 weeks
of computational time, 1536 processes, and 3072GB of memory. This does not account for
secondary computations needed to calculate local and bulk mixing and dissipation.
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