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Abstract

River ice segmentation, used to differentiate ice and water, can give valuable information
regarding ice cover and ice distribution. These are important factors when evaluating
flooding risks caused by ice jams that may harm local ecosystems and infrastructure.
Furthermore, discriminating specifically between anchor ice and frazil ice is important in
understanding sediment transport and release events that can affect geomorphology and
cause landslide risks. Modern deep learning techniques have proved to deliver promising
segmentation results; however, they can require hours of expensive manual image labelling,
can show poor generalization ability, and can be inefficient when hardware and computing
power are limited. As river ice images are often collected in remote locations by unmanned
aerial vehicles with limited computation power, we explore the performance-latency trade-
offs for river ice segmentation. We propose a novel convolution block inspired by both
depthwise separable convolutions and local binary convolutions giving additional efficiency,
parameter savings, and generalization ability to river ice segmentation networks. Our
novel convolution block is used in a shallow architecture that has 99.9% fewer trainable
parameters, 99% fewer multiply-add operations, and 69.8% less memory usage than a
UNet, while achieving virtually the same segmentation performance. We find that this
network trains fast and is able to achieve high segmentation performance early in training
due to an emphasis on both pixel intensity and texture. When compared to very efficient
segmentation networks such as LR-ASPP with a MobileNetV3 backbone, we achieve good
performance (mIoU of 64) 91% faster during training on a CPU and and an overall mIoU
that is 7.7% higher. We also find that our novel convolution block is able to generalize
better to new domains such as snowy environments or datasets with varying illumination.
Diving deeper into river ice segmentation with resource constraints, we take on a separate
task of training a segmentation model when labelling time is limited. As the ice type,
environment, and image quality can vary drastically between rivers of interest, training
new segmentation models for new environments can be infeasible due to the laborious task
of pixel-wise annotation. We explore a point labelling method leveraging object proposals
and a post processing technique that delivers a 14.6% increase in mIoU as compared to
a fully supervised UNet with the same labelling budget. Our point labelling method also
achieves a mIoU that is only 6.3% lower than a fully supervised model with a annotation
budget that is 23⇥ larger.
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Chapter 1

Introduction

River ice in the northern hemisphere can have a lasting impact on both the local ecosystems
and communities in the area. In terms of the ecosystem, river ice events can cause flooding,
adversely impact fish habitats and spawning grounds, and release toxins by disrupting
sediments [33]. In terms of direct human impact, remote northern communities often rely
on river ice bridges as a primary means of transportation. Additionally, river ice events
can impact water supply management, hydroelectric power generation, and cause damage
to infrastructure [33, 6, 20]. Anchor ice, a class of river ice that is very sediment rich,
is a key factor in sediment transport and release events [47]. Anchor ice therefore affects
erosion and the overall geomorphology of the fluvial system [75]. Due to climate change,
the frequency and intensity of river ice events are ever evolving [94]. This adds another
layer of demand for efficient and accurate monitoring systems that are easy to implement
in the field.

River ice imagery from a drone or Unmanned Aerial Vehicle (UAV) can give an observer
a detailed understanding of the state and distribution of river ice at a given moment
in time [47, 4, 87, 104, 105]. The segmentation of river ice imagery into one or more
classes can be an automated means for a computer to process a large number of images
and produce valuable information regarding ice cover density, ice cover distribution, drift
ice speed, ice class distribution, and more [104]. Deep learning methods have proven to
perform extremely well for segmenting general image datasets [14] as well as river ice
specific datasets [87, 105]. There are two major drawbacks however to segmentation using
deep learning.

The first drawback to deep learning for segmentation is that as deep learning models
perform better by getting deeper and more complex, they also become inefficient and
require specialized hardware such as a Graphics Processing Unit (GPU) [37]. When it
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pertains to river ice, due to the limited hardware aboard many UAVs used to capture
river ice imagery, deep learning algorithms are difficult to implement in real time [100].
If real time inference is not the goal of an operator, working offline on a local machine
can also present problems if there is not a GPU present. As a result, an efficient network
architecture for river ice segmentation can be valuable to operators in remote regions with
limited computation power.

The second drawback to deep learning for segmentation is that it is very expensive to
collect training data. For a segmentation task, it is required that an annotator assign a
class label to each pixel for all the training images [5]. For a published river ice dataset, the
Alberta River Ice Segmentation Dataset [86], we estimate that the pixel-wise annotation
of the 50 labelled images in the dataset took a single human over 26 hours to annotate
(Section 6.2.1). In order for it to be practical to train deep learning models on varying
river ice environments in different locations, the labelling obstacle associated with pixel-
wise annotations must be overcome.

1.1 Contributions

In this thesis we aim to address both the computational efficiency and annotation limita-
tions of applying deep learning to river ice segmentation. The two primary contributions
of this thesis are summarized as follows:

1. In order to move toward real-time training and inference of river ice imagery in the
field, we explore the trade off between performance and latency in various segmen-
tation models on the Alberta River Ice Segmentation Dataset. One of such models
includes a novel DSC LBC block that can replace convolution operations in common
neural network architectures. We show that DSC LBC blocks used with a shallow
UNet style architecture improves efficiency as well as a network’s ability to generalize
to various environmental changes including illumination variation and snow noise. We
show that when compared to models such as UNet, our architecture achieves very
similar performance with significant improvements in efficiency. When compared
to state-of-the-art networks optimized for efficiency on mobile devices, our network
shows a significant improvement in performance as well as a slight improvement in
training and inference efficiency on a GPU. On a Central Processing Unit (CPU),
our network proves to be more efficient during training, however during inference the
mobile optimized networks are slightly more efficient.

2. As it can be extremely time intensive to collect ground truth pixel-wise masks for
datasets like the Alberta River Ice Segmentation Dataset, we experiment with weakly
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supervised methods where ground truth labels are much easier to collect. We leverage
the shape of the ice pans in the Alberta River Ice Segmentation Dataset and show
that with only point labels at each ice pan and some custom post processing, we
can approach fully supervised performance metrics with only a small fraction of
the labelling effort. We also show that fully supervised methods under the same
time constraints required to collect point labels greatly under-perform our weakly
supervised method.

1.2 Outline

The remainder of thesis is organized as follows:

• Chapter 2 provides background relating to river ice, convolutional neural networks,
efficient convolutions, the task of image segmentation, and weakly supervised seg-
mentation methods.

• Chapter 3 gives details regarding where the data was collected and how it was ar-
ranged for the experiments in this thesis.

• Chapter 4 gives an explanation of the various metrics used to evaluate the various
methods in this thesis.

• Chapter 5 details the methodology, results, and conclusions of a novel DSC LBC
convolution block developed to build efficient networks for river ice segmentation.

• Chapter 6 details the methodology, results, and conclusions of a weakly supervised
segmentation workflow developed to segment river ice using only point labels.
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Chapter 2

Background

2.1 River Ice

In a general sense, an understanding of river ice concentration can be important for a
variety of goals. The temporal and spatial ice distributions can help to validate river process
and ice formation models [87]. This understanding can also be extended to water supply
management, hydroelectric power generation, and predicting ice jam risks [33, 27, 6]. Ice
jam risks are comparable to dam break events, causing a sudden release of water previously
confined by the river ice [40]. Ice jam events on the Athabasca River have resulted in
multiple floods causing millions of dollars of damages to the Town of Fort McMurray [20],
one of such events resulted in waves measured at over 4 m in height [40]. Analyzing river
ice at a closer scale, various types of river ice exist, each having unique characteristics and
distinct effects on their environment. Discriminating between two common classes of ice,
surface forming frazil ice and sediment rich anchor ice, can be important in understanding
sediment transport and sediment release events [47].

2.1.1 Frazil and Anchor Ice

When a river is exposed to sustained periods of freezing air temperatures, ice cover can
begin to form on the surface of the river. A drone image of river ice taken on the Peace
River can be seen in Figure 2.1. The first ice type of interest seen in Figure 2.1, frazil ice,
forms as ice crystals that flocculate together, float to the surface forming surface slush, and
and consolidate to form frazil ice pans. In the late stages of freeze up, frazil ice pans can
freeze together to form frazil ice rafts. Frazil ice pans often appear circular and can have

4



upturned edges caused by collisions with other ice pans. The second ice type of interest
seen in Figure 2.1, anchor ice, forms on river beds, resulting in a high sediment content
within the ice. Through thermal or mechanical means, the anchor ice can be released from
the river bed and float to the surface [93, 50]. On the surface, anchor ice usually appears
darker than frazil ice due to the high sediment content, and may have fewer upturned
edges due to less time on the surface and different structural properties. When anchor ice
release events occur, frazil ice generation may have already stopped and can result in a
much higher concentration of anchor ice than frazil ice [47].

It was observed on the Peace River in Alberta Canada that anchor ice can transport
significant quantities of sand, gravel, and cobble sized particles as seen in Figure 2.2 [48].
This is an important factor in calculating an annual sediment budget which is necessary to
understand the amounts of erosion, accretion, and geomorphology in a fluvial system [75].

2.1.2 River Ice Data Collection

One means of collecting imagery of river ice is through the use of an UAV [47, 4, 87, 104,
105]. Due to the limited hardware aboard many UAVs, data intensive processes such as
deep learning algorithms, which require large compute and memory resources, are difficult
to implement in real time. When operating on UAV data in real time, the information
collected on the UAV can be sent to a remote server; however, a wireless link with high
bandwidth, minimal latency and an ultra-reliable connection is then necessary [96], making
this difficult in remote regions. Alternatively, data can be processed on the UAV itself,
although depending on the model of the UAV this would involve a low/middle grade
GPU [100] or no GPU at all. This computation obstacle is also present in other domains
such as forest fire detection [45], crop phenology [99], and sea ice segmentation [61] where
computation limitations hinder operational sea ice prediction [98].

2.1.3 Available Data

The Alberta River Ice Segmentation Dataset [86] is a publicly available dataset containing
labelled and unlabelled images of river ice taken from a UAV on the Peace River and North
Saskatchewan River in Alberta, Canada. These rivers were selected by the creators of the
dataset as their large nature leads to high winter discharge and images that can better
facilitate the estimation of sediment transport [49]. An example of one of the unlabelled
images in the Alberta River Ice Segmentation Dataset can be seen in Figure 2.1. The
labelled images in the dataset have accompanying labels that indicate the class of each

5



Water

Frazil Ice

Anchor Ice

Figure 2.1: UAV image of river ice from the Alberta River Ice Segmentation Dataset [86].
Brighter frazil ice and darker sediment rich anchor ice are identified with arrows. Upturned
edges appear as bright outlines to ice pans and are thin or non-existent on anchor ice pans.
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Figure 2.2: Image taken on the Peace River of an anchor ice pan rafting large cobbles and
fine sediment. This photograph was taken on Dec. 19, 2014 by Kalke et al. [48]. Proof of
permission for this figure is shown in Appendix 7.2.
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pixel. Pixel classes are either water, frazil ice, or anchor ice. The pixel-wise nature of
the labels lend themselves well to the task of estimating river ice concentration as well as
discriminating between frazil and anchor ice for an improved understanding of sediment
transport.

Various environmental factors affect the quality of the images in the dataset. The
labelled images were captured during clear conditions while it was not snowing; however,
the dataset provides unlabelled videos captured while it was snowing, showing a realistic
scenario where natural noise could contaminate the data. Within both the labelled and
unlabelled images, the illumination is variable, likely affected by the time of day and the
amount of sunlight at the time of acquisition.

2.2 Convolutional Neural Networks

An Artificial Neural Network (ANN) is a weighted directed graph where each node is some
non-linear function of a weighted sum of the inputs. The architecture of an ANN is inspired
by the network of biological neurons, axons, and synapses in the human brain [43]. An
ANN learns by adjusting the weights at each node in an effort to minimize the observed
error according to a cost function that compares the network predictions to the known
ground truth. The process of adjusting the weights is known as backpropagation, which
calculates the gradient of the cost function with respect to the current weights using the
chain rule and adjusts the weights according to the calculated gradients and a learning
rate [29]. ANNs and their more advanced variants have produced state of the art results in
various fields including natural language processing [101], computer vision [97], and robotic
control [89].

A Convolutional Neural Network (CNN) is a type of ANN that makes use of of con-
volutional layers. Convolutional layers only consider data points within a given receptive
field, often a square window of an image or feature map. This is in contrast to early ANNs,
which used all data points from the previous layer in calculating the next layer. CNNs
are often well suited for data with a grid-like topology; including images as they are a 2D
grid of pixels [29]. In the field of computer vision, CNNs have achieved state of the art
results in various tasks including image classification [73], image segmentation [26], object
detection [106].

2.2.1 Convolutional Layer

Convolution, denoted by an asterisk, is an operation on two functions, f and g,
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(f ⇤ g)(t) =
Z 1

�1
f(⌧)g(t� ⌧)d⌧, (2.1)

where t is a real valued argument and ⌧ is a dummy variable of integration [9]. In the
discrete case this can be represented as follows,

(f ⇤ g)(t) =
1X

⌧=�1
f(⌧)g(t� ⌧). (2.2)

In the case of an image, f can be considered the image, and g can be considered a 2D
kernel, typically orders of magnitude smaller than the image. The convolution operation
can therefore be represented as,

(f ⇤ g)(i, j) =
X

m

X

n

f(m,n)g(i� n, j � n), (2.3)

where i and j are pixel coordinates. A similar function known as cross-correlation is
often used for machine learning applications as the cumulative property of convolution, or
the "flipping" of the kernel, does not affect implementation results in a CNN [29]. As a
result, machine learning libraries require slightly less code to implement cross-correlation
and therefore opt to build CNNs with cross-correlation as opposed to convolution. Cross-
correlation can be expressed as follows,

(g ⇤ f)(i, j) =
X

m

X

n

f(i+m, j + n)g(m,n). (2.4)

In a convolutional layer, the kernel contains the learnable weights that are tuned during
backpropagation. The sparse interactions of the small kernel as well as parameter sharing
in convolutional layers results in the ability to build deeper networks as there are lower
memory requirements as compared to a fully connected network.

In practice, various hyperparameters exist around a convolution including the kernel
size, stride, padding and dilation [67]. Kernel size is simply the 2D dimensions of the kernel
that is convolved with an image or feature map. Stride determines the distance, in pixels,
that the kernel shifts from one convolution operation to another as it moves across the
image or feature map. If stride is one, then the kernel passes over the image or feature
map one pixel at a time. If the stride is increased, the output feature map will often have
a smaller size, though this is also determined by padding. Padding is an addition of pixels,
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often of value zero, to the edges of an image or feature map prior to a convolution operation
occurring. Padding can preserve the spatial dimensions of feature maps after convolution.
For example, a convolution with an input of size h⇥w, a kernel size of 3⇥ 3, and a stride
of one will output a feature map of size h� 2⇥ w � 2 since the 3⇥ 3 kernel never has its
centre at the edge pixels of the input. However, if in the same example padding is applied
in the form of a a single-pixel border to the input, the output feature map would be of
size h⇥w since the centre of the 3⇥ 3 kernel was able to lie at edge of the original input.
Finally, dilation allows for control over the receptive field of a convolution and is described
more in Section 2.4.2.

2.2.2 Activation Function

Inspired by the binary impulses carried by the axons of a biological neuron, an activation
function decides how information is transferred from one node to the next. Activation func-
tions are non-linear functions that allow CNNs perform tasks with a degree of non-linearity
that would otherwise not be captured by the linear nature of the convolution function. An
activation function � can be applied element-wise to the output of a convolution operation.
A very effective and therefore ubiquitous activation function is the Rectified Linear Unit
(ReLU) [62, 44] described by

�(z) = max(0, z), (2.5)

where z is an output element of a convolution operation. Another well known activation
is the sigmoid function [30]

�(z) =
1

1 + e�z
. (2.6)

An advantage of ReLU over the sigmoid function is related to the gradient at high
values of z. The gradient of ReLU is constant when z > 0 (Figure 2.3 (a)) while the
gradient of the sigmoid function is very small at high values of z (Figure 2.3 (b)). This can
result in faster learning for networks with the ReLU activation function [29]. Additionally,
as ReLU assigns a value of zero to all inputs z < 0, sparsity is introduced into the network,
which can reduce the computational resources and data necessary to train a network [83].

A common activation function in the last layer of a CNN is the softmax function

�(~z)i =
ezi

PK
j=1 e

zj
, (2.7)
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Figure 2.3: ReLU activation function shown in (a) and sigmoid activation shown in (b).
When the input is large (e.g. 10), the the ReLU function can be seen to have a constant
gradient, while the sigmoid function can be seen to be very flat as it has a very small
gradient.

where ~z in an input vector, K is the number of classes in a classification task as well as
the length of ~z, and i is an index in ~z. Equation 2.7 can be applied to each index in ~z in
order to complete the softmax calculation on ~z. The softmax function is useful at the end
of a network as it creates an empirical probability distribution over the predicted output
classes [29].

2.2.3 Down-sampling and Up-sampling

Many CNN architectures use an encoder architecture that acts to extract features from an
image [54, 76, 32]. As an image travels through subsequent levels of an encoder, there is
often an increase in the number of channels facilitated by the convolution operations, and
often a reduction in spatial resolution facilitated by pooling operations. Pooling is applied
to a feature map, which is the output of a kernel convolved with an image and passed
through an activation. The process of pooling replaces a localized section of the feature
map with a summary statistic such as the mean or maximum value [29]. In a well-designed
encoder, the sizes of feature map tensors are decreased with subsequent convolution and
pooling events, resulting in less memory requirements and an improved statistical and
computational efficiency within the deeper layers of the encoder. Max pooling is a popular
version of pooling in which a k ⇥ k window is simply replaced by the maximum value in
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that window [107].
Depending on the task and architecture of the CNN, the encoded features may be

resized to the original shape of the image. In these scenarios, non-learnable operations
such as bilinear and bicubic interpolation can be used [71], or leanable operations such as
transpose convolutions can be used where, similar to a convolution, a learnable kernel is
employed [22].

2.2.4 Batch Normalization

When an input tensor is normalized and passed to a network, the distribution of the
tensor changes slightly from layer to layer as the convolutions and activation functions
are applied and can cause the tensor to no longer be normalized. This effect is known as
covariate shift and can intensify as a tensor travels deeper and deeper in a network. Batch
normalization aims to make training faster and more stable by mitigating this covariate
shift, particularly in deep networks with many layers [41]. As the name implies, the batch
normalization between layers occurs over a batch, or a subset of all the images used during
an optimization step.

Let B be a batch of size m images, where x1...m are the images in B. The mean and
variance of the batch are respectively calculated as follows,

µB =
1

m

mX

i=1

xi, (2.8)

�2
B =

1

m

mX

i=1

(xi � µB)
2. (2.9)

For a layer with d-dimensional input x = (x(1), ..., x(d)), each dimension, or channel, is
normalized by,

x̂(k)
i =

x(k)
i � µ(k)

Bq
�(k)2
B + ✏

, (2.10)

where ✏ is arbitrarily small and added for numerical stability. To ensure the batch
normalization transformation inserted in the network can represent the identity transform,
a pair of learnable parameters �(k) and �(k) are used to scale and shift the normalized value
respectively [41],
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yk = �(k)x̂(k) + �(k). (2.11)

Other benefits to batch normalization were discovered by the authors including regu-
larization effects improving generalization ability as well as the mitigation of vanishing or
exploding gradients with an increased learning rate. This vanishing or exploding gradient
phenomena in deep networks occurs when the chain rule leads to small gradients decreasing
exponentially or large gradients increasing exponentially [35]. The exact cause of these ad-
ditional benefits are debated in the literature as some believe covariate shift is not reduced
and rather the objective function is smoothed considerably by batch normalization [80].

2.3 Efficient Convolutions

2.3.1 Depthwise Separable Convolutions

A Depthwise Separable Convolution (DSC) is a form of a factorized convolution that results
in significant increases in efficiency while minimizing performance losses. As a result, they
are key components of modern efficient networks where they replace standard convolution
operations [37, 17, 103, 79, 36]. While a standard convolution operation filters and combines
inputs in one step, DSCs split standard convolution operations into two parts, a depthwise
convolution for filtering and a pointwise convolution for combining across depth.

During a standard convolution operation, an input layer can take an input feature map
F of size DF ⇥DF ⇥M and outputs an output feature map G of size DF ⇥DF ⇥N , where
DF are the height and width of a square feature map, and M and N are the number of
input channels and output channels in the convolution. This convolution has a kernel K
of size DK ⇥DK ⇥M ⇥N where DK is height and width of a square kernel. The output
feature map G can therefore be calculated as follows,

Gk,l,n =
X

i,j,m

Ki,j,m,n · Fk+i�1,l+j�1,m, (2.12)

where i, j are kernel indices and k, l are feature map indices. Equation 2.12 has an
associated computational cost of

Coststandard = DK ·DK ·M ·N ·DF ·DF [37]. (2.13)
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3x3

3x3

1x1

(b) Depthwise Separable Convolution(a) Standard Convolution

Figure 2.4: Visualization of a standard convolution in (a) where filtering and combining
happen in one step. Visualization of a DSC in (b) showing the depthwise filtering step
followed by the pointwise combining step. Figure took inspiration from Howard et al. [37].

As mentioned, DSCs factorize a standard convolution into two steps, a depthwise con-
volution and a pointwise convolution. The depthwise convolution occurs first and is similar
to a standard convolution; however, it only applies a single DK ⇥ DK filter per channel
of the input image or feature map. This is followed by the pointwise convolution, which
is a 1⇥1 convolution across depth, allowing for a change in the number of channels of the
output feature map if desired.

As the depthwise step only has one filter per image channel, the depthwise kernel K̂ is
only of size DK ⇥DK ⇥M , where the mth filter in K̂ is applied to the mth channel in F to
produce the mth channel of the depthwise outputted feature map Ĝ. This can be written
as,

Ĝk,l,m =
X

i,j

K̂i,j,m · Fk+i�1,l+j�1,m, (2.14)

with a computational cost of

Costdepthwise = DK ·DK ·M ·DF ·DF [37]. (2.15)

The pointwise step in a DSC is a 1⇥1 convolution over the channels of Ĝ inorder to
create new features. This step has a computational cost of

14



Costpointwise = M ·N ·DF ·DF , (2.16)

giving a DSC operation a computational cost of

Costdsc = DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF , (2.17)

which is the sum of both the depthwise and pointwise computational cost.
Comparing Equations 2.13 and 2.17, DSCs affect the computational cost of a standard

convolution by a factor of

CostFactor =
DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF
=

1

N
+

1

D2
K

. (2.18)

This factor can be approximated to 1
D2

K
when N � DK . Therefore, when using a

standard kernel size of 3 ⇥ 3, computational cost is reduced by 8 to 9 times by using
DSCs. The trade-off in performance was found to be minimal in a study where a network
was built with DSCs had an ImageNet accuracy of 70.6% and 569M Mult-Adds, while
an identical network with standard convolutions had an ImageNet accuracy of 71.7% and
4866M Mult-Adds [37].

2.3.2 Local Binary Convolutions

A Local Binary Convolution (LBC) is another alternative to a standard convolution that
significantly reduces the number of trainable parameters [46]. LBCs are inspired by the
Local Binary Pattern (LBP); a texture pattern descriptor used to characterize local texture
patterns in an image based on a neighbourhood of pixels [63]. Based on contrasting pixels
in a neighbourhood, a string of bits is calculated and converted to a base 2 decimal number
that is used as the feature to the central pixel. A LBP for a 3⇥3 window can be calculated
as follows,

LBP (xc, yc) =
N�1X

n=0

g(in � ic)2
n, (2.19)

g(z) =

(
1, z � 0

0, z < 0
, (2.20)

15



where ic is the intensity of the centre pixel at location xc, yc, and in is the the intensity
of the nth neighbouring pixel out of N total neighbours1. LBPs are illumination invariant
as they focus on contrasting pixel intensities, which describe texture. As a result, they
have become popular image descriptor for facial recognition tasks among others [2].

Similar to DSCs, LBCs also operate in two parts; first a spatial convolution, which we
will refer to as s1, and second a 1 ⇥ 1 channel-wise convolution which we will refer to as
s2. The first stage, s1, can be looked at as equivalent to a standard convolution, with a
few modifications.

• Similar to a standard convolution, the kernel weights of s1, Ks1 , are of size DK ⇥
DK ⇥M ⇥N2 where DK is height and width of a square kernel, and M and N are
the number of input channels and output channels in the convolution. However, s1
differs from a standard convolution in that Ks1 are randomly initialized such that
Ks1 2 {�1, 0, 1}. More specifically, to determine the arrangement of -1, 0, and 1 in
Ks1 , a sparsity proportion, sp, is set which determines the amount of non-zero values
in Ks1 . This involves setting (100 � sp)% of Ks1 to zero according to a random
uniform distribution3. Then, the remaining non-zero values are randomly assigned
to �1 or 1 with equal probability using a Bernoulli distribution.

• Second, the kernel weights Ks1 are set to be non-trainable and therefore cannot be
updated during training.

Next, the output of s1 is then passed through an activation function (sigmoid or ReLU),
and used as an input to the second stage, s2. Similar to the pointwise convolution in a
DSC, s2 consists of a 1⇥ 1 convolution that acts only on the channels of the feature maps
and contains the only trainable parameters in LBCs.

If an input feature map has M channels, an output feature map has N channels, and
a kernel size of DK is used, a standard convolution operation has the following number of
trainable parameters,

1For example, a 3 ⇥ 3 window would have eight neighbours to the centre pixel. The top, top right,
right, bottom right, bottom, bottom left, left, and top left pixels pixels.

2Recall that this is contrast to the depthwise stage of a DSC where weights are of size DK⇥DK⇥M⇥1,
or a single unique DK ⇥DK filter is applied to each channel of the input. The first stage in a LBC applies
multiple filters to each channel of the input similar to a standard convolution.

3Note that we follow the same convention as the LBCNN authors where the sparsity percentage refers
to the percentage of non-zero elements. For example, a sparsity value of 100% corresponds to a dense
weight tensor with no zeros [46].
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TrainParamsstandard = M ·N ·DK ·DK . (2.21)

Comparatively, a LBC operation only has

TrainParamslbc = M ·N (2.22)

trainable parameters since DK = 1 in the 1⇥ 1 convolution4.

Combining Equations 2.21 and 2.22, LBCs affect the trainable parameters by a factor
of

TrainParamsFactor =
M ·N

M ·N ·DK ·DK
=

1

D2
K

. (2.23)

Therefore, given two equivalent networks architectures, one with standard convolutions
and the other with LBCs, LBCs save at least 9⇥, 25⇥, or 49⇥ the number of trainable
parameters if kernel sized of 3⇥ 3, 5⇥ 5, or 7⇥ 7 were used respectively [46].

2.4 Segmentation

Image segmentation is the process of splitting an image into multiple subgroups, where the
pixels within a subgroup often have similarities such as belonging to the same type of object
or scene. Image segmentation can be accomplished through classical image processing,
machine learning, and deep learning algorithms. The task of image segmentation can be
grouped into two categories, semantic segmentation and instance segmentation. Semantic
segmentation is simply concerned with the class label of each pixel in the image, while
instance segmentation is concerned with both the class label of each pixel, as well as
the distinct instances of a given class [51]. For example, consider a binary classification
problem with images of multiple river ice pans in open water where it is desired that ice
class be separated from the water class. A semantic segmentation algorithm would aim to
categorize pixels in the water as the water class, and the pixels in the multiple different ice
pans the same; simply as the ice class. An instance segmentation algorithm will similarly
aim to categorize the pixels in water as the water class, however it differs from the semantic
segmentation algorithm when it comes to categorizing the ice. An instance segmentation
algorithm would aim to categorize the pixels within one ice pan the same, but would

4Note that this calculation assumes that s1 outputs the same number of channels its the input.
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categorize pixels of another ice pan as distinct from the other ice pans since there are
multiple instances of the ice pans. With respect to river ice, instance segmentation would
be valuable if one wished to also know the number of ice pans. This can help estimate floe
size distribution, a component in estimating ice jam severity [11].

2.4.1 Classical Methods

Thresholding

Prior to the widespread adoption of deep learning for image segmentation tasks, many clas-
sical image processing and machine learning methods were used for this purpose. Thresh-
olding, arguably the most straight forward method, separates objects simply based on their
grayscale or colour pixel values. Depending on the number of classes of interest, one or
more thresholds are selected. Then, pixels are assigned to a given class depending on if
their value is greater or less than a given threshold. If the image histograms, or pixel value
distributions, vary significantly between images or images change over time, this kind of
thresholding cannot generalize well [77]. As a result, various adaptive global [64] and local
[3] thresholding techniques have been developed that can adapt to changing histograms.

Clustering

Clustering is an unsupervised method often used in image segmentation in which pixels
are grouped with other similar pixels. K-means is a popular clustering algorithm that aims
to minimize the sum of squared distances between all points and the cluster centres [92].
First, K initial cluster centres are chosen. Second, all samples are assigned to a cluster
based on their euclidean distance to the cluster centres. Third, the means of each cluster is
calculated and set to be the new cluster centre. Step two and three are repeated until the
clusters do not change or a maximum number of iterations is met. Although this algorithm
is simple, various work has been done to address some shortfalls including the dependence
on good initial cluster centres and the chosen value of K [21, 74].

Support Vector Machines

A Support Vector Machine (SVM) is a supervised learning algorithm than can be used for
classification. A SVM discriminates between classes by finding one or more hyperplanes
that have the maximum margin between the classes [18] This margin is the distance between
the hyperplane that splits classes, and the nearest data point. An advantage SVMs have
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over traditional linear separators is that they can project the training data into a higher
dimensional space, using a kernel function, in an effort to to find a separating hyperplane.
If a non-linear kernel is used, these higher dimensional hyperplanes are non-linear in the
original space, expanding the prediction capabilities of SVMs [78]. When using an SVM for
image segmentation, hand crafted features such as summary statistics can be used as train-
ing data. One aid in hand crafting features can be the use of superpixels, which are small
pixels grouped together based on a meaningful similarity measure. One such algorithm
for creating superpixels is the Simple Linear Iterative Clustering (SLIC) algorithm known
for it’s boundary adherence, memory usage, and computation speed [1]. Superpixels can
help for crafting features as redundancy is captured within a single superpixel, reducing
computational complexity as millions of pixels can be replaced by thousands of pixels [47].

Conditional Random Fields

The Conditional Random Field (CRF) has been broadly used in semantic segmentation
tasks to combine the class scores of segmentation models with the low-level information
captured by the local interactions of pixels and edges [13]. A common implementation of
a CRF is for the post processing of segmentation results to refine the edges of objects.
The fully connected pairwise CRF is commonly employed for post processing due to its
efficiency, ability to capture fine edge details, and maintain long range connections [52]. The
fully connected pairwise CRF connects all pairs of individual pixels in an image through
pairwise potentials defined by a linear combination of Gaussian kernels. The following
equation defines a Gaussian kernel,

k(fi, fj) = w(1) exp
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, (2.24)

where the vectors fi and fj are feature vectors for pixels i and j in an arbitrary feature
space, w(1) and w(2) are weights, Ii and Ij are colour vectors, pi and pj are positions,
and ✓↵, ✓�, and ✓� are parameters that control degrees of nearness and similarity. The
appearance kernel leverages the idea that nearby pixels with a similar color are likely to be
in the same object, while the smoothness kernel targets small isolated regions that have
significant contrast to their surroundings [52]. The authors of the fully connected pairwise
CRF found that searching for parameters w(1), ✓↵, and ✓� to be most effective, while w(2)

and ✓� have little impact on the results and can be set to one in most cases. For more
information regarding CRFs, refer to the paper by Krähenbühl et al. [52].
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2.4.2 CNN Architectures

Since the introduction of AlexNet [54] for image classification, CNNs have been ubiqui-
tous in the computer vision field and have indeed been employed for the task of image
segmentation.

Fully Convolutional Networks

A major step forward in image segmentation using CNNs was the introduction of Fully
Convolutional Network (FCN) [60]. The original FCNs leveraged the ability of CNNs to
learn hierarchical features, and replaced fully connected layers with convolutional layers
[26]. These networks therefore output a spatial map, rather than a classification score,
which is up-sampled to a dense per-pixel label. The introduction of FCNs represented a
significant milestone as it allowed for a CNN to be trained end-to-end for segmentation
and allowed for arbitrary sized inputs as there are no constraining fully connected layers
[26].

UNet

The authors of UNet built upon the FCN for the task of medical image segmentation [76].
UNet uses an encoder-decoder structure in which the encoder creates low-resolution feature
maps, while the decoder converts the low resolution feature maps into a dense pixel-wise
predictions. The idea behind UNet is that the decoder uses the feature maps calculated by
the encoder through the use of skip connections, which concatenate the feature maps from
the encoder with the output of the decoder at the equivalent level. These skip connections
preserve the structural integrity of the image and reduce distortion. UNet also uses a
large number of feature channels in the decoder, allowing for contextual information to
propagate to higher resolution layers and resulting in a symmetric, u-shaped architecture
[76].

DeepLab

The DeepLab series of CNNs also built upon the work on the FCN by enlisting dilated
convolutions and atrous spatial pyramid pooling (ASPP) for the task of segmentation
[13, 14, 15, 16]. A dilated convolution, also know as an atrous or à trous convolution,
is a way of expanding the receptive field of a convolution. A dilated convolution has a
dilation rate r that defines the interval for which an input is sampled [14]. In a standard
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convolution using a 3 ⇥ 3 kernel, r = 1 since all points in the kernel are directly adjacent
to one another. However, if a dilation rate of r = 2 is used with a 3 ⇥ 3 kernel, the
kernel would essentially cover a 5 ⇥ 5 area with zeros between each kernel value both
vertically and horizontally. The dilation does not increase the computational complexity
as there are still only 3 ⇥ 3 = 9 points being considered; however, the dilation allows
for the convolution to have a larger spatial extent. The dilated convolutions also allow
for deep networks to find rich features without continuous down-sampling reducing the
resolution of the feature maps [15]. Atrous Spatial Pyramid Pooling (ASPP) combines the
idea of dilated convolutions with the established spatial pyramid pooling (SPP) [14]. SPP
was introduced for classification based CNNs in which, prior to the fully connected layers
at the end of the network, multiple pooling layers occur in parallel and are concatenated
before they are given to the fully connected layer [31]. Rather than having multiple pooling
layers in parallel, ASPP used multiple dilated convolutions in parallel, each with a different
dilation rate. This is done to help account for the segmentation of objects of varying scale
[15].

2.4.3 Segmentation for River Ice

Classical Approaches

Classical image processing, often referring to methods that do not involve machine learning
or deep learning, has been employed in previous studies involving the segmentation of river
ice. Texture segmentation of infrared river ice images was performed using a Gabor filter
and K-means clustering technique [8]. A method for automatically estimating surface ice
concentration in the Lower Nelson River was developed using a suite of image process-
ing techniques including median filtering, Canny edge detection, Hough transforms, and
thresholding [3]. River ice concentration estimates and the delineation of frazil ice from
anchor ice in the Peace River and North Saskatchewan River was attempted using a SVM
trained using superpixel features [47]. Similarly, superpixels and Iterative Edge Refinement
were used to train an SVM to segment image scenes of the Dauphin River into six different
classes [4].

Deep Learning Approaches

As mentioned in Section 2.4.2, CNNs have been ubiquitous in the computer vision field
and have indeed been employed for the task of river ice segmentation. Various CNNs
were used to segment frazil ice, anchor ice, and water in the North Saskatchewan River
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with results that improved upon an SVM [87]. In the Yellow River region, ICENET was
used to segment river ice images taken by a UAV by fusing positional and channel-wise
attentive features within a CNN [104]. Following this work, ICENETv2 was introduced
which segments shore ice, drift ice, and water in the Yellow River region by modifying
ICENET to more effectively fuse multi-scale features [105]. These deep learning based
approaches show promising results with respect to performance; however, none of them
address efficiency trade-offs that exist in the various architectures tested.

2.4.4 Previous Work on Alberta River Ice Segmentation Dataset

As mentioned in Section 2.1.3, the Alberta River Ice Segmentation Dataset contains UAV
images of frazil and anchor ice from the Peace River and North Saskatchewan River in
Alberta, Canada [86]. The first work that attempted to discriminate frazil and anchor
ice used superpixel features with an SVM [47]. The authors first smoothed the images
with a Gaussian filter to aid the subsequent creation of 1000 superpixels per image using
MATLABs built in functionality. Next, they converted the images from RGB channels
to HSV channels. To train the SVM, the authors calculated 33 summary statistics of the
pixels contained in a superpixel, as well as 48 statistical features of pixels in a 100⇥100
pixel grid around the centre of the super pixel; for a total of 81 features. Specifically,
the 33 superpixel features consisted of the mean, standard deviation, max, min, median,
root-mean-square, skewness, kurtosis, variance, and normalized x, y spatial values, all for
three HSV channels. The 48 features for the 100⇥100 window were created by calculating
the max, min, mean, and standard deviation for the four 50⇥50 quadrants of the 100⇥100
window for each of the HSV channels. The authors found that the SVM struggled in
discriminating anchor and frazil ice compared to other experiments where a SVM with the
same features was used to simple discriminate ice from water [47].

The second body of work to discriminate frazil and anchor ice in the Peace River
and North Saskatchewan River aimed to improve upon the previously mentioned SVM by
testing a suite of deep learning semantic segmentation models [87]. The authors tested
four deep learning architectures against the SVM; DeepLabV3+, UNet, SegNet, and a
DenseNet architecture modified for segmentation. The authors found that all four models
improved upon the results of the SVM when classifying water and anchor ice; however, when
classifying frazil ice, SegNet and DenseNet under-performed relative to the SVM. UNet
and DeepLab, however, outperformed relative to the SVM for all classes and for all metrics
tested (pixel accuracy, mean pixel accuracy, mean intersection-over-union, and frequency
weighted intersection-over-union). Between UNet and DeepLab, DeepLab quantitatively
outperformed UNet on an external test set of 18 labelled images. However, when evaluating
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the four models on various unlabelled images, the authors found that DenseNet performed
the best visually, doing especially well when frazil and anchor ice existed on the same
ice pan. They also found that DeepLab performed the worst on the unlabelled images,
often misclassifying regions along the edges of image patches. As a result the authors
concluded that UNet was the ideal model of the four, performing well both quantitatively
and qualitatively [87].

2.4.5 Efficient Networks and Segmentation

Since the introduction of DSCs for efficient networks, various architectures have been de-
veloped, including the suite of MobileNets (V1, V2, V3) [37, 79, 36], MnasNet [90], and
others. The latest of the aforementioned networks, MobileNetV3, borrows various aspects
from other networks as well as introduces advancements of its own. MobileNetV3 uses
DSCs from MobileNetV1 [37], as well as a linear bottleneck and inverted residual structure
from MobileNetV2 [79] and lightweight attention modules based on squeeze and excitation
from MnasNet [90], both of which reduce the number of operations and memory require-
ments. Novel contributions of MobileNetV3 include a hardware-aware network architecture
search that optimizes the number of filters in a layer, the h-swish nonlinearity which re-
places ReLU; improving accuracy while reducing computational cost on embedded devices,
and the rearrangement of computationally-expensive layers at the beginning and end of
the network [36].

For the task of semantic segmentation, MobileNetV3 can be used as a backbone fea-
ture extractor in a segmentation network such as DeepLabV3 [15]. The authors of Mo-
bileNetV2 designed a reduced Atrous Spatial Pyramid Pooling module (ASPP) [14] that
was found to outperform the standard DeepLabV3. MobileNetV3 designed a Lite Re-
duced Atrous Spatial Pyramid Pooling (LR-ASPP) which made further improvements by
deploying global-average pooling similar to the Squeeze-and-Excitation module [39].

Other methods exist for improving network efficiency such as quantization [42, 53],
pruning [25], and knowledge distillation [34]; however, the scope of this thesis is focused
on the network architecture. As the aforementioned techniques can be applied to any
architecture, we choose to focus on getting the best performance-latency trade-off out of
the architecture alone, allowing for these techniques to be brought in later on if so desired.
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2.5 Weakly Supervised Segmentation

Although fully supervised methods have achieved state-of-the-art performance for segmen-
tation tasks, the acquisition of pixel-level labels is time consuming, laborious, and expensive
[102]. For example, the labellers of the MS COCO dataset took on average 10.1 minutes
to label each image by pixel-level instances, while it only took them 4.1 seconds to label
each image by category [12, 58]. Weakly supervised approaches offer a solution to expen-
sive label acquisition by using less spatially-informative annotations that require much less
time to collect. Various labelling techniques include bounding boxes, scribbles, points, and
image-level labels.

2.5.1 Labelling Techniques

Image-Level Labelling

The cheapest of these labels to collect are image-level labels (Figure 2.6 (a)) which simply
specify the presence or absence of a semantic class in a given image [65]. Though these
labels require minimum effort to collect, they are the most challenging to use due to the
lack of positional information [12]. For the task of semantic segmentation with only image-
level labels, an online Expectation-Maximization (EM) method was developed [65], which
outperformed previous attempts to use image-level labels. This method trains a DeepLab
architecture where a pixel-level pseudo-ground truth is inferred from embeddings from an
intermediate layer.

Point Labelling

A labelling technique that requires slightly more effort than image-level labeling, though
is still very cheap to collect, is the use of point labels (Figure 2.6 (b)). A point label is
simply an x-y location in an image indicating the approximate centre of an object as well
as the class it belongs to. One study using point labelling created a loss function which
has a image-level term that encourages some predicted pixels to be of the same class as the
image-level label, as well as a point-level term that acts as the cross entropy for only the
labelled points [5]. This study also incorporates an objectness prior which helps with the
spatial extent of the objects. This prior gives a probability that each pixel belongs to any
class, rather than the background, and is similar to object proposals described in Section
2.5.2. Results of this study can be seen in Figure 2.5. Another study combined a point-
supervised counting network [55] with object proposals for the task instance segmentation;
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achieving state-of-the-art results [56]. This study is described in more detail in Section
2.5.3.

Figure 2.5: Examples of results using point labels for image segmentation from Bearman
et al. [5]. Various results are shown, including results using image level supervision, image
level supervision and objecness priors, point level supervision and objectness priors, and
the results using a fully supervised network (from left to right). Permission to use this
figure was granted and can be referenced in Appendix 7.4.

Scribble Labelling

Scribble labels (Figure 2.6 (c)) can offer a larger spatial context than point labels as they
consist of lines that span the objects in an image. One study used a graphical model to
propagate information from the scribbles to the unmarked pixels using spatial constraints,
appearance, and semantic context [57]. This resulted in a pseudo-ground truth that was
used to train a FCN.
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Bounding Box Labelling

Bounding boxes are rectangles that fully surround objects of various classes (Figure 2.6 (d)).
Although bounding boxes still contain the background class, they offer a more descriptive
label than image-level or point level annotations. Various methods have been created for
segmentation with bounding box labels, from simply using the bounding box as pseudo-
ground truth, using a CRF to shape the bounding box around the object borders for
a more detailed pseudo-ground truth, or using reinforced embedding layers with an EM
procedure similar to that described for image-level labels [65]. Another study used the
overlap between bounding boxes and object proposals (See Section 2.5.2) in their loss
function to guide training [19].

2.5.2 Object Proposals

The goal of an object proposal algorithm is to find regions in an image that are likely to
contain objects [69]. These algorithms are class agnostic and can be employed for object
detection tasks [28] and weakly supervised tasks [19, 56], among others. An ideal object
proposal algorithm, has high recall, where this is achieved with the fewest number of
proposals as possible which match the objects as accurately as possible [69]. A high recall
score maximizes the number of true positives and minimizes the number of false negatives,
meaning we hope to have all objects covered by proposals, even if it might mean sacrificing
false positives.

DeepMask

DeepMask is a popular object proposal network which, given an image, aims to output a
collection of object proposals, each with an associated score that indicates the likelihood of
that proposal indeed being an entire object [69]. The DeepMask architecture consists of a
backbone feature extractor such as VGG [84], which then splits into two branches; one for
segmentation and one for scoring. The segmentation branch is responsible for outlining the
location of a object, while the scoring branch is responsible for deciding if the input image
patch indeed contains an object and if it is roughly centered in the patch. Branching off
from the backbone feature extractor, the segmentation branch contains a 1⇥1 convolution
to reduce the channel dimension, followed by a classification for each pixel in the output
mask. The scoring branch consists of 2⇥ 2 max-pooling to reduce the spatial dimensions,
followed by two fully connected layers, eventually outputting a single objectness score [69].
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DeepMask employs joint learning in the sense that the loss function is a sum of two
binary logistic regression losses, one for predicted object segmentation masks and one
for the objectness score. During training, a training triple is provided that contains an
input image patch, a binary ground truth segmentation mask, a ground truth indicator
variable that indicates if there is indeed an centred object in the patch. Backpropagation is
alternated between the scoring branch and the segmentation branch, only backpropagating
over the segmentation branch if the ground truth indicator variable for that patch indicates
that there is indeed an image in the patch. During training, an equal number of training
patches contain an object as those that do not contain an object [69]. During inference, the
trained DeepMask model is densely applied at multiple locations and scales to encourage
at least one patch to fully contain each individual object in the image.

At the time of its publishing, DeepMask achieved state-of-the-art results. Specifically,
DeepMask outperformed another algorithm known as Selective Search [95], a proposal
algorithm employed by one of the weakly supervised bounding box algorithms mentioned
in Section 2.5.1 [19].

2.5.3 Point Labelling for Instance Segmentation

Counting Network - LC-FCN

A counting network is a neural network that counts the instances of objects of various
classes and can be used in many applications including surveillance, traffic monitoring,
ecological surveys, and cell counting [55]. Although object detection networks are theo-
retically able to count objects by simply counting how many objects are detected by the
network, they are also given the difficult task of determining the location, shape, and size of
the objects, and are therefore not optimized for counting. Counting networks simplify the
task by localizing object instances without a focus on the exact spatial extent of the object.
One study proposed a loss function that uses only point-level supervision, and encourages
the model to output approximate instance regions in which each instance region overlaps
only a single object instance [55]. This method uses a FCN as the network architecture,
and a novel localization-based counting loss, and is therefore referred to as LC-FCN [55].

For this method, any FCN can be used. Similar to a segmentation network, LC-FCN
outputs a prediction mask with the same spatial dimensions as the input image. Since LC-
FCN does not concern itself with the spatial extent of the object, once LC-FCN is trained,
it outputs a blob-like mask for each object. Unlike a traditional segmentation network, a
successful blob segmentation output of LC-FCN does not need to be a detailed outline of
the object, but rather there should ideally be a single blob for every object. This means
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that one blob should not overlap multiple objects, and there should be no blobs that do not
overlap an object. The loss function developed by the authors of LC-FCN can be defined
as follows,

L(S, T ) = LI(S, T )| {z }
Image-Level Loss

+ LP (S, T )| {z }
Point-Level Loss

+ LS(S, T )| {z }
Split-Level Loss

+ LF (S, T )| {z }
False Positive Loss

, (2.25)

where T is the point annotation ground truth, and S is the softmax output of the
network [55]. The loss function is comprised of four separate terms, an image-level loss,
a point-level loss, a split-level loss, and a false positive loss; each designed for a specific
purpose.

The image-level loss, LI , encourages at least one pixel in the prediction to be from each
class present in the image as defined by the ground truth point labels. It also discourages
any of the pixels in the prediction to be from the classes not present in the ground truth
point labels. The image-level loss can be defined as follows,

LI(S, T ) = � 1

|Ce|
X

c2Ce

log(Stcc)�
1

|C¬e|
X

c2C¬e

log(1� Stcc), (2.26)

where Ce is the set of classes present in the image as defined by the point labels, C¬e is
the set of classes not present in the image, and the vertical bars || indicate the cardinality
or size of the set. Sic is the probability that pixel i in the image I belongs to class c, while
tc is equal to argmaxi2ISic. Finally, the variable Stcc is the probability of the pixel with
the highest probability of being class c.

The point-level loss, LP , encourages the model to correctly label the pixels that are
used as ground truth point labels. The point-level loss ignores all non-annotated pixels
and can be defined as follows,

LP (S, T ) = �
X

i2Is

log(SiTi), (2.27)

where Is is the set of supervised pixels, Ti are the ground truth labels of Is, and SiTi

is the probability that pixel i belongs to the ground truth label.

The split-level loss, LS, discourages the model from predicting blobs that have more
than one point-annotations within. In such a scenario, LC-FCN would count multiple
objects as only one, resulting in an inaccurate estimate of the number of objects in the
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image. The split-level loss therefore enforces that if a blob has n point annotations within,
the blob must be split into n blobs, as so new blob corresponds to a single unique object.
LC-FCN uses a watershed segmentation algorithm [7] within LS to split objects where
ground truth point labels are used as seeds. If we let Tb be the set of pixels that define the
boundaries of the watershed segmentation, as illustrated by the yellow lines in Figure 2.7,
the split-level loss can be defined as follows,

LS(S, T ) = �
X

i2Tb

↵i log(Si0), (2.28)

where Si0 is the probability that the boundary pixel i belongs to the background class,
and ↵i is the number of point annotation encapsulated by the blob that also encapsulates
pixel i. This ↵i term therefore promotes the model to split blobs that have the most point
annotations within. Overall, the split-level loss encourages the model to learn boundaries
between objects and therefore output a single blob for each object instance.

The final term in Equation 2.25 is the false positive loss, LF . This term discourages
the model from predicting blobs where no object, and therefore point annotation, exists.
The false positive loss can be defined as follows,

LF (S, T ) = �
X

i2Bfp

log(Si0), (2.29)

where Bfp are the set of pixels that make up blobs for which no ground truth point
exists within, and Si0 is again the probability that pixel i belongs to the background class.

Figure 2.8 shows how each loss term, LI , LP , LS, and LF , affects the predictions of
LC-FCN. We can see in Figure 2.8 (b), that without LS and LF , the network predicts
usually a single mask that covers all ground truth points, satisfying LI +LP . The addition
of LS splits this single mask into many blobs, where some overlap objects, and some do
not, resulting if false positives (Figure 2.8 (c)). Finally, LF reduces the number of these
false positives, resulting in blobs with only overlap a single object (Figure 2.8 (d)). When
published, LC-FCN outperformed all state-of-the-art counting models on a variety of data
sets [55].

Combining Points with Proposals

Some of the authors of LC-FCN extended their work to weakly supervised instance seg-
mentation using point labelling to create a network called Weakly-supervised Instance
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SEgmentation (WISE) [56]. As described in Section 2.4, instance segmentation is con-
cerned with the class label of each pixel, as well as the distinct instances of a given class.
The WISE network has three main components; a Localization Network (L-Net), an object
proposal network, and an Embedding Network (E-Net).

The L-Net is a renaming of the LC-FCN described in Section 2.5.3. This means that
given training images of multiple objects and ground truth point labels at each object, L-
Net will learn to predict a point at each object, and an associated class with each predicted
point. In order to turn these point predictions into an instance segmentation prediction,
WISE leverages object proposals and selects an object proposal using the E-Net.

As described in Section 2.5.2, object proposal networks are pre-trained networks de-
signed to output one or more class agnostic object regions for all objects in an image. The
WISE network elected to use the SharpMask object proposal network that builds upon
DeepMask using an encoder-decoder architecture for more refined object proposal edges
[70].

Various methods to turn the point predictions of the L-Net into instance segmentation
predictions were tested by the authors of WISE. Recalling that LC-FCN, and therefore L-
Net, use the blob predictions from an FCN to estimate the point predictions for objects, the
authors of WISE simply used the blob outputs as the instance segmentation predictions.
LC-FCN was not designed for the blob outputs to be detailed representations of objects,
but rather to simply correspond to the general location of a single object. As a result, it
is expected and was shown that the blobs make poor instance segmentation predictions.
Referencing Section 2.5.2, object proposal networks have objectness scores associated with
each proposal indicating the likelihood that the proposal aligns entirely with an object.
The authors of WISE tested out a method of selecting the object proposal with the highest
objectness score which aligns with a point prediction from L-Net. By choosing a single
proposal or each point prediction, the authors built an instance segmentation prediction.
Finally, rather than simply selecting the proposal with the highest objectness score, the
authors built E-Net in an effort to more intelligently select an object proposal that aligns
with a point prediction.

As mentioned above, the E-Net serves as a means of selecting the best object proposal
that aligns with a point prediction from the L-Net. E-Net is a FCN that outputs an
embedding vector for each pixel in the input image. The goal of E-Net is for the output
embedding vectors to be similar if they belong to the same object instance. The loss
function of E-Net, LE, uses a similarity function, S(i, j), over all pixel embedding pairs
where the similarity tends 1 if the embedding pairs are similar, and tends to 0 if they are
farther in the embedding space. LE and S(i, j) are defined as follows,
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X

(i,j)2P

⇥
{yi=yj} log(S(i, j)) + {yi 6=yj} log(1� S(i, j))

⇤
, (2.30)

S(i, j) = exp

✓
�kEi � Ejk22

2d

◆
, (2.31)

where i and j are two pixels where i 6= j, Ei and Ej are the embedding vectors for
pixels i and j respectively, and d is the size of the embedding vectors.

Since there is no object ground truth, but rather only point labels, a random pseudo
mask is selected from the object proposals aligning with the one of the points in order
to get an estimate of if two embeddings are from the same object allowing for the use of
Equation 2.30. Once E-Net is trained, given an input image, the output embeddings of
E-Net are used to create a pseudo masks where pixel embeddings are grouped based on
similarity (Equation 2.31) to the embeddings of the points predicted by L-Net. Finally,
the intersect over union score (see Chapter 4) between these pseudo masks and the set
object proposals are calculated. The object proposal with the highest intersect over union
score is selected as a mask for the object point of interest and is used in the final instance
segmentation prediction.
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Figure 2.6: Examples of image-level labelling (a), point labelling (b), scribble labelling
(c), and bounding box labelling (d) for an example image from the PASCAL VOC 2012
Dataset [23].
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Figure 2.7: Figure showing an example of watershed segmentation from Laradji et al. [55]
with proof of permission shown in Appendix 7.3. Small yellow square points are ground
truth points, while the jagged lines between the points are the watershed segmentation.
Pixels intersecting with the watershed segmentation are used in the split-level loss outlined
in 2.28.
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Figure 2.8: Figure showing qualitative LC-FCN results from Laradji et al. [55] with proof
of permission shown in Appendix 7.3. Test images are shown in column (a), predictions
using the sum of Equations 2.26 and 2.27 as a loss function are shown in column (b),
predictions using the sum of Equations 2.26, 2.27, and 2.28 as a loss function are shown
in column (c), and predictions using the final loss function defined in Equation 2.25 are
shown in column (d). Green regions indicate blobs that are true positives, red regions
indicate blobs that are false positives, and yellow regions indicate blobs that contain more
than one object instance as defined by the ground truth point labels.
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Chapter 3

Data

3.1 Study Area

The Alberta River Ice Segmentation Dataset contains a variety of labelled and unlabelled
RGB images collected from the Peace River and North Saskatchewan River in Alberta,
Canada, using a Blade Chroma UAV [86]. The Peace River has a rich history of ice
jams and flooding [59], and while ice jams and flooding are less common in the North
Saskatchewan River, other ice related challenges exist including water intakes blocked by
frazil ice and turbidity during breakup giving issue to water treatment plant operators [38].
Images collected on the Peace River were collected at the Dunvegan Bridge boat launch
and Shaftesbury Ferry crossing (Figure 3.1 (a)) on January 21-23, 2016 and January 14-
15, 2017. Images collected on the North Saskatchewan River were collected at the Genesse
boat launch (Figure 3.1 (b)) on December 1 and 3, 2016 [47].

3.2 Data Split

The Alberta River Ice Segmentation Dataset contains 50 1280⇥1080 labelled RGB images,
in which each labelled segmentation mask details the locations of frazil ice pans, anchor
ice pans, and open water. For our experiments, the 50 images were randomly split such
that 30 images are used for training, 10 images are used for validation during training,
and 10 images are used for testing. Proportions of each pixel class in the entire labelled
dataset, and each subset can be seen in Table 3.1. The images in each split were down-
sampled by a factor of 3.125 using local averaging, and cropped to a size of 320 ⇥ 320
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Figure 3.1: Peace River (a) and North Saskatchewan River (b) study sites. UAV images
were taken at the Dunvegan Boat Launch and Shaftesbury Ferry Crossing on the Peace
River and at the Genesee Boat Launch on the North Saskatchewan River, all shown with
gold stars. Arrows indicate the direction of flow.
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for more efficient usage on hardware with limited memory. Note that a previous study on
the Alberta River Ice Segmentation Dataset chose to split the data into only a training
set and a test set consisting of 32 and 18 images respectively [87]. We chose to split the
data differently as we require a validation set for some of our experiments. Specifically we
utilize a validation set for early stopping and an analysis of overfitting. Nonetheless, for
consistency and comparability, we also conduct some experiments using the same 32 image
training set and 18 image test set as used in previous work.

Table 3.1: Percentage of water, anchor ice, and frazil ice in the entire Alberta River Ice
Segmentation Dataset, as well as the training set, validation set, and test set. Proportions
were calculated according to the ground truth pixel labels.

Data Split Water Anchor Ice Frazil Ice
All Data 61.3% 16.5% 22.2%
Training Set 62.7% 16.8% 20.5%
Validation Set 58.2% 14.3% 27.5%
Testing Set 60.5% 17.1% 22.4%
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Chapter 4

Metrics

Pixel Accuracy (pA), Mean Pixel Accuracy (mPA), Mean Intersect over Union (mIoU),
and Frequency Weighted Intersect over Union (fwIoU) are the common metrics used to
evaluate the performance of image segmentation models [60].

• Pixel Accuracy is the ratio of all correctly classified pixels to the total number of
pixels,

pA =

Pk
j=1 pjjP

j tj
, (4.1)

where k is the number of classes, pjj is the total number of pixels both classified and
labelled as class j, and tj is the total number of pixels labelled as class j.

• Mean Pixel Accuracy is the ratio of correctly classified pixels to total labelled pixels
per class, averaged over the total number of classes. This metric weights the accuracy
of each class equally, avoiding one class dominating the overall score if, for example,
the classes are imbalanced. For k classes, Mean Pixel Accuracy can be calculated by

mPA =
1

k

kX

j=1

pjj
tj

, (4.2)

where pjj is the total number of pixels both classified and labelled as class j, and tj
is the total number of pixels labelled as class j.

38



• Mean Intersect over Union is the ratio of the intersection of the predicted segmen-
tation with the ground truth to the union of the predicted segmentation with the
ground truth.

mIoU =
1

k

kX

j=1

pjj
pij + pji + pjj

, i 6= j (4.3)

where k is the number of classes, pjj is the total number of pixels both classified and
labelled as class j, pij is the number of pixels labelled as class i but classified as class
j, and pji is the total number of pixels labelled as class j but classified as class i.

• Frequency Weighted IoU (fwIoU) is a variation of mIoU which aims to account for
class imbalances. This is done by weighting the IoU value of a specific class inversely
proportional to the frequency of that class’ occurance in the dataset. Frequency
Weighted IoU can be calculated as follows,

fwIoU =

 
kX

j=1

tj

!�1 kX

j=1

tjpjj

tj +
Pk

i=1 pij � pjj
, i 6= j (4.4)

and similar to variable definitions of mIoU , k is the number of classes, pjj is the total
number of pixels both classified and labelled as class j, pij is the number of pixels
labelled as class i but classified as class j, and tj is the total number of pixels labelled
as class j.

All of pA, mPA, mIoU , and fwIoU can be expressed as a percentage from 0 to
100, where higher numbers indicate better performance. Note that mPA and mIoU are
primarily used to evaluate results in this thesis. We use pA and fwIoU to make direct
comparisons to previous work that also used these metrics [87].
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Chapter 5

Shallow DSC-LBC Network

5.1 Methodology

5.1.1 Architecture

We propose a novel convolutional DSC LBC block that melds DSCs and LBCs in order to
reduce the number of operations and trainable parameters. This operation is illustrated
in Figure 5.1 and operates similar to a DSC in that there is first a depthwise convolution,
followed by a pointwise convolution. Similar to a DSC, the depthwise convolution stage of
a DSC LBC block has cin filters of size k ⇥ k ⇥ 1, where a single distinct filter is applied
to each input channel. The DSC LBC block, however, differs from a DSC in that the
depthwise convolution stage uses non-trainable kernels with values initialized from the set
{�1, 0, 1}, similar to a LBC. This adds sparsity and reduces the total trainable parameters
of the DSC LBC block, in contrast to a DSC which uses trainable kernels in the depthwise
stage. The initialization of the depthwise kernels in a DSC LBC block occurs in the same
manner as described in Section 2.3.2. When initializing the non-trainable kernels, we
use a sparsity of 80%1 as this level of sparsity achieved the best performance in previous
experiments [46]. Finally, the only trainable parameters in a DSC LBC block exist in the
1 ⇥ 1 pointwise convolution. As a result of this DSC LBC block architecture, we achieve
the same computational cost as a DSC of h ·w · cin(k2+ cout), while using the same number
of trainable parameters as a LBC, specifically cin · cout.

1Note that we follow the same convention as the LBCNN authors where the sparsity percentage refers
to the percentage of non-zero elements i.e., sparsity=100% corresponds to a dense weight tensor [46].
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Figure 5.1: DSC LBC convolution block used to replace a traditional convolution block.
A given convolution operation can be considered to have X filters of size KxKxY where
X is the number of output channels, Y is the number of input channels divided by the
number of convolution groups, and K is the width and the height the kernel. A DSC LBC
convolution replaces the trainable depthwise filters of a depthwise separable convolution
[17] with sparse, non-trainable filters inspired by local binary patters [46]. Note that there
is only one distinct non-trainable binary filter convolved with each input channel in the
first stage of the DSC LBC convolution block.

A UNet was chosen as a baseline model due to its simplicity in implementation,
widespread use, intuitive interpretation, and success in both performance and generaliza-
tion ability in previous work [87]. Figure 5.2 (a) shows the full architecture of a standard
UNet as it was originally proposed [76]. For the sake of comparison, various versions of
the UNet architecture were created, each with a different convolution operation. Here, the
term UNet simply refers to a standard UNet with standard convolution operations, while a
DSC UNet replaces standard convolutions with DSCs, and a LBC UNet replaces standard
convolutions with LBCs. Finally we compare these UNet variations to a DSC LBC UNet
which replaces standard convolution operations in a UNet with our DSC LBC convolution
block. All UNet variations use the same kernel size of 3⇥ 3.

Previous research has suggested that shallower networks perform better than deeper
networks when the dataset of interest is small [81, 66]. As the Alberta River Ice Segmenta-
tion Dataset is considerably small with only 50 images, we experiment with the size of the
UNet with regards to the number of down-sampling and up-sampling layers. The aforemen-
tioned UNet variations, which we will now refer to as Full UNets, have four down-sampling
and up-sampling layers. We have created similar UNets with only two down-sampling and
up-sampling layers and will refer to these as Small UNets (Figure 5.2 (b)). The Small
UNets also differ from the Full UNets in the number of embedding dimensions, or channels
used in the intermediate layers. The first two layers of the Full UNets contain 64 and 128
embedding dimension respectively, while the first two layers of the Small UNets contain
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Figure 5.2: Original UNet architecture shown in (a) [76], and smaller UNet architecture
shown in (b) with only two down-sampling stages. If the Conv operation in the blue boxes
is a standard convolution, the networks are referred to as Full and Small UNets. If the
Conv operation is a DSC operation, the networks are referred to as Full and Small DSC
UNets. If the Conv operation is a LBC operation, the networks are referred to as Full
and Small LBC UNets. If the Conv operation is a DSC LBC operation (Figure 5.1), the
networks are referred to as Full and Small DSC LBC UNets.
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32 and 64 dimensions respectively. This further reduces the memory requirements of these
small networks with the goal to improve training and inference efficiency. Finalizing our
terminology, the Small UNet uses standard convolutions, while the Small DSC UNet, Small
LBC UNet, and Small DSC LBC UNet use DSCs, LBCs, and DSC LBC blocks respectively.

Finally, as we are exploring the performance-latency trade-off for river ice segmentation,
we compare the UNet approaches to state of the art MobileNets which are optimized for
CPU usage on mobile devises [36]. These networks are built to be fast and efficient, while
minimizing any drop in performance. We elect to use use both DeepLabV3 and and the
more modern LR-ASPP models with a MobileNetV3 backbone. Both these networks have
a performance-latency trade-off associated with an output stride; the ratio of the input
image size to the output feature map size [79]. A default output stride of 16 was used for
DeepLabV3, while a combination of an output stride 8 and 16 was used for low and high
level features in the LR-ASPP. These two networks will be referred to as MobileNetV3
(DeepLabV3) and MobileNetV3 (LR-ASPP) respectively.

5.1.2 Experiments

Training Procedure

We run a series of experiments to compare the suite of Full UNets, Small UNets, and
MobileNets. The PyTorch library [68] was used to train all models until a stopping criteria
had been satisfied. Training was stopped after 30 consecutive training epochs occurred
where the validation loss had not reached a new low. After this stopping criteria is trig-
gered, we roll back to the 30th last training epoch where validation loss was at its lowest.
This was done in order to mitigate any overfitting that may have occurred during the 30
epochs where validation loss did not decrease. Thirty epochs was chosen for the stopping
criteria as there was significant variation in the validation loss during training due to a
small validation set of only 10 images. A batch size of one was used for all experiments
in order to maintain consistency and satisfy hardware limitation for the more memory
intensive models. A learning rate of 1e-4 was used along with a standard cross entropy loss
function,

LCE = �
nX

i=1

yi log(ŷi), (5.1)

where yi and ŷi are the ground-truth and network output for the ith class of n total
classes.
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We use an RMSprop optimizer with a weight decay of 1e-8 and a momentum of 0.9
[91]. Training was conducted on both a GPU and CPU, specifically a Nvidia GeForce
GTX 1060 and AMD Ryzen 5 2600 Six-Core Processor respectively. After every three
training iterations, a validation step is performed in where the loss function and other
evaluation metrics are evaluated for all 10 validation images. This procedure allows for
further insight regarding over-fitting and how fast the loss function of validation predictions
decreases during training.

Synthetic Data for Generalization Experiments

After the suite of UNets and MobileNets have been compared on the Alberta River Ice
Segmentation Dataset, we explore the ability of these networks to generalize by adding
synthetic snow to a varying number of images in the training and test sets. We evaluate
the results of these tests with the non-contaminated ground truth to get quantitative results
to supplement the qualitative results mentioned in previous work [87]. The synthetic snow
was designed by observing UAV footage obtained during a real snowfall [86] (Figure 5.3 (a)),
and was added using using the OpenCV library [10] (Figure 5.3 (c)). The snow observed in
the UAV footage has either a point-like or streak-like appearance as seen in Figure 5.3 (a).
As a result, a line in OpenCV was used to simulate snow where the length and the width
of the lines were sampled from a gamma distribution. If the length and width of the line
are similar, the snow appears point-like, while if the length is larger than the width, the
snow appears streak-like (Figure 5.3 (d) & (e)). A gamma distribution was chosen since
the majority of snow flakes are far from the camera and therefore appear smaller, while
there are fewer snowflakes near the camera that appear larger. The distribution for the
length of the line was sampled from a gamma distribution with a slightly higher mean and
standard deviation than the distribution used to sample the width of the line; resulting
in some streak-like snow. The slant and the color of the line was chosen from a uniform
distribution, where the red, green, and blue colour channels were sampled in the range of
190 to 210 to give the snowflakes a varying greyish white colour.

Another environmental factor that can affect the generalization ability of a network is
the illumination [24]. If images are collected early or late in the day they can appear dark
as compared to if they are collected during the day. We test the ability of the networks
to generalize to illumination by synthetically darkening and lightening the images, and
training on one group and testing on the other. Specifically, keeping the same training,
validation, and testing splits, we train on dark images and test on light images, as well as
train on light images and test on dark images. We choose to characterize the illumination
of an image by the mean grey-scale pixel intensity of only the water in an image. By
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Lenght

Width

Figure 5.3: Examples from the Alberta River Ice Segmentation Dataset [86] taken while
it is snowing (a), while it is not snowing (b), and with synthetic snow added to an image
which originally had no snow (c). An example of a synthetic streak-like snow flake is shown
with its length and width sampled from gamma distributions for length (d) and width (e).
The distribution for length (d) can be seen to have a larger mean and standard deviation
than the distribution for width, forcing some streak-like snow as shown in the zoomed in
square. Note that snow can be seen better when zoomed in.
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browsing the dark and light images in the Alberta River Ice Segmentation Dataset, we
find that the darkest images in the dataset have a mean water grey-scale value of around
75, and the lightest images have a mean water grey-scale value of around 120. We then
make duplicates of the Alberta River Ice Segmentation Dataset, forcing all images to
have a mean water grey-scale value of 75 in one duplicate of the dataset, and forcing all
images to have a mean water grey-scale value of 120 in another duplicate of the dataset.
This involves either synthetically darkening or lightening the image depending on if was
originally darker or lighter than the target value of 75 or 120. Examples of original images
from the dataset can be seen in Figure 5.4 (a) and (b), while a synthetically lightened
image can be seen in Figure 5.4 (c), and a synthetically darkened image can be seen in
Figure 5.4 (d). The OpenCV library [10] was used to change the illumination through an
inverse gamma correction defined as follows,

pout = 255
⇣ pin
255

⌘ 1
�
, (5.2)

where pin is an input pixel intensity, pout is the output pixel intensity, and � is a scaling
factor for which a higher value results in a lighter image, a lower value results in a darker
image, and a value of one results in no change.

Model Timing

Finally, we attempt to get a better understanding of how model factors such as trainable
parameters, multiply-add operations, and memory usage in a model affect the latency
during training and inference. We first measure training time over three training epochs
for all models on a GPU and CPU to see how fast the various architectures train. Then, the
best models from this analysis are compared with respect to the time required to reach a
specific metric threshold. This comparison will give a more practical idea of which model is
most appropriate to achieve good results when training in a resource and time constrained
setting. Then, we finish by measuring the inference time over 10 images for all models on
a GPU and a CPU to see how fast river ice images can be evaluation in practice once a
model in trained.
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Figure 5.4: Examples of images from the Alberta River Ice Segmentation Dataset [86]
shown in (a) and (b) along with examples of synthetically lightened (c) and synthetically
darkened (d) images. Images (a), (b), (c), and (d) have mean water grey-scale pixel
intensities of 78.2, 124.5, 121.1, and 73.1 respectively.
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5.2 Results

5.2.1 Model Comparison

Table 5.1 shows a comparison of the various models tested with respect to the evaluation
metrics on the test set, the number of total and trainable parameters in the model, the
number of multiply-add operations in a forward pass of the model, and the memory usage
of the model. The metrics were calculated by training three instances of each model, saving
the respective model weights at the stopping epoch determined during training (Section
5.1.2), evaluating the models on the test set, and averaging the three results for each model.
Memory usage and Mult-Add operations were calculated according to one 320 ⇥ 320 ⇥ 3
image passed through the model. For a more direct comparison to previous results of UNet
on the Alberta River Ice Segmentation Dataset, see Appendix A. Due to our experiment
structure we elect to use a validation and test set, rather than a single test set, as well as
more general metric reporting.

Table 5.1: Metrics, number of parameters, number of multiply-add operations and mem-
ory usage in the tested networks. Metrics were calculated by training three instances of
each model, evaluating them on an external test set using weights saved at the stopping
criteria, and averaging the three results. Memory and Mult-Adds were calculated using
an input size of 320 ⇥ 320 ⇥ 3. Numbers in bold represent the highest metric or lowest
number of parameters/operations/memory of the models tested. Small DSC LBC UNet is
in bold as it shows a healthy trade-off between high performance metrics and low param-
eters/operations/memory.

Model mIoU mPA Total
Params

Trainable
Params

Mult-
Adds Memory

Full UNet 69.7 82.7 17,267,523 17,267,523 62,764 M 1542 MB
Full DSC UNet 69.7 82.9 1,983,713 1,983,713 7,717 M 2242 MB
Full LBC UNet 67.7 82.2 16,498,842 794,697 71,048 M 1164 MB
Full DSC LBC UNet 69.1 82.7 821,220 794,697 3,402 M 1104 MB
Small UNet 71.2 85.0 260,451 260,451 8,237 M 622 MB
Small DSC UNet 70.4 84.3 35,777 35,777 1,123 M 936 MB
Small LBC UNet 69.7 83.8 253,050 13,353 9,479 M 468 MB
Small DSC LBC UNet 70.1 83.5 16,260 13,353 637 M 466 MB
MobileNetV3 (DeepLabV3) 63.7 78.5 11,020,851 11,020,851 3,898 M 589 MB
MobileNetV3 (LR-ASPP) 65.1 80.0 3,218,478 3,218,478 826 M 307 MB
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Evaluation Metric Results

When comparing the models within Table 5.1, the first observation that can be made
with respect to evaluation metrics is that the Small UNet variants outperform their Full
UNet equivalents. For example, Small UNet outperforms Full UNet, Small DSC UNet
outperforms Full DSC UNet, and so on. This gives credibility to the notion that shallower
networks outperform deeper networks on smaller datasets.

The Small UNet achieved the highest mIoU and mPA results, while the Small DSC
LBC UNet used the lowest number of trainable parameters and Mult-Add operations. The
Small DSC LBC UNet also had the second smallest memory footprint, second only to
MobileNetV3 (LR-ASPP). When comparing the Small DSC LBC UNet to the Full UNet,
the Small DSC LBC UNet has a mIoU that is virtually the same, only 0.6% higher, but
with 99.9% less trainable parameters, 99.0% less Mult-Add operations, and 69.8% less
memory usage. When comparing the Small DSC LBC UNet to the best performing Small
UNet, the Small DSC LBC UNet has a mIoU that is 1.5% lower; however, is still has
94.9% less trainable parameters, 92.3% less Mult-Add operations, and 25.1% less memory
usage. Finally, when comparing the Small DSC LBC UNet to MobileNetV3 (LR-ASPP),
although the Small DSC LBC UNet uses 51.8% more memory, it uses 23% less Mult-Adds,
has 99.6% less trainable parameters, and has a mIoU that is 7.7% higher.

Visual Results

Figure 5.5 shows model predictions on three test images using model weights saved at the
stopping epoch determined during training. When looking at the predicted segmentation
outputs, an obvious observation is that the MobileNets have a blobby nature to their
segmentation predictions where edges do not have fine detail and smaller ice pans are
unnoticed or combined into larger predictions. This nature of MobileNets is acknowledged
by the authors and is attributed a larger output stride which allows for parameter saving
but reduces the resolution of the predicted masks [79].

Another observation can be made regarding the LBC portion of the networks which
can be seen most clearly in the Small LBC UNet of Figure 5.5 and even more so in the
Small LBC UNet of Figure 5.7. The LBC component of the networks results in a noisy
pixelated appearance of the predicted masks, especially around the boarders of ice pans.
The pixilated artifacts are still present, but to lesser extent, in the Small DSC LBC UNet
and appear to be reduced with more training. These artifacts are likely due to the sparse
binary nature of the LBP filters that propagate through the 1 ⇥ 1 convolutions early in
training. As training progresses, the 1⇥1 convolutions are able to account for the sparsity
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Full UNets Small UNets MobileNets

Data
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Sample 1 Sample 2 Sample 3

Figure 5.5: Segmentation results on three images from the test set. Model weights for the
various models were chosen based on a stopping criteria during training (see Section 5.1.2).
The original image and ground-truth are shown at the top, the Full UNet variations are
shown on the left, the Small UNet variations are shown in the centre, and the two MobileNet
variations are shown on the right. Water, anchor ice, and frazil ice are coloured in black,
gray, and white respectively. Note that details in the images and segmentation predictions
can be best seen when zoomed in.
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and reduce the pixelated appearance of the predictions. Additionally, this artifact is not
as obvious in the Full LBC UNet likely due to the deeper architecture, allowing for more
superposition and smoothing of the sparse kernels, limiting the ability for the sparsity to
propagate to the predictions early in training.

Finally a comparison can be made between the predictions of the Full and Small UNet
variations. The Small UNets appear to contain more noise within individual ice pans, while
the Full UNets have little variation in class prediction within an individual pan. This can
be attributed to the increased down-sampling that occurs within the Full UNets. As down-
sampling continues, noise within feature maps get smoothed out and the network learns
to value the up-sampled feature maps where the noise is no longer present. Although the
smooth predictions appear more realistic, the actual class prediction of the smooth masks
are not always correct, which is reflected in the mIoU and mPA scores.

5.2.2 Training Curves

Learning Efficiency

Analyzing the mIoU and cross entropy loss of the validation set during training can give
insight into the speed of training on an epoch-per-epoch basis, as well as any overfitting
that may be occurring. Figure 5.6 shows the mIoU and cross entropy loss of the validation
set during 80 epochs of training. It can be seen in Figures 5.6 (a) and (b), that certain
models require fewer training iterations in order to reach a given mIoU value. In particular,
the Small DSC LBC UNet requires the lowest number of training iterations to reach high
scores, with the Full DSC LBC UNet, Small DSC UNet, and Small LBC UNet also reaching
higher scores considerably sooner than the other models. When comparing these results
to Table 5.1, models with a low number of trainable parameters seem to be the ones that
require few iterations to reach high scores. Even still, the combination of DSCs and LBCs,
regardless of if the network is small or large, appears to result in high performance early
in training.

Figure 5.7 shows the predictions of the Small UNets on one image of the test set after
one epoch of training. The predictions made by the Small DSC LBC UNet are visually
much more consistent with the ground truth than the other models at this early stage of
training, showing consistency with the training curves of Figure 5.6. Taking a closer look
at Figure 5.7, there is a key difference between how the Small UNet, Small DSC UNet,
and Small LBC UNet learn early in training. The Small UNet and Small DSC UNet are
similar in that they appear to focus on pixel intensity in the early stages of training. The
upturned bright edges of the anchor ice are often mistaken for the light frazil ice, and
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Figure 5.6: Mean IoU of the validation set after 80 training epochs is shown for the Full
UNets (a) and Small UNets (b). Cross entropy loss for the validation set is also shown
over 80 epochs for the Full UNets (c) and Small UNets (d). Note that the MobileNets
are shown in all chats for the sake of comparison. The data in all of the charts has an
exponential moving average applied with a smoothing factor or 0.95 to filter noise caused
by a small validation set.

the dark interior of the anchor ice is often mistaken for water. On the other hand, the
Small LBC UNet tends to focus more on texture in the early stages of training. The
rough upturned edges of either ice class are categorized to be anchor ice, while the smooth
interiors of the ice pans of either class are categorized as frazil ice. This behaviour of the
Small LBC UNet to focus on texture is understandable as the local binary patterns in the
kernels are designed to be texture descriptors. The contrasting behaviour of the Small
DSC and LBC UNets likely aids in the performance of the Small DSC LBC UNet early in
training as it does not appear to make either of the early-training mistakes of the DSC or
LBC networks previously mentioned.
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(a) Image (b) Ground Truth (c) Small UNet

(d) Small DSC UNet (e) Small LBC UNet (e) Small LBC UNet

Figure 5.7: Comparison of predictions after one epoch of training on the suite of Small
UNets. The mean IoU for the Small UNet, Small DSC UNet, Small LBC UNet and Small
DSC LBC UNet are 65.9, 67.2, 56.7, and 78.7 respecivley. The mean pixel accuracy for the
Small UNet, Small DSC UNet, Small LBC UNet and Small DSC LBC UNet are 75.0, 76.0,
69.2, and 88.8 respectively. Note that detail can be more easily observed when zoomed in.
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Overfitting Observation

It is also important to mention the behaviour of the cross entropy loss of the validation set
during training. It can be seen in Figure 5.6 (c) that validation loss of the Full UNets and
MobileNets eventually increases later in training; a sign of overfitting. When contrasting
Figures 5.6 (a) and (c), we see that although cross entropy loss increases significantly, the
mIoU values decrease only very slightly if at all. This discrepancy is attributed to the
discrepancy between the softmax output that is used to calculate cross entropy and the
argmax output that is used to calculate mIoU and mPA. As training proceeds, results are
worsening from the perspective of the loss function due to less confident pixel predictions
expressed by lowering softmax values. Due to the logarithmic nature of the cross entropy
function, changes in smaller softmax values have a larger effect than changes in larger
softmax values. However, once an argmax is applied to the softmax, as long as the lowered
softmax values are still larger than those of the other classes, the argmax will still have
the same result as when the softmax values were more confident. This leads to similar
segmentation predictions and no significant decrease in mIoU and mPA scores.

Overfitting Explanation

An example of this phenomenon can be seen in Figure 5.8 in which a Full DSC UNet makes
segmentation predictions on an example image at an early and late stage of training. Recall
from Figures 5.6 (a) and (c) that the Full DSC UNet has a significant increase in its cross
entropy loss value later in training, without significant losses in mIoU . Figure 5.8 shows
that for a Full DSC UNet trained for only 30 epochs, a mIoU and cross entropy loss of 0.5
and 1.39 are achieved respectively, while when the network is trained for 70 epochs, a mIoU
and cross entropy loss of 0.5 and 2.32 are achieved respectively. This example therefore
reflects the trends observed in Figure 5.6 for a Full DSC UNet on the entire dataset. If
we examine the computation of the cross entropy loss for only frazil ice, we first arrive at
the softmax predictions at 30 and 70 epochs in Figures 5.8 (d) and (j) respectively. In
calculating the cross entropy loss for only a specific class (Equation 5.1), pixel predictions
are only considered in locations where the ground truth is indeed the class of interest. If we
observe the frazil softmax predictions in locations where frazil is in the ground truth, we
arrive at Figures 5.8 (e) and (k) for the models trained for 30 and 70 epochs respectively.
Creating a histogram of pixel values in Figures 5.8 (e) and (k), we arrive at Figures 5.8
(f) and (l), which show the number of pixels for each value in the range [0, 1]. We see in
Figure 5.8 (f) that although the majority of pixels are near a value of one or zero, there
are a significant number of pixels in the range (0.1, 0.9) during this early stage of training.
Later in training, Figure 5.8 (l) shows that a lot of these pixel values in the range (0.1, 0.9)
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have changed to be much closer to zero or one. The cross entropy calculation takes the
negative logarithm of the softmax pixel intensities, meaning that small values have a much
larger effect than larger ones. As a result, the pixel values in Figure 5.8 (f) in the range
(0.1, 0.5) will have less of an affect on the final loss value than those pixels in the range
[0, 0.1]. In contrast, the pixel values in Figure 5.8 (f) in the range (0.5, 0.9) will have a
similarly negligible affect on the loss value as the pixels in the range [0.9, 1]. Since the
IoU is calculated by a argmax function, if all the pixels in the range (0.1, 0.5) theoretically
moved to the range [0, 0.1] with more training, and all the pixels in the range (0.5, 0.9)
moved to the range [0.9, 1] with more training; the resulting IoU values would be the
same. Observing Figures 5.8 (c) and (i) we see that, although the mIoU values are the
same, the segmentation predictions are not exactly the same, showing that pixels in the
ranges (0.1, 0.5) and (0.5, 0.9) did not strictly move to [0, 0.1] and [0.9, 1] as described in
the theoretical explanation above.

Although this disconnect between mIoU and cross entropy loss has not caused any
negative effects over 80 epochs, over longer training we can expect the errors in the softmax
output to leak into the argmax and therefore the visual quality of the predicted masks.
Looking at Figure 5.6 (d), we see that the Small UNets experience this overfitting effect
to a much smaller scale. This effect is almost completely non-existent in the Small DSC
LBC UNet, allowing for more training to be done before early stopping is triggered. These
results are consistent with beliefs that highly complex networks are prone to overfitting
when limited data is available [88].

5.2.3 Generalization Ability

Snow Generalization

As this overfitting effect does not appear to visually degrade results over the measured
epochs, the practical ability for these networks to generalize is still unclear. To get more
clarity on this topic, and meaningfully test generalization ability as it relates to river ice,
we can reference Table 5.2 which shows the results of the various networks trained on data
with no snow, but evaluated on data with synthetic snow. We first notice that the general
trend of Full UNets outperforming MobileNets, and Small UNets outperforming Full UNets
to be consistent with experiments on non-snowy data (Table 5.1). The results of Table
5.2, however, differ from Table 5.1 as the best performing Small network is now the Small
DSC LBC UNet and the best performing Full network is the Full DSC LBC UNet, the
two of which perform virtually the same. In perhaps in a more realistic scenario, some
training and testing images may have snow while others do not. Figure 5.9 shows a variety

55



Figure 5.8: Comparison of predictions, metrics, and loss values of a Full DSC UNet on
frazil ice at different stages of training. Sub-figures (a)-(f) correspond to results after 30
epochs of training while sub-figures (g)-(l) correspond to results after only 70 epochs of
training. The mIoU value at both stages are the same and the IoU value for frazil ice at
both training stages is virtually the same. In contrast, the mean cross entropy loss and
frazil cross entropy loss are significantly higher at 70 epoch stage than the 30 epoch stage.
Sub-figures (a) and (g) are an example image, (b) and (h) are the corresponding ground
truth, (c) and (i) are the predictions at the 30 and 70 epoch stage respectively, (d) and (j)
are the softmax output of each network for frazil ice, (e) and (k) are the are the softmax of
each network for frazil ice only at locations of the image where frazil ice is in the ground
truth, and finally (f) and (l) are the histogram of pixel values from (e) and (k) respectively.
The pixel values of (e) are used in a cross entropy function result in a value of 2.29; the
frazil portion of the mean cross entropy of 1.39 for the prediction (c). The pixel values of
(k) used in a cross entropy function result in a value of 3.79; the frazil portion of the mean
cross entropy of 2.32 for the prediction (i).
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of scenarios where different amounts of snow are present in the training and testing sets
and the associated mIoU for three models of interest; the Full UNet, Small DSC LBC
UNet, and MobileNetV3 (LR-ASPP). It can be seen that the results of MobileNetV3 (LR-
ASPP) under-perform the Full UNet and are highly correlated. The Small DSC LBC UNet
performs relatively similar to the Full UNet when the test set has a snow image proportion
of 1

3 or 2
3 ; however, the Small DSC LBC UNet outperforms the Full UNet significantly in

edge cases. These edge cases include high snow during training and no snow during testing,
high snow during training and half snow during testing, no snow during training and high
snow during testing, and high snow during both training and testing. These results suggest
that the DSC LBC convolution mechanism improves a network’s ability to generalize to
and from snowy environments; an important feature for a network used in regions where
snow is common.

Table 5.2: mIoU and mPA scores on the test set corrupted with snow noise. Models were
trained on the training set without snow noise. Numbers in bold highlight the best scores
while the Small DSC LBC UNet is in bold as it is the model of interest.

Model mIoU mPA
Full UNet 58.1 71.0
Full DSC UNet 57.6 72.0
Full LBC UNet 56.5 70.5
Full DSC LBC UNet 62.9 76.8
Small UNet 58.9 71.0
Small DSC UNet 59.1 71.1
Small LBC UNet 57.0 71.7
Small DSC LBC UNet 62.4 76.1
MobileNetV3 (DeepLabV3) 49.7 62.3
MobileNetV3 (LR-ASPP) 53.0 62.8

Illumination Generalization

The other characteristic for which generalization ability was tested was the illumination
of the image. Figure 5.10 shows a bar chart comparing the mIoU of different train-test
splits with varying illumination. Specifically, models trained and tested on the natural
illumination variation of Alberta River Ice Segmentation Dataset can be compared to
models trained on a darkened dataset and tested on a lightened dataset, as well as models
trained on a lightened dataset and tested on a darkened dataset. In Figure 5.10 we see
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Figure 5.9: mIoU results for a Full UNet, Small DSC LBC UNet, and MobileNetV3 (LR-
ASPP) for varying numbers of images with snow in the training and test sets. Training sets
had either 0/30, 10/30, 20/30, or 30/30 of the images containing snow, while the test set
had either 0/10 (a), 5/10 (b), or 10/10 (c) of the images containing snow. Three instances
of each model were trained under each scenario and their mean value was used with the
standard deviation shown by the error bar.

that among all three scenarios, the general trends of Small UNets outperforming Full UNets
still persists. In a general sense we can also say that models trained on darker data do
not generalize as well as models trained on lighter data as see by comparing the brown
and tan bars in Figure 5.10 respectively. However, it is worth noting that models such
as the Small UNet, Small DSC LBC UNet, and MobileNetV3 (LR-ASPP) do not exhibit
this same trend and actually show that models trained on dark data generalize slightly
better than those trained on light data. For these same three models we also observe that
the mIoU values are quite similar under all three scenarios for a given model. This is
in contrast to the other models which show greater variability in mIoU depending on if
the training or testing data is light, dark, or mixed (original dataset). As a result we can
say that the Small UNet, Small DSC LBC UNet, and MobileNetV3 (LR-ASPP) are more
reliable in environments with varying illumination.

5.2.4 Performance-Latency Trade-Off

A significant factor affecting the latency of a model is the number of multiply-add opera-
tions and memory usage of the model. As seen in Table 5.1, a trade-off is made between
performance, the number of Mult-Add operations and memory usage. The Small UNet has
high performance, a high number of Mult-Adds and relatively high memory usage, while
MobileNetV3 (LR-ASPP) has slightly lower metric performance but significantly less Mult-
Adds and memory requirements. This introduces a performance-latency trade-off where a
model can train in much less time but sacrifices some performance. The Small DSC LBC
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Figure 5.10: Bar chart comparing mIoU values achieved by different models trained and
tested on data sets with varying illumination levels. The black bars represent mIoU values
calculated from models trained and tested on images with natural illumination as captured
in the Alberta River Ice Segmentation Dataset. The brown bars represent mIoU values
calculated from models trained on images synthetically darkened to a mean water grey-scale
pixel intensity of 75, and tested on images synthetically lightened to a mean water grey-
scale pixel intensity of 120. The tan bars represent mIoU values calculated from models
trained on images synthetically lightened to a mean water grey-scale pixel intensity of 120,
and tested on images synthetically darkened to a mean water grey-scale pixel intensity of
75.
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UNet can be considered a good compromise between the performance of the Small UNet
and the resource requirements of MobileNetV3 (LR-ASPP).

Table 5.3 compares both inference and training time for the various models on a GPU
and CPU. Inference time was measured by segmenting 10 320 ⇥ 320 ⇥ 3 images, while
training time was measured over three epochs where 30 320⇥320⇥3 images were used per
epoch. An initial observation reveals that the Small DSC LBC UNet had the fastest train-
ing and inference on the GPU, while MobileNetV3 (LR-ASPP) had the fastest training
and inference on the CPU. The low number of trainable parameters of the Small DSC LBC
UNet may have attributed to its success on the GPU, while the CPU specific modifications
made to MobileNetV3 (LR-ASPP) can be attributed to its success during CPU training
and inference. These CPU-centric modifications, including a hardware-aware network ar-
chitecture search which exists for MobileNetV3s but not the UNets [36]. We can convert
the results of Table 5.3 to a frames-per-second (fps) measurement to understand how fast
inference can happen on real-time video. As the inference times were calculated for 10
320⇥ 320⇥ 3 images, we can say that the Small DSC LBC UNet has a fps of 22.5 and 6.5
on a Nvidia GeForce GTX 1060 GPU and AMD Ryzen 5 2600 Six-Core CPU respectively.
On the same hardware and for the same image size, MobileNetV3 (LR-ASPP) has a fps of
21.2 and 12.3.

Although it takes MobileNetV3 (LR-ASPP) less time than the Small DSC LBC UNet
to complete a training epoch on a CPU, we saw from Figure 5.6 (b) that the Small DSC
LBC UNet requires very few training iterations to achieve good performance. We can
therefore frame the idea of run-time slightly differently to make a more fair and practical
comparison. Rather than looking at the time to complete n number of training epochs,
we can look at the time required to achieve some threshold of performance. Recall from
Figure 5.6 that the training curves are smoothed using an exponential moving average
with a smoothing factor of 0.95. When looking at the time to reach a mIoU threshold, we
also look at a smooth curve as to not stop at an unsustainably high mIoU value that is
primarily caused by noise.

Table 5.4 shows the time for the Small DSC LBC UNet and MobileNetV3 (LR-ASPP)
to reach various mIoU thresholds. We see that the Small DSC LBC UNet outperforms
MobileNetV3 (LR-ASPP) for all mIoU thresholds. Notably, the largest discrepancy be-
tween runtimes occurs at a low (48%) mIoU and a high (�64%) mIoU , showing that
Small DSC LBC UNet is most effective when aiming for either very quick results or very
high performing results. If we consider a mIoU of 56% to be satisfactory and a mIoU of
64% to be good, then the Small DSC LBC UNet achieves satisfactory results 36% faster
than MobileNetV3 (LR-ASPP), and achieves good results 91% faster than MobileNetV3
(LR-ASPP) when trained on a CPU.
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Table 5.3: Training and inference runtime on a Nvidia GeForce GTX 1060 GPU and AMD
Ryzen 5 2600 Six-Core CPU. Training time was measured over three epochs, with 30
320⇥ 320⇥ 3 images per epoch. Inference time was measured for 10 320⇥ 320⇥ 3 images.
Bold numbers indicate the fastest runtime, while the Small DSC LBC UNet is in bold as
it is the model of interest.

Model
GPU
Train
(s)

GPU
Inference
(⇥10�1s)

CPU
Train
(s)

CPU
Inference

(s)

Full UNet 8.50 4.61 125.37 7.74
Full DSC UNet 8.78 4.59 65.96 4.34
Full LBC UNet 8.06 4.58 97.84 8.47
Full DSC LBC UNet 5.60 4.55 40.41 3.34
Small UNet 4.78 4.57 28.08 2.07
Small DSC UNet 5.00 4.56 24.26 1.78
Small LBC UNet 4.65 4.53 22.86 2.13
Small DSC LBC UNet 4.60 4.45 15.58 1.53
MobileNetV3 (DeepLabV3) 6.78 4.79 27.51 1.25
MobileNetV3 (LR-ASPP) 5.79 4.72 14.25 0.81

5.3 Summary

In this chapter we balance the trade-off between performance and latency for the task of
river ice segmentation on the Peace River and North Saskatchewan River. We introduce a
new convolutional block, the DSC LBC block, and use it to construct a shallow UNet style
architecture. The DSC LBC block combines the benefits of depthwise separable convolu-
tions and local binary convolutions to minimize both the number of operations and the
number of trainable parameters in a convolution. We find that the DSC LBC convolution
adds efficiency and improves a network’s ability to generalize to other domains such as a
snowy environment or areas with illumination variation. Our novel architecture has perfor-
mance on par with UNet, but with 99.9% less trainable parameters, 99% less multiply-add
operations, and 69.8% less memory usage, resulting in significantly faster training and infer-
ence. When compared to state-of-the-art efficient networks such as LR-ASPP MobleNetV3,
our architecture not only achieves a mIoU value that is 7.7% higher over extended training,
it can achieve a satisfactory results (mIoU of 56) 36% faster than LR-ASPP MobleNetV3,
and a good result (mIoU of 64) 91% faster than LR-ASPP MobleNetV3 on a CPU, and
even more impressive results on a GPU. This success attributed to the shallow nature of
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Table 5.4: Time in seconds for Small DSC LBC UNet and MobineNetV3 (LR-ASPP) to
reach various mIoU thresholds on an AMD Ryzen 5 2600 Six-Core CPU.

mIoU
Threshold

Small DSC
LBC UNet

Time

MobileNetV3
(LR-ASPP)

Time

48 2.16s 18.05s
52 15.57s 24.70s
56 20.24s 31.83s
60 27.51s 43.70s
64 43.08s 481.17s

the architecture, the lightweight nature of DSC LBC convolutions, and the ability for the
DSC LBC convolution to focus on both texture and pixel intensity, allowing for better
performance early in the training process. These results give promise to real time river ice
segmentation in remote regions where limited hardware and computation power is available
and winter weather conditions can affect image quality.

62



Chapter 6

Weakly Supervised River Ice
Segmentation

6.1 Methodology

6.1.1 Point Labeling

The Alberta River Ice Segmentation Dataset contains image labels in the form of pixel-
wise masks [86]. When experimenting with weakly supervised segmentation, a labelling
method can be selected that favours the shape of the ice pans. Figure 2.5 shows that point
level supervision, used with an objectness prior, often results in segmentation predictions
that appear rounded with smooth edges. For objects that are indeed round such as the
sheep in Figure 2.5, the difference between the Point-level + objectness prediction and
the Full supervision prediction is quite minor compared to the other objects that have
more complex shapes. As the ice pans in the Alberta River Ice Segmentation Dataset are
often quite rounded, point labels can be efficient to collect while potentially offering better
segmentation performance than can be expected when point labelling is used with other
common object based datasets.

In order to re-label the Alberta River Ice Segmentation Dataset with point labels, the
software package CVAT can be used [82]. In practice, annotating images with point labels
simply involves clicking on the centres of objects to add a point, and selecting the class
associated with the point depending on the object class. When determining where points
should be placed on the ice pans, some liberty was taken when determining if two or more
adjacent ice pans had been frozen together resulting in a single point annotation, or if
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they were separate resulting in multiple point annotations. This is somewhat important
since if LC-FCN commonly predicts multiple points for a single ice pan, there will be more
confusion down the line for the algorithm that combines point predictions with object
proposals to create the final segmentation. A general guideline was established that states
that if a single upturned, or bright, edge encapsulates one or more ice pans, all the pans
within the upturned edge can be considered a single ice pan. This means that multiple ice
pans that have frozen together and share a common upturned edge are considered one ice
pan and therefore receive one point label as seen in the red dotted oval of Figure 6.1. In
terms of determining the class of the point labels, in order to maintain consistency with
the Alberta River Ice Segmentation Dataset, no liberty was taken in determining the class
of the labels. Whichever class that the point label overlaps with in the pixel-wise ground
truth is the class of the point label, as exemplified by the green dotted oval of Figure 6.1.

(a ) Exa m p le  of Rive r  Ice  Im a g e (b ) Poin t  La b e ls (c ) P ixe l-Wise  La b e ls

Figure 6.1: Example of how point labels and pixel-wise masks appear for a given river ice
image. In (b), purple points represent frazil ice, while orange points represent anchor ice.
In (c), frazil ice is in white, while anchor ice is in gray. Note that when multiple frazil pans
are frozen together, this is considered a single point as seen by the red dotted oval. Also
note that the classes of the point labels are determined by the pixel-wise ground truth as
seen in the ambiguous case denoted by the green dotted oval.

To be able to compare the results of a fully supervised model and a weakly supervised
model under labelling time constraints, the labelling time to collect both the fully and
weakly supervised labels must be measured. Measuring the time to collect the point labels
is straight forward since a timer can simply be run during the collection of these labels.
Measuring the time to collect the fully supervised pixel-wise masks is less straightforward
since they were already collected by the creators of the Alberta River Ice Segmentation
Dataset and are very time consuming to re-collect. As a compromise, we propose to select
five diversified images from the Alberta River Ice Segmentation Dataset as seen in Figure
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6.2, and re-label them while recording the time. The average of these five times can be
considered the time to label a single image and can be used to create an estimated labelling
time for the entire dataset.

(a) (b) (c)

(d) (e)

Figure 6.2: Five images selected for timed fully supervised pixel-wise labelling. These five
images are considered diverse in the scope of the Alberta River Ice Segmentation Dataset
as they vary in scale in terms of proximity to the ice pans. The images also vary in the
proportion of water and ice that cover the image.

6.1.2 Combining Points and Proposals

In order to predict a segmentation mask from point labels, we will take inspiration from
the WISE network, which achieved state of the art results for instance segmentation using
point labels. Following the methodology of the WISE network, the point predictions from
LC-FCN must be combined with the object proposals from an algorithm such as DeepMask
in order to arrive at a final segmentation mask [56]. As DeepMask requires full pixel-wise
labels for training and we are limiting ourselves to point labels for the Alberta River Ice
Segmentation Dataset, we choose to use a pre-trained DeepMask weights trained on the
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MS COCO dataset [58, 72]. Recall that as DeepMask is class agnostic, it does not need to
be trained on the dataset of interest in order to be implemented on that dataset [69]. LC-
FCN on the other hand was trained on the point labels of Alberta River Ice Segmentation
Dataset. The same 30-10-10 train-validation-test split as well as the same stopping criteria
as Section 5.1.2 was employed to train the LC-FCN. Again similar to previous experiments,
both DeepMask and LC-FCN were implemented in PyTorch [68] and used with a Nvidia
GeForce GTX 1060 GPU.

The authors of WISE experimented with various methods of combining points and
proposals as we will as well. The following three methods can be used for combining point
predictions and object proposal predictions.

LC-FCN + DeepMask: Max Proposal Score

As mentioned in Section 2.5.2, the DeepMask object proposal algorithm outputs a confi-
dence score associated with each object proposal. One of the simplest methods for choosing
which proposal to use can simply be choosing the object proposal with the highest score
that aligns with a predicted point. This can be considered a greedy algorithm. A possible
drawback of this method is that DeepMask may have a high scoring proposal that overlaps
multiple ice pans, reducing the detail in the final segmentation. To partly combat this, we
choose to experiment with a single constraint limiting the size of the object proposal being
used. We decide that a safe threshold requires the number of pixels in any proposal to
be no greater than 1

8th of the total number of pixels in the image. A visual inspection of
the Alberta River Ice Segmentation Dataset shows that there are no ice pans larger than
this threshold and therefore any DeepMask predictions larger than this can be considered
inaccurate.

LC-FCN + DeepMask: Min Points in Proposal

As seen in some example images of the Alberta River Ice Segmentation Dataset, there can
be multiple anchor and frazil ice pans within a small area. To further discourage the greedy
algorithm from selecting a single proposal that overlaps other ice pans of the opposite
class, we experiment with optimizing for the number of predicted points within a proposal.
Specifically, when trying to match a point prediction from LC-FCN for a given class with
a proposal, we choose the overlapping DeepMask proposal with the highest score that also
overlaps with the least number of point predictions for the opposite class. For example,
for a frazil point prediction we let the tuple ((i), (ii)) represent (i) the proposal score for
an overlapping DeepMask proposal and (ii) the number of anchor point predictions also
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overlapping with the proposal. For the proposal tuples (0.99, 4), (0.96, 2), (0.86, 1), (0.81, 1),
this method would select the third proposal as it has the highest score of 86% while having
only one anchor point prediction within; the lowest possible of all the proposals. Although
the first proposal has a high score of 99%, it overlaps four anchor ice point predictions.
If this proposal is selected, as it would be by the greedy algorithm, these four potential
anchor ice pans would be miss-classified, resulting in a poor final segmentation.

Embedding Network

As described in Section 2.5.3, the authors of WISE developed E-Net to intelligently select
which object proposal to use for a give point prediction of LC-FCN1. E-Net is trained
using a similarity loss that aims to score pixels from the same object instance with a high
similarly. This is intuitive if object instances are relatively distinct; however, as the various
instances of frazil pans appear very similar, and the various instances of anchor pans appear
very similar, this strategy may struggle to discriminate between instances. The training
process for E-Net is also quite complex, involving randomly selecting proposals and pixel
pairs, and evaluating E-Net output against the proposals. Due to this complexity and the
fact that ice pan instances of a given class a quite similar, we choose to experiment with
using the two alternatives described above as an alternative to E-Net.

6.1.3 Post Processing

LC-FCN + DeepMask: Blob Post Processing

A simple post processing technique can be employed when DeepMask fails to generate a
proposal at a location where LC-FCN predicted a point. If we make the assumption that
the LC-FCN point prediction is accurate, then by adding some sort of object proposal at
the location of the point prediction, we can hopefully improve the final segmentation mask.
Recall from Section 2.5.3 that LC-FCN uses blob predictions from an FCN to generate its
point predictions. Although these blobs are not expected to accurately align with the object
boundary, they can offer some more spatial information than a simple point, and therefore
could be added as a proposal at locations where DeepMask did not find an object.

1Recall that LC-FCN is referred to as L-Net in the WISE paper.
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LC-FCN + DeepMask: CRF Post Processing

A noted area of struggle for DeepMask lies in its ability to identify precise object boundaries
[69]. As mentioned in Section 2.4.1, fully connected pairwise CRFs can refine coarse
segmentation outputs. In order to improve the boundaries of the segmentation constructed
from DeepMask proposals, we experiment with a CRF to refine edges after LC-FCN blobs
are added. When applying the CRF, the w(1), ✓↵, and ✓� arguments from Equation 2.24
are adjusted manually to better refine the segmentation boundaries while attempting to
keep them smooth and the interiors of the proposals continuous.

6.2 Results

6.2.1 Labelling Time

As mentioned in Section 6.1.1, two labelling methods were timed; the point labelling of
the entire Alberta River Ice Segmentation Dataset, and the full pixel-wise labelling of
five example images listed (a)-(e) in Figure 6.2. To fully label the Alberta River Ice
Segmentation Dataset with point annotations it look 65 minutes and 50 seconds, or 3,950
seconds. To fully label the same data with full pixel-wise annotations it was estimated to
take 95,350 seconds, or 26 hours, 29 minutes, and 10 seconds, based on the calculations of
Table 6.1.

As seen in Table 6.1, it takes on average 1,907 seconds to provide full pixel-wise an-
notations to an image from the Alberta River Ice Segmentation Dataset. This means, in
the time one could fully annotate the dataset with point labels (3,950 seconds), one could
only provide approximately two full pixel-wise annotations. As a result, when comparing
results in Section 6.2.4 with a limited annotation budget, the fully supervised results will
be generated using only two training images. To mitigate the bias of this extremely small
training set, 15 different pairs of images will be used to train a given model, and their
scores on the test set will be averaged to arrive at a final metric.

6.2.2 LC-FCN Results

LC-FCN was originally proposed as a counting network to find the total number of objects
in an image, and not a precursor network for weakly supervised segmentation. Due to the
nature of our weakly supervised segmentation task, it is difficult to quantitatively assess
the results. Recall that LC-FCN returns blobs and points. The points are determined by
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Table 6.1: Full pixel-wise labelling times in seconds for the five images in Figure 6.2
labelled (a)-(e). Single Image Mean is the mean labelling time for images (a)-(e), while
Total Dataset Estimate is the Single Image Mean multiplied by 50 as there are 50 images
in the Alberta River Ice Segmentation Dataset.

Image Time (seconds)
(a) 1,801s
(b) 2,602s
(c) 1,434s
(d) 1,921s
(e) 1,777s

Single Image
Mean 1,907s

Total Dataset
Estimate (50 imgs) 95,350s

the location of highest probability on each blob, as the blobs are outputs of a softmax pixel-
wise map. We desire the point output in order to later combine with the object proposals
of DeepMask. However, we do not necessarily care if the output points align exactly with
the ground-truth points since a point can be shifted slightly and still align with the same
object proposal. As a result we will analyze the results of LC-FCN qualitatively.

Example results of LC-FCN on a test set image can be seen in Figure 6.3. Though there
is a lot happening in Figure 6.3, LC-FCN appears to have learnt the difference between
frazil and anchor ice somewhat. For example, the cluster of anchor ice pans in the bottom
right corner of Figure 6.3 (a) elicit a strong response from the anchor ice blobs in Figure
6.3 (b) and a weak or non-existent response from the frazil blobs in Figure 6.3 (d). In
general there appears to be a recall rate that is quite high for both classes, meaning that
if there is indeed a ground truth point on an ice pan for a given class, it is very likely that
there is a blob prediction on that ice pan for that class.

A downside of this high recall is that there are also many false positives. This means
that for an ice pan of a given class, LC-FCN may predict blobs of the opposite class on
that ice pan. This is exemplified by the ice pans and predictions in the the pink dashed
oval of Figure 6.3. In Figures 6.3 (a) and (c) we can see that there are two anchor ice pans
in the top-right part of the pink oval, and one frazil ice pan in the bottom-left part of the
pink oval. In Figure 6.3 (b) LC-FCN predicts all the ice pans in the pink oval to be anchor
ice, and in Figure 6.3 (d) LC-FCN predicts all the ice pans in the pink oval to be frazil
ice. With a closer look, however, it appears that the frazil blob in Figure 6.3 (d) on the
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pan that is indeed frazil ice is larger than the anchor blob in Figure 6.3 (b) on the same
pan. Similarly, the the anchor blob in Figure 6.3 (b) on the pans that are indeed anchor
ice is larger than the frazil blob in Figure 6.3 (d) on the same pans. This hints that for
ice pans with point predictions from both classes, the size of the blob for each class can
be an indicator of the true class. Looking at other examples of contradicting predictions
in Figure 6.3 shows a similar pattern.

Finally, there are predictions that LC-FCN makes that are incorrect according to the
ground truth. For example, the red dashed oval in Figure 6.3 shows a cluster of ice pans
that are labelled as frazil ice by the ground truth, yet LC-FCN predicts as anchor ice. This
example is a curious case as it is arguable that these ice pans may indeed be anchor ice
based on their dark colour as well as size. Observing the other anchor ice pans in Figure
6.3, the frazil pans in the red oval appear much more like anchor ice than frazil ice. Recall
from Section 6.1.1 that the classes of the point labels were chosen strictly by observing the
original pixel-wise labels of the Alberta River Ice Segmentation Dataset which are subject
to errors. Although it is up for debate, it is possible that LC-FCN is still making the
correct choice in this situation based on the true classes of the ice in these images and not
the ground-truth labels.

Though LC-FCN is not perfect and displays some visual errors relating to high recall
and false positives, based on the nature of the false positives and the size of the blobs, it is
evident that LC-FCN can offer valuable information when selecting object proposals from
DeepMask.

6.2.3 DeepMask Results

An example of DeepMask object proposals can be seen in Figure 6.4. The top 10 proposals
with the highest score from DeepMask are shown in Figure 6.4 (b). An observation from
Figure 6.4 (b) is that there is a large proposal that covers nearly the entire image (yellow
dashed outline). This proposal clearly does not correspond to an object in (a) and can
therefore be considered a miss-prediction. Recall from Section 6.1.2 that proposals will
only be included in a final segmentation prediction if the number of pixels in a proposal
to be no greater than 1

8th of the total number of pixels in the image. This would result in
the miss-prediction not being included in a final segmentation.

It is also worth noting that multiple proposals are generated for the same object or set
of objects. For example, one proposal may encompass two ice pans, yet there could be
two more proposals that cover each of the two ice pan individually (green dashed oval).
Finally, we can observe that DeepMask occasionally fails to generate proposals for some
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of the ice pans (red dashed circle). This can cause problems when there is no proposals to
draw from for a given ice pan that may have a point prediction.

6.2.4 Segmentation Results

Table 6.2 shows a comparison of the mIoU and mPA for various models with a limited
training budget. The limited budget constrains a training set to two images with full
pixel-wise ground truth masks, or all the training images with point labels. All of the
listed LC-FCN + DeepMask models use the processing techniques of the previously listed
model. For example, the model with Blob Post Processing also uses the Min Points in
Proposal method for selecting which DeepMask proposal to use (as described in Section
6.1.2). Similarly, the CRF Post Processing also uses the blobs from the results of Blob
Post Processing. We see that in general, each additional step in refining the LC-FCN +
DeepMask results ends up improving the mIoU and mPA. As compared to the UNet
with a limited training budget, the LC-FCN + DeepMask: CRF Post Processing model
improves mIoU and mPA by 14.6% and 7.9% respectively. This is a large increase in
mIoU which suggests that the predictions of LC-FCN + DeepMask: CRF Post Processing
have a much better appearance that is more spatially accurate. As compared to a UNet
with a full labelling budget, the LC-FCN + DeepMask: CRF Post Processing model results
in a decrease of mIoU and mPA of only 6.3% and 7.1% respectively. Considering that the
UNet with a full budget requires approximately 23⇥ more time to label, these results are
quite encouraging.

An observation regarding the anchor ice class accuracy is that there is actually a de-
crease in accuracy from 65.1 for Blob Post Processing to 63.1 for CRF Post Processing.
Interestingly, the IoU for the anchor ice class actually increases between the two models.
This can likely be explained by observing the prediction results in Figure 6.5.

Figure 6.5 shows results of a UNet with a full labelling budget, a UNet with a limited
labelling budget, and various versions of the LC-FCN + DeepMask models. The first
observation that can be made is that the UNet with a limited labelling budget in Figure
6.5 (d) struggles heavily with the anchor ice class. While the frazil ice pans are segmented
relatively well, the network predicts anchor ice to be surrounding many of the frazil pans
where there is no anchor ice in reality. Furthermore, in locations where there is indeed
anchor ice, the network is unable to locate the edges of the pans and the anchor predictions
often overflow into the water class. This observation is also reflected in the pixel accuracy
and IoU for the anchor class in Table 6.2 for the UNet Limited Budget model. The anchor
class scores are very low, while the frazil class scores are not nearly as low.
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Next, observations in Figure 6.5 can be made with regards to each additional processing
step of the LC-FCN + DeepMask results. First, we can observe changes when the method
of selecting proposals is changed from simply selecting the proposal with the highest Deep-
Mask score, to selecting the proposal with the highest DeepMask score that also contains
the least LC-FCN point predictions of the opposite class. This can be exemplified by the
green dotted oval in Figures 6.5 (e) and (f). In (e), there is a single DeepMask proposal
that covers both the anchor and the frazil pans within the green oval. This is due to the
fact that this proposal has a very high DeepMask score as shown by the green oval in
Figure 6.4 (b). As a result, the Max Proposal Score algorithm uses this single proposal to
classify both pans as frazil ice. In (f) however, since the LC-FCN predicts anchor points
on the anchor pan and frazil points on the frazil pan, the Min Points Proposal method
realizes that the single frazil proposal used in (e) would overlap one or more anchor points
and therefore elects to use two smaller proposals with slightly lower DeepMask scores that
contain fewer LC-FCN points of the opposite class.

Continuing to look at Figure 6.5 (f), there are ice pans that do not have an associated
prediction such as the frazil ice pan in the blue dotted oval. The reason there is no
prediction at this location is because DeepMask failed to generate a proposal for that ice
pan. The Blob Post Processing method in (g) improves slightly upon (f) by using the
blob from LC-FCN as a proposal. As seen in the blue dotten oval in (g), the blob does
not border the ice pan perfectly, however is provides more spatial context than what was
present in (f).

Finally, comparing the results of the CRF between Figures 6.5 (g) and (h) we can see
why the IoU increased but the pixel accuracy decreased as previously mentioned. Looking
at the pink dotted circle, we see an example of the benefits of the CRF where a false anchor
ice pan prediction over water is eliminated. Visually we can see that this is an improvement
which is reflected by the improved IoU . However, as the pixel accuracy cannot take false
positives into account, and there are still some anchor pans with false negatives resulting in
an under-prediction in the number of anchor ice pixels, the removed anchor ice lowers the
pixel accuracy since the total pixels labelled anchor is decreased even lower. This decrease
in pixel accuracy therefore does not indicate a shortcoming of the model but rather a
shortcoming of the metric as we can see that the CRF visually improves the outcome of
the final segmentation prediction.
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6.3 Summary

In this chapter we explore the task of segmentation on the Alberta River Ice Segmentation
Dataset using only point labels. We find that annotating the dataset with point labels is
95.9% faster than annotating with pixel-wise masks. Practically, this means that in the
time it takes to annotate the entire Alberta River Ice Segmentation Dataset with point
labels, one would only be able to fully annotate approximately two images with pixel-wise
masks. In order to arrive at a segmentation mask using only point labels, we combine the
results of a counting network that uses point labelling called LC-FCN, and a class agnostic
object proposal network called DeepMask. Both models individually show satisfactory
qualitative results. The LC-FCN for the most part is able to discriminate between frazil
and anchor ice; however, it has high recall and can often predict a single ice pan to be
from both classes. DeepMask is able to predict an object mask for nearly all ice pans in
the image, though the edges are sometimes not sharp and occasionally one object proposal
encapsulates multiple ice pans of different classes. We experiment with different methods
of combining the point predictions from LC-FCN and DeepMask. As DeepMask outputs
a score indicating the likelihood of a proposal being an object, we first try selecting the
proposal with the highest score for each point prediction to build our segmentation mask.
We find that minimizing the number of point predictions of the opposite class within a
proposal is a better criteria for selecting a proposal for a given point prediction as this avoids
larger proposals encapsulating multiple ice pans of different classes. We also find that two
post processing techniques improve results. First, we include blobs, or intermediate layer
results, from LC-FCN as an object proposal when DeepMask does not generate a proposal
at a location of a point prediction. Second, we use a CRF to refine the edges of the object
proposals. In the end, as compared to a UNet with the same labelling budget, we achieve a
mIoU score that is 14.6% higher. Compared to a UNet with a full labelling budget where
labels require approximately 23⇥ more time to collect, our method achieves a mIoU that
is only 6.3% lower. This is encouraging as it shows that acceptable results can be achieved
when very limited time is available to label river ice data.
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Figure 6.3: LC-FCN results on a test image. Sub-figures (a) and (c) show the ground
truth point labels for the anchor and frazil classes respectively. Sub-figures (b) and (d)
show the blob predictions of LC-FCN where each blob results in a point prediction. The
point prediction for each blob is located at the point of maximum probability in the FCN
softmax output. The ice pans in the red dashed oval show a disagreement between the
ground truth and LC-FCN. The ice pans in the pink dashed line are predicted to be both
frazil and anchor by LC-FCN.
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(a ) Im a g e  Exa m p le (b ) Top  1 0  Pr op osa ls (c ) Top  2 5 0  Pr op osa ls

Figure 6.4: Example of DeepMask object proposals on an image from the test set (a). (b)
Shows the 10 proposals with the highest DeepMask score, while (c) shows the 250 proposals
with the highest DeepMask score. Note that certain regions in (b) and (c) are brighter
as a result of overlapping proposals. The red dashed circle shows an ice pan that was
not recognized by DeepMask. The green dashed oval shows ice pans that have multiple
proposal predictions. Yellow outline shows a miss-predicted proposal.
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Table 6.2: Mean IoU and Mean Pixel Accuracy for various models tested on the Alberta
River Ice Segmentation Dataset. The scores for UNet Limited Budget were calculated
by training 15 models, each with a unique two-image training set, and averaging their
15 scores. Recall from Section 6.2.1 that in the time it takes to annotate two images
with full pixel-wise masks, one can annotate the entire dataset using point labels. All
LC-FCN + DeepMask models were trained with point labels only, while the UNet Full
Budget was trained with the all the pixel-wise ground truth masks of the Alberta River Ice
Segmentation Dataset. All metric scores were calculated using the entire 10 image test set
with original pixel-wise ground truth masks. Numbers in bold show the highest scores of
all models trained with a limited budget. Note that these scores can be directly compared
to the results of Table 5.1 in Chapter 5 due to the use of the same training and testing
sets.

Method
mIoU
Mean

(Water/Anchor/Frazil)

mPA
Mean

(Water/Anchor/Frazil)

UNet Limited Budget 57.0
(82.1/36.9/52.0)

71.2
(90.6/54.9/68.1)

LC-FCN + DeepMask:
Max Proposal Score

59.8
(82.6/43.4/53.6)

73.4
(90.1/64.5/65.1)

LC-FCN + DeepMask:
Min Points in Proposal

61.9
(83.7/45.4/56.7)

74.8
(92.1/63.1/69.3)

LC-FCN + DeepMask:
Blob Post Processing

62.8
(84.1/46.8/57.0)

75.7
(92.1/65.1/69.8)

LC-FCN + DeepMask:
CRF Post Processing

65.3
(87.3/48.2/60.5)

76.8
(95.4/63.1/71.9)

UNet Full Budget 69.7
(92.3/53.2/63.6)

82.7
(98.7/71.1/78.3)
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(a) River Ice Image (b) Ground Truth (c) UNet w/ Full Labelling Budget (d) UNet w/ Limited Labelling Budget

(e) 
LC-FCN + DeepMask:
Max Proposal Score

(f) 
LC-FCN + DeepMask:

Min Points in Proposal

(g) 
LC-FCN + DeepMask:
Blob Post Processing

(h) 
LC-FCN + DeepMask:
CRF Post Processing

Figure 6.5: Final segmentation predictions of various models for an example image from the
test set. The segmentation predictions overlay the original image to provide more detail
regarding edge accuracy. Yellow predictions represent frazil ice, while green predictions
represent anchor ice. The green dotted oval in (e) and (f) show a benefit of the Min Points
in Proposal method. The blue dotted oval in (f) and (g) show a location that did not
have a DeepMask proposal, however the blob from LC-FCN acted as a proposal. The pink
dotted oval in (g) and (h) shows a benefit of the CRF in eliminating an incorrect prediction
of anchor ice.
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Chapter 7

Conclusions

In summary, this thesis aims to independently address two pain points of deep learning as
it applies to the segmentation of river ice imagery. The first pain point is with regards to
training and inference efficiency of deep learning models and their ability to be used with
limited hardware. Typically as a deep learning model is optimized for efficiency, perfor-
mance decreases. This is particularly relevant to river ice segmentation as data can often be
collected in remote locations with limited computing power and on UAVs where operators
wish to make accurate predictions in real time. To address this performance-latency trade
off, a convolution method is developed that makes use of depthwise separable convolutions
and local binary convolutions. This convolution method can replace standard convolutions
in common network architectures to improve efficiency and generalization ability while
maintaining high performance. When this convolution method is used in a shallow UNet-
style architecture, performance is higher than a UNet with standard convolutions, while
training and inference are similar if not more efficient than state-of-the art efficient net-
works such as MobileNetV3. It is also shown that the novel convolution method is robust
to snow artifacts in images as well as illumination variation, both of which are common in
river ice datasets. The second pain point addressed by this thesis is the expensive annota-
tion budgets associated with training segmentation models. As the task of segmentation
involves assigning a label to each pixel in an image, an annotator must therefore labori-
ously label each pixel in a set of training images. Leveraging the simple round shape of
river ice pans and the rounded nature of class agnostic object proposals, a point labelling
method is developed that uses object proposals and a tailored post processing technique.
It is found that this method greatly outperforms fully supervised methods with the same
labelling budget and only slightly under-performs fully supervised methods with with a
labelling budget an order of magnitude larger. The results for both the novel convolution
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method and the point labelling method leave questions regarding implementation in the
field and generalization ability, both of which are addressed in Section 7.1 outlining future
work.

7.1 Future Work

Both studies in this thesis leave questions regarding the generalization ability of these
methods. With regards to the shallow network using the novel efficient convolutions, it
was shown that this method works well on the Alberta River Ice Segmentation Dataset in
varying environmental conditions, however it is unknown how this method will perform on
other datasets both river ice an otherwise. Considering the large size and object variation
in many machine learning benchmark datasets, intuition suggests that such a small model
would not be as successful, though this remains to be tested. For larger, more diverse,
datasets, it would be worth experimenting with the novel convolution method in larger
network architectures, both for segmentation as well as other tasks such as image classi-
fication and object detection. In terms of generalization ability and the point labelling
method, it remains to be seen how well this method performs when ice cover is more uni-
form and not separated into distinct ice pans. As areas with more uniform ice cover may
not appear distinct objects to the object proposal network, the object proposal network
may struggle to find ice class boundaries. Additionally, in areas with uniform ice cover,
the Blob Post Processing described in Section 6.1.3 would likely be irrelevant as blobs from
LC-FCN are small and discrete similar to ice pans and unlike uniform ice cover.

Another area worth exploring relates to the hardware used to test the efficient con-
volution method. As explained in Chapter 5, the shallow network was tested on both a
GPU and CPU as CPUs are more common on simple work stations or hardware on-board
UAVs. However, to get a more practical idea of how this architecture would perform for
real-time training and inference on a UAV, it would be valuable to acquire either a UAV,
or the computing hardware on-board a UAV and recreate the tests done in Section 5.1.
Of course, different UAVs use different computing hardware, therefore it would also be
valuable to compare performance on multiple popular UAV models.

79



Letters of Copyright Permission

7.2 Figure 2.2 - Close Up Image of Anchor Ice

Figure 2.2 was taken from Kalke et al. [48] which was published in the 18th Workshop
on the Hydraulics of Ice Covered Rivers as part of the Committee on River Ice Processes
and the Environment (CRIPE) and the Canadian Geophysical Union - Hydrology Section
(CGU-HS).

Figure 7.1 is email correspondence between Daniel Sola - the author of this thesis,
April James - the Hydrology Section Secretary at the CGU, and Shawn Clark - the Chair
of CRIPE.

7.3 Figure 2.8 and 2.7 - LC-FCN Methods and Results

Figures 2.8 and 2.7 were taken from Laradji et al. [55] which was published in the Proceed-
ings of the European Conference on Computer Vision (ECCV), part of Springer Nature.

Figure 7.2, reading left to right and up to down, is a the letter of permission to use
Figures 2.8 and 2.7 from Springer Nature.

7.4 Figure 2.5 - Point Labelling Results

Figure 2.5 was taken from Bearman et al. [5] which was published in the Proceedings of
the European Conference on Computer Vision (ECCV), part of Springer Nature.

Figure 7.3, reading left to right and up to down, is a the letter of permission to use
Figure 2.5 from Springer Nature.
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Figure 7.1: Email from Daniel Sola to April James asking for permission to use Figure
2.2; a figure from Kalke et al. [48]. April James forwards the request to Shawn Clark who
grants permission.
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Figure 7.2: Springer Nature License for Figures 2.8 and 2.7. Zoom in to see details.

82



Figure 7.3: Springer Nature License for Figure 2.5. Zoom in to see details.
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Appendix A

Small DSC LBC UNet - Direct
Comparison To Previous Work

We compare the results of our Small DSC LBC UNet directly to previous work [87] on
the Alberta River Ice Segmentation Dataset. We use the same metrics used in previous
work and use the same implementation as what was shown in the publicly available code
[85]. These metrics are pixel accuracy, pA, mean pixel accuracy mPA, mean intersect over
union, mIoU , and frequency weighted intersect over union, fwIoU . pA, mPA, mIoU , and
fwIoU are calculated using Equations 4.1, 4.2, 4.3, and 4.4 respectively.

Table A.1 shows the results of our networks as well the results a previous study, using the
same training and testing sets that used that previous study [87]. The training set contains
32 images while the test set contains 18 images. The authors of previous experiments
elected to refer to mPA as recall and mIoU as precision as accuracy measures only the
rate of true-positives while intersect over union also accounts for false-positives. They also
note that pA is a frequency weighted measure of recall and fwIoU is a frequency weighted
measure of precision. Finally, the authors record these metrics on a class specific bases
[87]. As a result, the formatting of Table A.1 is different from the other tables in this
manuscript as we follow the same reporting style as previous work1.

First we can compare the scores for our Full UNet with the scores reported for the UNet
used in previous studies; referred to now on as Previous UNet [87]. This is important as
we require confidence that our Full UNet, and other networks tested, can be meaningfully

1Note that in Table A.1, Ice+Water Recall is equivalent to what we refer to as mPA in Table 5.1, while
Ice+Water Precision is equivalent to what we refer to as mIoU in Table 5.1. The reported metrics in both
tables are of course different due to different training and tests sets in both experiments.
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compared to previous work during our experiments. We notice that although the scores
for Frazil Ice Recall, Frazil Ice Precision, and Ice + Water Precision are slightly higher for
the Previous UNet [87] as compared to our Full UNet, the scores for Anchor Ice Recall,
Ice + Water Recall, Ice + Water Recall (fw), and Ice + Water Precision (fw) are slightly
higher for our Full UNet. The proximity of these scores and the lack of a clear winner
indicates that these models likely perform very similar. One outlier however is with the
scores for Anchor Ice Recall where our Full UNet has a noticeably higher score than the
Previous UNet. As mentioned, Anchor Ice Recall is the pixel accuracy for anchor ice. This
simply means that the Full UNet predicted a number of anchor ice pixels that is closer to
the actual number of anchor ice pixels than predicted by the Previous UNet. This does
not necessarily mean that the location of those anchor ice pixels on the image are correct;
which would be reflected more by the precision or IoU measure. Looking at the Anchor
Ice Precision for the Full and Previous UNet, these values are much closer, signifying that
the increased Anchor Ice Recall score for the Full UNet does not clearly indicate better
performance. As a result we can comfortable consider the Full and Previous UNet similar
in performance.

Continuing to look at the reported scores from Table A.1, we see similarities to the
trends shown in Table 5.1. Similar to our experiments, the Small DSC LBC UNet generally
slightly outperforms the Full UNet, while MobileNetV3 (LR-ASPP) underperforms relative
to the Full UNet. We also notice that the Small DSC LBC UNet performs the best in
all precision measurements, which as noted, accounts for both true-positives and false-
positives, unlike the recall measurements which only account for true-positives. Although
the scope of our study is not purely performance but also efficiency, it is nice to see that
our Small DSC LBC UNet has an added benefit of exceptionally high precision. In the
context of sediment transport models, this can be helpful in avoiding over estimates due
to incorrectly high anchor ice concentration predictions.
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Table A.1: Metric comparison of the Small DSC LBC UNet and MobileNetV3 (LR-ASPP)
with the UNet tested in previous work using the same training and testing split. Recall
and precision for the two ice types correspond to class specific pA and fwIoU . Ice+Water
recall and precision correspond to mPA and mIoU respectively for the all classes. The
frequency weighted (fw) equivalents for Ice+Water recall and precision correspond to pA
and fwIoU respectively for all classes.

Model
Anchor

Ice
Recall

Frazil
Ice

Recall

Ice+Water
Recall

Ice+Water
Recall (fw)

Previous UNet [87] 73.75 84.27 85.13 88.69
Full UNet 80.03 83.86 87.22 89.35
Small DSC LBC UNet 74.18 87.28 86.84 90.57
MobileNetV3 (LR-ASPP) 77.35 80.22 84.32 86.99

Model
Anchor

Ice
Precision

Frazil
Ice

Precision

Ice+Water
Precision

Ice+Water
Precision

(fw)

Previous UNet [87] 54.89 71.17 73.19 81.73
Full UNet 53.69 70.87 72.87 82.96
Small DSC LBC UNet 56.59 73.17 74.78 84.70
MobileNetV3 (LR-ASPP) 48.50 65.82 68.29 79.54
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Glossary

DSC LBC Our novel convolution block which has the architecture of a depthwise sep-
arable convolution, with the depthwise filters swapped with those of a local binary
convolution. 2, 3, 40, 41, 43, 49, 51, 52, 55, 57, 58, 60–62, 96, 97

Full Prefix to the name of a UNet which denotes that the UNet has four upsampling and
four downsampling layers, as well as 64, 128, 258, and 512 embedding dimensions in
the first four layers. The convolution variant is not described by this prefix and can
usually be determined by the word that immediately follows ’Full’ in the network
name. 41, 43, 49, 51, 54, 55, 57, 58, 96, 97

HSV Hue, Saturation, Value colour model for an image. There are three channels to the
image, hue is measured in degrees from 0 to 360, while value and saturation are both
measured on a scale of 0 to 100 percent. 22

LC-FCN Fully Convolutional Network with a localization-based counting loss. vii, 27–30,
64–73, 79, 80

RGB Red, Green, Blue additive colour model for an image. There are three channels to
the image, each being coded on 256 levels from 0 to 255. 22, 35

Small Prefix to the name of a UNet which denotes that the UNet has two upsampling
and two downsampling layers, as well as 32 and 64 embedding dimensions in the first
two layers. The convolution variant is not described by this prefix and can usually
be determined by the word that immediately follows ’Small’ in the network name.
41, 43, 49, 51, 52, 55, 57, 58, 60, 96, 97

99


