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Abstract

Recent advances in machine learning strategies have led to improved results across
a variety of fields. A field that would benefit greatly from improved machine learning
strategies is video analytics: the analysis of video data. Two applications of impor-
tance include pose estimation, which aims to identify the pose of a person in a video
and action recognition, which aims to identify the action that is performed in a video.
However, key problems such as how to train a pose estimation model with a small
number of annotations and how to design an action recognition model to achieve the
highest possible accuracy still remain. This thesis explores how effectively leveraging
motion information can enable strategies that can solve both of these problems.

The first problem is that for pose estimation models to achieve a high accuracy,
they require a large number of pose annotations, which can be expensive to collect.
While a naive approach is to annotate a single frame at a time, researchers have
investigated how modifying the model training and generating more annotations can
reduce the number of annotations required. However, all these approaches either still
include requirements that make annotation collection difficult. This thesis introduces
a motion-aware pose annotation strategy called POse annotation using Optical Flow
(POOF), which explores how motion information can reduce the number of annota-
tions required without any additional constraints. We show that with only a small
number of annotations, utilizing POOF’s annotations can achieve a +52% improve-
ment in accuracy compared to training on the small number of annotations. By
reducing the number of annotations required, POOF should enable pose estimation
models to be more easily applied to many more real-world problems.

The second problem is that because there is such a large number of possible
design choices, it is difficult to design an action recognition model’s architecture to
achieve the highest possible accuracy. While state-of-the-art attention mechanisms
are a popular choice and have achieved accurate results, a key shortcoming is that
they do not leverage any motion information. Motivated by this, this thesis explores
how motion can be leveraged with these attention-based mechanisms by introducing
a Motion-Aware Attention mechanism called M2A which explicitly leverages both
attention and motion information. We show that incorporating motion mechanisms
with attention mechanisms using the proposed M2A mechanism can lead from a +15%
to a +26% improvement in top-1 accuracy across different backbone architectures,
with only a small increase in computational complexity. By better understanding how
motion mechanisms can be both accurate and efficient, M2A should enable action
recognition solutions to be applied to real-world problems sooner.
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Chapter 1

Introduction

Recent advances in machine learning have unlocked the ability to solve important
real-world problems for millions of people worldwide. This includes a variety of prob-
lems related to computer vision, natural language processing, and other fields. A
subfield of computer vision that would benefit greatly from improved machine learn-
ing strategies is video analytics: the understanding and analysis of video data. A
key component of video analytics involves understanding human motion that can
lead to a better understanding of human behaviour and solve many problems across
many fields including robotics, machine learning (ML) powered personal trainers,
augmented reality, and more. For example, in fields such as athletics or construction,
it is important that the workers are performing their tasks with the correct posture
so that they do not become injured. Using video analytics, a person’s posture can be
automatically analyzed throughout a video and recommendations of how to improve
their posture to reduce their risk of injury can be generated.

To understand human motion, there are multiple sources of information that can
be utilized. One source of information is the pose of a person across time. To extract
this information, pose estimation models are leveraged, which given a video, extract
the location of a person’s joints at each frame. Another source of information is
understanding what a person is doing in a video. To extract this information action
recognition models can be utilized, which given a video, classify what action is being
performed in it.

While pose estimation and action recognition models are powerful tools for un-
derstanding human motion, there are still important problems that need to be solved
first before they can be efficiently applied to a large number of diverse domains.
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NHL Broadcast Video Player Extraction Pose Estimation

Figure 1.1: An example of pose estimation for sports analytics. From a broadcast
video, individual players are extracted and their poses are estimated. This information
can then be analyzed to generate insights and recommendations for the players/team
including correcting a player’s form.

1.1 Pose Estimation for Video Analytics

The standard definition of pose estimation is the problem such that given an image
that includes a person, estimate the locations of a specific set of keypoints. These
keypoints can be defined as anything but are typically defined to be the person’s
joints including the left wrist, the right shoulder, etc. In this thesis, we consider a
more video-based definition: pose estimation is the problem such that given
a video that includes a person, estimate the locations of a specific set of
keypoints in each frame of the video.

One example application of pose estimation is sports analytics. Figure 1.1 shows
a video analytics pipeline using broadcast videos from the National Hockey League
(NHL). In this example, players are extracted from a broadcast video frame and then
a pose estimation model is leveraged to identify the pose of each player in the frame.
This is then repeated for each frame of the video. This pose information can then be
analyzed to generate recommendations for the players. For example, the pose infor-
mation can be analyzed to extract the angles between specific joints (e.g., the right
hip and the right knee) to better understand if a player’s skating/passing/shooting
form is correct or not, which can then be used to correct the form and reduce the
probability of injury.

To train a state-of-the-art pose estimation model, a large amount of video data
must first be collected. Then for each frame of the video data, the location of all
the keypoints must be defined. This set of keypoint locations produces a single pose
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annotation corresponding to the respective frame. Then using this annotated data, a
pose estimation model is trained such that given an input frame, it should output the
keypoint locations of the corresponding pose annotation. An accurate pose estimation
model will predict locations that are below an arbitrarily small amount of error away
from the annotated keypoints.

While pose estimation models can extract valuable human motion information,
a key problem that limits their applicability to a diverse amount of domains is that
they require a large number of pose annotations to achieve a high accuracy [29].
Collecting this large number of annotations (typically in the tens of thousands) can
be very expensive in terms of cost and time because it can require assigning multiple
people to annotate examples full time and waiting months for the annotation process
to complete. Due to this cost, training a pose estimation model for a new domain is
not always viable for new labs/companies.

While a naive approach is to annotate the locations of every keypoint in a single
frame, one frame at a time, researchers have investigated how modifying the model
training and generating more annotations can reduce the number of annotations re-
quired [2, 36, 10]. However, all these approaches either lead to insufficient accuracy
or include annotation requirements which makes annotation collection difficult. This
thesis explores solutions of how to reduce the cost of annotation collection to train
pose estimation models.

1.2 Action Recognition for Video Analytics

The definition of action recognition is the problem such that given a video
that contains a specific action, classify what action was performed. Note
that this thesis considers the case where the video only contains one action and
does not consider videos which contain multiple actions. There are a large number
of applications that rely on accurate action recognition models including classifying
actions throughout an NHL game such as shooting, passing, etc., identifying when a
person falls to improve response time for healthcare monitoring, and many more. A
visual example of an action recognition application is shown in Figure 1.2.

To apply action recognition models to these applications, they must be as accurate
as possible. A key component that greatly affects the model’s final accuracy is the
design of the model. For example, choosing different mechanisms to include inside
the model can greatly affect how easy it is to optimize the model which, affects the
model’s final accuracy.
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Figure 1.2: An example of video action recognition. A video of a person biking is
given to the action recognition model which correctly predicts that the action is biking.
This information be utilized across a large number of diverse domains to gain a deeper
understanding of human motion and behaviour.

A popular choice when designing an action recognition model is to incorporate
attention mechanisms. Attention mechanisms mimic cognitive attention and achieve
improved performance by either enhancing or diminishing parts of the input data.
While there has been a large amount of research focused on how best to utilize
attention mechanisms for video action recognition [48, 17, 3], a shortcoming of these
mechanisms is that they only utilize spatial information and do not leverage motion
information. This thesis seeks to gain a better understanding of how to effectively
leverage attention mechanisms to achieve higher accuracy scores.

1.3 Thesis Overview

While pose estimation and action recognition models are powerful tools for video
analytics and understanding human motion, key problems such as the expensive pose
annotation processes and achieving accurate action recognition models both need to
be solved first before pose estimation and action recognition can be applied to a large
number of diverse domains.

A fundamental element of videos which may be able to solve both of these problems
is the motion information found across the frames of the video. While there are many
ways to leverage motion information, this thesis explores how neural-network-based
motion estimations can be leveraged. The two main contributions of this thesis are
as follows,

4



1. Develop and introduce a novel motion-aware pose annotation strategy: POse
annotation using Optical Flow (POOF).

2. Develop and introduce a novel motion-aware mechanism for video action recog-
nition: Motion-Aware Attention (M2A).

The rest of the thesis is organized as follows: Chapter 2 reviews relevant back-
ground concepts; Chapter 3 introduces and examines POOF; Chapter 4 introduces
and examines M2A; and lastly, Chapter 5 discusses conclusions, the impact of the
thesis, and future work.
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Chapter 2

Background

In this chapter, background information for each proposed contribution is discussed:
Section 2.1 briefly describes how to extract motion information from videos; Sec-
tion 2.2 describes previous research focused on reducing the number of annotations
required to train a pose estimation model; Section 2.3 describes previous research
focused on designing action recognition mechanisms.

2.1 Motion Information

Motion is fundamental to the visual experience of our world. However, due to noise,
reliably extracting motion information from a given video is a difficult task. A stan-
dard approach to extract motion information is to estimate the optical flow between
two consecutive frames in a video [13]. Optical flow is defined to extract the velocity
in image coordinates of each pixel starting from the first frame and moving to the
second frame [13]. While there are many ways to estimate the optical flow between
two images, this thesis is focused on neural-network-based estimations.

Neural networks have achieved great results across many fields including computer
vision, natural language processing, and more. Naturally, neural networks are also
being researched to achieve improved optical flow estimation. For example, Recurrent
All-Pairs Field Transforms for Optical Flow (RAFT) [41] uses neural networks to esti-
mate optical flow and achieves improved results over other standard approaches which
use algorithms to estimate optical flow [49]. Another interesting research direction
is exploring how to incorporate optical-flow information into the neural networks di-
rectly [45] which could achieve improved accuracy. We further discuss the application
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of both of these research directions and how they relate to this thesis’s contributions
in the next two sections.

2.2 POOF Background

In this section, we briefly describe research that investigates how to achieve accurate
pose estimation with a small number of annotations and how this research relates to
POOF. Overall, the research solutions can be generally described as either improving
the annotation generation (similar to POOF) or modifying the model directly.

A standard approach to applying pose estimation to a new application is to pre-
train the model on a large public dataset and then using that learned model to
estimate the pose of the new application [1]. This technique is known as pretrain-
ing [1]. Pretraining can be extended to finetuning by training the pretrained model
on a small number of annotations from the new application [1]. While pretraining
and finetuning reduces the number of annotations required, in the case when the
pretrained data and the new application data are visually different and/or contains
different poses (which is the case for most applications), usually a large number of
annotations are still required to learn an accurate model [14].

Research by Neverova et al. is closely related to POOF, which used motion infor-
mation to extend a small number of annotations to neighbouring frames, generating
a large number of annotations easily for dense keypoint estimation [33]. We extend
this work by applying it to pose estimation and further investigate its strengths and
weaknesses.

Instead of generating more annotations, another approach is to apply a large
number of random augmentations to the small number of annotations. For example,
common data augmentations include rotating, flipping, and cropping the image and
then adjusting the corresponding ground-truth keypoints to account for the augmen-
tation. While generating new annotations aim to automatically generate annotations
for unannotated frames, applying augmentations aim to augment the existing anno-
tated frames to look different. Doersch et al. found that pasting generated humans
in augmented poses across a variety of background images can lead to improved
generalization performance for 3D pose estimation [10]. Hinterstoisser et al. used a
similar approach for object detection and found improved performance [20]. However,
these techniques usually require additional data to get working (e.g., segmentation
information of the poses to be able to paste on different backgrounds) which can be
costly.
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Another approach is to modify how the pose estimation model is trained. For
example, semi-supervised learning is a strategy that creates additional tasks for the
model to learn that do not require additional annotations and can lead to improved
accuracy [8]. Bertasius et al. used a semi-supervised learning approach to learn a
more robust pose estimation model using a small number of sparse video annotations
[2]. However, their approach requires additional annotation constraints, which makes
collecting annotations difficult.

2.3 M2A Background

Convolutional neural networks (CNN) are a popular neural network architecture
choice for processing image data because they have achieved great results in image
classification [18]. However, these models cannot be directly applied to video action
recognition because of the added temporal dimension of videos. While a standard ap-
proach is to apply a CNN to each frame and then average the results [46, 22], recent
research has found that adding a temporal mechanism into the model that processes
temporal information and then incorporates this information back into the CNN
works well without a large computational increase [28]. Simple mechanisms like the
Temporal Shift Module (TSM) [28], which shifts network activations across consec-
utive frames, can achieve state-of-the-art accuracy while remaining computationally
efficient. An active area of research is how to design these temporal mechanisms to
achieve the highest possible accuracy [45, 48].

2.3.1 Attention Mechanisms

A popular type of temporal mechanisms for action recognition are attention mech-
anisms. Attention mechanisms mimic cognitive attention by either enhancing or
diminishing parts of the input data to achieve improved performance [44]. In the
context of video action recognition, attention mechanisms extract temporal informa-
tion across all the frames of a video and then use this information to either excite or
inhibit values of the current frame.

Using attention mechanisms for improved video action recognition has become a
popular idea ever since attention showed impressive results in natural language pro-
cessing tasks [44]. One of the first works to use attention for video action recognition
was non-local networks [47] which proposed an attention mechanism across the frames
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of a video to improve temporal modeling. The Temporal Adaptive Module mecha-
nism (TAM) [48] further extended this idea by incorporating dynamic convolutions
and attention. Recently, TimeSformer [3] processed the frames with a transformer
network using a patch-based approach.

Although these attention-based mechanisms have shown impressive results, they
do not incorporate any motion information which is a key feature of videos. This
thesis explores how motion information can be incorporated to further improve the
accuracy.

2.3.2 Motion Mechanisms

Another popular type of temporal mechanisms are motion mechanisms. Typically,
motion mechanisms compute the difference of activations between consecutive frames
and incorporate this information into the current frame.

Motion mechanisms are motivated by previous research that has shown that mo-
tion information is a key feature for achieving high accuracy [40] and that the use of
motion information and visual features as input has been shown to outperform visual
features alone [28, 5].

The Temporal Enhancement-and-Interaction Network (TEIN) [30] was one of the
first motion mechanisms which investigated scaling the activations by the motion
information. The Temporal Excitation and Aggregation mechanism (TEA) [27] in-
vestigated many more different architectures and mechanisms which computed the
difference between consecutive frames. The Temporal Difference Network (TDN) [45]
extended this work and investigated multiple motion mechanisms that utilized pool-
ing operations to leverage motion information at multiple spatial scales. However,
these methods have not investigated how to utilize state-of-the-art attention mecha-
nisms for further performance improvements. This thesis explores how attention and
motion can complement each other.

2.4 Chapter Summary

In this chapter, background information on motion information, pose estimation, and
action recognition mechanisms were covered. Optical flow estimation was introduced
as a method that extracts motion information from videos. Different methods for
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training a pose estimation model with a small number of annotations were introduced
including pretraining, annotation generation, and self-supervised learning, however,
these methods include additional requirements which make the training process more
difficult. Lastly, the background on temporal mechanisms for video action recognition
was introduced, including attention mechanisms which have achieved great results,
however, they do not leverage motion information.

With the necessary background information covered, in the next chapter, we fur-
ther explore how motion can be leveraged to reduce the number of annotations re-
quired to train a pose estimation model.
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Chapter 3

Data-efficient Pose Annotation
using Optical Flow: POOF

In this chapter, we describe our pose annotation strategy, POse annotation using
Optical Flow: POOF, which leverages motion to reduce the number of annotations
required to train a pose estimation model. To generate a large number of annotations,
POOF uses the temporal motion between frames of a video to propagate a small
number of ground truth keypoints across neighbouring frames. This process generates
a multiplicative increase in annotations with no extra cost. The contents of this
chapter are largely based on its corresponding paper [14]

The chapter is organized as follows: pose estimation is mathematically defined in
Section 3.1; the methodology behind POOF is described in Section 3.2; the results of
our experiments are reported in Section 3.3; and lastly, the chapter is concluded in
Section 3.4.

3.1 A Mathematical Definition of Pose Estimation

This section further refines the definition of pose estimation used in the introduction:
“pose estimation is the problem such that given a video that includes a person,
estimate the locations of a specific set of keypoints in each frame of the video.”.

First, a few terms are defined. The t-th frame of the input video is defined as
a three-dimensional matrix Xt ∈ RC×H×W where C the number of channels of the
frame (for RGB images C = 3), H is the height of the frame, and W is the width of
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Figure 3.1: Visual description of POOF with R = 3. The ground-truth annotated key-
points (shown in red at time t) are propagated to annotate the neighbouring frame’s
keypoints (shown in gold) using the optical flow estimation between consecutive frames
(estimation shown in the top row). This results in a multiplicative increase in anno-
tations with no additional annotation cost.

the frame. The corresponding annotation of k keypoints of the t-th frame is defined
as a matrix Kt ∈ Rk×2 which contains the x-y coordinates of each keypoint. Then
our pose estimation model is defined as fθ with n parameters θ ∈ Rn which takes
Xt as input and outputs a matrix of estimated keypoints fθ(Xt) ∈ Rk×2. The pose
estimation problem can then be defined as the following optimization problem,

argmin
θ

||fθ(Xt) −Kt|| (3.1)

A typical solution to optimize Equation 3.1 is to define fθ as a neural network and
optimize the equation using a large number of Xt-Kt examples and gradient descent.
State-of-the-art pose estimation models typically use CNNs to process an input image
and output the predicted x-y coordinates of the keypoints.

3.2 Pose Annotation using Optical Flow: POOF

This section introduces the methodology of POOF. First, a few terms are defined.
The term “ground-truth annotation” is defined as a set of keypoints that has been
labeled by a person which we assume to be correctly labeled. The term “pseudo-
annotation” is defined as a set of keypoints that have been generated by an algorithm
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that may or may not be correctly labeled. And the hyperparameter, R, is defined
as the number of frames before and after the ground-truth annotation to which the
keypoints will be propagated to.

We define Mi,j as the optical flow estimation between the i-th and j-th frame
represented as a three-dimensional matrix of size H ×W × 2. The coordinates (k, l)
are referenced in Mi,j using Mi,j,(k,l), which represents how the pixels of the i-th
frame at coordinates (k, l) moved to the j-th frame in terms of a change in the x and
y coordinates.

The first step of our motion-aware annotation strategy requires collecting a small
number of ground-truth annotations across a video. We aim to have diverse anno-
tations that cover a variety of poses that are temporally far apart from each other.
Ideally, we want to select annotations that are at least 2 × R frames apart. This is
because when we propagate the ground-truth keypoints to the nearest R frames, if
the ground-truth keypoints frames are 2 × R apart, there will be no overlap in the
pseudo-annotations and we will maximize the amount of annotated data created.

For each ground-truth annotation at time t, Kt, we use an optical flow estimation
model to predict the motion between consecutive frames, Mt,t+1 ∀t ∈ [t−R, t+R−1].

We then create psuedo-annotations for the frames which surround the ground-
truth annotation frame, Kt−1 and Kt+1, by propagating the the ground-truth anno-
tation Kt to its neighbouring frames by explicitly leveraging the motion between the
frames, Mt−1,t and Mt,t+1, as follows:

Kt−1 = Kt −Mt−1,t,Kt (3.2)

Kt+1 = Kt + Mt,t+1,Kt (3.3)

where Mt,t+1,Kt is Mt,t+1 indexed at the coordinates of Kt. We repeat equation 3.2
∀t ∈ [t−R, t) and equation 3.3 ∀t ∈ (t, t+R] to obtain keypoints ∀t ∈ [t−R, t+R].
Figure 3.1 shows a visual description of POOF for R = 3.

3.3 Experiments

In the following section, the performance of models trained on annotations generated
by POOF was investigated. However, first, the models and datasets used throughout
the experiments are described.
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3.3.1 Setup

Throughout the experiments, the publicly-available code for Multi-Stage Pose Net-
work (MSPN) [26] was used as the pose estimation model and similarily, the publicly-
available code for Recurrent All-Pairs Field Transforms For Optical Flow (RAFT) [41]
was used as the optical flow estimation model. The pose estimation model was trained
for 10 epochs using the Adam optimizer [24] with a learning rate of 0.01 and a batch
size of 32. Through manual inspection, these values produced the best results and
so were chosen to be used throughout the experiments. The optical flow estimation
model used the publicly-available pretrained weights from the Sintel dataset [4].

3.3.2 Metrics

For metrics, we record the final validation accuracy of the model after training and
refer to it as ‘Accuracy’ in the experiment tables. We define a keypoint to be accurate
if the mean absolute error (MAE) between the predicted keypoint coordinate and the
ground-truth keypoint coordinate is less than twenty units. We chose a threshold of
twenty through visual inspection of different MAE distances across different examples
1. We also perform further experiments on different choices of threshold values in
Section 3.3.7.

3.3.3 Datasets

To investigate the performance of models trained on annotations generated by POOF,
we run extensive experimental studies on a National Hockey League (NHL) goalie pose
dataset, which was derived from broadcast videos and contains many similar features
to other real-world datasets including but not limited to: dataset-specific poses, which
are not common in public datasets, joint occlusions caused by skaters skating in front
of other skaters or making contact with other skaters, and image blurriness caused
from camera movement. Furthermore, the visual appearance of an NHL game is very
different compared to the scenes in large public pose datasets such as the Common
Objects in Context (COCO) dataset [29]. For example, this includes visual diffences

1The value of twenty is quite arbitrary and does not correspond to any physically consistent
meaning except that the predicted keypoint is visually close to the ground-truth keypoint in the
corresponding image.
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Figure 3.2: An example of a predicted goalie pose using a model with COCO [29] (a
large public dataset) pretrained weights. We see that the goalie is on both of his pads,
which is a dataset-specific pose that is not common across large public datasets, leading
to an incorrect prediction. To achieve acceptable results, more pose annotations of
the goalie are required.

such as white or black goalies pads which occlude the player’s leg below the knee,
skates which occlude the player’s feet, unique jersey colors, and more.

Throughout the data, the hockey goalie has been cropped out of the broadcast
video and resized to a 256 × 192 image, the same size as images from the COCO
dataset. This was done so that COCO pretrained weights could be used in the
experiments. The ground-truth annotations were selected to be temporally sparse
and contain a variety of poses across 6 different broadcast videos. The examples
were selected to include both examples of when the goalie is not occluded at all and
when the goalie is semi-occluded. The same approach was used for the validation
examples, but across 2 broadcast videos (which were not included in the training set)
that resulted in 16 total annotations. Throughout the experiments, we used a radius
of 10 (R=10) unless stated otherwise.

Figure 3.2 shows an example from the dataset as well as the predicted pose from
a model which has been pretrained on the large pose estimation dataset, COCO
[29]. We can see that the model incorrectly classified the goalie’s pose. This is likely
because goalie images are visually different from examples in the COCO dataset
including goalie pads that cover the knees and the goalie is in a pose which is not
common in the COCO dataset (i.e., the goalie is on his knees).
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Table 3.1: Accuracy of a pose estimation model, initialized with COCO pretrained
weights, trained on different data: None which uses only pretrained weights; GT An-
notations which uses 69 ground-truth annotations; and POOF which uses 69 ground-
truth annotations and 1314 pseudo-annotations generated by POOF. Training on an-
notations generated by POOF results in the highest accuracy of 75.66%.

Init Weights Training Data # Annotations Accuracy

COCO

None 0 60.53

GT Annotations 69 23.03

POOF 69 + 1314 75.66

3.3.4 Training on annotations generated by POOF

Table 3.1 shows the accuracy of a pose estimation model, initialized with COCO pre-
trained weights, trained on different data. We compared three types of training data:
‘None’ which evaluates the pretrained model directly on the dataset, ‘GT Annota-
tions’ which finetunes the model on 69 ground-truth annotations (a small amount),
and our proposed method, ‘POOF’ which trains the model on the 69 ground-truth
annotations as well as 1314 pseudo-annotations derived from POOF.

Table 3.1 shows that using only pretrained weights achieves an accuracy of 60.53%
and training on the small number of ground-truth annotations leads to a 37% decrease
in accuracy and achieves a score of 23%. This shows that training on a small number
of annotations can sometimes be worse than no annotations. One reason why training
on a small number of annotations leads to worse accuracy compared to only using
pretrained weights may be because when optimizing the model on a small number
of annotations the model overfits to the data which leads to worse accuracy on the
validation set.

We also see that training on POOF annotations achieves an accuracy of 75.66%
which is a 15% increase in accuracy (from 60% to 75%) compared to using only
pretrained weights (None) while using the same number of ground-truth annotations
as GT Annotations. This shows that utilizing POOF annotations, which leverage the
inherent motion found in videos, can significantly improve the accuracy of models
compared to using only pretrained weights with only a small number of annotations.
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3.3.5 The Effects of Pretrained Weights

Table 3.2: Accuracy of a pose estimation model, initialized with two different pre-
trained weights: None which uses randomly initialized weights; and Hockey Players
which uses pretrained weights from a hockey player dataset, trained on different data:
None which uses only pretrained weights; GT Annotations which uses ground-truth
annotations; and POOF which uses ground-truth annotations and pseudo-annotations
generated by POOF.

Init Weights Training Data Accuracy

None

None 0.00

GT Annotations 0.06

POOF 38.82

Hockey Players

None 69.08

GT Annotations 80.92

POOF 80.26

Using the same data (including POOF annotations) from the previous section,
we also perform experiments to understand the effect of using different pretrained
weights. Specifically, we compared the change in performance when using no pre-
trained weights/random initialization and using pretrained weights from a similar
domain. We investigate using no pretrained weights/random initialization because
it is likely that there will not be any pretrained weights to use when attempting to
predict keypoints that are not in public datasets (e.g., hockey stick keypoints, corner
of goalie pads, etc.). We also investigated using pretrained weights from a similar
domain because it is likely that some companies/labs work on multiple projects and
have annotations from a similar domain. As a similar domain to NHL goalie pose
estimation, we choose to investigate initializing weights that were trained on a larger
NHL hockey player pose dataset which was derived from NHL broadcast videos. This
is a private dataset that was provided by the University of Waterloo, Sports Analytics
group in the Vision and Image Processing Lab.

Table 3.2 shows the results of training on different types of data using three
different weight initializations: randomly initialized weights (None) and pretrained
weights from the hockey player dataset (Hockey Players).
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Table 3.3: Accuracy of a pose estimation model using COCO pretrained weights,
trained on annotations generated by POOF across different propagation radius sizes.
A larger radius creates more pseudo-annotations but can lead to more incorrect
pseudo-annotations, while a smaller radius creates more accurate pseudo-annotations
but produces a smaller amount of pseudo-annotations.

R # Examples Accuracy

5 255 51.64

10 420 61.50

20 670 35.21

We see that when not using any pretrained weights (None), POOF significantly
outperforms training on ground-truth annotations and increases the accuracy by 38%
(from 0.06 to 38.82). This shows POOF is an important resource to consider when
annotating new keypoints which are not included in large benchmarks. This result
was not discovered in previous research.

Table 3.2 also shows that when using pretrained weights from the hockey player
dataset, training on POOF annotations achieves the same accuracy as training on
the small number of ground-truth annotations (80.26% vs 80.92%). This shows that
when the domains of the pretrained weights and the new dataset are similar it may be
best to train on a small number of annotations. This agrees with the results found by
[33]. However, this also shows that POOF is most effective when the domains between
the pretrained dataset and the new dataset are different, which was not discovered in
previous research.

3.3.6 The Effect of the Propagation Radius

We also investigated the effect of using different propagation radius (R) values. Table
3.3 shows the accuracy of a trained model on POOF annotations which were generated
using a R value of 5, 10, and 20. Note that in this experiment, we used a different
set of goalie pose annotations so the accuracy results are different from previous
experiments.

Table 3.3 shows that the best accuracy is achieved when we train a model using
annotations generated by POOF derived with a propagate radius of ten (R = 10).
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We hypothesize that when R = 5, POOF did not generate enough annotations and
that when R = 20 POOF generated too many incorrect pseudo-annotations because
of small errors in close frames which result in larger errors in frames further away
including occlusions (e.g, hockey players skating between the camera and goalie),
blurriness (e.g, from camera movement), and more. This result is likely very dataset
specific. For example, since hockey games include a large amount of occlusions due
to hockey players slaming into eachother, fast movements, and the image resolution
is not particularly high, there is a high sensitivity to the chosen R value. However,
in datasets with less occlusions and better motion characteristics, the accuracy may
not be as sensitive to a different R values.

While [33] only investigated using a radius of 3 frames, POOF shows that perfor-
mance can be improved using a radius of up to 10 frames.

In practice, R should be selected based on the dataset. If occlusions and blurriness
are minimized throughout the dataset, then keypoint propagation should work better
for a longer distance, and so a larger R value should be chosen. However, if occlusions
and blurriness occur often in the dataset, then a lower R value should be chosen to
reduce the number of incorrect pseudo-annotations generated. Future research related
to R is further discussed in Section 5.3.1.

3.3.7 Various Accuracy Thresholds

To further understand the performance improvement when training a model on anno-
tations generated by POOF, we also investigated the accuracy score across different
accuracy threshold values (which represents the maximum distance a predicted key-
point can be from the ground-truth keypoint and still be classified as correct).

Figure 3.3 shows the accuracy divided by 100 on the y-axis and different accu-
racy thresholds on the x-axis. The black line is a straight line that represents 100%
accuracy. A steeper slope corresponds with a better model.

We can see that the lines which use POOF (orange and red) are much steeper
than the lines which do not (green and blue). If we look at the orange vs green and
red vs blue lines, we see that there is a large improvement using POOF across many
accuracy thresholds. This further confirms that training on POOF annotations can
improve the accuracy of models compared to using only pretrained weights
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Figure 3.3: Figure with the accuracy divided by 100 on the y-axis and the accuracy
threshold value on the x-axis. We compared results using weights that were pretrained
to predict hockey player poses (hockey player), COCO pretrained weights (COCO)
both with (+POOF) and without POOF. We see that utilizing POOF annotations
can increase the accuracy score across most threshold values for both Hockey Player
and COCO pretrained weights.
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Table 3.4: Accuracy on specific joints with (+POOF) and without POOF using dif-
ferent pretrained weights (e.g., COCO and HockeyPlayer). Change in accuracy using
POOF in brackets. The largest joint accuracy improvements are bolded. We see that
POOF consistently improves the accuracy of most joints by a significant amount.

Joint COCO +POOF HockeyPlayer +POOF

L shoulder 86 93 (+7%) 80 93 (+13%)

R shoulder 100 100 (+0%) 100 100 (+0%)

L elbow 50 64 (+14%) 71 78 (+7%)

R elbow 80 80 (+0%) 90 90 (+0%)

L wrist 26 66 (+40%) 40 53 (+13%)

R wrist 58 50 (-8%) 33 58 (+25%)

L hip 58 83 (+25%) 66 91 (+25%)

R hip 81 72 (-9%) 63 72 (+9%)

L knee 57 85 (+27%) 57 85 (+28%)

R knee 33 50 (+17%) 66 75 (+9%)

L ankle 66 80 (+14%) 80 86 (+6%)

R ankle 41 75 (+34%) 91 83 (-8%)

Mean 61 74 (+13%) 69 80 (+11%)

3.3.8 Change in Per-Joint Accuracy

Lastly, we investigated the accuracy improvement across each joint to further under-
stand where POOF’s performance improvement comes from.

Table 3.4 shows the accuracy across all the joints. The joint names are formatted
to have the side of the body, followed by the body part (e.g., the left shoulder keypoint
is formatted as L shoulder). The second column shows the results of the initial weights
used (without any training) (e.g., COCO) and the third column (e.g., +POOF) shows
the results after applying POOF. The same format is used in the fourth and fifth
columns which are used to compare using pretrained weights from the hockey player
dataset without POOF (e.g., HockeyPlayer) and with POOF (e.g., +POOF). We
show the percentage improvement achieved when using POOF in brackets.
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We see that POOF improves the accuracy by more than 10% in 7/12 joints (e.g.,
+40% L wrist in the COCO columns). However, POOF also sometimes results in
worse accuracy (e.g., -9% R ankle in the HockeyPlayer column). We hypothesize
this could be because the model overfit to the noise in the propagated keypoints. In
practice, this could be solved by using an ensemble of models where for each keypoint
the best performing model is used to predict it.

3.4 Chapter Summary

In this chapter, we introduced POOF, a data-efficient motion-aware pose annotation
strategy that utilizes optical flow to propagate ground-truth annotations to neigh-
bouring frames. POOF improves on the previous work of pose estimation solutions
by removing data annotation constraints such as requiring a ground-truth keypoint
every n-frames. Using an NHL goalie dataset derived from broadcast video, we show
that POOF can improve performance with a very small amount of annotations and
that it performs best when transferring models between different domains (in Ta-
ble 3.2). We also show POOF can achieve significantly improved results over using
pretrained weights across various accuracy thresholds. Furthermore, we showed this
performance improvement is achieved across most individual joints and also suggested
multiple directions for future research. Overall, by explicitly leveraging the inherent
motion found in datasets that are derived from videos, this research should signif-
icantly reduce the time required for annotating pose data across different domains
without compromising model accuracy and allow pose estimation to be more easily
applied to a wide variety of domains.

While its clear motion can improve the data efficiency of pose estimation, in the
next chapter, we explore how motion can also be leveraged to improve video action
recognition models.
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Chapter 4

Motion-Aware Attention for Video
Action Recognition

In this chapter, we explore how motion can be leveraged to improve action recognition
models and introduce our motion-aware attention mechanism (M2A). We make our
code publicly-available at https://github.com/gebob19/M2A. The contents of this
chapter are largely based on its corresponding paper [15].

The chapter is organized as follows: Section 4.1 introduces a mathematical defini-
tion of attention; Section 4.2 explains the methodology of M2A; Section 4.3 reports
experimental results on the M2A mechanism; and Section 4.4 concludes the chapter.

4.1 A Mathematical Definition of Attention

Attention was initially popularized by achieving great results in natural language
processing [44] and has since been applied to a wide range of fields, one of which
is video action recognition [47, 27, 3]. In this section, we provide a mathematical
definition of attention, which we then utilize in our motion-aware mechanism.

For a sequence of length of n where each item in the sequence is a vector with size
d, attention is defined to operate a query matrix Q ∈ Rn×d, a key matrix K ∈ Rn×d,
and a value matrix V ∈ Rn×d [44]:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4.1)
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Figure 4.1: Overview of the proposed M2A mechanism within the context of deep-
learning-driven video action recognition. The M2A mechanism can be added to any
deep neural network backbone architecture to explicitly leverage motion characteris-
tics. Frames are first sampled from the video, are processed by the network, and are
classified using a fully-connected layer (FC).

where softmax is the softmax function and
√
dk scales the product to reduce the

impact of large dot-product values in the numerator. Intuitively, the dot-product
operation between Q and K produces a similarity score between the query and the
key matrices which then scales the value matrix V , exciting and inhibiting certain
values.

With a video being defined as a four-dimensional matrix U ∈ RT×C×H×W where T
is the number of frames, to apply attention mechanisms across a video, U is reshaped
to Û ∈ RT×[C∗H∗W ]. The Q, K, and V vectors are then defined each as different linear
projections of Û with learned weight matrices WQ, WK , and WV :

WQÛ = Q (4.2)

WKÛ = K (4.3)

WV Û = V (4.4)

while this is the case for standard attention, in this thesis we do not apply a linear
projection and instead set Q, K, and V equal to Û to reduce the computational cost
of the mechanism. This type of attention is also refereed to as self-attention [9]. All
together, this thesis’s attention is defined as:
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Attention(U) = softmax

(
Û ÛT

√
dk

)
Û (4.5)

4.2 Motion-Aware Attention (M2A)

In this section, we introduce the methodology of our motion-aware attention (M2A)
mechanism. We define the input activation as a four-dimensional matrix X ∈ RT×C×H×W

where T is the temporal dimension, C is the number of channels of each frame1, H
is the height of each frame, and W is the width of each frame. Figure 4.2 shows a
visual description of our mechanism. M2A consists of four key stages:

1. Channel Reduction: following the standard practice of action recognition
mechanisms, we apply a convolution operation to our input X to reduce the
number of channels by a factor of R. This allows us to compute future operations
efficiently (we use R = 8 throughout the paper). This produces a new vector,
Xt ∈ RT×[C/R]×H×W . Following standard attention-based practice, we then
apply a layer normalization operation.

2. Motion Mechanism: we then compute a shifted representation of Xt, which
we denote as Xt+1, by shifting the temporal axis of Xt to the left and filling the
last index with the values of the first frame. To extract motion information,
we compute the difference between Xt+1 and Xt: Xt+1 − Xt. This represents
the difference in activation values between consecutive frames, emulating the
motion between frames.

3. Attention Mechanism: to help focus on motion patterns found across frames,
we flatten the frames to create a matrix with shape T × [H ∗W ∗ C/R] and
apply self-attention across the time axis. This is followed by a skip connection
of the first convolved input.

4. Incorporation: based on previous research [45, 27, 30], we apply a convolution
operation to increase the number of channels from C/R back to C, followed by

1Since M2A is inserted into the neural network, the input to the mechanism is not the original
image but a network activation. Network activations typically have C values larger than 3 (e.g., 256
is a common C value for network activations). We use C to describe both the channels for the input
image and the channels for a network activation to be succinct.
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Figure 4.2: The proposed M2A mechanism consists of a motion block (shown in blue)
which extracts motion information across consecutive frames and an attention block
(shown in green) which focuses on relevant motion patterns found across frames.
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the sigmoid activation function which scales value to within the [0, 1] range.
We then apply an element-wise multiplication on the original input, followed by
a skip connection to incorporate the temporal information back into the current
frame.

4.3 Experiments

In this section, we report the results of our experiments. Following standard practice
[45], the temporal mechanism is inserted after the first convolution of each backbone’s
block. Furthermore, all backbones are initialized with ImageNet [37] pre-trained
weights. We performed all our experiments on the Something-Something V1 (SSv1)
[16] dataset, a standard video action recognition benchmark. Figure 4.3 shows three
example video sequences from the benchmark dataset with their corresponding labels.
Throughout the experiments, we uniformly sampled 8 frames from the video and use
them as input to the model; we also use a 2D-ResNet18 backbone unless stated
otherwise. To evaluate the performance of our models, we report the number of Giga
multiply-accumulate operations per video (GMACs/video) as a measure of model
efficiency, and the Top-1 and Top-5 accuracy (Top-1 Acc and Top-5 Acc) as a measure
of the model’s performance. Throughout the experiments, when comparing different
mechanisms, the respective paper’s publicly-available code is always used. We train
all the models on a desktop computer that has four GPUs and 24 CPUs.

4.3.1 Ablation Experiments

To understand how motion and attention mechanisms contribute to the model’s per-
formance and if the results generalize across different backbones we run ablation
studies across three backbones: 2D-ResNet18 [19], 2D-MobileNetV2 [38], and I3D-
inflated-Resnet18 [5, 7]. Specifically, we compared each backbone with no temporal
mechanism (None), with M2A but with the motion block removed (M2A-Attention),
with M2A but with the attention block removed (M2A-Motion), and with the full
M2A mechanism (i.e., with both motion and attention blocks) (M2A). In the tables,
the percentage improvement from None is noted in brackets and the best accuracy is
bolded.
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Figure 4.3: Example video sequences from the Something-Something V1 dataset and
their corresponding labels.

2D-ResNet18 Backbone

We first perform our ablation experiments using the 2D-ResNet18 backbone since
it is a popular choice for computer vision tasks and has shown to achieve good re-
sults without being very computationally expensive [19]. Table 4.1 shows the results
of the ablation experiments. We see that M2A-Attention improves upon the Top-1
accuracy compared to None by +3%, but it is unable to achieve a large improve-
ment. This could be because it is only focusing on similar visual features across
frames and is unable to extract motion information. We also see that M2A-Motion
outperforms None by +15%, which shows the importance of extracting motion in-
formation for improved video action recognition performance. Lastly, M2A achieves
the highest accuracy improvement of +20%, meaning that using attention to focus
on motion patterns across frames is the best compared to using only motion or only
attention. More specifically, comparing M2A to M2A-Attention, we see that incorpo-
rating motion with attention mechanisms outperforms attention-only mechanisms by
+17% in Top-1 accuracy which further supports the idea that incorporating motion
mechanisms with attention mechanisms can lead to improved results for video action
recognition. We see a similar trend for the Top-5 accuracy which shows that these
improvements are achieved across multiple metrics. Lastly, we see that including the
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M2A mechanism only increases the GMACs/video by only +1.6% showing that M2A
is very computationally efficient.
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Table 4.1: Ablation study of different temporal mechanisms using a 2D-ResNet18
backbone. M2A achieves the highest Top-1 accuracy improvement of +20% compared
to None.

Mechanism GMACs/video Top-1 Acc Top-5 Acc

None 14.57 13.9 38.9

M2A-Attention 14.79 16.9 (+3%) 42.0 (+3%)

M2A-Motion 14.79 28.9 (+15%) 56.7 (+17%)

M2A 14.81 34.7 (+20%) 63.4 (+24%)

Table 4.2: Ablation study of different temporal mechanisms using a 2D-MobileNetV2
backbone. M2A achieves the highest accuracy improvement of +21% compared to
None with only 2.58 GMACs/video.

Mechanism GMACs/video Top-1 Acc Top-5 Acc

None 2.55 13.8 37.8

M2A-Attention 2.58 13.3 (-0.5%) 37.2 (-0.6%)

M2A-Motion 2.58 32.0 (+18%) 60.6 (+22%)

M2A 2.58 35.6 (+21%) 64.4 (+26%)

Table 4.3: Ablation study of different temporal mechanisms using a I3D-ResNet18
backbone. We see only a small improvement when using M2A compared to None.
This means that M2A is unlikely to further improve 3D CNNs.

Mechanism GMACs/video Top-1 Acc Top-5 Acc

None 22.52 27.0 53.5

M2A-Attention 22.65 26.9 (-0.1%) 54.1 (+0.6%)

M2A-Motion 22.65 26.3 (-0.7%) 53.6 (+0.1%)

M2A 22.67 27.1 (+0.1%) 53.5 (0%)
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2D-MobileNetV2 Backbone

Relative to 2D-ResNet18 backbones, 2D-MobileNetV2 backbones are typically used
in more resource-constrained settings where computational power and latency must
be kept to a minimum (e.g., mobile and edge devices). Since this is a common setting
for video action recognition, we perform the same ablation studies using the 2D-
MobileNetV2 backbone. Table 4.2 shows the results of the ablation experiments. We
see that the ablation study follows a similar trend as in the 2D-ResNet18 ablation
study which further supports the idea that further accuracy improvements can be
achieved by incorporating motion mechanisms with attention mechanisms for video
action recognition. Furthermore, we see that M2A achieves a higher Top-1 accu-
racy with the 2D-MobileNetV2 backbone (i.e., 35.6%) compared to the 2D-ResNet18
backbone (i.e., 34.7%) while having more than five times lower GMACs/video (i.e.,
14.81 GMACs/video with a 2D-ResNet18 backbone and 2.58 GMACs/video with a
2D-MobileNetV2). This shows that M2A generalizes across different backbone archi-
tectures and is a viable option in resource-constrained settings.

I3D-ResNet18 Backbone

I3D-inflated-ResNet18 backbones use 3D convolutions instead of 2D convolutions.
While 2D CNNs model the frames individually, these 3D CNNs explicitly model
the temporal aspect of videos. This has been shown to achieve accurate results
without requiring any additional temporal mechanisms. To understand if M2A can
improve 3D convolution networks, Table 4.3 shows the results of the same ablation
study but uses an I3D-inflated-ResNet18 backbone. We see only a small improvement
using M2A compared to None. This means that M2A is unlikely to further improve
3D CNNs since temporal information is already modelled accurately. However, we
also see that using 3D CNNs is much more computationally expensive requiring 22
GMACs/video. Furthermore, if we compare these results to our 2D-MobileNetV2
experiments in Table 4.2 we see that M2A achieved a Top-1 accuracy of 35.6% with
only 2.58 GMACs/video while using 3D CNNs achieved only 27.0% Top-1 accuracy
with approximately 10 times the computational cost. This shows that our M2A
mechanism can outperform 3D CNNs while being significantly more computationally
efficient.
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Figure 4.4: Grad-CAM heatmaps of a ResNet18 backbone on an example video se-
quence from the Something-Something V1 validation dataset with just the attention
mechanism (i.e., M2A-Attention), just the motion mechanism (i.e., M2A-Motion),
and the proposed M2A mechanism which incorporates both motion and attention. Im-
ages are of the last five frames of an eight-frame video sequence. We see that when we
combine both motion and attention within the proposed M2A mechanism the model
pays attention to a large number of the frames and correctly classifies the video as
moving something away from something, whereas it is unable to classify correctly
when we use just motion or just attention.

32



4.3.2 Visualizing Model Focus with Grad-CAM

To further understand the difference between motion, attention, and both motion and
attention, we visualized where the model is focusing using Grad-CAM [39] heatmaps.

Grad-CAM works by computing how a specific layer’s activations Al contribute to

classifying a specific class yc: G =
∂yc
∂Al

. Activation values that have a large G value

contribute greatly to the classification of the specific class and thus it is said that the
model focuses on those values. The opposite is also true for activation values that
have a small G value. Using this information Grad-CAM can visualize what areas
of the images are important to classifying a specific class. In our experiments, we
apply Grad-CAM with yc equal to the ground-truth class and visualize an arbitrary
Al since it is not feasible to visualize all possible layers.

Figure 4.4 shows the resulting heatmaps extracted from the second layer of a 2D-
ResNet18 backbone. The blue/green values show where the model is focusing. We
also include the predicted and ground truth class.

The first section of Figure 4.4 shows the results when only using the attention
component of the proposed M2A mechanism (i.e., M2A-Attention). It can be observed
that when we only use an attention mechanism to model temporal information, the
model only seems to focus on the last few frames. Furthermore, it incorrectly classifies
the action as “Taking something out of something”.

The second section shows the results when only using the motion component of
the proposed M2A mechanism (i.e., M2A-Motion). Here the model does not seem to
focus on anything specific and incorrectly classifies it as “Holding something behind
something”.

In the last section, we see the results from the proposed M2A mechanism. We
see that when we combine both motion and attention within the proposed M2A
mechanism the model pays attention to a large amount of the frames and correctly
classifies the video as “Moving something away from something”, whereas it is unable
to when we use just motion or just attention. This shows that combining motion with
attention can lead to the model focusing on more important details in the video to
correctly classify the action.
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Table 4.4: Comparison of different state-of-the-art (SOTA) attention mechanisms
used in M2A with a 2D-ResNet18 backbone. We found that M2A’s attention performed
the best and that there was not a significant performance difference across the other
SOTA attention mechanisms.

Attention mechanism Top-1 Acc

M2A-Attention 34.7

TAM [48] 31.6

S+T Patch (s=4) [3] 31.9

S+T Patch (s=8) [3] 34.2

4.3.3 Using SOTA Attention

We also investigated if we could improve the performance of M2A by using state-
of-the-art (SOTA) attention mechanisms. Table 4.4 shows the results of M2A using
M2A’s attention block (M2A-Attention), using space and time based attention block
(S+T Patch with a patch of size s× s) from [3], and using TAM attention [48]. We
found that M2A’s attention performed the best and that there was not a significant
performance difference across the other SOTA attention mechanisms.

4.3.4 Comparison to SOTA

Next, we compared M2A’s performance to other SOTA temporal mechanisms includ-
ing, TSM [28], TEA [27], TDN [45], and TAM [48]. TSM does not incorporate any
attention or motion information and instead shifts values across consecutive frames,
while TEA and TDN are motion-only temporal mechanisms, and TAM is an attention-
only temporal mechanism. The TDN and TEA papers involve multiple mechanisms,
some of which modify the backbone directly, so to conduct a fair comparison, we
only use the individual temporal mechanisms of each method. Specifically, we use
the long-term mechanism for TDN and the motion excitation mechanism for TEA.
Furthermore, to understand if M2A can further improve the performance of other
temporal mechanisms, we also compare using both M2A and TSM (M2A + TSM).

Table 4.5 shows that M2A can achieve higher accuracy than complex state-of-the-
art motion/attention-only mechanisms (TEA, TDN, and TAM). Furthermore, we see
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Table 4.5: Comparison of different state-of-the-art temporal mechanisms. We find
M2A can achieve higher accuracy than complex SOTA motion/attention-only mech-
anisms (TEA, TDN, and TAM). Furthermore, we see M2A + TSM achieves the
highest accuracy showing that M2A is a complementary mechanism.

Temporal mechanism GMACs/Video Top-1 Acc

M2A + TSM 14.81 39.3

TSM [28] 14.57 39.0

M2A 14.81 34.7

TEA [27] 14.83 34.3

TDN [45] 15.13 28.6

TAM [48] 14.79 21.0

that M2A is comparable in terms of GMACs/Video to all the other mechanisms which
shows that it is a computationally efficient mechanism. Comparing M2A to TSM, we
see that TSM outperforms M2A in Top-1 accuracy by approximately 4%. However,
we also see that M2A + TSM outperforms TSM by +0.3% in Top-1 accuracy, showing
that M2A is a complementary mechanism that can be combined with other temporal
mechanisms to achieve better performance.

Per-Class Comparison to SOTA

To further understand where M2A outperforms the other SOTA mechanisms, Fig
4.5 shows the difference in Top-1 accuracy across all the classes in the SSv1 dataset
when M2A is compared to TAM, TDN, and TEA. Specifically, each bar represents a
class in the SSv1 dataset (e.g., Showing something to the camera) and the height of
the bar represents the difference between M2A and the compared mechanism (e.g.,
in the M2A VS TAM chart, the largest bar has a height of 60 which means M2A
achieves 60% better accuracy in that class compared to TAM). We see M2A achieves
large improvements in most classes when compared to the other SOTA mechanisms,
specifically, we see up to +60%, +20%, and +10% Top-1 accuracy improvements
compared to TAM, TDN, and TEA respectively. Furthermore, we investigated which
specific classes had the largest difference. Comparing M2A to TAM, the largest
improved classes were:
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Figure 4.5: The change in accuracy using M2A compared to other SOTA mechanisms
for each class in the SSV1 dataset. Each bar represents a class in the SSV1 dataset
(e.g., Showing something to the camera) and the height of the bar represents the dif-
ference between M2A and the compared mechanism (e.g., in the M2A VS TAM chart,
the largest bar has a height of 60 which means M2A achieves 60% better accuracy
in that class compared to TAM). We see M2A achieves large improvements in most
classes when compared to the other SOTA mechanisms.

• “Moving away from something with your camera” (+59.3%)

• “Approaching something with your camera” (+50.7%)

Comparing M2A to TDN, the largest improved classes were:

• “Poking something so that it falls over” (+21.9%)

• “Moving away from something with your camera” (+20.4%)

And lastly comparing M2A to TEA, the largest improved classes were:

• “Pretending to put something on a surface” (+16.7%)

• “Poking something so it slightly moves” (+12.5%)

We see that M2A improves on motion-oriented classes which include ‘moving’ and
‘approaching’ (i.e., “Moving away from something with your camera”) and interaction
classes such as ‘poking something’ (i.e., “Poking something so it slightly moves”).
This shows that incorporating motion information with attention mechanisms can
improve the classification of motion-oriented classes and interaction-based classes in
videos compared to using just motion or just attention mechanisms.
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Table 4.6: Comparison of different SOTA motion and attention mechanisms inserted
into a ResNet18 backbone. We also show the improvement made by incorporating
motion with each attention mechanism in brackets and bold the highest accuracy for
each attention mechanism. We see that all attention methods are improved when
motion is incorporated.

Motion Mechanism
Top-1 Acc

None M2A-Attention TAM-Attention [48]

None 13.9 16.9 21.0

M2A-Motion 28.9 34.7 (+17.8%) 31.6 (+10.6%)

TDN-Motion [45] 28.6 29.0 (+12.1%) 25.3 (+4.3%)

TEA-Motion [27] 34.3 33.9 (+17.0%) 33.3 (+12.3%)

4.3.5 Extending SOTA motion/attention-only mechanisms

Lastly, we attempted to extend state-of-the-art motion-only and attention-only mech-
anisms by incorporating attention and motion respectively. The results are shown in
Table 4.6. The first column states the motion mechanism used and the first row states
the attention mechanism used. For example, the cell which intersects M2A-Motion
and M2A-Attention is the full M2A mechanism. We also show the improvement
made by incorporating motion with each attention mechanism in brackets and bold
the highest accuracy for each attention mechanism.

We see that all attention methods are improved when motion is incorporated (e.g.,
TAM-Attention achieves 21.0% Top-1 accuracy without motion and achieves 33.3%
Top-1 accuracy when combined with TEA-motion). However, we also see that the
motion mechanisms are not always improved when attention mechanisms are incor-
porated. Specifically, TDN and TEA mechanisms see a very small or negative change
in accuracy when attention is added to them (e.g., TEA-Motion achieves 34.3% Top-1
accuracy without attention and 33.9% with M2A-Attention). This may be because
their mechanisms do something similar to attention mechanisms so incorporating
attention mechanisms with them does not lead to any improvements.
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4.4 Chapter Summary

In this chapter, we introduce a new temporal mechanism, motion-aware attention
(M2A), which utilizes both motion and attention for accurate video recognition. We
showed that M2A can accurately recognize actions across multiple CNN backbones in-
cluding 2D-ResNet18, 2D-MobileNet, and I3D-ResNet18 and that the proposed M2A
mechanism can lead to a +15% to +26% improvement in Top-1 accuracy with only
a small increase in computational complexity. Furthermore, we showed how other
SOTA attention mechanisms can be further improved by explicitly incorporating mo-
tion characteristics. Lastly, we also showed that M2A achieves competitive accuracy
and efficiency compared to other SOTA temporal mechanisms and can lead to up to
+60% in Top-1 accuracy across specific classes in SSV1. We hope this research helps
develop more accurate and efficient temporal mechanisms for video action recognition.

In the next chapter, we conclude the thesis by summarizing the contributions,
discussing the impact of the thesis, and discussing future research directions.
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Chapter 5

Conclusion

In this chapter, Section 5.1 briefly summarize the thesis, Section 5.2 discusses the
impact of this thesis’s work, and lastly, Section 5.3 discusses possible future work.

5.1 Summary of Thesis and Contributions

In this thesis, we introduced two novel motion-aware strategies that explicitly leverage
motion to achieve improved video analytics:

This thesis introduced POOF, a motion-aware pose annotation strategy that lever-
aged the motion found in pose datasets that were derived from videos to create a
multiplicative increase in annotations with no additional cost. Furthermore, unlike
previous research, the approach did not have any constraints such as requiring a
ground-truth keypoint every n-frames. Using an NHL goalie dataset derived from
broadcast video, we showed that POOF can improve performance with a very small
amount of annotations and that it performs best when transferring models between
different domains. Furthermore, we showed this performance improvement is achieved
across most individual joints.

This thesis also introduced a new temporal mechanism, motion-aware attention
(M2A), which utilizes both motion and attention to achieve accurate video recog-
nition. We showed that utilizing motion with attention mechanisms is critical to
achieving the best performance compared to using only using one or the other. Fur-
thermore, we showed that this result occurs across both the 2D-ResNet18 backbone
and the 2D-MobileNet backbone resulting in a +15% to +26% improvement in Top-1
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accuracy with only a small increase in computational complexity. Furthermore, we
showed how other SOTA attention mechanisms can be further improved by explicitly
incorporating motion characteristics. Lastly, we showed that M2A achieves competi-
tive accuracy and efficiency compared to other SOTA temporal mechanisms and can
lead to up to +60% in Top-1 accuracy across specific classes in the SSV1 dataset.

5.2 Impact of Thesis

Improving our understanding of human motion can solve many important problems
across many fields including robotics, ML-powered personal trainers, augmented re-
ality, and more, which affects millions of people worldwide. While machine learning
has the potential to solve these problems, key problems such as data-efficient and
model accuracy must be solved first.

This thesis’s contribution of POOF should significantly reduce the amount of time
required for annotating pose data across different domains without compromising
accuracy and allow pose estimation to be more easily applied to a large number of
diverse domains.

This thesis’s contribution of M2A improves our understanding of how motion
mechanisms can be both accurate and efficient, and how they can improve state-
of-the-art mechanisms such as attention. This understanding should enable action
recognition solutions to be applied to real-world problems sooner.

Overall, this thesis showed that a fundamental aspect of video analytics is the
motion found between frames and that if this information is explicitly utilized, it can
achieve improved accuracy and enable data-efficient strategies for improved video
analytics and solve the key problems of data efficiency and accuracy.

5.3 Future Research

In this section, we describe some limitations of POOF and M2A and some potential
future research directions.
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5.3.1 POOF

More Diverse Datasets

One limitation of our research is that we only tested POOF on a single NHL goalie
dataset due to lack of time. It would be interesting to experiment across a wider
variety of datasets to assess the performance consistency of POOF. One example
that would be interesting to investigate is different sports such as soccer or basketball
where the athlete’s motion and the video characteristics are very different compared
to hockey.

Additional Studies on Hyperparameters

Another avenue for future research is to further investigate the effect of using different
R values. In our research, we only investigated three potential values, but it would be
interesting to test more values to further understand how different values of R affect
the model’s accuracy. Ideally, one could also investigate how to select R quantita-
tively rather than qualitatively for easier hyperparameter selection. For example, one
approach might be to annotate two images which are t frames apart from each other,
compute the optical flow between them twice (once starting at the first frame going
towards the last frame, and another starting from the last frame going backwards
to the first frame), and propagate the ground-truth annotations from each frame to
the opposite frame. Then for the two ground-truth frames, the error between the
ground-truth annotation and the propagated annotation could indicate if a value of
R = t would be a good selection. If the error between the propagated-annotation
and the ground-truth annotation is small, then R = t is a good choice because the
propagated keypoints will be correct. If the error is large, the R value is likely too
large to use with the dataset because the keypoint propagation will lead to inaccurate
keypoints. A search algorithm can be included on top of this approach, searching for
the largest value of R which achieves an error below a specific threshold. While Table
3.3 showed that the accuracy decreases when using a radius value of 20 because it is
too large, it would be interesting to investigate what kinds of datasets enable using
larger values.

The Problem of Transforming Keypoints

One of the main limitations with POOF is that the optical flow estimation is unable
to account for keypoints that start as visible and later transform to become occluded
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by either another object occluding the keypoints or because the person rotates in a
way that occludes the keypoint of interest. Furthermore, POOF is unable to account
for keypoints that were labelled as occluded but transform to become visible later
in the video. Different solutions could be experimented with to solve this problem
which could allow us to label longer sequences and reduce the amount of noise in
the propagated annotations. This would likely further improve the model accuracy.
One potential solution could be to incorporate visual information in the keypoint
propagation stage similar to [6].

5.3.2 M2A

Improved Motion-Aware Mechanisms

While we designed M2A to be a simple mechanism to show how motion can be
leveraged for improved action recognition, future work may investigate more complex
motion-aware mechanisms for further improved accuracy. Specifically, it would be
interesting to see how neural architecture search methods [12] could be leveraged to
discover new mechanisms with even better accuracy.

Other Datasets

While we experimented with M2A on a first-person oriented action recognition dataset,
it would be interesting to see how it performs on a dataset with a third-person orien-
tation. For example, the Kinetics dataset [23] is a popular third-person orientation
dataset that could be experimented on. This would be interesting for applications
that require a third-person orientation. One example of this is healthcare monitor-
ing, which monitors the actions of residents and automatically recognizes important
events (e.g., recognizing that a person has fallen). Enabling more accurate action
recognition models could enable the automation of these tasks which could lead to
sending help to a resident faster and improving the safety of all residents.
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