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Abstract. Let H be a complex, separable Hilbert space, and B(H) denote the set
of all bounded linear operators on H. Given an orthogonal projection P ∈ B(H) and
an operator D ∈ B(H), we may write D =

[
D1 D2
D3 D4

]
relative to the decomposition H =

ranP⊕ran(I−P ). In this paper we study the question: for which non-negative integers j, k
can we find a normal operator D and an orthogonal projection P such that rankD2 = j
and rankD3 = k? Complete results are obtained in the case where dimH <∞, and partial
results are obtained in the infinite-dimensional setting.

1. Introduction

1.1. LetH denote a complex, separable Hilbert space. We denote by B(H)
the space of bounded linear operators acting on H, keeping in mind that
when dimH = n < ∞ we may identify H with Cn, and B(H) with Mn(C).
We write P(H) := {P ∈ B(H) : P = P 2 = P ∗} to denote the set of
orthogonal projections in B(H). Given T ∈ B(H), T admits a natural 2× 2
operator-matrix decomposition

T =

[
T1 T2

T3 T4

]
with respect to the decomposition H = PH ⊕ (I − P )H. Of course, Tj =
Tj(P ), 1 ≤ j ≤ 4.

We are interested in determining to what extent the set {(T2(P ), T3(P )) :
P ∈ P(H)} determines the structure of the operator T . Following [4], we
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say that T has property (CR) (the common rank property) if rankT2(P ) =
rankT3(P ) for all P ∈ P(H). We recall that an operator A ∈ B(H) is said
to be orthogonally reductive if for every orthogonal projection P ∈ P(H)
the condition (I − P )AP = 0 implies that PA(I − P ) = 0. That is, every
invariant subspace for A is orthogonally reducing for A. In the above-cited
paper, the following result was obtained:

1.2. Theorem ([4, Theorem 5.8]). Let H be a complex Hilbert space and
T ∈ B(H). If T has property (CR), then there exist λ, µ ∈ C and A ∈ B(H)
with A either selfadjoint or an orthogonally reductive unitary operator such
that T = λA+ µI.

1.3. In fact, if dimH < ∞, then the converse is also true (see [4, The-
orem 3.15]). We note that every normal operator (and hence every unitary
operator) acting on a finite-dimensional Hilbert space is automatically or-
thogonally reductive; the argument is outlined three paragraphs below. In
particular, every operator T that has property (CR) must be normal with
spectrum lying either on a line or a circle, and when H is finite-dimensional,
every such normal operator has property (CR).

Property (CR) was termed a “compatibility” condition on the off-diagonal
corners of the operator T . In this paper, we examine to what extent the off-
diagonal corners of a normal operator D may be “incompatible” in the sense
of rank. That is, writing D =

[
D1 D2
D3 D4

]
relative to H = PH⊕ (I − P )H, we

consider how large
|rankD2 − rankD3|

can get.
More generally, our main result (Theorem 2.5 below) shows that if dimH

= n < ∞ and 1 ≤ j, k ≤ bn/2c, then there exist a normal operator D and
a projection P such that rankD2(P ) = j while rankD3(P ) = k. (That
bn/2c is the optimal upper bound follows from the argument of Section 2.4.)
If dimH = ∞ and 0 ≤ j, k ≤ ∞, then the same conclusion holds (Theo-
rem 3.2).

The infinite-dimensional setting also allows for certain subtleties which
cannot occur in the finite-dimensional setting. For example, if dimH =
n < ∞, D =

[
D1 D2
D3 D4

]
∈ B(H) is normal and D3 = 0, then D2 = 0. Indeed,

this is just a restatement of the fact that every normal matrix is orthogonally
reductive. This follows by observing that the normality of D implies that

D∗1D1 −D1D
∗
1 = D2D

∗
2 −D∗3D3.

Thus tr(D2D
∗
2) = tr(D∗3D3), or equivalently ‖D2‖2 = ‖D3‖2, where ‖ · ‖2

refers to the Frobenius (or Hilbert–Schmidt) norm. From this, D3 = 0 clearly
implies that D2 = 0. We shall show that if H is infinite-dimensional, then it
is possible to have D3(P ) = 0 while D2(P ) is a quasiaffinity (i.e. D2(P ) has
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trivial kernel and dense range), although it is not possible for D3(P ) to be
compact and D2(P ) to be invertible at the same time (see Proposition 3.3
below).

1.4. It is worth mentioning that a related question where ranks are
replaced by unitarily invariant norms has been considered by Bhatia and
Choi [2]. More specifically, they consider normal matrices D =

[
D1 D2
D3 D4

]
acting on H := Cn ⊕ Cn. As noted above, normality of D shows that
‖D2‖2 = ‖D3‖2. In the case of the operator norm ‖ · ‖, it follows that
‖D3‖ ≤

√
n ‖D2‖, and equality can be obtained in this expression if and only

if n ≤ 3. (If we denote by αn the minimum number such that ‖D3‖ ≤ αn‖D2‖
for all D ∈ M2n(C) as above—so that αn ≤

√
n—it is not even known at

this time whether or not the sequence (αn)n is bounded.)
It is interesting to note that the example given in [2] for the case where

n = 3 and α3 =
√
3 is also an example of a normal matrix D ∈ M6(C) for

which rankD2 = 1 and rankD3 = 3.

2. The finite-dimensional setting

2.1. In examining the incompatibility of the off-diagonal corners of a
normal operator D ∈ Mn(C), we first dispense with the trivial cases where
n ∈ {2, 3}. Indeed, as seen in [4, Proposition 3.7], in this setting, D auto-
matically has property (CR).

For this reason, henceforth we shall assume that dimH ≥ 4.
The key to obtaining the main theorem of this section is Theorem 2.3,

which shows that if dimH = 2m for some integer m ≥ 2, then we can find a
normal operator D such that rankD3 = 1 and rankD2 = m. For m = 2, this
is an immediate consequence of [4, Theorem 3.15], since in this case, given
a normal operator D ∈ M4(C) whose eigenvalues lie neither on a common
circle nor on a common line, D fails to have property (CR), and this can
only happen if there exists a projection P ∈ M4(C) of rank two such that
rankD2(P ) = 2, while rankD3(P ) = 1.

Given X = [xi,j ], Y = [yi,j ] ∈ Mn(C), we shall denote by X • Y the
Hadamard or Schur product of X and Y , i.e. X • Y = [xi,j yi,j ] ∈Mn(C).

2.2. Lemma. Let m ≥ 3 be an integer. Let

A = diag(α1, . . . , αm) and B = diag(β1, . . . , βm)

be diagonal operators in Mm(C), and D :=
[
A 0
0 B

]
. Set Z := [zj,k] ∈Mm(C),

where zj,k := αj−βk for all 1 ≤ j, k ≤ m. Suppose that there exists a positive
definite matrix S ∈Mm(C) such that

rankS • Z = 1 and rankSt • Z = m,

where St denotes the transpose of S. Then there exists a projection P ∈
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M2m(C) of rank m such that if D =
[
D1 D2
D3 D4

]
relative to C2m = ranP ⊕

ran(I − P ), then rankD2 = m and rankD3 = 1.

Proof. We leave it as an exercise for the reader to show that 0 < S ∈
Mm(C) implies that S can be expressed in the form S = MN−1, where M
and N are two commuting positive definite matrices satisfying M2 + N2

= Im. From this it follows that

P :=

[
M2 MN

MN N2

]
is an orthogonal projection in M2m(C) whose rank is m = tr(P ). Since

P =

[
M

N

]
[M N ],

we deduce that
[
M
N

]
is an isometry from Cm into C2m. A straightforward

computation shows that

I2m − P =

[
Im −M2 −MN

−MN Im −N2

]
=

[
N

−M

]
[N −M ],

and that
[
N
−M

]
is once again an isometry of Cm into C2m.

Our goal is to show that rank (I−P )DP = 1, while rankPD(I−P ) = m.
As both

[
M
N

]
and

[
N
−M

]
are isometries, this is equivalent to proving that

rank(NAM −MBN) = rank

(
[N −M ]

[
A 0

0 B

] [
M

N

])
= 1,

while

rank(MAN −NBM) = rank

(
[M N ]

[
A 0

0 B

] [
N

−M

])
= m.

Now N and M are each invertible in Mm(C), and NM = MN implies
that N−1 and M also commute. Thus

rank(NAM −MBN) = rank(AMN−1 −N−1MB) = rank(AS − SB)

= rankS • Z = 1,

while

rank(MAN −NBM) = rank(N−1MA−BMN−1) = rank(SA−BS)
= rank(ASt − StB) = rankSt • Z = m.

2.3. Theorem. Let m ≥ 1 be an integer. Then there exist a normal
operator D ∈ B(C2m) ' M2m(C) and an orthogonal projection P of rank
m such that if D =

[
D1 D2
D3 D4

]
relative to C2m = ranP ⊕ ran(I − P ), then

rankD2 = m and rankD3 = 1.
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Proof. The case m = 1 is easily satisfied by the operator D =
[
1 1
1 1

]
and

the projection P =
[
1 0
0 0

]
. The case where m = 2 follows from [4, Proposi-

tion 3.13].
Suppose, therefore, that m ≥ 3. By Lemma 2.2, we have reduced our

problem to that of finding two diagonal matrices A = diag(α1, . . . , αm) and
B = diag(β1, . . . , βm) and a positive definite matrix 0 < S = [sj,k] ∈Mm(C)
such that

rankS • Z = 1 and rankSt • Z = m.

We begin by specifying A and B; we first temporarily fix a parameter
1 < γ whose exact value we shall determine later. For 1 ≤ j ≤ m, set αj =
jγ+i. Set B = A∗, so that βk = αk = kγ−i. Then Z = [zj,k] = [(j−k)γ+2i].

Next, we set S (= S(γ)) = [sj,k], where sj,k = 2i
(j−k)γ+2i . Observe first

that for 1 ≤ j, k ≤ m,

sk,j =
−2i

(k − j)γ − 2i
=

2i

(j − k)γ + 2i
= sj,k,

so that S is clearly hermitian, and sj,j = 1 for all 1 ≤ j ≤ m. It is there-
fore reasonably straightforward to see that since m is a fixed constant, and
since limγ→∞

2i
(j−k)γ+2i = 0 for all 1 ≤ j 6= k ≤ m, there exists a constant

Γ (m) ≥ 1 such that γ > Γ (m) ensures that ‖S − Im‖ < 1/4, and thus S
(= S(γ)) must be positive definite.

For an explicit estimate for Γ (m), observe that if R = [rj,k] ∈ Mm(C),
and if ‖R‖∞ := max{|rj,k| : 1 ≤ j, k ≤ m}, then ‖R‖ ≤ m‖R‖∞. Indeed,
if x = (xk)

m
k=1 ∈ Cm, then (using the Cauchy–Schwarz inequality) we find

that

‖Rx‖2 =
m∑
j=1

∣∣∣ m∑
k=1

rj,kxk

∣∣∣2 ≤ m∑
j=1

m‖R‖2∞‖x‖2 = m2‖R‖2∞ ‖x‖2,

from which the result follows. In particular, by choosing Γ (m) = 8m, we see
that γ > Γ (m) implies that

‖S − Im‖ ≤ m max
1≤j,k≤m

|sj,k − δj,k| = m max
1≤j 6=k≤m

|sj,k| < m
2

γ
<

1

4
,

and so S is a positive invertible operator.
Consider

S • Z = [sj,kzj,k] =

[
2i

(j − k)γ + 2i
((j − k)γ + 2i)

]
= [2i]m×m.

It is clear that S •Z ∈Mm(C) is a rank-one operator; indeed, S •Z = 2miQ,
where Q is the rank-one projection whose matrix consists entirely of the
entries 1/m.
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We therefore turn our attention to

St • Z = [sk,jzj,k] =

[
2i

(k − j)γ + 2i
((j − k)γ + 2i)

]
= [2iθj,k],

where θj,k = (j−k)γ+2i
(k−j)γ+2i ∈ T, 1 ≤ j, k ≤ m. Observe that if 1 ≤ j, k ≤ m− 1,

then θj,k = θj+1,k+1. Thus T := 1
2i(S

t • Z) is a Toeplitz matrix, and the
diagonal entries of T are all equal to 1.

In fact, for 1 ≤ j, k ≤ m,

θk,j =
(k − j)γ − 2i

(j − k)γ − 2i
=
−((j − k)γ + 2i)

−((k − j)γ + 2i)
= θj,k,

and therefore T is not only Toeplitz, but hermitian as well.
It only remains to show that the rank of St •Z is m, or equivalently that

detT 6= 0.
Define T̂ = 2Im−mQ. Then T̂ is invertible and T̂−1 = 1

2−mQ+ 1
2(Im−Q).

Note that each diagonal entry of T̂ is 1, while each off-diagonal entry is −1.
From this and the calculations above it follows that

‖T − T̂‖ ≤ m‖T − T̂‖∞ = m
(

max
1≤j 6=k≤m

|θj,k + 1|
)
< m

4

γ
<

1

2
<

1

‖T̂−1‖
,

implying that T is invertible whenever γ > Γ (m) = 8m.
Thus, by choosing γ > Γ (m) = 8m, we see that a positive solution to

our problem can be found.

2.4. Suppose now that n ≥ 5 is an integer and that T ∈ Mn(C). If
P ∈ P(Cn) is any projection, then the minimum of rankP and rank (I −P )
is at most bn/2c. It follows that

max(rankT2(P ), rankT3(P )) ≤ bn/2c.
As already observed, if D ∈Mn(C) is normal, then D is orthogonally reduc-
tive, and so if rankT3(P ) = 0, then automatically rankT2(P ) = 0. In light
of these observations, we see that the following result is the best possible; it
is the main theorem of Section 2.

2.5. Theorem. Let n ≥ 2 be a positive integer, 1 ≤ j, k ≤ bn/2c. Then
there exist a normal operator D ∈ Mn(C) and a projection P such that
relative to Cn = ranP ⊕ ran(I − P ) we can write

D =

[
D1 D2

D3 D4

]
,

where rankD2 = k and rankD3 = j.

Proof. Without loss of generality, we can assume that k ≥ j. First, we
set m := (k−j)+1. Applying Theorem 2.3 we may choose a normal element
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M ∈M2m(C) such that

M =

[
M1 M2

M3 M4

]
,

where rankM2 = (k − j) + 1 and rankM3 = 1. Define

D̂ =


Ij−1 Ij−1

M1 M2

M3 M4

Ij−1 Ij−1

 .
Here, it is understood that if j = 1, then I0 acts on a space of dimension
zero. Finally, let

D = 0n−2k ⊕ D̂ =


0n−2k

Ij−1 Ij−1

M1 M2

M3 M4

Ij−1 Ij−1

 .

(Again, if n = 2k, the 00 term is not required.) Set P = I(n−2k)+(j−1)+m ⊕
0m+(j−1), and relabel D =

[
D1 D2
D3 D4

]
relative to the decomposition Cn =

ranP ⊕ ran(I − P ). It is then routine to verify that rankD2 = k and
rankD3 = j.

2.6. The operator D constructed in Theorem 2.5 is far from unique.
Indeed, we first note that we were free to choose arbitrarily large γ’s in the
definition of A andB earlier. Secondly, it is not hard to show that by choosing
B = A∗ and Z as we did above, and by defining S such that S•Z = 2iQ, S is
always hermitian. Thus, given one triple (A,B, S) as above that works, if we
slightly perturb the weights αj of our given A to obtain a diagonal matrix
A0 and we set B0 = A∗0, then the new S0 we require to make S0 • Z0 = 2iQ
will be sufficiently close to the original S so as to be invertible (since the set
of invertible operators is open in Mm(C)).

2.7. An interesting, but apparently far more complicated, question is to
characterise those normal operators D ∈ M2m(C) for which it is possible to
find a projection P of rank equal to m such that rank (I − P )DP = 1 and
rankPD(I − P ) = m. We are not able to resolve this question at this time.
We can assert, however, that not only is such a normal operator abstractly
“far away” from operators with property (CR); in fact, we are able to quantify
this distance, and say a bit more about the structure of D.
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Let n ≥ 1 be an integer, and recall that the function

ρ : Mn(C)×Mn(C)→ {0, 1, 2, . . .}, (A,B) 7→ rank(A−B),

defines a metric on Mn(C).
We also recall that an operator T ∈ B(H) (where dimH ∈ N ∪ {∞})

is said to be cyclic if there exists x ∈ H such that span {x, Tx, T 2x, . . .}
is dense in H. Obviously this can only happen if H is separable, and it is
well-known that a normal operator is cyclic if and only if it has multiplicity
one, that is, its commutant N ′ := {X ∈ B(H) : XN = NX} is a masa (i.e. a
maximal abelian selfadjoint subalgebra of B(H)). If N is a compact, normal
operator, then this is equivalent to saying that the eigenspaces corresponding
to the eigenvalues of N are all one-dimensional, and together they densely
span the Hilbert space.

2.8. Theorem. Let m ≥ 3 be an integer, and suppose that D ∈M2m(C)
is a normal operator. Suppose that P ∈M2m(C) is an orthogonal projection
of rank m such that rank (I − P )DP = 1 and rankPD(I − P ) = m. Then:

(a) D has 2m distinct eigenvalues (and therefore it is a cyclic operator);
(b) ρ(D,Y ) ≥ b(m− 1)/2c for all Y ∈ Y, where Y is the set of matrices in

M2m(C) which satisfy property (CR).

Proof. First observe that Y is closed under perturbations by scalar mul-
tiples of the identity operator. Hence, we may assume that D is invertible,
since otherwise we simply add a sufficiently large multiple of the identity
to D, which affects neither the hypotheses nor the conclusion of the theorem.

(a) Next, we set P0 := P , and let V0 be the range of P0. By hypothesis,

dim(V0 ∨DV0) = m+ 1, dim(V0 ∩D−1V0) = m− 1.

More generally, we claim that the following chain of subspaces has strictly
increasing dimensions (from 0 to n = 2m):

V−m ⊂ V−m+1 ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vm,
where

Vk+1 = Vk ∨DVk, ∀ 0 ≤ k ≤ m− 1,

Vk−1 = Vk ∩D−1Vk, ∀−m+ 1 ≤ k ≤ 0.

Assume to the contrary that this fails. Let Pk be the projection onto the
range of Vk, −m ≤ k ≤ m.

(i) If Vk+1 = Vk for some 0 < k < m, then DVk = Vk. This implies that
D∗Vk = Vk, i.e., PkD(I − Pk) = 0. Since Pk ≥ P0, we deduce that

P0D(I − Pk) = 0

(rankPk = dimVk ≤ m + k < 2m). In other words, P0D(I − P0) has
non-trivial kernel in V0, a contradiction.
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(ii) Similarly, if Vk+1 = Vk for some −m ≤ k < 0, then once again DVk = Vk
and PkD(I − Pk) = 0. Since Pk ≤ P0, we deduce that

PkD(I − P0) = 0

(rankPk = dimVk+1 = dimVk ≥ 1). This implies that the range of
P0D(I − P0) is smaller than that of P0; a contradiction.

Thus the claim is proved.
In particular, V−m+1 is one-dimensional. Pick a unit vector in V−m+1.

We next show that x is a cyclic vector for D.
Note thatDx /∈ V−m+1, and hence x,Dx span V−m+2. Under the assump-

tion that {x,Dx, . . . ,Djx} spans V−m+j+1, we see that {x,Dx, . . . ,Dj+1x}
spans V−m+j+2 by construction. This is true for all 0 ≤ j ≤ 2m − 1, which
proves that x is a cyclic vector for D.

(b) With the decomposition C2m = ranP ⊕ ran(I − P ), we may write

D =

[
D1 D2

D3 D4

]
.

Next, suppose that Y ∈ Y, so that Y has the common rank property. With
respect to the same decomposition of C2m, we have

Y =

[
Y1 Y2

Y3 Y4

]
.

Define F := D − Y and write

F =

[
F1 F2

F3 F4

]
.

Clearly D2 = Y2 + F2 and D3 = Y3 + F3. Denote by r the rank of F . Then

m = rankD2 ≤ rankY2 + rankF2 ≤ rankY2 + r,

and similarly
rankY3 ≤ rankD3 + rankF3 ≤ r + 1.

But rankY2 = rankY3, since Y has property (CR), so it follows that

m ≤ r + r + 1,

and thus r ≥ b(m− 1)/2c. Hence, ρ(D,Y ) ≥ b(m− 1)/2c.

2.9. An inspection of the proof of part (b) above shows that the finite-
dimensionality of the underlying Hilbert space did not really play a role. In
fact, if H is infinite-dimensional, 0 ≤ j, k < ∞, D ∈ B(H) is normal and
P ∈ B(H) is a projection for which

rank (I − P )DP = j and rankPD(I − P ) = k,



10 L. W. Marcoux et al.

then the same argument shows that rank(D − Y ) ≥ b|k − j|/2c for all Y ∈
B(H) with property (CR).

3. The infinite-dimensional case

3.1. Throughout this section, we shall assume that the underlying Hilbert
space H is infinite-dimensional and separable. Our first goal here is to extend
Theorem 2.5 to this setting.

3.2. Theorem. For all 0 ≤ j, k ≤ ∞, there exist a normal operator
D ∈ B(H) and an orthogonal projection P ∈ B(H) for which

rank (I − P )DP = j and rankPD(I − P ) = k.

Proof. By replacing P by I − P if necessary, it becomes clear that there
is no loss of generality in assuming that j ≤ k.

Case 1: j = 0. If k = 0 as well, we may consider D = I, the identity
operator, and let P be any non-trivial projection.

For k = 1, we consider the bilateral shift U : that is, let {en}∞n=1 be an
orthonormal basis for H, and set Uen = en−1 for all n ∈ Z. Let P0 denote
the orthogonal projection of H onto span{en}n≤0. The condition above is
satisfied with D := U , P := P0.

For 2 ≤ k ≤ ∞, we simply consider the tensor product D := U ⊗ Ik
of U above with Ik, the identity operator acting on a Hilbert space K of
dimension k, and we set P := P0 ⊗ Ik to obtain the desired rank equalities.

Case 2: 1 ≤ j < ∞. Let U denote the bilateral shift from Case 1,
and P0 denote the orthogonal projection of H onto span{en}n≤0. If H :=
(U+U∗)⊗Ij , it is relatively straightforward to verify that with Q1 := P0⊗Ij ,
we have

rank (I −Q1)HQ1 = j = rankQ1H(I −Q1).

Next, let R := U ⊗ Ik−j (where ∞ − j := ∞) and choose a projection
Q2 := P0 ⊗ Ik−j as in Case 1 such that

rank (I −Q2)RQ2 = 0 and rankQ2R(I −Q2) = k − j.
A routine calculation shows that with D := H ⊕ R and P := Q1 ⊕Q2, the
desired rank equalities are met.

Case 3: j = ∞. Since we have reduced the problem to the case where
j ≤ k, it follows that k =∞ as well.

Consider the selfadjoint operator Ĥ :=
[
1 1
1 1

]
∈ M2(C). Then H :=

Ĥ ⊗ I =
[
I I
I I

]
satisfies the condition relative to the projection P = I ⊕ 0.

The case where j = 1 and k = ∞ in the above theorem is only one
possible infinite-dimensional analogue of Theorem 2.3. Alternatively, we may
view that theorem as requiring that D2 be invertible. Interestingly enough,
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this is no longer possible in the infinite-dimensional setting. In fact, a stronger
(negative) result holds.

3.3. Proposition. There does not exist a normal operator

D =

[
D1 D2

D3 D4

]
in B(H⊕H) such that D2 is invertible and D3 is compact.

Proof. We argue by contradiction. If such a normal operator D were to
exist, it would follow that

D2D
∗
2 = (D∗1D1 −D1D

∗
1) +D∗3D3.

Since D2 is invertible, D2D
∗
2 is positive and invertible, and thus 0 is not in

the essential numerical range of D2D
∗
2. On the other hand, by a result of

the second author [6, Theorem 8], and keeping in mind that D3 is compact,
0 is indeed in the essential numerical range of (D∗1D1 − D1D

∗
1) + D∗3D3,

a contradiction.

3.4. When 1 ≤ m < ∞, it is clear that an operator D2 ∈ Mm(C)
is invertible if and only if D2 is a quasiaffinity, i.e. it is injective and has
dense range. Moreover, in the infinite-dimensional setting, not every normal
operator is orthogonally reductive. Despite this, in light of Proposition 3.3,
the next example is somewhat surprising.

3.5. Theorem. There exists a normal operator

D =

[
D1 D2

0 D4

]
in B(H⊕H) such that D2 is a quasiaffinity.

Proof. Let A = U+2U∗ and B = A∗ = U∗+2U , where U is the bilateral
shift operator (i.e. Uen = en−1, n ∈ Z) from Theorem 3.2. Then D := A⊕B
is easily seen to be a normal operator.

Let M ∈ B(H) be a positive contraction, and let N := (I −M2)1/2, so
that MN = NM and M2 +N2 = I. From this it follows that

P :=

[
M2 MN

MN N2

]
is an orthogonal projection in B(H⊕H). Arguing as in Theorem 2.3, we see
that

[
M
N

]
and

[
N
−M

]
are both isometries from H into H ⊕ H, and that it

suffices to find M and N as above such that

(NAM −MBN) = [N −M ]

[
A 0

0 B

] [
M

N

]
= 0,
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while

(MAN −NBM) = [M N ]

[
A 0

0 B

] [
N

−M

]
is injective and has dense range.

We shall choose M (and thus N) to be diagonal operators relative to the
orthonormal basis {en}n∈Z, M = diag((αn)n∈Z), where αn := 1/

√
1 + 4−n

for each n ∈ Z. The condition that N = (I − M2)1/2 implies that N =
diag((βn)n∈Z), where βn = 2−n/

√
1 + 4−n for all n ∈ Z.

It is easy to see that M and N are commutative, positive contractions
and M2 +N2 = I by construction.

Next,

NAMen = NA(αnen) = αnN(en−1 + 2en+1) = αn(βn−1en−1 + 2βn+1en+1),

while

MA∗Nen=MA∗(βnen)=βnM(en+1 +2en−1)=βn(αn+1en+1 +2αn−1en−1).

But

αnβn−1 =
1√

1 + 4−n
2−(n−1)√
1 + 4−(n−1)

=
2√

1 + 4−(n−1)

2−n√
1 + 4−n

= 2αn−1βn,

and similarly

2αnβn+1 =
2√

1 + 4−n
2−(n+1)√
1 + 4−(n+1)

=
1√

1 + 4−(n+1)

2−n√
1 + 4−n

= αn+1βn.

Since this holds for all n ∈ Z, NAM −MA∗N = 0, as claimed.
As for the second equation we must verify, observe that

(MAN −NA∗M)∗ = NA∗M −MAN = −(MAN −NA∗M).

Hence, we need only show that MAN − NA∗M is injective, since then
(MAN −NA∗M)∗ is also injective and thus, in particular, both have dense
range.

Again, we compute for each n ∈ Z that

(MAN −NA∗M)en

=MANen −NA∗Men =MA(βnen)−NA∗(αnen)
= βnM(en−1 + 2en+1)− αnN(en+1 + 2en−1)

= βn(αn−1en−1 + 2αn+1en+1)− αn(βn+1en+1 + 2βn−1en−1)

= (αn−1βn − 2αnβn−1)en−1 + (2αn+1βn − αnβn+1)en+1.
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Suppose that x =
∑

n∈Z xnen ∈ ker(MAN −NA∗M). Then

0 = (MAN −NA∗M)
∑
n∈Z

xnen

=
∑
n∈Z

xn
(
(αn−1βn − 2αnβn−1)en−1 + (2αn+1βn − αnβn+1)en+1

)
.

By equating coefficients, we see that for all p ∈ Z,
xp+1(αpβp+1 − 2αp+1βp) + xp−1(2αpβp−1 − αp−1βp) = 0,

or equivalently

xp+1 = −
2αpβp−1 − αp−1βp
αpβp+1 − 2αp+1βp

xp−1 for all p ∈ Z.

But a routine calculation shows that

2αpβp−1 − αp−1βp
αpβp+1 − 2αp+1βp

= −2
√

1 + 4−(p+1)√
1 + 4−(p−1)

,

and so the condition ‖x‖2 =
∑

p∈Z |xp|2 <∞ clearly implies that

xp = 0 for all p ∈ Z.
Thus ker(MAN − NA∗M) = 0 = ker(MAN − NA∗M)∗, as required to
complete the proof.

Using a slightly more subtle “direct sum” device than in Case 2 of Theo-
rem 3.2, we obtain:

3.6. Corollary. If j is any positive integer, then there exists a normal
operator D ∈ B(H⊕H) and a projection P ∈ B(H⊕H) of infinite rank and
nullity such that

rank (I − P )DP = j

and PD(I − P ) is a quasiaffinity.

Proof. By Theorem 3.5, we can find a normal operator N =
[
N1 N2
0 N4

]
∈

B(H⊕H) such that N2 is a quasiaffinity. Let Q =
[ Ij Ij
Ij Ij

]
∈M2j(C), so that

Q is (2 times) a projection of rank j. Then D := N ⊕ Q is clearly normal,
and it is unitarily equivalent to

Ij Ij

N1 N2

0 N4

Ij Ij

 .
Set D1 =

[ Ij 0
0 N1

]
, D2 =

[ 0 Ij
N2 0

]
, D3 =

[ 0 0
Ij 0

]
and D4 =

[N4 0
0 Ij

]
. Clearly

rankD3 = j and D2 is a quasiaffinity.
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3.7. In Theorem 2.8, we saw that if D ∈M2m(C) is a normal matrix, and
if P ∈M2m(C) is a projection of rank m such that rank (I −P )DP = 1 and
rankPD(I − P ) = m, then D is necessarily cyclic. It is reasonable to ask,
therefore, whether an analogue of this might hold in the infinite-dimensional
setting. In general, the answer is no.

3.8. Corollary. For any integer j ≥ 0, there exists a non-cyclic normal
operator D ∈ B(H) and an orthogonal projection P ∈ B(H) of infinite rank
and nullity such that

rank (I − P )DP = j

and PD(I − P ) is a quasiaffinity.

Proof. By Theorem 3.5, we can choose a normal operator N ∈ B(H)
with

N =

[
N1 N2

0 N4

]
,

where N2 is a quasiaffinity, and by Corollary 3.6 (or by Theorem 3.5 once
again if j = 0), we may choose a normal operator M ∈ B(H) such that

M =

[
M1 M2

M3 M4

]
,

where rankM2 = j and M2 is a quasiaffinity.
Define

D =



N1 N2

N1 N2

M1 M2

M3 M4

0 N4

0 N4


.

Letting P = I⊕I⊕I⊕0⊕0⊕0, we see that rank (I−P )DP = rankM3 = j
and PD(I − P ) is a quasiaffinity. Moreover, D is unitarily equivalent to
N ⊕N ⊕M , and thus is not cyclic.

4. Compact normal operators

4.1. Let D ∈ B(H) (where H is either finite- or infinite-dimensional) be
a normal operator, and let P ∈ B(H) be a non-trivial projection. Write

D =

[
D1 D2

D3 D4

]
relative to the decomposition H = ranP ⊕ ran(I − P ).
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The fact that in the infinite-dimensional setting we can find D and P
as above such that D3 = 0 6= D2, whereas no such D and P exist when
dimH < ∞, is the statement that not every normal operator acting on an
infinite-dimensional Hilbert space is orthogonally reductive, whereas every
normal matrix is.

In [1], the concept of an almost invariant subspace for bounded linear
operators T acting on infinite-dimensional Banach spaces was introduced.
Given a Banach space X and an infinite-dimensional (closed) subspace M
of X such that X/M is again infinite-dimensional (M is then called a half-
space of M), we say that M is almost invariant for T if there exists a finite-
dimensional subspace F of X such that TM ⊆M+F. The minimal dimension
of such a space F is referred to as the defect of T relative to M. In [5] and [7],
it was shown that every operator T acting on an infinite-dimensional Banach
space admits an almost invariant half-space of defect at most 1. This is a
truly remarkable result.

As a possible generalisation of the notion of reductivity for Hilbert space
operators, we propose the following definition.

4.2. Definition. An operator T ∈ B(H) is said to be almost reductive
if for every projection P ∈ B(H), the condition rank (I−P )TP <∞ implies
that rankPT (I − P ) <∞.

4.3. It is clear that every invariant-half space is automatically almost-
invariant for T . If the notion of “almost-reductivity” is to make sense, one
should expect that every orthogonally reductive operator should be “almost
reductive”.

The relevance of this to the problem we have been examining is as follows:
if K ∈ B(H) is a compact normal operator, then it is well-known [8] that K
is orthogonally reductive. This leads to the following question.

4.4. Question. Is every compact normal operator K almost reductive?
(More generally, is every reductive normal operator D ∈ B(H) almost reduc-
tive?)

Phrased another way, does there exist a compact normal operator K and
a projection P (necessarily of infinite rank and nullity) such that

rank (I − P )KP <∞ and rankPK(I − P ) =∞?

The normal operators D constructed in Theorems 3.2 and 3.5 for which
rank (I−P )DP <∞ and rankPD(I−P ) =∞ were definitely not compact,
nor were they reductive.

So far, we have been unable to resolve this question. Indeed, we propose
the following (potentially simpler) one:
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4.5. Question. Do there exist a compact normal operator K ∈ B(H)
and a projection P ∈ B(H) such that rank (I −P )KP <∞ and PK(I −P )
is a quasiaffinity?

While we do not have an answer to this question, nevertheless, there are
some things that we can say about its structure, should such an operator K
exist. First we recall a result of Fan and Fong.

4.6. Theorem ([3, Theorem 1]). Let H be a compact hermitian operator.
Then the following are equivalent:

(a) H = [A∗, A] for some compact operator A.
(b) There exists an orthonormal basis {en}n∈N such that 〈Hen, en〉 = 0 for

all n ∈ N.

Recall that a compact operator K ∈ B(H) is said to be a Hilbert–Schmidt
operator if there exists an orthonormal basis {en}∞n=1 for H such that

‖K‖2 := (tr(K∗K))1/2 =
( ∞∑
n=1

〈K∗Ken, en〉
)1/2

<∞.

(Equivalently, this holds for all orthonormal bases {en}∞n=1.) When this is
the case, the map K 7→ ‖K‖2 defines a norm on the set C2(H) of all Hilbert–
Schmidt operators on H. (Although this is not the original definition of
C2(H), it is equivalent to it.)

4.7. Corollary. Let

K =

[
K1 K2

K3 K4

]
be a compact normal operator in B(H⊕H). Then K2 ∈ C2(H) if and only if
K3 ∈ C2(H), in which case ‖K2‖2 = ‖K3‖2.

In particular, therefore, if K3 is a finite-rank operator, then K2 must be
a Hilbert–Schmidt operator.

Proof. As K is normal, it follows that K∗1K1 +K∗3K3 = K1K
∗
1 +K2K

∗
2 ,

and thus [K∗1 ,K1] = K2K
∗
2 − K∗3K3. Now, K1 is compact, and so by the

above theorem, there exists an orthonormal basis {en}n∈N such that
〈(K2K

∗
2 −K∗3K3)en, en〉 = 0 for all n ∈ N.

Suppose that K3 ∈ C2(H). Then

‖K3‖22 = tr(K∗3K3) =

∞∑
n=1

〈K∗3K3en, en〉 <∞.

Therefore,
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∞∑
n=1

〈K2K
∗
2en, en〉 =

∞∑
n=1

〈K∗3K3en, en〉 <∞,

proving that K2 ∈ C2(H), and ‖K2‖2 = ‖K3‖2.
The last statement of the theorem is obvious.

4.8. The proof of Theorem 2.8 yields a very specific structure result for
normal matricesD ∈M2m(C) for which there exists an orthogonal projection
P satisfying rank (I−P )DP = 1 and rankPD(I−P ) = m. Since orthogonal
reductivity and normality of matrices coincide, Proposition 4.10 below can
be seen as an extension of that structure result to the infinite-dimensional
setting.

4.9. Definition. By a simple bilateral chain of subspaces of a Hilbert
space H we mean a sequence {Mj}∞j=−∞ of closed subspaces with

· · · ⊂ M−2 ⊂M−1 ⊂M0 ⊂M1 ⊂M2 ⊂ · · · ,

where dim(Mj+1 	Mj) = 1 for all j ∈ Z. We say an operator T ∈ B(H)
shifts forward a simple bilateral chain {Mj}∞j=−∞ if

TMj ⊂Mj+1, ∀j ∈ Z.

4.10. Proposition. Let T be an orthogonally reductive operator on H
and assume that relative to a decomposition H = H1 ⊕H2 it has the repre-
sentation

T =

[
A L

F B

]
,

where F has rank 1 and L has infinite rank. Then T has an infinite-dimen-
sional invariant subspace H0 (not necessarily proper) such that the restriction
T0 of T to H0 shifts forward a simple bilateral chain {Mj}∞j=−∞ of subspaces.

Proof. Assume with no loss of generality that T is invertible and let
M0 = H1. We will define subspaceMj inductively: we set

Mj+1 =Mj + TMj , ∀j ≥ 0,

Mj−1 =Mj ∩ T−1Mj , ∀j ≤ 0.

Then

· · · ⊂ M−1 ⊂M0 ⊂M1 ⊂ · · · , TMj ⊂Mj+1, ∀j ∈ Z.

The assumption that F has rank 1 implies thatM1 	M0 has dimension 1.
It follows inductively that the dimension ofMj+1 	Mj is at most 1 for all
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j ∈ Z. We shall show that this difference in dimensions is exactly 1 for all
j ∈ Z.

Suppose not. First assume j > 1. IfMj+1 =Mj , thenMj is invariant
under T and thus reducing. This means that

PjT (I − Pj) = 0,

with Pj denoting the orthogonal projection ontoMj . In particular, then,

L(I − Pj) = P0L(I − Pj) = 0.

But this implies that the rank of L is at most j, which is a contradiction.
The proof for j < 1 is similar. In summary, we conclude that {Mj}∞j=−∞

is a proper bilateral chain of subspaces.
Now

⋂∞
j=−∞Mj and

∨∞
j=−∞Mj are both invariant, and hence reducing.

Let

H0 =
( ∞∨
j=−∞

Mj

)
	
( ∞⋂
j=−∞

Mj

)
,

and note that if we define

M′j =Mj 	
( ∞⋂
k=−∞

Mk

)
,

and T0 := T |H0 , then {M′j}∞j=−∞ is the desired bilateral chain in H0 which
T0 shifts forward.

For compact normal operators, we can obtain a stronger result.

4.11. Corollary. If K is a compact normal operator on H = H1⊕H2

of the form

K =

[
A L

F B

]
,

where F has rank 1 and L is a quasiaffinity, then K shifts forward a simple
bilateral chain {Mj}∞j=−∞ of subspaces. (Here it is understood that dimH1 =
∞ = dimH2.)

Proof. It is well-known that compact normal operators are orthogonally
reductive [8]. Thus we must only show that the subspace H0 of the proposi-
tion above coincides with H. In other words,

∞⋂
j=−∞

Mj = 0,
∞∨

j=−∞
Mj = H.
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Set

N1 =
∞⋂

j=−∞
Mj , N2 =M0 	N1,

N3 =
( ∞∨
j=−∞

Mj

)
	M0, N4 =

( ∞∨
j=−∞

Mj

)⊥
.

As N1,
⊕

1≤i≤3Ni are both invariant and therefore reducing for K, with
respect to the decomposition H = H1 ⊕ H2 = (N1 ⊕ N2) ⊕ (N3 ⊕ N4), we
may write

K =

[
A L

F B

]
H1

H2

=


A1 0 0 0

0 A2 L′ 0

0 F ′ B3 0

0 0 0 B4


N1

N2

N3

N4

.

Since

L =

[
0 0

L′ 0

]
is a quasiaffinity, it follows that N1 = 0, and similarly N4 = 0. In other
words,

∞⋂
j=−∞

Mj = N1 = 0,
∞∨

j=−∞
Mj = N⊥4 = H.
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