
JITGNN: A Deep Graph Neural
Network for Just-In-Time Bug

Prediction

by

Hossein Keshavarz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Hossein Keshavarz 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Just-In-Time (JIT) bug prediction is the problem of predicting software failure imme-
diately after a change is submitted to the code base. JIT bug prediction is often preferred
to other types of bug prediction (subsystem, module, file, class, or function-level) because
changes are associated with one developer, while the entities that are predicted to be de-
fective in other forms of bug predictions might be developed by multiple developers. JIT
bug prediction can be applied when the design decisions are fresh in the developer’s mind;
therefore, it takes less effort to review the change and fix the potential issues. Over the years,
many approaches have been proposed to tackle the JIT bug prediction problem. These meth-
ods mainly rely on the change metrics such as the size of the change, the number of modified
files in the change, and the experience of the author.

Little work has been done on the inclusion of the syntax and semantics of the change
in JIT models. Also, although there has been extensive work on employing deep learning
models for other forms of bug prediction, there are not many deep models for JIT bug
prediction. None of the existing JIT models in which the changed code is included, consider
the graph structure of source codes and the change codes are considered as plain text in
these models. In this work, we propose a JIT model that incorporates both the content and
metadata of changes leveraging the graph structure of programs. To this end, we designed
and built JITGNN, a deep graph neural network (GNN) framework for JIT bug prediction.
JITGNN uses the abstract syntax trees (ASTs) of changed programs. We evaluate the
performance of JITGNN on two datasets and compare it to a baseline and the state-of-the-art
JIT models. Our study shows that JITGNN achieves the same AUC as the state-of-the-art
model (JITLine), which does not consider the code structure of source codes, and they both
have the same discriminatory power.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible. Especially my won-
derful supervisor, Professor Meiyappan Nagappan, for his support and guidance throughout
this process, and above all, being an amazing human being. I would also like to thank
Professor Gema Rodŕıguez-Pérez, Professor Shane McIntosh, and Professor Yasutaka Kamei
for offering me their time, support, and ideas. Finally, special thanks to Professor Shane
McIntosh and Professor Yaoliang Yu for reviewing this thesis and offering me their helpful
suggestions.

As a member of the University of Waterloo, I acknowledge that this work took place on
the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples.

iv

Dedication

I dedicate this work to my parents, my little sister, my older sister and her lovely children,
and my friends, especially Sadegh.

v

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Related Work 4

2.1 Bug Prediction . 4

2.2 JIT Bug Prediction . 5

2.3 Deep Learning in JIT . 6

2.4 Graph Networks in Software Engineering . 6

3 ApacheJIT 8

3.1 Previous JIT Datasets . 9

3.2 ApacheJIT Dataset & Usage . 9

3.3 Data Construction . 10

3.3.1 Bug Report Collection . 13

3.3.2 Fixing Commit Collection . 13

3.3.3 Finding Bug-inducing Commits . 14

3.3.4 Finding Clean Commits . 16

3.3.5 Commit Metrics . 17

4 Dataset 18

4.1 OpenStack . 18

4.2 ApacheJIT . 18

vi

5 JITGNN Framework 20

5.1 Overview . 20

5.2 Change Subtrees & Commit Graphs . 22

5.3 Node Features . 23

5.4 Graph Convolutional Network . 23

5.5 Attention Mechanism . 25

5.6 Neural Tensor Network . 26

5.7 Commit Metrics . 27

5.8 Feed-forward Neural Network . 27

6 Experiments & Results 29

6.1 Data Preparation . 29

6.1.1 JITGNN Compatibility . 29

6.1.2 Training-Test Split . 30

6.2 Comparison Models . 31

6.2.1 Naive . 31

6.2.2 Baseline . 31

6.2.3 State-of-the-art . 32

6.3 Evaluation Metrics . 32

6.4 Experiments & Results . 33

6.4.1 RQ1: Can we replicate the baseline and the state-of-the-art JIT bug
prediction models? . 33

6.4.2 RQ2: How does JITGNN perform compared to the baseline and the
state-of-the-art JIT bug prediction models? 35

6.4.3 RQ3: How does the size of the training set impact the performance of
JITGNN on unseen data? . 38

7 Discussion 41

7.1 JITGNN Performance . 41

7.2 Khata . 42

7.3 Threats to Validity . 43

7.3.1 Construct Validity . 43

7.3.2 External Validity . 44

7.3.3 Internal Validity . 45

vii

8 Future Work & Conclusion 47

References 49

viii

List of Figures

5.1 Overview of the JITGNN workflow . 21

7.1 Workflow of Khata . 43

7.2 The distribution of probabilities generated by JITGNN and JITLine on the
OpenStack dataset . 43

7.3 The distribution of probabilities generated by JITGNN and JITLine on the
ApacheJIT dataset . 44

ix

List of Tables

3.1 Commit metrics in JITGNN . 11

3.2 The number of collected issues and the statistics of ApacheJIT. Percentages
under the Bug-inducing column indicate the ratio of bug-inducing commits to
total commits. 12

3.3 Selected Apache projects in this study . 12

6.1 Statistics of datasets . 30

6.2 Replication result of the baseline model and JITLine on the original Open-
Stack dataset . 34

6.3 JIT bug prediction model results . 36

6.4 The number of predictions the three models made right and wrong with re-
spect to each other . 37

6.5 Evaluations of threshold-dependent metrics for thresholds in [0.20, 0.70] with
increaments of 0.05 . 39

6.6 JITGNN performance on different sizes of ApacheJIT training set 40

x

Chapter 1

Introduction

Software changes —whether they are fixing issues, adding features to the software, or im-
proving existing features— are a major part of the software life cycle. Software evolves
because of these changes, but this evolution is not always positive, and these changes may
introduce bugs into the system. Ideally, software maintainers want to remove such issues as
soon as possible, before users are exposed to them. One remedy for detecting such issues and
fixing them before exposure is bug prediction. Bug prediction is studied in different levels
of software structure (subsystems [53], modules [26], files [52]).

A popular trend in bug prediction is to predict bugs at the change-level [39]. This form
of bug prediction is referred to as Just-In-Time (JIT) Bug Prediction [36]. The advantage of
JIT bug prediction is that each software change is associated with only one developer and by
predicting bugs immediately after a change is submitted, the developer still has the design
decisions in his mind when alerts are raised, making it require less effort to find and fix the
problems.

Over the years, many JIT bug prediction models (JIT models for short) were proposed.
Commonly, they are machine learning models that are trained on historical data comprised
of software changes with labels identifying whether a change introduced bugs into the system
(bug-inducing) or not (clean). In the context of Git, we refer to software changes as Commits.
These JIT models then are tested on unseen data to predict whether a commit is bug-inducing
or not. This prediction can be either a binary classification or a regression problem where
the goal is to predict the probability of a commit being bug-inducing.

The early JIT models were logistic regression models trained on a set of handcrafted
features derived from commit metrics [35, 67, 47]. These metrics include information about
different aspects of commits, such as the size of the change, the number of files, directories,
and subsystems, the history of the changed files, and the experience of the commit author.
The problem with using these metrics is that they do not include any information about
the content of the change, and two arbitrary changes with similar metrics will be treated
similarly without considering the change codes.

More recently, there have been works on the inclusion of the syntactic and semantic
information of the changes into JIT models [30, 32, 58], and they achieved better perfor-
mances. JITLine [58], for example, is the most recent work in this area, and it outperforms

1

the prior models in most of the evaluation metrics the authors report. These approaches,
however, consider the changed code as plain natural language text and do not consider the
code structure of programs. Lately, using deep learning on the graph structure of programs
derived from their abstract syntax trees (ASTs) has gained popularity in different areas of
software engineering and programming languages [7, 8, 3, 54, 81, 13]. Some of these works
leverage deep graph neural networks (GNNs) to directly apply novel GNN models, which
are proved to be effective in other areas of computing, on program graphs.

In this work, we investigate applying a GNN on the JIT bug prediction problem to see if
GNNs are effective in this domain. We built a deep GNN framework, called JITGNN, that
performs JIT bug prediction by applying graph convolutional networks (GCNs) on the trees
obtains from the AST of programs before and after the change. More specifically, JITGNN
extracts the AST of the programs that are modified in a commit before and after the change
and discards the AST nodes that are not changed or not directly connected to changed nodes
to form change subtrees. Then, the pre-change subtree and the post-change subtree are fed
as inputs to two 4-layer GCNs. The two GCNs learn vector representations of the nodes
and two attention mechanism layers dynamically aggregate node vector representations to
produce global graph-level vector representations. A neural tensor network (NTN) combines
the graph-level representations of the pre-change and post-change AST subtrees and outputs
a vector. This vector is concatenated with the commit metrics that conventionally have
been used in JIT models. Finally, a feed-forward neural network outputs a probability that
indicates how likely the commit is bug-inducing.

1. RQ1: Can we replicate the baseline and the state-of-the-art JIT bug pre-
diction models?

2. RQ2: How does JITGNN perform compared to the baseline and the state-
of-the-art JIT bug prediction models?

3. RQ3: How does the size of the training set impact the performance of
JITGNN on unseen data?

To answer the above research questions, we used the OpenStack dataset built by McIntosh
and Kamei [47] and the ApacheJIT dataset that we collected and presented in Keshavarz
and Nagappan [37] (more details in Chapter 3). We compared the performance of JITGNN
with two existing JIT models. We used the multiple regression modeling that was adopted in
McIntosh and Kamei [47] as the baseline model and JITLine [58] as the state-of-the-art JIT
model. We evaluated the performance of the baseline, JITLine, and JITGNN by measuring
the area under the ROC curve (AUC), F1 score, precision, and recall.

After the performance analysis, we implemented an open-source JIT tool, called Khata,
that developers can install on their machines and use to evaluate the riskiness of the staged
changes in their Git working directory.

The contributions of this work are:

• Proposing the first deep GNN model for JIT bug prediction called JITGNN.

2

• Evaluating the performance of JITGNN against the baseline and the state-of-the-art
JIT models.

• Investigating the impact of the size of the training set on the performance of our deep
GNN model.

• Implementing a practical open-source JIT tool to evaluate software changes and report
the riskiness probability of the changes to developers.

The organization of this thesis is as follows: In Chapter 2, we review the related work.
Chapter 3 presents our work on building the ApacheJIT dataset. Chapter 4 introduces the
datasets we used in this study. We explain the architecture and the specifications of JITGNN
in Chapter 5. In Chapter 6, the experiment setups and results are presented. We discuss our
results and introduce Khata in Chapter 7. And finally, we conclude this work in Chapter 8.

3

Chapter 2

Related Work

In this section, we review the literature on bug prediction in general and then give further
overviews of the works that are done in Just-In-Time (JIT) bug prediction, deep learn-
ing models proposed for this problem, and using graph networks to tackle other software
engineering problems involving the source codes.

2.1 Bug Prediction

The problem of bug prediction has been extensively studied in the literature and many
approaches have been proposed to allocate quality assurance resources to the defect-prone
entities in software systems. Researchers have worked on various forms of bug prediction.
These forms mainly differ in the level of granularity and the definition of a software entity in
their contexts. System-level [53], module-level [26], file-level [52], class-level [18, 9, 62], and
function-level [83] are different levels of granularity for which researchers proposed methods
to identify defect-prone entities before software issues are exposed. Kim et al. [38] per-
formed combinatory research and used cached change location to predict bugs in different
levels from directory-level to function-level based on the locality assumption. The features
that are commonly used in these works are code complexity features but over time, change
process features were proved to be better indicators of defect-prone entities and gained more
popularity [27, 35].

In the context of bug prediction forms mentioned above, rather than a classification
problem, bug prediction has been mainly considered as a regression problem where the goal
is to find the number of defects in an entity or to predict the defect density (ratio of defects
to size). Another form of bug prediction is change-level, in which the problem is to classify
the software changes that are defect-prone. The first work on change-level bug prediction
goes back to Mockus and Weiss’s work [50], where the authors utilized logistic regression
to carry out the classification. The features they selected for their study were a set of code
complexity measures such as size, diffusion, files, and author experiences. Kim et al. [39]
followed Mockus and Weiss [50] and classified changes to clean and bug-inducing changes.
They selected a wide variety of features to train an SVM classifier. These features include

4

change message terms, the change terms from added and deleted lines, code complexity
metrics, and change metadata (such as time, author, history).

2.2 JIT Bug Prediction

Kamei et al. [35] and Mende and Koschke [49] took the effort required to review fault-prone
entities into consideration and worked on effort-aware bug prediction. Shihab et al. [67]
conducted an industrial study on risky software changes. They made a distinction between
bug-inducing changes and risky changes, which are not necessarily going to introduce bugs
into the system but can have negative impacts on the software. They proposed an extensive
set of change and code metrics and evaluated the importance of these factors.

Later, Kamei et al. [36] included the effort aspect in the change-level bug prediction and
coined the term “Just-In-Time Quality Assurance” or “Just-In-Time Bug Prediction”. In
this work, they proposed a set of 14 factors in 5 dimensions, which were introduced by the
previous work, that are the most important indicators of the defect-proneness of software
changes. In this regard, they focused on change factors and discarded code factors. They
trained an effort-aware logistic regression (EALR) on the data from 6 open-source and 5
commercial software projects.

Kamei et al. ’s work [36] is a turning point in the direction of bug prediction research.
Just-In-Time bug prediction attracted a lot of attention after this work and various aspects
of this form of bug prediction were studied over the years. Fukushima et al. [23] attempted
to solve the problem of small training data by training a cross-project model. They created
a pool of training data from 11 different projects and selected the same 14 change metrics
as Kamei et al. [36]; however, they changed their classifier to the random forest classifier.
They showed that models that perform well within a project generally do not work well in
the cross-project setting unless the training and test projects are similar.

Tan et al. [70] addressed two problems with the existing JIT bug prediction models by
not adopting k-fold cross-validation (because it naturally does not comply with the real-
world setting in JIT models) and applying 4 resampling techniques to overcome the class
imbalance problem. McIntosh and Kamei [47] studied how the evolution of software and
software changes impact the performance of JIT models in a longitudinal study. They built
a carefully curated JIT dataset from the Git commits of two open-source projects and used
multiple regression modeling to predict the probability of commits being bug-inducing.

Recently, a powerful JIT bug prediction model called JITLine was proposed [58]. JIT-
Line compares its performance and training time against the existing state-of-the-art on
the dataset that was built by McIntosh and Kamei [47]. JITLine beats the existing mod-
els in most of the evaluation metrics. Throughout this paper, we refer to JITLine as the
state-of-the-art or JITLine interchangeably.

5

2.3 Deep Learning in JIT

Although there has been extensive work done on deep learning models in software defect
prediction [73, 43, 72, 16, 46, 12, 74, 61], little research is conducted on deep learning in
Just-In-Time bug prediction. The first work in this area is Deeper [77]. Adopting the same
14 change metrics as Kamei et al. [36], Yang et al. [77] used deep belief networks (DBN) [28]
in this work to map the handcrafted features to feature representations in latent space. The
latent feature representations, then, were given to a logistic regression model to perform the
classification. The classification and feature extraction parts in Deeper are not end-to-end
and they are not trained jointly.

Qiao and Wang [60] proposed a 3-layer neural network that trains upon 10 of the 14
change metrics to predict the probability of a given change inducing bugs in the future.
They turned the JIT problem into a ranking problem and used 10-fold cross-validation; two
settings that do not comply with the real-world JIT bug prediction. Another deep learning
work on JIT bug prediction was done by Hoang et al. [30]. They proposed a model called
DeepJIT, which unlike Deeper, is an end-to-end deep model and the deep networks for feature
extraction and the deep networks for classification are trained jointly. DeepJIT is made up
of two convolutional neural networks (CNNs) followed by max pooling layers for automated
feature extraction and a feed-forward neural network to output a probability. The training
data in DeepJIT is code changes and commit messages of the commits.

The authors of DeepJIT further explored the use of deep learning to learn vector repre-
sentation of code changes in latent space and proposed CC2Vec [32]. JIT bug prediction is
one of the three tasks the authors of CC2Vec used to evaluate the performance of their model.
CC2Vec has a hierarchical attention network (HAN) to capture the hierarchical relationship
between text entities in the commit log message and the code changes. HAN outputs one
vector representation for the added lines and one for the deleted lines. These vectors are
given to a comparison layer where a neural tensor network (NTN) [68] is applied on the two
networks to output a single vector as the code change vector. To perform JIT bug prediction,
the output vector of CC2Vec is concatenated with the input vectors of DeepJIT (message
log and code changes). The resulting vector is given to DeepJIT to conduct the prediction.
The problem with CC2Vec is that CC2Vec trains on the entire data including the test set,
which is not an accepted practice because it does not reflect the real-world scenario where
models are trained on the available data to predict the unseen observations in the future.

2.4 Graph Networks in Software Engineering

Graph neural networks (GNNs) gained substantial popularity over the last decade. In recent
years, there has been a trend in software engineering to model programs with graphs and use
GNNs to solve software engineering and programming language problems with deep learning.
The gated graph neural network (GGNN) [45] is one of the earliest GNNs that was used in
the realm of programs. In this work, the authors extended the basic GNN by adding GRU
units [14] to update the hidden states of the nodes in the graph. One of the tasks they

6

experiment with in this work is program verification by approximating reachable program
states.

The use of GGNNs for program source codes was further studied by Allamanis et al.
[3]. Predicting variable names and selecting the correct variables are two tasks that are
approached in this work by employing GGNNs. This work attempted to represent programs
with graphs derived from their abstract syntax trees (ASTs). They extended the ASTs by
adding new edge types to capture control and data flow. The authors showed that applying
GGNN on the graph model of programs outperforms recurrent neural network (RNN) models
built upon the plain code text. Likewise, other areas of software engineering that deal with
program source codes started to use program graphs and GNNs to take the graph structure of
codes into consideration. These areas include program similarity [54], software vulnerability
[81, 13], and code summary [42].

To the best of our knowledge, this paper is the first work on JIT bug prediction using
graph neural networks (GNNs). There is little work on using program graphs to predict
bugs. Zimmermann and Nagappan [83] employed network analysis on the dependency graph
to find the defective binaries in Windows Server 2003. However, the context of our work
is Just-In-Time bug prediction, we use ASTs, and our prediction is done by graph neural
networks.

7

Chapter 3

ApacheJIT

JIT defect prediction models are machine learning models relying on historical data. They
require a set of past change revisions with each revision being identified whether or not it
introduced a bug to the software (bug-inducing). In addition to change revisions and change
labels, JIT defect prediction datasets often come with change metrics that have proved to
be helpful in analysis and prediction [36, 78, 47].

Over the past few years, deep learning models found their way to JIT defect prediction
[30, 32]. Although deep learning models have demonstrated solid performances in other
areas of computing [59, 4, 17], DeepJIT [30] and and CC2Vec [32] do not outperform simple
methods like logistic regression [47, 65]. This can be attributed to two main reasons. First,
there are not many JIT datasets publicly available and most of the existing ones are small;
while deep learning models are more effective when the size of the training data is large
[82, 10, 84]. Secondly, the number of bug-inducing changes in the lifetime of a software
system is often smaller than the number of clean changes. This leads to the class imbalance
problem in JIT datasets. Undersampling the majority class makes the dataset even smaller
and oversampling the bug-inducing class introduces bias. Deep learning models are more
sensitive to both [34].

For example, one of the most widely used datasets for JIT defect prediction is presented
by McIntosh and Kamei [47]. Although this dataset consists of carefully curated change
revisions in QT 1 and OpenStack 2 projects, it has 25,150 QT changes and 12,374 OpenStack
changes, and the ratios of bug-inducing changes to total changes are 8% and 13% for QT
and OpenStack respectively.

We built ApacheJIT, a large dataset for JIT defect prediction. ApacheJIT consists of
software changes in popular Apache projects. These changes have been selected carefully
after applying filtering steps recommended in the literature [15, 47]. ApacheJIT has 106,674
commits (28,239 bug-inducing, 78,435 clean). ApacheJIT is one of the largest available JIT
defect prediction datasets and it is suitable for JIT models that require a large number of
software changes with many bug-inducing changes.

1https://www.qt.io/
2https://www.openstack.org/

8

https://www.qt.io/
https://www.openstack.org/

3.1 Previous JIT Datasets

In this section, we review the previous Just-In-Time (JIT) defect prediction datasets. We
found four major JIT datasets in the literature that are large or used in multiple studies.

Kamei et al. [36] performed a large-scale study of change-level defect prediction and coined
the term Just-In-Time Quality Assurance, which evolved into Just-In-Time Defect Predic-
tion. They investigated the effectiveness of logistic regression on detecting bug-inducing
changes in 6 open-source and 5 commercial software projects. They extracted the changes
from CVS and linked the fixing changes to the issues in the issue tracking systems. They
used the basic SZZ algorithm [85] to label bug-inducing changes (except for two open-source
projects that did not have issue keys in their change comments and they used Approximate
SZZ). The dataset is not publicly available.

Jiang et al. [33] attempted to separate the prediction for different developers and called
this problem Personalized Defect Prediction. They built a dataset of Java and C/C++ source
codes from 6 open-source projects. The bug-fixing changes of two projects were previously
manually found and for the rest of the projects, they applied keyword search. They labeled
bug-inducing changes using SZZ without applying any filtering. Although their dataset has
been used in Tan et al. [71] and Wang et al. [75], these works are done by the same team
and the data is not publicly available.

McIntosh and Kamei [47] conducted a longitudinal study on JIT bug prediction models
to see how the performance of JIT models changes over time. They built a dataset of 37,524
commits from OpenStack (12,374 commits) and QT (25,150 commits). They extended their
work in [15] and applied a set of filtering steps on SZZ to remove the false positive bug-
inducing changes. The replication package of the study and the datasets are available. This
dataset has been widely used to evaluate JIT models.

Fan et al. [20] investigated the impact of mislabeled changes labeled by four SZZ variants
(Basic SZZ, AG-SZZ, MA-SZZ, RA-SZZ). They claim that RA-SZZ generates the cleanest
labels and used this variant as the baseline. They did not include McIntosh and Kamei’s
variant [47] in the study because it does not address false negatives (due to code indentation).
They built a dataset of 10 Apache projects with 126,526 commits. RA-SZZ (the baseline)
identifies 13,078 bug-inducing commits in this data. Although the authors have made the
data available, the link between revision IDs and bug-inducing labels is missing. To the best
of our knowledge, this data is not used in any JIT model evaluation.

In this work, we adopt the McIntosh and Kamei’s approach [47] to identify bug-inducing
commits because the dataset has been widely used to evaluate JIT models [30, 32, 58, 24].

3.2 ApacheJIT Dataset & Usage

ApacheJIT is one of the largest available datasets for JIT defect prediction. This dataset
is a collection of carefully selected and filtered software changes in a set of popular Apache
projects. ApacheJIT includes 106,674 software revisions from 2003 to 2019. These change

9

revisions are derived from the issue reports from January 1, 2010, to December 31, 2019.
28,239 of these revisions are labeled as bug-inducing through the process explained in Section
3.3. ApacheJIT is suitable for defect prediction models that require a large set of historical
data to learn prediction models.

In particular, ApacheJIT can be used to train deep learning models that require large
datasets for effectively capturing the patterns in the historical data and using them to ac-
curately predict future observations. Currently, the performance of deep learning models
on JIT defect prediction datasets is not as promising as their performance in other areas
of computing. One reason is that available JIT defect prediction datasets do not contain
many samples and consequently, the number of bug-inducing changes models see during the
training is small.

In addition to identifying whether or not each change revision has introduced bugs into
systems, the data presented in this work also includes some of the change metrics that are
commonly used for JIT defect prediction. The following is the list of these metrics (columns
of the datasets):

change date, # of lines added, # lines deleted, # files touched, # directories touched,
of subsystems touched, change entropy, # of distinct developers touched files, the average
time from last change, # of unique changes in files, change author experience, change author
recent experience, change author subsystem experience.

The explanation of each metric is presented in Table 3.1. We used the same approach
as Kamei et al. [36], who proposed this set of metrics, to obtain the change metrics in this
work. Table 3.2 shows the statistics of ApacheJIT. The ApacheJIT dataset and the related
scripts are publicly available3.

3.3 Data Construction

The major part of constructing the ApacheJIT dataset is finding bug-inducing commits.
This part was done based on the SZZ algorithm [85]. The SZZ algorithm has been widely
used to detect bug-inducing commits, and in this work, we used it with some modifications.
The SZZ algorithm starts with collecting the issue reports that are marked as fixed. Then
these fixed issue reports are linked to their corresponding fixing commits. Finally, from the
lines changed in the fixing commits, potential bug-inducing commits are detected.

Initially, we selected 15 popular Apache projects that had many bug reports (we used the
data of 14 projects in the end). Our measure of popularity in this selection was the number
of stars each project has on GitHub. Table 3.3 shows the selected projects.

3https://doi.org/10.5281/zenodo.5907001

10

https://doi.org/10.5281/zenodo.5907001

Table 3.1: Commit metrics in JITGNN

Class Metric Description

S
iz
e la total number of lines added in commit

ld total number of lines deleted in commit

D
iff
u
si
on

nf number of files modified in commit

nd number of directories modified in commit

ns number of subsystems modified in commit

ent distribution of change over files in commit

H
is
to
ry

ndev
number of unique developers changed

modified files

age
average time from the previous change of

modified files

nuc
number of unique changes happened to

modified files

E
x
p
er
ie
n
ce aexp number of commit author’s prior changes

arexp commit author recent experience

asexp
number of commit author’s prior changes in

subsystem

11

Table 3.2: The number of collected issues and the statistics of ApacheJIT. Percentages under
the Bug-inducing column indicate the ratio of bug-inducing commits to total commits.

Project Issues Bug-inducing Clean Total

ActiveMQ 1,967 1,404 (23%) 4,722 6,126

Camel 3,276 3,078 (14%) 19,622 22,700

Cassandra 5,358 3,117 (38%) 5,042 8,159

Flink 4,166 2,811 (24%) 8,880 11,691

Groovy 2,549 1,614 (20%) 6,445 8,059

HDFS 3,672 2,222 (21%) 8,137 10,359

HBase 7,085 3,782 (43%) 4,948 8,730

Hive 7,931 4,223 (61%) 2,619 6,842

Ignite 3,256 2,439 (20%) 9,597 12,036

MapReduce 2,080 838 (15%) 4,995 5,833

Mesos 2,955 - - -

Kafka 3,038 1,115 (46%) 1,269 2,384

Spark 7,648 632 (43%) 833 1,465

Zeppelin 1,089 622 (42%) 829 1,451

Zookeeper 859 342 (40%) 497 839

Total 56,929 28,239 (26%) 78,435 106,674

Table 3.3: Selected Apache projects in this study

ActiveMQ Camel Cassandra Flink Spark

Zeppelin Groovy Hadoop HDFS HBase Hive

Zookeeper Ignite Hadoop MapReduce Mesos* Kafka

* removed after fixing commit collection step (Section 3.3.2).

12

3.3.1 Bug Report Collection

As explained above, SZZ starts with collecting issue reports. All the Apache projects we
selected keep their issue reports on Apache’s JIRA Issue Tracker4. On JIRA, after selecting
the aforementioned projects, we applied further filtering. First, we narrowed down our
study focus to the issue reported from January 1, 2010, to December 31, 2019. Next, we
filtered out the issues that were not identified as bugs. And finally, we picked the issues that
are now marked as fixed. On JIRA, these issues are the issues with Status set to Closed
or Resolved and with Resolution set to Fixed. Finally, after applying the filtering steps
mentioned above, we had 56,929 bug reports. Table 3.2 shows the number of bug reports
(issues) in each project.

The choice of the time period and the number of projects was based on the initial goal
we set before constructing the dataset to finally collect almost 100,000 commits. A dataset
of this size is ideal because it contains enough samples to extract patterns from and has
many bug-inducing commits. Plus, learning a machine learning model on such a dataset
is computationally feasible but many models face computation challenges when they are
trained on larger datasets.

We should note that increasing the time period or the number of projects would result
in a decrease in the other factor. We also took the bias-variance trade-off into account for
project and time selection. In theory, if we have commits from more projects over a short
period of time, the samples will have high variance and this helps the generalizability of the
model after the training. However, such a diverse dataset may result in a model with a high
bias error and the models might not be able to fit well on the data.

3.3.2 Fixing Commit Collection

After obtaining the issue reports that have been fixed, we looked for the commits that fixed
these issue reports in the version control system (VCS). We followed the approach in Kamei
et al. [36] and McIntosh and Kamei [47]. Each issue is identified uniquely with an issue
key on JIRA. With the help of this identifier, for each project, we searched through all the
commits on the main branch of the project Git repository and looked for commits whose
commit messages indicate the change is fixing one of the issue keys we collected. This
approach works because conventionally, developers add the issue key of the bugs they fix to
the commit message.

In previous work, the search for these commits is done manually by looking for keywords
in the result of the git log command [85, 36, 47]. In this work, however, we utilized GitHub
search. This was feasible because all the projects we selected are stored on GitHub. The
reason we preferred GitHub search to manual pattern matching was that the GitHub search
engine returns the best match if it exists. This is especially useful when a commit message
of a fixing commit does not include the issue key in the expected format. We compared the
result of the GitHub search with the result of string matching on git log outputs and found

4https://issues.apache.org/jira/

13

https://issues.apache.org/jira/

out that overall, the commits returned by GitHub search are more relevant. To search on
GitHub, we used the GitHub REST API5.

In this process, if there is no commit with a commit message in which an issue key is,
GitHub returns no commit. If there are commits with commit messages containing an issue
key, GitHub returns one or several commits. We could identify the following reasons for the
latter case:

1. Developers make several attempts to fix an issue before closing the bug report because
the first attempts are not enough.

2. Developers make several attempts to fix an issue before closing the bug report because
the first attempts are incorrect.

The scenarios mentioned above make finding true fixing commits challenging in both
pattern matching and GitHub search approaches. On one hand, one may decide to include
all the commits returned for one issue key because they are all related. On the other hand,
one may only consider the most relevant of the multiple commits as the fixing commit. In
this work, we chose the latter direction and picked the latest commit as the fixing commit.
Our justification was that by picking all the aforementioned commits, later SZZ will consider
many clean commits as bug-inducing (case 2 above). Therefore, the ultimate dataset will
have high false-positive bug-inducing commits.

Among all the commits returned for one bug report, we found the latest one to be the
most relevant. By picking the latest commit as the fix commit, we are almost certain that the
commit we have picked is truly a fixing commit and can be used to find bug-inducing commits
based on SZZ. This approach, however, leads to missing some bug-inducing commits (case
1 above), and consequently, our ultimate dataset will have higher false-negative commits
(bug-inducing commits that are labeled as clean). Essentially, this is a trade-off between
more false positives and more false negatives, and in this study, we chose the latter.

After collecting fixing commits as described above for all 15 projects we noticed that the
commit messages in Apache Mesos do not comply with the conventional format and even
GitHub search was not able to find fixing commits. Therefore, we eliminated all Apache
Mesos data and continued with the remaining 14 projects.

3.3.3 Finding Bug-inducing Commits

At the end of the previous step, we linked 44,202 commits in the 14 projects to issue keys.
These commits represent the fixing commits for the collected issues. The next step is to use
these fixing commits to find bug-inducing commits.

5https://docs.github.com/en/rest

14

https://docs.github.com/en/rest

Git Annotate

In this step, each fixing commit is traced using git annotate command. This command
annotates all lines of a given file showing the last revision that touched the line. For each
fixing commit, we run git annotate on the files modified in the commit and get the last
revisions that touched the deleted lines before the fixing commit. To implement the described
process, we used the SZZ tool in the PyDriller framework6 [69]. The SZZ tool in PyDriller
gets a commit and returns the commits that last touched the deleted lines of the files modified
in the given commit.

Filtering

The basic version of SZZ has limitations. The SZZ algorithm tends to label many clean com-
mits as bug-inducing. Accordingly, we performed some heuristics to reduce false positives.
We followed the filtering discussed in da Costa et al. [15] and McIntosh and Kamei [47] to
filter out linked bug-inducing commits that are likely to be clean.

1. We made fixing commit - bug-inducing commit pairs and associated each with the issue
key corresponding to the fixing commit. We removed the pairs where the bug-inducing
commit date was after the issue report date (the date the issue was created on JIRA).
Note that we did not remove the bug-inducing commit or the fixing commit separately
as they may show up in other pairs and end up as valid bug-inducing and valid fixing
commits respectively. This step filtered 5,048 bug-inducing commit candidates.

2. At the end of the git annotate process each fixing commit may be linked to several
bug-inducing commits (a fixing commit may fix several bugs). We call the number of
bug-inducing commits each fixing commit is linked to fixcount. da Costa et al. [15]
and McIntosh and Kamei [47] filter out fixing commits whose fixcounts are more than
a threshold. They refer to these commits as suspicious fixing commits. In their works,
the threshold is set to upper Median Absolute Deviation (MAD) of fixcounts.

upperMAD = M +median(|M −Xi|), (3.1)

where M is the median of fixcounts and Xi is the fixcount of commit i.

In the present work, however, the upper MAD was too small, and choosing it as the
threshold would filter too many fixing commits. As an alternative, we chose the sum of
the mean and standard deviation of fixcounts as our threshold. Note that again, this is
a trade-off between high false-positive and high false negative. Filtering out too many
fixing commits will cause more bug-inducing commits to be labeled as clean commits
in later steps. This step filtered 12,165 commits.

3. Similarly, we can define bugcount as the number of fixing commits each bug-inducing
commit is linked to. This means that one commit has introduced multiple bugs into

6https://pydriller.readthedocs.io/

15

https://pydriller.readthedocs.io/

the system (multiple bug reports) and each has been fixed by a fixing commit. Again,
to filter out the suspicious bug-inducing commits, we set a threshold of mean+ std of
bugcounts. This step removed 1,257 bug-inducing commit candidates.

4. Following McIntosh and Kamei [47], we removed large commits. By large commits,
here, we mean the commits that modify more than 100 files or have more than 10,000
lines of changed code. Lines of changed code is the total number of lines that were
removed or added through the commit. This step removed 890 bug-inducing commit
candidates.

5. In this work, we focused on Java programming language and built a uniform Java
dataset. This language constraint makes it feasible to do static analysis on the source
codes (our static analysis is explained in the next part). Among the selected projects,
Java is the language in which most of the repository files are written. Therefore, we
picked Java and filtered out the commits that do not modify any Java source code.
10,251 commits were filtered.

6. In order to avoid trivial changes, we performed a static analysis on the abstract syntax
trees (ASTs) of the changed source code. In this process, we compared the AST of
each Java program that was changed in a commit before and after the change. If there
was at least one node in either of the two ASTs without a match in the other AST,
we mark the change as non-trivial and keep the Java program; otherwise, the change
is trivial. If all the Java programs in a commit have been changed trivially, we remove
the commit. To conduct this analysis, we used GumTreeDiff [19]. GumTreeDiff is a
tool that finds the differences between two source codes written in the same language
using their ASTs. Examples of trivial changes are changes that modify comments,
white spaces, and string or numeric literals. 274 commits were removed in this step.

Before the applying filtering steps, there were 58,124 bug-inducing commit candidates.
29,885 commits were filtered and the 28,239 commits remaining were labeled as bug-inducing
commits. Table 3.2 shows the number of bug-inducing commits in each project. It is worth
mentioning that the number of bug-inducing commits in Apache Spark is low with respect
to the number of issue reports in this project. The reason is that Java is not the major
programming language in Apache Spark.

3.3.4 Finding Clean Commits

In addition to the commits that introduce bugs into the system, we also would like to know
what changes are safe. We call these changes clean commits. In projects, usually, the clean
commits outnumber bug-inducing commits because most changes are reviewed by project
developers other than the author before they are integrated into the system.

We collected all the commits in the selected project repositories from the date of the
earliest bug-inducing commit (Sep 11, 2003) to the date of the latest one (Dec 26, 2019).
We removed the commits we already had labeled as bug-inducing and the fix commits that

16

had at least one corresponding bug-inducing commit. The number of remaining commits
was 149,962. We also applied filtering steps (4) and (5) in Section 3.3.3 to make the filtering
process similar to bug-inducing commits (steps (1)-(3) are not applicable). Finally, we had
78,435 clean commits.

3.3.5 Commit Metrics

In the end, we also added the set of common change metrics defect prediction datasets have.
The metrics we collected were the same as the ones discussed in Kamei et al. [36]. We
followed the same steps.

17

Chapter 4

Dataset

In this section, we introduce the Just-In-Time (JIT) bug prediction datasets that are used
in this study and give some details about them.

4.1 OpenStack

JIT bug prediction models proposed in recent years [30, 32, 58] evaluated their performances
on the dataset that was presented in McIntosh and Kamei [47]. The authors, in this work,
study the impact of time on the discriminatory performance and calibration of JIT bug
prediction models. They extracted 37,524 change revisions from QT and OpenStack projects
for their study and made the dataset publicly available. This dataset has 25,150 QT changes
mainly written in C/C++ and 12,374 OpenStack changes written in Python.

The commit ID of the change revisions are used as unique identifiers in this dataset and
each revision has a label that identifies whether the change introduced bugs into the system
or not (is bug-inducing). The ratio of bug-inducing changes to total changes is 8% and 13%
for QT and OpenStack respectively. In addition to commit ID and bug-inducing label, the
change metrics for all revisions are included in the dataset. The set of change metrics in
this dataset is a combination of 14 change metrics used by Kamei et al. [36] and new change
metrics related to the change review process.

In the present work, we used the OpenStack subset of this dataset to replicate the base-
line and the state-of-the-art JIT bug prediction models and to evaluate and compare the
performance of JITGNN with existing JIT models (RQ1 and RQ2). For RQ3 (the impact
of the size of the training set on JITGNN), however, we did not use the OpenStack data
because it is not large enough to perform experiments with a wide range of different sizes.

4.2 ApacheJIT

A limitation of McIntosh and Kamei’s dataset [47] and other available JIT bug prediction
datasets is that they have a small number of bug-inducing commits. The reason is that

18

naturally, in a software project, changes are reviewed and they are accepted if the reviewers
agree and the tests pass successfully. The process of accepting a change makes the number
of defective accepted changes small. However, even with this process in place, there are
still defective changes that are accepted, and JIT bug prediction attempts to identify these
changes. JIT bug prediction models are mainly machine learning models that are trained
on historical data as seen data to learn features and generalize them to future unseen data.
Machine learning models, especially deep ones like JITGNN, are sensitive to small training
sets and class imbalance, and overfit when the data size is small because they have many
parameters. Accordingly, to build an effective JIT bug prediction model, the model should
see many positive samples, which in our context are bug-inducing samples, to be able to
distinguish between bug-inducing and clean commits.

Available JIT bug prediction datasets do not have many bug-inducing commits mainly
because they are collected from a limited set of projects. To overcome this problem, we
built a large cross-project JIT bug prediction dataset called ApacheJIT from the commits of
14 popular Apache projects. ApacheJIT has 106,674 commits, 28,239 of which are labeled
as bug-inducing. Commits in ApacheJIT have the same set of attributes as the features in
Kamei et al. [36]. ApacheJIT is presented in Keshavarz and Nagappan [37] and Chapter 3.
In this study, we used ApacheJIT for all three research questions.

19

Chapter 5

JITGNN Framework

In this chapter, we present the JITGNN framework. JITGNN is a deep graph neural network
(GNN) model for Just-In-Time (JIT) bug prediction. Like other JIT models, given a commit,
JITGNN assesses the changes that were made in the commit to inform the commit author
how likely the commit will introduce bugs into the software. JITGNN makes this prediction
using both the content of the change (changed code) and the change metadata (commit
metrics). The implementation of JITGNN is publicly available1.

5.1 Overview

To include the syntactic and semantic information of the changed code in its assessment,
JITGNN uses graphs to model programs that are changed in the given commit. JITGNN
exploits abstract syntax trees (ASTs) to represent programs with graphs. To assess a pro-
gram change, JITGNN builds one graph from the AST of the program before the change
and one graph from the AST of the program after the change. Next, JITGNN finds the dif-
ference between the two ASTs and extracts the subtrees of the two ASTs that are involved
in the change (change subtrees). The change subtree of the program before the change and
the change subtree of the program after the change are fed into two graph neural networks
(GNNs) followed by attention mechanism layers to obtain two global graph embeddings. The
GNNs we employed in JITGNN are graph convolutional networks (GCNs).

The two global graph embeddings, next, are fed into a neural tensor network (NTN)
unit, which is a bilinear neural network, to compute a vector of the relationship between
the two embeddings. A vector of commit metrics is attached to the relationship vector to
augment the information collected from the content of the change through the networks. The
resulting vector is finally given to a feed-forward neural network to predict the probability
of the changes in the commit (broadly speaking the commit itself) introducing bugs into the
system. Figure 5.1 demonstrates the architecture of JITGNN. JITGNN is an end-to-end
model that is trained jointly and all its neural components (the two GCNs, the attention
layers, the NTN, and the final feed-forward network) are trained simultaneously. One forward

1JITGNN implementation is available at: https://github.com/hosseinkshvrz/jit-bugpred

20

F
ig
u
re

5.
1:

O
ve
rv
ie
w

of
th
e
J
IT

G
N
N

w
or
k
fl
ow

21

pass in the JITGNN training passes all the aforementioned components and after comparing
the output probability with the actual label of the given sample and calculating the loss,
the derivatives of all parameters in these components are computed and their parameters
are optimized together. Joint training is more effective than training neural parts separately
because the parameters are updated with respect to each other and the final result.

In the following, we explain each step in detail.

5.2 Change Subtrees & Commit Graphs

The main part of JITGNN is done by the two graph neural networks (GNNs) that analyze
the content of the changes that were made in a commit. This part requires the commit to
be represented with graphs. Essentially, a commit consists of multiple changed files. In this
work, we concentrated on the bugs caused by changing source code files rather than all types
of files. Therefore, in our context, a commit consists of multiple source codes. In JITGNN,
source codes are converted to ASTs based on their context-free grammar and the ASTs are
used to make the graphs that are fed into the GNNs.

Depending on the program, ASTs can be very large while the change in the source code
often involves a small part of the source code. Considering the AST of a source code before
a change and the AST of the same source code after the change, usually, the proportion
of AST nodes that are involved in the change to all the nodes is small. Hence, analyzing
the entire AST is not an ideal choice because the AST has not changed largely and the
information from the small part of the AST that is changed might get lost in the GNN.

To overcome this problem, instead of using the entire AST, we extract subtrees of ASTs
that are connected to the changed nodes. To this end, we find the nodes that are changed
between the pre-change AST and the post-change AST. These nodes, their parents, their
children, and their siblings constitute the AST subtrees that we extract from each AST to
feed into the GNNs. We call these AST subtrees Change Subtrees. Each source code that is
changed in a commit has two change subtrees: one Pre-change Subtree and one Post-change
Subtree.

As we mentioned above, each commit in our context consists of multiple source codes
and since we convert source codes to change subtrees, each commit is associated with a
set of change subtrees. Keeping change subtrees separated adds hierarchical complexity to
the next steps because the ultimate prediction should be conducted on commits and not on
single source code files. Thus, for every commit, we combine all the pre-change subtrees of
source codes changed in a commit and form one big disconnected graph called Pre-change
Commit Graph. Similarly, for post-change subtrees, we make a Post-change Commit Graph.
This does not affect the graphs and only associates each commit with two graphs to make
the prediction process straightforward.

22

5.3 Node Features

Each layer in GNNs, generally, passes the features of nodes to the connected nodes and
updates their features based on the information received from the neighbor nodes. Therefore,
initial node features play crucial roles in GNNs as the final node representations depend on
the features with which GNNs start to train. In JITGNN, the initial node features are the
combination of Node Tokens and Node Change Status :

• Nodes in program ASTs have Node Types (grammar non-terminal) and may have Node
Values (grammar terminal). In JITGNN, node types (and node values if exist) form
text strings that we refer to as Node Tokens.

• As we discussed in Section 5.2 we extracted change subtrees from ASTs. The nodes
included in these subtrees are the changed nodes, their parents, their children, and
their siblings. Accordingly, not all the nodes present in change subtrees are changed.
We add a feature to the node features obtained from node tokens representing whether
or not the node is changed. We call this feature Node Change Status and it is 1 if the
node is changed and 0 otherwise.

Node tokens that we explained above are essentially text strings. To feed these attributes
to GNNs, they should be converted to numerical vectors. Vectorizing program tokens has
been widely studied in recent years [64, 1, 8, 21]. Although these studies present sophisticated
techniques to transform code tokens to vectors, in our experiments, we observed that they
do not positively contribute to the final prediction of JITGNN. On the other hand, we were
able to achieve good performances with the simple bag-of-words (BoW) technique. Prior JIT
bug prediction models that require vectorizing textual data (either code or commit message)
have also used BoW [30, 32, 58].

The difference between the performance of simple and complex vectorization techniques
in JIT bug prediction models can be attributed to the nature of the text that should be
transformed. Although complex models can capture the semantics of the word tokens, unlike
code summarization or method name suggestion tasks, JIT bug prediction models mainly
use syntactical information of the text rather than its semantics. Also, training a deep model
using BoW is faster because vectors are sparse and matrix operations inside GNN can be
optimized.

In JITGNN, we implemented the binary BoW. In binary BoW, node token vectors are
made up of 0s and 1s no matter how many times each token is repeated. JITGNN concate-
nates the vectors generated by BoW for node tokens and the single feature of node change
status to make the initial node features.

5.4 Graph Convolutional Network

After extracting the pre-change subtree and the post-change subtree of a given commit,
and creating the initial node features, the data is ready to be fed into GNNs in JITGNN.

23

Over the last decade, many types of GNNs were introduced [76]. Most of these GNNs have
the same workflow while the optimization details vary from one to another. In general, in
a GNN, the information (features) from nodes are shared with other nodes in the graph
through a message-passing system. Each layer implemented in a GNN works as a timestep.
At each timestep, every node transmits its hidden state (embedding) to the neighbor nodes
(the nodes to which it has direct edges) and receives the hidden states of the neighbor nodes
(the nodes that have direct edges to it). All nodes update their hidden states using the
hidden states they have received from the neighbors and their own hidden states.

Formally, in graph G = (V,E,X), V is the set of nodes, E is the set of directed edges, and
X is the set of initial node features with dimension d. We denote the initial feature vector of
node i by xi ∈ Rd. At timestep k, node i transmits information (message) mk

i = f(hk
i) ∈ Rd′

(depending on f , d = d′ may not hold) to neighbor nodes ni = {vj|(vi, vj) ∈ E}. Here f is
often the identity function but generally, it can be any function and hk

i ∈ Rd is the hidden
state or embeding of node i at timestep k. The hidden states are computed in the following
way:

hk
i =

{
xi k = 0

g(µk−1
i , hk−1

i) otherwise
(5.1)

Again g can be any function and µk−1
i is the aggregation of messages node i receives from

the previous layer (timestep k − 1). Usually, the aggregation is summation.

Although the backbone of GNNs is similar, the way nodes in the graph are updated at
each forward pass (function g) is the root of the difference between different GNNs. For
example in a gated graph neural network (GGNN) [3], the current state and the summation
of received hidden states (messages) update the node embedding using GRU units [14], while
in a graph convolutional network (GCN) [41] embeddings are updated based on shared filter
parameters throughout the graph. In other words, the g(., .) function in GGNN is GRU(., .)
and in GCN is W k−1µk−1

i where W k−1 is the weights of layer (timestep) k − 1.

After doing experiments with GGNN —which is commonly used for different software
engineering problems that cope with the ASTs of programs [45, 3, 11, 79]— and comparing
its performance in JITGNN with GCN, we picked GCN over GGNN because it trains faster
and outperformed GGNN in our experiments. JITGNN employs two 4-layer GCNs: one
GCN unit for the pre-change subtree and one for the post-change. As we explained above,
having 4 layers (timesteps) in a GCN means that at each forward pass during the training,
node hidden states (messages) are sent 4 times throughout the graph and nodes update their
hidden states 4 times by the received messages. In other words, the information of node i
at each iteration, directly goes to the neighbor nodes (the nodes it has direct edges to) and
indirectly goes to the nodes in ri = {vj|2 <= d(vi, vj) <= 4} where d(vi, vj) is the distance
between nodes i and j (number of edges between vi and vj in the shortest path between the
two nodes).

For example, if we have d(vi, vj) = 2, it means that there is node vk to which vi has a
direct edge and vk has a direct edge to vj. At timestep 1, the information of vi goes to vk and
the information of vk goes to vj. All the nodes update their hidden states with the messages

24

they have received. It means that now, the embedding of vk incorporates information from
vi and this information is transmitted to vj at the next timestep. Therefore, at timestep 2,
vj receives information from vk that includes the information of vi. We say vj indirectly has
received information from vi.

In this system, although nodes do not receive any information from the nodes that are at
distances greater than 4 in one iteration, throughout the training and after a certain number
of iterations, every node, directly or indirectly, receives information from other nodes. This
scenario is ideal because distant nodes should minimally affect each other, while close nodes
should have a huge impact on each other. In the scenario discussed above, we see that the
closer the node is, the more information it gets from vi. For example if nodes vj is a neighbor
of node vi, in each iteration in a 4-layer GCN, vj directly receives information from vi 4 times.
Respectively, the farther nodes indirectly receive information from vi fewer times.

Although ASTs —and accordingly change subtrees— are directed graphs, we made edges
undirected in JITGNN. In an undirected graph, the hidden states of connected nodes are
transmitted in both directions simultaneously. Additionally, we added self-loop edges so the
hidden state of a node can be transmitted to itself because originally, GCN does not directly
use the current hidden state of the node to update itself. Adding self-loop edges keeps the
hidden states and adds them to the received messages.

After the training of JITGNN, the nodes in the pre-change and post-change subtrees
will have new embeddings (their final hidden states) that are their vector representations in
higher dimensions and because JITGNN is trained jointly, the embeddings are adjusted and
set in a way that the ultimate predictions would be as accurate as possible. As suggested by
Kipf and Welling [41], we normalized the adjacency matrices of the graphs and the initial
node features to train GCNs.

5.5 Attention Mechanism

The goal in JITGNN is to make one prediction for each commit that is given to it. Ac-
cordingly, the embeddings of the nodes that are produced by GCNs should be aggregated
to make one single embedding for each change subtrees. This approach makes it feasible to
compare the single embedding of the pre-change subtree with the single embedding of the
post-change subtree and conduct the prediction.

There are multiple techniques to aggregate the embeddings of the nodes in a graph and
make a single global embedding. Commonly, this aggregation is done by taking the average
of node embeddings. In other words, the sum of the values of node embeddings at each
dimension divided by the number of nodes gives the values of global graph embedding at
the same dimension in this approach. The problem with this technique is that all nodes
contribute equally to the representation of the global graph embedding.

Another approach that is adopted in GNNs is to use a dummy supernode [66, 44]. The
idea in this technique is to add a virtual node to the graph that is connected to all the nodes
in the graph in the receiving direction (there is no edge from this node to other nodes while

25

from all other nodes there is an edge to this node). During the training, this supernode will
be updated like all other nodes and because the weights are adjusted during the training, this
node will contain more information from the nodes that are more important in the graph.

In JITGNN, we implemented an approach that is based on the attention mechanism to
take the weighted average of the nodes as the global graph embedding. The weights assigned
to the nodes in this technique are parameters that are trainable by the network and training
the entire framework jointly will adjust these weights in the most optimized way. This
attention layer first was used in Nair et al. [54]. Formally we have:

W ′
i = σ(hi.tanh(

1

|V |
Σi∈V hi.Wi)) (5.2)

where Wi is the attention layer weight that is corresponding to node i and W ′
i is the

importance weight assigned to node i. Initially, W s are randomly set based on Xavier
initialization [25]. As the attention layer is jointly trained, W ′s are adjusted to be used to
take the weighted average of the node embeddings and set it as the global graph embedding.
We call the global graph embeddings obtained from pre-change subtree and post-change
subtree, Pre-change Subtree Embedding and Post-change Subtree Embedding respectively.

5.6 Neural Tensor Network

After obtaining the global embeddings of the pre-change subtree and the post-change subtree
from the two GCNs, the embedding vectors should be aggregated. Aggregating the two
vectors and having only one vector is necessary because in the last step, one vector is given
to the feed-forward network to produce a probability. Therefore, the aggregated vector at
this step should contain the information about the change. We call this vector Program
Change Embedding because given the pre-change subtree embedding and the post-change
subtree embedding, this vector represents the change itself.

The choice of the aggregation function at this step is very critical because as we mentioned
above, the change embedding should represent the change and it majorly contributes to
the prediction that is carried out at the final step. Similar to obtaining the global graph
embedding, common approaches are static operations on the pre-change and post-change
subtree embeddings including cosine similarity (to measure how different the vectors are
in the hidden space) and simple concatenation. Like before, we leveraged neural network
potentials to make a more dynamic approach that is trainable to achieve the best performance
of the model. We implemented a neural network layer that is jointly trained with other
components of JITGNN and performs a comparison between the two input vectors. This
layer is based on the neural tensor network (NTN) proposed in Socher et al. [68].

Originally NTN was aimed at finding out whether or not there is a relationship between
two entities. NTN replaces the classic linear neural network with a bilinear neural network
to capture the bidirectional relationship between the two input vectors:

26

S(e1, e2) = f(eT1We2 +W ′
[e1
e2

]
+ b). (5.3)

In Equation 5.3, S ∈ Rk is the vector of relationship score between entity vectors e1, e2 ∈
Rd, f is a non-linear function, and W ∈ Rd×d×k,W ′ ∈ Rk×2d, b ∈ Rk are NTN parameters
(weights and bias). In this equation, eT1We2 is a bilinear function in which both vectors e1
and e2 interact on every slice i = 1, ..., k of W ’s third dimension to generate a vector in Rk.

The linear part of this equation (W ′
[e1
e2

]
+ b) is the classic neural network that receives the

concatenation of e1 and e2 and outputs another vector in Rk. The sum of the linear and
bilinear parts in S generates a vector that is given to an activation function to produce the
relationship vector S. The activation function f that is used in JITGNN is ReLU [55].

5.7 Commit Metrics

From the early research on JIT bug prediction, commit metrics have been parts of the
many JIT prediction models up to this point. They have always had a positive effect on
the performance of the prediction. For instance, JITLine [58], the state-of-the-art JIT bug
prediction model uses commit metrics along with the added lines and removed lines. In
our experiments, we isolated the text part of JITLine and discarded the commit metrics to
see how effective the commit metrics are and we observed that the performance of JITLine
without commit metrics drops (more on this in Chapter 6). Our JITGNN experiments with
and without commit metrics were aligned with this observation; therefore, we included the
commit metrics in JITGNN.

We adopted the commit metrics that were used by Kamei et al. [36]. The list and the
description of these metrics are shown in Table 3.1. These metrics are categorized into 4
classes: Size, Diffusion, History, Experience. In JITGNN, each commit metric is considered
as a feature, and the set of commit metrics shown in Table 3.1 forms a feature vector for
each commit. This vector is simply concatenated with the relationship vector obtained
from the NTN module in the previous step. The commit metric vectors are normalized
before concatenation to have the same scale as the relationship vectors. The combination of
the commit metrics and the relationship vector serves as the ultimate change vector of the
commit because it contains information both about the change metadata (commit metrics)
and the change content (the vector of the relationship between the pre-change subtree and
the post-change subtree).

5.8 Feed-forward Neural Network

In the last step, the ultimate change vector generated by combining the commit metrics and
the relationship vector should be used to produce the probability of the given commit being

27

bug-inducing. To this end, we implemented a feed-forward neural network at the end of the
JITGNN framework to receive the change vector and apply the function f(W TX + b) where
f is a non-linear activation function, W ∈ Rd is the network weight parameter, X ∈ Rd

is the change embedding vector, and b ∈ R is the network bias parameter. The activation
function that we used in JITGNN is the Sigmoid function because we wanted JITGNN to
output a probability rather than classifying the commit.

Training JITGNN is supervised and the loss of each forward pass in JITGNN will be
computed based on the actual label of the training sample. Concretely, each training sample
takes all the steps discussed above and finally, JITGNN outputs a probability value indicating
how likely it is that the sample is a bug-inducing commit. The generated probability along
with the actual label of the sample (1 for bug-inducing and 0 for clean) are given to the Binary
Cross-Entropy (BCE) function to compute the loss for the sample. For actual bug-inducing
commits, the higher the generated probability is, the lower is the loss. On the other hand,
for clean commits, a high probability produces a high loss. After obtaining the sample loss, a
backpropagation pass is performed to update the parameters of the model based on the loss
value. In JITGNN, the parameters are all the parameters in the two GCNs, the attention
layers, the NTN module, and the final feed-forward neural network. The backpropagation
updates (optimizes) the parameters in a way to reduce the loss in future iterations. The
optimizer we used in JITGNN is Adam [40].

28

Chapter 6

Experiments & Results

In this section, we explain our approaches to answering the research questions, the experi-
ments, their setups, and the results.

6.1 Data Preparation

In Chapter 4, we briefly introduced the datasets that we used to answer our research ques-
tions. Both OpenStack and ApacheJIT datasets are sets of commits with their corresponding
commit metrics. To prepare them for training JITGNN, we take the following steps.

6.1.1 JITGNN Compatibility

As we discussed in Chapter 5, JITGNN converts the commits to graphs made up of abstract
syntax trees (ASTs) of the source codes that are changed in the commit. Accordingly, the
commits given to JITGNN must include at least one program source code. Also, JITGNN
works with the version of the source code before the change and the version after the change.
Therefore, the source codes must be modified and deleted source codes or newly added ones
should not be included in the data.

To filter out commits according to the two rules mentioned above, we removed the com-
mits that did not have at least one compatible source code file. In other words, the commits
in which all the files are non-source-code or all source codes are deleted or newly added
were removed. These rules are already covered in ApacheJIT but not all the commits in the
OpenStack dataset comply with these rules. Therefore, we removed them from the Open-
Stack dataset. We refer to this version of the OpenStack dataset as OpenStack (Ours). This
dataset has 10,196 commits out of which 1,474 are bug-inducing (Table 6.1). For RQ1, we
used the original OpenStack dataset to replicate the results of existing JIT models. In RQ2,
to do a fair comparison between models, we replaced the original OpenStack with OpenStack
(Ours).

29

6.1.2 Training-Test Split

To split the data into training and test sets, we considered the real-life scenario and attempted
to recreate it as much as possible. In practice, JIT bug prediction models should be used
to notify developers of potential risks in the changes they have recently submitted. In this
scenario, JIT models that are trained on previous data should effectively assess the future
unseen software changes. To replicate this scenario in the training and test phases, we split
the data in a timewise manner. We set aside the data from the latest periods to use them
for test and evaluation and the rest of the data (early data) served as the training data.

More particularly, in the OpenStack dataset, we followed Hoang et al. [30], [32], and
Pornprasit and Tantithamthavorn [58] and divided the entire dataset into five periods and
used the data from the first four periods as the training set and the data from the last
period as the test set. ApacheJIT has data of 17 years from 2003 to 2019. In this dataset,
we grouped the commits by year and from the 17 years, kept the data of the first 14 years for
the training set and the last three years for the test set. However, the size of the data of the
last three years was large (30,111 commits); therefore, we took a sample of 7,526 commits
from the last three years of data and used it as the test set.

Similarly, the data of the first 14 years is large, and training the state-of-the-art model
(JITLine) and JITGNN on it takes a lot of resources. To reduce the size of the data we
kept all the bug-inducing commits from the first 14 years and removed 31,729 clean commits
to make a balanced training set. In this undersampling process, we did not remove clean
commits randomly and removed them in a way that in every year of the training data, we
have 50% clean commits and 50% bug-inducing commits. The benefits of this undersampling
are twofold. First, we reduce the data to use less computing resources. Secondly, by using
a balanced training set we can study how JIT models perform when the class imbalance
problem does not exist.

It is worth mentioning that although we used a balanced training set, we kept the test
set as it was to make sure that it reflects a real-life scenario. Table 6.1 shows the statistics
of the data that is used in our experiments.

Table 6.1: Statistics of datasets

Data Set Bug-inducing Clean Bug-inducing Ratio Total

OpenStack (Ours)
Training 1,325 7,839 0.1445 9,164

Test 149 883 0.1443 1,032

ApacheJIT
Training 22,421 22,413 0.5000 44,834

Test 1,448 6,078 0.1924 7,526

30

6.2 Comparison Models

In this part, we introduce the JIT bug prediction models that we used in this study along
with JITGNN.

6.2.1 Naive

To have a better understanding of the results that the following models achieve, we used
a naive classifier. To this end, it is common to employ a random guessing model. Since
the data in this study is not balanced, we used a biased random guessing model. General
random guessing models assign labels to the samples in a uniformly random manner. In
our biased random guessing model, the random label is biased towards the majority class
in a way that represents the ratio of positive (bug-inducing commits) and negative (clean
commits) samples in the training set. In other words, if the ratio of positive samples to all
samples is r in the training set, the biased random guessing model assigns 1 to each sample
in the test set with a probability of r and assigns 0 with a probability of 1− r.

In our version of the OpenStack dataset, the ratio of bug-inducing to all commits is
0.1445 in the training set. Therefore, the naive classifier predicts samples in the test set as
bug-inducing with a probability of 0.1445 and classifies them as clean with a probability of
0.8555. In the ApacheJIT dataset that we used, the training set was balanced; hence, the
naive classifier labels samples in the test set in a uniformly random manner.

6.2.2 Baseline

Although the goal in McIntosh and Kamei [47] is not to propose a JIT bug prediction model,
to conduct their experiments, they follow Zhou and Mockus [80], Morales et al. [51], and
Mcintosh et al. [48] and employ multiple regression modeling with some techniques to capture
the nonlinear relationship between the features. We used this model as our baseline model.
The replication package of the study including the regression model is publicly available.

We studied their scripts and made a few modifications to conduct our experiments on
this model the same way we do on JITGNN. Originally, the multiple regression model in
their work is fitted in short-term and long-term settings due to the nature of the study in
McIntosh and Kamei [47]. But in our study, we have a training set to fit the model on and
a test set to evaluate performance. Accordingly, we removed the periods in the regression
model and fitted it on the training set, and tested it on the test set. Since the regression
model only requires the commit metrics and commit metrics are available in OpenStack and
ApacheJIT datasets, we did not need any further data processing. However, the ApacheJIT
dataset does not contain the review information of commits while the features that are used
in the multiple regression modeling in their work include the review metrics. Therefore,
to successfully train the model, we removed the review features from it in the ApacheJIT
experiments but used the same model as the original in the OpenStack experiments. For the
rest of this chapter, we refer to the multiple regression model as the Baseline.

31

6.2.3 State-of-the-art

Lately, Pornprasit and Tantithamthavorn [58] presented a JIT bug prediction approach called
JITLine. In their paper, they compare the performance of JITLine with CC2Vec [32], Deep-
JIT [30], and EALR [36] and JITLine outperforms these models in most of the evaluation
metrics. JITLine combines the commit metrics with the changed code (added and deleted
code) in commits. More specifically, JITLine builds the feature vectors by joining the commit
metrics features to the bag-of-words (BoW) representation of the changed code. JITLine
fits a random forest regression model on the feature vectors to predict the probability of
commits being bug-inducing. They also use the SMOTE technique to oversample the bug-
inducing commits and overcome the class imbalance problem. The scripts of JITLine are
also available.

As we mentioned above, JITLine uses the added and deleted code tokens in commits.
The JITLine replication package includes this data for OpenStack; therefore, we only needed
to find the token data of the OpenStack commits we selected for our experiments (Table 6.1).
However, ApacheJIT does not have the information of the added and deleted lines originally.
Hence, we collected the added and deleted lines in the selected ApacheJIT commits and
preprocessed them using the modules provided in the JITLine replication package.

While our experiments on the OpenStack dataset were completed successfully, due to
the size of the ApacheJIT dataset and the BoW vocabulary set, both JITGNN and JITLine
faced computing resource issues. Originally, both models use the entire vocabulary of code
tokens to build the BoW vector representations. But in ApacheJIT experiments, to mitigate
the memory consumption issue, we limited the JITGNN and JITLine vocabulary sets to
100,000 most frequent tokens.

6.3 Evaluation Metrics

To evaluate the discriminatory performance of JITGNN and the comparison models we intro-
duced in the previous part, we selected a combination of threshold-dependent and threshold-
independent evaluation metrics that are commonly used in the literature.

• AUC : AUC is the area under the receiver operating characteristic (ROC) curve. ROC
curve is the plot that illustrates the relationship between the true positive rate (TPR)
and the false positive rate (FPR) over various thresholds. AUC is a threshold-independent
metric that is used to assess the discriminatory power of binary classifiers. AUC is a
value between 0 and 1. High AUC values represent higher TPR and lower FPR and
demonstrate a robust discriminatory power of the classifier. A value of 0.50 AUC
means that the classifier is randomly classifying the samples and values lower than
0.50 indicate that the classifier has negative classification power and the output of the
classifier should be reversed (0 to 1 and 1 to 0).

• Precision: Precision measures the power of a classifier to correctly detect positive sam-
ples. Precision = TruePositive

TruePositive+FalsePositive
. Precision is a threshold-dependent measure

32

and in our study, we set the threshold to 0.50, meaning that if the output probability is
0.50 or higher, the model is classifying the sample as positive; otherwise, it is negative.

• Recall : Recall measures the ability of a classifier not to miss positive samples. Recall =
TruePositive

TruePositive+FalseNegative
. Recall is a threshold-dependent measure and similar to preci-

sion, we set its threshold to 0.50.

• F1 score: F1 score is the harmonic mean of precision and recall. F1score =
2.P recision.Recall
Precision+Recall

.
F1 score is also threshold-dependent and we set the threshold to 0.50.

Note that the threshold-dependent metrics (F1 score, Precision, and Recall) we report in
the next part are the metrics of the positive class (bug-inducing commits) and the metrics
of the negative class (clean commits) are not included.

The evaluation metrics above are the most widely used metrics for JIT bug prediction
models and can handle the class imbalance problem [36, 77, 22, 47, 30, 32, 58]. The reason we
used threshold-dependent metrics along with a threshold-independent one is that ultimately,
a potential tool that is implemented to alarm developers needs to decide whether a commit
is bug-inducing or not. Although we set the default thresholds to 0.50, in RQ2, we also
study the evaluations for a range of different thresholds.

6.4 Experiments & Results

6.4.1 RQ1: Can we replicate the baseline and the state-of-the-art
JIT bug prediction models?

Approach: As we explained in the previous part, we studied the replication packages of
the baseline and JITLine. After doing the required preparation discussed earlier, we ran the
scripts on the original OpenStack dataset to compare the results with the results reported
in their respective papers. Table 6.2 shows the results of the replication.

As for the baseline, the results in McIntosh and Kamei [47] are technically for a different
experiment but the long-term experiment they did in the six-month setting for their RQ1 is
related to our study. The result we obtained from the scripts was 0.81 AUC and 0.09 Brier
(Brier score is not presented in Table 6.2). Originally, they report an AUC of 0.72 AUC and
0.11 Brier. The difference between our results can be attributed to the difference between
the training and the test sets as we used JITLine’s training and test sets, which are slightly
different from the training and test sets in McIntosh and Kamei [47] in this particular setting
(long-term six-month setting); therefore, we cannot compare our results with theirs. For this
regression model, we also calculated the precision, recall, and F1 score evaluation metrics,
which are not reported in the original paper.

Replicating JITLine, on the other hand, leads to almost the same results as the original
paper. Running JITLine on our machines achieves the same AUC as the one reported
in the paper and slightly better F1 score, precision, and recall (originally F1 score=0.33,

33

precision=0.43, and recall=0.26). After carefully understanding the JITLine scripts, we did
additional experiments with the JITLine architecture to see how each component in JITLine
affects the performance. In this regard, we experimented with three variants of JITLine:

• JITLine w/o SMOTE w/o Metrics : In this variant, we discarded the SMOTE over-
sampling module and the commit metrics. In other words, this variant solely works
with the change codes (added lines and deleted lines) and builds a model by fitting a
random forest regression model on the BoW representation of code tokens.

• JITLine w/o Metrics : In this variant, the commit metric features are excluded from
the JITLine original feature vectors that are fed to the random forest model.

• JITLine w/o SMOTE : In this variant of JITLine does not have the SMOTE oversam-
pling module.

The results of running these variants on the original OpenStack dataset are shown in
Table 6.2 along with the results of replicating the original JITLine. These results show that
oversampling using SMOTE has a small impact on the discriminatory power of JITLine as
the JITLine w/o SMOTE variant achieves an AUC of 0.82, only 0.01 AUC less than the full
JITLine model.

However, SMOTE affects the threshold-dependent metrics and F1 score, precision, and
recall drop without oversampling. This observation means that the impact of oversampling
is more on the threshold beyond which the model classifies a sample as bug-inducing or
clean. In other words, the more balanced the training data is, the better the 0.50 threshold
works as a distinguishing point.

Table 6.2: Replication result of the baseline model and JITLine on the original OpenStack
dataset

AUC F1 score Precision Recall

Baseline 0.81 0.12 0.33 0.07

JITLine w/o SMOTE w/o Metrics 0.81 0.11 0.37 0.06

JITLine w/o Metrics 0.79 0.41 0.39 0.42

JITLine w/o SMOTE 0.82 0.09 0.32 0.05

JITLine 0.83 0.37 0.47 0.30

Result: We were able to successfully replicate the baseline model and JITLine results.
The results are in line with the ones reported in their respective papers. We also made three
variants of JITLine to further study the performance of JITLine in the presence or absence
of the SMOTE module and the commit metric features.

34

6.4.2 RQ2: How does JITGNN perform compared to the baseline
and the state-of-the-art JIT bug prediction models?

Approach: To answer this research question, we ran the baseline, JITLine (and its variants
that we introduced above), and JITGNN on the OpenStack (Ours) and ApacheJIT data
we prepared. The results are shown in Table 6.3. Similar to JITLine, we repeated the
experiments with variants of JITGNN with different architecture configurations:

• JITGNN w/o Metrics : Similar to JITLine w/o Metrics, we discarded the commit
metrics from the ultimate change vector and fed the program change embedding that
is derived from the neural tensor network (NTN) directly to the feed-forward neural
network.

• JITGNN Special Token: In this variant, instead of using all the code tokens, we re-
duced the size of the vocabulary by using special tokens. Special tokens are defined for
strings (<STR>), numbers (<NUM>) , and arithmetic operations (<OPE>). More
concretely, we replaced the raw strings, numbers, and operations with their correspond-
ing special tokens. For example, if the types and values of two nodes in an AST are
String: ”sample string one” and String: ”sample string two”, in this process, they
both become String: <STR> to keep the vocabulary from getting too large.

• JITGNN Supernode - Concatenation: This variant architecturally differs from JIT-
GNN. Originally, JITGNN uses an attention mechanism to obtain the global graph
embedding followed by the neural tensor network (NTN) to output a single vector
that captures the relationship between the pre-change and post-change vectors. In this
variant, however, the global graph embedding is the final hidden state of a dummy su-
pernode that receives messages from all other nodes in the graph (Similar to Scarselli
et al. [66] and Li et al. [44]). Also, instead of NTN, the program change embedding
is created by concatenating the global graph embedding of the pre-change and post-
change subtrees.

The results of the experiments explained above indicate that we cannot conclusively
choose the best-performing JIT bug prediction model as the performance varies from one
dataset and evaluation metric to another. As expected, the naive classifier achieves an AUC
of almost 0.50 for both datasets, which means it is guessing the labels randomly. In our
version of the OpenStack dataset, JITGNN and JITLine achieve the same AUC score (0.79)
which is 0.01 AUC better than the baseline. JITGNN and JITLine also achieve the same F1

score and recall but the precision of JITLine is marginally higher (0.35 vs 0.34).

In ApacheJIT, again, JITGNN and JITLine share the first place in terms of AUC by
achieving an AUC of 0.81 while the AUC of the baseline is 0.78. However, the baseline
performs better in terms of the F1 score and precision. As for the recall, JITLine and
its variants achieve highest recall scores, outperforming the baseline (0.65) and marginally
performing better than JITGNN (0.78). Although it is still lower than other models (not
including the variants), the naive classifier achieves a surprisingly high recall (0.51) on the

35

Table 6.3: JIT bug prediction model results

OpenStack (Ours)

AUC F1 score Precision Recall

Naive 0.50 0.16 0.15 0.17

Baseline 0.78 0.14 0.35 0.08

JITLine w/o SMOTE w/o Metrics 0.78 0.10 0.39 0.06

JITLine w/o Metrics 0.76 0.38 0.39 0.38

JITLine w/o SMOTE 0.79 0.11 0.41 0.06

JITLine 0.79 0.35 0.45 0.28

JITGNN w/o Metrics 0.76 0.43 0.35 0.54

JITGNN Special Token 0.70 0.32 0.28 0.35

JITGNN Supernode - Concatenation 0.75 0.40 0.34 0.49

JITGNN 0.79 0.35 0.44 0.28

ApacheJIT

AUC F1 score Precision Recall

Naive 0.49 0.28 0.19 0.51

Baseline 0.78 0.69 0.73 0.65

JITLine w/o SMOTE w/o Metrics 0.79 0.38 0.25 0.81

JITLine w/o Metrics 0.79 0.39 0.26 0.82

JITLine w/o SMOTE 0.81 0.50 0.36 0.81

JITLine 0.81 0.49 0.35 0.80

JITGNN w/o Metrics 0.80 0.48 0.36 0.75

JITGNN Special Token 0.75 0.35 0.30 0.39

JITGNN Supernode - Concatenation 0.77 0.40 0.34 0.49

JITGNN 0.81 0.50 0.37 0.78

36

ApacheJIT dataset. The reason is that the training set is balanced and the naive classifier
labels samples in the test set as bug-inducing 50% of the time. Therefore, the naive classifier
labels bug-inducing commits correctly almost 50% of the time.

Table 6.4 provides insight into how the three models (the baseline, JITLine, and JITGNN)
agree and disagree on the labels of the test samples by setting the threshold to 0.50. In this
context, if the actual label of a sample is bug-inducing, the models that output a probability
greater than or equal to 0.50 are right; otherwise, they are wrong in their predictions. On
the other hand, the models are right if they output a probability less than 0.50 for clean
commits; otherwise, they are wrong.

With these definitions, in Table 6.4, ModelName Wrong corresponds to the times when
model ModelName has misclassified the test samples and ModelName Right corresponds to
the times when model ModelName has correctly classified test samples. ModelName in this
table is JITGNN, JITLine, or Baseline as we compared the main three models for this part
of the study and excluded the naive classifier.

Table 6.4: The number of predictions the three models made right and wrong with respect
to each other

(a) OpenStack (Ours)

JITLine Wrong JITLine Wrong JITLine Right JITLine Right

Baseline Wrong Baseline Right Baseline Wrong Baseline Right

JITGNN Wrong 92 22 18 28

JITGNN Right 18 26 24 804

(b) ApacheJIT

JITLine Wrong JITLine Wrong JITLine Right JITLine Right

Baseline Wrong Baseline Right Baseline Wrong Baseline Right

JITGNN Wrong 1,344 216 91 563

JITGNN Right 572 287 251 4,191

Table 6.4 indicates that the predictions of the three models agree most of the time
(JITGNN Wrong, JITLine Wrong, Baseline Wrong and JITGNN Right, JITLine Right,
Baseline Right cells). In the OpenStack dataset, the numbers are close. In the ApacheJIT
dataset, however, we can observe some differences. JITGNN predicts the labels of 572 test
samples correctly while the other two models predict them incorrectly. On the other hand,
the number of samples JITLine predicts correctly and the other two models misclassify is
91. This number for the baseline is 216. In other words, JITGNN is able to correctly label
samples when the other two models are not able to more than the other two models.

Moreover, generally, JITGNN classifies the test samples correctly more than JITLine
(< 572 + 287 + 251 + 4, 191 > vs < 563 + 91 + 251 + 4, 191 >) and the baseline model
(< 572 + 287 + 251 + 4, 191 > vs < 563 + 287 + 216 + 4, 191 >) in this dataset.

37

To have a better understanding of the relationship between our threshold-dependent
metrics (F1 score, precision, and recall) and the threshold that these metrics use to identify
bug-inducing commits, we repeated our experiments on the baseline, JITLine, and JITGNN
for a range of thresholds between 0.20 and 0.70 with 0.05 increments. Table 6.5 shows the
results of these experiments.

Predictably, for low thresholds, the recall is high because many samples are classified as
positive. Going toward higher thresholds, recall decreases, and precision increases generally.
The exceptions are where the classifier is giving low probabilities to true positive samples.
In these cases, the samples whose probability of positiveness is beyond the threshold are not
actually positive and it drops the precision. For example, in Table 6.5a, the precision of the
baseline drops at threshold = 0.60 and reaches 0 for the subsequent thresholds.

Result: For this research question, overall, we can say that JITGNN performs marginally
better than the baseline and its performance is comparable to the state-of-the-art (JITLine).
The study of different thresholds indicates that software systems may need to choose different
thresholds for their specific projects depending on how crucially bugs affect their systems
and their users.

6.4.3 RQ3: How does the size of the training set impact the per-
formance of JITGNN on unseen data?

Approach: To answer this question, from the training set of the ApacheJIT dataset that we
prepared for RQ2, we created subsets of training data with sizes varying from 10% to 100%
of the original training set with 10% increments. We trained JITGNN using these training
sets and for every training set, we evaluated the performance of the trained JITGNN on the
original test set. Similar to RQ2, the ratios of bug-inducing commits in all these training
sets were 0.50 while this ratio was 0.19 in the test set.

The results of these experiments are shown in Table 6.6. Similar to previous research
questions, We report AUC, F1 score, precision, and recall of the models.

Based on these results, the discriminatory performance of JITGNN improves by increas-
ing the size of the training set with few exceptions. However, this improvement is not sharp.

Result: As expected in deep neural networks, increasing the size of the training set
helps JITGNN learn to adjust its parameters better to generalize on the unseen test set.
However, the increase in the performance of JITGNN is not as sharp as expected and the
JITGNN model that was trained on our smallest training set (10% of the original training
set) achieves an AUC of 0.78 which is marginally lower than the AUC of the JITGNN trained
on the entire training set. Similar to AUC, the increases in other metrics are marginal.

38

Table 6.5: Evaluations of threshold-dependent metrics for thresholds in [0.20, 0.70] with
increaments of 0.05

(a) OpenStack (Ours)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

B
a
se
li
n
e F1 score 0.42 0.43 0.38 0.35 0.29 0.20 0.14 0.07 0.01 - -

Precision 0.32 0.36 0.34 0.36 0.37 0.36 0.35 0.31 0.16 0.0 0.0

Recall 0.61 0.54 0.43 0.33 0.23 0.14 0.08 0.04 0.01 0.0 0.0

J
IT

L
in
e F1 score 0.43 0.43 0.45 0.43 0.43 0.38 0.35 0.29 0.21 0.16 0.10

Precision 0.30 0.32 0.36 0.38 0.39 0.39 0.45 0.48 0.45 0.54 0.67

Recall 0.77 0.66 0.61 0.51 0.46 0.36 0.28 0.21 0.13 0.09 0.05

J
IT

G
N
N F1 score 0.46 0.46 0.43 0.37 0.36 0.35 0.35 0.28 0.24 0.20 0.16

Precision 0.35 0.37 0.39 0.37 0.39 0.40 0.44 0.48 0.51 0.58 0.54

Recall 0.68 0.58 0.48 0.38 0.34 0.30 0.28 0.20 0.15 0.12 0.09

(b) ApacheJIT

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

B
a
se
li
n
e F1 score 0.68 0.71 0.72 0.72 0.72 0.71 0.69 0.67 0.64 0.61 0.57

Precision 0.52 0.57 0.61 0.65 0.68 0.71 0.73 0.75 0.77 0.79 0.81

Recall 0.98 0.94 0.88 0.83 0.77 0.71 0.65 0.60 0.55 0.49 0.44

J
IT

L
in
e F1 score 0.39 0.41 0.43 0.45 0.47 0.48 0.49 0.51 0.52 0.53 0.54

Precision 0.24 0.26 0.28 0.30 0.32 0.33 0.35 0.37 0.40 0.43 0.47

Recall 0.97 0.94 0.92 0.90 0.88 0.84 0.80 0.78 0.74 0.70 0.65

J
IT

G
N
N F1 score 0.39 0.42 0.44 0.45 0.48 0.49 0.50 0.52 0.53 0.54 0.54

Precision 0.24 0.27 0.29 0.31 0.33 0.35 0.37 0.40 0.43 0.45 0.48

Recall 0.95 0.92 0.90 0.87 0.85 0.82 0.78 0.75 0.71 0.67 0.62

39

Table 6.6: JITGNN performance on different sizes of ApacheJIT training set

Size of ApacheJIT Training Data AUC F1 score Precision Recall

4,483 (10%) 0.7768 0.4602 0.3366 0.7350

8,967 (20%) 0.7787 0.4617 0.3244 0.8004

13,450 (30%) 0.7767 0.4995 0.4449 0.5694

17,934 (40%) 0.7814 0.4945 0.4092 0.6246

22,417 (50%) 0.7988 0.4905 0.3550 0.7934

26,900 (60%) 0.7949 0.4984 0.3763 0.7383

31,384 (70%) 0.8018 0.4676 0.3260 0.8269

35,867 (80%) 0.8017 0.5048 0.3797 0.7530

40,351 (90%) 0.8042 0.5036 0.3794 0.7488

44,834 (100%) 0.8087 0.5038 0.3711 0.7844

40

Chapter 7

Discussion

7.1 JITGNN Performance

In this work, we attempted to include the graph structure of source codes into a Just-In-
Time (JIT) bug prediction model by using abstract syntax trees (ASTs) of programs given
to a graph neural network (GNN) framework. Our assumption was that by combining
the code syntax and semantic information and the change metadata, we can improve the
discriminatory performance of JIT models. Our study for RQ2 and the results presented in
Section 6 does not support our assumption and the performance of JITGNN is comparable
to the existing state-of-the-art JIT model (JITLine).

In this study, we used two datasets. The first dataset is a collection of OpenStack
project commits built by McIntosh and Kamei [47]. This dataset —similar to other JIT and
generally other forms of bug prediction datasets— is not balanced. The ratio of bug-inducing
commits in this dataset after preparation (discussed in Section 6.1) is 0.14 (Table 6.1). The
second dataset is a newly created cross-project dataset from commits in 14 Apache projects
called ApacheJIT [37]. As we discussed the data preparation process, the training data we
used from this dataset was the result of undersampling the majority class (clean commits).
This undersampling was done by keeping the same ratio of bug-inducing commits and clean
commits in each period (year). Accordingly, the training data (and not the test data) from
ApacheJIT was balanced.

By comparing the performances of the three JIT models on these two datasets in Table
6.3, we observe that having a balanced training set results in higher values of threshold-
dependent metrics at threshold = 0.50. Also, the results in Table 6.5 show that the recalls
at all thresholds are higher in the experiments on ApacheJIT. This observation is intuitive
because the models see more positive (bug-inducing) samples in balanced training sets and
are more inclined to output higher probabilities of defectiveness in general. This observation
is important because systems that are more sensitive to bugs and fixing bugs is costly for
them should consider high-recall JIT models.

Another interesting observation in this work was the performance of the cross-lingual JIT-
GNN. As we explained the ApacheJIT dataset and its cross-project nature, and considering

41

the results presented in Section 6, JITGNN has an acceptable cross-project performance. In
another experiment, we attempted to evaluate the cross-lingual performance of JITGNN. In
this experiment, we trained the JITGNN Special Token model on the ApacheJIT training
data. Then, we collected the vocabulary of the training data in ApacheJIT, which is es-
sentially Java AST types and values, and manually mapped the ApacheJIT vocabulary to
the Python vocabulary of the training data in OpenStack. Finally, we tested the JITGNN
model trained on ApacheJIT on the test set of Openstack (Ours).

The reason we chose the JITGNN Special Token was to reduce the size of vocabulary
by converting all strings, numbers, and operations to the same type and value token and
consequently, the same embedding vector from BoW to set as node features. The ApacheJIT
training set in this setting had 110 distinct tokens and the size of the vocabulary of the
OpenStack training set was 72. We were able to map 49 tokens using the grammars of Java
and Python. JITGNN had a poor performance in this experiment (0.65 AUC, 0.13 F1 score,
0.29 precision, and 0.08 recall).

7.2 Khata

JIT bug prediction models are trained on historical data and their ultimate goal is to notify
developers that are submitting changes (commit authors in the context of Git) and warn
them that their change is likely to be defect-prone. This gives the developer an opportunity
to review the change again and prevent future bugs. Although there has been a substantial
amount of work done on JIT models in recent years, not many practical JIT tools have been
developed. This sometimes has led to unrealistic experiment settings that are proposed in
the literature [70, 60].

To complement our study on JIT models and designing JITGNN, we implemented an
open-source practical JIT tool called Khata that developers can install on their machines
and run after staging the changes1. Khata finds the changed files, filters out the files that
are newly added or completely removed, and collects the change metrics. Next, Khata loads
the JIT model that it is set to, runs the JIT model to predict the probability of the change
being bug-inducing, and reports this probability. JIT models in Khata are extensible and
anyone can add new JIT models to it. Khata is written in Python and currently includes
JITGNN and JITLine as JIT models. The workflow of Khata is shown in Figure 7.1.

Khata outputs a probability instead of classifying the changes into two groups of clean and
bug-inducing. The reason is that having a hard threshold to assess changes is not desirable
in many software projects. Plus, each project, depending on its context, may choose to set
a high or low threshold, respectively to have more confidence in the changes they need to
review and to make sure they do not miss any bug-inducing commits. Figure 7.2 and Figure
7.3 show the distribution of probabilities JITGNN and JITLine output on the positive (bug-
inducing commits) and negative (clean commits) samples in OpenStack and ApacheJIT test
data. These figures show that the thresholds that are chosen may differ from one project to

1Khata is available at: https://github.com/uw-swag/khata

42

Figure 7.1: Workflow of Khata

(a) JITGNN probabilities of bug-inducing com-
mits

(b) JITLine probabilities of bug-inducing com-
mits

(c) JITGNN probabilities of clean commits (d) JITLine probabilities of clean commits

Figure 7.2: The distribution of probabilities generated by JITGNN and JITLine on the
OpenStack dataset

another. Also, according to these figures, even picking a low threshold does not guarantee
that all bug-inducing commits will be detected.

We should mention that Khata is not evaluated in practice by developers yet.

7.3 Threats to Validity

7.3.1 Construct Validity

Threats to construct validity are related to how proper our inferences are in this study based
on the experiments and the results. In this work, we studied the application of graph neural

43

(a) JITGNN probabilities of bug-inducing com-
mits

(b) JITLine probabilities of bug-inducing com-
mits

(c) JITGNN probabilities of clean commits (d) JITLine probabilities of clean commits

Figure 7.3: The distribution of probabilities generated by JITGNN and JITLine on the
ApacheJIT dataset

networks (GNNs) and abstract syntax trees (ASTs) in the context of Just-In-Time (JIT)
bug prediction. Our results show that the GNN framework we designed and built for JIT
bug prediction does not improve the discriminatory performance of existing JIT models that
consider the changed code as plain text and do not include the graph structure of programs.
This inference, however, is threatened by graph neural networks (GNNs) and abstract syntax
trees (ASTs) as GNNs may not capture the structure of the code represented in ASTs well
in the context of JIT bug prediction.

Furthermore, recently, Rodriguez-Perez et al. [65] introduced a group of bugs that are
caused by external factors such as changes in requirements or changes in APIs. They call this
group of bugs Extrinsic Bugs. These bugs and their causes cannot be found using the SZZ
algorithm that is employed to construct both datasets we used in this work. The authors
suggest researchers exclude this type of bug-inducing changes from the data they are feeding
to JIT models. This approach improves the performance of JIT models but on the other
hand, JIT models are not able to identify these bugs. Therefore, the results of this study
cannot be applied in the context of extrinsic bugs.

7.3.2 External Validity

Threats to external validity are about how the limitations of our experiments may threaten
generalizability. In this study, we used two datasets: one is the OpenStack dataset presented
in McIntosh and Kamei [47] and used in its subsequent JIT bug prediction studies [30, 32, 58]
and the other dataset is a newly created JIT dataset called ApacheJIT [37]. ApacheJIT is
a cross-project JIT dataset that has the historical change data from 14 popular Apache

44

projects. ApacheJIT is a large dataset that contains more than 100,000 commits after an
extensive filtering process suggested by da Costa et al. [15] and McIntosh and Kamei [47].

Although ApacheJIT is a large dataset containing commits from a number of different
projects, still there is an external validity threat that we cannot necessarily generalize the
results we obtained in our experiments to other software projects. Also, the main language in
the OpenStack dataset is Python and in ApacheJIT is Java. One factor in the generalizability
of our results is the programming languages in those projects. JITGNN works upon the AST
of programs and the abstract information of program elements. But the same program in
different languages may still have different ASTs depending on the grammar of the language.

Finally, the network that we built is using graph convolutional networks (GCNs) as the
graph neural network (GNN). Initially, we performed experiments with gated graph neural
networks (GGNNs) and changed the GGNNs to GCNs due to their poor performances.
GGNNs and GCNs are the most widely used GNNs in the context of software engineering
and programming languages but other GNNs may work well for JIT bug prediction.

7.3.3 Internal Validity

Threats to the internal validity of our results relate to the uncontrolled factors that might
have had an impact on our results. Both the OpenStack and the ApacheJIT datasets that
are used in this work are constructed based on the SZZ algorithm [85]. SZZ is the most
widely used algorithm to automatically extract the bug-inducing commits in a software Git
repository. Despite the extensive use of SZZ, it has its limitations [15, 56, 57]. To mitigate
these limitations, da Costa et al. [15] and McIntosh and Kamei [47] propose a set of filtering
steps to remove suspicious bug-inducing changes. Both datasets that were used in this work
were built by adhering to these filtering steps.

As JITGNN is a deep graph neural network and requires computing a large number of
parameters in each layer, we conducted the training of JITGNN on a GPU machine. GPUs
leverage parallel computing to increase the speed of training deep learning models. One
downside of using a GPU is the inconsistency between different executions of programs. To
mitigate this problem, we executed each experiment at least three times on our GPU and re-
ported the result that at least two experiments agreed on. According to our observations, the
scale of fluctuation in the final results was mostly less than 0.01 AUC with some exceptions
that had a 0.01 difference (±0.01 AUC).

Other internal validity threats in our study are the scripts that were used for our ex-
periments. To build JITGNN, we mainly relied on verified scripts and modules for GCN,
NTN, and the attention layer and modified certain parameters and specifications of these
modules. Still, we wrote the scripts for the data preprocessing and connecting these modules.
Moreover, for the replication study, we modified the scripts from McIntosh and Kamei [47]
to change them from a longitudinal model to a regular JIT model with one training set and
one test set. Also, to experiment with different configurations of JITLine, we discarded the
SMOTE and the commit metric connection in their scripts. With all these modifications,
however, we believe our modifications did not erroneously change the nature of these models
as the results indicate similar or justifiably different performances from their original works.

45

Finally, we obtained the program ASTs from a tool called GumTreeDiff [19]. GumTreeD-
iff is a source code differencing tool that also extracts the ASTs of programs written in the
supporting languages and identifies the differences between the ASTs of two source codes.

46

Chapter 8

Future Work & Conclusion

In recent years, Just-In-Time (JIT) bug prediction models evolved from basic logistic regres-
sion models trained on historical commit metrics into models that include more information
about the content of the change. Also, deep learning models are introduced to the bug
prediction domain. Limited work has been done on deep learning in JIT bug prediction
but the proposed models have demonstrated huge potential. Following the recent interest in
utilizing the graph structure of programs and applying graph neural network (GNN) models
on them, we explore the effectiveness of GNNs in JIT bug prediction in this work.

We propose a deep GNN called JITGNN that learns vector representations of nodes in
the abstract syntax trees (ASTs) of programs before and after the change to obtain vector
representations of the program before and after the change using an attention mechanism.
The pre-change and post-change vector representations are given to the neural tensor net-
work (NTN) to combine them by generating a relationship vector. To benefit from the
achievements of commit metrics in the past, the common 14 commit metrics that are widely
used in the literature are collected and concatenated to the output vector of NTN. Finally,
a feed-forward neural network takes the concatenated vector and outputs a probability that
indicates how likely the commit will introduce bugs in the future.

We compared the performance of JITGNN against multiple regression modeling [47] as
the baseline and JITLine [58] as the state-of-the-art in four evaluation measures: Area under
ROC curve (AUC), F1 score, Precision, and Recall. The data we used in this study comes
from two sources. One is the OpenStack data prepared by McIntosh and Kamei [47] and the
other one is a newly built JIT dataset called ApacheJIT [37]. Our results show that JITGNN
performance is comparable to the state-of-the-art. We also investigated the impact of the size
of the training set on the performance of JITGNN and learned that predictably, increasing
the size of the training set improves the performance but the increase in evaluation metrics
are not very sharp and even with 10% of the ApacheJIT training set, JITGNN achieves
acceptable performance.

Finally, we implemented an open-source JIT tool for developers called Khata. Khata
analyzes the staged changes in a Git working directory and reports the probability that
the change is bug-inducing. Currently, Khata has two JIT models: JITGNN and JITLine.
However, Khata is extensible and users can add new JIT models to it. Khata is not evaluated

47

by developers. Further study is needed to evaluate how effective Khata is to prevent bug-
inducing commits. Also, the convenience of using and extending JIT models in Khata should
be investigated.

Continuing this research thread, potentially JITGNN can be improved by including more
graphical program information. Data flow and control flow information can be added to the
ASTs as new edge types. Adding various edge types has shown to be effective in software
vulnerability detection [81]. One challenge in JITGNN training is the training time. We
reduced the size of the ASTs given to GCNs in JITGNN by removing the nodes that are
not related to the changed nodes. However, more reduction is needed to increase the speed
of training.

Another study that can be derived from this work is the analysis of the commits that
are correctly and incorrectly classified by JITGNN and compare them with the classification
that is done by other models to get more insight into what types of bug-inducing commits
JITGNN is able to detect and what bug-inducing commits it misses.

48

References

[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting
accurate method and class names. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, page 38–49, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN 9781450336758. doi: 10.1145/
2786805.2786849. URL https://doi.org/10.1145/2786805.2786849.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network
for extreme summarization of source code. CoRR, abs/1602.03001, 2016. URL http:

//arxiv.org/abs/1602.03001.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to repre-
sent programs with graphs. CoRR, abs/1711.00740, 2017. URL http://arxiv.org/

abs/1711.00740.

[4] Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike,
Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, and
Vijayan K. Asari. A state-of-the-art survey on deep learning theory and architectures.
Electronics, 8(3), 2019. ISSN 2079-9292. doi: 10.3390/electronics8030292. URL https:

//www.mdpi.com/2079-9292/8/3/292.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based repre-
sentation for predicting program properties. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018, page
404–419, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450356985. doi: 10.1145/3192366.3192412.

[6] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based repre-
sentation for predicting program properties. SIGPLAN Not., 53(4):404–419, jun 2018.
ISSN 0362-1340. doi: 10.1145/3296979.3192412. URL https://doi.org/10.1145/

3296979.3192412.

[7] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences
from structured representations of code. ArXiv, abs/1808.01400, 2019.

[8] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning dis-
tributed representations of code. Proc. ACM Program. Lang., 3(POPL), jan 2019. doi:
10.1145/3290353. URL https://doi.org/10.1145/3290353.

49

https://doi.org/10.1145/2786805.2786849
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://www.mdpi.com/2079-9292/8/3/292
https://www.mdpi.com/2079-9292/8/3/292
https://doi.org/10.1145/3296979.3192412
https://doi.org/10.1145/3296979.3192412
https://doi.org/10.1145/3290353

[9] Erik Arisholm and Lionel C. Briand. Predicting fault-prone components in a java legacy
system. In Proceedings of the 2006 ACM/IEEE International Symposium on Empirical
Software Engineering, ISESE ’06, page 8–17, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595932186. doi: 10.1145/1159733.1159738. URL
https://doi.org/10.1145/1159733.1159738.

[10] Jayme Garcia Arnal Barbedo. Impact of dataset size and variety on the effectiveness of
deep learning and transfer learning for plant disease classification. Computers and Elec-
tronics in Agriculture, 153:46–53, 2018. ISSN 0168-1699. doi: https://doi.org/10.1016/j.
compag.2018.08.013. URL https://www.sciencedirect.com/science/article/pii/

S0168169918304617.

[11] Marc Brockschmidt. GNN-FiLM: Graph neural networks with feature-wise linear
modulation. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 1144–1152. PMLR, 13–18 Jul 2020. URL https:

//proceedings.mlr.press/v119/brockschmidt20a.html.

[12] Deyu Chen, Xiang Chen, Hao Li, Junfeng Xie, and Yanzhou Mu. Deepcpdp: Deep
learning based cross-project defect prediction. IEEE Access, 7:184832–184848, 2019.
doi: 10.1109/ACCESS.2019.2961129.

[13] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network. ACM Trans. Softw.
Eng. Methodol., 30(3), apr 2021. ISSN 1049-331X. doi: 10.1145/3436877. URL https:

//doi.org/10.1145/3436877.

[14] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches. In
SSST@EMNLP, 2014.

[15] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho,
and Ahmed E. Hassan. A framework for evaluating the results of the szz approach for
identifying bug-introducing changes. IEEE Transactions on Software Engineering, 43
(7):641–657, 2017. doi: 10.1109/TSE.2016.2616306.

[16] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya
Ghose, Taeksu Kim, and Chul-Joo Kim. A deep tree-based model for software defect
prediction. CoRR, abs/1802.00921, 2018. URL http://arxiv.org/abs/1802.00921.

[17] Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and its appli-
cations. Computer Science Review, 40:100379, 2021. ISSN 1574-0137. doi: https://doi.
org/10.1016/j.cosrev.2021.100379. URL https://www.sciencedirect.com/science/

article/pii/S1574013721000198.

[18] Khaled El Emam, Walcelio Melo, and Javam C Machado. The prediction of faulty
classes using object-oriented design metrics. Journal of systems and software, 56(1):
63–75, 2001.

50

https://doi.org/10.1145/1159733.1159738
https://www.sciencedirect.com/science/article/pii/S0168169918304617
https://www.sciencedirect.com/science/article/pii/S0168169918304617
https://proceedings.mlr.press/v119/brockschmidt20a.html
https://proceedings.mlr.press/v119/brockschmidt20a.html
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3436877
http://arxiv.org/abs/1802.00921
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://www.sciencedirect.com/science/article/pii/S1574013721000198

[19] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Mon-
perrus. Fine-grained and accurate source code differencing. In ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden -
September 15 - 19, 2014, pages 313–324, 2014. doi: 10.1145/2642937.2642982. URL
http://doi.acm.org/10.1145/2642937.2642982.

[20] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E. Hassan, and
Shanping Li. The impact of mislabeled changes by szz on just-in-time defect prediction.
IEEE Transactions on Software Engineering, 47(8):1559–1586, 2021. doi: 10.1109/TSE.
2019.2929761.

[21] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained
model for programming and natural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139.
URL https://aclanthology.org/2020.findings-emnlp.139.

[22] Wei Fu and Tim Menzies. Revisiting unsupervised learning for defect prediction. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 72–83, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450351058. doi: 10.1145/3106237.3106257. URL https://doi.

org/10.1145/3106237.3106257.

[23] Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. An empirical study of just-in-time defect prediction using cross-
project models. In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, page 172–181, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450328630. doi: 10.1145/2597073.2597075. URL
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2597073.2597075.

[24] Jiri Gesi, Jiawei Li, and Iftekhar Ahmed. An Empirical Examination of the Impact
of Bias on Just-in-Time Defect Prediction. Association for Computing Machinery,
New York, NY, USA, 2021. ISBN 9781450386654. URL https://doi.org/10.1145/

3475716.3475791.

[25] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https://proceedings.mlr.

press/v9/glorot10a.html.

[26] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26(7):653–661,
2000. doi: 10.1109/32.859533.

51

http://doi.acm.org/10.1145/2642937.2642982
https://aclanthology.org/2020.findings-emnlp.139
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1145/3106237.3106257
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2597073.2597075
https://doi.org/10.1145/3475716.3475791
https://doi.org/10.1145/3475716.3475791
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html

[27] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In 2009
IEEE 31st International Conference on Software Engineering, pages 78–88, 2009. doi:
10.1109/ICSE.2009.5070510.

[28] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm
for Deep Belief Nets. Neural Computation, 18(7):1527–1554, 07 2006. ISSN 0899-7667.
doi: 10.1162/neco.2006.18.7.1527. URL https://doi.org/10.1162/neco.2006.18.7.

1527.

[29] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi.
Deepjit: An end-to-end deep learning framework for just-in-time defect prediction.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 34–45, 2019. doi: 10.1109/MSR.2019.00016.

[30] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi.
Deepjit: An end-to-end deep learning framework for just-in-time defect prediction.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 34–45, 2019. doi: 10.1109/MSR.2019.00016.

[31] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. Cc2vec: Distributed repre-
sentations of code changes. In Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, ICSE ’20, page 518–529, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380361.

[32] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. Cc2vec: Distributed rep-
resentations of code changes. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pages 518–529, 2020.

[33] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
279–289, 2013. doi: 10.1109/ASE.2013.6693087.

[34] Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning with class
imbalance. Journal of Big Data, 6:1–54, 2019.

[35] Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto, Bram
Adams, and Ahmed E. Hassan. Revisiting common bug prediction findings using effort-
aware models. In 2010 IEEE International Conference on Software Maintenance, pages
1–10, 2010. doi: 10.1109/ICSM.2010.5609530.

[36] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, 2013.
doi: 10.1109/TSE.2012.70.

[37] Hossein Keshavarz and Meiyappan Nagappan. Apachejit: A large dataset for just-in-
time defect prediction, 2022. arXiv:2203.00101.

52

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527

[38] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller.
Predicting faults from cached history. In 29th International Conference on Software
Engineering (ICSE’07), pages 489–498, 2007. doi: 10.1109/ICSE.2007.66.

[39] Sunghun Kim, E. James Whitehead, and Yi Zhang. Classifying software changes: Clean
or buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008. doi:
10.1109/TSE.2007.70773.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[41] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations (ICLR),
2017.

[42] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved Code
Summarization via a Graph Neural Network, page 184–195. Association for Computing
Machinery, New York, NY, USA, 2020. ISBN 9781450379588. URL https://doi.org/

10.1145/3387904.3389268.

[43] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. Software defect prediction via
convolutional neural network. In 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 318–328, 2017. doi: 10.1109/QRS.2017.
42.

[44] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug
discovery. arXiv preprint arXiv:1709.03741, 2017.

[45] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph
sequence neural networks. In Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.05493.

[46] C. Manjula and L. Z. Florence. Deep neural network based hybrid approach for software
defect prediction using software metrics. Cluster Computing, 22:9847–9863, 2018.

[47] Shane McIntosh and Yasutaka Kamei. Are fix-inducing changes a moving target? a
longitudinal case study of just-in-time defect prediction. IEEE Transactions on Software
Engineering, 44(5):412–428, 2018. doi: 10.1109/TSE.2017.2693980.

[48] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empir-
ical study of the impact of modern code review practices on software quality. Em-
pirical Softw. Engg., 21(5):2146–2189, oct 2016. ISSN 1382-3256. doi: 10.1007/
s10664-015-9381-9. URL https://doi.org/10.1007/s10664-015-9381-9.

53

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
http://arxiv.org/abs/1511.05493
https://doi.org/10.1007/s10664-015-9381-9

[49] Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In 2010 14th
European Conference on Software Maintenance and Reengineering, pages 107–116, 2010.
doi: 10.1109/CSMR.2010.18.

[50] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs
Technical Journal, 5(2):169–180, 2000. doi: 10.1002/bltj.2229.

[51] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects. In 2015 IEEE 22nd In-
ternational Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 171–180, 2015. doi: 10.1109/SANER.2015.7081827.

[52] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction. In 2008
ACM/IEEE 30th International Conference on Software Engineering, pages 181–190,
2008. doi: 10.1145/1368088.1368114.

[53] N. Nagappan and T. Ball. Use of relative code churn measures to predict system defect
density. In Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005., pages 284–292, 2005. doi: 10.1109/ICSE.2005.1553571.

[54] Aravind Nair, Avijit Roy, and Karl Meinke. Funcgnn: A graph neural network approach
to program similarity. In Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), ESEM ’20, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375801. doi:
10.1145/3382494.3410675. URL https://doi.org/10.1145/3382494.3410675.

[55] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, page 807–814, Madison, WI, USA, 2010.
Omnipress. ISBN 9781605589077.

[56] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. The impact
of refactoring changes on the szz algorithm: An empirical study. In 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 380–390, 2018. doi: 10.1109/SANER.2018.8330225.

[57] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. Revisiting and
improving szz implementations. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–12, 2019. doi:
10.1109/ESEM.2019.8870178.

[58] Chanathip Pornprasit and Chakkrit Tantithamthavorn. Jitline: A simpler, better,
faster, finer-grained just-in-time defect prediction. 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pages 369–379, 2021.

[59] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. A survey on deep learning:

54

https://doi.org/10.1145/3382494.3410675

Algorithms, techniques, and applications. ACM Comput. Surv., 51(5), sep 2018. ISSN
0360-0300. doi: 10.1145/3234150. URL https://doi.org/10.1145/3234150.

[60] Lei Qiao and Yan Wang. Effort-aware and just-in-time defect prediction with neural
network. PloS one, 14(2):e0211359, 2019.

[61] Lei Qiao, Xuesong Li, Qasim Umer, and Ping Guo. Deep learning based software
defect prediction. Neurocomputing, 385:100–110, 2020. ISSN 0925-2312. doi: https:
//doi.org/10.1016/j.neucom.2019.11.067.

[62] Santosh Singh Rathore and Atul Gupta. Investigating object-oriented design metrics to
predict fault-proneness of software modules. In 2012 CSI Sixth International Conference
on Software Engineering (CONSEG), pages 1–10, 2012. doi: 10.1109/CONSEG.2012.
6349484.

[63] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from ”big code”. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’15, page 111–124, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333009. doi:
10.1145/2676726.2677009. URL https://doi.org/10.1145/2676726.2677009.

[64] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from ”big code”. SIGPLAN Not., 50(1):111–124, jan 2015. ISSN 0362-1340. doi:
10.1145/2775051.2677009. URL https://doi.org/10.1145/2775051.2677009.

[65] Gema Rodriguez-Perez, Meiyappan Nagappan, and Gregorio Robles. Watch out for
extrinsic bugs! a case study of their impact in just-in-time bug prediction models on
the openstack project. IEEE Transactions on Software Engineering, pages 1–1, 2020.
doi: 10.1109/TSE.2020.3021380.

[66] F Scarselli, M Gori, Ah Chung Tsoi, M Hagenbuchner, and G Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 1(20):61–80, 2009.

[67] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. An industrial
study on the risk of software changes. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450316149.
doi: 10.1145/2393596.2393670. URL https://doi-org.proxy.lib.uwaterloo.ca/

10.1145/2393596.2393670.

[68] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning
with neural tensor networks for knowledge base completion. In C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[69] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. Pydriller: Python framework
for mining software repositories. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of

55

https://doi.org/10.1145/3234150
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2775051.2677009
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2393596.2393670
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2393596.2393670

Software Engineering, ESEC/FSE 2018, page 908–911, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450355735. doi: 10.1145/3236024.
3264598. URL https://doi.org/10.1145/3236024.3264598.

[70] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect prediction for
imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pages 99–108, 2015. doi: 10.1109/ICSE.2015.139.

[71] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect prediction for
imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pages 99–108, 2015. doi: 10.1109/ICSE.2015.139.

[72] Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui. Convolutional neural networks
over control flow graphs for software defect prediction. In 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 45–52, 2017. doi: 10.
1109/ICTAI.2017.00019.

[73] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for
defect prediction. In 2016 IEEE/ACM 38th International Conference on Software En-
gineering (ICSE), pages 297–308, 2016. doi: 10.1145/2884781.2884804.

[74] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning
for software defect prediction. IEEE Transactions on Software Engineering, 46(12):
1267–1293, 2020. doi: 10.1109/TSE.2018.2877612.

[75] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning
for software defect prediction. IEEE Transactions on Software Engineering, 46(12):
1267–1293, 2020. doi: 10.1109/TSE.2018.2877612.

[76] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. A comprehensive survey on graph neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 32:4–24, 2019.

[77] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for just-
in-time defect prediction. In 2015 IEEE International Conference on Software Quality,
Reliability and Security, pages 17–26, 2015. doi: 10.1109/QRS.2015.14.

[78] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. Effort-aware just-in-time defect prediction: Sim-
ple unsupervised models could be better than supervised models. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, page 157–168, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342186. doi: 10.1145/2950290.2950353. URL
https://doi.org/10.1145/2950290.2950353.

[79] Jiaojiao Yu, Kunsong Zhao, Jin Liu, Xiao Liu, Zhou Xu, and Xin Wang. Exploiting
gated graph neural network for detecting and explaining self-admitted technical debts.
Journal of Systems and Software, 187:111219, 2022. ISSN 0164-1212. doi: https://doi.
org/10.1016/j.jss.2022.111219.

56

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/2950290.2950353

[80] Minghui Zhou and Audris Mockus. Does the initial environment impact the future of
developers. In 2011 33rd International Conference on Software Engineering (ICSE),
pages 271–280, 2011. doi: 10.1145/1985793.1985831.

[81] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program semantics via
graph neural networks. In NeurIPS, pages 10197–10207, 2019.

[82] Xiangxin Zhu, Carl Vondrick, Charless C Fowlkes, and Deva Ramanan. Do we need
more training data? International Journal of Computer Vision, 119(1):76–92, 2016.

[83] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using network
analysis on dependency graphs. In 2008 ACM/IEEE 30th International Conference on
Software Engineering, pages 531–540, 2008. doi: 10.1145/1368088.1368161.

[84] Ayşe Nur Çayır and Tuğba Selcen Navruz. Effect of dataset size on deep learn-
ing in voice recognition. In 2021 3rd International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), pages 1–5, 2021. doi:
10.1109/HORA52670.2021.9461395.

[85] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes in-
duce fixes? In Proceedings of the 2005 International Workshop on Mining Soft-
ware Repositories, MSR ’05, page 1–5, New York, NY, USA, 2005. Association for
Computing Machinery. ISBN 1595931236. doi: 10.1145/1083142.1083147. URL
https://doi.org/10.1145/1083142.1083147.

57

https://doi.org/10.1145/1083142.1083147

	List of Figures
	List of Tables
	Introduction
	Related Work
	Bug Prediction
	JIT Bug Prediction
	Deep Learning in JIT
	Graph Networks in Software Engineering

	ApacheJIT
	Previous JIT Datasets
	ApacheJIT Dataset & Usage
	Data Construction
	Bug Report Collection
	Fixing Commit Collection
	Finding Bug-inducing Commits
	Finding Clean Commits
	Commit Metrics

	Dataset
	OpenStack
	ApacheJIT

	JITGNN Framework
	Overview
	Change Subtrees & Commit Graphs
	Node Features
	Graph Convolutional Network
	Attention Mechanism
	Neural Tensor Network
	Commit Metrics
	Feed-forward Neural Network

	Experiments & Results
	Data Preparation
	JITGNN Compatibility
	Training-Test Split

	Comparison Models
	Naive
	Baseline
	State-of-the-art

	Evaluation Metrics
	Experiments & Results
	RQ1: Can we replicate the baseline and the state-of-the-art JIT bug prediction models?
	RQ2: How does JITGNN perform compared to the baseline and the state-of-the-art JIT bug prediction models?
	RQ3: How does the size of the training set impact the performance of JITGNN on unseen data?

	Discussion
	JITGNN Performance
	Khata
	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Future Work & Conclusion
	References

