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Abstract. We study the maximal algebraic degree of principal ortho-com-
pressions of linear operators that constitute spatial matricial numerical ranges

of higher order. We demonstrate (amongst other things) that for a (possibly

unbounded) operator L on a Hilbert space, every principal m-dimensional
ortho-compression of L has algebraic degree less than m if and only if

rank(L− λI) ≤ m− 2 for some λ ∈ C.

1. Introduction

In this paper we study the algebraic degrees of the elements of the spatial ma-
tricial numerical ranges of higher order. The origin of the study was a conjecture
of the result appearing in Corollary 17. It asserts that a matrix has no cyclic m-
dimensional ortho-compressions (m ≥ 2) exactly when it has rank at most m − 2
up to a translation by a scalar multiple of the identity.

This inquiry is part of a general program of studying how various properties of
ortho-compressions of an operator can be translated into the (global) properties of
the operator as a whole. Similar questions are asked of semigroups and algebras
of operators. For example, in [9], having fixed a natural number n, the set CN ⊆
Mn(C) of operators T for which P⊥TP and PTP⊥ share a common (operator) norm
for all orthogonal projections P was characterised. In particular, this set coincides
with the set CR ⊆ Mn(C) of operators T for which rankP⊥TP = rankPTP⊥

for all such projections P and, when n ≥ 4, is the set of matrices which can be
expressed as a linear combination of the identity matrix and a matrix L which
is either self-adjoint or unitary. A complete characterization of the set CN was
also obtained in the infinite-dimensional setting. In [10], those integers j and k for
which there exist normal matrices D ∈ Mn(C) such that rankP⊥DP = j while
rankPDP⊥ = k are characterized. In [3] and [2], unital algebras A ⊆ Mn(C)
for which PAP |ranP is an algebra for all orthogonal projections P were described,
while in [11], dimension estimates and structure theorems for an algebraA ⊆Mn(C)

admitting an off-diagonal corner L def
= P⊥A|ranP with trivial common kernel and

co-kernel were obtained, based purely on the dimension of L.
In such studies the underlying field can make a difference. For example, over

C, a matrix all of whose principal ortho-compressions to 1-dimensional subspaces
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are zero – that is, whose numerical range is the singleton {0} – is the zero matrix,
while over R, the matrix

[
0 1
−1 0

]
enjoys this property.

In this paper we focus on (linear) operators on finite-dimensional inner product
spaces V over C. For an operator T on such a V, the notation JT KG refers to the
matrix representation of T with respect to a given (ordered) basis G of V.

The algebraic degree of a non-zero operator L is the degree of its (monic) minimal
polynomial. This degree equals the sum of the sizes of the largest Jordan blocks
corresponding to each of the distinct eigenvalues of L.

Ortho-projections are the self-adjoint idempotents, and scalar operators are those
that are scalar multiples of the identity.

We use the symbol ⊕ to indicate direct sums for both spaces and operators. We
emphasize that the direct sum of spaces need not be orthogonal.

Unless specified otherwise, the norm ‖ ‖ on V and the resulting metric are
presumed to be those generated by the inner product. The associated operator
norm ‖ ‖op for the operators is given by the Lipschitz constant.

All norms on a finite-dimensional linear space are equivalent, and for this rea-
son, norm-convergence and entry-wise convergence are equivalent for sequences of
matrices.

An operator L on an n-dimensional vector space V is said to be cyclic when it

has a cyclic vector; i.e. a vector v such that span
(
v, L(v), L

2

(v), . . . , L
n−1

(v)
)

= V.
The property of cyclicity is clearly invariant under translations by scalar operators.
L is cyclic exactly when its minimal polynomial has degree equal to dimV; i.e.

when the minimal polynomial of L coincides with its characteristic polynomial
(see, e.g., [6], Section 7.1). This happens exactly when a Jordan form of A has
a single Jordan block for each of its eigenvalues, or equivalently, if and only if all
eigenvalues of L have geometric multiplicity 1. Such operators are often referred to
in the literature as non-derogatory.

The proof of the following result may be found on p. 499 of [5]. Clearly a
corresponding result holds for the set of cyclic operators on V.

1. Proposition. The set of n× n cyclic matrices is norm-open in Mn(C).

Given an operator L on V, and 1 ≤ m ≤ dimV, the m-th spatial matricial
numerical rangeWm(L) of L, defined in [1] where it is attributed to an unpublished
work of S. K. Parrott, is the set of m × m matrices of the form V ∗LV , where
V : Cm −→ V is a linear isometry.1 In particular, unitarily equivalent operators
have identical spatial matricial numerical ranges. Since we will only consider spatial
matricial numerical ranges in this article, we will usually drop off “spatial” from
our terminology henceforth.
Wm(L) coincides with the set of the m×m matrices

q
PL|ranP

y
V
, where P is an

ortho-projection of rank m on V, and V is an orthonormal basis of the range of P .
The linear operator PL|ranP is the ortho-compression of L to the range of P .

Of course W1(L) is nothing more than the numerical range of L. We do not
define Wm(L) when m exceeds the dimension of the underlying space.

A systematic study of the spatial matricial numerical ranges of operators on
finite-dimen-sional inner product spaces was presented in [8], and [4] gives a nice
survey of this and other generalizations of the classical numerical range.

1Since we only deal with linear isometries in this paper, we shall omit the reference to their
linearity henceforth.



ALGEBRAIC DEGREE IN SPATIAL MATRICIAL NUMERICAL RANGES 3

It is not difficult to check that for any M ∈ Wm(L):

(1) Wk(M) ⊆ Wk(L) , for all 1 ≤ k ≤ m .

It is also obvious that the rank of an element of a matricial numerical range of
L does not exceed the rank of L.

By the Spectral Theorem,Wr(A) contains an invertible element whenever A is a
non-zero positive semi-definite matrix of rank r. In fact, one of the r × r principal
submatrices of such an A is invertible ([7]). It is shown in [7] that every non-zero
matrix A of rank r is unitarily equivalent to a matrix that has an invertible r × r
principal submatrix.

In our Theorem 16 we present a direct analogue of this statement for rank modulo
the scalars, but at this point we would like to observe that the quoted result of [7]
can be strengthened (Proposition 2) with an elementary proof, which is relegated
to the last section of the paper. (To enable a better flow of our presentation, we
have relegated most of the proofs to the end.)

2. Proposition. For every A ∈ Mn(C) of positive rank r there exists a matrix
W ∈Mn(Z) with non-zero orthogonal columns, such that WTAW has an invertible
principal r × r submatrix.

We remark that in the above result, W can be replaced with a unitary U ∈
Mn(F), where F is the smallest subfield of R extending Q that contains a square
root of each of its elements.

2. Preliminary Results

3. Lemma. Suppose that L is an operator on V, and a non-trivial proper subspace
Z of V is invariant under L. If X and Y are two subspaces of V complementary to
Z, and L is expressed as [

Ao B
O A1

]
and

[
Ao C
O A2

]
with respect to the decompositions V = Z ⊕ X and V = Z ⊕ Y respectively, the
operators A1 and A2 are similar.

4. Proposition. If L is a cyclic operator on a finite-dimensional inner product
space, then every matricial numerical range of L contains a cyclic matrix.

5. Corollary. Suppose that L is an operator on V such that, for some d < m, all
matrices in Wm (L) are algebraic of degree at most d. Then L is algebraic of degree
at most d.

We shall complement this result in Corollary 17, which states that for d =
m − 1 the hypothesis of Corollary 5 is equivalent to the claim that L is a scalar
perturbation of an operator of rank at most m− 2.

6. Observation. The converse of Corollary 5 fails dramatically: for any n × n
matrix A, the block-matrix

[
A A
−A −A

]
is nilpotent of degree 2.

3. Main Results

Our study of the algebraic degrees of the elements of matricial numerical ranges
requires a strengthening of Proposition 4 in the form of Theorem 12. The proof of
this theorem relies on several approximation results, which precede it.



4J. BERNIK1, L. LIVSHITS, G. W. MACDONALD, L.W. MARCOUX, M. MASTNAK, AND H. RADJAVI

7. Proposition. For any matrix M ∈Mn×k(C) without zero rows and k ≥ 2, there
exist positive scalars γ2, . . . , γk such that for all large enough natural numbers m,

M

(
m
γ2
·
·
γk

)
has no zero entries.

8. Corollary. For any matrix M ∈Mn×k(C) without zero rows there is a sequence
[ui]i∈N of entry-wise positive unit vectors in Ck convergent to (1, 0, . . . , 0), such that
each M(ui) has no zero entries.

Proof of Corollary 8. By Proposition 7 there exist positive scalars γ2, . . . , γk

such that M

(
m
γ2
·
·
γk

)
has no zero entries for all large enough natural numbers m. Let

gm be the normalization of (m, γ2, . . . , γk):

gm =
(m, γ2, . . . , γk)√
m2 + γ22 + · · ·+ γ2k

.

Then an appropriate tail of the sequence [gm]m∈N will serve as the desired [ui]i∈N.
�

9. Corollary. Let M be the n×n Gramian matrix for non-zero vectors f1, f2, . . . , fn
(n ≥ 2) in V; (i.e. let Mij = 〈fj , fi〉).

Then there exists a sequence [uk]k∈N of entry-wise positive unit n-tuples conver-
gent to (1, 0, . . . , 0), such that each M (uk) has no zero entries, or equivalently〈

uk(1)f1 + · · ·+ uk(n)fn , fi

〉
6= 0, for all k, i.

Proof of Corollary 9. The positive definiteness of the inner product implies that
all diagonal entries of M are positive, and so the desired conclusion follows from
Proposition 7. �

10. Lemma. Let V : Cm −→ V be an isometry and u ∈ V be a unit vector. Then
there exists an isometry Z : Cm −→ V such that

u = Z (e1) and ‖V − Z‖op = ‖V (e1)− Z (e1)‖ .

11. Proposition. Suppose that [hk]k∈N is a sequence of non-zero vectors in an
n-dimensional V, and [hk]k∈N converges to a non-zero vector h.

If V : Cn−1−→V is an isometry with range h⊥, then there exist isometries
Vk : Cn−1−→V with range(Vk) = h⊥k , such that [Vk]k∈N converges to V .

Consequently, if [Lk]k∈N is a sequence of operators on V which converges to an
operator L, then

V ∗k LkVk→V ∗LV .

At this point we can strengthen Proposition 4.

12. Theorem. Suppose that L is a cyclic operator on V, where dimV = n ≥ 2. Then
Wn−1(L) contains a cyclic matrix whose spectrum is disjoint from the spectrum of
L.

Theorem 12 leads to a complete characterization of cyclicity in matricial numer-
ical ranges, which we present in Theorem 16. Our method relies upon showing that
for a non-cyclic non-scalar operator L on V, proper matricial numerical ranges of
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L contain operators that are closer to being cyclic than L (Theorem 15). To this
end we need to introduce some terminology.

Given an operator L on V, let rankCI (L) denote the rank of L modulo the scalars,
defined by

(2) rankCI (L)
def
= min

γ∈C

(
rank(L− γI)

)
.

Since C is algebraically closed, 0 ≤ rankCI (L) ≤ dimV − 1.

13. Observation. The algebraic degree of an operator L of rank r is at most r+1,
and the equality holds if and only if L = C⊕O where C is cyclic and not invertible;
(the zero direct summand may be absent).

Since perturbing L by a scalar operator has no effect on the algebraic degree,
it follows that the algebraic degree of L does not exceed rankCI (L) + 1, and the
equality holds if and only if L = C ⊕λI, where C is cyclic, λ is an eigenvalue of C,
and the summand λI may be absent.

The ranks of matrices in a matricial numerical range of L cannot exceed the
rank of L, and consequently the same holds true for rank modulo the scalars. In
particular, the algebraic degrees of matrices A in a matricial numerical range of
L cannot exceed rankCI (L) + 1, with the equality holding if and only if A has the
same rank modulo the scalars as L, and A = C ⊕ λI, where C is cyclic, λ is an
eigenvalue of C, and the summand λI may be absent.

Consequently Wm(L) contains no cyclic matrices when m > rankCI (L) + 1. In
Theorem 16 we will show that the converse implication holds true as well.

If we define co-rankCI (L) by

co-rankCI (L)
def
= dimV − rankCI (L) ,

then co-rankCI (L) is the largest of the dimensions of the eigenspaces of L, i.e. the
largest among the geometric multiplicities of the eigenvalues of L. In other words,
co-rankCI (L) is the largest number of the Jordan blocks corresponding to a single
eigenvalue of L in its Jordan form. Obviously 1 ≤ co-rankCI (L) ≤ dimV.

The number co-rankCI (L) can be thought of as a cyclicity defect of L; that is to
say, an index of non-cyclicity of L. The cyclic operators L are exactly those with
co-rankCI (L) = 1, while the equation co-rankCI (L) = dimV identifies the scalar
operators.

14. Definition. LetA ∈Mn(C) be a matrix withm distinct eigenvalues λ1, λ2, . . . , λm
listed in a decreasing order of geometric multiplicity . We associate to A a Jordan
profile matrix JP(A) 2 having non-negative integer entries representing the sizes of
the Jordan blocks in a Jordan Canonical Form of A as follows:

(1) JP(A) has m rows and co-rankCI (A) columns;
(2) the i-th row of JP(A) is an increasing list of the sizes of the Jordan blocks

of A corresponding to the eigenvalue λi, if necessary padded with zeros on
the left to bring it to the proper length.

We can associate a matrix JP(L) to an operator L on V in an obvious fashion.
The following theorem shows that matricial numerical ranges of a non-cyclic non-
scalar operator L contain matrices that have a smaller cyclicity defect than L.

2JP(A) is sensitive to the ordering of the eigenvalues, when several have the same geometric
multiplicity.
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15. Theorem. If n ≥ 3, and L is a non-scalar non-cyclic operator on an n-
dimensional complex inner product space, then Wn−1(L) contains a matrix K sat-
isfying the following conditions:

(1) rankCI (K) = rankCI (L);
(

i.e. co-rankCI (K) = co-rankCI (L)− 1
)

;

(2) a Jordan profile matrix JP(K) can be constructed from a given JP(L) by
first deleting the last column of that JP(L), then deleting any resulting zero
rows, and finally appropriately appending (at the bottom) some number of
rows that have a single positive entry in the last column;

It follows that

(a) K is not a scalar matrix;
(b) the sum of the appended positive entries is one less than the algebraic degree

of L; and
(c) the algebraic degree of K, which is the last column sum of JP(K), is one

less than the sum of the last two column sums of JP(L).

Our next theorem gives a complete characterization of the existence of cyclic
elements in matricial numerical ranges of a non-zero operator L on V, as well as of
the existence of elements having the same rank modulo the scalars as L.

For convenience, we shall write maxdeg
m
(L) for the maximum of the algebraic

degrees of the elements ofWm(L). Clearly maxdeg
m
(L) ≤ min (m, rankCI (L) + 1) .

16. Theorem. If L is a non-zero operator on V and JP(L) is a Jordan profile
matrix for L, then

(1) Wm(L) contains a cyclic matrix if and only if 1 ≤ m ≤ rankCI (L) + 1;
in other words: maxdeg

m
(L) = m⇐⇒ 1 ≤ m ≤ rankCI (L) + 1 .

(2) Wm(L) contains a matrix whose rank modulo the scalars equals rankCI (L)
if and only if rankCI (L) + 1 ≤ m ≤ dimV.

In fact, Wm(L) contains such a matrix whose algebraic degree is p less than
the sum of the last p+ 1 column sums of JP(L), where p = dimV −m.

The following result serves as a complement to Corollary 5.

17. Corollary. For an operator L on V with 2 ≤ m ≤ dimV, the following claims
are equivalent:

(1) maxdeg
m
(L) < m;

(2) L = γI+F , for some scalar γ and some operator F of rank at most m−2.

Next we explore the conditions under which we have the equality in the inequality
maxdeg

m
(L) ≤ rankCI (L)+1. Let us note that a matrix of the form (Jo ⊕O)+λIn,

where Jo is a singular Jordan block, demonstrates that the equality maxdeg
m
(L) =

rankCI (L) + 1 may hold for all m such that rankCI (L) + 1 ≤ m ≤ n.
In Theorem 19 we will show that when L has an eigenspace that is large enough

in proportion to V, the equality maxdeg
m
(L) = rankCI (L) + 1 holds for a range of

m exceeding rankCI (L) + 1.

18. Lemma. If L is an operator on V such that

(dimV + 2)−m ≤ rankCI (L) + 1 ≤ m (≤ dimV) ,

then maxdeg
m
(L) ≥ (dimV + 2)−m.
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The following theorem complements Theorem 16.

19. Theorem. If L is an operator on V and maxdeg
m
(L) < m, 3

then maxdeg
m
(L) ≥ min

(
rankCI (L) + 1, (dimV + 2)−m

)
.

This inequality can be interpreted as follows.

If rankCI (L) < dimV
2 , then

(1) maxdeg
m
(L) = rankCI (L) + 1,

when rankCI (L) + 1 < m ≤ dimV + 1− rankCI (L) ;4

(2) maxdeg
m
(L) ≥ (dimV + 2)−m,

when dimV + 1− rankCI (L) ≤ m ≤ dimV .

If rankCI (L) ≥ dimV
2 , then

(3) maxdeg
m
(L) ≥ (dimV + 2)−m,

when rankCI (L) + 1 < m ≤ dimV .

The following result is a companion to Corollary 17.

20. Corollary. If L is an operator on V, and

maxdeg
m
(L) < min (m, (dimV + 2)−m) ,

then L = γI + F , for some scalar γ and some operator F of rank at most
maxdeg

m
(L)− 1.

We conclude by presenting a version of Theorems 16 and 19 for (possibly un-
bounded) operators L on infinite-dimensional Hilbert spaces. The notions ofWm(L)
and maxdeg

m
(L) (m ∈ N) extend naturally to this setting. L is said to have a finite

scalar rank if rank(L − λI) < ∞ for some λ ∈ C, and in such a case rankCI (L) is
defined according to the formula (2). Setting rankCI (L) =∞ otherwise, we observe
that the inequality maxdeg

m
(L) ≤ min (m, rankCI (L) + 1) holds in all cases.

21. Theorem. Suppose that L is a (not possibly unbounded) operator on an infinite-
dimensional Hilbert space.

(1) If L has finite scalar rank then

maxdeg
m
(L) =

{
m, if 1 ≤ m ≤ rankCI (L) + 1 ;
rankCI (L) + 1, if rankCI (L) + 1 < m .

(2) If L does not have finite scalar rank, then maxdeg
m
(L) = m, for all m ∈ N.

Proof of Theorem 21. If L has finite scalar rank, let k = rankCI (L), and for a
given m let n = m + 2k. There is an element T of Wn(L) such that rankCI (T ) =
rankCI (L). Then Wm(T ) ⊆ Wm(L) (see formula (1)), and so maxdeg

m
(T ) ≤

maxdeg
m
(L) ≤ min (m, k + 1). By Theorem 16, m = maxdeg

m
(T ), whenm ≤ k+1,

and by Theorem 19, k+1 = min (k + 1, (n+ 2)−m) ≤ maxdeg
m
(T ), when k+1 <

m . This settles part (1). If L does not have finite scalar rank, then for any given m,
there is an n > m such thatWn(L) has an element T satisfying rankCI (T ) ≥ m. By
Theorem 19, m = maxdeg

m
(T ) ≤ maxdeg

m
(L) ≤ m , and the proof is complete. �

3i.e. rankCI (L) + 1 < m.
4In this case Wm(L) contains a matrix A with algebraic degree rankCI (L) + 1, such that with

respect to an appropriate basis, A can be expressed as C ⊕ λI, where C ∈ W(rankCI(L)+1)(L) is

cyclic, and λ is an eigenvalue of C.
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22. Corollary. If L is a (possibly unbounded) operator on an infinite-dimensional
Hilbert space and maxdeg

m
(L) < m for some m ∈ N, then

rankCI (L) ≤ maxdeg
m
(L)− 1.

4. Proofs

Proof of Proposition 2. Since the claim is trivially true when A is invertible, we
shall assume that 0 < r < n.

When B is a basis of a subspace Z of Cn, and B is comprised of elements of
Zn, the Gram-Schmidt process (and intermittent scaling) can be used to convert
B to an orthogonal basis of Z comprised of elements of Zn. Since an orthogonal
list in Zn can be enlarged to a basis of Cn through an addition of some number
of the standard basis n-tuples ei, every such orthogonal list can be enlarged to an
orthogonal basis of Cn comprised of elements of Zn.

To establish the result in the proposition, it is sufficient to demonstrate the
existence of a matrix Wo ∈ Mn×r(Z) with orthogonal columns, such that W ∗oAWo

is invertible, or equivalently, injective. The latter condition is equivalent to the
conjunction

kernel(A) ∩ range(Wo) = {O} and range(A) ∩
(
range(Wo)

)⊥
= {O} .

Thus, all that one needs to demonstrate is the existence of an r-dimensional
subspace Z of Cn, with a basis comprised of elements of Zn, such that

(3) kernel(A) ∩ Z = {O}, range(A) ∩ Z⊥ = {O} .

Note that by the Rank-Nullity Theorem, conditions (3) imply that

dimZ ≤ r and n− dimZ ≤ n− r ,

so that dimZ = r, and therefore this condition does not need to be included as a
requirement beforehand.

If X and Y are proper subspaces of Cn so that X ∪ Y ( Cn, then X ∪ Y lacks
one of the sums ei + ej of the standard basis n-tuples. This is so because neither
X nor Y contains all of the ek’s, and if X ∪Y contains all of them, then it does not
contain ei + ej , where ei ∈ X\Y and ej ∈ Y\X .

Claim: If X and Y are subspaces of Cn and dim (X ) ≤ dim (Y), then there exists
a subspace Z of Cn such that

X ∩ Z = {O}, Y + Z = Cn ,

and Z is either trivial or has a basis comprised of elements of Zn.
To verify this Claim, we induct on the co-dimension of Y. If Y = Cn, Z = {O}

will do. If the result is true whenever the co-dimension of Y is at most k (< n),
and we consider Y of co-dimension k + 1, then

X ∪ Y 6= Cn ,

since a finite union of subspaces of Cn is a subspace only when one of them contains

all of the others. As noted above, X ∪ Y lacks some ei + ej (
def
= h). Apply the

inductive hypothesis to

Xo
def
= X + span(h) and Yo

def
= Y + span(h) ,
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to assert the existence of a subspace Zo such that(
X + span(h)

)
∩ Zo = {O},

(
Y + span(h)

)
+ Zo = Cn ,

and Zo is either trivial or has a basis comprised of elements of Zn. In this case

Z def
= Zo + span(h) is the subspace we seek, and the proof of the claim is complete.
From our Claim we can conclude that for any subspaces X and Y of Cn satisfying

dim (X ) ≤ dim
(
Y⊥
)

= n− dim (Y) ,

there exists a subspace Z of Cn such that

X ∩ Z = {O}, Y ∩ Z⊥ = {O} ,
and Z is either trivial or has a basis comprised of elements of Zn.

Since dim (kernel(A))+dim (range(A)) = n, and neither dimension is zero by the
assumptions, taking X = kernel(A) and Y = range(A) establishes the claim. �

Proof of Lemma 3. If we start with a basis B of Z and concatenate it with a
basis of X to produce a basis of V, and then similarly concatenate B with a basis
of Y, the corresponding change of basis matrix for the two bases of V thus created
has a partitioned form [ I M

O S ]. By the change of basis formula we have:[
JA0K JBK
O JA1K

]
= [ I M

O S ]
−1[ JA0K JCK

O JA1K

]
[ I M
O S ] =

[
I −MS−1

O S−1

][
JA0K JCK
O JA1K

]
[ I M
O S ] ,

where the brackets J K indicate matrix representations of the linear maps with
respect to the appropriate bases. Therefore

JA1K = S−1 JA2KS,

which is sufficient to establish the required result. �

Proof of Proposition 4. The case n = 1 is trivial. Let us treat the case n = 2.
If L is cyclic, it is not a scalar operator, and its numerical range is not a singleton.
Being convex, the numerical range of L is an infinite set, and therefore it contains
a non-zero number α. Then [α]1×1 is the required element of the 1-st matricial
numerical range of L.

For the rest of the proof we assume that n ≥ 3.

Given a cyclic L, let F̃
def
= (f1, f2, . . . , fn) be a basis of the underlying space V

with respect to which L is represented by a direct sum of Jordan blocks, one for
each distinct eigenvalue of L.

It is easy to see that with respect to the decomposition V = span(f1)⊕span(f2, . . . , fn),
L has the form

[
λ B
O D

]
, where D is cyclic.

By Lemma 3, L has the form
[
λ S
O T

]
with respect to the decomposition V =

span(f1) ⊕ (f1)
⊥

, where T is cyclic. Since the ortho-compression T of L to (f1)
⊥

is cyclic, Wn−1(L) contains a cyclic matrix.
By iterating the argument via equality (1), we arrive at the desired result for all

1 ≤ m ≤ n− 1. �

Proof of Corollary 5. Suppose, for the sake of contradiction, that L is algebraic
of degree k, where k > d. There is a vector v ∈ V, such that the (local) minimal
polynomial of L at v equals the (global) minimal polynomial of L. Consider the
k-dimensional cyclic invariant subspace generated by v:

Z def
= span

(
v, L(v), L

2

(v), . . . , L
k−1

(v)
)
.
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L|Z is algebraic of degree k, and therefore is a cyclic operator on Z.
Since Z is invariant under L, it is invariant under an ortho-compression of L to

any subspace that contains Z. In particular the degree of the minimal polynomial
of any such ortho-compression is at least k, and hence exceeds d. Thus, m must be
less than the dimension of Z; i.e. less than k.

By Proposition 4, Wm

(
L|Z
)

contains a cyclic matrix, i.e. a matrix with the

algebraic degree m. Yet Wm

(
L|Z
)
⊂ Wm(L), which leads to a contradiction. �

Proof of Proposition 7. Our proof is by induction on k. Let us consider the
base case k = 2. It is clear that for any matrix M ∈ Mn×2(C) without zero rows,
the first entry of M(m1 ) is not zero for all large enough natural numbers m. The
same claim can made about the second entry; etc. So, M(m1 ) has no zero entries
for all large enough natural numbers m.

Suppose that the claim holds for some natural ko ≥ 2 and all n ∈ N. Consider
a matrix M ∈Mn×(ko+1)(C) without zero rows, with the columns c1, c2, . . . , cko+1.
Let T ∈ Mn×ko(C) be the matrix with columns c2, . . . , cko+1. By the inductive
hypothesis, there exist positive scalars m2, γ3, . . . , γko+1 such that the zero entries
of m2c2 + γ3c3 + · · ·+ γko+1cko+1 correspond to the zero rows of T . In particular,
the n × 2 matrix with the columns c1 and m2c2 + γ3c3 + · · · + γko+1cko+1 has no
zero rows, and hence by the base case, the linear combination

mc1 +m2c2 + γ3c3 + · · ·+ γko+1cko+1

has no zero entries for all large enough natural numbers m. �

Proof of Lemma 10. First we shall demonstrate that given unit vectors v and u
in a complex inner-product space V, there exists a unitary operator Y with Y v = u
and ‖U − I‖ = ‖v − u‖.

If u = αv for some α ∈ C, then it suffices to let Y v = u, Y x = x for all vectors
x perpendicular to v, and to extend Y by linearity to all of V.

If {v, u} is linearly independent, then using the Gram-Schmidt process, we can
write

u = αv + βy

where ‖y‖ = 1, 〈v, y〉 = 0, and β ≥ 0. Consider the operator Yo defined on
Vo := span{v, u} = span{v, y} whose matrix is[

α −β
β α

]
relative to the orthonormal basis {v, y}. Clearly Yov = u, and a routine calculation
shows that if I2 denotes the identity operator acting on Vo, then

‖Y0 − I2‖2op = |α− 1|2 + β2 = ‖(Y0 − I2)v‖2 .

We then define a linear map Y by setting Y |Vo = Yo, Y z = z for all z ∈ V⊥o , and
extending Y to all of V by linearity. A second routine calculation shows that

‖Y − I‖op = ‖Yo − I2‖op = ‖Yov − v‖ = ‖u− v‖ .

Next, if V : Cm → V is an isometry and u ∈ V is a unit vector, let v = V e1
and choose a unitary operator Y acting on V such that Y v = u and ‖Y − I‖op =

‖v − u‖. Then Z
def
= Y V is an isometry, Ze1 = Y V e1 = Y v = u, and

‖Z − V ‖op ≤ ‖Y − I‖op ‖V ‖op = ‖Y − I‖op = ‖v − u‖ ,
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as required. �

Proof of Proposition 11. Given an integer r ≥ 1 and list g
1
, g

2
, . . . , g

r
in V, let

us write
[g

1
g
2
· · · g

r
]

for the linear function L : Cr −→ V such that L (ei) = gi.
Express V as

[
f1 f2 · · · fn−1

]
, and let

Z =

[
h

‖h‖
f1 f2 · · · fn−1

]
: Cn −→ V .

Then Z is a surjective isometry, and

hk
‖hk‖

→ h

‖h‖
= Z (e1) .

By Lemma 10, there exists a sequence [Zj ] of surjective isometries Zj : Cn −→ V
such that

Zj (e1) =
hj
‖hj‖

and ‖Zj − Z‖op =

∥∥∥∥ hk
‖hk‖

− Z(e1)

∥∥∥∥ .
Obviously [Zj ]j → Z, and so [Zj (ei)]j → Z (ei) for every i. In particular,

Vj
def
= [Zj (e2) . . . Zj (en)]→ [Z (e2) . . . Z (en)] =

[
f1 f2 · · · fn−1

]
= V

Since Vi : Cn−1 −→ V is an isometry with range(Vi) = h⊥i , the proof is complete.
�

Proof of Theorem 12. The beginning of the proof follows the same path as the
proof of Proposition 4. Let us treat the case n = 2 first. If L is cyclic, it is not
a scalar multiple of the identity, and its numerical range is not a singleton. Being
convex, the numerical range of L is an infinite set, and therefore it contains a
non-zero number α distinct from the eigenvalues of L. Then [α]

1×1
is the required

element of the 1-st matricial numerical range of L.
For the rest of the proof we shall assume that n ≥ 3.

Given a cyclic L, let F̃
def
= (f1, f2, . . . , fn) be a basis of the underlying space

V with respect to which L is represented by a direct sum of Jordan blocks, one
for each distinct eigenvalue of L. In particular, each eigenvector of L is a scalar
multiple of one of the fi’s.

With respect to the decomposition V = span(f1) ⊕ span(f2, . . . , fn), L has the
form

[
β B
O D

]
, where D is cyclic and β is the eigenvalue corresponding to the eigenvec-

tor f1. Hence, by Lemma 3, with respect to the decomposition V = span(f1)⊕(f1)
⊥

,
L has the form

[
β S
O T

]
, where T is cyclic.

By Corollary 9 there exists a sequence [uk] of entry-wise positive unit n-tuples
convergent to (1, 0, . . . , 0), such that

(4)
〈
uk(1)f1 + · · ·+ uk(n)fn , fi

〉
6= 0 , for all k, i.

Let hk
def
= uk(1)f1 + · · · + uk(n)fn. In view of (4), [hk]k is a sequence of non-zero

vectors convergent to f1. By Proposition 11, for any isometry V : Cn−1 −→ V with

the range (f1)
⊥

, there exist isometries Vk : Cn−1 −→ V, with respective ranges

(hk)
⊥

, such that
V ∗k LVk → V ∗LV .



12J. BERNIK1, L. LIVSHITS, G. W. MACDONALD, L.W. MARCOUX, M. MASTNAK, AND H. RADJAVI

Since V ∗LV is an (n − 1) × (n − 1) matrix which represents T with respect to an

appropriate orthonormal basis of (f1)
⊥

, V ∗LV is cyclic.
By Proposition 1, V ∗k LVk is a cyclic element of Wn−1(L) for all large k.
To complete the proof, let us show that V ∗k LVk shares no eigenvalues with L.
To this end, temporarily fix k, and suppose that λ is an eigenvalue of V ∗k LVk

with a corresponding eigenvector w. So,

0 = (V ∗k LVk − λIn−1) (w) =
(
V ∗k (L− λI)Vk

)
(w) .

Set z
def
= Vk(w). Then

(L− λI) (z) ∈ kernel(V ∗k ) = span(hk) .

Let us argue that (L− λI) (z) 6= 0. If z were an eigenvector of L, it would be a

non-zero scalar multiple of one of the fi’s (as noted above). Yet z = Vk(w) ∈ (hk)
⊥

,
and no hk is orthogonal to an fi by (4). It follows that (L− λI) (z) = ρhk, for
some non-zero ρ.

If λ were an eigenvalue of L, its generalized eigenspace would be the span of
some consecutive elements fi1 , . . . , fim of F. In particular the representation of
any element of the range of L − λI as a linear combination of the basis vectors fi
will have a zero coefficient attached to the vector fim . This would hold true for
(L− λI) (z), and hence for ρhk. Yet ρhk = ρuk(1)f1 + · · ·+ ρuk(n)fn, where every
uk(i) is positive, and ρ is not zero. Therefore λ is not an eigenvalue of L, and so
V ∗k LVk shares no eigenvalues with L. �

Proof of Theorem 15. For each eigenvalue α of L, choose a Jordan block Jα
of maximal length corresponding to that eigenvalue in the Jordan form of L, and
decompose the underlying inner product space V non-trivially as Z ⊕ X in such a
way that L is expressed as A0⊕A1 with respect to this decomposition, where A1 is
cyclic and its Jordan form is the direct sum of the Jα’s chosen above. In particular
the spectrum of A1 coincides with that of L, and the dimension of X equals the
algebraic degree of L.

Since L is not a scalar operator, the dimension of X is at least 2, and

co-rankCI (A0) = co-rankCI (L)− 1 .

By Lemma 3, L has the form [R S
O T ] with respect to the decomposition V =

Z ⊕ Z⊥, where T is cyclic and has the same spectrum as L. Let us say that the
dimension of Z is m, and let us fix a surjective linear isometry U : Cm −→ Z. As
we have already noted, n−m = dimX ≥ 2.

By Theorem 12, there is a linear isometry V : Cn−m−1 −→ Z⊥ such that V ∗TV
is cyclic and has the spectrum disjoint from that of T , i.e. from that of L.

Note that U ⊕ V : Cn−1 −→ V is a linear isometry, and let

K
def
= (U ⊕ V )

∗
L (U ⊕ V ) = (U∗ ⊕ V ∗)L (U ⊕ V ) =

[
U∗RU U∗SV

O V ∗TV

]
(n−1)×(n−1)

,

so that K ∈ Wn−1(L).
The spectrum of U∗RU equals that of R, which is a subset of the spectrum of

L, and so is disjoint from the spectrum of V ∗TV . It follows that K is similar to[
U∗RU O

O V ∗TV

]
.
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In particular, a direct sum of Jordan forms of U∗RU (i.e. of R) and of V ∗TV gives
a Jordan form of K. The validity of the claims of the theorem is an immediate
consequence of these facts and of the definition of Z. We offer brief comments for
each individual claim.

(1) Since V ∗TV and T are cyclic,

co-rankCI (K) = co-rankCI (U∗RU) = co-rankCI (R) = co-rankCI (L)− 1 ,

which, in view of the dimensions, means that rankCI (K) = rankCI (L).

(2) A Jordan form of R is obtained by removing the largest Jordan block of
L for each eigenvalue of L. So, a Jordan profile of R can be obtained by
removing the last column of the JP(L), dropping off any resulting zero
rows. Since V ∗TV is cyclic, its Jordan profile is a one-column matrix with
positive integer entries.

Since rankCI (K) = rankCI (L) 6= 0, by claim (1), K is not a scalar operator. The
sum of the appended positive entries is the algebraic degree of the cyclic matrix
V ∗TV , and so is n−m− 1, which is one less than the algebraic degree of L. �

Proof of Theorem 16. Since the claims are clearly true when L is a scalar mul-
tiple of the identity or is cyclic (see Proposition 4), we shall restrict our atten-
tion to a non-scalar non-cyclic L. In other words, we shall focus on the case
2 ≤ co-rankCI (L) ≤ n− 1, and n ≥ 3.

Let us begin by verifying that m ≥ rankCI (L) + 2 implies that Wm(L) contains
no cyclic matrices.

The ranks of the elements of a matricial numerical range of an operator cannot
exceed its rank, and consequently the same is true for rank modulo the scalars. If
rankCI (L) ≤ m − 2, then rankCI (M) ≤ m − 2 for any M ∈ Wm(L). So, for any
M ∈ Wm(L), there is a scalar γ such that rank(M + γI) ≤ m − 2, and therefore
M + γI is annihilated by a polynomial of degree at most m − 1. This shows that
no M ∈ Wm(L) is cyclic.

Now let us consider the remaining claims. Let k stand for the co-rankCI (L) to

unburden the formulas. By applying Theorem 15 recursively, starting with K0
def
= L,

we can generate matrices Ki from Ki−1, 1 ≤ i ≤ k − 1 with the properties described
in that Theorem. In particular, each Ki is a non-scalar matrix in Wn−i(L) (which
we have shown not to contain any cyclic matrices when 1 ≤ i ≤ k − 2). Moreover,
rankCI (Ki) = rankCI (K0) = rankCI (L) for all i. Select a Jordan profile matrix
JP(L) for L, and from this construct JP(Ki) from JP(Ki−1), 1 ≤ i ≤ k− 1 via the
procedure described in Theorem 15.

Since rankCI (K
i
) = rankCI (L) = n− k, we have the equality

co-rankCI (Ki) = k − i.

In particular Kk−1 is a cyclic matrix inWn−k+1(L). Since n−k+1 = rankCI (L)+1,
we have established the validity of claim 1 of the theorem via Proposition 4.

Next we turn to the second claim in the statement of the theorem. Since the
rank modulo the scalars of any operator is always strictly less than the dimension
of the underlying space, for m ≤ rankCI (L), no matrix inWm(L) has the same rank
modulo the scalars as L.

The matrices K1,K2, . . . ,Kk−2 demonstrate the validity of the other implication
in the claim.
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To establish the remaining portion of that claim, note that removing the last
column of JP(Ki) and removing the resulting zero rows produces the same matrix
as removing the last two columns of JP(Ki−1), and removing the resulting zero
rows.

The algebraic degree of Ki is the sum of the last column of JP(Ki), and is 1 less
than the sum of the last two column sums of JP(Ki−1). �

Proof of Lemma 18. Our proof will rely on the following observation.
Suppose that m1,m2, . . . ,mk are positive integers such that

m1 ≤ m2 ≤ · · · ≤ mk .

If the sum of the largest p+ 1 of these integers is at most 2p+ 1, then

m1 +m2 + . . .+mk ≤ k + p .

Indeed, let ni := mi − 1, 1 ≤ i ≤ k. Then

0 ≤ n1 ≤ n2 ≤ · · · ≤ nk ,
and the sum of the p+ 1 largest ni’s is at most p, which indicates that the smallest
among these is zero. Hence all other (smaller) ni’s are also zero, and so

n1 + n2 + · · ·+ nk ≤ p .
Thus

m1 +m2 + . . .+mk ≤ k + p .

Now let us prove Lemma 18.
Note that the hypothesis of the lemma implies that m > co-rankCI (L). Let us

say that dimV = n. By letting p = n−m, we can restate the claim as follows:

if

0 ≤ p ≤ co-rankCI (L)− 1 ≤ m− 2 ,

then maxdeg
m
(L) ≥ p+ 2.

Suppose, for the sake of contradiction, that 0 ≤ p ≤ co-rankCI (L)− 1 ≤ m− 2 ,
but maxdeg

m
(L) ≤ p+ 1.

Let JP(L) be a Jordan profile matrix for L. By Theorem 16, p less than the sum
of the last p + 1 column sums of JP(L) is at most p + 1. In other words, the sum
of the last p column sums of JP(L) is at most 2p+ 1.

The column sums of JP(L) form an increasing list of co-rankCI (L) positive inte-
gers that add up to n. So, by our initial observation, we can conclude that

n ≤ co-rankCI (L) + p ,

which leads to m ≤ co-rankCI (L), in contradiction to our hypothesis. �

Proof of Theorem 19. We consider two cases, and write n for dimV.

Case 1: m ≥ n+ 2−
(

rankCI (L) + 1
)

.

In this case

2 ≤ n+ 2−m ≤ rankCI (L) + 1 ≤ m = (n+ 2)− (n+ 2−m) ,

and by Lemma 18, Wm(L) contains a matrix whose algebraic degree is at least
n−m+ 2.

Case 2: m < n+ 2−
(

rankCI (L) + 1
)

.
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In this case we define no
def
= m+ rankCI (L)− 1, so that

m = no + 2−
(

rankCI (L) + 1
)
.

Note that m ≤ no < n. By Theorem 16, Wno
(L) contains a matrix Lo such that

rankCI (Lo) + 1 = rankCI (L) + 1 .

It is easy to see that Lo satisfies the hypotheses of the present theorem and of Case
1 of this proof. Hence Wm(Lo) contains a matrix whose algebraic degree is at least
no −m+ 2, and the latter number is rankCI (L) + 1, by the definition of no.

Since Wm(Lo) ⊆ Wm(L) , the proof is complete. �
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