
A Two-Tier Storage Interface for
Low-Latency Kubernetes

Deployments

by

Teodor Alexandru Ionita

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Teodor Alexandru Ionita 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Orchestration systems are responsible for automating the management of software de-
ployments on computer systems, managing large numbers of machines. Edge computing
is a decentralized compute model describing how compute and storage resources can be
placed closer to the end-user to reduce latency. Despite its geographically disaggregated
nature, edge computing still retains a need to be managed. It takes one of its shapes as
Multi-access Edge Computing (MEC), a telecommunications technology that integrates
edge computing with the radio base sites scattered throughout metropolitan areas. The
MEC installations, in order to offer low latency, face the user handoff challenge, which in-
volves the end user being serviced by different MEC servers as they transit, hopping from
one MEC to another. This handoff requires that the orchestration system handling the
network of MEC servers be able to handle, in its control plane, this churn of applications.
In this work, the popular orchestration system Kubernetes sees its application deployment
throughput improved by up to 1.87X, as well as an improvement in the latencies for deploy-
ment requests, through a storage layer rearchitecture that involves categorizing internal
message types and deploying a secondary store.

iii

Acknowledgments

I would like to thank all the people who made this thesis possible. I would like to
acknowledge Rogers Communications for their support.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Contributions . 2

2 Background 3

2.1 Kubernetes . 3

2.1.1 Control Loops For Declarative Configurations 3

2.1.2 Kubernetes Objects . 4

2.1.3 Label . 5

2.1.4 Ownership and Garbage Collection 6

2.1.5 Manifest Files . 6

2.1.6 kubectl . 6

2.1.7 client-go . 7

2.1.8 Official Kubernetes Performance Objectives 8

2.2 Kubernetes Architecture . 8

2.2.1 etcd . 10

2.3 The Application Deployment Process . 11

2.3.1 The Deletion Process . 14

v

3 Related Work 15

4 Architectural Change 17

4.1 Essential Etcd Writes . 17

4.2 Storing Non-Essential Writes in Secondary Store 18

4.3 Implementation . 18

4.3.1 Tagging Requests for Secondary Store 19

4.3.2 Connecting Kubernetes to Secondary Etcd Store 19

5 Evaluation 22

5.1 Setup . 22

5.1.1 Client Application . 24

5.1.2 Requested Deployments . 25

5.2 Experimental Results . 26

5.2.1 Creation Burst Throughput Results 27

5.2.2 Creation Burst Latency Results . 28

5.2.3 Steady State Throughput Results 28

5.2.4 Steady State Latency Results . 29

5.2.5 Steady State Latency Results with Synthetic Disk Latency 29

5.2.6 CPU and Memory Utilization . 29

5.3 Discussion . 30

6 Conclusion 41

References 42

vi

List of Tables

2.1 Kubernetes control plane and node components. 10

2.2 Kubernetes application deployment process, phases summary. 13

vii

List of Figures

2.1 Deployment manifest example . 7

2.2 Kubernetes Spoke Hub Architecture. 9

2.3 The Kubernetes application deployment process. 12

4.1 Tagging write requests, request flow. 20

5.1 Experimental setup. 23

5.2 Client Requests for Creation Burst. 25

5.3 Client Requests for Steady State. 26

5.4 Deployment Manifest. 27

5.5 Creation burst mode, application deployment at 26ms interarrival time. . . 32

5.6 Creation burst mode, application deployment at 25ms interarrival time. . . 32

5.7 Creation burst mode, application deployment at 14ms interarrival time. . . 33

5.8 Creation burst mode, application deployment at 13ms interarrival time. . . 33

5.9 Creation burst mode, end-to-end latency, at 26ms interarrival time. 34

5.10 Creation burst mode, etcd latency, at 26ms interarrival time. 34

5.11 Steady-state mode, request at interarrival time of 15ms. 35

5.12 Steady-state mode, request at interarrival time of 14ms. 35

5.13 Steady-state mode, request at interarrival time of 13ms. 36

5.14 Steady-state mode, request at interarrival time of 9ms. 36

5.15 Steady-state mode, request at interarrival time of 8ms. 37

viii

5.16 Steady-state mode, request at interarrival time of 6ms. 37

5.17 Steady-state mode, application deployment, end-to-end latency for an inter-
arrival time of 15ms. 38

5.18 Steady-state mode, application deployment, etcd latency for an interarrival
time of 15ms. 38

5.19 Steady-state mode with a 8ms synthetic disk latency, application deploy-
ment, end-to-end latency for an interarrival time of 15ms. 39

5.20 Steady-state mode with a 8ms synthetic disk latency, application deploy-
ment, etcd latency for an interarrival time of 15ms. 39

5.21 Steady-state mode, CPU usage, 13ms interarrival time. 40

5.22 Steady-state mode, CPU usage, 15ms interarrival time. 40

ix

Chapter 1

Introduction

Edge computing is a decentralized computing model that places compute and storage re-
source closer to end users and is contrasted with traditional centralized datacenters [12].
Edge computing addresses the issue that network latency becomes for latency-sensitive ap-
plications when they must communicate with datacenter-hosted services as cloud datacen-
ters remain geographically sparse [4] and latency suffers both from geographical distances
and packet switching delays along many network segments. For example, the nearest Cana-
dian datacenter to Vancouver for users of Google Cloud Platform is in Toronto [18], over
3000 kilometers away – a minimum roundtrip time of 20 milliseconds at the speed of light
without considering packet switching delays or network congestion.

Multi-access Edge Computing (MEC) [16] describes how compute and storage resources
can be placed within the cellular network infrastructure, adding edge computing capabili-
ties to telecommunication networks, which have historically only served as a data transmis-
sion mechanism that connects end-user devices to other end-user devices or to the Internet.
The exact form of MEC installations, i.e., which compute and storage resources and where
they are placed in the topology, is flexible and depends on the application, end-users and
cellular network topology. Existing MEC installations include Amazon’s Wavelength ser-
vice [42], offered in partnership with cellular telecommunication companies, where the
edge servers are deployed at city-level granularity [44]. Amazon customers can deploy
their applications to a particular city – the edge servers are running inside the carrier’s
metropolitan datacenter [43] – but do not have access to a finer geographical selection, e.g.,
they cannot specify edge servers running within a district of the city. A MEC installation
even closer to the edge – and to the end-user – would be running alongside the radio towers
spread throughout the city and would provide lower latency than metropolitan ones.

1

MEC installations co-located with radio towers experience handoff challenges, the same
type experienced by cell towers with cellular connections. When traveling, an end-device’s
cellular connection is handed off from one cell tower to another, according to signal quality
considerations, e.g., as distances to neighbouring cell towers change. Similarly, according
to application latency considerations, MEC connections are also handed off [33], as to
avoid excessive geographical distance from their associated MEC and to avoid network
congestion stemming from traversing network segments. MEC handoff can also occur in
non-mobility scenarios, such as MEC failure, QoS prioritization and load balancing.

There are several frameworks that tackle managing the deployment and lifecycle of
services on MEC installations [7, 8] or more generally Edge systems [6, 9, 10]. The frame-
works work in a controller-agent pattern, where the controller instructs the agents – the
MEC installations – to deploy the applications relevant to the end-device associated with
the MEC. As MEC handoffs take place, it is the controller’s responsibility to request the
application be stopped on one MEC and started on another. The surveyed frameworks
re-use software components, mainly Kubernetes – an open-source container orchestration
system [28] – as the core controller logic that is subjected to the MEC handoff scenario.

An important performance dimension of the Kubernetes control plane is its ability to
perform writes to its persistent storage, an operation that is core to several functions,
including application deployments in the cluster. In the context of MEC handoffs, ap-
plication deployment throughput and latency is an essential metric to the control plane’s
role.

1.1 Contributions

This thesis investigates the ability of MEC frameworks that use Kubernetes as their control
logic to handle the frequent application migration within the cluster that occurs during
MEC handoff and present an architectural change that touches the storage layer and that
improves MEC handoff performance. First, I present the subset of Kubernetes operational
concepts necessary to describe the components relevant to the discussion. I then describe
the Kubernetes architecture, the interaction between the Kubernetes parts at play during
the start and stop of an application and general communication patterns within Kuber-
netes. Next, I explain the changes to the architecture that improve the performance of
Kubernetes’ controller component. Finally, I present a comparison between the initial
Kubernetes performance and the performance stemming from the architectural changes.

2

Chapter 2

Background

2.1 Kubernetes

Kubernetes is an open-source platform, written by Google in Go, that orchestrates the
deployment and management of containers. Kubernetes documentation indicates that it
can be responsible for up to 5000 servers or virtual machines (VMs) and up to 300,000
containers [23]. Out of all the machines under its control, collectively called a Kubernetes
cluster, some are dedicated to the control plane while the rest of the machines, called nodes
(and not part of the control plane) are dedicated to running containerized applications.
A cluster must have an agent installed on all cluster nodes to control the creation and
deletion of containers, and generally monitor the health of the machine and its processes.
The per-node agent is also responsible for configuring certain OS-level networking rules.
Kubernetes handles the deployment of containers on its nodes but also handles some of the
networking aspects (e.g. port and address translation) to enable external requests to reach
the correct container on the correct node inside the cluster, to allow the reply to reach the
external client and to facilitate inter-container communication both inside a same node
and between nodes.

2.1.1 Control Loops For Declarative Configurations

The Kubernetes platform removes the explicit association between a container and where
precisely it is being deployed. Deployment of containers does not necessitate that the
operator, when requesting a deployment, also specify on which nodes the containers must

3

run. The platform internally keeps track of the different containers and other configurations
that are active, and is able to report state and react to events. An unexpectedly dead
container leads to a node starting a new instance of the container image, while a dead
node leads to its containers being restarted on a healthy node.

Kubernetes adopts a declarative approach to configurations: the configuration describes
a desired final state and Kubernetes utilises control loops in its control plane and nodes
to reach it. Once the state is reached, Kubernetes monitors it and reacts if changes in the
cluster lead to the state changing. For example, if a configuration specifies two instances of
a container image must exist in the cluster, and supposing there are zero instances currently
running, the control loop attempts to bring the current state to match the desired state
by starting two containers. In effect, this means that deploying an application entails
indicating the application container image should be running, thus changing the desired
cluster state. Kubernetes internally executes the intermediary steps necessary to start the
application and make the current state reflect the desired state.

2.1.2 Kubernetes Objects

Kubernetes uses objects that describe entities within the cluster. An entity could be a
group of containers, or a particular network configuration that allows two containers to
communicate with each other across the cluster. The collection of all Kubernetes objects,
persisted in the control plane’s storage, represents the state of the cluster. Nearly all
Kubernetes objects contain a spec field and a status field. The spec field describes, using
several subfields, a desired state related to that entity. When a cluster operator creates
or edits an object, this field must be set. A status field describes the current state of the
entity. This field is updated by components within Kubernetes as they work to match the
current state to the desired state.

Commonly, there are one or more control loops that react to an object being created or
modified. Some object types act as starting objects and are normally exclusively created
by an operator, not the Kubernetes control plane. The control loops associated with these
starting object types react by creating/modifying their own objects, an action that may
in turn trigger further control loops to react.

2.1.2.1 Deployment

The deployment object generally describes all the facets related to deploying one or several
containers (a group of containers is called a pod, see 2.1.2.3) on nodes. It identifies, among

4

other things, what container image to run, which version, how many instances, whether
there is a rollout strategy (e.g. in case of a service version upgrade), whether there are any
additional constraints on the nodes which might run the containers (e.g. the node might
need a minimum amount of memory) and any additional networking configurations (e.g.
the container needs to be reachable by clients external to the cluster).

The deployment object is generally a starting object (though not the only one) created
by a cluster operator that interfaces with the Kubernetes control plane. This object’s
creation or modification brings different control loops into action that eventually lead to
particular nodes running containers and changing their networking configurations. For
example, an operator could decrease the number of instances of a particular container in
the cluster by editing the persisted deployment object which was used to start them; this
editing action results in control loops being triggered and in the modification of other
objects until ultimately containers are stopped.

2.1.2.2 Replicaset

The replicaset object is typically created by one of the control loops monitoring deployment
objects. It is mainly used to implement deployment strategies involving different versions
of the same container, such as rollbacks or updates; when using deployment strategies,
a deployment object can lead to the creation of more than one replicaset objects. The
simplest deployment strategy creates one replicaset object for every deployment object.

2.1.2.3 Pod

The pod object is ordinarily created by a control loop monitoring replicaset objects. A
pod represents a group of one or more containers that run on the same node and is the
smallest unit in the deployment process. Once the pod object is created, the control plane
scheduler is responsible for associating the pod with a node in the cluster; this association
is added to the pod object itself. The chosen node is notified of this new pod that falls
under its responsibility and starts the appropriate containers per the pod’s description.

2.1.3 Label

Labels are key-value pairs that can be included in Kubernetes objects to identify salient
properties. Labels can be operator-created to organize and create configurations that target
specific entities. For example a group of nodes in the cluster could be carrying a label

5

’environment=production’ while another group carries a label ’environment=QA’. When
pods are deployed to the cluster, the operator can constrain the scheduling of the pods
to a node carrying the appropriate ’production’ or ’QA’ label value for the ’environment’
label key. Some labels are built-in, called well-known labels: for instance, nodes have
automatically created labels describing the running OS e.g. ’Kubernetes.io/os=linux’.
Certain objects, such as the replicaset object, inherit the labels of its parent deployment
object; pod objects also inherit its replicaset parent labels.

2.1.4 Ownership and Garbage Collection

Kubernetes supports the concept of ownership, where one object owns another, which is
used during object garbage collection. When deleting an object, such as a deployment
object, the replicaset object it had engendered is also deleted. In turn, the pod object is
likewise deleted once its parent replicaset object is removed from the cluster state. The
control loops are responsible for marking which object owns another; this information is
embedded as a field within the owned object. When an owner object is deleted, control
loops are notified of this object change and proceed to delete owned objects; this deletion
cascade continues until the final owned object is reached. There is no explicit separate
schema describing the owner-owned relationship parameters or the actions to be taken
upon object deletion; this information is embedded within the different control loops’
logic.

2.1.5 Manifest Files

Manifest files, generally YAML Ain’t Markup Language (YAML) files, are created by the
operator and represent a Kubernetes object. Figure 2.1 illustrates an example of a deploy-
ment object manifest YAML file, as seen on Kubernetes.io [32]. The manifest spec field
uses the replicas subfield to indicate 3 pods will be started. The spec.template.spec field
describes the container image to be used.

2.1.6 kubectl

The kubectl utility is a command-line interface (CLI) application that interfaces with the
Kubernetes control plane. It allows a user to modify the cluster state by creating or
modifying Kubernetes objects e.g. deployment objects. Manifest files, along with other
CLI arguments, are provided to kubectl which then creates appropriate representational

6

Figure 2.1: Deployment manifest example

state transfer (REST) requests directed at the control plane. The tool also allows users to
query the state of the cluster, either synchronously with a get command or asynchronously
through notifications of changes.

2.1.7 client-go

Client-go is a Go client library for applications wishing to communicate with the Kuber-
netes control plane. Internally, all Kubernetes components use the client-go library to issue
internal requests.

7

2.1.8 Official Kubernetes Performance Objectives

The Kubernetes performance documentation [29] specifies service level objectives (SLOs)
that the Kubernetes development team aims to meet. There are currently none that relate
to application deployment or deletion throughput in the control plane or cluster as a whole.
In terms of end-to-end application deployment/deletion latency, the closest SLO relates to
mutating a single object in the cluster (i.e., writing to etcd) but does not specifically
involve deployment-related objects or any end-to-end process, be it in the control plane
or the cluster. As such, no existing Kubernetes SLOs attempt to define throughput or
end-to-end performance characteristics.

2.2 Kubernetes Architecture

The Kubernetes platform is a collection of stateless processes and etcd, which is used
for persistent storage. The platform is composed of processes running as control plane
components while other processes run as node components. Every component described
here can be mapped to a separate Linux process. While Kubernetes can be extended to
include additional components that integrate with cloud providers, the core components
and architecture are described.

The node components run as agents on baremetal servers or inside virtual machines.
On a given machine, there is a kubelet process and a kube-proxy process. The kubelet is
responsible for handling container resources: starting, stopping and monitoring containers
running locally on the machine. The kube-proxy is responsible for setting up OS-level
networking rules (e.g. using iptables [24]) that ensure containers are reachable throughout
the cluster, e.g., Machine A could receive a request meant for Machine B and this request
must be forwarded by Machine A to Machine B. Both the kubelet and the kube-proxy
attempt to locally maintain a desired state that is the sum of Kubernetes objects received
from the control plane for their node. For example, when the control plane schedules a pod
object on a node, effectively dictating new containers need to be started on that machine,
the kubelet starts the number of containers needed to satisfy the desired state and reacts
to changes to that number, starting more containers if any fail. Finally, the kubelet is
responsible for reporting the health of the machine on which it is running as well as the
state of all the pods under its responsibility.

The control plane components (summarized in Table 2.1) are responsible for receiving
declarative objects from operators of the Kubernetes cluster and ensuring that the correct
node components receive pod and network objects whose desired state they maintain. The

8

Figure 2.2: Kubernetes Spoke Hub Architecture.

platform follows a hub and spokes architecture [27]; all control plane and node components
exclusively communicate with the kube-apiserver which resides in the control plane. The
kube-apiserver has exclusive access to the etcd-backed storage where all Kubernetes ob-
jects are stored. While all components communicate with the kube-apiserver, they do so to
indirectly write to or read from etcd, for which the kube-apiserver plays the role of a REST
front-end. Being the focal point of communication, the kube-apiserver is also responsible
for authentication, authorization, auditing, object validation, object transformation and
delivering etcd notifications. The kube-controller-manager component is composed of sub-
components call controllers, all running within the same Linux process. Generally, every
controller subcomponent is responsible for maintaining the state of a specific type of Ku-
bernetes object but can also create or modify other types, e.g., the deployment controller
is responsible for deployment objects but can create replicaset objects. Controllers rely on
etcd notifications to trigger their control loop (more in 2.3). Finally, the kube-scheduler is
responsible for selecting which pod gets assigned to which node in the cluster, a process
called binding. The kube-scheduler binds pods to nodes based on constraints which are
in part expressed as labels on the objects. Some constraints are related to node health
and node resources, e.g., available node memory, while others are operator-defined, e.g.,
a QA-labeled pod must not run on a production-labeled node. Figure 2.2 illustrates the
inter-component communication in the Kubernetes cluster.

9

Component Functions

etcd
Store the cluster state, notify of object
changes

kube-apiserver Front-End API to etcd; validate requests

Control Plane kube-controller-manager
Run controllers that each create, delete,
and modify their assigned object types

kube-scheduler
Select node for pod while respecting con-
straints

kubelet
Create or delete pods machine, report pod
state and node health

Node kube-proxy Modify machine OS-level networking rules

Table 2.1: Kubernetes control plane and node components.

2.2.1 etcd

Etcd is the key-value store used to persist Kubernetes cluster objects. Etcd can run as a
distributed storage system where a write operation is considered complete once committed
through consensus and written to disk [14]. Etcd also offers atomicity, ensuring no partial
results are observed, as well as a simple transaction system based on if/then/else constructs
that can group several modifications and atomically condition a write based on values inside
the store. Etcd also supports a notification system: etcd clients can ask to be notified when
a key within the store is modified.

Kubernetes generally selects the key for its objects following the schema
/registry/{object type}/{object namespace}/{object name}. For example, a de-
ployment object named ’nginx-1’ is stored at key ’/registry/deployments/default/nginx-1’
if no specific namespace is provided (a default namespace exists) while a replicaset ob-
ject named ’nginx-1-1234ab567c’ is be stored at key ’/registry/replicasets/default/nginx-
1-1234ab567c’. As such, when Kubernetes components wish to receive notifications of
changes to any deployment object in the cluster, they register for notifications of changes
to the keyspace prefix ’/registry/deployments’ which generates a notification for a change
performed to the object at key ’/registry/deployments/default/nginx-1’.

10

2.3 The Application Deployment Process

The kube-apiserver serves as an Hypertext Transfer Protocol (HTTP) REST front-end to
etcd and therefore handles read/write requests to etcd from controllers or cluster operators,
returning success or failure for the requests and data from the etcd store. The kube-
apiserver is also responsible for being a notification middleman: it requests that etcd send
notifications when modifications occur on certain keyspace prefixes within the etcd store.
These notifications contain the exact modified key, the modification type (added, modified,
or deleted) and the latest value of that object if applicable. The notifications are then in
turn pushed to controllers who have registered – with the kube-apiserver – interest in
particular keyspace prefixes. Depending on its responsibilities, a controller can register for
notifications for several keyspace prefixes; for example, the replicaset controller expresses
interest in changes to both replicaset objects and pod objects which means notifications
for the keyspace prefixes ’/registry/replicasets’ and ’/registry/pods’.

Deploying an application in the Kubernetes cluster control plane has four phases, il-
lustrated in Figure 2.3: the creation of a deployment object 1 , then a replicaset object

2 , followed by a pod object 3 and finally an update to the pod object to indicate to

which node it is bound 4 . Each of these phases involves a roundtrip between etcd and
a controller, with the kube-apiserver interposed between them. To simplify the discus-
sion, the term controller includes the kube-scheduler component alongside the deployment
controller and replicaset controller, both subcomponents of the kube-controller-manager.
The application deployment process depends on the initial deployment object. The one in
this section (Figure 5.4) describes a straightforward deployment scenario that ultimately
involves the four phases mentioned and recruits the participation of the deployment con-
troller, replicaset controller and kube-scheduler; however, more complex initial deployment
objects can result in numerous other phases, more Kubernetes objects being created and
updated, and the activation of supplemental controllers.

For all of the four phases, the component interactions are similar and can be summa-
rized in four code paths and inter-component communication. In Figure 2.3, A represents
the kube-apiserver receiving and processing a REST request for the creation/update of
a Kubernetes object, be it deployment, replicaset or pod. After internal processing that
validates and transforms the object for etcd storage, the code path A ends with a call to
write the transformed object to the etcd store. B represents two consecutive but sepa-
rate etcd actions: first, etcd stores the data as requested by the kube-apiserver. Second,
etcd emits a notification because the write has modified a keyspace prefix for which the
kube-apiserver has requested notifications. The notification reaches the kube-apiserver and
travels through code path designated by C . Code path C performs object transforma-

11

Figure 2.3: The Kubernetes application deployment process. The four phases are labeled
1 to 4, while the different parts of the roundtrip path are labeled A-D.

tions and delivers notification copies to the different components who have registered their
interest. Code path D represents a controller receiving a notification about a change to
an object, its internal processing and the result – which is the object for the next phase –
followed by its request to the kube-apiserver to write this newly created object.

The full process for an application deployment is described below with a summary in
Table 2.2.

1 The operator makes a request for the creation of a deployment object to the kube-
apiserver. In A , the kube-apiserver validates, transforms the deployment object and
calls etcd to perform a write to the store. In B , etcd stores the object and then
notifies the kube-apiserver of this new write that occurred to the ’/registry/deploy-
ments’ keyspace prefix. In C , the kube-apiserver receives the notification, transforms
the object, finds that the kube-controller-manager has registered for notifications to

12

Phase Summary

1
Deployment object created in etcd by the operator, deployment con-
troller is notified and generates a replicaset object

2
Replicaset object created in etcd by the deployment controller, repli-
caset controller is notified and generates a pod object

3
Pod object created in etcd by the replicaset controller, kube-scheduler
is notified and updates pod object to bind it to a node

4
Pod object is updated by the kube-scheduler in etcd and appropriate
node is notified of the new pod

Table 2.2: Kubernetes application deployment process, phases summary.

changes to the ’/registry/deployments’ keyspace prefix and delivers the notification.
In D , the kube-controller-manager internally forwards the notification specifically
to the deployment controller subcomponent. The deployment controller generates a
replicaset object and D ends with a request to the kube-apiserver for the creation
of the replicaset object.

2 The replicaset creation request is received in A , the object is written by etcd and
the notification of its creation emitted to the kube-apiserver in B . In C , the kube-
apiserver transforms the object and delivers the notification to the kube-controller-
manager. In D , the kube-controller-manager internally delivers the replicaset cre-
ation notification to the replicaset controller which generates a pod object and re-
quests the pod object be written to the store through a REST request to the kube-
apiserver.

3 Path A and B result in the pod object being written and a notification of its creation
delivered for processing in C . The kube-apiserver delivers the notification of the pod
creation to the kube-scheduler, and in D , the kube-scheduler finds an appropriate
node for the newly created pod; it then proceeds to request an update to the pod
object to add the information concerning the bound node.

4 Path A and B result in the pod object being updated with node binding information
and a notification of its update delivered for processing in C . At this point, the
deployment process is complete in the control plane and the node is notified of the
new pod it has been assigned.

13

2.3.1 The Deletion Process

The removal of a deployed application works similarly to the deployment: the operator
requests the deletion of the deployment object stored in etcd. This action triggers a
deletion cascade that deletes all objects created during the application deployment. The
deletion process involves only three phases, the equivalent of phase 1 , 2 and 3 . The
last phase is not required as the scheduler is not involved in the deletion process.

14

Chapter 3

Related Work

Kubernetes is a large system with many performance characteristics that can be evaluated.
In this large space, there is little existing literature that touches on the topic of application
deployment throughput with a focus on control plane performance. First, this section
presents work related to general Kubernetes benchmarks and performance improvements,
including some benchmarks on end-to-end deployments and the importance of etcd in
different behaviours of the Kubernetes systems. Second, there is an overview of work
comparing the performance between Kubernetes and other orchestration systems. Finally,
there is specific work that discusses potential changes in etcd and specific guidelines on
etcd usage from a Kubernetes controller point of view so as to maximize performance.

Kubernetes performance and benchmarks. An Uber team has evaluated the
impact of event object creation in Kubernetes during pod deployments [45]. They observed
a significant change in deployment time – going from several minutes to 30 seconds with a
40k pods and 8k node setup – when events were no longer generated at all in the control
plane. The organization of containers into pods [35] is explored, e.g., the cost of one
container per pod compared with all containers in a single pod, and a model is offered
so that Kubernetes users can choose to combine pods and containers to best suit their
applications; the authors perform benchmarks to measure deployment time and provide
brief end-to-end latency measurements but retain the focus of their measurements on pod
and container combinations, not on end-to-end latencies.

A development team at PayPal explores increasing the number of nodes in their pro-
duction environment to 4000 nodes and 200,000 pods. They find that tuning different
hardware components and Kubernetes configurations allows a deployment rate of 3000
pods/minute with a 99th percentile latency of 5 seconds, which includes control plane as

15

well as container deployment on the worker node. Other benchmarks are performed that
compare pod routing technologies (native vs Itsio [26]) and their relationship to etcd for
apps already deployed within the cluster [31]. They find that etcd performance, based on
the underlying disk IOPS, impacts the performance of both cluster routing technologies
for already deployed applications.

Other orchestration systems. A comparison between Nomad [37] and Kubernetes
is performed to evaluate which system has less overhead when deploying a job type of
deployment [5], finding that Nomad outperforms Kubernetes when deploying jobs in their
respective cluster.

Another comparison is performed [40], between Kubernetes and Docker Swarm [41];
the author measures latency for container deployment times under different cluster loads,
i.e., number of containers deployed per node. They find that Docker Swarm outperforms
Kubernetes at even low cluster load; the author notes that from a performance perspective,
Docker Swarm’s much simpler architecture affords it less inter-component communication.

Etcd store. A proposal for rearchitecting Kubernetes [22] outlines swapping out etcd
store for an equivalent data store that presents similar APIs and uses conflict-free replicated
datatypes to eliminate write latency caused by the inter-etcd coordination required to reach
consensus. There are also recommended ways to use the kube-apiserver API – which in
turn affects how etcd is accessed – to improve etcd performance [15].

16

Chapter 4

Architectural Change

In this chapter, changes to the Kubernetes architecture are described that increase its
control plane’s ability to handle application starts and stops. The fundamental use case,
explored in detail in Chapter 5, is that the control plane receives a stream of requests
to start and/or to stop applications in the Kubernetes cluster. The changes laid out in
this chapter increase the deployment and deletion throughput that the control plane can
sustain as well as improving the per-request latencies.

4.1 Essential Etcd Writes

The application deployment process outlined in Section 2.3 describes how the deployment
of one application involves four writes to etcd in total: the creation of three objects (de-
ployment, replicaset, pod) and an update to the pod object assigning it to a node. These
writes are necessary but are not the only ones that etcd experiences during an application
deployment. Controllers generate non-essential etcd writes, both object creation and ob-
ject updates. A write is considered non-essential if it is not required for the application
deployment process to complete.

One type of non-essential etcd write is the creation of ’event’ objects by controllers
as part of their normal operation, which are not unlike log entries. For instance, the
deployment controller generates informational events (such as indicating that a replicaset
has been successfully created) or warning events (indicating there was an issue with creating
a replicaset).

17

The other type of non-essential etcd write involves controllers updating objects to
include status or progress updates. These updates do not impact the deployment process
and are human-readable. For example, the deployment controller updates the deployment
object to show progress of the associated replicaset. Presumably, keeping the deployment
object up-to-date with the most recent state of the application deployment process as a
whole (including replicaset and pod status) allows the operator to only have to consult
the deployment object to glimpse the deployment progress; alternatively, this exempts
Kubernetes clients (e.g. kubectl) from having to inspect several objects before being able
to present the state of the application deployment process.

For the scenarios investigated in this work, the ratio of essential to non-essential etcd
writes is approximately 1:2, such that about only 33% of etcd writes are essential to the
deployment process.

4.2 Storing Non-Essential Writes in Secondary Store

The architectural change to Kubernetes is the use of an additional etcd instance to store
non-essential etcd writes. This only changes the relationship between kube-apiserver and
etcd, adding a second etcd instance to the cluster, while no other cluster component com-
munication patterns are affected. This change implies modifying kube-apiserver such that
it classifies a component’s write request as being either essential or non-essential, and then
proceeds to write essential writes to the primary etcd store and non-essential writes to the
secondary etcd store.

4.3 Implementation

The implementation of this architectural change involves running a secondary etcd instance,
categorizing essential and non-essential etcd writes and modifying Kubernetes code such
that non-essential writes are sent to the secondary etcd instance. The use of both a
primary and secondary etcd store within the Kubernetes cluster, which improves cluster
performance, is called dual-store configuration (DSC) while the traditional use of a single
etcd instance (i.e., solely using the primary etcd store) is named single-store configured
(SSC). To toggle Kubernetes between using and not using the secondary store (i.e., staying
in SSC mode or switching to DSC and using the secondary store), an additional HTTP
endpoint is added to kube-apiserver.

18

4.3.1 Tagging Requests for Secondary Store

Tagging write requests as essential or non-essential requires minor code changes performed
in three places: kube-controller-manager, the client-go library, and kube-apiserver. Fig-
ure 4.1 illustrates the process described in this subsection. In kube-controller-manager,
through code inspection, the calls that request kube-apiserver to perform etcd writes are
identified as either essential or non-essential. Because this write categorization (essential/non-
essential) happens in kube-controller-manager, the information as to the essentiality of each
etcd write must be included with the write request to kube-apiserver. Kube-controller-
manager uses the client-go library to generate write requests to kube-apiserver and there
is also a context object passed from kube-controller-manager to client-go library.

As such, the first code change is in kube-controller-manager: it involves the inclusion
of the essential/non-essential nature of write requests in the context object which is passed
on to the client-go library. The second code change is in the client-go library: it involves
inspecting the context object (that may be empty), and if it identifies the essentiality of the
write request, the client-go library will include an additional URL parameter in its HTTP-
based write request to kube-apiserver. Finally, the last code change is in kube-apiserver:
it must now inspect incoming HTTP write requests for the presence of an additional URL
parameter, which indicates whether the write request is meant for the primary or the
secondary etcd store. The only exception to this process are ’event’ writes, which create
event objects. Because all event writes are non-essential, no code inspection is required;
instead an additional code change is performed in kube-apiserver that identifies event writes
– event writes all use a distinct HTTP endpoint which facilitates their identification.

Finally, within kube-apiserver, the received write requests are now identified as essential
or non-essential at the HTTP request handler layer of the code. The write request is
wrapped by kube-apiserver in an internal write object which also embeds a context object.
A code change is made such that that context object carries with it the essentiality of
the write request. The write object is passed to the lower levels of kube-apiserver until
it reaches the storage layer, where kube-apiserver interacts directly with both etcd stores.
The context object also reaches the storage layer and is used to make a decision as to which
store will receive the write.

4.3.2 Connecting Kubernetes to Secondary Etcd Store

A secondary etcd store instance is run alongside the primary etcd instance. Kube-apiserver
code is changed, reusing code that initialises the primary etcd client to create a second

19

Figure 4.1: Tagging write requests, request flow.

20

etcd client for the secondary instance. The code for the storage layer in kube-apiserver
– the code accessing etcd – is further changed with conditional statements that take into
account whether the system is running in SSC mode or DSC mode. If running in SSC
mode, all write requests received from upper layers and meant for etcd are sent to the
primary etcd instance. If running in DSC mode, additional code in the storage layer also
verifies whether the context object embedded within the write object indicates whether
the write is essential or not essential. A write can only be sent to either the primary store
or the secondary store, not both. An essential write is sent to the primary store while a
non-essential write is sent to the secondary store. Kube-apiserver has also been modified
to include an additional HTTP endpoint that sets an indicator on whether the system is
running in DSC mode or SSC mode.

21

Chapter 5

Evaluation

5.1 Setup

The experiments performed measure the performance characteristics of the Kubernetes
control plane when deploying and deleting applications from the cluster. They showcase
the difference in deployment and deletion throughput and request latencies when comparing
the single-store configuration (SSC) with the dual-store configuration (DSC). A creation
burst experimental run starts with the Kubernetes cluster devoid of any application; over
a 5 minute period and at regular time intervals (e.g., every 10ms), the client requests the
deployment of an application. A steady state experimental run starts with a Kubernetes
cluster already containing deployed applications; over 5 minutes and at regular intervals,
the client alternates between requesting a new application be deployed to the cluster and
requesting an existing application be deleted from the cluster. The underlying storage
that etcd uses in these experiments is configured to be memory-backed, eliminating disk
latency considerations. Disk latencies can vary (e.g., SSD, RAID, cloud remote block
storage). Eliminating it allows the focus of the experiment to be on the latencies incurred
by both the Kubernetes internals and etcd internals during application deployments and
deletions. Additional experimental runs are performed with a synthetic latency added to
the memory-backed etcd storage to simulate rotating disk latencies. Both the Kubernetes
code 1 and the tools are available 2.

To study the ability of the SSC and the DSC to maintain different application deploy-
ment/deletion throughputs, the interarrival time of requests is varied, generating different

1https://git.uwaterloo.ca/taionita/kubernetes-thesis-code
2https://git.uwaterloo.ca/taionita/kubernetes-thesis-tools

22

Figure 5.1: Experimental setup.

loads in different experiments. Finding the threshold after which the control plane is un-
able to sustain a higher client load requires exploring a plenitude of interarrival times in
different experiments, for both the SSC and the DSC. Each experiment – for a particular
store configuration (SSC, DSC), mode (creation burst, steady state) and interarrival time
– is repeated three times to ensure the observed throughput is not an anomaly. Repeating
an experiment more than thrice did not bring significant changes to the results: repeated
experiments with upwards of seven runs were performed at several interarrival times and
the resulting throughput (e.g. failure threshold) and latencies did not change significantly
when compared to three runs.

All experiments are run on a single server machine, equipped with 256GB of RAM and
four Intel E5-4610 v2 @ 2.30GHz CPUs, for a total of 32 physical cores and 64 logical cores.
All control plane components, including etcd, are run as single instances; there is no cluster
of etcd instances nor are any Kubernetes components running in a high-availability or hot-
standby mode. Memory-backed directories serve as storage space for the primary and
secondary etcd stores. Figure 5.1 illustrates the modified inter-component communication
in the cluster with the presence of a secondary store.

The core part of an experimental run is the kube-apiserver receiving requests from the

23

client application to deploy and delete applications from the cluster. Before starting the
client application, the experimental setup script cleans up any previously created appli-
cation deployments, as well as cleaning up any remaining data stored in the primary and
secondary etcd instances using the etcdctl tool. It then compacts and defragments etcd,
restarts all Kubernetes control plane components (and allows them to repopulate their
cache) to ensure all experimental runs start on equal footing. Finally, it starts several
kubemark instances, which register as kubelet-running nodes in the cluster. This makes
the nodes available to kube-scheduler so that it can assign pods to them. After the kube-
marks have registered themselves, they are shut down; they continue to be seen as available
by kube-scheduler – and thus available for scheduling purposes – due to a 1 hour grace
period despite the lack of heartbeats.

While the client application is generating requests, CPU and memory utilisation is
measured for every Kubernetes component using the perf and pcp-pidstat utilities. Both
utilities support measuring the usage of a specific process (or group of processes) as well
as an interval mode which measures utilisation of the resource over a period of time; thus,
both perf and pcp-pidstat measure (CPU and memory respectively) resource utilisation
every second. To ensure that the measurement tools themselves do not interfere with the
experiment, the CPU utilization of the perf and pcp-pidstat tools are measured and they
were found to consume less than 1 CPU core. Finally, the CPU utilization of the client
application is also measured, finding that it consumed less than half of a CPU core when
generating requests at 3ms intervals.

5.1.1 Client Application

The client application is a custom Kubernetes load generator, written in Go, that makes use
of Google’s client-go library, the library used for inter-component communication within
the Kubernetes cluster by the control plane components as well as kubectl. The client
application has two modes of operation: creation burst and steady state. In both modes,
the client application generates requests at a specific interval measured in milliseconds
(e.g., one request every 5ms) as an open-loop system, to avoid coordinated omission. In
the creation burst mode, the client is started with two arguments: a time interval in
milliseconds and a total number D of applications to be deployed. At every time interval,
the client requests that the kube-apiserver deploy an application in the cluster; it continues
until it has requested D applications be deployed. All deployed applications are identical
except for their name, which serves to uniquely identify them within the cluster in the
default namespace.

24

Figure 5.2: Client Requests for Creation Burst.

In the steady state mode, the client first requests the creation of a number of initial
application deployments, behaving much like in the creation burst mode during this ini-
tial phase. After the initial phase, the client alternates between creating an application
deployment and deleting an application deployment at every request interval. With this
behaviour the client maintains a fixed number of deployments in the cluster. Steady state
mode requires three arguments: the time interval, total amount of deployments, and the
number of deployments when alternating between creation and deletion.

In Figure 5.2, for the creation burst mode, there is an example of a timeline for 5
generated requests and the resulting expected number of applications deployed in the
cluster.

In Figure 5.3, the graph is an example of a timeline of for 15 generated requests, with a
total of 11 creation requests and 4 deletion requests. The steady state’s initial number of
deployments is 7 deployments, while the number of alternating deployment is 2 deployments
(2 deletions followed by 2 creations).

5.1.2 Requested Deployments

The deployment requests generated by the client application specify several fields and
options. The corresponding manifest is shown in Figure 5.4 in its YAML format for ease
of reading.

25

Figure 5.3: Client Requests for Steady State.

The ${INDEX} placeholder in the metadata.name field is used to avoid collisions be-
tween deployments, as Kubernetes does not accept two deployments with the same name;
the client application substitutes ${INDEX} with a monotonically increasing integer as it
requests new application deployments.

This manifest ultimately results in the creation of, at a minimum, one deployment
object, one replicaset object and one pod object; the pod object receives at least one
update that specifies which node it is bound to.

5.2 Experimental Results

The experiments compare Kubernetes application deployment performance when using the
single store configuration (SSC) versus the dual store configuration (DSC). Specifically, the
experiments explore the ability of both configurations to maintain application deployment
throughput (number of applications deployed per second in the control plane) as well as
the application deployment latencies. Because the client operates by sending requests to
the kube-apiserver at millisecond-precision intervals, the generated load and throughput
are reported using the interarrival time of client requests as well as the application deploy-
ments (or deletions) per second (app/s) when appropriate. Figures showcasing throughput
measurements and machine CPU utilisation feature a plotline with error bands coloured
a solid blue and orange; the error bands are the shaded semi-transparent light-coloured
areas above and below the solid plotlines.

26

Figure 5.4: Deployment Manifest.

Requests have two latency metrics associated with them. One is the latency of the
total completion time of a request: the end-to-end latency. The second is the total etcd
latency, which is the sum of all etcd latencies incurred when performing the writes to etcd
required during an application deployment or deletion, i.e., the sum of the time elapsed for
each phase during code path B (see Section 2.3). Finally, in the steady state scenario, the
latencies are further split based on whether the request is for an application deployment or
an application deletion. Unlike an application deployment request, a deletion request needs
one less write to etcd and thus one less use of the notification pipeline (see Subsection 2.3.1).

5.2.1 Creation Burst Throughput Results

At a interarrival time of 26ms, Figure 5.5 illustrates both the SSC and DSC being able
to keep up with the generated load and maintain a throughput of 38.46 app/s. At 25ms
interarrival time (Figure 5.6), the SSC fails to maintain the expected throughput, unlike
the DSC, throughout the length of the experiment lasting 300 seconds, slowing down
around 285 seconds. The interarrival time of 14ms is the smallest time at which the DSC
is still able maintain a steady throughput (Figure 5.7) for a load of 71.43 apps/s, 1.86X
the maximum throughput that the SSC can sustain. Finally, the DSC is unable to keep
up with the load generated by an interarrival time of 13ms, as seen in Figure 5.8.

27

5.2.2 Creation Burst Latency Results

The latency experienced by deployment requests for both the SSC and DSC is shown for
an interarrival time of 26ms or 38.46 app/s – the highest throughput that the SSC can
sustain. Figure 5.9 presents the end-to-end latency distribution: it shows the DSC has a
tighter distribution. The 99th latency percentile are 144ms and 96.7ms for the SSC and
DSC respectively, while the 99.9th latency percentile are 181.2ms and 119.2ms, SSC and
DSC respectively. Figure 5.10 illustrates the total etcd request latencies: while the SSC
has a better average latency, it has a much more pronounced tail latency. This is clear in
the 99th latency percentiles, which are 9.5ms and 7.4ms (SSC and DSC respectively), the
99.9th latency percentiles, which are 26.4ms and 10.3ms (SSC and DSC respectively) and
finally the max latencies are 107.8ms and 14.2ms (SSC and DSC respectively).

5.2.3 Steady State Throughput Results

Figure 5.11 shows that both the SSC and DSC are able to maintain an application deploy-
ment throughput at a request interarrival time of 15ms (resulting in 33.3 app/s). When
decreasing the interarrival time to 14ms, the SSC fails to maintain the expected throughput
(Figure 5.12), with a declining throughput starting at around 240 seconds and a catch-up
period after the end of the experiment at the 300 seconds mark. All the while, at 14ms
interarrival, the DSC is able to maintain a steady throughput. Further decreasing inter-
arrival time to 13ms (Figure 5.13) shows the SSC throughput failing much earlier, around
150s, with an even longer catch-up period after the 300 second mark. At a interarrival
time of 9ms (Figure 5.14), the DSC is still able to keep up, with a throughput of 55.56ap-
p/s which is 1.67X higher than the best throughput the SSC maintained. Finally, at a
interarrival time of 8ms (Figure 5.15), the DSC fails to maintain the expected throughput.
Figure 5.16 illustrates the throughput for at 6ms interarrival time: while both the DSC
and SSC are unable to maintain throughput, the DSC is able to work through its backlog
of requests significantly faster.

The performance for the application deletion throughput mirrors the application de-
ployment results. The SSC and DSC both maintain a throughput at 15ms interarrival time
with the SSC failing at 14ms. The DSC is able to match the load at 9ms and finally fails
at 8ms.

28

5.2.4 Steady State Latency Results

The deployment request latency experienced by the SSC and DSC is explored for the
load with 15ms interarrival time, the highest load that the SSC can sustain. Figure 5.17
presents the end-to-end latency distribution of all application deployment requests. The
DSC distribution is bimodal with peaks around 80ms and 115ms, with a tail end reaching
200ms. The SSC distribution is tripodal, with two important peaks at 80ms and 120ms
and a third smaller peak at 550ms, near the tail end that reaches 600ms. The 99th latency
percentile are 176ms for the DSC and 569ms for the SSC.

The deployment etcd latency, at 15ms, experienced by both the SSC and DSC is shown
in Figure 5.18. The DSC has a narrower distribution and a less prominent tail end than the
SSC. The 99th latencies percentiles at this load are 9ms and 13ms for the DSC and SSC
respectively, and the 99.9th percentiles are 17ms and 31ms (DSC and SSC respectively).

At 15ms interarrival time, the deletion requests have different 99th percentiles: the
end-to-end 99th percentile are 48ms for the DSC and 437ms for the SSC, while the total
etcd 99th percentile latencies are 6.7ms and 9.9ms for the DSC and SSC respectively.

5.2.5 Steady State Latency Results with Synthetic Disk Latency

Adding a synthetic disk latency of 8ms to etcd’s memory-backed storage allows a com-
parison of the effects of a spinning disk drive. The comparison is performed for a 15ms
interarrival time at which both the SSC and DSC are able to maintain the throughput.
Figure 5.19 shows the end-to-end latency while Figure 5.20 shows the total etcd latency.
As expected, the etcd latency changes significantly with the synthetic latency. The etcd
latency distributions shift for both DSC and SSC by about one order of magnitude: from
a range of approximately 4-8ms (without synthetic disk latency) to a range of 50-150ms
(with synthetic disk latency). This additional etcd latency is reflected in the end-to-end
request latency: the end-to-end latency distributions shift for both DSC and SSC by ap-
proximately the absolute amount of additional etcd latency caused by the synthetic disk
latency. The supplementary etcd latency caused by the 8ms disk latency approximately
doubles the end-to-end request latency for both DSC and SSC.

5.2.6 CPU and Memory Utilization

Throughout all experiments, both CPU and memory usage are recorded. When either the
DSC or SSC are unable to keep up with the generated load, neither CPU nor memory

29

usage are the bottleneck; that is, of all the cores available to the Kubernetes control
plane, less than 40 are used by the control plane in runs where throughput cannot be
sustained. Similarly, memory usage is far under the memory available: less than 10GB
are used. Figure 5.21 shows the CPU usage during a steady state experiment with a 13ms
interarrival time, a load at which the SSC’s throughput is unable to keep up as early as
120s into the 300s experiment.

Figure 5.22 shows the CPU usage at an interarrival time of 15ms in a steady state
experiment; this is a load that both the DSC and SSC are able to sustain. We can see the
DSC requires less CPU resources throughout the experiment. The SSC uses nearly 50%
more cores than the DSC at the start of the experiment and reaches nearly double the core
count at the end of the experiment.

5.3 Discussion

The CPU and memory measurements indicate that neither the SSC nor DSC are ever
CPU or memory bound, and therefore performance differences between the two cannot
be attributed to these resources; furthermore, there are no performance penalties owed to
network communication. Finally, save for etcd, the control plane does not perform any
disk I/O and therefore no costs are incurred from that. The disk storage etcd writes to
is memory-backed so even this component suffers no disk I/O penalty. The remaining
sources of slowdown can be attributed to Kubernetes architecture decisions and to etcd
performance.

All things being equal, if etcd is subjected to fewer writes per second, it will perform
better with respect to request latency. As the DSC decreases the amount of etcd writes that
the primary etcd is subjected, etcd does show better overall latency distributions. In steady
state mode, 15ms interarrival time, the 99th latency percentiles are 13ms and 9ms (SSC
and DSC respectively) and the 99.9th are 17ms and 31ms (SSC and DSC respectively). In
creation burst mode, at 26ms interarrival time, the 99th latency percentiles are 9.5ms and
7.4ms (SSC and DSC respectively), the 99.9th latency percentiles are 26.4ms and 10.3ms
(SSC and DSC respectively) and finally the max latencies are 107.8ms and 14.2ms (SSC
and DSC respectively).

Overall, while differing between the SSC and DSC, etcd latencies account for a small
fraction of the time requests take to complete. They also do not account for the difference
between SSC and DSC latencies, i.e., etcd latencies alone cannot explain why DSC performs
better than SSC with respect to end-to-end request latencies. Indeed, when looking at the

30

99.9th percentile of etcd latencies, the SSC and DSC differ in the range of 10ms-20ms.
However, in steady-state mode for the same interarrival times, the 99th percentile end-to-
end latencies are 176ms and 569ms (SSC and DSC respectively).

Furthermore, as presented in Subsection 5.2.5, a 8ms synthetic disk latency was added
to simulate a spinning-disk latency. The etcd performance page [?] recommends SSDs over
spinning disks, which they claim exhibit a latency under 1ms. Nevertheless, even with
these less-than-ideal 8ms disk latencies which significantly affect total etcd latencies, they
only contribute 50% to the end-to-end request latency.

The most pertinent aspect of the Kubernetes control plane architecture that explains
the improved performance is the notification pipeline which spans over the kube-apiserver,
kube-controller-manager and kube-scheduler. Other parts of the system spawn a goroutine
for new incoming requests or have a sizable pool of goroutines, but the notification pipeline
in a series of stages where work is performed at each stage by a single goroutine. When
using the SSC, all writes end up in the primary etcd store and the primary etcd store
is directly monitored by the notification pipeline, which means that all writes result in
a notification object traveling through the pipeline. The DSC on the other hand only
subjects the primary etcd store to essential writes while non-essential writes end up in
the secondary etcd store. Furthermore, the secondary etcd store is not monitored by the
notification pipeline and therefore does not increase the number of notification objects
being processed through it.

31

Figure 5.5: Creation burst mode, application deployment at 26ms interarrival time.

Figure 5.6: Creation burst mode, application deployment at 25ms interarrival time.

32

Figure 5.7: Creation burst mode, application deployment at 14ms interarrival time.

Figure 5.8: Creation burst mode, application deployment at 13ms interarrival time.

33

Figure 5.9: Creation burst mode, end-to-end latency, at 26ms interarrival time.

Figure 5.10: Creation burst mode, etcd latency, at 26ms interarrival time. X-axis is trun-
cated as SSC latency data points reach into more than 100ms.

34

Figure 5.11: Steady-state mode, request at interarrival time of 15ms.

Figure 5.12: Steady-state mode, request at interarrival time of 14ms.

35

Figure 5.13: Steady-state mode, request at interarrival time of 13ms.

Figure 5.14: Steady-state mode, request at interarrival time of 9ms.

36

Figure 5.15: Steady-state mode, request at interarrival time of 8ms.

Figure 5.16: Steady-state mode, request at interarrival time of 6ms.

37

Figure 5.17: Steady-state mode, application deployment, end-to-end latency for an inter-
arrival time of 15ms.

Figure 5.18: Steady-state mode, application deployment, etcd latency for an interarrival
time of 15ms. X-axis truncated for clarity, SSC data points continue past 20ms.

38

Figure 5.19: Steady-state mode with a 8ms synthetic disk latency, application deployment,
end-to-end latency for an interarrival time of 15ms. The SSC latency tail end reaches 833ms
while the DSC tail end latency reaches 322ms.

Figure 5.20: Steady-state mode with a 8ms synthetic disk latency, application deployment,
etcd latency for an interarrival time of 15ms. The SSC latency tail end reaches 225ms while
the DSC tail end latency reaches 165ms.

39

Figure 5.21: Steady-state mode, CPU usage, 13ms interarrival time.

Figure 5.22: Steady-state mode, CPU usage, 15ms interarrival time.

40

Chapter 6

Conclusion

The MEC handoff process requires an orchestration system that is able to sustain a high
throughput of application deployment and deletion. Kubernetes is such an orchestrator
and its control plane is a major component that needs to handle application churn. The
Kubernetes control plane, with its stateless and decoupled controllers, uses etcd as the
primary dual-purpose mechanism to store information, by performing etcd writes, and to
pass information between controllers using an event-based pattern that relies on on etcd
notifications. Because any application deployment depends on a chain of object creations,
a series of writes to the cluster state is required to both store the latest object in the chain
and notify the controller responsible for the next object in the chain. As such, both the
cluster write process and notification process are crucial to a high deployment and deletion
throughput.

This work presents a modification to the Kubernetes architecture, namely identifying
that cluster writes can be categorized as essential and non-essential, the latter resembling
more system logs and updates for the cluster operator to understand the state of the de-
ployments. By introducing a secondary store for non-essential writes, the primary store as
well as the notification pipeline can be dedicated to the essential writes that are critical
for the application deployment and deletion process. These two changes, accomplished
by a modest code change, has increased the throughput capacity of the control plane by
67% in steady-state experiments where applications are deployed and deleted, and by 86%
in creation burst mode where applications are only deployed. This change has reduced
the end-to-end request latency and improved the etcd-specific latency characteristics. Fi-
nally, this thesis shows that end-to-end request latencies are significantly affected by the
notification pipeline.

41

References

[1] 3gpp specification set: 5g. https://www.3gpp.org/dynareport/SpecList.htm?
release=Rel-15&tech=4.

[2] Imt 5g spider chart comaprison. https://www.etsi.org/images/articles/
IMT-advanced-spider-chart.png.

[3] Saad Z Asif. 5G mobile communications : concepts and technologies. Boca Raton, FL
: CRC Press/Taylor and Francis Group, 2019.

[4] Aws global infrastructure. https://aws.amazon.com/about-aws/
global-infrastructure/.

[5] Conductor: Why we migrated from kubernetes to nomad. https://thenewstack.io/
conductor-why-we-migrated-from-kubernetes-to-nomad/.

[6] Akraino. https://wiki.akraino.org/.

[7] Intel smart edge. https://www.intel.com/content/www/us/en/edge-computing/
smart-edge.html.

[8] Intel smart edge open. https://www.intel.com/content/www/us/en/developer/
tools/smart-edge-open/overview.html.

[9] K3s. https://k3s.io/.

[10] Kubeedge. https://github.com/kubeedge/kubeedge.

[11] Wan Lei et al. 5G System Design: An End to End Perspective. Springer, 2019.

[12] Luiz André Barroso et co. The Datacenter as a Computer: Designing Warehouse-Scale
Machines, Third Edition. 2018.

42

https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4
https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4
https://www.etsi.org/images/articles/IMT-advanced-spider-chart.png
https://www.etsi.org/images/articles/IMT-advanced-spider-chart.png
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://thenewstack.io/conductor-why-we-migrated-from-kubernetes-to-nomad/
https://thenewstack.io/conductor-why-we-migrated-from-kubernetes-to-nomad/
https://wiki.akraino.org/
https://www.intel.com/content/www/us/en/edge-computing/smart-edge.html
https://www.intel.com/content/www/us/en/edge-computing/smart-edge.html
https://www.intel.com/content/www/us/en/developer/tools/smart-edge-open/overview.html
https://www.intel.com/content/www/us/en/developer/tools/smart-edge-open/overview.html
https://k3s.io/
https://github.com/kubeedge/kubeedge

[13] Github etcd-io/etcd benchmark. https://github.com/etcd-io/etcd/tree/v3.3.3/
tools/benchmark.

[14] Etcd kv api guarantees. https://etcd.io/docs/v3.3/learning/api guarantees/.

[15] Getting started with kubernetes — etcd performance optimization prac-
tices. https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%
7C-etcd-performance-optimization-practices 596294.

[16] Multi-access edge computing (mec). https://www.etsi.org/technologies/
multi-access-edge-computing.

[17] Etsi standards: 5g. https://www.etsi.org/standards#page=1&search=5g&title=
1&etsiNumber=1&content=1&version=0&onApproval=1&published=1&historical=
1&startDate=1988-01-15&endDate=2021-12-20&harmonized=0&keyword=&TB=
&stdType=&frequency=&mandate=&collection=&sort=1.

[18] Gcp global infrastructure. https://cloud.google.com/about/locations.

[19] Google cloud platform (gcp) cloud locations. https://cloud.google.com/about/
locations.

[20] Ieee software defined networks – cord: Central office re-architected
as a datacenter. https://sdn.ieee.org/newsletter/november-2015/
cord-central-office-re-architected-as-a-datacenter.

[21] Comparison of networking solutions for kubernetes. https://machinezone.github.
io/research/networking-solutions-for-kubernetes/.

[22] Andrew Jeffery, Heidi Howard, and Richard Mortier. Rearchitecting kubernetes for the
edge. In Proceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking, EdgeSys ’21, page 7–12, New York, NY, USA, 2021. Association for
Computing Machinery.

[23] Kubernetes: Considerations for large clusters. https://kubernetes.io/docs/setup/
best-practices/cluster-large/.

[24] Subtleties: Debugging an intermittent connection
reset. https://kubernetes.io/blog/2019/03/29/
kube-proxy-subtleties-debugging-an-intermittent-connection-reset/.

43

https://github.com/etcd-io/etcd/tree/v3.3.3/tools/benchmark
https://github.com/etcd-io/etcd/tree/v3.3.3/tools/benchmark
https://etcd.io/docs/v3.3/learning/api_guarantees/
https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-etcd-performance-optimization-practices_596294
https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-etcd-performance-optimization-practices_596294
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/standards#page=1&search=5g&title=1&etsiNumber=1&content=1&version=0&onApproval=1&published=1&historical=1&startDate=1988-01-15&endDate=2021-12-20&harmonized=0&keyword=&TB=&stdType=&frequency=&mandate=&collection=&sort=1
https://www.etsi.org/standards#page=1&search=5g&title=1&etsiNumber=1&content=1&version=0&onApproval=1&published=1&historical=1&startDate=1988-01-15&endDate=2021-12-20&harmonized=0&keyword=&TB=&stdType=&frequency=&mandate=&collection=&sort=1
https://www.etsi.org/standards#page=1&search=5g&title=1&etsiNumber=1&content=1&version=0&onApproval=1&published=1&historical=1&startDate=1988-01-15&endDate=2021-12-20&harmonized=0&keyword=&TB=&stdType=&frequency=&mandate=&collection=&sort=1
https://www.etsi.org/standards#page=1&search=5g&title=1&etsiNumber=1&content=1&version=0&onApproval=1&published=1&historical=1&startDate=1988-01-15&endDate=2021-12-20&harmonized=0&keyword=&TB=&stdType=&frequency=&mandate=&collection=&sort=1
https://cloud.google.com/about/locations
https://cloud.google.com/about/locations
https://cloud.google.com/about/locations
https://sdn.ieee.org/newsletter/november-2015/cord-central-office-re-architected-as-a-datacenter
https://sdn.ieee.org/newsletter/november-2015/cord-central-office-re-architected-as-a-datacenter
https://machinezone.github.io/research/networking-solutions-for-kubernetes/
https://machinezone.github.io/research/networking-solutions-for-kubernetes/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/blog/2019/03/29/kube-proxy-subtleties-debugging-an-intermittent-connection-reset/
https://kubernetes.io/blog/2019/03/29/kube-proxy-subtleties-debugging-an-intermittent-connection-reset/

[25] Kubernetes components. https://kubernetes.io/docs/concepts/overview/
components/.

[26] Itsio. https://istio.io/.

[27] Kubernetes control plane-node communication. https://kubernetes.io/docs/
concepts/architecture/control-plane-node-communication/.

[28] Kubernetes. https://kubernetes.io/.

[29] Kubernetes slo. https://github.com/kubernetes/community/blob/master/
sig-scalability/slos/slos.md.

[30] Kubernetes authorization overview. https://kubernetes.io/docs/reference/
access-authn-authz/authorization/#determine-the-request-verb.

[31] Lars Larsson, William Tärneberg, Cristian Klein, Erik Elmroth, and Maria Kihl. Im-
pact of etcd deployment on kubernetes, istio, and application performance. Software:
Practice and Experience, 50(10):1986–2007, 2020.

[32] Kubernetes: Deployments. https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/.

[33] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief. A
survey on mobile edge computing: The communication perspective. IEEE Communi-
cations Surveys Tutorials, 19(4):2322–2358, 2017.

[34] Vı́ctor Medel, Omer Rana, José ángel Bañares, and Unai Arronategui. Modelling
performance and resource management in kubernetes. In Proceedings of the 9th Inter-
national Conference on Utility and Cloud Computing, UCC ’16, page 257–262, New
York, NY, USA, 2016. Association for Computing Machinery.

[35] Vı́ctor Medel, Rafael Tolosana-Calasanz, José Ángel Bañares, Unai Arronategui, and
Omer F. Rana. Characterising resource management performance in kubernetes. Com-
puters and Electrical Engineering, 68:286–297, 2018.

[36] Wahida Nasrin and Jiang Xie. A joint handoff and offloading decision algorithm for
mobile edge computing (mec). In 2019 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, 2019.

[37] Nomad by hashicorp. https://www.nomadproject.io/.

44

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://istio.io/
https://kubernetes.io/docs/concepts/architecture/control-plane-node-communication/
https://kubernetes.io/docs/concepts/architecture/control-plane-node-communication/
https://kubernetes.io/
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#determine-the-request-verb
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://www.nomadproject.io/

[38] Openness. https://www.openness.org.

[39] Scaling kubernetes to over 4k nodes and 200k pods. https://medium.com/
paypal-tech/scaling-kubernetes-to-over-4k-nodes-and-200k-pods-29988fad6ed.

[40] Evaluating container platforms at scale. https://medium.com/on-docker/
evaluating-container-platforms-at-scale-5e7b44d93f2c.

[41] Docker swarm. https://docs.docker.com/engine/swarm/.

[42] Amazon wavelength and 5g. https://aws.amazon.com/wavelength/.

[43] Aws wavelength. https://techblog.comsoc.org/tag/aws-wavelength/.

[44] Amazon wavelength locations. https://aws.amazon.com/wavelength/locations/.

[45] Uber Yunpeng Liu. Online presentation – only slightly bent: Uber’s kubernetes mi-
gration journey for microservices - yunpeng liu, uber. https://www.youtube.com/
watch?v=91c3iUI2K7M&t=594s.

45

https://www.openness.org
https://medium.com/paypal-tech/scaling-kubernetes-to-over-4k-nodes-and-200k-pods-29988fad6ed
https://medium.com/paypal-tech/scaling-kubernetes-to-over-4k-nodes-and-200k-pods-29988fad6ed
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/wavelength/
https://techblog.comsoc.org/tag/aws-wavelength/
https://aws.amazon.com/wavelength/locations/
https://www.youtube.com/watch?v=91c3iUI2K7M&t=594s
https://www.youtube.com/watch?v=91c3iUI2K7M&t=594s

	List of Tables
	List of Figures
	Introduction
	Contributions

	Background
	Kubernetes
	Control Loops For Declarative Configurations
	Kubernetes Objects
	Label
	Ownership and Garbage Collection
	Manifest Files
	kubectl
	client-go
	Official Kubernetes Performance Objectives

	Kubernetes Architecture
	etcd

	The Application Deployment Process
	The Deletion Process

	Related Work
	Architectural Change
	Essential Etcd Writes
	Storing Non-Essential Writes in Secondary Store
	Implementation
	Tagging Requests for Secondary Store
	Connecting Kubernetes to Secondary Etcd Store

	Evaluation
	Setup
	Client Application
	Requested Deployments

	Experimental Results
	Creation Burst Throughput Results
	Creation Burst Latency Results
	Steady State Throughput Results
	Steady State Latency Results
	Steady State Latency Results with Synthetic Disk Latency
	CPU and Memory Utilization

	Discussion

	Conclusion
	References

