
Improved Model Poisoning Attacks
and Defenses in Federated Learning

with Clustering

by

Xinda Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Xinda Li 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Federated Learning (FL) allows multiple participants to collaboratively train a deep
learning model without sharing their private training data. However, due to its distributive
nature, FL is vulnerable to various poisoning attacks. An adversary can submit malicious
model updates that aim to degrade the joint model’s utility. In this thesis, we formulate
the adversary’s goal as an optimization problem and present an effective model poisoning
attack using projected gradient descent. Our empirical results show that our attack has a
larger impact on the global model’s accuracy than previous attacks.

Motivated by this, we design a robust defense algorithm that mitigates existing poison-
ing attacks. Our defense leverages constraint k-means clustering and uses a small validation
dataset for the server to select optimal updates in each FL round. We conduct experiments
on three non-iid image classification datasets and demonstrate the robustness of our defense
algorithm under various FL settings.

iii

Acknowledgements

First, I would like to express my gratitude to my supervisor Florian Kerschbaum for
the invaluable support and guidance in developing this thesis. I look forward to continuing
working with him in the future. I also want to thank my committee members, Gautam
Kamath and Hongyang Zhang, for reading the thesis and providing great comments on
various parts of it. I would like to thank many of my amazing friends, who made me not
feel lonely during such a hard time of the pandemic. Special thanks to Jay Chou for his
beautiful songs. I am lucky to have been born in the era with his music. Finally, I thank
my family for unconditional love, support and encouragement.

This work benefited from the use of the CPI Chippie compute facility at the University
of Waterloo.

iv

Dedication

To my loved ones.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 4

2.1 Deep Neural Networks (DNNs) . 4

2.2 Federated Learning (FL) . 4

3 State-of-the-art Attacks and Defenses in FL 6

3.1 Robust Aggregation Algorithms . 6

3.2 Poisoning Attacks . 8

3.2.1 Model Poisoning Attacks . 8

3.2.2 Data Poisoning Attacks . 10

4 Attack and Defense Model 11

4.1 Attack Model . 11

4.2 Defense Model . 12

5 Our Attack 13

5.1 Model Poisoning Attack Formulation . 13

5.2 Solving the Optimization . 14

vi

6 Our Defense 17

6.1 Success of Existing Attacks . 17

6.2 Weakness of Existing Defenses . 18

6.3 Our Design . 19

6.4 Adaptive Attacks . 21

7 Evaluations 24

7.1 Experimental Setup . 24

7.1.1 Datasets . 24

7.1.2 FL Parameters and Settings . 26

7.1.3 Benchmark Attacks and Defenses 27

7.1.4 Evaluation Metrics . 28

7.2 Evaluation of Our Attack . 28

7.2.1 Comparison with Other Attacks . 28

7.2.2 Unknown Benign Updates . 31

7.2.3 Effect of the Non-iid Degrees of Local Datasets 32

7.3 Evaluation of Our Defense . 33

7.3.1 Comparison with Other Defenses 33

7.3.2 Impact of FL Parameters . 35

8 Related Work 37

9 Conclusion 40

References 41

vii

List of Figures

7.1 An example of a non-iid partition for 10 clients on CIFAR-10 dataset ac-
cording to Dirichlet distribution with α = 0.5. Each value represents the
number of data samples of a class belonging to a certain client id. 26

7.2 Effect of αC under model poisoning attacks. 32

7.3 Impact of FL parameters on testing accuracy under attacks for MNIST. . . 35

viii

List of Tables

6.1 Results of the one-shot attack for several server aggregation algorithms. The
accuracy is in percentage. 18

7.1 The CNN structure for MNIST . 27

7.2 Default FL parameter values for different datasets 27

7.3 The testing accuracy of various server aggregation algorithms under three
attack settings for three datasets. The values in bold are the attack impact.
All values are in percentages. 30

7.4 The impact of our attack in two scenarios: whether the benign updates are
known or not. 31

7.5 Global model testing accuracy for defense algorithms under no attack (αC =
1.0). 33

7.6 The attack impact of various defenses under our attack and Shejwalkar et
al.’s attacks [35]. The higher attack impact between Min-max and Min-sum
is shown. The number in the brackets is the impact of our adaptive attack
tailored to our defense. 34

ix

Chapter 1

Introduction

Federated Learning (FL) is an emerging framework for collaboratively training a deep
learning model among thousands or even millions of participants [19], [24]. In a typical FL
setting, a central server maintains a global model and coordinates the training of a joint
global model among several clients. Each client trains a model based on the local data,
and the global model is learnt by combining the contributions of all clients. Compared
to a traditional centralized setting, FL is computational-efficient on the server side due
to outsourcing and parallelizing the model training process. Moreover, each client only
needs to send local model updates to the central server, and no raw training data is shared
between clients and the service provider. FL has been widely applied in many areas. For
example, Google has applied FL for next-word prediction on Android Gboard [16], [44];
Apple leverages FL for creating voice recognition models [15].

Although FL seems to be a promising solution for many real-world machine learning
settings, FL system is vulnerable to model poisoning attacks [3], [7], [26]. Due to the
distributive nature of FL, malicious clients, which could be either compromised normal
clients or fake ones inserted by the attacker, can lower the testing accuracy of the global
model by manipulating the model updates in the training round. For instance, the FedAvg
algorithm [24], which has been widely used in non-adversarial FL settings, is susceptible to
model poisoning attacks. FedAvg takes the weighted average of the model parameters as
the global model, and it has been shown that the resulting global model can be arbitrarily
manipulated even if only a single client is compromised [7].

Many existing works have proposed Byzantine robust aggregation algorithms that aim
to mitigate the impact of model poisoning attacks [1], [7], [11], [26], [43], [45]. The idea
of these defenses is to detect and remove outliers of model updates before incorporating

1

them into the global model. However, many of these aggregation algorithms assume in-
dependent and identically distributed (iid) training data, while non-iid datasets are more
common in real-world scenarios. Existing works [14], [35] have shown that these defenses
are insufficient to prevent FL models from poisoning attacks, especially in the non-iid case.
Moreover, previous defenses assume the number of participating malicious clients is fixed
and remove that number of model updates in every training round. Consequently, the
aggregation algorithm may remove an excess number of benign updates, which results in
the global model suffering an accuracy loss even if no attackers are present.

Attacking FL models: Our first contribution in this thesis is a generic model poison-
ing attack to FL. Our new model poisoning attack uses a better optimization technique and
can be used as a threat assessment framework for any FL systems. Our attack formulates
the problem as an optimization similar to previous works [14], [35] but uses a fundamen-
tally different approach to solve the optimization. We leverage the projected gradient
descent (PGD) and Dykstra’s algorithm [8] to optimize the malicious update such that it
can evade the detection of the defender while effectively poisoning the global model. The
PGD algorithm moves the malicious update towards an adversarial direction, leading to
low model accuracy while ensuring its closeness to other benign updates. Our experiment
results show that our attack breaks all existing defenses and decreases the global model
testing accuracy by 10− 70%. Our attack outperforms existing state-of-the-art attacks on
all evaluated datasets.

Defending against model poisoning attacks: Besides the attack, as a second con-
tribution, we propose a new defense framework using clustering that aims to mitigate
untargeted model poisoning attacks. Our defense first clusters the received updates and
then applies a two-phase outlier removal before aggregating. Unlike previous defenses, the
number of updates we remove is chosen dynamically based on estimating the number of
participating malicious clients in each FL round. Specifically, the server collects a small
labelled dataset and uses it as a validation dataset for determining the final model aggre-
gate. We show that our defense achieves similar testing accuracy as FedAvg (less than
1% degradation) in non-adversarial settings. Moreover, our defense is robust under state-
of-the-art model poisoning attacks and our new proposed attack among three evaluated
datasets (with degradation of testing accuracy around 2%). To further evaluate the ro-
bustness of our defense, we design an adaptive attack based on our new attack framework.
Our adaptive attack assumes the knowledge of the entire procedure of the algorithm and is
particularly optimized against the defense by taking the clustering step into consideration.

The remainder of the paper is organized as follows: In Chapter 2 we give brief intro-
ductions to Deep Neural Networks and Federated Learning. We describe state-of-the-art
attacks and defenses on poisoning attacks in Chapter 3. In Chapter 4, we discuss the

2

threat models and the assumptions for the defender. We give detailed descriptions of our
attack and defense algorithm in Chapter 5 and 6. Finally, in Chapter 7, we evaluate our
solutions and compare them with existing works.

3

Chapter 2

Background

2.1 Deep Neural Networks (DNNs)

A deep neural network consists of multiple layers for extracting features from the input.
Each layer contains the weight, bias parameters and a (non-linear) activation function. A
DNN classifier is a function f : X → Y that assigns a likelihood score to inputs x ∈ X ⊆ Rd

for each of K ∈ N classes Y ⊆ RK . A softmax activation function is applied to the output
layer to convert likelihoods into a vector of real values in [0, 1] that sums to 1. Therefore,
the output can be interpreted as the probabilities of the input falling in each prediction
class.

A differentiable loss function L is usually defined to measure the difference between the
model prediction and the ground-truth labels. The empirical loss on the model parameter ω
over the training dataset D is l(ω) = 1

N

∑
(xi,yi)∈D L(f(xi;ω), yi). To solve the optimization

problem argminω l(ω), the mini-batch stochastic gradient descent (SGD) algorithm is often
used for optimization. At each iteration, the backpropagation algorithm computes the
gradient with respect to the weights of the network. The model weights are then updated
towards the local minimum.

2.2 Federated Learning (FL)

Federated Learning (FL) [19], [24] is a machine learning setting where multiple data owners
collaboratively learn a global machine learning model without the need to share private

4

data. Suppose we haveN clients, and each of them has a local training datasetDi. Further-
more, a local machine learning model is maintained by each client for its data. Specifically,
the model parameters are obtained by solving the optimization problem argminω l(ω) on
Di for some loss function L. A server maintains a global model via aggregating local
models from these clients. In the tth FL round, the server selects a subset of n out of
N clients and broadcasts the current global model weights ωt

g to them. Then each of the
chosen clients fine-tunes ωt

g on its local dataset for a fixed E epochs and obtains a new local
model ωt

k. After the training process completes, each of the n clients computes the model
update ∇t

k = ωt
k − ωt

g and sends ∇t
k back to the server, which then applies an aggregation

algorithm fagg on all client updates to obtain ∇t
g = fagg({∇t

k : k ∈ [n]}). Finally, the server
updates the global model in the (t+1)th round with the new weights ωt+1

g = ωt
g +∇t

g, and
broadcasts it to a new subset of selected clients. This process is repeated until the global
model converges.

FL can be classified into two types: cross-silo and cross-device. In cross-silo FL, a set of
organizations (e.g., financial or medical) act as the clients to perform local training, and a
third-party entity acts as the global server to coordinate the process. All clients are almost
always available in each training round. While in cross-device FL, the clients are usually
many mobile or loT devices, and only a fraction of clients participate in each training
round. In this thesis, we study the poisoning attack on FL and focus on the cross-device
setting where the clients are usually highly unreliable.

5

Chapter 3

State-of-the-art Attacks and Defenses
in FL

3.1 Robust Aggregation Algorithms

The vanilla average aggregation (FedAvg) [24] in standard FL has been shown to be non-
robust that a single malicious client can manipulate the final global model weight arbi-
trarily [7]. Existing works have proposed Byzantine-robust Aggregation for FL to defend
against model poisoning attacks by adversaries.

Krum

Krum [7] selects one of the n updates that has the lowest score based on ℓ2 distance. The
score of the ith update is computed as follows:

si =
∑
∇j∈P

∥∇i −∇j∥2

where m is an estimation of the upper bound on the number of malicious clients and
P represents the set of the n −m − 2 neighbouring updates of ∇i. The intuition behind
this is that malicious updates need to be far from benign ones to poison the global model.

6

Multi-krum

Multi-krum [7] is a variant of Krum which has much higher global model accuracy. Multi-
krum iteratively selects an update from the remaining set multiple times using the same
algorithm as Krum, resulting in a selection set S with c updates such that c < n− 2m− 2.
Finally, Multi-krum returns the dimensional-wise average of S.

Trimmed-mean

Trimmed-mean [45] is a coordinate-wise aggregation algorithm. For a dimension k, trimmed-
mean sorts the values in the kth dimension of the n vectors and removes the m smallest
and largest values. Then it performs dimensional-wise averaging on the remaining n− 2m
vectors. Yin et al. [45] show in theory that trimmed-mean achieves order-optimal statistical
error rates for strongly convex losses.

Median

Median [45] is another algorithm that performs aggregation along each dimension. Median
aggregates the client updates by computing the median of the values along each dimension.
Like the trimmed-mean aggregation rule, median also has an order-optimal error rate when
the objective function is strongly convex.

Divide-and-Conquer (DnC)

DnC [35] randomly selects a sorted index set r and constructs sub-sampled updates indexed

by r: ∇̃ = ∇[r]. Next, DnC computes an outlier score for each update using SVD-based
spectral methods and removes m updates with the high scores. The above process runs
niter number of times to avoid dependence on a single r. Finally, DnC returns the average
of common updates across niter iterations. The theoretical guarantee of DnC relies on
the assumption that the malicious updates and the benign ones are sufficiently separated.
DnC leverages sub-sampling techniques to achieve lower memory and computational cost
compared to the standard SVD-based defenses [41].

7

3.2 Poisoning Attacks

Existing works have shown that Federated learning is vulnerable to various poisoning
attacks [14], [6], [35], [28], [18], [40]. There are two categories of attacks based on the
adversary’s goal: targeted and untargeted. For targeted attacks, the adversary aims to
decrease the model accuracy on some specific inputs. In contrast, the goal for untargeted
attacks is to minimize the model accuracy on any input test data. Backdoor attacks [3]
are a subset of targeted attacks where the attacker changes the model’s behavior only on
some attacker-chosen inputs (backdoor triggers) while maintaining accuracy on the main
FL learning task. Although targeted and backdoor attacks cause the model to misclassify a
set of specific input samples, untargeted attacks are designed to decrease the utility of the
global model and all client models. As Fang et al. [14] point out, many existing Byzantine-
robust aggregation algorithms can only asymptotically bound the error rates of the global
model up to a constant factor. Such guarantees do not imply empirical robustness of
the global model. For instance, as shown in Section 7.2, a successful untargeted attack
can lower the global model accuracy on CIFAR-10 by more than 20% even when robust
aggregation algorithms are applied, which may prevent the use of the model in the future.
Therefore, in this thesis we focus on untargeted attacks, which pose a more severe threat
to the use of FL. Based on the adversary’s capability, there are two types of FL poisoning
attacks.

3.2.1 Model Poisoning Attacks

Unlike the centralized setting, the distributed nature of FL introduces another new threat
for poisoning attacks. In model poisoning attacks, the adversary directly manipulates the
model updates sent from compromised clients to the server. Due to the stronger capability
of the attacker, model poisoning attacks can achieve a higher impact on the model accuracy.

Multiple model poisoning attacks have been proposed in the literature [4], [14], [35].
Little Is Enough (LIE) attack [4] adds a small perturbation noise to each dimension of
the averaged benign updates. The attack assumes the knowledge of the benign updates.
Specifically, the attacker first computes the dimensional-wise average of available benign
updates (∇b) and adds calibrated noises onto it based on the standard deviation (σ) of
the benign updates. The poisoned update is constructed as ∇m = ∇b + zσ where z is a
scalar depending on the number of malicious and total clients. Baruch et al. [4] show that
LIE evades the detection of many robust aggregation algorithms and effectively poisons
the global model.

8

Fang [14] and Shejwalkar et al. [35] formulate the tailored attack as an optimization
problem. The tailored attack assumes the attacker knows the aggregation algorithm. The
attack computes the average of available benign updates as a reference update (∇b) and
set a malicious perturbation direction ∇p ← sign(∇b). The malicious update ∇m is a
perturbed version of the reference update towards the malicious perturbation direction ∇p.
The objective of the optimization is to maximize the distance between the final update
after aggregation and the reference update, formally shown as follows:

argmax
γ

∥∇b − fagg(∇m
{k∈[m]} ∪∇{k∈[m+1,n]})∥, (3.1)

∇m
{k∈[m]} = ∇b + γ∇p, ∇b = Avg(∇{k∈[n]})

where ∇{k∈[n]} is the benign update set available to the adversary. The goal is to find
an optimal scalar γ that circumvents the aggregation algorithm. This attack assumes the
server’s aggregation algorithm is known to the attacker, who can easily check whether the
tailored malicious update is selected by fagg. Since fagg is usually non-differentiable, a line
search is used for the optimization. The algorithm first initializes γ to a large value and
gradually decreases γ until ∇m satisfies the adversarial objective. Shejwalkar et al. [35]
improve the previous attack by utilizing better line search techniques and considering other
choices of perturbation vectors ∇p (e.g., normalized version of ∇b).

In case the underlying aggregation algorithm is hidden from the adversary, the ad-
versary cannot compute the result of the aggregation since fagg is unknown. Shejwalkar
et al. [35] propose two Agg-agnostic attacks, called Min-max and Min-sum. The con-
struction of the malicious vector ∇m is the same as the tailored attack above. The gen-
eral idea of the attack is to ensure the malicious updates lie close to the clique of the
benign updates. Min-max tries to maximize the scalar γ while ensuring that the maxi-
mum distance between the malicious update and any other updates is upper bounded by
the maximum distance between any two benign updates. That is, maxi∈[m+1,n] ∥∇m −
∇i∥2 ≤ maxi,j∈[m+1,n] ∥∇i − ∇j∥2. While Min-sum ensures the sum of the distances
between the malicious update and all the benign gradients is upper bounded by the
sum of distances between any benign gradient and the other benign gradients. That is,∑

i∈[m+1,n] ∥∇m − ∇i∥2 ≤
∑

i,j∈[m+1,n] ∥∇i − ∇j∥2. Shejwalkar[35] empirically shows that
Min-max and Min-sum attack have a stronger impact on various of defenses than the LIE
attack.

9

3.2.2 Data Poisoning Attacks

Data poisoning attacks have been primarily explored in the centralized setting of machine
learning [28], [18]. In data poisoning attacks, the adversary indirectly manipulates the
model updates by inserting poisoning data to the local training dataset on compromised
clients. Fang et al. [14] apply the simple label flipping attack to FL settings. In this attack,
the attacker flips the labels of the local data on compromised clients to some other false
labels.

Similar to (3.1), data poisoning attack can be formulated as an optimization problem
as follows,

argmax
Dm

{k∈[m]}⊂D
∥∇b − fagg(∇m

{k∈[m]} ∪∇{k∈[m+1,n]})∥

∇m
k∈[m] = T (ωg, D

m
{k∈[m]})− ωg, ∇b = Avg(∇{k∈[n]})

where T is a training algorithm (SGD) that uses malicious input data Dm ⊂ D to fine-
tune the current model weight ωg and outputs the new weight. Fang et al. [14] show that
using gradient-based optimization to compute Dm is time-consuming and not effective.
Shejwalkar et al. [36] propose to use label-flipped data to replace the compromised client’s
dataset and optimize the number of the data carefully based on the server aggregation
algorithm.

We notice that data poisoning attacks can be transferred to model poisoning attacks.
For example, we can train the local model on a poisoned dataset and treat the changes
of model weights as malicious model updates. Moreover, the literature [14], [6], [35] have
suggested that model poisoning attacks are more effective than data poisoning attacks in
many FL settings. Therefore, in this thesis we study untargeted model poisoning attacks.

10

Chapter 4

Attack and Defense Model

In this chapter, we discuss possible threat models of poisoning attacks in FL as well as the
assumptions and goals of the defense model.

4.1 Attack Model

Attacker’s capability: For untargeted model poisoning attacks, the goal of the ad-
versary is to reduce the global model’s accuracy on any test input by crafting malicious
updates on compromised participating clients. Following previous works [3], [4], [6], [14],
[35], we assume the attacker controls P out of N total clients. Those clients can be either
normal clients compromised by the attacker or fake clients injected into the FL system. We
assume the malicious fraction q = P

N
is less than 50%; otherwise no Byzantine robust ag-

gregation algorithm can withstand poisoning attacks. Following previous studies of model
poisoning attacks, we assume the adversary can arbitrarily manipulate the updates sent
from the P compromised clients to the central server in every FL round.

Attacker’s knowledge: Previous works [10], [14], [35] assume the attacker has the
following basic knowledge about the FL system: local training code, training dataset, and
model updates of the compromised clients. Besides, similar to [14], [35], we consider two
other dimensions in adversarial FL settings: the knowledge of the aggregation algorithm
and the knowledge of other benign model updates. Both of them are relatively strong
assumptions for the adversary. However, they can be used to understand the severity of
the threat to FL models and evaluate the robustness of the defense mechanism. Previous
tailored attacks [14], [35] assume full knowledge of the aggregation algorithm while the LIE

11

algorithm [4] assumes full knowledge of the benign updates. [35] proposes Min-max and
Min-sum attacks that do not require knowledge of the aggregation rule and shows they
are more effective when the benign updates are known. In this thesis, for the design our
attack we consider the more practical scenario where the defense algorithm is not public
and consider both cases whether the benign updates are known or not.

4.2 Defense Model

Defender’s goal: The goal of the defender is two-fold. 1) The global model should be
robust under reasonable threat models as described above, i.e. the model should maintain
high accuracy on the main task; 2) The defense mechanism should not sacrifice model
accuracy when there is no presence of attackers, which is known as fidelity. Many existing
defense algorithms only aim to address robustness but overlook fidelity. For instance, our
experiment results in Section 7.3 show using Krum [7] causes the testing accuracy to drop
by more than 20% on the MNIST dataset which makes the model useless. We further
discuss the common weaknesses of the existing defenses in Chapter 6. Therefore, when
designing defense mechanisms, it is necessary to compare the model accuracy under no
attacks with a baseline algorithm such as FedAvg [24]. For robustness, we design our
defense under a powerful adversarial setting where the benign updates are completely
known to the attacker. Furthermore, we propose an adaptive attack when the defense
algorithm is revealed to the attacker and evaluate our defense against it.

Defender’s knowledge: The defender does not know any client-side information includ-
ing local training data. Unlike previous work, we assume the server also does not need to
know the upper bound of the malicious fraction q. The server can only access the model
updates it receives from participating clients in each round. To ensure both fidelity and
robustness, we assume the server has a tiny clean labelled dataset. The dataset is from a
similar domain but may not follow the same distribution as the training data. Moreover,
the server’s dataset does not have to be iid and may be skewed. We show in Section 7.3
that a very small dataset (100 samples for MNIST and FEMNIST) is sufficient to satisfy
our goal. Such a small dataset can often be collected from the public domain and labelled
manually.

12

Chapter 5

Our Attack

In this section, we describe the formulation of our new model poisoning attacks on FL,
followed by an algorithm that we can use as a generic framework for attacking any FL
defense. In our attack, we assume the attacker does not know the defender’s algorithm,
which is a practical setting since the aggregation algorithm of a FL platform is not public
in many cases. We also assume the attacker knows the benign updates in our derivation.
In the case that the benign updates are unknown, the attacker can obtain an estimation
of them by performing clean training on the compromised clients’ local datasets.

5.1 Model Poisoning Attack Formulation

In Federated Learning, the global server aggregates the client model updates it receives
in each round. In order to poison the global model, the goal of the adversary is to send
malicious updates such that the global model’s accuracy is minimized with the new model
weights after the aggregation. We formulate it as an optimization problem as follows.

Let f(x;ω) be the global model output on an input x with model parameter ω. We
craft the malicious updates for the m clients we control, denoted ∇{k∈[m]} (without loss
of generality, we assume the first m clients are malicious). Let ωg be the global model
weights from the last iteration, and n be the number of total selected clients in each
iteration, respectively. Recall that L is the loss function that computes the loss between
the model output f(x) and the true label y. Then the attacker aims to solve the following
optimization problem:

13

argmax
∇{k∈[m]}

L(f(x; ω), y)

where ω = ωg + fagg(∇{k∈[m]} ∪∇{k∈[m+1,n]})

We note that the above optimization problem depends on f and fagg and does not have
a closed-form solution most of the time. Moreover, since fagg is not differentiable in many
cases, gradient-based optimization techniques are not applicable here as well.

5.2 Solving the Optimization

Next, we show how we tackle the challenge by altering the optimization goal. We observe
that many of the existing defenses (e.g., Krum, Multi-krum and DnC) follow a two-step
procedure: 1) applying an outlier detection algorithm to remove some outlier updates; 2)
averaging the remaining updates to ensure convergence. Therefore, the poisoned updates
have to avoid the aggregation algorithm’s detection and point to a malicious direction to
decrease the model utility. In our attack, we force the malicious update into a feasible set
chosen heuristically. We ensure the distance between the malicious update and each of the
other benign update is within a threshold radius r, which is a tunable hyperparameter.
Our intuition is that it restricts the malicious updates to be close enough to other benign
updates in order to be selected by the defense algorithm. Since the choice of r has to
depend on the scale of other updates that might vary between FL rounds, we compute r
dynamically for each round to be the maximum distance of any other two benign updates.
For simplicity, we set the model update for every selected malicious client to the same
vector ∇m. Therefore the optimization becomes:

argmax
∇m

L(f(x; ω), y) (5.1)

where ω = ωg +
1

n
(m · ∇m +

∑
k∈[m+1,n]

∇k)

subject to ∥∇m −∇j∥2 ≤ r, for j ∈ [m+ 1, n]

Applying change of variable, we optimize ω instead. Then ∇m = (n(ω − ωg) −∑
k∈[m+1,n]∇k)/m. Thus, (5.1) becomes:

14

argmax
ω

L(f(x; ω), y)

subject to ∥ω − (ωg +
m · ∇j +

∑
k∈[m+1,n]∇k

n
)∥2 ≤

m

n
r,

for j ∈ [m+ 1, n]

We observe that the feasible set is the intersection of (n − m) ℓ2 balls centered at

ωg +
m·∇j+

∑
k∈[m+1,n] ∇k

n
(j ∈ [m+ 1, n]) with radius m

n
· r, which is a convex set. Therefore,

the problem is converted to finding ω such that the model attains maximal empirical loss on
the attacker’s dataset while maintaining ω in the constrained set. To solve the optimization
problem, we use the projected gradient descent (PGD) algorithm on the negative loss. To
project onto the feasible set, we apply Dykstra’s algorithm [8]. Dykstra’s algorithm is
an iterative algorithm that calculates the projection onto intersections of given convex
sets. The algorithm is developed on the premise that the projection onto each convex set
(projection onto an ℓ2 ball in our case) can be calculated cheaply. Finally, we present the
overall procedure of our attack in Algorithm 1.

To perform the gradient descent on the model parameter ω, we assume the attacker
has access to a labelled dataset. The adversary can either use a public-accessible dataset
from a similar domain or simply combine the local datasets from all compromised clients.
In this thesis, we evaluate our attack under the second setting.

We remark that our attack does not depend on the knowledge of the server’s aggregation
algorithm, and therefore can be used as a generic framework against any defense.

15

Algorithm 1: PGD poisoning attack

Input: Current model parameter ωg, attacker’s dataset (X ,Y), benign updates
{∇k}(k ∈ [m,n)), learning rate ηt, number of rounds T

1 Initialize ω0 randomly
2 Compute centers and radius for the n−m balls

3 centers← ωg +
m·∇j+

∑
k∈[m+1,n] ∇k

n
, j ∈ [m,n)

4 radius← m
n
·max{∇x,∇y} ∥∇x −∇y∥2

5 for t ∈ [T] do
6 Compute gradient
7 gt ← ∇ωt

∑
(xi,yi)∈X ,Y L(f(xi; ωt), yi)

8 Descent
9 ωt+1 ← ωt − ηt(−gt)

10 Projection
11 ωt+1 ← Dykstra(ωt+1, centers, radius)

12 end
13 Reconstruct ∇m

14 ∇m =
n(ωt+1−ωg)−

∑
k∈[m+1,n] ∇k

m

Output: The malicious update ∇m

16

Chapter 6

Our Defense

The strong impact of our attack motivates us to design a more robust defense algorithm
against untargeted model poisoning attacks in FL. In this section, we identify a common
pattern of existing attacks and point out a weakness of previous defenses. Based on the
lessons we learned, we propose a novel clustering-based defense that addresses the two
issues.

6.1 Success of Existing Attacks

State-of-the-art attacks are based on solving an optimization problem. The goal of the
attacker is to maximize the malicious perturbation while keeping the malicious updates
not too far from the benign ones in order to maximize the chances of being selected by
the aggregation algorithm. Previous attacks assign identical updates or updates that are
close to each other (by adding small noises) for every malicious client, which moves the
barycenter of all update vectors towards the malicious direction. In case the training data
is non-iid, which is a more realistic setting, such an approach becomes even more effective
since the benign updates themselves are not concentrated and do not point to a single
direction. Therefore, it becomes harder for the defender to distinguish malicious updates
from benign ones. For example, in the Multi-krum case, keeping the malicious updates
close to each other results in a small neighbouring distance for those updates, which will
increase the possibility of being selected by the aggregation algorithm.

17

Table 6.1: Results of the one-shot attack for several server aggregation algorithms. The
accuracy is in percentage.

MNIST FEMNIST
Agg Acc Round Acc Round

Multi-krum 10.09 8 4.97 5
Trimmed-mean 9.8 2 4.97 2

DnC 10.28 3 4.84 2

6.2 Weakness of Existing Defenses

In the cross-device FL setting, the server randomly selects a subset of participating clients
in each round. Existing defenses assume the knowledge of the (upper bound of) number
of total malicious clients P and remove a fixed number of updates m in each FL round
based on P . Suppose the total number of clients is N , and the number of participating
clients in each round is n, then a common estimation in previous defenses of m is n · q,
where q = P/N is the malicious fraction. However, we note that the number of selected
malicious clients is a random variable M following a hypergeometric distribution with
p.m.f. Pr(M = m) =

(
P
m

)
·
(
N−P
n−m

)
/
(
N
n

)
. Therefore, even if all P,N, n are fixed and

known, the defender does not know the exact number of malicious clients involved in a
particular training round. By removing only a fixed number of updates, the server suffers
from overestimating or underestimating M in each round, causing the removal of an excess
number of benign updates or an insufficient number of malicious updates.

One-shot attack. Based on the above observation, we present a simple yet effective
attack, called the one-shot attack. We show that the existing defenses that use a fixed
estimation of M are vulnerable to such an attack. The idea of the attack is that the
adversary greedily sends a sufficiently large model update for every malicious client in
every round. Instead of trying to evade the defender’s detection, the goal of the adversary
is to send unstealthy but powerful updates that can destroy the global model after being
selected once. Our intuition is that a single significantly large update can lead to a large
model aggregate, which causes gradient explosion problems and other numerical instability
issues. This may result in a global model (full of NaN s) that behaves like random guessing.
Even worse, we notice that the model cannot be recovered even if all updates in the future
rounds are benign. Table 6.1 gives a demonstration of our one-shot attack. We use the
same FL parameters as other experiments in Chapter 7. The table shows the testing
accuracy of applying the one-shot attack on three existing aggregation algorithms (Agg)
for the MNIST and FEMNIST datasets. The Round column shows the round number at

18

which the attack destroys the global model. As shown from the results, our one-shot attack
is effective against Multi-krum [7], Trimmed-mean [45] and DnC [35]. Under our attack,
the global model behaves like random guessing after only a few FL rounds. We note that
our one-shot attack may not be practical since it is not stealthy and can be mitigated by
other techniques (e.g., norm-clipping) or by inspecting the clients’ model updates manually.
However, it motivates us to design aggregation algorithms that estimate m in a dynamic
fashion in each round.

6.3 Our Design

The design of our defense is based on the lessons we learned in Section 6.1 and Section 6.2.
In order to limit the attacker’s impact, we first cluster the updates that the server receives
in each round. Our intuition for clustering is that if the attacker assigns similar updates for
all malicious clients, these updates will fall into a single cluster. A single aggregate vector
can then be used to represent similar updates for each cluster. We note that an attacker
might exploit this by submitting different malicious updates, and this may cause each
cluster to contain at least one malicious update due to the pigeonhole principle. Therefore,
we use a two-phase outlier removal which removes suspicious updates within each cluster
and among clusters. In phase one, we use a distance-based aggregation algorithm for each
cluster and compute a cluster center for each of them. The outlier removal algorithm we
use is similar to Multi-krum [7], where for each update we calculate the sum of Euclidean
distance to its neighbouring updates and filter out u of them. In phase two, we apply the
outlier removal algorithm again among all cluster centers and remove v of them. The final
aggregate is the average of remaining cluster centers. Our two-phase outlier removal creates
a dilemma for the adversary. It either chooses to greedily pull the model aggregate towards
a malicious direction by submitting similar updates or spread the updates into multiple
clusters, which results in a much weaker impact on the final aggregate. These two cases
are handled by phase two and phase one of our defense algorithm, respectively. For the
clustering algorithm, we apply the constrained k-means algorithm [5]. Constrained k-means
is a variant of the standard k-means clustering algorithm that avoids local solutions with
empty clusters or clusters having very few points. The algorithm ensures that every cluster
contains at least a given number of points by imposing constraints onto the underlying
clustering optimization problem. Since the constrained k-means algorithm ensures that
each cluster has the same number of updates, our algorithm has a similar convergence
guarantee with FedAvg [24].

To address the issue of the one-shot attack, instead of fixing the number of updates

19

to remove, we dynamically optimize u and v in each round by assuming the defender has
access to a small validation dataset D. Our intuition is that the defender cannot estimate
the exact number of malicious clients in a training round only based on the update values,
especially in the non-iid case. Therefore, we leverage a small dataset to help us determine
the number of updates to remove. Let U and V be the domain set of u and v, respectively.
U and V are determined by the number of updates in each cluster and the number of
clusters. Then we optimize u and v by selecting the pair (u, v) ∈ U × V based on the
validation loss on the dataset D.

Algorithm 2: Clustering-based Aggregation

Input: Model updates ∇1, ...∇n, validation dataset D, U , V , outlier removal
algorithm R, current model weight ωg

1 min loss← inf

2 ∇best ← 0
3 C1, ..., Ck = Cluster(∇1, ...,∇n)
4 for (u, v) ∈ U × V do
5 for i = 1, 2, ..., k do
6 aggi ← R(Ci; u)
7 end

8 ∇ ← R(agg1, ..., aggk; v)
9 ω ← ωg +∇

10 loss←
∑

(xi,yi)∈D L(f(xi; ω), yi)

11 if loss < min loss then
12 min loss← loss

13 ∇best ← ∇
14 end

15 end

Output: The model aggregate ∇best

Algorithm 2 describes the details of our defense algorithm. First, the server uses the
constrained k-means to cluster the received updates intoK clusters with each cluster having
a minimum ⌊ n

K
⌋ number of updates. Next, for each pair of (u, v) ∈ U × V we calculate

the aggregate update ∇ by performing a two-phase outlier removal (Lines 4-8). Then we
set the global model parameters to the new weight ω and compute the loss on the server’s
validation dataset D. Finally, we iterate through all pairs of (u, v) and return the best
model aggregate that has the smallest validation loss.

20

Although our defense algorithm requires the server to have a labelled validation dataset,
our experiment results in Section 7.3 show that we only need a relatively small dataset size
and do not require the data to be iid.

6.4 Adaptive Attacks

An attacker can launch a tailored attack against our defense when the attacker knows our
aggregation algorithm. In this section, we design an adaptive attack for our defense by
modifying our attack in Chapter 5 to tailor the aggregation algorithm.

We assume the attacker knows the server’s aggregation algorithm, including the param-
eters for clustering but does not have access to the server’s validation dataset. Since our
defense algorithm uses constrained k-means to cluster the updates before removing out-
liers, the updates will likely be in a single cluster if the attacker submits similar updates
for every compromised client. This may decrease the impact of the attack. Therefore,
our tailored attack leverages the knowledge of the clustering algorithm and optimizes each
malicious update individually. Instead of setting all malicious updates to be the same,
the attacker spreads out the malicious updates into multiple clusters based on the server’s
clustering algorithm.

We consider the tailored attack as an optimization problem like our PGD poisoning
attack. The goal of the attacker is to find updates in some malicious direction such that
these updates are spread into different clusters after the server performs clustering while
simultaneously maximizing the impact on the global model. However, since the search
space of malicious updates is extremely large, it is difficult to solve the optimization prob-
lem directly. Our approach is to cluster all benign updates first and use a special instance
of our PGD poisoning attack to find malicious updates for each cluster that fall within its
boundary. Unlike the previous PGD attack, which forces the malicious update to be within
the intersection of ℓ2 balls of all benign updates, we now only require it to be close to the
updates in a specific cluster. This imposes less constraints to the malicious updates and
thus generates more effective poisoning updates. Since the adversary does not know the
optimal number of clusters k′ to distribute the malicious updates, we iterate all possible
choices (1, 2, ..., k) and select the best malicious update set that has the highest validation
loss on the attacker’s dataset.

Algorithm 3 shows our adaptive attack in detail. For a specific k′, we randomly select
k′ clusters and use our PGD attack to generate a malicious update for each of them (Line
6-10). Line 11-13 expands the malicious update set S to size m by duplicating the items

21

Algorithm 3: Adaptive attack

Input: Attacker’s dataset (X ,Y), benign updates B = {∇j}(j ∈ [m,n)), current
model weight ωg, server’s aggregation algorithm Agg.

1 max loss← 0
2 Sbest ← ∅
3 C1, ..., Ck = Cluster({∇j})
4 for k′ = 1, 2, ..., k do
5 S ← ∅
6 for i ∈ [k′] do
7 Randomly select Ci from C1, ..., Ck without replacement.
8 ∇m

i ← PGD((X ,Y), Ci)
9 Append ∇m

i to S
10 end
11 for i ∈ [k′,m) do
12 Append S[i mod k′] to S
13 end

14 ∇ ← Agg(S ∪ B)
15 ω ← ωg +∇
16 loss←

∑
(xi,yi)∈(X ,Y) L(f(xi; ω), yi)

17 if loss > max loss then
18 max loss← loss
19 Sbest ← S
20 end

21 end
Output: The malicious update set Sbest

22

in it. Then, we set the model parameters to the new weight ω based on the aggregate
and compute the validation loss on the attacker’s dataset (Line 14-16). We update Sbest
whenever we achieve a higher loss (Line 17-20). Finally, the best malicious update set Sbest
is returned by the algorithm.

23

Chapter 7

Evaluations

7.1 Experimental Setup

7.1.1 Datasets

We follow the literature of poisoning attacks in FL [4], [14], [35], [36], [40] and consider
three popular image classification datasets MNIST [22], FEMNIST [12] and CIFAR-10 [20].

MNIST: MNIST [22] is a 10-class greyscale digit image classification dataset with
60,000 training images and 10,000 testing images, each of size 28 × 28. We distribute the
training data to 100 clients, each receiving 600 samples.

FEMNIST: FEMNIST [12] is an extended version of MNIST dataset, which consists
of 814,255 greyscale handwritten character digits. The dataset is generated by collecting
handwritten examples from 3400 individuals, and each example is converted to a 28 ×
28 pixel image format. There are 62 classes for the dataset: 52 for upper and lower case
letters and 10 for digits.

CIFAR-10: CIFAR-10 [20] is a 10-class color image classification dataset consisting
of 50,000 training examples and 10,000 testing examples. Each example is of size 32 × 32.

Local dataset partition: In a real-world setting, especially in the cross-device FL
case, clients’ local training datasets are usually biased and skewed. In this thesis, we
simulate the real-world scenario by synthetically generating non-iid FL datasets where the
label distribution skew is different across clients, i.e. P (yi) is different among parties.

To generate such non-iid datasets, we leverage the Dirichlet distribution [27] to partition
the data. This approach has also been widely used in the literature [17], [32], [36], [46]. For

24

each class c, we independently sample pc ∼ Dir(α) and allocate a fraction pc,j of examples
of class c to client j. Here, α is the concentration parameter of the Dirichlet distribution.
We can flexibly change the imbalance level of the dataset by varying α. Decreasing α
generates more non-iid datasets. An example of such a partitioning strategy with α = 0.5
is shown in Figure 7.1. For small concentration parameters like 0.5, some clients may have
no samples for some classes. We note that the amount of data each party owns might also
be different using this partitioning method.

We denote the non-iid parameter for the client’s local dataset as αC . We use this
approach for FEMNIST and CIFAR-10 dataset with a default αC = 1.0. We explore the
effect of other choices of αC in Section 7.2 and Section 7.3. For MNIST, we observe that
for non-iid data generated by this approach (αC = 0.5), there is little accuracy difference
from the iid case for the FedAvg [24] algorithm. Therefore, we use a stricter partitioning
method as follows.

For MNIST, we follow the partitioning method by McMahan et al. [24] that each client
receives digit images corresponding to only l labels. To achieve this, we first randomly
assign l different label ids to each client. Then, for all the samples of each label, we
partition them equally for the clients that have been assigned to the label. Each client
only has examples from l classes in this case. We use this partitioning approach for the
MNIST dataset and set l = 2.

Attacker and defender’s dataset: Our attack performs projected gradient descent
on the model weights and therefore requires the attacker to have a labelled dataset. Our
intuition is that the quality of the dataset may affect the impact of the attack. An attacker
can collect data from elsewhere in order to maximize the impact on the global model. In
this thesis, we simply combine the local training data of the P malicious clients that the
adversary controls to form the attacker’s dataset. Our approach does not require additional
effort for the adversary, and our experiment results imply it is sufficient to break existing
defenses.

For the defender’s validation dataset, by default we use a dataset with the size S = 100
for MNIST, FEMNIST and S = 300 for CIFAR-10. We study the impact of the size
of the validation dataset in Section 7.3. We assume the defender can collect a dataset
with a similar distribution as the domain of the learning task. To generate the dataset,
by default we uniformly randomly sample data from the combination of the training and
testing dataset. We ensure that the clients’ local training data, the server’s validation data
and the testing data do not overlap. We also evaluate the case where the server’s validation
dataset is biased in terms of label distribution in Section 7.3. To generate non-iid server
dataset, we use Dirichlet distribution with different concentration parameters. We sample

25

Figure 7.1: An example of a non-iid partition for 10 clients on CIFAR-10 dataset according
to Dirichlet distribution with α = 0.5. Each value represents the number of data samples
of a class belonging to a certain client id.

p ∼ Dir(αS) and assign a fraction pc of the server data to be label c. We denote the
non-iid parameter for the server’s dataset as αS. Note that αS =∞ means the dataset is
iid, which has an equal amount of data for each class.

7.1.2 FL Parameters and Settings

Model Architectures: We use various types of model architectures on different datasets.
Specifically, for MNIST, we train a convolutional neural network (CNN). The architecture
of the CNN is shown in Table 7.1. For FEMNIST, we use LeNet [21] architecture. For
CIFAR-10, we consider the VGG-11 [38] network. All clients use the same model architec-
ture as the global model.

FL Parameters: We use N = 100 clients for the MNIST and CIFAR-10 dataset and
randomly select n = 30 clients to participate in each FL round. For the larger dataset
FEMNIST, we assume N = 5000 and select n = 50 out of 5000 clients in each round
to simulate the cross-device FL setting. By default, we assume the malicious fraction
q = 20%, but we will also study the impact of other values of q.

We train MNIST and CIFAR-10 with the SGD optimizer with a learning rate initialized
to 0.01. We train for a total of R = 100 FL epochs and decrease the learning rate after

26

Table 7.1: The CNN structure for MNIST

Layer Size
Input 1× 28× 28

Conv 1 + Relu 5× 5× 10
Max Pooling 2× 2

Conv 2 + Relu 5× 5× 20
Max Pooling 2× 2
FC 1 + Relu 50

FC 2 10

Table 7.2: Default FL parameter values for different datasets

Parameter name MNIST CIFAR-10 FEMNIST
N (Total # of clients) 100 5000

n (Total # of participants) 30 50
R (# of FL rounds) 100 200

B (Batch size) 10 32 10
q (Malicious fraction) 0.2

αC (α for client local data) 1.0
αS (α for server data) ∞
S (Server dataset size) 100 300 100

every 30 epochs. For FEMNIST, we train R = 200 FL epochs and set the learning rate
to 0.1. We set the local batch size B to 10 for all datasets except for CIFAR-10 where
we set it to 32. The number of local epochs is set to 10 for MNIST, CIFAR-10 and 5 for
FEMNIST. Table 7.2 lists the FL parameters and the default values that we use unless
otherwise mentioned.

7.1.3 Benchmark Attacks and Defenses

We evaluate our attack against multiple defenses from the literature: Krum [7], Multi-
krum [7], Trimmed-mean [45], Median [45] and Divide-and-Conquer (DnC) [35]. Details of
the defenses can be found in Chapter 3. These defenses have a common parameter which
is the estimation of the upper bound of total malicious clients. We set it to P = N ·q when
evaluating our attack, assuming the defender knows the exact number of the malicious
clients. We compare our attack with state-of-the-art Agg-agnostic attacks: Min-max and
Min-sum. Similar to our attack, these two attacks do not require any knowledge of the
aggregation algorithm. We use the default parameter settings for these attacks from the
original paper [35].

27

We consider both fidelity and robustness when evaluating our defense. For fidelity, we
compare the testing accuracy of our aggregation algorithm with the FedAvg [24] algorithm
under no attack. For robustness, we evaluate our defense against the Min-max, Min-sum
attack as well as our new attack. We compare our defense with Krum [7], Multi-krum [7],
Trimmed-mean [45], Median [45] and DnC [35]. Moreover, we consider the case where the
attacker knows our aggregation algorithm and evaluate our defense against our adaptive
attack in Section 6.4. For the clustering algorithm in our defense, we set the number of
clusters k = ⌊

√
n⌋ where n is the number of updates selected.

7.1.4 Evaluation Metrics

For untargeted attacks, the attacker’s goal is to lower the global model’s accuracy on any
input data. Therefore, in this thesis we use the difference of the global model testing
accuracy before and after attack to measure the attack impact.

7.2 Evaluation of Our Attack

7.2.1 Comparison with Other Attacks

In this section, we compare our attack with state-of-the-art model poisoning attacks, Min-
max and Min-sum against all defenses in Section 3.1. All three attacks do not require
knowledge of the defense algorithm. Table 7.3 shows the results in the case that the
benign updates are known to the attacker. From the results, we observe that our attack
outperforms Min-max and Min-sum attack in general.

For MNIST, we notice that Min-max performs better than Min-sum in all cases. Our
attack has more than 2× as much impact as Min-max for Krum and DnC. For other
defenses, our attack causes the global model to drop ∼ 5% more testing accuracy than
Min-max.

For FEMNIST, our attack completely destroys the global model for Krum, Multi-krum
and Trimmed-mean, i.e. the resulting testing accuracy (∼ 5.0%) is almost the same as
random guessing. While Min-max and Min-sum can also break Krum, they are much
less impactful for the other two defenses compared to ours. For Median, our attack has a
similar impact to Min-max that both drop the testing accuracy by ∼ 11%. Min-sum attack
only lowers the testing accuracy by 6.6% for Median. The results indicate that DnC seems

28

robust for the FEMNIST dataset. Our attack can only decrease the testing accuracy by
2.0%, while the other attacks have very limited impact on DnC.

For CIFAR-10, our attack’s impact is 3× to 5× that of the Min-max and Min-sum
attack for Multi-krum, Trimmed-mean and DnC. Our attack is slightly better than Min-
max for Median that the impact is 10.8% and 9.3%, respectively. For Krum, our attack
lowers the testing accuracy to only 10%.

From the results in Table 7.3, our attack achieves the highest attack impact among
all the three evaluated attacks on all datasets. The reason that our attack is superior
to Min-max/Min-sum is in two aspects. 1) Our attack moves towards the adversarial
direction optimally via gradient ascent while Min-max chooses a perturbation direction
heuristically, which might not be optimal. Experiments in [35] show that the perturbation
direction affects the impact of the attack significantly. 2) Min-max uses a simple line
search to find γ such that the malicious update is close to other benign updates while our
attack uses Dykstra’s algorithm [8] to project onto the intersection of several Euclidean
balls. Moreover, the attacker needs to select a perturbation direction for Min-max/Min-
sum attack in advance. In contrast, our attack can be considered as a generic framework
and used against any defense algorithms without the need to tune the adversarial direction.

29

Table 7.3: The testing accuracy of various server aggregation algorithms under three attack
settings for three datasets. The values in bold are the attack impact. All values are in
percentages.

(a) MNIST

No attack Min-max Min-sum Our attack
Krum 76.5 61.9 (14.6) 71.0 (5.5) 44.5 (32.0)

Multi-krum 94.0 71.1 (22.9) 72.9 (21.1) 66.3 (27.7)
Trimmed-mean 94.6 81.3 (13.3) 89.7 (4.9) 77.0 (17.6)

Median 92.7 81.0 (11.7) 82.7 (10.0) 76.0 (16.7)
DnC 96.9 91.6 (5.3) 92.3 (4.6) 85.2 (11.7)

(b) FEMNIST

No attack Min-max Min-sum Our attack
Krum 76.1 5.1 (71.0) 5.5 (70.6) 4.9 (71.2)

Multi-krum 81.1 63.5 (17.6) 69.0 (12.1) 4.9 (76.2)
Trimmed-mean 81.0 73.3 (7.7) 71.8 (9.2) 5.0 (76.0)

Median 80.1 69.1 (11.0) 73.5 (6.6) 69.2 (10.9)
DnC 82.2 82.0 (0.2) 82.3 (-0.1) 80.2 (2.0)

(c) CIFAR-10

No attack Min-max Min-sum Our attack
Krum 54.5 35.4 (19.1) 45.6 (8.9) 10.0 (44.5)

Multi-krum 66.2 60.9 (5.3) 62.5 (3.7) 40.9 (25.3)
Trimmed-mean 69.8 63.5 (6.3) 63.3 (6.5) 50.0 (19.8)

Median 69.1 59.8 (9.3) 60.3 (8.8) 58.3 (10.8)
DnC 70.5 67.7 (2.8) 67.1 (3.4) 60.1 (10.4)

30

Table 7.4: The impact of our attack in two scenarios: whether the benign updates are
known or not.

(a) MNIST

Known Benign Unknown Benign
Krum 32.0 48.0

Multi-krum 27.7 28.0
Trimmed-mean 17.6 19.9

Median 16.7 16.2
DnC 11.7 8.6

(b) FEMNIST

Known Benign Unknown Benign
Krum 71.2 71.0

Multi-krum 76.2 76.1
Trimmed-mean 76.0 21.5

Median 10.9 9.7
DnC 2.0 1.2

(c) CIFAR-10

Known Benign Unknown Benign
Krum 44.5 44.5

Multi-krum 25.3 16.0
Trimmed-mean 19.8 13.4

Median 10.8 10.0
DnC 10.4 9.7

7.2.2 Unknown Benign Updates

In the case that the benign updates are not available to the attacker, the attacker can
train local models on the compromised clients’ datasets and compute these updates as an
estimation. Table 7.4 shows our attack’s impact when the benign updates are unknown.
In general, the difference between the cases where the benign updates are known and
unknown is little. We note that although we can no longer reduce the testing accuracy
close to random guessing for Trimmed-mean on FEMNIST, we are still able to lower the
accuracy by 21.5%. Interestingly, for MNIST the unknown benign case has an even higher
attack impact for Krum, Multi-krum and Trimmed-mean. We speculate that the reason
is that the adversary can still obtain good estimations of benign model updates since the
attacker has access to sufficient benign datasets (N · q = 20 in this case).

31

(a) FEMNIST

(b) CIFAR10

Figure 7.2: Effect of αC under model poisoning attacks.

7.2.3 Effect of the Non-iid Degrees of Local Datasets

We generate client datasets with different non-iid degrees by varying the parameter αC

of the Dirichlet distribution. Figure 7.2 shows the attack impact of our attack and the
Min-max/Min-sum attack for different αC . We note that the impact of all attacks increases
as αC decreases (more non-iid).1 The reason is that a higher degree of non-iid data leaves
more room for the attacker to manipulate the malicious updates. We also note that the
gap between our attack and Min-max/Min-sum increases as αC decreases, indicating our
attack becomes more effective when the non-iid degree of the local data increases.

1For FEMNIST, our attack reduces the testing accuracy of Multi-krum and Trimmed-mean to random
guessing, resulting in little change to it. The small drop is due to the decrease of the testing accuracy with
no attack.

32

Table 7.5: Global model testing accuracy for defense algorithms under no attack (αC =
1.0).

MNIST FEMNIST CIFAR-10
FedAvg 97.6 83.5 72.3
Krum 76.5 76.1 54.5

Multi-krum 94.0 81.1 66.2
Trimmed-mean 94.6 81.0 69.8

Median 92.7 80.1 69.1
DnC 96.9 82.2 70.5

Our defense 97.4 83.0 71.5

7.3 Evaluation of Our Defense

7.3.1 Comparison with Other Defenses

We evaluate our defense on both fidelity and robustness. For fidelity, we compare the
defenses with FedAvg [24], a standard aggregation algorithm in non-adversarial FL settings.
Table 7.5 shows the global model testing accuracy for multiple defense algorithms when
there is no presence of attackers. As shown in the table, our defense has similar testing
accuracy to FedAvg (< 1% difference). However, existing defenses have a much larger
testing accuracy drop even if there is no attack. For example, Multi-krum has an accuracy
difference of 3.6%, 2.4% and 6.1% for MNIST, FEMNIST and CIFAR-10. For Krum, the
accuracy difference is larger than 15% for MNIST and CIFAR-10. Our defense achieves
a minimal accuracy loss from FedAvg because we leverage a small validation dataset to
remove malicious updates dynamically. In the best case (e.g., non-adversarial setting), our
defense might not remove any update since the domain of U and V contains 0.

For robustness, we first consider the setting where the adversary does not have knowl-
edge about the server’s aggregation algorithm. We evaluate our defense against our new
attack as well as Min-max and Min-sum, which are state-of-the-art Agg-agnostic attacks
proposed by Shejwalkar et al. [35]. Table 7.6 shows the comparison between our defense
and others. We experiment with two choices of αC for FEMNIST and CIFAR-10. Our
defense achieves robustness and has the smallest attack impact among all defenses under
all attacks. Specifically, the highest impact on our defense is caused by our attack, which is
1.4%, 2.1% and 2.3% for MNIST, FEMNIST and CIFAR-10 (αC = 0.5). We note that the
attack impact on the defense becomes larger in general when αC decreases. For αC = 0.5,
our defense achieves a low accuracy loss of 2% while most other defenses suffer more than
10% of accuracy loss. We remark that although DnC also seems robust for FEMNIST

33

Table 7.6: The attack impact of various defenses under our attack and Shejwalkar et al.’s
attacks [35]. The higher attack impact between Min-max and Min-sum is shown. The
number in the brackets is the impact of our adaptive attack tailored to our defense.

(a) MNIST

Shejwalkar et al.’s Our attack
Krum 14.6 32.0

Multi-krum 22.9 27.7
Trim-mean 13.3 17.6
Median 11.7 16.7
DnC 5.3 11.7

Our defense 0.5 1.4 (1.8)

(b) FEMNIST (αC = 1.0)

Shejwalkar et al.’s Our attack
Krum 71.0 71.2

Multi-krum 17.6 76.2
Trim-mean 9.2 76.0
Median 11.0 10.9
DnC 0.2 2.0

Our defense 0.3 0.9 (1.5)

(c) FEMNIST (αC = 0.5)

Shejwalkar et al.’s Our attack
Krum 70.0 71.2

Multi-krum 20.4 77.0
Trim-mean 9.5 76.1
Median 12.1 13.5
DnC 0.2 3.5

Our defense 1.2 2.1 (2.7)

(d) CIFAR-10 (αC = 1.0)

Shejwalkar et al.’s Our attack
Krum 19.1 44.5

Multi-krum 5.3 25.3
Trim-mean 6.5 19.8
Median 9.3 10.8
DnC 3.4 10.4

Our defense 0.5 2.0 (2.5)

(e) CIFAR-10 (αC = 0.5)

Shejwalkar et al.’s Our attack
Krum 23.1 50.4

Multi-krum 5.5 27.0
Trim-mean 8.6 23.0
Median 9.9 11.1
DnC 4.9 11.5

Our defense 1.1 2.3 (2.9)

that the impact of our attack is only 3.5% when αC = 0.5, DnC suffers a more than 10%
accuracy drop under our attack for the other two datasets, indicating the robustness of
DnC might be dataset-dependent.

We then consider the aggregation algorithm is known to the attacker and investigate
the robustness of our defense against our adaptive attack. The accuracy impacts on our
aggregation algorithm are shown in Table 7.6. Due to a more powerful adversary, we
observe that there is a slight increase in the attack impact compared to the previous case.
Nevertheless, the accuracy impact on our defense for three datasets is less than 3%, which
is much smaller than any other defenses for an even weaker adversary (non-adaptive).

34

(a) (b)

(c)

Figure 7.3: Impact of FL parameters on testing accuracy under attacks for MNIST.

7.3.2 Impact of FL Parameters

Impact of malicious fraction q: Figure 7.3a shows the accuracy of our aggregation
algorithm under our attack and the Min-max attack for various values of q. The testing
accuracy for both attacks decreases as the number of malicious clients increases. We observe
that under existing attacks and our new attack, our defense can still achieve > 90% testing
accuracy on the MNIST dataset when 40% of the clients are malicious.

Impact of server dataset size S: Figure 7.3b shows the testing accuracy under attack for
different sizes of the server’s validation dataset. The testing accuracy under both attacks
increases as the server’s validation dataset becomes larger. We observe that when we
increase the server dataset to 500, we achieve a testing accuracy under attack at 97% similar
to FedAvg. Furthermore, we notice that a dataset with 100 data samples is sufficient to
defend against strong model poisoning attacks. Specifically, the testing accuracy increase

35

from the size of 50 to 100 is relatively high (around 3%), while the accuracy does not
increase much when the server dataset size grows beyond 100.

Impact of distribution of server data αS: We investigated the case where the server
validation dataset is non-iid. We use the partitioning strategy stated in Section 7.1. Fig-
ure 7.3c shows the testing accuracy of our defense under our new attack for different αS.
For αS = 1, the server dataset barely contains examples for some classes. In this extreme
case, our defense can still achieve a reasonable high accuracy (93.2%) against a strong
model poisoning attack.

36

Chapter 8

Related Work

In this section, we briefly overview other poisoning attacks and defenses in the literature.

Targeted poisoning attacks

Next to the state-of-the-art untargeted model poisoning attacks introduced in Section 3.2,
we focus on discussing existing targeted poisoning attacks in this section. Bhagoji et al. [6]
present a poisoning attack that changes the prediction labels of a particular sample by
using alternating minimization. Bagdasaryan et al. [3] and Sun et al. [39] demonstrate a
constrain-and-scale attack that inserts a semantic backdoor into the model trained with
FedAvg. Tolpegin et al. [40] studied targeted data poisoning attacks that malicious updates
are computed by training on label-flipped dataset on the compromised clients. Xie et al. [42]
propose a targeted attack that decomposes the global trigger pattern into multiple local
patterns and embeds them into the training set of the malicious clients. Their evaluation
shows that the poisoning updates generated in this way are more effective and stealthy.

Other defenses

Fang et al. [14] remove a fixed number of updates that have a large impact on the global
model. For each update, the defense computes the global models with and without the
update and calculates the error rate difference on a validation dataset. This method is
computationally-expensive and is impractical when the number of participants is large.
FLTrust [10] also assumes the server has access to a clean validation dataset and assigns
a cosine similarity score to each client in each round. Then the server returns a weighted

37

mean of updates based on the score. Since the score is computed by comparing each
update with the ground-truth update from the server, it requires a high-quality server
dataset. Andreina et al. [2] propose a feedback-based algorithm where in each iteration
the server distributes the current aggregated model to a set of clients. Then the selected
clients report a verdict indicating a clean or malicious model based on their local data
and the history of previously accepted models. The decision is made by monitoring the
variations in error rates made by accepted and current models. However, this approach
may not work if the data of a fraction of training clients differ from other validation
clients as in the non-iid scenario. Li et al. [23] use an encoder-decoder model for anomaly
detection. The idea is that after removing noisy features, the embeddings of normal and
malicious model updates can be differentiated in low-dimensional latent space. Updates
that have a reconstruction error larger than a threshold are removed. Munoz et al. [29]
remove a model update if its cosine distance to the aggregated update deviates too much
from the median distance. This approach has been shown that suffers a high false-positive
rate [33]. TESSERACT [34] assigns a flip-score to all participating clients. The score
measures the magnitude of gradients that experience a direction change from the previous
global update. The intuition is that a large number of gradients do not flip their directions
with large magnitudes in a benign setting. Differential Privacy (DP) [13] can be applied to
bound each participant’s influence over the joint model. McMahan et al. [25] first apply DP
to FL by clipping the model updates and adding Gaussian noises. However, Bagdasaryan
et al. [3] show that this approach only mitigates backdoor attacks at the cost of relatively
large model accuracy loss.

There are other defenses involving clustering algorithms that aim to mitigate targeted
and backdoor attacks. Auror [37] uses k-means to determine indicative features by dividing
all clients into two clusters for each parameter of the model. A feature is labelled as
indicative if the distance between the cluster centers exceeds a certain threshold. A client
model that has too many indicative features is rejected by the algorithm. FLAME [30] is a
defense algorithm proposed by Nguyen et al. to mitigate backdoor attacks. FLAME uses
an outlier-based clustering to remove potential adversarial updates combined with weight
clipping and noise-adding to limit the attacker’s impact. FLAME leverages HDBSCAN
clustering algorithm [9] which labels updates as outliers if they do not fit into any cluster.
However, simply relying on HDBSCAN to remove outliers may not work in the non-iid case
since many benign updates might be labelled as outliers and removed by the algorithm.
Deepsight [33] defines Threshold Exceeding based on the homogeneity of the training data
and uses it to label each model update as benign or suspicious. Then it clusters all updates
and removes an entire cluster if more than 1/3 of the updates in the cluster are suspicious.
This approach relies on the assumption that all updates in the same cluster are trained

38

from similar iid training data and, therefore, receive the same label. Furthermore, the
method discards the entire cluster even if only 1/3 of the updates in it are malicious.
Therefore, the attacker may exploit this and make the server remove more benign updates
by carefully distributing the malicious updates to multiple clusters.

39

Chapter 9

Conclusion

In this work, we proposed a new untargeted poisoning attack that can be used to assess
the robustness of FL aggregation algorithms. Our attack does not require knowledge of the
defense algorithm and can be used against any FL system. The evaluation shows that our
attack achieves a much larger attack impact compared to previous attacks. Furthermore,
we presented a clustering-based defense algorithm that leverages a small dataset to remove
malicious updates dynamically. Our defense addresses common weaknesses of existing
Byzantine-robust algorithms and achieves robustness under strong attacks.

40

References

[1] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[2] Sébastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and Ghassan
Karame. Baffle: Backdoor detection via feedback-based federated learning. CoRR,
abs/2011.02167, 2020.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. CoRR, abs/1807.00459, 2018.

[4] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumvent-
ing defenses for distributed learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[5] K.P. Bennett, P.S. Bradley, and A. Demiriz. Constrained k-means clustering. Tech-
nical Report MSR-TR-2000-65, May 2000.

[6] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. An-
alyzing federated learning through an adversarial lens. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
634–643. PMLR, 09–15 Jun 2019.

[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
learning with adversaries: Byzantine tolerant gradient descent. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17,
page 118–128, Red Hook, NY, USA, 2017. Curran Associates Inc.

41

[8] James P. Boyle and Richard L. Dykstra. A method for finding projections onto the
intersection of convex sets in hilbert spaces. 1986.

[9] Ricardo Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based
on hierarchical density estimates. volume 7819, pages 160–172, 04 2013.

[10] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-
robust federated learning via trust bootstrapping. In 28th Annual Network and Dis-
tributed System Security Symposium, NDSS 2021, virtually, February 21-25, 2021.
The Internet Society, 2021.

[11] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco:
Byzantine-resilient distributed training via redundant gradients, 2018.

[12] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist:
Extending mnist to handwritten letters. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 2921–2926, 2017.

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography, pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[14] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning. USENIX Association,
USA, 2020.

[15] Filip Granqvist, Matt Seigel, Rogier van Dalen, Áine Cahill, Stephen Shum, and
Matthias Paulik. Improving on-device speaker verification using federated learning
with privacy. arXiv preprint arXiv:2008.02651, 2020.

[16] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. CoRR, abs/1811.03604, 2018.

[17] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-
identical data distribution for federated visual classification. CoRR, abs/1909.06335,
2019.

[18] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning. CoRR, abs/1804.00308, 2018.

42

[19] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for im-
proving communication efficiency. CoRR, abs/1610.05492, 2016.

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[23] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect
malicious clients for robust federated learning. CoRR, abs/2002.00211, 2020.

[24] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In AISTATS, 2017.

[25] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differ-
entially private recurrent language models. In International Conference on Learning
Representations, 2018.

[26] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The Hidden Vulner-
ability of Distributed Learning in Byzantium. In Proceedings of the 35th International
Conference on Machine Learning, pages 3518–3527. PMLR, 2018.

[27] Thomas P. Minka. Estimating a dirichlet distribution. Technical report, 2000.

[28] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Won-
grassamee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algo-
rithms with back-gradient optimization. CoRR, abs/1708.08689, 2017.

[29] Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. Byzantine-robust federated
machine learning through adaptive model averaging, 2019.

[30] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. Flame:
Taming backdoors in federated learning, 2021.

43

[31] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering, Hossein Ferei-
dooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza Sadeghi,
T. Schneider, and Shaza Zeitouni. Flguard: Secure and private federated learning.
IACR Cryptol. ePrint Arch., 2021:25, 2021.

[32] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated
optimization. In International Conference on Learning Representations, 2021.

[33] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
Deepsight: Mitigating backdoor attacks in federated learning through deep model
inspection. CoRR, abs/2201.00763, 2022.

[34] Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Somali Chaterji, and Saurabh
Bagchi. Tesseract: Gradient flip score to secure federated learning against model
poisoning attacks, 2021.

[35] Virat Shejwalkar and A. Houmansadr. Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In NDSS, 2021.

[36] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. Back to
the drawing board: A critical evaluation of poisoning attacks on federated learning.
CoRR, abs/2108.10241, 2021.

[37] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against poisoning
attacks in collaborative deep learning systems. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC ’16, page 508–519, New York,
NY, USA, 2016. Association for Computing Machinery.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv 1409.1556, 09 2014.

[39] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan. Can
you really backdoor federated learning?, 2019.

[40] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data Poisoning
Attacks Against Federated Learning Systems. arXiv e-prints, page arXiv:2007.08432,
July 2020.

[41] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor
attacks. CoRR, abs/1811.00636, 2018.

44

[42] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks
against federated learning. In International Conference on Learning Representations,
2020.

[43] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant
sgd, 2018.

[44] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong,
Daniel Ramage, and Françoise Beaufays. Applied federated learning: Improving
google keyboard query suggestions, 2018.

[45] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 5650–5659.
PMLR, 10–15 Jul 2018.

[46] Mikhail Yurochkin, Mayank Agarwal, Soumya Shubhra Ghosh, Kristjan H. Gree-
newald, Trong Nghia Hoang, and Yasaman Khazaeni. Bayesian nonparametric feder-
ated learning of neural networks. In ICML, 2019.

45

	List of Figures
	List of Tables
	Introduction
	Background
	Deep Neural Networks (DNNs)
	Federated Learning (FL)

	State-of-the-art Attacks and Defenses in FL
	Robust Aggregation Algorithms
	Poisoning Attacks
	Model Poisoning Attacks
	Data Poisoning Attacks

	Attack and Defense Model
	Attack Model
	Defense Model

	Our Attack
	Model Poisoning Attack Formulation
	Solving the Optimization

	Our Defense
	Success of Existing Attacks
	Weakness of Existing Defenses
	Our Design
	Adaptive Attacks

	Evaluations
	Experimental Setup
	Datasets
	FL Parameters and Settings
	Benchmark Attacks and Defenses
	Evaluation Metrics

	Evaluation of Our Attack
	Comparison with Other Attacks
	Unknown Benign Updates
	Effect of the Non-iid Degrees of Local Datasets

	Evaluation of Our Defense
	Comparison with Other Defenses
	Impact of FL Parameters

	Related Work
	Conclusion
	References

