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Abstract

Analyzing digital pathology images is required for diagnostic conclusions by investi-
gating tissue patterns and morphology. However, because of the large size of the whole
slide images, manual evaluation can be time-consuming, expensive, and prone to inter- and
intra-observer variability. Therefore, automated tissue structure detection and segmenta-
tion approaches have lately been intensively investigated in the field of digital pathology.

Generating a pixel level object annotation for histopathology images is expensive, time-
consuming, and hard to achieve. In addition, in many applications precise object boundary
is not needed. As a result, defection models with bounding box labels may be a smart
solution. In this thesis, different techniques on tissue pattern detection, and segmentation
in whole slide images have been explored. Specifically, YOLO-v4 (You-Only-Look-Once),
a real-time object detector for microscopic images has been studied. YOLO uses a single
neural network to predict several bounding boxes and class probabilities for the objects
of interest. YOLO enhances detection performance by training on whole slide images.
YOLO-v4 has been used in this thesis for two different applications to find specific tissue
patterns in whole slide images. Comparisons with the segmentation techniques on the same
dataset have been conducted as well.

The first application of tissue pattern recognition in this thesis is quality control of whole
slide images. That includes detecting air bubble edges, tissue folds, which happens during
glass slide preparation, and the presence of ink-markers on tissue glass slides, manually
drawn by pathologists to highlight regions of interest on glass slides. In order to avoid
rejecting a whole slide due to presence of artifacts and ink-markers, there are various
approaches for detecting and eventually removing these artifacts. However traditional
approaches to remove artifacts are mostly based on thresholding techniques combined with
some mathematical morphology operations. In this thesis, YOLO-v4 has been employed
for this purpose. The experiments showed 99.5% IOU calculation (intersection over union,
also called Jaccard Index) for locating artifacts.

The second application of tissue pattern recognition in this thesis is glomeruli detection
in kidney images. Glomeruli are groups of capillaries that help the body filter waste and
extra fluids. In this application, YOLO-v4 has been trained to detect these patterns in
kidney images. Multiple experiments have been designed and conducted based on different
training data of two public datasets and also a private dataset from University of Michigan
for fine-tuning the model, and tested on the private dataset from University of Michigan as
an external validation on two different stained tissues, namely periodic acid–Schiff (PAS),
and hematoxylin and eosin (H&E) stains. The results and the average specificity and
sensitivity for all experiments along with the comparison of existing segmentation methods
on the same datasets have been discussed in the result section.
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Chapter 1

Introduction

For investigations of tissue morphology and, as a result, for making diagnostic conclu-
sions, computational pathology approaches are fast and reliable compare to conventional
microscopy-based workflows. On the other hand, any manual evaluation of tissue samples
can be time-consuming, costly, and subject to both inter- and intra-observer variability
because of the size and the complexity of the whole slide images (WSIs) [168]. Conse-
quently, digital pathology researchers have recently focused their attention on automated
ways to detect and segment tissue structures. Many quantitative studies, such as deter-
mining tissue types, rely on the accuracy of these tissue pattern segmentation, which is
regarded as the foundation of automated image analysis. However, due to the complex
tissue architectures in which tissue structures are frequently clustered into types, glands
and organelles overlapping with each other, establishing precise segmentation is not a sim-
ple operation. This makes distinguishing these patterns from the background and mainly
from each other a challenge. In addition, histopathological images typically contain noise
and artifacts created during image acquisition and low contrast between foreground and
background [168].

Segmentation models have been widely used in digital pathology to segment lesions,
cells, and other regions of interest [71]. However, these models need pixel-level object
annotations by the expert. Detailed labels (pixel-level) for histopathology images are
expensive, time-consuming, and hard to achieve [81]. Moreover, in some of the applications
in histopathology, only detecting the position of the specific tissue pattern without precisely
outlining the borders may be required [168]. These techniques are called tissue pattern
detection, and are usually faster compare to segmentation methods. The main advantage
of detection models is that they construct a bounding box around the tissue of interest
rather than pixel-level labelling, making its training much more convenient.

In this thesis, different techniques for detection and segmentation in digital pathology
and the applications for each of these methods, accuracy, and performance on various
datasets have been summarized.

Deep object detectors typically consist of two parts: a backbone trained on ImageNet
and a head used to forecast object classes and bounding boxes. One-stage object detectors
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and two-stage object detectors are the most common head types [18]. Regions with con-
volutional neural networks (R-CNN) [50] series, is a good example of a two-stage object
detection category, and YOLO (you-only-look-once) is one of the examples for one-stage
object detectors [18] which has been studied and explored on two different applications for
detecting specific tissue patterns in this thesis.

YOLO is a simple concept with several advantages. To begin with, YOLO is very
fast as it does not require a complicated pipeline for a regression problem. Furthermore,
the mean average accuracy of YOLO is higher than that of comparable real-time systems.
Therefore, the network can be considered as a real-time object detector. Second, with
YOLO, context information about object classes is encoded as well as their appearance
during training and testing, unlike sliding window and region proposal-based approaches
[126]. A popular object recognition approach, Fast R-CNN [49], misidentifies background
patches in an image as objects. In comparison to Fast R-CNN, YOLO creates half the
number of background errors [126]. And third, YOLO learns to represent objects in a
universally applicable way. YOLO surpasses the best detection algorithms like deformable
parts models (DPM) and R-CNN when trained on natural images and evaluated on art.
YOLO is less likely to fail when applied to new domains or unexpected inputs because of
its high degree of generalizability [126].

In this thesis, YOLO-v4 has been employed in two different applications to find par-
ticular tissue patterns in WSIs. Comparisons on the same datasets, with segmentation
approaches, will be performed.

1.1 Applications

1.1.1 Quality Control of Whole Slide Images

Computational pathology applies computer vision algorithms on WSIs. The digitization of
tissue glass slides marks a significant change in the clinical diagnostic workflow [74]. One
of the challenges in digital pathology is the presence of artifacts such as tissue fold, air
bubbles, and ink-markers on archived cases. These artifacts may affect the focus points in
digital scanners, and their presence may negatively affect the quality of the quality of tissue
image and the subsequent diagnosis [74]. Manual review of WSIs requires experts, which is
a laborious and time-consuming task. Traditional object detection systems often start by
extracting features from input images using methods such as Haar tranform [114], scale-
invariant feature transform (SIFT) [93], and histogram of oriented gradients (HOG) [35].
They often employ handcrafted morphology-based features. These approaches mostly fail
to generalize and may not be precise enough for given applications. For example, HistoQC
[74], a tool for WSI (whole slide image) acquisition quality control, can detect artifacts
and output outliers using thresholding techniques mixed with mathematical morphological
procedures. However, it may fail to deliver an accurate solution in many cases.

As the first application using detection models in this thesis, the YOLO-v4 model has
been trained on 92 WSIs for training to detect air bubble edges, tissue folds, which can

2



happen during slide preparation, and ink-marked tissue glass slides, drawn by pathologists
to highlight regions of interest on glass slides [74]. Based on the results that have been
achieved on a dataset consisting of 15 WSIs, the method is not only fast but also highly
accurate. The experiments showed 99.5% IOU (intersection over union, also called Jaccard
Index) for locating artifacts. Figure 1.1 shows sample cases for tissue fold, air bubbles,
and ink-markers on tissue in the training dataset.

Figure 1.1: Sample images in the dataset containing ink-markers, air bubbles, and tissue
fold, along with the annotated bounding boxes.

1.1.2 Glomeruli Detection in Kidney Images

The histological evaluation of glomeruli is critical for identifying whether a kidney is trans-
plantable [100]. The Karpinski score, which includes the ratio of sclerotic glomeruli to
total glomeruli in a kidney segment, is critical for determining the necessity for a single
or dual kidney transplant [5]. Immunopathology, clinical symptoms, etymology, and mor-
phological abnormalities are all factors that go into classifying glomeruli disorders. To
classify the glomeruli diseases, these anatomic structures need to be detected. Automated
glomeruli identification frameworks for kidney biopsies conducted by pathologists can be
quite helpful because manual examination of kidney samples is time-consuming and error-
prone [5, 100]. It is crucial to identify glomeruli in the kidney, such that based on the
features of this glomerulosclerosis, different diseases could be determined.

There are several segmentation methods to detect glomeruli in kidney images [21].
However, these methods require pixel-level annotation of the images. Labelling histopatho-
logical images at the pixel level is difficult, costly, and time-consuming [147]. In detection
methods, only determining the location of a given tissue pattern, a glomerulus, is required
without the need to precisely delineating its borders.

In the field of histopathology, the lack of image data, annotation, and labels has always
been a problem [147]. Hence, it is very important to validate deep networks on their
generalization capability. By training a network with public datasets, and then fine-tuning
it with only limited number of data from the specific hospital or specific resource, we may
be able to significantly improve the accuracy of the network on the validation set from the
same resource.

In the second application, YOLO-v4 as a detection network has been trained to recog-
nize all glumeruli in a given kidney image. Multiple experiments were designed and carried

3



out based on different training data from two public datasets to fine-tuning the model, and
tested on the private dataset from the University of Michigan as an external validation on
two differently stained tissues, namely periodic acid–Schiff (PAS) staining and hematoxylin
and eosin (H&E) staining.

The first dataset is a collection of 31 SVS WSIs made available to the public. The
annotation of the bounding boxes of these 31 WSIs has been performed by collaborating
pathologists. This data is part of the WSI datasets generated in the European project
AIDPATH 1. The second dataset, has been used for HubMap competition 2. TIFF files
ranging in size from 500MB to 5GB make up the dataset containing 8 WSIs for the training,
and 5 WSIS for testing. The segmentation annotation was provided for each of the WSIs
in this competition. The generalization of the network has been tested by training on
these two public datasets, followed by the external validation on the private dataset from
University of Michigan. Another dataset that has been used for training and fine-tuning
the models, is 7 PAS stained WSIs which is not a public dataset and has been collected
from the University of Michigan annotated by expert pathologists. In Figure 1.2 three
samples of the training dataset for the network has been shown. On the left, there is a
sample from the first public dataset, the middle image is a sample from the second public
dataset, and on the right there is an example of the private dataset from University of
Michigan.

Figure 1.2: Three samples of the training dataset. On the left, there is a sample from the
first public dataset, the middle is a sample from the second public dataset, and on the

right there is an example from the private dataset from University of Michigan.

Three datasets, two public and one private, have been used to design and conduct
14 experiments. These experiments, have been trained on different combinations of the
available datasets combing public datasets, and the private dataset, and all experiments
have been validated on the private dataset from the University of Michigan with two
staining, 20 PAS stained WSIs and 16 H&E stained WSIs. YOLO was serving as the
detector network which will be described in details in the following sections.

In Figure 1.3, two samples of the private validation dataset along with the annotated
bounding boxes have been shown. On the top is a sample tissue of H&E stained WSI,

1http://aidpath.eu/
2https://www.kaggle.com/c/hubmap-kidney-segmentation/overview

4



and on the bottom is a sample tissue of PAS stained WSI. The results, average specificity
and sensitivity for all experiments, and comparison of existing segmentation methods on
the same datasets have been discussed in the result section. In general, one could observe
that the average specificity and sensitivity are higher on the PAS validation set because
all of the images in the training dataset are PAS stained. Also, there is an improvement
in average specificity and sensitivity while fine-tuning the network with only 7 PAS WSIs
from the University of Michigan.

Figure 1.3: Two samples of the private validation dataset along with the annotated
bounding boxes. On the top is a WSI with H&E-stained tissue, and the bottom shows a

WSI with PAS-stained tissue.

1.2 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 provides background
information on different techniques for detection and segmentation in digital pathology
and related research papers, along with the comparison between these different methods;
Next, this chapter reviews the YOLO architecture network. After that, two different
applications for detecting specific tissue patterns will be reviewed. The method, datasets
attributes, and various designed experiments for the two different applications have been
discussed in Chapter 3. Chapter 4 covers the results obtained for the experiments based
on different performance metrics. Finally, the summary, conclusions and future directions
are stated in Chapter 5.
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Chapter 2

Literature Review

Digital pathology can help disease diagnoses by providing WSIs for image analysis to as-
sis the diagnostic process [168]. Traditional microscopic diagnosis requires pathologists to
physically examine glass slides under the microscope, a labor-intensive process that does
not provide a digital workflow for assigning and sharing cases [12]. Machine learning ad-
vances have shown considerable potential in lowering pathologists’ workload and assisting
with diagnosis and treatment planning. Since pathologists mostly write the diagnostic re-
port based on tissue morphology, tissue pattern identification and segmentation are crucial
tasks in representing morphological information [57]. For example, the quality and accu-
racy of nuclei segmentation may be a key quantification in cancer diagnosis and grading
[61, 57, 168]. In addition, for image classification tasks, one may extract features from a
histology image based on the number of cells or other histology patterns [105, 168]. As a
result, it is important to correctly detect and segment tissue patterns in pathology images.

In the literature, there are various reviews on automated pathology image analysis,
generally called computational pathology [168]. Madabhushi and Lee [98] highlighted the
advancement of computational image analysis approaches utilized in digital pathology for
detection, segmentation, feature extraction, and tissue classification. Hamilton et al. [58]
examined several image analysis applications, such as nuclear morphometry and tissue
architecture analysis. Fuchs and Buhmann [43] defined a workflow of digital pathology
as three main steps: data and ground-truth generation; image analysis including object
detection, segmentation, and recognition; and medical statistics. Xing and Yang [168]
reviewed automated nucleus/cell identification and segmentation algorithms using digital
pathology and microscopy images.

In this section, the main categories of object detection and segmentation methods in
digital pathology will be discussed based on [168], as well as the advantages, problems, and
limitations of these methods. In general, segmentation refers to methods for identifying
objects with specified boundaries, primarily at the pixel level, which can be useful for
specifying characteristics or even grading illnesses in histopathological images. Detection
approaches, on the other hand, are seen as acquiring the object position without precisely
outlining its boundaries. Detailed (pixel-level) labeling for histopathological images is
costly, time-consuming, and difficult. As detection does not need the object boundaries,
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detection methods are easier to train compared to segmentation methods.

2.1 Segmentation Methods in Digital Pathology

Segmentation refers to the methods that identify the objects with specific boundaries
mainly in pixel level, which can be helpful for critical tasks such as grading diseases in
histopathology images [168]. Veta et al. [157] categorized the cell/nuclei segmentation
methods into two main categories: 1) some of these methods are designed to detect each
nuclei before performing any segmentation technique, and 2) some other segmentation
methods first segment parts/chunks of nuclei groups from the rest of the tissue, and then
separate those into individual nuclei. Some of the conventional methods like Hough Trans-
form [31], and center identifying methods to pinpoint the center of the nuclei with voting
along the image gradient [120, 158], have been used in both mentioned different approaches
for nuclei segmentation. Although there is a large number of different segmentation meth-
ods, they are mostly based on a few underlying algorithms [168]: intensity thresholding,
morphology operation, watershed transform, deformable models, clustering, graph-based
methods, and supervised classification. This discussion covers the most common nuclei/cell
segmentation that have been commonly mentioned in the literature.

2.1.1 Image Thresholding

Thresholding methods could be the first and most straightforward method for tissue seg-
mentation. Because of the difference between the intensity of cells and the background,
there is a threshold that could separate the image into two segments [53]. This thresh-
old could be a global threshold, or it could be a locally adaptive threshold. The global
techniques determine the threshold based on the histogram of the entire image, whereas
the local approach considers the neighbourhood attributes to derive an adaptive threshold
value. To prevent losing important information during binarization, thresholding necessi-
tates high image contrast. This makes thresholding-based approaches more efficient when
used for clear region segmentation rather than delicate object extraction such as cell nucleus
extraction [168].

The Otsu approach [112] is a classical approach to finding an optimal threshold by
maximizing the variance between the statistical features of the image intensity histogram.
Otsu thresholding has been utilized by many researchers to segment nuclei in histopathol-
ogy images [86, 171, 163] . Before identifying cells, Suryani et al. [148] employed multi
Otsu thresholding to detect blast cell nuclei in Acute Myeloid Leukemia (AML) images.
Using several threshold settings, multi Otsu thresholding separates the image into severeal
segments. In contrast to single Otsu thresholding, multi Otsu thresholding allows users to
tailor the threshold value to the brightness level of each image. Multiple other applications
use global thresholding, or local thresholding, which requires additional steps for managing
pixel neighbourhoods [25, 80, 111, 82].
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2.1.2 Mathematical Morphology Operations

Mathematical morphology uses the object shape to perform a variety of operations [138, 72].
Some segmentation methods use mathematical morphology theory to extract items with
a preset form, such as a circular disk, square, or cross [145]. Such operations are sepa-
rated into two main steps: topdown erosion and bottom-up dilation. Basic morphological
processes such as erosion, dilation, opening, and closing are employed to produce further
operations [168]. Erosion and dilation, for example, can be used to enlarge the borders of
foreground pixels. Also, morphology operation can be used as a step in image preprocessing
to enhance the image segmentation result [37, 72].

2.1.3 Watershed Transform

The wateshed method is one of the region accumulation segmentation methods [165]. It
works by adding connected points, called catchment basin to the first selected base points
(markers) in the image, until it forms various labelled regions [106]. It has been used for
many previous nuclei/cell segmentation tasks [75, 1, 26, 109, 152, 8, 30]. The algorithm
comes from the field of mathematical morphology, which is concerned with the topological
representation of images [160, 134]. The regional minimum relates to the collection of pixels
having the lowest regional elevation. The intensity minima are groups of connected pixels
with grey levels that are strictly lower than their local neighbours. The watershed transform
has several advantages, including its speed, straightforward, and intuitive implementation.
However, it has drawbacks such as over-segmentation and noise sensitivity [55]. When the
foreground and background can be clearly distinguished, segmentation-based watershed
modification is efficient. Otherwise, due to the intensity differences in the foreground and
background, it is prone to over-segmentation. Watershed is difficult to utilize to segment
nuclei from the cluttered surroundings of histopathology pictures due to over-segmentation.
There are some approaches to overcome this problem; for example, some researchers have
used watershed in conjunction with deep neural networks [83, 40, 167, 108].

2.1.4 Active Contour Models (ACMs)

ACMs or deformable models, use gradient information to describe the contour of objects
in an image by minimizing an energy function [36]. These models offer a good balance
of efficiency and flexibility [36]. Geodesic and parametric snakes are the two primary
implementations of deformable models for nucleus or cell segmentation, using implicit
and explicit contour representations, respectively. They have been used in many existing
nuclei/cell segmentation techniques [20, 32, 169]. Deformable models have suffered from
convergence challenges when non-linearities and noise inhibit boundary recognition [168].
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2.1.5 Clustering

Clustering is another technique used for nucleus and cell segmentation in microscopy im-
ages. It aims to partition an image into a number of disjoint groups (or clusters) by
increasing inter-cluster similarity so that objects within the same cluster are more similar
to each other than objects from different clusters [60]. There are several similarity (or
dissimilarity) measures that may be used to allocate items to clusters. The most common
unit of measurement is the Euclidean distance [168]. Clustering may not create the final
segmented objects in nucleus/cell segmentation. Instead, it is mostly utilized to assist
with object boundary extraction. Cluster centers, on the other hand, maybe utilized to
identify and localize cell nuclei because each cluster represents one cell. Using the k-means
technique [77], which is a fundamental iterative clustering algorithm, one can divide an
image into k groups by associating each data point with the mean of the adjacent cluster.
K-means has been utilized as a part of a variety of strategies for nucleus/cell segmenta-
tion that have been proposed in the literature. For example, Bhattacharjee et al. [16]
presented a color segmentation approach based on a mix of k-means clustering and the
watershed algorithm to differentiate contacting cell nuclei in histopathology images using
a color segmentation method. According to [10], a similar method was used to separate
nuclei from breast histopathology images before categorizing them into benign and malig-
nant categories. In [56] the authors conducted nuclei detection by employing mathematical
morphology and k-means clustering. Qu et al. [122] developed a unique technique based
on k-means and the Voronoi diagram to solve the problem of insufficient nucleus annota-
tion during the training phase of a neural network. The Fuzzy c-means (FCM) clustering
method is another technique for segmentation that has been used in many previous re-
search works [28, 85, 41, 151, 161]. Unlike hard clustering), which assigns each item to
only one cluster, FCM is a soft clustering technique that enables an object to be linked
with more than one cluster. FCM quantifies the strength of the relationship by measuring
the membership degree of the association. When compared to the k-means method, FCM
may provide an improved representation for objects that cannot be entirely allocated to a
single cluster. As a consequence, soft clustering may be more resilient to ambiguity.

2.1.6 Convolutional Neural Networks (CNNs)

CNNs have been recently proposed for a variety of applications, including the identifica-
tion and segmentation of nuclei/cells [154]. Compared to thresholding and other conven-
tional approaches, deep CNNs are generally more successful. Nevertheless, their success is
strongly dependent on the quantity and quality of the training data [168]. Deep learning
approaches are capable of automatically recognizing, segmenting, and categorizing nu-
cleus/cells for a variety of applications by learning characteristics in the input images. For
segmenting nuclei, many works adopted the most prevalent neural network method, namely
a CNN, for handling two-dimensional input [11, 38, 121, 119, 47]. U-Net [135] is a CNN
which was proposed in 2015 for the first time. It has shown remarkable results in various
segmentation challenges [23, 109]. U-Net has a U-shape architecture, which contains two
symmetric components, called encoder and decoder [135, 124]. A CNN-like sub-network
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called the encoder collects high-level information from the input image before sending it
to the main network. There is a segmentation map created by the decoder sub-network
(sometimes referred to as the expansion part). The U-Net architecture has been illustrated
in Figure 2.1.

Figure 2.1: U-Net architecture. It has a U-shape architecture, containing two symmetric
components, called encoder, and decoder. This image has been taken from [135].

2.2 Detection Methods in Digital Pathology

Detection approaches determine the object’s position without defining its exact boundaries.
There are generally markers or seeds found at the object centroids, one for each nucleus or
cell. This section will cover nucleus/cell detection methods as getting the position of the
item without precisely outlining its borders. An object’s marker might be a single point
or a limited area within the item. Clearly, marker identification can assist in the counting,
tracking, and segmentation of nuclei and cells. Different types of histopathology images
have a wide range of image characteristics that necessitate the use of different algorithms for
nucleus/cell detection. However, the cell/nucleus detection methods can be categorized into
conventional and learning-based approaches [168]. In conventional methods these groups
will be discussed: distance transform, morphology operation, HIT/HAT, LoG filtering,
MSER detection, HT, radial symmetry-based voting. In the learning-based detection,
single and multi-stage deep neural networks in the literature will be reviewed.

10



2.2.1 Conventional Detection Algorithms in Digital Pathology

Distance Transform (DT)

DT approaches compute the exact Euclidean distance transform for each binary pixel and
feature points to assign these pixels to the nearest feature point [104]. The edge pix-
els/voxels in a binary image are often used as feature points in nucleus/cell identification,
whereas the Euclidean distance is used as the metric. Therefore, it is desirable that the
local maxima in the created distance map match to the nuclei or cells’ centroids. Over-
segmentation may be avoided by using euclidean distance transform (EDT) in conjunction
with watershed segmentation since the inverse distance map removes many unwanted local
minima that would otherwise lead to a major oversegmentation problem [168]. Although
this approach cannot detect overlapping cells, many applications are using this method for
histopathological images [3, 170, 2, 59].

Mathematical Morphology

Morphological operations can provide filtering techniques for processing images using a
certain structuring element, SE. Circular disk, square, cross, or other shapes can be to
design suitable SEs. [145]. An object’s geometrical and topological structure is examined
to conduct image filtering. It is possible to perform fundamental morphological operations
such as border extraction and filling holes using shift-invariant operators such as dilation,
opening, and closing [145]. There are several ways to apply the binary mathematical
morphology to grayscale images [165, 54]. These fundamental gray-level operators may
be used to create certain often used image enhancement operators, such as top-hat and
bottom-hat transformations, which make it easier to recover tiny objects from images
[168, 145, 165]. In the field of marker identification, Ultimate Erosion (UE) is a well-
known mathematical morphological procedure. Each linked component is subjected to a
succession of erosion operators until the component is totally removed by a final erosion
[39]. In this manner, items that come into contact with each other can be separated. It is
possible that many markers will be produced for each item when using UE in noisy images.
According to Park et al. [115], noise-resistant measurements of convexity may be used as a
stopping condition for erosion in an enhanced UE operation. Starting with a binary image,
it executes an erosion with a one-pixel-radius disk structure element for each non-convex
linked component until the component is convex.

HIT/HAT Algorithms

HIT (H-minima transform) and HAT (H-maxima transform) algorithms are based on mor-
phology operations for detecting cells in histopathological images [118, 123, 101, 162]; LoG
(Laplacian of Gaussian) filtering can be very useful for identifying small blob objects,
which usually correspond to the central regions of nuclei or cells in microscopy images
[24, 91, 117];
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Maximally Stable Extremal Regions (MSER)

The MSER detector can also be utilized for object detection [103]. An increasing intensity
threshold is applied to the gray-level image. The result is a series of nesting extremal areas
based on the intensity landscape level sets, with one region being deemed stable based on
a local intensity minimum criteria. The MSER-based blob object identification technique
typically consists of two fundamental phases in microscopy image analysis: Create a signif-
icant number of extremal areas, and then identify the ones that match to genuine nuclei or
cells [168]. MSER nuclei detection in Pap smear microscopy images has been reported by
using the eccentricity to assess and filter out those blobs that are less circular than actual
nuclei [95]. Lu et al. [96], used the same approach to remove the undesirable extremal
areas by combining the blob appearance information with the shape attributes.

Hough Transform (HT)

Because nuclei in pathological images frequently have circular or elliptical forms, the HT-
based technique has been applied in a variety of applications [76, 116]; Radial-Symmetry-
Based Voting [129, 130] is being used to detect the centroids of nuclei or cells in various
applications [94, 156, 110];

2.2.2 Learning-based Detection Algorithms

This group of algorithms has been very useful in the field of pathology in dealing with
histopathological images. As a machine learning approach, supervised learning attempts to
infer a mapping function or model from training data. The identification of nuclei and cells
is commonly presented as a classification issue at the pixel/voxel or superpixel/supervoxel
level [168]. A specialized model is trained to convert fresh data instances into discrete labels
[17]. It is possible to build a variety of classifiers that use different feature representations.
This thesis will concentrate on deep neural networks (DNNs).

Deep Neural Networks (DNNs)

In recent years, neural nets have risen to the top of the rankings when it comes to high-
quality object detection. Highlights of this literature are discussed in this section. Modern
convolutional network detection had its start with the R-CNN article [50]. The R-CNN
method was inspired by recent results in image classification [84] by taking the simple ap-
proach of cropping externally generated box suggestions from an input image and running
a neural net classifier on these crops. Costs may rise due to the high number of crops
required and the resulting duplication of calculations from overlapping crops. Cropping
from an intermediate layer, Fast R-CNN [49] reduced the computational burden of feature
extraction by running the entire image through a feature extractor only once [69]. Recent
detectors are often made up of two parts: a backbone that has been pre-trained on Im-
ageNet and a head used to forecast object classes and bounding boxes [18]. When using
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GPU-based detectors, the backbone could be a commonly used model such as VGG [143],
ResNet [63], ResNeXt [166], or DenseNet [68]. Also for CPU-based detectors, the backbone
could be SqueezeNet [70], MobileNet [67, 137, 66, 150], or ShuffleNet [173, 97]. Head types
can be categorized in two groups: One-stage object detectors like YOLO [126, 127, 128],
Single Shot Detector (SSD) [92], and RetinaNet [90]; and two-stage object detectors like
R-CNN [50] series, including fast R-CNN [49], faster R-CNN [131], R-FCN [34], and Libra
R-CNN [113].

Faster R-CNN

Detection occurs in two steps when using Faster R-CNN [131]. Predictions of class-agnostic
box proposals are made using features extracted at intermediate levels (e.g., “conv5”) in the
first step, known as the region proposal network (RPN). For each of these (usually 300) box
suggestions, the feature extractor (e.g. “fc6” followed by “fc7”) predicts a class and a class-
specific box refinement, which are then fed into the feature extractor in the second step.
The feature extractor is not used based on cropped image parts. The computation must
be repeated for each region, therefore, the total duration depends on how many regions
the RPN proposes. Faster R-CNN has had a significant impact in many applications since
its release in 2015 [14, 140, 141, 172, 62].

R-FCN

While Faster R-CNN is several orders of magnitude faster than Fast R-CNN, Dai et al.
[34] proposed the R-FCN (Region-based Fully Convolutional Networks). It is similar to
Faster R-CNN but crops features from the last layer of features prior to prediction rather
than cropping features from the layer where region proposals are predicted. For example,
this method of reducing per-region calculation by shifting cropping to final layer reduces
computing time. A position-sensitive cropping method is proposed instead of the more
usual ROI pooling procedures in [49, 131] or the differentiable crop technique in [33] because
Dai et al. claim that the object identification task requires localization representations that
respect translation variance. Faster R-CNN can typically match the accuracy of the R-FCN
model while operating at a lower cost thanks to the model’s use of ResNet 101. R-FCN
was recently used to segment instances in the latest TA-FCN model [89], which won the
2016 COCO instance segmentation competition. In Figure 2.2 the high-level chart of these
three discussed object detection meta-architectures has been shown.

Single Shot Detector (SSD)

SSD [92] refers to designs that employ a single feed-forward convolutional network to
predict classes and anchor offsets directly, without the need for a second stage classification
operation per proposal. This method has been used in many applications [139, 126, 127].
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Figure 2.2: High-level chart of the three discussed object detection meta-architectures.
This image has been taken from [69].

YOLO

YOLO is another single feed-forward convolutional network. Humans can tell instanta-
neously what objects are in an image, where they are, and how they interact with one
other just glancing at the image. We are able to do difficult activities like driving because
of the human visual system’s speed and accuracy. In order to enable computers to drive
automobiles without specialized sensors, assistive devices can provide real-time scene recog-
nition to human users, and general-purpose responsive robotic systems can be unlocked
with fast and precise object detection algorithms [126]. Detection technologies nowadays
reuse classifiers to recognize certain shapes. In order to detect an object, these systems use
a classifier for that object to analyze the picture at multiple sizes and locations. Sliding
window systems like deformable parts models (DPMs) employ a classifier run at regularly
spaced regions over the whole image [42].

Region proposal techniques like R-CNN generate possible bounding boxes in an image
and then run a classifier on these suggested boxes. In post-processing, the bounding boxes
are refined, duplicate detections are eliminated, and the boxes’ scores are recalculated
depending on other objects in the scene [51]. Because each component must be learned
individually, these detection pipelines are slow and difficult to optimize. YOLO, using a
single convolutional network, may predict several bounding boxes and class probabilities
at the same time. YOLO is trained on entire images and directly improves the detection
performance. Compared to more traditional approaches, this unified model provides some
advantages in object detection. In this study, YOLO has been studied on two different
applications: WSI Quality control, and glomeruli detection in kidney images.

2.3 WSI Quality Control

Using a microscope, a trained pathologist may examine tissue samples and make a diag-
nosis of a wide range of diseases. The majority of malignancies are diagnosed through
a biopsy [146]. The biopsy technique begins with the removal of a tiny portion of the
questionable tissue. A microscopic portion of tissue is mounted on a glass slide following
tissue preparation, which may include drying, embedding in paraffin, cutting, staining and
other preparation steps [144]. Artifacts, such as tissue folding, air bubbles, and tearing
can be introduced into the tissue preparation process at any point [74]. Under the light

14



microscope, pathologists can examine the glass slide in order to generate a diagnostic re-
port. Computed-Assisted Diagnosis (CAD) can boost accuracy and produce more accurate
findings by reducing pathologists’ workload, which in turn reduces observation mistakes.
This examination may be time-consuming as well as error-prone due to human factors [74].

Artifacts, such as folded tissue, may have a detrimental impact on the diagnosis re-
gardless of whether we employ digitization or microscopy. Tissue folds can arise during
the processing of the tissue while cutting tiny block slices [9]. There are two examples
of folded tissue depicted in the Figure 2.3. Other aberrations, such as blur, might affect
computerized algorithms when they are implemented using digital technology [9].

Figure 2.3: Sample tissue folds which can happen in the laboratory during glass slide
preparation.

To protect the stained glass slides from damage, the slides are usually fixed on the tissue
sections using mounting media [125]. During floating of the tissue cuts in the water bath
or covering, artifacts such as air bubbles may emerge negatively affecting the inspecting of
important tissue morphology features [44]. Figure 2.4 shows two samples of tissue slides
containing air bubbles.

Computational pathology requires the digitization of the tissue glass slides to support
diagnosis with computers [43]. Once the glass slides are digitized, marker signs on glass
slides, which pathologists may use to highlight some diagnostic hints, may appear in the
digital images as well. These colored strips can occlude tissue and mislead the interpreta-
tion of the tissue information [99]. Figure 2.5 shows two samples of ink-marker images.
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Figure 2.4: Sample tissue slides containing air bubble which can happen in the laboratory
during slide preparation.

Instead of rejecting the entire slide because of artifacts and ink-markers, which is not an
efficient approach, there are some techniques for the detection and removal of these artifacts
[99]. Traditional object detection systems usually commence by feature extraction from
the input images using methods like Haar [114], SIFT [93], and HOG [35]. They generally
use handcrafted features based on morphology, thresholding of pixels, and voxel clustering
[107] [73]. These methods may be effective, but the segmentation may not be sufficiently
accurate. Moreover, the number of diagnostically relevant but missed lesions is high [35].
HistoQC [74], a tool for quality control of WSI acquisition, can discover artifacts and
outputs outliers. However, the method to remove artifacts is mostly based on thresholding
techniques combined with mathematical morphology operations. Two pathologists were
asked to label the mask images produced by the tool as either acceptable (if the overlap
between pathologists’ visual artifact-free mask and tools’ artifact-free mask is over 85%) or
not acceptable (if the this condition is not satisfied). Works have reported 95.5% average
accuracy for such approaches but with limited data [74]. Bautista et al. [13] proposed a
method using color shifting to magnify the color difference and detect tissue fold. These
methods have inevitable drawbacks and are dependent on the manual setting of thresholds
and other parameters. Therefore, it is an urgent need to utilize more automated methods
for segmentation.

The other segmentation method widely employed is specialized deep networks that
enable complex data distribution modelling. They have also been applied in several image
analysis, and detection problems in the medical domain [136]. CycleGan was employed by
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Figure 2.5: Sample ink-markers on tissue which occur when pathologists highlight regions
of interest on glass slides. This may happen for consulting other pathologists, or for

educational or research purposes.

Venkatesh et al. [155] for the reconstruction of marker removed WSI and was utilized by
Zhu et al. [175] for the restoration of the original non-marked image tiles. Besides, Ali
et al. [4] separated marked tiles with a binary classification and used the marked tiles as
inputs for a YOLO3 network. Unlike the YOLO object detection, which is very fast and
can even be used as a preprocessing step for more specialized networks, these segmentation
networks and deep feature extraction are rather slow. Ramachandran et al. [48] proposed
a method for lung nodule detection and localization using the YOLO-based deep learning,
which results in low false positive rates with high sensitivity.

2.4 Glomeruli Detection in Kidney Images

A significant stage in determining whether a kidney is transplantable is the histological
examination of renal samples by experienced pathologists [5, 100]. The histopathology
evaluation of the number of globally sclerosed glomeruli in relation to the overall number
of glomeruli is an essential examination for accepting or rejecting a donor’s kidneys [5]. In
Figures 2.6, and 2.7 samples of glomeruli objects in kidney images have been shown.

Waste and excess fluids are expelled from the human body by glomeruli, which are
clusters of capillaries responsible for expulsion. It is possible to group glomerular disor-
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Figure 2.6: Glomeruli Samples.

Figure 2.7: Glomeruli Samples.
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ders according on their clinical symptoms, etymology, immunopathology, or morphological
changes [5, 100]. A condition known as “glomerulosclerosis” is the result of the kidney le-
sion changing its morphology; this sclerosis can impact the kidney in many ways, depending
on whether or not it is global or partial [21]. The number of glomeruli detected in each
kidney biopsy should be counted in daily practice. Per kidney biopsy, about 20 to 30 cuts
are made [21]. Additionally, glomeruli that are completely sclerosed must be noted (the
entire glomerulus). Detection of localized sclerosis will provide further information regard-
ing the patient’s condition. Each pathology report should include this information because
the number of glomeruli assessed must be representative enough to determine a diagnosis
[159]. On the other hand, if the sample has numerous sclerosed glomeruli, this may suggest
that the patient has chronic kidney disease with dead glomeruli. As a result, the patient
may not be suited for some medications, which will help to define adequate treatment
[159]. This information is also entered into the national register for glomerulonephritis by
the [21]. Time-consuming and tiresome, the count of glomeruli is a painstaking process.
Because of this, image processing methods that can identify and categorize the glomerulus
are needed.

With the emergence of deep learning networks, various options for computer vision tasks
such as glomeruli object identification, semantic segmentation, and instance segmentation
became available [21]. For instance, some works provide a detailed assessment of object
identification and instance segmentation algorithms [174]. Some other give a complete
review for semantic segmentation [46]. Several recent research in digital pathology have
used deep neural networks for glomeruli detection, and segmentation [88, 79, 27, 6, 45, 100,
78, 142, 153, 21].

For Glomeruli detection, YOLO has been applied on kidney images for the first time
in this thesis and compared the existing segmentation method with U-Net on the same
validation dataset. There are two different tissue staining images in the validation dataset.

2.4.1 Tissue Staining

Staining is used to emphasize essential characteristics of the tissue, as well as improve
contrast. Hematoxylin is a typical stain dye used in this technique that gives the nuclei a
bluish hue, whereas eosin (another stain dye used in histology) gives the cell’s nucleus a
pinkish tint [7].

2.4.2 Periodic Acid-Schiff (PAS)

A staining technique called periodic-Acid Schiff (PAS) is used in histochemistry and histol-
ogy to show that carbohydrates and carbohydrate compounds like polysaccharides, mucin,
glycogen, and fungal cell wall components are found in the cells. It has been used to look for
glycogen in places like the skeletal muscles, the liver, and the heart muscles. PAS staining
works with both formalin-fixed, paraffin-embedded, and frozen tissue sections [164].
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2.4.3 Hematoxylin and Eosin (H&E) Staining

There are two types of histological stains that come together to make H&E: Hematoxylin
and Eosin. The hematoxylin stains cell nuclei purple, and eosin stains the extracellular
matrix as well as the cytoplasm pink. Other anatomic tissue structures take on different
shades and hues of these two colors [29]. There are two parts of a cell that are called
the nucleus and the cytoplasm. Pathologists can easily tell them apart, and the overall
patterns of coloration from the stain show the general layout and distribution of cells and
give an overall image of a tissue morphology [164].
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Chapter 3

Method, Data Preparation &
Experiments

3.1 Method

Predicting one or more object locations, determining their classes, and drawing a bounding
box around the object is the definition of an object detection task. In many existing
detection systems, multiple classifiers are applied to an image at many locations and scales
to calculate the high-scoring regions of the image for detecting a region of interest. In
this thesis, the YOLO approach (You Only Look Once) [126] has been trained for both
applications on detecting tissue patterns in WSIs, one is artifacts and manual ink-markers
detection, and the second one is glomeruli detection in kidney images.

One of the essential advantages of YOLO over classifier-based systems is the speed of
this model. YOLO is faster than R-CNN more than 1000 times [50], and 100 times faster
than Fast R-CNN [49]. Predictions based on YOLO are with a single network evaluation,
while R-CNN requires many network evaluations for a single image. More importantly,
as an object detector, YOLO does not require a detailed pixel-level annotation; labels for
YOLO are just bounding boxes around the target objects.

3.1.1 Network Architecture of YOLO

By combining separate components of other object detection networks, like the ones using
a sliding window, or region-based techniques, YOLO can predict all image objects for all
the classes based on the information from the whole image only by looking at the image
once [126]. In other words, the network models the entire image at once along with all of
its individual objects. End-to-end training and real-time speeds are made possible by the
YOLO architecture while high average accuracy is maintained [126].

An S×S grid is generated on any given image. A grid cell is responsible for identifying
an object whose center lies within that grid cell. Boxes and confidence ratings are predicted
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for each grid square. If the model is certain that the box contains an object, it will give it
a high confidence score [126]. This confidence score is calculated based on

Pr(Object) = IOU truth
pred (3.1)

The confidence score should be 0 if there is no predicted object present in a cell. If
there is at least one predicted object in that cell, for the confidence score to be accurate,
it must be equal to the intersection over union (IOU) between the predicted box and the
ground truth. The probabilities of each C conditional class, Pr(Classi|Object), are also
predicted in each grid cell. The location of object’s grid cell determines these probabilities.
No matter how many boxes B there are in a grid cell, the network can only forecast one
set of class probabilities. For the evaluation of the network, the network computes the
class-specific confidence scores for each box based on

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth
pred = Pr(Classi) ∗ IOU truth

pred (3.2)

Both the likelihood that a certain class will be found in the box and how well the predicted
box will fit the item are represented by these scores [126]. In Figure 3.1, the whole procedure
has been visually summarized.

Figure 3.1: For each grid cell, YOLO forecasts the B bounding boxes, their confidence
levels, and their C class probabilities. This image has been taken from [126].

YOLO was inspired by GoogleNet model for image classification [149]. It has 24 con-
volutional layers, followed by two fully connected layers make up the detecting network.
The full network has been shown in Figure 3.2.
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Figure 3.2: YOLO Architecture: 24 convolutional layers and two fully linked layers make
up the detecting network. This image has been taken from [126].

3.1.2 YOLO-v4

The YOLO-v4 [18] model has been trained for both applications in this thesis. The codes
of all steps involved are available on GitHub 1, and in this experiment, the codes have been
modified in a way to train a custom dataset. The implementation of a new architecture
in the backbone in YOLO-V4 compared to YOLO-V3 has made an essential improvement
in the mAP (mean Average Precision) and the number of FPS (Frame per Second) by
10% and 12%, respectively, when trained and tested on COCO dataset2. In Figure 3.3 the
comparison between YOLO-V4 and other object detector methods has been shown. The
new architecture in the backbone is a deep neural network composed mainly of convolution
layers, and the main objective is to extract features. The backbone selection is a key step
and can improve object detection performance; mostly pre-trained neural networks are
used to train the backbone [18].

3.2 WSI Quality Control

Instead of rejecting the whole slide because of artifacts and ink-markers, which is not very
efficient, there are some ways to find and remove these artifacts. Experiments and dataset
for detecting these artifacts, and WSI quality control using YOLO-v4 has been discussed
in this section.

1https://github.com/AlexeyAB/darknet
2https://cocodataset.org/
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Figure 3.3: YOLOv4 vs. other object detectors. In comparison to EfficientDet, YOLOv4
is twice as fast, improves YOLOv3’s average precision (AP) and Frames per Second

(FPS) by 10% and 12%, respectively. This image has been taken from [18].

3.2.1 Dataset

For the quality control experiments, training and validation sets of WSIs with folded tissue,
ink-marked tissue WSIs, and tissue slides with air bubbles have been created containing 92
WSIs for training (40 of folded tissues, 40 of ink-marked tissues, and 12 tissue slides with
air bubbles) and 15 WSIs for validation (6 of folded tissues, 6 of ink-marked tissues, and
3 of tissue slides with air bubbles). Images at 2.5x magnification (roughly equivalent to
2000× 3000 pixels) have been labeled. For folded tissue dataset, 46 WSIs from [9], for the
ink-marked tissue dataset, 46 WSIs from [99], and for the tissue slides with air bubbles, 15
WSIs from HistoQC repository 3 have been used.

In Figures 3.4, 3.5, and 3.6 3 WSIs in the training dataset, containing ink-marker,
tissue-fold, and air bubbles with annotated bounding boxes have been shown. For using
these images for the YOLO model, first, labelling target objects (tissue fold and ink-
marker on tissue) in each image using the YOLO format 3.2.1 is required. For labelling
the images, using the above networks’ output images and segmented areas, the coordinates
of the bounding boxes around each detected object have been calculated.

A txt file for the annotation coordinates, with the same name for each image jpg file
has been created:

object-class, xC , yC ,width, height (3.3)

where

3http://histoqcrepo.com/
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• object-class is integer object number from 0 to (classes− 1)

• xC , yC , width, height are float values relative to width and height of image, it can be equal
from (0.0 to 1.0]

• attention: xC , yC are center of bounding box rectangle

Figure 3.4: Sample WSI containing ink-markers.

3.2.2 Experiments

The dataset in this study contains 92 WSIs for training and 15 WSIs for validation. The
network aims to detect three different class objects, namely tissue folds, air bubble edges
in tissue, and ink-marker on a tissue. Pre-trained weights 4 have been used to fine-tune
the network using on the training data. The configuration of the network has been shown
in Table 3.1. In this table,

• Batch stands for how many images are used in the forward pass to compute a
gradient and update the weights via back-propagation,

• subdivisions stands for the number of blocks in which the batch is subdivided,

4https://bit.ly/2J3G2VK
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Figure 3.5: Sample WSI containing tissue folds.

Figure 3.6: Sample WSI containing air bubbles.

26



Table 3.1: The configuration of the network WSI for quality control

learning rate batch subdivisions policy steps scales max batches filters activation

0.001 64 16 steps 4800, 5400 0.1,0.1 6000 24 linear

• policy mean using the steps and scales parameters bellow to adjust the learning rate
during training,

• steps means adjust the learning rate after 3200 and 3600 batches,

• scales means re-scale the current learning rate by the corresponding factor once the
number of steps is reached,

• max batches is the maximum number of iterations,

• filters stands for how many convolutional kernels there are in a layer, and

• activation defines the activation function.

For training YOLO, usually around 2000 iterations are sufficient for each class (ob-
ject) [18]. The network was trained for 6000 iterations and the common object detection
evaluation metrics for training were monitored to obtain the best weights in chapter 4 4.

3.3 Glomeruli Detection in Kidney Images

Glomeruli are clusters of capillaries responsible for expulsion, remove waste and excess
fluids from the human body [21]. The histological examination of glomeruli is crucial
in determining whether or not a kidney may be transplanted [5]. Manual examination
of kidney samples is time-consuming and error-prone. Therefore, automated glomeruli
identification frameworks for kidney biopsies can be beneficial [5]. This topic is one of the
applications studied in this thesis.

3.3.1 Dataset

Kimia Lab and the pathology department of the University of Michigan are collaborating
on a project for developing a computational kidney disease diagnosis model. As a part of
this project, Kimia Lab has received a glomeruli dataset with bounding box annotations
created by nephrologists. To expand the training data two different public datasets, plus
a private dataset from the University of Michigan have been used in this study.
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Public Dataset 1 The first public dataset consists of 31 WSIs in SVS format. With
the size range between 21651 × 10498 pixels and 49799 × 32359 pixels acquired at 20x
to preserve image quality and information while requiring significantly less computational
time than images taken at other magnifications [22]. A glomerulus may lose structural
information due to the lower resolution and poor image quality. It is also important to
note that employing magnifications such as 40x would increase the model size, slowing
down the training process [21]. This data is part of the WSI datasets generated within the
European project AIDPATH 5. A biopsy needle with an outside diameter of between 100
nm and 300 nm was used to obtain tissue samples. Once the paraffin blocks were ready,
the tissue portions were cut into 4 m pieces and coloured with through PAS staining [22].
It is common to employ PAS stain to color polysaccharides found in kidney tissue and to
highlight glomerular basement membranes because of its effectiveness [133]. These images
contain different types of glomeruli labeled by Bueno et al. approach [21]. This dataset
has two parts, DATASET A, which contains the raw 31 WSIs, and DATASET B, which
is 2340 glomeruli images, 1170 normal glomeruli and 1170 sclerosed glomeruli. Because
of the lack of exact coordinates of the extracted glomeruli, the exact coordinates of the
glomeruli bounding boxes were extracted by a pathologist at Kimia Lab 6. An annotated
WSI sample of the first public dataset has been shown in Figure 3.7.

Public Dataset 2 This dataset has been used for HubMap competition 7. TIFF files
ranging in size from 500MB to 5GB make up the dataset containing 8 images for the train-
ing and 5 images for the test. RLE-coded and uncoded (JSON) annotations are included in
the training set. The annotations identify glomeruli that have been divided into sections.
Also, anatomical structural segmentations are included in both the training and public
test sets. The bounding boxes of these anatomical structures for using these annotations
for the YOLO object detector have been created based on manual contours. Figure 3.8 is
an example of the procedure to generate a bounding box from manual delineation. This
bounding box is found by calculating the upper left most and lower right-most coordinates
in the delineation. An annotated WSI of the second dataset has been shown in Figure 3.9.

University of Michigan Data This private dataset has been collected from the Univer-
sity of Michigan and annotated by expert pathologists. The training dataset consists of 7
Periodic acid–Schiff (PAS) stained WSIs for fine-tuning the models that have been trained
on the mentioned public datasets. Annotated WSI sample of this dataset has been shown
in Figure 3.10. Beside these 7 PAS stained WSIs for training, 20 PAS stained WSIs, and 16
H&E stained WSIs have been used for validation. The images show that the University of
Michigan data has the same type as the first public dataset, namely needle biopsy images,
unlike the second public dataset, which are surgical excisions. This difference would affect
the results obtained by each public dataset.

5http://aidpath.eu/
6Dr. Ricardo Gonzalez, an anatomic pathologist, visiting Kimia Lab from May 2021 till April 2022.
7https://www.kaggle.com/c/hubmap-kidney-segmentation/overview
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Figure 3.7: Annotated WSI sample from the public dataset 1.
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Figure 3.8: Extracted bounding boxes (right) from manual delineations of a glomerulus
(left).

3.3.2 Experiments

A total of 7 different combination of datasets (using two public datasets, and a private
dataset) selected for the training of YOLO object detector, resulting in a total of 7 different
models. The 7 training datasets have been evaluated on two different validation datasets
with different stains from the University of Michigan: One contains 20 PAS stained images
and the other one contains 16 H&E stained images. All experiments, along with the
explanation of the training and the validation dataset, have been reported in Table 3.3. And
the configurations of the network for all 7 different training datasets have been described
in Table 3.2. In this table,

• Batch stands for how many images are used in the forward pass to compute a
gradient and update the weights via back-propagation,

• subdivisions stands for the number of blocks in which the batch is subdivided,

• policy means using the steps and scales parameters bellow to adjust the learning
rate during training,

• steps means adjust the learning rate after 3200 and 3600 batches,

• scales means re-scale the current learning rate by the corresponding factor once the
number of steps is reached,

• max batches is the maximum number of iterations,

• filters stands for how many convolutional kernels there are in a layer, and

• activation defines the activation function.

Many studies have been performed to identify glomeruli functional tissue units in human
kidneys. Recently, there was a competition, Hacking the Kidney, launching in Kaggle
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Table 3.2: The configuration of the network for all training datasets for glomeruli
detection

learning rate batch subdivisions policy steps scales max batches filters activation

0.001 40 16 steps 4800, 5400 0.1,0.1 6000 18 linear

Table 3.3: All 7 training sets along with the test experiments using public daatsets 1 and,
the proviate dataset from University of Michigan (UMICH).

Experiment Training Dataset Test Dataset

1 31 WSIs from public dataset 1 20 PAS WSIs from UMICH dataset
16 H&E WSIs from UMICH dataset

2
31 WSIs from public dataset 1,

fine-tuned with 7 PAS WSIs from
UMICH dataset

20 PAS WSIs from UMICH dataset

16 H&E WSIs from UMICH dataset

3 8 WSIs from public dataset 2 20 PAS WSIs from UMICH dataset
16 H&E WSIs from UMICH dataset

4
8 WSIs from public dataset 2,

fine-tuned with 7 PAS WSIs from
UMICH dataset

20 PAS WSIs from UMICH dataset

16 H&E WSIs from UMICH dataset

5
31 WSIs from public dataset 1, and 8

WSIs from public dataset 2
20 PAS WSIs from UMICH dataset

16 H&E WSIs from UMICH dataset

6

31 WSIs from public dataset 1, and 8
WSIs from public dataset 2, fine-tuned

with 7 PAS WSIs from UMICH
dataset

20 PAS WSIs from UMICH dataset

16 H&E WSIs from UMICH dataset

7
7 PAS stained WSIs from UMICH

dataset
20 PAS WSIs from UMICH dataset

16 H&E WSIs from UMICH dataset
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Figure 3.9: Annotated WSI sample from the public dataset 2.
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Figure 3.10: Annotated WSI sample from the University of Michigan’s private dataset.
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to segment glomeruli in kidney images 8. The dataset provided for the competition was
public dataset 2, discussed in the dataset section. TIFF files, ranging in size from 500MB
to 5GB, make up the dataset containing eight images for the training and five images for
the test. RLE-coded and uncoded (JSON) annotations are included in the training and
validation sets. The authors of a study [52] compare the five winning algorithms between
more than a thousand teams that participated in the above competition. They assess the
accuracy and performance of the five top algorithms, and the codes are available online 9.

To compare a segmentation model with the detection model in this thesis, the first
team’s algorithm has been chosen as the benchmark. The accuracy on the same validation
dataset e.i. 20 PAS stained images and 16 H&E images from the University of Michigan
has been calculated based on the explanation for the winning proposal 10. They have used
a single U-Net SeResNext101 architecture with Convolutional Block Attention Module
(CBAM), hypercolumns, and deep supervision. Their network read 1024 × 1024 pixel
patches and then downsample them to 320 × 320 patches. SGD is the optimizer for their
model, trained using binary cross-entropy. Training is perfromed for 20 epochs, with a
learning rate of 10−4 to 10−6 and a batch size of 8 images. Their final weights trained
on the whole training dataset have been used to validate and compare their network on
the University of Michigan dataset, which contains 20 PAS stained images and 16 H&E
stained images. The results are provided in Chapter 4. Note that this is not possible to
fine-tune the mentioned segmentation model with the external validation set (University
of Michigan WSIs) as the external WSIs do not contain the pixel-level annotation. For
comparing the segmentation model with YOLO, the segmentation area is enclosed with the
smallest possible rectangle (the upper left most and lower right-most coordinates) and use
these rectangles as the segmentation model output. Figure 3.8 depicts the process visually.

8https://www.kaggle.com/competitions/hubmap-kidney-segmentation
9https://github.com/cns-iu/ccf-research-kaggle-2021/

10https://www.kaggle.com/c/hubmap-kidney-segmentation/discussion/238198
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Chapter 4

Results & Analysis

4.1 WSI Quality Control

One of the common evaluation metrics for detection and segmentation is the IoU measure
(intersection over union, also called Jaccard Index [15]) which can determine the overlap
between two regions divided by their union. The validation dataset 3.2.1 pre-defined an
IoU threshold (i.e., 0.5) in classifying whether the prediction is a true positive or a false
positive.

Another evaluation metric for object detection models like R-CNN [49] and YOLO [18]
the is mean [132]. The mAP compares the ground-truth bounding box to the detected box
and returns a score. The higher the score, the more accurate is the detection [64].

The validation dataset contains 15 WSIs that include 199 unique objects in total includ-
ing tissue fold, air bubbles in tissue, or ink-marker on tissue. The purpose of the network
is to detect these 199 objects. To better understand the training procedure and obtain
the best weights for the network, the evaluation stage has been done with weights after
every 1,000 iterations. The comparison between the results based on the above evaluation
metrics on the validation dataset is reported in Tables 4.1 & 4.2. By having True Positives
as TP , False Positives as FP , False Negatives as FN , and True Negative as TN , The
formula of the evaluation metrics are as follows [19]:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F1 Score = 2 × Precision×Recall

Precision + Recall
=

TP

TP + 1
2
(FP + FN)

(4.3)

Some of the results for ink-marker detection have been shown in Figures 4.1 and 4.2.
The left picture in Figures 4.1 and 4.2 demonstrates the bounding boxes of the actual
ink-marker areas, and on the right, the predicted detection areas has been shown. The
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Table 4.1: Comparison of the results based on common evaluation metrics and the
number of iteration for training on the validation dataset

Number of Iterations TP FP FN Precision Recall F1 Score

1000 110 394 89 0.22 0.55 0.31
2000 149 133 50 0.53 0.75 0.62
3000 141 89 58 0.61 0.71 0.66
4000 142 34 57 0.81 0.71 0.76
5000 192 32 7 0.86 0.96 0.91
6000 199 0 0 1.00 1.00 1.00

Table 4.2: Comparison of the results based on object detection evaluation metrics
and the number of iterations for training on the validation dataset for tissue fold (TF),

ink-marker (IM) and air bubble (AB)

Number of Iterations Average IoU AP for TF AP for IM AP for AB mAP

1000 15.83% 25.63% 85.59% 0.85% 37.36%
2000 39.17% 59.38% 91.17% 25.33% 58.63%
3000 45.95% 63.73% 87.02% 1.58% 50.78%
4000 61.60% 77.93% 93.93% 43.04% 71.64%
5000 72.78% 96.92% 98.56% 86.46% 93.98%
6000 99.50% 100% 100% 100% 100%

results that have been obtained, are more accurate compared to HistoQC [74]. The results
that have been reported in HistoQC [74] are based on two pathologists’ reviews. Each
pathologist has reviewed 250 samples separately. Overall, HistoQC and the experts agreed
on 94% (235 of 250) of cases for expert 1 and 97 percent (242 of 250) of cases for expert 2.

Some results of air bubble edge detection are demonstrated in Figure 4.3. The left
picture demonstrates the bounding boxes of the actual air bubble boundary areas, and on
the right, the predicted detection areas have been shown. A sample for tissue fold detection
is illustrated in Figure 4.4.

4.2 Glomeruli Detection in Kidney Images

Immunopathology, clinical symptoms, etymology, and morphological abnormalities are all
factors that go into classifying glomeruli disorders [102]. To classify the glomeruli diseases,
these objects need to be detected first. Therefore, the average sensitivity and specificity of
the detection matters.
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Figure 4.1: Sample ink-marked tissue detection from the dataset

Figure 4.2: Sample ink-marked tissue detection from the dataset

By having True Positives as TP , False Positives as FP , False Negatives as FN , and
True Negative as TN , The formula of sensitivity and specificity metrics [87] is as follows:

Sensitivity =
TP

TP + FN
(4.4)

Specificity =
TN

TN + FP
(4.5)

For computing true positives, false positives, false negatives, and true negatives, the
IoU measure has been used (intersection over union) to determine the overlap between two
boundaries divided by their union. Our dataset pre-defined an IoU threshold (i.e., 0.5) in
classifying whether the prediction is a true positive or a false positive. Also, false negative
would be those glomeruli objects that any predicted bounding boxes have not covered.
Moreover, the true negatives were calculated based on the area of the whole slide tissue
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Figure 4.3: Sample air bubble tissue detection from the dataset

Figure 4.4: Sample tissue fold detection from the dataset

minus those predicted areas that were not containing any glomeruli.

As mentioned in the last chapter 3, 7 training datasets with two public and one private
datasets have been created and validated on two datasets with different stains from the
University of Michigan. In this chapter, the average sensitivity and specificity have been
calculated for all these experiments for all images, along with the comparison with the
existing segmentation method.
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4.2.1 PAS Validation Set

Two public datasets and a private dataset from the University of Michigan, all PAS stained,
were used to train YOLO and validated on 20 PAS stained images. Different experiments
were designed and evaluated on these images. Average sensitivity and specificity values for
each experiment can be seen in Table 4.3 along with the comparison with the segmentation
method explained in Chapter 3 (used for Hacking the Kidney Competition).

The ROC (receiver operator characteristics) curves [65] for all the experiments on these
20 PAS stained images have been shown in Figure 4.5. As it has been reported in Table 4.3,
the segmentation results have a high average specificity with lower sensitivity which means
the network has low number of false positives. However, it can only predict half of the
true negative glomeruli objects. Furthermore, using the external validation set (University
of Michigan WSIs) to fine-tune this segmentation model is not feasible since the external
WSIs do not contain pixel-level annotation.

Among the YOLO experiments, one experiment was done with a training set containing
only 7 PAS stained images from the University of Michigan, with average sensitivity and
specificity equal to 85%, and 80%, respectively, which can show the network is performing
well on the validation from the same resource with limited training data. Another three
experiments have been performed only on public datasets. They have been evaluated on
an external validation dataset which is the data from the University of Michigan.

By examining the network on an external dataset, the generalization of the network can
be assessed. Also, it is evident that after fine-tuning the network with only 7 PAS stained
images from the University of Michigan on the same dataset, the average sensitivity has
a considerable improvement. For example, the average sensitivity and specificity changed
from 45%, and 98% to 74%, and 94% respectively. The results may significantly change
if there is more data of the same resource as the validation dataset for fine-tuning the
network.

Another important point would be the difference between the results of experiments
trained on the first public dataset and the second one. It has been shown that by combining
both datasets, the accuracy could drop off compared to only training on the first public
dataset, and the reason may be related to the difference between the images from the
second public dataset and the images from the University of Michigan. The images from
the first public dataset and images from the University of Michigan are needle biopsy
images. In contrast, the second public dataset consists of excision tissue samples. The
phrase “needle biopsy“ refers to a procedure in which a specific needle is inserted into a
suspicious region of the skin in order to collect cells. During a “surgical biopsy“, a surgeon
creates an incision in your skin in order to reach the suspicious cells. As shown in Figures
3.9 and 3.10 number of glomeruli and the size of the glomeruli compared to the whole
image are one of the differences between needle biopsy and surgical biopsy.
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Table 4.3: Average sensitivity and average specificity were reported for seven different
experiments designed with two public datasets and a private dataset from the University

of Michigan (UMICH). All the PAS stained images and evaluated on 20 PAS stained
images, along with the comparison with a segmentation method using U-NET.

Dataset Average Sensitivity Average Specificity

31 WSIs from public dataset 1 82% 95%
31 WSIs from public dataset 1,

fine-tuned with 7 PAS stained WSIs
from UMICH dataset

85% 89%

8 WSIs from public dataset 2 45% 98%
8 WSIs from public dataset 2,

fine-tuned with 7 PAS stained WSIs
from UMICH datase

74% 94%

31 WSIs from public dataset 1, and 8
WSIs from public dataset 2

75% 95%

31 WSIs from public dataset 1, and 8
WSIs from public dataset 2, fine-tuned

with 7 PAS stained WSIs from
UMICH dataset

83% 96%

7 PAS stained WSIs from UMICH
dataset

85% 80%

Segmentation Method (HubMap
Competition)

48% 99%

4.2.2 H&E Validation Set

A total of 16 H&E stained images from the University of Michigan have been used as a
validation dataset for all training datasets described in the previous section. Compari-
son between the average sensitivity and average specificity for all seven experiments using
YOLO, with two public datasets, as well as a private dataset from the University of Michi-
gan and the segmentation method explained in Chapter 3 that was used for Hacking the
Kidney Competition are provided in Table 4.4. ROC curves for all experiments on these
16 H&E stained images have been shown in Figure 4.6. There is a considerable difference
between the validation results on PAS stained images and H&E stained images. This sub-
stantial difference is explainable because of the difference in tissue staining of training and
validation datasets.

Same as in the Table 4.3, because of the high average specificity and low sensitivity
shown in Table 4.4, the network’s segmentation results practically never show false posi-
tives. However, only half of the ground truth negative glomeruli objects can be predicted
by this method.

As well as the Table 4.3, the results have been improved by fine-tuning the training
dataset with only seven images from the University of Michigan. The difference between
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Figure 4.5: ROC curve for 20 PAS stained images, and the comparison for all designed
experiments using YOLO. P1 indicates the first public dataset, P2 indicates the second

public dataset, and Michigan is the data from University of Michigan for fine-tuning the
models.

the outcomes of experiments trained on the first public dataset and the second is still
significant. Because of the differences in images between the second dataset which are
surgical biopsy images and those from the University of Michigan that are needle biopsy
images, it has been demonstrated that by combining both datasets, accuracy can drop.
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Table 4.4: Average sensitivity, and average specificity reported for different seven
experiments designed with two public datasets and a private dataset from the University
of Michigan (UMICH), all PAS stained and evaluated on 16 H&E stained images, along

with the comparison with a segmentation method using U-NET

Dataset Average Sensitivity Average Specificity

31 WSIs from public dataset 1 51% 95%
31 WSIs from public dataset 1,

fine-tuned with 7 PAS stained WSIs
from UMICH dataset

67% 89%

8 WSIs from public dataset 2 30% 85%
8 WSIs from public dataset 2,

fine-tuned with 7 PAS stained WSIs
from UMICH datase

59% 90%

31 WSIs from public dataset 1, and 8
WSIs from public dataset 2

58% 94%

31 WSIs from public dataset 1, and 8
WSIs from public dataset 2, fine-tuned

with 7 PAS stained WSIs from
UMICH dataset

70% 96%

7 PAS stained WSIs from UMICH
dataset

70% 86%

Segmentation Method (HubMap
Competition)

47% 99%
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Figure 4.6: ROC curve for 16 H&E stained images, and the comparison for all the
designed experiments using YOLO. P1 indicates the first public dataset, P2 indicates the

second public dataset, and Michigan is the data from University of Michigan for
fine-tuning the models
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Chapter 5

Summary & Conclusions

There have been several technological advances across health care and digital pathology
in recent years. Automated segmentation and pixel analysis of digital pathology images
may identify diagnostic patterns and visual cues, leading to more reliable and consistent
diagnostic categorization. In this thesis, different detection and segmentation methods have
been investigated for various applications. Specifically, the YOLO-v4 framework (You-
Only-Look-Once), a real-time object detector for microscopic images, has been studied
for two different applications: Quality control of WSIs, and glomeruli object detection in
kidney images.

Quality control via artifacts and ink-marker detection in histopathology slides could
save time in clinical practice by avoiding re-scanning glass slides. Tissue glass slides with
these artifacts may affect the diagnosis and will be mostly rejected if detected by the
laboratory staff. In this thesis, a procedure based on the YOLO-V4 deep model was
proposed to detect folded and ink-marked tissue and the presence of air bubbles in tissue
in large scan regions. The YOLO-V4 model has been trained on a in-house curated dataset
with high accuracy. The approach is very fast, detecting the target objects in less than
0.5 seconds per image. For future works, a larger dataset with a broader representation of
more artifacts can boost the generalization of quality control in digital pathology.

Glomeruli detection, as the first step of classifying the glomeruli diseases following by
diagnosing different kidney diseases, is essential and critical in digital pathology. Because of
the large number of these objects in the kidney, glomeruli detection could help pathologists
save considerable time by computerized quantification. This thesis trained YOLO-v4 with
seven different training datasets consisting of two public datasets and a private dataset
from the University of Michigan. Moreover, the networks were evaluated on 20 PAS stained
images and 16 H&E stained images from the University of Michigan. By training YOLO-
v4 on the first public dataset, and fine-tuning by only 7 PAS stained images from the
University of Michigan, experiments achieved 85% average sensitivity and 89% average
specificity while validating the network on 20 PAS stained images from the University of
Michigan, which was the best result out of different training datasets. For evaluating the
network on H&E stained images, 70% average sensitivity and 96% average specificity were
obtained while training on both public datasets, followed by fine-tuning on the 7 PAS
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stained images. Also, final weights of a segmentation method based on U-Net have been
used to evaluate the results on the same validation datasets. The model could achieve high
specificity and lower sensitivity, making this method rather unreliable compared to YOLO
with higher sensitivity. Moreover, obtaining pixel-level WSI annotations for the network is
time-consuming. This makes the whole procedure for fine-tuning the model with limited
data harder than detection methods like YOLO, which only requires a bounding box around
the target objects.
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