
Asynchronous Optical Flow

and Egomotion Estimation

from Address Events Sensors

by

Charbel Azzi

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2022

© Charbel Azzi 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The deci-

sion of the Examining Committee is by majority vote.

External Examiner: Medhat Moussa

Professor, School of Engineering

University of Guelph

Supervisor(s): Eihab Abdel-Rahman

Professor, Systems Design Engineering

University of Waterloo

Adel Fakih

Adjunct Professor, Systems Design Engineering

University of Waterloo

Internal Member: Paul Fieguth

Associate Dean, Systems Design Engineering

University of Waterloo

Other Member(s): Alexander Wong

Professor, Systems Design Engineering

University of Waterloo

ii



Internal-External Member: William Melek

Professor, Mechanical and Mechatronics Engineering

University of Waterloo

iii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

iv



Abstract

Motion estimation is considered essential for many applications such as

robotics, automation, and augmented reality to name a few. All cheap and

low cost sensors which are commonly used for motion estimation have many

shortcomings. Recently, event cameras are a new stream in imaging sensor

technology characterized by low latency, high dynamic range, low power and

high resilience to motion blur. These advantages allow them to have the

potential to fill some of the gaps of other low cost motion sensors, offering

alternatives to motion estimation that are worth exploring.

All current event-based approaches estimate motion by considering that

events in a neighborhood encode the local structure of the imaged scene,

then track the evolution of this structure over time which is problematic

since events are only an approximation of the local structure that can be very

sparse in some cases. In this thesis, we tackle the problem in a fundamentally

different way by considering that events generated by the motion of the

same scene point relative to the camera constitute an event track. We show

that consistency with a single camera motion is sufficient for correct data

association of events and their previous firings along event tracks resulting

in more accurate and robust motion estimation.

Towards that, we present new voting based solutions which consider all

potential data association candidates that are consistent with a single camera

motion for candidates evaluation by handling each event individually with-

out assuming any relationship to its neighbors beyond the camera motion.

We first exploit this in a particle filtering framework for the simple case of a

camera undergoing a planar motion, and show that our approach can yield

motion estimates that are an order of magnitude more accurate than opti-

cal flow based approaches. Furthermore, we show that the consensus based

approach can be extended to work even in the case of arbitrary camera mo-

tion and unknown scene depth. Our general motion framework significantly

outperforms other approaches in terms of accuracy and robustness.

v



Acknowledgements

I am indebted to numerous people without whom my PhD studies would

have been a much harder and less fruitful experience, and to only few of

them, I can give a particular mention here.

I had the privilege to be supervised by Dr.Eihab Abdel-Rahman and

Dr.Adel Fakih who offered me their assistance and unequivocal support in

all possible fashions. I would like to express my sincere gratitude to them

for that and for their valuable guidance, critical advice,and patience and for

being great academic role models.

Many thanks are extended to the members of my committee, professors,

Medhat Moussa, William Melek,, Paul Fieguth, and Alexander Wong for

reading my thesis and for providing helpful and insightful comments.

I convey special acknowledgement to two very special families who became

my family here. They made my stay in Waterloo enjoyable and made me

feel at home. I will always remember the great times we spent together, the

delicious meals they generously prepared, and how you stood by my side in

the toughest moments of my life. I will be always be indebted for you.

To Bank Audi who funded part of my expenses throughout this degree I

would like to thank you a lot for believing in me. I would not have accom-

plished this work without your full support. I will always owe you for the

opportunities you have given me.

Words fail me to express my heartfelt gratitude for my parents who,

through my childhood and study career, provided me with all their love and

encouragement and worked hard to secure me an excellent education. I regret

that I would never be able to pay them back for all the years I spent away

doing a Masters degree then a PhD degree.

Last but not least, I owe my loving thanks to my fiancee Jennifer whose

presence, love, and never-ending support were a constant source of motivation

and inspiration that kept me going through my PhD journey.

vi



Dedication

To my parents, fiancee, and a special best friend for their sacrifices, sup-

port, and belief in me.

vii



Table of Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Low Latency . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 High Dynamic Range . . . . . . . . . . . . . . . . . . . 3

1.2.3 Resiliency to Motion Blur . . . . . . . . . . . . . . . . 3

1.2.4 Low Power . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives & Contributions . . . . . . . . . . . . . . . . . . . 4

2 Event Cameras 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Problem Formulation 10

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Event Formation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Event-based Motion Estimation . . . . . . . . . . . . . . . . . 12

3.3.1 Illumination Change dI . . . . . . . . . . . . . . . . . 13

viii



3.3.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Data Association Problem . . . . . . . . . . . . . . . . 14

3.3.4 Undetermined Problem . . . . . . . . . . . . . . . . . . 14

3.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Literature Review 16

4.1 Event-based Optical Flow . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Classical Approaches . . . . . . . . . . . . . . . . . . . 17

4.1.2 Variational Approaches . . . . . . . . . . . . . . . . . . 18

4.1.3 Deep Learning Techniques . . . . . . . . . . . . . . . . 20

4.2 Event-based Egomotion Estimation . . . . . . . . . . . . . . . 24

4.3 Event-based Objective Functions . . . . . . . . . . . . . . . . 28

4.3.1 Classical Objective Functions . . . . . . . . . . . . . . 29

4.3.2 Variational-based objective functions . . . . . . . . . . 32

4.4 Filtering In Event Cameras . . . . . . . . . . . . . . . . . . . 36

4.4.1 Deterministic Filters . . . . . . . . . . . . . . . . . . . 37

4.4.2 Probabilistic Filters . . . . . . . . . . . . . . . . . . . . 38

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Asynchronous Planar Motion Estimation 41

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Mathematical Validation . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.2 Single Point Tracking . . . . . . . . . . . . . . . . . . . 48

5.4.3 Multiple Points Tracking . . . . . . . . . . . . . . . . . 49

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 53

5.5.2 Demonstration of the Objective Function . . . . . . . . 55

ix



5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Asynchronous General Motion Estimation 69

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Egomotion Dataset . . . . . . . . . . . . . . . . . . . . 77

6.4.2 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . 79

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6.1 Weighting of the Time Penalty . . . . . . . . . . . . . 85

6.6.2 Comparison to the State-of-the-Art . . . . . . . . . . . 86

6.6.3 Rapid Motion Limitations . . . . . . . . . . . . . . . . 88

6.6.4 Texture Limitations . . . . . . . . . . . . . . . . . . . . 90

6.6.5 Edge Normal to the Flow . . . . . . . . . . . . . . . . 91

6.6.6 Processing Time . . . . . . . . . . . . . . . . . . . . . 92

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusions and Future Work 94

APPENDICES 97

A Hardware Limitation 98

B Event-based Data Generator 100

B.1 OF Ground Truth Generation . . . . . . . . . . . . . . . . . . 100

B.2 Events Generation . . . . . . . . . . . . . . . . . . . . . . . . 102

x



C Initialization 105

References 107

xi



List of Figures

2.1 Output visualization from AES compared to standard frame-

based cameras when looking at a black dot on a rotating

disk [119]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Simplified circuit diagram and operation of an AES [94]. . . . 9

4.1 EvFlow-Net architecture. Figure taken from [180]. . . . . . . . 22

4.2 ECN architecture. Figure taken from [178]. . . . . . . . . . . . 23

4.3 Life time of event visualization as the planar approximation

of the SAE. Figure taken from [18]. . . . . . . . . . . . . . . . 35

5.1 Graphical outline of the method. For an input event e, given

a certain velocity U, predict its previous firing êp by backward
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Chapter 1

Introduction

1.1 Motivation

Motion estimation is considered indispensable for various tasks including

robotics, automation, surveillance, and augmented reality to name a few.

Cheap and low cost sensors are commonly used for motion estimation, from

Inertial Measurement Unit (IMU), to encoders, to cameras, to optical track-

ers, etc. All low cost motion sensors are not perfect and have many short-

comings when it comes to estimating motion such as accuracy, robustness,

failure mode, power consumption, need for calibration, bias, environmental

conditions effect, operational temperature, and so on.

Recently, there has been notable progress in imaging sensor technology,

which can offer alternative solutions to motion estimation. In particular,

neuromorphic imaging devices, called event cameras (also known as Address

Event Sensors (AES)) [22, 94, 141], are asynchronous, cheap, and low cost

sensors that mimic the human visual system by responding to changes in il-

lumination based on the scene’s dynamics. They do not record image frames,

but a stream of asynchronous events at microsecond resolution, each of which

is immediately generated when a given pixel detects a change in log intensity.

This enables the event cameras to see the motion in the scene, which makes
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them attractive to motion estimation. Their main advantages come from

their low latency, high dynamic range, and resiliency to motion blur, while

consuming small amount of power.

The advantages of event cameras allow them to have the potential to fill

some of the gaps of other low cost motion sensors, offering alternatives to

motion estimation that are worth exploring. However, current event-based

motion estimation approaches still have ample of room for improvements. In

this thesis, we believe that we can exploit event cameras in a different way

to achieve better motion estimation.

1.2 Premise

Event cameras have characteristics that, in some situations, would make

them a better alternative for motion estimation than traditional frame-based

cameras.

1.2.1 Low Latency

Event cameras measure brightness changes with a very high temporal resolu-

tion, which are reported with a very low latency in the order of microseconds.

This is four orders of magnitude higher compared to the 30-60Hz fixed rate

achieved by traditional cameras of comparable price and power consumption.

Therefore, event cameras can perceive the scene dynamics with much finer

temporal details, which allows them to capture very fast motions that can

be used for high speed tracking applications for instance. In order to achieve

similar adaption to situations with rapid motion, traditional cameras need

to capture thousands of frames every second, which results in a large amount

of data to be transmitted and processed, where such cameras will no longer

fall in the category of cheap and low cost sensors.
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1.2.2 High Dynamic Range

In frame-based cameras, the dynamic range is typically around 60dB which

leads to the issue of over or under exposure, where correct exposure for one

part of an image can be considered too low or high for another. This leads to

loss of information in situations with strong lighting changes. This is common

in robotics for instance, where a robot moving in the sun, or transitioning

between low and high lightning scenes. In such situations, event cameras

can be a better alternative since every pixel is independent, and track of

the log intensity changes (smaller change in the absolute magnitude), they

can respond better to wide range of lighting, by reaching very high dynamic

ranges of the order of 140db. Frame-based cameras can be tuned to reach

higher dynamic ranges by using different exposure time but at the expense

of an increased latency, which would result in blurred images in dark scenes

for example.

1.2.3 Resiliency to Motion Blur

Traditional cameras have a global shutter speed which exposes all their pixels

simultaneously by collecting light during a given exposure time. This can

result in motion blur in situations with fast motion, or when large intensity

difference are present (bright or dark scenes). In these situations, event

cameras are more robust since all their pixels are independent, eliminating

the need for a global exposure time. The exposure of traditional cameras can

be increased by using a faster shutter speed to reduce motion blur, but there

is always a limit on the shutter speed increase. Additionally, this results

in an increase in the latency, and if the scene is not bright enough, higher

shutter speeds can result in underexposed images that are bad for motion

estimation.
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1.2.4 Low Power

Event cameras have significantly lower power consumption than traditional

cameras. Since only changes in brightness are streamed in their output, they

only transmit non-redundant data instead of full frames, thus, reducing the

power necessary for acquisition and transmission. This can be beneficial for

situations with fast and robust motion where resources are constrained such

as embedded devices or some robotics applications.

1.3 Objectives & Contributions

A common factor in all previous event-based motion estimation approaches

is the view that events in a neighborhood encode the local structure of the

imaged scene. Then, motion estimation is performed by tracking the evolu-

tion of this structure over time. The problem with this view is that events

are only an approximation of the local structure that can be very sparse in

some cases.

This thesis aims at taking a radically different view of the problem: events

generated by the motion of the same scene point relative to the camera con-

stitute an event track. These event tracks provide more accurate constraints

on the camera motion than the evolution of the local structure as they are not

subjected to any approximation other than image quantization and bright-

ness constancy. The challenge however is in matching events to their previous

firing locations.

We make the hypothesis that, in the case of a dominant motion between

the camera and the scene, consistency with the dominant motion is sufficient

for correct data association of events and their previous firings along event

tracks.

This thesis explores using voting based approaches with an exhaustive

search over all possible data associate candidates to select the ones that are

consistent with a single camera motion. We show that this can successfully

4



identify the correct motion in almost all situations and we characterize cases

where it could fail. We exploit this in a particle filtering framework that,

for the simple case of a camera undergoing a single translation parallel to a

planar wall, can yield motion estimates that are an order of magnitude more

accurate than optical flow based approaches.

Furthermore, we show that the consensus based approach can be extended

to work even in the case of an arbitrary camera motion and an arbitrary scene

depth in which a single data association can vote for multiple motions. We

showcase this in a particle filter based motion estimation system that signif-

icantly outperforms other approaches in terms of accuracy and robustness.
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Chapter 2

Event Cameras

In this chapter, we present a brief overview on how event cameras work. For

a deeper understanding about these sensors, we refer the reader to the recent

survey [59].

2.1 Overview

Event cameras[94, 22, 141], also known as Address Event Sensors (AES), are

bio-inspired neuromorphic sensors. They closely mimic the human eye where

the human ganglion cell fires independently as soon as a light is detected by

they eye’s retina in response to a brightness changes. Similarly, the AES

fires events at individual pixels as soon as a brightness change is detected.

In contrast, traditional or frame-based cameras generate images resembling

the final output we see with our eyes bypassing many layers of the human

eye way of operation.

Table 2.1 compares an expensive high frequency camera (Photron), tradi-

tional camera (Bluefox), and an event camera (DVS). Contrary to a regular

camera which output frames at fixed time rate of 90 Hz, the event camera

generate asynchronous events at low latency of 1 MHz or 1µs. It also enjoys

a much lower storage transmission bandwidth and lower power consumption
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Table 2.1: Comparison between the main types of cameras.

than the other two cameras. Using expensive motion sensors such as high

frequency cameras can achieve similar latency as the event cameras, how-

ever, it comes at more then 10 folds the price and requires a very high power

consumption, data transmission and memory requirements, and processing

time.

Figure 2.1 visualizes the output of AES versus the output of standard

frame-based cameras, when looking at a black dot on a rotating disk. The

asynchronous output is clearly visible for the AES while the disk rotates,

whereas we can clearly see that when the disk stops rotating, no events are

generated from the AES while the regular camera keeps sending redundant

images. The main disadvantages of the AES are their low spatial resolution

and lack of intensity levels. However, the intensity levels could be recovered

by spatial and temporal processing.
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Figure 2.1: Output visualization from AES compared to standard frame-

based cameras when looking at a black dot on a rotating disk [119].

2.2 Principle of Operation

The asynchronous transmission of an event at the time it occurs is done

using digital circuitry. The simplified diagram of the circuitry illustrated

in the left panel of Fig. 2.2 shows that an event camera has independent

pixels that triggers whenever their ‘log intensity (photocurrent)’, referred to

as ‘brightness’ change. Each pixel memorizes the log intensity value each

time it fires an event. It continuously monitors the brightness level of the

current pixel location x at time t until it exceeds a certain threshold δe with

respect to the memorized value at a previously referenced time tref :

∆I(x, t) = I(x, t)− I(x, tref ) ≥ δe (2.1)

at which the camera fires an event e transmitted by the chip in a quadruple

data format e = ⟨x, t, p⟩, where x = (x, y) are the 2D pixel coordinates, t

is the corresponding microsecond timestamp, and p ∈ {1,−1} corresponds

to the polarity of the brightness change (1 denotes an increasing brightness

(‘ON’) from dark to light and -1 denotes a decreasing brightness (‘OFF’)
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Figure 2.2: Simplified circuit diagram and operation of an AES [94].

from light to dark). This event firing is illustrated in the right panel of

Fig. 2.2. All events are outputted from the camera’s pixel array via a shared

digital output bus [175, 102]. This bus can in some situations cause some

bandwidth limitations which perturbs the the times at which events are sent

(See Appendix A).

2.3 Conclusion

Event cameras are cheap and low cost motion sensors with precise timing,

high sampling frequency, high dynamic range and low power consumption.

These characteristics offer the potential to achieve accurate and robust mo-

tion estimation.
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Chapter 3

Problem Formulation

This thesis aims to estimate the relative motion (output) between a scene

and an event camera (AES) given events (input) captured by this camera.

3.1 Preliminaries

Throughout this thesis the following notation will be adopted:

• The pixel location is denoted:

x =

[
x

y

]

and its velocity is denoted:

U =

[
u

v

]

where u and v are its horizontal and vertical components also known

as the Optical Flow (OF).

• Let I(x, t) denote the log intensity ‘brightness’ at position x and time

t.
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• e(x, t, p) denotes an event at position x and time t with a polarity

defined by p = 1; I(x, t)− I(x, t− δt) > δe

p = −1; I(x, t)− I(x, t− δt) < −δe,

where δt is the sampling period and δe denote the brightness threshold

required to trigger an event.

• The function Πi,j:

Πi,j = x+ (tj − ti)U (3.1)

projects a pixel from time ti to time tj.

3.2 Event Formation

The motion of an event camera relative to a static 3D scene (known as

egomotion) induces a 2D velocity field of the intensities in the image plane.

Each point P = (X, Y, Z) in the scene moves along a 3D path, with a relative

velocity with respect the camera. The egomotion of the event camera is

composed of the translational velocity

T =

 Tx

Ty

Tz

 ∈ IR3

and the angular velocity

Ω =

 ωx

ωy

ωz

 ∈ SO(3)

The equations governing the velocity field U = (u, v) are derived by

projecting the 3D relative velocities of the scene points onto the image
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plane [103]. The equations of the 2D velocity field are derived using the

pin hole camera projection model as:

u = fωy − yωz +
x2

f
ωy −

xy

f
ωx + f

Tx

Z
− x

Tz

Z
(3.2)

v = xωz − fωx −
y2

f
ωx +

xy

f
ωy + f

Ty

Z
− y

Tz

Z
(3.3)

where f is the focal length of the camera and Z is the depth of the scene (each

pixel having its own depth).

The camera records an event when the brightness of a point in the 3D

scene projected onto the image plane changes from I0 to I1 such the con-

straint (2.1) is satisfied. The egomotion of the camera causes instanta-

neous displacements of a set of points {Pk ∈ IR3}Mi=1 and their projections

{pk ∈ IR2}Mi=1 onto the event camera’s array. This results in events firing

due to motion. Additionally, changes in illumination conditions also lead

to events firing at pixels where brightness changes such that dI > δe. This

results in a stream of events E = {ei}Ni=1 that is generated at different times-

tamps t1, ..., tN , due to motion and illumination.

3.3 Event-based Motion Estimation

Problem. Given an event stream E generated by the projection of motion

and illumination changes onto the event camera’s plane, estimate the relative

motion between the scene and the camera over time.

The velocity field equations (3.2) and (3.3) relate the optical flow U to

the relative motion of the event camera (T,Ω), the pixel depth Z, and its

location x:

U = f(T,Ω, Z,x) (3.4)

When the camera moves, a stream of events E is generated. To solve (3.4) we

need to establish a relationship between those measurements and the camera
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motion. An event e firing due motion is related to a previously fired event

ep at location (xp, yp) and time t−mδt by

h(U, e, ep) = 0

On the other hand, spurious events, triggered by uncorrelated illumination

changes, have no priors. We can define a function for any event as:g(U, e, ep, dI) = 0; if dI < δe

f(e, dI) = 0; otherwise,
(3.5)

where g associates the stream of events and their priors, note that if dI = 0

then g = h. The function f has no bearing on motion estimation.

The event-based motion estimation problem is mathematically formulated

by Eq. (3.4) and (3.5). The optical flow U is estimated through Eq. (3.5) by

comparing a current event e to its prior ep. It is then used to estimate the

camera motion (T,Ω) through Eq. (3.4).

3.3.1 Illumination Change dI

Estimating dI is virtually impossible without making assumptions about

the light sources and surface properties. It is frequently circumvented by

adopting the Brightness Constancy Equation (BCE) which sets: dI = 0.

3.3.2 Motion Model

Additionally, we do not have a clear model of the function g. A common

assumption adopted is a constant velocity model as the motion function g

and set

xp = x+ (tj − ti)U

to project an event from (x, ti) to (xp, tj). Assuming the BCE and the

constant velocity model, Eq (3.5) reduces to:
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g = h = 0 =⇒ ep = Π(U, e) (3.6)

3.3.3 Data Association Problem

Solving Eq. (3.6) requires solving for the data association between an event e

and its previous firing ep. Existing solutions of the data association problem

assume that events approximate the local image structure around the cur-

rent event. This allows them to employ standard image matching or track-

ing techniques. However, events in many situations provide only a sparse

approximation of the local structure that might not be enough for matching

or tracking.

3.3.4 Undetermined Problem

The reduced problem in Eqs. (3.4) and (3.6) is ill-posed (undetermined)

as it has more unknowns than equations. Current solutions overcome this

challenge by assuming smoothness with neighboring events having similar

velocities. On the other hand, event cameras are meant to be used in sparse

natural scenes where events are generated along object boundaries or edges.

In these situations, the spatial smoothness assumption can be easily violated,

thereby deteriorating the accuracy of the motion estimation.

3.4 Problem Statement

This thesis hypothesizes that avoiding the assumptions discussed in 3.3.3

and 3.3.4 will result in more robust and accurate motion estimation. To-

wards that, it proposes solving Eqs. (3.4) and (3.6) by handling each event

individually without assuming any relationship to its neighbors beyond the

common camera motion. To resolve the data association and the ill-posedness
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problems, we explore new voting-based solutions that rely on considering all

potential data association candidates that are consistent with a single camera

motion for candidates evaluation.
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Chapter 4

Literature Review

In this chapter, we review the related work to event-based motion estima-

tion. The first part reviews Event-based Optical Flow (EV-OF) to compute

image velocities from a stream of events, then egomotion estimation using

event cameras. The second part focuses on reviewing the objective functions

functions to highlight their effect in tackling the data association and ill-

posedness challenges for event-based motion estimation. Further, we present

a review on how filtering techniques are used in event-based motion estima-

tion. Finally, we present a summary of the major limitations for motion

estimation.

4.1 Event-based Optical Flow

Optical flow is the problem of computing the velocity or motion of objects on

the image plane. event cameras are attractive for OF estimation since events

represent edges in natural scenes where OF estimation is less ambiguous,

and due to their precise timing which allow to measure high speed flow. The

main optical flow approaches can be divided into three categories:

• Classical approaches that are based directly adopting frame-based al-

gorithms.
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• Variational approaches (the dominant stream) that consider a local

smooth distribution of events in x-y-t space.

• Deep learning approaches that rely on recent successful machine-learning

approaches from frame-based optical flow.

4.1.1 Classical Approaches

Early motion estimation from event cameras followed the classical approaches

used in frame-based techniques. Similarly, it uses the gradient constraint

equation based on the brightness constancy assumption. In event-based vi-

sion there are no intensity information, therefore a formulation of intensity

from event cameras was the major focus of these approaches.

Benosman et al. [19] introduced the first BCE-based approach. This

method adapts the Lucas and Kanade local smoothness assumption to esti-

mate the temporal derivative of the brightness over the local image structure.

Brosch et al. [23] added a second order term to the temporal gradient esti-

mate in Eq. (4.1) and (4.2) , to make the derivative estimation more stable.

Although other classical approaches emerged such as [77, 14, 15, 62], which

some targeted the issue of OF in textured regions [14, 15], and others [4]

fused it with intensity-images, these method were inconclusive and ineffec-

tive in computing the EV-OF due to two major limitations: 1) they can only

compute the temporal derivative of the brightness, therefore more assump-

tions are needed to estimate the spatial derivative, 2) however due to the

small amount of events fired as an edge crosses on it, it is hard to recover

the spatial gradients which is assumed locally smooth.

Some EV-OF methods [43, 12] considered the intensity as an extra un-

known in the gradient constraint equation, therefore proposed to jointly solve

for the OF and intensity. They modified the global BCE formulation by

adding smoothness on the intensity and a data term to account for the time

input coming from AE data. The latter is solved as a minimization problem
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over a Discretised local image structure as an event frame in a fixed time

window. Nagata et.al [122] corrected the OF from [12] by using the 2D mo-

tion field equations to solve for the focus of expansion (FOE) to correct the

OF estimation along the radial direction, which the smoothness loss does

not account for. This approach requires the estimation of the yaw rate from

event frames (angular velocity perpendicular to the image plane) prior for

solving the FOE. Pan et al. [135] presented a more robust way to jointly

estimate the OF with a single blurred imaged and its corresponding accumu-

lated events. They improve the brightness Constancy equation to encode the

real intensity, and added a blurness equation. Their approach handled rapid

motion and blur batter then some existing EV-OF. These methods require

handcrafted spatial and temporal regularizers (in the form of smoothness

assumptions), which limited the quality of the OF estimation them sensi-

tive to the smoothness assumption where they needed many events to fire to

accurately estimate the OF.

4.1.2 Variational Approaches

Variational approaches that consider the local distribution of events in x-y-

t space, are more robust and preferred over the classical approaches. This

stream was initially introduced by Benosman et al. [18]. This category is

more general then the BCE-based one, since it relies on the local distribution

of events spatially in the image, in terms of time surfaces(see Eq. (4.3)).

The original algorithm introduced what is known by surface of active events

(SAE), which describes the movement of an edge firing events along it that

fits points on spatio-temporal surface. The OF is estimated by fitting a plane

within an accumulated time window on the structured image, where they

prove that the slope of the surface in the plane encodes the edge motion.

The accuracy of the OF depends on the accumulated time window of the

fitted plane and how it evolves with time. Further, it only estimates the OF

perpendicular to the edge. Later on Akolkar et.al [1] addressed the limitation
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the aperture problem in this plane fitting approach, by using the fitted OF

to correct for the true OF along the direction of the edge. Almatrafi et

al. [3] addressed the lack of robustness to rapid motion from the plane fitting

approach, by deriving an exact OF without Taylor series approximation,

from a distance encoded event frames. Fei Low et al. [104] simplified the

mathematical formulation of the plane fitting approach and added a greedy

algorithm to optimize the accumulation of events. This aimed at speeding

up the plane fitting approach at the expense of losing some OF estimation

accuracy. These approaches showed that they are capable of outperforming

the classical frame-based approaches. However, they all suffered from the

goodness of the spatial window fit in the encoded image structure, which

violates the spatial smoothness assumption if the window is too large or too

small.

Mueggler et.al [116] went a step further by improving the plane fitting in

the encoded image structure, predicting the time when future events will fire

using τ in a regularization scheme. The results on EV-OF outperformed the

original plane fitting method that relies on a constant event-accumulation in-

terval. Stoffregen and Kleeman [157] used the lifetime estimation τ to create

a different plane fitting technique: all events belonging to the same object

have an estimated flow plane based on the structure of that object, therefore

each event is segmented to create a new flow plane if it does not match to an

already existing structure, otherwise, it is assigned its OF is computed based

on the existing plane. The established planes are updated dynamically using

the lifetime estimation τ . Gallego etl.al [60] estimate EV-OF by producing

motion compensated event frames. They accumulated events into an event

frame structure, then applying frame-based image warping techniques in or-

der to maximize the sharpness of the event frame. They pass an adaptive

filter on the event frame in the spatio-temporal direction which gives the best

filter response. Along the same criteria, Zhu et.al [179] used motion com-

pensation by accumulating an event frame over an optimized time window
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using [116], to compute an average OF between the accumulated EF dictated

by the lifetime of events. Reinbacher et al. c[144] tackled the the issue im-

posed by spatial window by doing spatial smoothness regularly at periodic

times, which was was found to deteriorate the motion estimation accuracy

resulting in blurred over smoothed or under smoothed reconstructed images

when compared to spatially free approach [150]. Khoei et.al [85] created

a 4 stage model to simulate a lateral geniculate nucleus (LGN) filtering to

estimate OF. It consists first of denoising the output of an event camera,

then they track the activity of event via a layer grid to model a simple LGN.

the layers grids are encoded in a 140ms which is 4 times the actual frame-

based rate. None of these approaches addressed the impact of the spatial

smoothness window.

The variational stream show more accuracy and robustness over the clas-

sical approaches [148]. They also showed that they are capable of outper-

forming the classical frame-based approaches [18, 157], However, their OF

estimation is highly affected by the spatial distribution of events within

their accumulated frames, where too small or too large windows violate the

smoothness assumption, which deteriorate the OF accuracy since events are

meant to fire along object boundaries.

4.1.3 Deep Learning Techniques

Recently, deep learning approaches started to emerge. They rely on the

availability of large amounts of event data to be accumulate them into event

frames in order to apply frame-based ANN. The unsupervised learning ap-

proaches from frame-based cameras, namely Back-to-basics [81] and Un-

Flow [111], offered a new paradigm of OF learning to overcome the lack

of labeling in datasets. Such methods were motivational for learning event-

based motion estimation, where labeled datasets are rare.

These methods, were used as the base of the first EV-OF learning ap-

proach, called EV-Flow-Net [180]. Their main reasoning behind the lack of
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success of deep learning for event cameras in general, was that these sensors

do not output an image. Therefore, they based their idea on encoding events

into an image structure to feed it directly to a CNN. They transformed events

into a 4-channels encode event frame accumulated over a window of time.

The first two channels count the number of positive and negative events re-

spectively, while the last two channels encodes the timestamps by storing the

last positive and negative timestamps respectively. The input event frame is

fed into a CNN to estimate the optical flow as seen in Fig 4.1. They used

a type of event cameras called DAVIS [22]. DAVIS outputs grayscale image

synchronized with event data, at the standard regular camera frame rate.

EvFlow-Net used a pair of grayscale images occurring before and after the

encoded frame, i.e. the encoded frame consists of accumulating the events

that occurred between those two frames. Its input also consists of the pair

of grayscale images, to compute a self-supervised loss. The architecture is a

similar encoder-decoder from [81] while relying on the classical photometric

loss. When compared to the frame-based approach UnFlow [111], the re-

sults seemed to be in favor of UnFlow. Their encoded event frame method,

besides only operating at low frame rate, fails in the presence of dense and

large movements. Later on, they improved EV-Flow-Net [181] by using a

contrast maximization loss measuring the consistency of the OF estimation

across voxel-grids, where their results were on par with [111]. An impor-

tant observation in [181] was that the spatial smoothness constraint used to

combat data sparsity needed for creating event frames, tends to blur object

boundaries due to the deterioration of accuracy in estimating the motion at

object boundaries.

Evenly-Cascaded neural Network (ECN) [178] is another existing ap-

proach for learning EV-OF. It replaces the last 2 channels in the EvFlow-Net

event frame generation, by one channel that take the average timestamp of

all the events fired on that pixel during the fixed time window. The main

aspect of their approach is jointly estimating optical and camera’s egomo-
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Figure 4.1: EvFlow-Net architecture. Figure taken from [180].

tion. Their ECN, illustrated in Fig. 4.2, consists of 2 networks: a camera

velocity network, and a depth network. The input to the ECN is a set of

three consecutive encoded frames. The camera pose network consists of an

encoder that will predict the relative velocity pose vectors with respect to the

middle event image. The depth network uses only the middle event frame

as its sole input, to predict the depth. Given the predicted depth and the

camera velocity vectors for neighboring frames, the OF is estimated. ECN

uses the spatial smoothness loss. Therefore, ECN is also an unsupervised

EV-OF network.

Kepple et al [84] proposed a CNN that jointly learn the camera pan and

tilt rates and the OF. They proposed 2 CNNs, a visual motion network which

predicts the camera motion from 4 event frames accumulated over millisec-

onds window. To overcome the aperture problem posed by this estimation

they proposed a joint second CNN that measures the confidence of the pre-

dictions. They achieved faster computational speeds then EV-Flow-Net but
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Figure 4.2: ECN architecture. Figure taken from [178].

less accuracy. Paredes-Valles and de Croon [136] proposed to encode events

into voxel-grids structure, which are then fed to two separate networks. The

first is FlowNet [51] and the second one is ReconNet. The approach is self

supervised, Their main contribution was integrating the contrast maximisa-

tion loss from [181] to train and compare the resultant event frame from both

networks with the warped event frame from the OF estimated.

Gehrig et al. [65] presented another synchronous approach which was a

combination of three main events representation. Their major finding was

in comparing their results against other ways of accumulated grid-like rep-

resentations, and showed that even within the main representations used to

process events in accumulated grid-based methods the accuracy of the OF

estimation was very sensitive to the type of grouping used.

In the frame-based field, CNN-based OF approaches FlowNet3.0 [79]

and PWC-Net [161] have largely outperformed hand-crafted OF approaches.
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Such a success is yet to materialize in motion estimation from event cameras.

Furthermore, these approaches are not clearing showing tangible benefits

from using address event data over regular images. The reason behind that

is due to the use of Event Frames to extend frame-based objective functions

to work on the generated event frames, which effectively eliminate most of

the potential advantages of event cameras.

4.2 Event-based Egomotion Estimation

Egomotion is the process of estimating the motion of a camera in 3D scenes.

Solving the egomotion problem with event cameras in its most general set-

ting i.e. 6-DOF in natural 3D scenes, is a challenging problem due to the

data association and ill-posedness challenges. For this reason, event-based

egomotion approaches addressed it step by step with increasing complexity

such as the type of motion (2D pure rotational motion or planar motion, 3D

general motion in natural scenes), depth consideration, or additional require-

ments (external sensors, requirements on scene types). Table 4.1 classifies

the main related work using these complexity groups, and highlights how our

approach will be fundamentally different. We now review the relevant work.

The early egomotion approach from event cameras was presented by

Weikersdorfer et al. [171, 119]. They designed a likelihood function for a par-

ticle filter that quantifies the observed events given a map of the scene and

some information about the camera pose. It only works on planar scenes par-

allel to motion plane generated from artificial line patterns. They extended

their approach in [170] to 3D camera pose estimation in general scenes, how-

ever they required a depth map from RGB-D sensors [127], forcing the ap-

proach to become synchronized with fixed frame rate, by encoding events

into an event frame to track the evolution of its local structure.

Later approaches increased the complexity of the problem, by either us-

ing generic handcrafted approaches, or relying on additional sensors. Cook et
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Table 4.1: Event-based methods for egomotion estimation. The type of mo-

tion is labeled ”2D” (3-DOF motions, e.g., planar or rational) and ”3D”

(6-DOF motion in 3D scenes). Columns indicate whether the method con-

siders depth in the scene (”Depth”), are free from Local Image Structure

(”LIS free”), are free from Spatial Smoothness (SS) assumption (”SS free”),

and any additional requirements. Note that the work of this thesis will be

fundamentally different.

References Dim Depth LIS free SS free Additional requirements

Cook [43] 2D ✗ ✗ ✗ rotational motion only

Censi [34] 3D ✗ ✗ ✗ attached depth sensor

Kim [87] 2D ✗ ✗ ✗ rotational motion only

Kueng [90] 3D ✓ ✗ ✗ intensity images

Rebecq [143] 3D ✓ ✗ ✗ -

Reinbacher [144] 3D ✓ ✗ ✗ intensity images

Gallego [62] 2D ✓ ✗ ✗ rotational motion only

Liu [99] 2D ✓ ✗ ✗ rotational motion only

Reverter [147] 3D ✓ ✗ ✗ -

Peng [138] 3D ✓ ✗ ✗ -

Wang [168] 3D ✓ ✗ ✗ -

This work 3D ✓ ✓ ✓ -

al. [43] presented a handcrafted synchronous approach that jointly estimate

the egomotion, optical flow, and intensity. This method is very generic en-

forcing a rotational constraint motion only. The handcrafted work in [34, 90]

estimated the camera translational displacement synchronously for planar

scenes. Their approach required the fusion of a frame-based camera to the

event cameras to estimate small translational displacements between event

frame and regular frame. Handcrafted spatial smoothness was used, while

this system was restricted to operate at the frame rate of the frame-based

cameras. Their results were slightly worse then frame-based approaches.

Muggler et al. [119, 118] tracked the camera pose for very rapid motion by
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a hand-crafted approach requiring synthetic 3D black and white maps. At

first, they brute forced the method by tracking events firing synthetically one

by one next to each other on the map, by using PnP frame-based methods.

They further extended their approach to estimated the camera trajectory

instead of the camera pose, using a reprojection frame-based loss. Gallego et

al. [61] used a probabilistic Bayesian filter to track the 6-DOF of the camera.

The filter requires an existing 3D map of the scene to compute a likelihood

function based on mixture of densities. Bryner et al. [28] also presented a

synchronous approach given a 3D map of the scene, by applying non-linear

optimized frame-based reprojection loss between an event frame, and inten-

sity and depth images from traditional camera derived from the given 3D

map. Similarly, Reinbacher et al. [144] used a mapping and tracking algo-

rithm to estimated the camera 3D rotation via a frame-based photometric

loss restricted to rotational motion. Chamorro et al. [37] used a Lie-EKF

filter to perform fast event to line matching using event frames, grayscale

images, and prebuilt 3D map to track the camera pose. These methods have

inconclusive results compared to image-based approaches, although they out-

performed them specially in challenging scenes. They do not exploit the event

cameras’ advantages at all since they require additional external information,

and they were sensitive to the smoothness constraints assumed to track the

evolution of their local event frame structure.

Approaches that narrowed down the motion estimation to 3D pure rota-

tion gained success by showing materialized results against the frame-based

approaches. Kim et al [86] used a particle filter to estimate the 3D camera

rotation state for high dynamic range 3D image reconstruction. They assume

spatial smoothness to estimate a brightness gradient map of the scene from

the 3D rotation of the camera. The filter requires a 3D (panoramic) map of

the scene to estimate the camera rotation, only works for rotational motion,

and the accuracy of the filter to estimate the rotational state is not reported.

They extended this approach in [87] to jointly estimate the camera pose,
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depth of the scene, and the intensity image. They replaced their particle

filter with an EKF that is joint with 2 other probabilistic filters. Similarly

to [86], their filtering requires intensity images and GPU to reconstruct depth

maps, which make it only suitable for offline applications. Rebecq et al. [143]

further extended the work in [86, 87] by replacing the depth estimation in [87]

with a 3D simultaneous mapping through 3D reconstruction and map align-

ment assuming smoothness constraint around the encoded image structure.

Their results were on par with regular images. However, these approaches

have limited robustness due to the simple assumptions made on the camera

pose to track the evolution of the local structure for data association. They

also require additional information which are typically provided by frame-

based sensors, 3D map of the scene, or intensity images to solve the data

association.

Recently, contrast Maximisation (CM) approaches have been seeing ma-

jor success in event-based egomotion. The idea behind using a contrast max-

imization technique was to associate events that produce sharp edges in the

encoded local structure when warped using locally smooth velocity, solving

for the data association by minimizing the evolution of the local image struc-

ture. 3D rotational approaches are currently providing direct comparison

against each other for egomotion estimation using event cameras. Gallego

et al. [63, 62] estimated the camera angular velocity [63] and heading [62]

by warping each event based using a constant angular velocity model, then

encoding the warped events into an event frame. Their original approach

in [63] was a synchronous 3D rotational speed that relies on maximizing a

frame-based contrast objective function applied onto their generated event

frames to track the evolution of the local structure. They extended their

approach in [62] to estimate depth using a frame-based multi view stereo

planar homography approach, before applying their maximization of con-

trast to estimate the depth. Xu et al. [176] used the method in [63] to

apply frame-based image maximization energy with smoothness constraint
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on event frames, in order to track the camera’s pose. Similarly, Nunes et

al [132] improved the method in [62] by replacing the maximization contrast

by a frame-based entropy minimization framework, for 3D rotation and cam-

era heading estimation in planar scenes. Another improved extensions were

presented by Liu et al [99] where they proposed to add a branch-and-bound

(BnB) to perform a global optimization on the contrast maximization ap-

proach in [99] to estimate the camera’s angular velocities. They latter added

a simple spatiotemporal registration (STR) approach in [100] assuming rota-

tional motion only. This approach is currently one of the best 3D rotational

estimation approaches outperforming [62, 63, 176].

Finally, the general motion estimation from event cameras was consid-

ered. The contrast maximization on event frames was expanded to deal

with general motion estimation via Branch and Bound [138, 168]. An-

other major stream of general motion estimation from event frames, re-

lied on camera’s pose estimation techniques such as standalone traditional

keyframes methods [147], or aided by external sensors (IMU or grasycale

cameras) [117, 166, 91]. These approaches seem to be working better then

frame-based techniques, in situation where there was rapid motion, motion

blur, and high illumination changes. However, CM and pose estimation tech-

niques for event-based egomotion are sensitive to the event frames structure,

where the tracked evolution of those structure violates the local smoothness

assumption in many situations, and some assume pure rotation in scenes

where significant translation motion is present.

4.3 Event-based Objective Functions

We saw in the previous sections how motion estimation approaches with

event cameras are performing, and identified key gaps that could help de-

velop more improved motion estimation approaches. This section goes into

some of specifics of the objective functions of the main approaches to pro-
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vide a better understanding of those approaches and their limitations on

event-based motion estimation. They can be classified into the following two

categories:

• Classical objective functions that rely on frame-based formulation.

• Time Surface (TS) or variational-based objective functions.

4.3.1 Classical Objective Functions

In event-based vision there are no intensity information, therefore a formula-

tion of intensity from event cameras was the major focus of these approaches.

Therefore, the classical stream adapts objective functions from frame-based

cameras. Benosman et al. [19] introduced a BCE-based approach. This

method adapts the Lucas and Kanade local smoothness assumption. Their

original derivation which is asynchronous by definition, inspired the later

work in this category. It consists of defining a neighboring window around a

local structure in the image, to compute the spatial and temporal derivatives,

therefore the gradient constraint equation is written as:

t∑
t−∆t

(e(xi, yi, t)− e(xi−1, yi, t))u =
1

∆t

t∑
t−∆t

e(xi, yi, t), (4.1)

t∑
t−∆t

(e(xi, yi, t)− e(xi, yi−1, t))v =
1

∆t

t∑
t−∆t

e(xi, yi, t), (4.2)

Brosch et al. [23] added a second order term to the temporal gradient

estimate in Eq. (4.1) and (4.2), to make the derivative estimation more sta-

ble. Bardow et al. [12] considered the intensity as an extra unknown in the

gradient constraint equation, therefore proposed to jointly solve for the OF

and intensity. They added spatial smoothness on the intensity and a data

term to account for the time input coming from AE data over accumulating
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them over a voxel grid. The latter is solved as a minimization problem over

a Discretised event frame in a fixed time window. Barranco et al. [14, 15]

argued that in the case of textured edges (or contours) the smoothness as-

sumption will fail. Therefore, they offered an alternative by slicing the event

frame accumulated over a time window, then used cross-correlation between

the slices assuming spatial smoothness. Along the same line, Cook et al. [43]

presented a simpler non-traditional algorithm to jointly estimate the inten-

sity and OF, within in an interacting model, for only rotational movement.

Weikersdorfer et al. [171, 119] proposed simple asynchronous objective func-

tions that computes the reprojection error (assuming spatial smoothness)

between the event’s location and the closest edge in a map of a scene. It

only works for 2D translational scene with constant depth given the 3D map

of the scene. Nagata et al. [122] introduced FOE-based regularization loss

that works by intersecting of the translational velocity vector and the image

plane. They used this loss to correct the spatial smoothness regularization

loss in estimating the radial component of the optical flow. It requires the es-

timated yaw angular motion computed by accumulating events to reconstruct

event frames using the loss from [12], applying frame-based loss to estimate

the angular motion, then using it as an input to their FOE to regularize

the OF estimation. It is inconclusive to say if these approaches outperform

frame-based techniques given the easier instances of motion considered.

On the other hand, more successful frame-based objective functions started

to find more success in event-based motion estimation. Contrast Maximiza-

tion(CM) techniques [62, 99, 100, 138, 168] proposed to warp accumulated

events into an image structure, which produces motion patches representing

the brightness increment of the evolution of that structure(proportional to

the gradient constraint) while imposing local smoothness, that corrects the

motion estimation. Almatrafi et al. [4] used the BCE formulation to interpo-

lation objective function assuming local smoothness, and find the gradient of

grayscale images intensity, which then they use to correct the intensity com-
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puted from intensity images with the intensity recovered from events frames

accumulated at a fixed frame rate. Pan et al. [135] used the BCE equation for

events in log space to encode the motion and events relationship, conserving

the original absolute intensity. They also added a blur objective function to

the smoothness terms. These approaches showed successful motion estima-

tion even in very fast motion scenarios. However, their CM formulation is

sensitive to the evolution of the local structure of the event frame, where low

rate of events firing (sparse scenes only on object boundaries) violate their

local smoothness assumptions which dictates their CM formulation.

Gallego et al. [60] aimed at studying the alignment of events in the local

image structure for motion compensation. Towards that they tested about

20 frame-based objective functions (used in unsupervised learning) on an

motion-compensated event frame. The event frames are warped using image

warping techniques, and then the 20 objective functions were applied over

the optimized event frames. Their results showed that most of the frame-

based objective functions can be applied to AES applications such as OF and

egomotion. However, they highlighted that the stream of objective functions

that focus on adapting frame-based objective functions eliminate most of the

advantages the event cameras offer.

Recently, deep learning techniques adopted classical unsupervised losses

from the successful learning approaches in regular cameras. The main ap-

proaches [180, 178, 136] used the photometric loss and smoothness loss, ex-

actly as defined in [81], which has been enjoying a great success in frame-

based learning approaches. The initial approach [180] had an objective func-

tion which computes the error between grayscale images occurring before and

after the event frame structure, i.e. the event frame consists of accumulating

the events that occurred between those two frames. They apply their loss by

backwarping (photometric loss based on the BCE) the event frames to track

their evolution over time, then applying the smoothness loss. Stoffregen and

Kleeman [158] used the contrast maximisation formulation from [181] to con-
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duct an analysis using many frame-based objective functions in order to try

and define a proper number of events to be accumulated within the voxel-

grid. Their results showed the processing of events in accumulating them

into grid-based groups play the biggest role in the performance of objective

objective functions used. These approaches fail to generalize to different en-

vironments not seen at training time. The reason behind that is due to the

use of event frames to extend frame-based objective functions based on the

evolution of local those image structures over time (relying on the smooth-

ness loss) to work on the generated event frames, which effectively eliminate

most of the potential advantages of event cameras.

4.3.2 Variational-based objective functions

TS-based or variational-objective functions approaches that consider the lo-

cal distribution of events in the local image structure in the x-y-t space have

been showing more robustness then the classical approaches when it comes

to engineered techniques for optical flow estimation in particular [148]. The

variational objective functions stream rely on spatial and temporal smooth-

ness assumptions, while requiring accumulating events into some sort of an

image strcuture in order to capture the local spatio-temporal relationship

between events.

The original formulation was introduced by Benosman et al. [18] and is

now know as the surface of active events (SAE) Σe(x, y) defined as Σe(x, y) =

t, where (x, y, t, p) are event data. Σe(x, y) is a function which maps to each

event position (x, y), a time t. Differentiating Σe(x, y) results in predicting

the mapping at p + dp as function of the gradient. The velocities on the

image plane are related to the gradient of the SAE by:

∇Σe(x, y) = (u(x, y)−1, v(x, y)−1)T . (4.3)

Eq. (4.3) assumes a local velocity constancy in the form of spatial smooth-
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ness. For each event, it fits a local plane by accumulating the neighboring

events in a time window and study the evolution of this local structure over

time. It uses LSM [64] to estimate a plane and loop over all events to make

sure they take the ones only belonging to the plan. Finally, the plane’s normal

vector is used to compute the velocity of each event. This objective function

have became of most commonly used methods in event cameras specially for

motion estimation. The goodness of this method depends on the accumu-

lated time window of the fitted plane to ensure that the velocity constancy

is not violated: if the window is too large overfitting occurs, if the window

is too small accuracy is lost. They typically accumulate events within 10ms

(thousand times the event cameras latency). The accumulation of events idea

to study the evolution of the local structure around these events started to

evolve to become one of the major framework to event-based vision, and its

major bottleneck at the same time. The original algorithm did outperform

frame-based approaches for motion estimation.

Till this day, many event-based motion estimation approaches rely on this

SAE objective function. Clady et al. [40] used the local plane fitting function

to compute the time of contact between a robot holding an event camera and

an object. The method expanded the local plane fitting by adding a prob-

ability map of the visual field. Akolkar et al. [1] addressed the limitation

the aperture problem in this plane fitting approach, by adding an additional

objective function that minimizes the normal velocity component estimated

by the plane fitting function with respect to orientation of the edge and the

true motion direction. They further extended the original plane fitting loss

to work with complex object shapes [2] , by using the magnitude of the

normal velocity component of the estimated plane, which is directly related

to the orientation of the object’s edge, and linearize it using multiple small

edges to complete the object shape. Almatrafi et al. [3] presented a distance

surface loss based on TS where they accumulate event into distance frames:

each event frame encodes the spatial distance as the intensity value. Then
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they use this distance frame to derive the OF as spatio-temporal gradient

of the distance function, exactly like the plane fitting loss [40]. They claim

their derivation is exact in contrast to the plane fitting one which rely on

Taylor series approximation, which makes it more robust to fast motion.

Eventually they use the classical frame-based photometric objective func-

tion. Their results were not better then the original approach. Fei Low et

al. [104] improved the SAE by simplifying its mathematical formulation with

the addition of a collinearity constraint. These approaches continued to have

the same success as their parent objective function approach against frame-

based approaches specially in situations where motion was fast, illumination

changes were large, and motion blurness. However, they inherent the good-

ness of the accumulated window limitation due to the spatial smoothness

assumption of this stream of functions.

Another main variant of the SAE was introduced by Mueggler et al. [116].

They went a step further by estimating the maximum time it would take for

the brightness gradient at the current event location to trigger a new event

in a neighboring pixel, in the vicinity of 1 pixel radius (see Fig. 4.3). The

latter is called lifetime, τ , of an event and is defined by Eq. (4.4):

τ(x, y) = ∥∇Σe(x, y)∥ =

√
1

u2
+

1

v2
. (4.4)

They can optimize the accumulation time window of events based on Sτ ,

where S is the desired displacement within this time window. Their results

outperformed the original TS approach [18] and image approaches.

Stoffregen and Kleeman [157] used the lifetime estimation in Eq. (4.3)

to create a different plane fitting algorithm, where all events belonging to

the same object have an estimated flow plane based on the structure of that

object, therefore each event is segmented to create a new flow plane if it

does not match to an already existing structure, otherwise, it is assigned

its OF is computed based on the existing plane. The established planes are

updated dynamically using the lifetime estimation τ . Zhu et al. [179] used
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Figure 4.3: Life time of event visualization as the planar approximation of

the SAE. Figure taken from [18].

Eq. (4.4) to accumulate event frames based on the lifetime depicted by the

length of the OF. They created a spatio-temporal OF sparsity constraint

loss assuming that a constant average velocity withing the accumulated time

window. The loss minimizes the data association between the events within

the event frames if the average OF withing the accumulated time window is

correct (similar to backward image warping). These methods are sensitive to

the estimated lifetime of events which dictates the milliseconds window over

which the constant average velocity is not violated. Although they improved

the goodness of the fit of the accumulation window, it continues to be violated

at object boundaries due to the spatial smoothness [150].

Zhu et al [181] replaced their photometric loss in [180] by a TS loss based

on a voxel grid image structure which is minimized by summing across event

polarities that projects that local structure back into a single average time

window where the average OF is consistent. This function, inspired by the

contrast maximization objective function, is very similar to the plane fitting
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loss [18], in assuming that the flow is inversely proportional to the gradient

of a grid-representation of the events within a spatio-temporal accumulated

time window. Kepple et al [84] proposed a TS objective function which

takes 4 event frames voxel-grids to minimize the camera tilt and pan rates

with respect to the OF. This supervised loss requires prior information to

aid that joint estimation. They handcrafted it to fit their 2 proposed CNNs

with precise ground truth for the camera motion to recover the OF. These

approaches fail to generalize to different environments not seen at training

time. Although they are showing better motion estimation compared to

frame-based techniques, they are susceptible to the accumulation of events

as noted in the study of [65]. Furthermore, the work of [181] noted that their

approach tends to blur object boundaries due to the spatial smoothness con-

straint, which can significantly deteriorate the motion estimation accuracy

at object boundaries.

4.4 Filtering In Event Cameras

The previous sections show that most of the event-based motion estimation

approaches tend to aggregate events into frames, and as shown in the anal-

ysis work [65] it is not trivial what is the best way to bundle events into

frames, and concluded that to exploit event cameras to their full potential,

asynchronous processing is the way to go. Furthermore, one of the main

premises of this thesis is to solve the motions estimation from event cam-

eras asynchronously. In this section, we review the related work on filtering

techniques in event cameras as they have the capability of processing event-

by-event.

In general, asynchronous processing with event cameras is commonly done

through either the use of filters or the use of neuromorphic methods. It is

worth noting, that the latter rely on a new class of neuromorphic hardware

processors such as the IBM TrueNorth [112], which are asynchronous by
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design. A number of successful work was based on the use of Spiking Neu-

ral Networks (SNN) [134, 133, 101, 71], which are biologically inspired net-

works, and take the temporal information from spikes making it useful for the

event cameras. However, these hardware processors are not yet well estab-

lished, which means that the processors must overcome the same entrenched

competitor practicality problem that the event cameras are facing with the

frame-based cameras. Additionally, SNN’s major drawback of having their

objective function not differentiable, makes back-propagation inapplicable.

Therefore, until neuromorphic methods become a mainstream, event cam-

eras algorithms continue to make use of the advantages offered by parallel

computing similarly to frame-based camera. Thus, neuromorphic methods

are not studied in this thesis.

There are two main types of filtering techniques used in event cameras:

• Deterministic Filters.

• Probabilistic Filters.

4.4.1 Deterministic Filters

Brosch et al. [23] applies a set of state-of-the-art deterministic-selective filters

(equivalent to spatio-temporal correlations filters in frame-based approaches)

or spatio-temporal filters on accumulated event streams. The filters are hand

crafted to select different motion speeds and directions. Smoothing temporal

deterministic filters such as [150, 145] presented a temporal filter to smooth

events for image reconstructions and fusing events into frames for 3D im-

age reconstruction. The filter can update each pixel intensity every time an

event fire lead to reduced noise on the reconstructed event frames. Scheer-

linck et al. [152] presented a brightness deterministic filter for spatial image

convolution from events, for better 3D image reconstruction. Such methods

have weak or no motion assumptions therefore do not adapt well to motion
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estimation. They rely on spatial smoothness assumption, which is sensitive

to differentiation leading to inconclusive results.

4.4.2 Probabilistic Filters

Probabilistic Filters [163] are the dominant stream for asynchronous pro-

cessing with event cameras. These filters naturally fit the motion estimation,

since they rely on motion assumptions, therefore can be used to design like-

lihood functions that adapt to AE data. All the previous work that use

probabilistic filters, focus on designing likelihood function based on the event

generation process.

Censi and Scaramuzza [34] used a Bayesian filter with a simple likeli-

hood function which fuses an event frame with a regular intensity frame (a

requirement for this filter). Gallego et al. [61] use a probabilistic Bayesian

filter to track the 6-DOF of the camera. The filter requires an existing 3D

map of the scene to compute a likelihood function based on mixture of den-

sities. Chamorro et al. [37] present a Lie-EKF filter to handle the derivatives

and covariances better then a standard EKF. However, it processes event via

event frames, and requires the use of grayscale images for initialization given

a predefined 3D map.

Simple Gaussian filters approaches [96, 46, 42, 53, 140, 131, 44] were ini-

tially used to detect blobs of events, where they associated fired events with

their nearest blob for tracking. Weikersdorfer et.al [171, 119] used the first

particle filter in event cameras. Their filter was restricted to either only

work on 2D planar scenes with constant depth, or required a depth map

through external RGB-D sensors [127]. Similarly, approaches that track sim-

ple generic shapes such as circular shapes. [67, 69, 165] used simple Bayesian

filters to track circular shapes in scenes by accumulating events into frames.

Kim et al [86] used a particle filter to estimate the 3D camera rotation state

for high dynamic range 3D image reconstruction. Its likelihood function relies

on the BCE assumption to estimate a brightness gradient map of the scene
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from the 3D rotation of the camera. The filter requires a 3D (panoramic)

map of the scene to estimate the camera rotation, only works for rotational

motion, and the accuracy of the filter to estimate the rotational state is not

reported. They extended this approach in [87] to jointly estimate the camera

pose, depth of the scene, and the intensity image. They replaced their parti-

cle filter with an EKF that is joint with 2 other probabilistic filters. Similarly

to [86], their filtering requires an intensity image. Zhu et al. [182] used an

EKF fused with an IMU to estimated the correct for the camera motion by

designing a new likelihood projection function. However, these approaches

have limited robustness due to the assumptions made on the camera pose,

and require additional information.

Recently, asynchronous particle filtering approaches [5, 6] for feature

tracking using multi-hypotheses state estimation. This latter stream of work

show the importance of asynchronous processing in exploiting event cameras

to their full advantages, when compared to accumulating events into grid-like

representations.

4.5 Conclusion

All event-based motion estimation approaches rely on the fact that events en-

code the local structure of the imaged scene. Then, they estimate motion by

tracking the evolution of the image structure over time, which is commonly

achieved through developing motion-based objective functions addressing the

data association challenge. The major problem in this way of estimation is

that events are only an approximation of the local structure that can be very

sparse in some cases. Furthermore, spatial smoothness is commonly assumed

to solve for the ill-posedness nature of the problem, which is easily violated

along object boundaries or edges specially in the dominant stream that fo-

cus on aggregating events to synchronously track its evolution of the image

structure. In this thesis, we want to avoid these assumptions, therefore, we
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approach the problem in fundamentally different way, by developing new

voting based-method that handle each event individually without assuming

any relationship to its neighbors beyond the common camera motion. In the

following chapters, we validate that such methods are sufficient for correct

data association of events and their previous firings along the correspond-

ing event tracks, resulting in more accurate and robust event-based motion

estimation.
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Chapter 5

Asynchronous Planar Motion

Estimation

5.1 Introduction

In this chapter, we show that consistency with a single camera motion, where

events constitute a single event track, can be used to solve the data associ-

ation problem Eq. (3.6), then provide a framework for motion estimation

based on that. We validate this hypothesis mathematically, then experimen-

tally on a simplified motion case as a first step in solving the general form of

the motion estimation problem Eq. (3.4).

Towards that, we create a new voting based method to handle each event

individually. It relies on an exhaustive search over all possible event candi-

dates to select those consistent with a single camera motion. We first provide

a mathematical analysis to prove the sanity of this method. Furthermore,

we exploit the voting method as the likelihood function in a particle filter

framework for a simple planar motion case where a camera is translating

parallel to a wall.
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Figure 5.1: Graphical outline of the method. For an input event e, given a

certain velocity U, predict its previous firing êp by backward projection. A

spatiotemporal search is performed over all possible events candidates around

êp to select the ones that are consistent with the camera motion.

5.2 Method

Assuming the BCE and the constant velocity model, and in the presence

of spatial discretization, noise, and uncertainty in the estimation of U, the

backward projection of an incoming event e can be defined as:

êp = Π(U, e) (5.1)

This event is predicted to occur at time t−mδt and location (x̂, ŷ). Note that

predicted events occur over a smooth (continuous) spatiotemporal domain,

while measured events occur over a discretized spatiotemporal domain. We

will dub predicted events with hats.

Let Ep(êp, n,m) ∈ E (see Fig. 5.1) represent the set of measured events
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within an n× n spatial window centered around êp, and a temporal window

mδt. Further, we define a generalized distance metric D encompassing the

spatial, time, and polarity ‘distance’ between events ei and ej as follows:

D(ei, ej) =

min(rt|ti − tj|+ ||xi,xj||, dmax); pi = pj

dmax; otherwise
(5.2)

where rt is a time penalty that addresses the ambiguity caused by uncorre-

lated events spatially close to the predicted event êp but temporally far away

from it and dmax is the maximum spatiotemporal distance parameter. It is

also assigned to penalize events with different polarities (pi ̸= pj) or those

that project outside the image boundaries.

A search of all candidate events within the spatiotemporal window is

carried out to select those consistent with camera motion. To define an

objective function, we use a voting method based on the minimum generalized

distance between êp and the candidate elements of Ep(êp, n,m) as:

L(e,U) = min
ei∈Ep(êp,n,m)

(
D(ei, êp))

)
, (5.3)

Hence, Eq. (5.3) minimizes the BCE over all the previous events in a neigh-

bourhood to solve the data association problem Eq. (3.6).

5.3 Framework

The aim is to exploit the voting objective function to estimate motion asyn-

chronously from Eq. (3.4). We employ a particle filter as a straightforward

sequential Bayesian way to estimate a simple planar motion. A particle fil-

ter suits our distance-based objective function since it involves a discrete

search. The basic idea is, as soon as a new event is fired, to use our method

as the likelihood that votes the velocity which is most consistent with the

camera motion along the associated event track. The framework is described

schematically in Figure 5.2 and procedurally in Algorithm 1.
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Figure 5.2: Schematic outline of the framework. It runs on an event-by-event

basis as soon as an event is fired. Our distance-based method is integrated

as the likelihood in a particle filter framework to vote the velocity which is

most consistent with the camera’s planar motion.

For planar motion scenes where Tz = 0 and Ω = 0, the equations of

motion (3.4) reduce to:

u = f
Tx

Z
(5.4)

v = f
Ty

Z
(5.5)

For an event e, the filter is represented by a set of particles, P (t) = {P (t)
1 , P

(t)
2 , ...P

(t)
N }.

Each particle consists of the current state U
(t)
i and its weight w

(t)
i , where

1 ≤ i ≤ N . Note that estimating the OF U
(t)
i is equivalent to estimating the

camera’s 2D translation velocity T
(t)
i .

We use the constant motion model to propagate the states of the particles:

U
(t)
i = U

(t−τ)
i +M(U

(t)
i ), (5.6)

where U
(t−τ)
i is the previous state of particle i at t− τ , M(U

(t)
i ) is sampled

from a Gaussian distribution in the x and y directions independently such

that M(U
(t)
i ) ∼ N(0, σ2

i ), and σ is the standard deviation.
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In the measurement update step, we use the measured event e to calculate

the likelihood P (e | U (t)
i ) for each particle in the form of an exponential decay

function:

P (e | U(t)
i ) = exp(−αpL

(t)
i (e,U

(t)
i )), (5.7)

where αp is a decay scaling parameter and L
(t)
i is our distance-based func-

tion Eq.5.3. We update the weight wi of every perturbed particle by applying

the standard Bayes rule:

w
(t)
i = P (e | U(t)

i )w
(t−τ)
i , (5.8)

where w
(t−τ)
i is the weight at the previous timestep t − τ . The weights are

normalized according to

w
(t)
i =

w
(t)
i∑N

i w
(t)
i

Systematic resampling [52] is carried out when the effective number of par-

ticles

Neff =
1∑N

i=1(w
(t)
i )2

drops below a threshold such that Neff ≤ N
2
. The OF U is estimated as the

weighted average over all the particles.
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Algorithm 1: Asynchronous Planar Motion Estimation

Input: Current Event

Output: Optical Flow

1 Initialize N × 2 particles (velocities) with uniform weights;

2 if p > 0 then

3 Add and update the positive polarity history;

4 else

5 Add and update the negative polarity history;

6 end

7 if enough events then

8 for each particle in N do

9 Motion prediction step using Eq. 5.6;

10 Predict the previous event êp by backward projection Eq. 5.1;

11 Search for the closest events around êp;

12 Compute the distance cost for the closest events using Eq. 5.2;

13 Evaluate the cost using Eq. 5.3;

14 Use the returned cost to compute the likelihood using Eq. 5.7;

15 Update the particle’s weight using Eq. 5.8;

16 end

17 Normalize the weights of all particles;

18 Resample if Neff ≤ N
2
;

19 Output the mean OF of all particles;

20 end
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5.4 Mathematical Validation

In this section, we validate mathematically that minimizing the BCE over

all previous events in a neighbourhood can be used for data association and

motion estimation.

5.4.1 Notations

Given a point xi moving at a constant velocity v along a line on the camera

projection plane. Its position at time t is given by:

xi(t) = v t+ di

where di is the position of xi at time 0. We assume that:

• The camera plane is infinite and discretized into pixels.

• The point represents the center of an object covering an area equivalent

to the size of a pixel.

• An event is generated at a pixel when xi reaches the edge of that pixel,

such that half of the pixel would be covered by the point.

With the above assumptions, events are generated at time t for all points

satisfying:

C(i, t) = v t+ di − floor(v t+ di) = 0 (5.9)

It follows that events will be generated with a periodicity of p = 1
v
. For

example for point i and assuming di = 0, we can predict a previous event at

time t = n p where n p is a period multiple and n is an integer such that:

C(i, t− n

v
) = v (t− n

v
)− floor(v (t− n

v
))

= v t− n− floor(v t− n) (5.10)

= v t− n− floor(v t) + n

= v t− floor(v t)

= 0
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5.4.2 Single Point Tracking

Given a velocity estimate v̂ and an observed event e at position x1(t), we can

predict a past event êp triggered by that point at x1(t)− n and time

t̂p = t− n p = t− n

v̂

where p = 1
v̂
. In contrast, the true position of the event at t̂p:

x1(t̂p) = v (t− n p) = v t− n v

v̂
= x1(t)−

n v

v̂

Since t̂p is not necessarily equal to an integer multiple of the sampling period,

the past event ep would have been observed at time

tp = t− n p+ η

and location:

x1(t− n p+ η) = v t− n v

v̂
+ v η

= x1(t)−
n v

v̂
+ v η (5.11)

Substituting this location into the trigger condition (5.9) yields:

x1(t)−
n v

v̂
+ v η − floor(x1(t)−

n v

v̂
+ v η) = 0

Comparing the result to Eq. (5.10) we conclude that n v
v̂
− v η is an integer

which is equivalent to requiring that:

v η =
n v

v̂
− round(

n v

v̂
) (5.12)

Substituting this result into Eq. (5.11), we find that the previously observed

event ep is located at:

x1(t− n p+ η) = x1(t)− round(
n v

v̂
)
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The euclidean distance between ep and êp is:

De(ep, êp) = x1(t)− n− (x1(t)− round
(n v

v̂
)
)

= round(
n v

v̂
)− n (5.13)

To account for deviation in the past event's position due to the discrete

sampling time η, we use Eq. (5.12) to add a time penalty:

P (tp, t̂p) = v η =
n v

v̂
− round(

n v

v̂
)

to the euclidean distance between the events and define a generalized spa-

tiotemporal distance between ep and êp as:

D(ep, êp) = De(ep, êp) + P (tp, t̂p) =
n v

v̂
− n (5.14)

We propose to use the generalized distance as an objective function. Fig-

ure 5.3 shows an example of the objective function behaviour as a function

of velocity for an event moving with a ground truth optical flow of

U =

[
1.9

0

]
The function reaches a minimum of zero at the ground truth velocity indi-

cating its plausibility.

5.4.3 Multiple Points Tracking

In this section we generalize the results of the previous section to the case

where the scene involves k points {xi}ki=1. Given an observed event e, a

predicted past event êp, and a stream of past events E = {ei}Ni=1, each point

{xi}ki=1 will provide a candidate event located at:

xi(t− n p+ ηi) = v t+ di −
n v

v̂
+ v ηi

= x1(t) + di −
n v

v̂
+ v ηi (5.15)
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Figure 5.3: Behaviour of the objective function for an event generated by a

point moving horizontally with a ground truth velocity of u = 1.9.

Substituting into the trigger condition (5.9):

x1(t) + di −
n v

v̂
+ v ηi − floor

(
x1(t) + di −

n v

v̂
+ v ηi

)
= 0

Comparing the result to Eq. (5.10) we conclude that n v
v̂

− v ηi − di is an

integer. This is equivalent to requiring that:

v ηi =
n v

v̂
− di − round

(n v

v̂
− di

)
(5.16)

Substituting this result into Eq. (5.15), we find that the candidate event ei

are located at:

xi(t− n p+ ηi) = x1(t)− round
(n v

v̂
− di

)
The euclidean distance between ei and êp is:

De(ei, êp) = x1(t)− n−
(
x1(t)− round

(n v

v̂
− di

))
= round

(n v

v̂
− di

)
− n (5.17)
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Using Eq. (5.16) the time penalty can be written as:

P (ti, t̂p) =
n v

v̂
− di − round

(n v

v̂
− di

)
Therefore, the generalized spatiotemporal distance becomes:

D(ei, êp) = De(ei, êp) + P (ti, t̂p) =
n v

v̂
− n− di

and ep corresponds to the candidate event ei that satisfies a minimum dis-

tance condition with respect to êp such that:

Ld(e, v̂) = min
{ei}ki=1

(
D(ei, êp)

)
= min

{ei}ki=1

(n v

v̂
− n− di

)
(5.18)

First, we consider the case of a camera moving with a ground truth optical

flow of

U =

[
1.9

0

]
with respect to a scene containing multiple points (for example 3 points) and

evaluate the objective function for a single event as a function of velocity

u. Figure 5.4 shows the appearance of two spurious minima, marked by red

dots, in addition to the minimum, marked by a blue dot, corresponding to

the ground truth u = 1.9.

Next, we consider the case of processing multiple events ϵ = {ei}Mj=1 simul-

taneously. In this case, we define another objective function for processing

M events simultaneously as the sum of the individual generalized distances

for each of those events:

Ld(ϵ, v̂) =
M∑
j=1

min
{ei}ki=1

(
D(ei, ê

j
p)
)
=

M∑
j=1

min
{ei}ki=1

(n v

v̂j
− n− di

)
(5.19)

For an example for M = 3 and k = 3, Figure 5.5(a) shows that the

spurious minima, marked with red dots, are larger than the minimum corre-

sponding to the ground truth velocity, marked with a blue dot. The spurious

minima only become equal to the ground truth minimum when the initial

distances di are equal as seen Figure 5.5(b). This case corresponds to a scene

with periodic or repetitive patterns.
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Figure 5.4: Behaviour of the objective function for an observed event in a

scene containing 3 points and moving with a ground truth velocity of u = 1.9.

5.4.4 Discussion

The mathematical validation showed that an event track belonging to a single

camera motion can be used to solve the data association problem and mo-

tion estimation. For the special case of a single point moving in 1D motion,

We evaluated the effect of the spatial and temporal discretization (quanti-

zation) on the prediction of past events. It was then used to suggest an

objective function that minimizes a generalized spatiotemporal distance in

order to evaluate the optical flow. Test examples showed that scenes contain-

ing multiple points and simultaneous processing of events created ambiguity

(multiple minima). However, the objective function was able to maintain the

minimum corresponding the ground truth even in the presence of spurious

minima. We hypothesise that tuning the weight of the time penalty will

resolve this ambiguity.
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(a) Unequal initial distances (b) Equal initial distances

Figure 5.5: Behaviour of an objective function defined to process 3 events

simultaneously in a scene containing 3 points and moving with a ground

truth velocity of u = 1.9.

5.5 Experimental Analysis

In this section, we validate experimentally the hypothesis that the consensus

of multiple event tracks, where events are processed individually, can be used

to solve the data association problem and estimate planar camera motion.

5.5.1 Experimental Setup

We test our hypothesis by varying the time penalty experimentally on a

synthetic dataset and an AES generated dataset by tuning the weight rt of

the time penalty in the range of 0 to 25000 pixels/s. In our experiments, we

use a spatial window of n = 3 and a temporal window made of 50 sampling

periods such that m = 50µs. The maximum generalized distance dmax is

varied between 3 and 5.
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5.5.1.1 Synthetic Dataset

We created an event-based data generator that emulates an idealized AES

firing. The simulation provides at each timestep ti the optical flow of a

32 × 32 event camera facing a reference image at a known constant depth

Z. The ground truth motion is simulated to be constant, to vary linearly,

or to vary sinusoidally over time. Grids of 32 × 32 pixels are sampled from

the reference image as the camera moves following the simulated ground

truth motion. The events are warped as the camera moves with respect to

the reference image. The synthetic data generator is described in details in

Appendix B.

5.5.1.2 AES Dataset

We use the state-of-the-art Event-Camera Dataset and Simulator [120] which

contains a series of planar scenes collected via the Davis AES [22]. The spatial

resolution of this AES is 240 × 180 pixels, its sampling period is δt = 1µs,

and its dynamic range is (130 dB).

We use all planar motion sequences available in the dataset, namely slider

close, slider far, slider hdr close, and slider hdr far. They were recorded by

mounting the AES to an automated linear slider moving parallel to a wall

at a constant depth. Each sequence lasts about 5 seconds and contains 4–10

million events. The first of the first and third sequences is small whereas

that of the second and fourth sequences is large. The latter two sequences

feature a high-dynamic-range (HDR) created using spotlights.

5.5.1.3 Metrics

To evaluate the performance of our approach, we compute the average end-

point error (AEE) of the optical flow. It measures the ‘distance’ between the
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endpoints of the predicted and ground truth translational camera motions:

AEE =
1

Ne

Ne∑
i=1

√
(ui,pred − ui,g)2 + (vi,pred − vi,g)2 (5.20)

where Ne is the number of events evaluated. We also calculate the relative

AEE which normalizes the AEE with respect to the ground truth to obtain

the relative AEE:

AEErel =
1

Ne

Ne∑
i=1

√
(ui,pred − ui,g)2 + (vi,pred − vi,g)2

∥Ui,g∥
(5.21)

where ∥Ui,g∥ is the norm of the ground truth motion at timestep ti

Ui,g =

[
ui,g

vi,g

]

5.5.2 Demonstration of the Objective Function

First, we examine the feasibility of tuning the time penalty to eliminate

ambiguities in the objective function. Specifically, we evaluate the objective

function for a simple case (Case I) representing a camera moving with a

ground truth optical flow of

U =

[
0.8

0

]

In each experiment, we consider a set of camera motions distributed uni-

formly to cover the two dimensional OF space ranging from 0 to 10 pix-

els/timestep in both directions. We evaluate the objective function for each

value of OF using different values of rt. The results for 4 selected values of

rt are shown in Fig. 5.6.

We found that setting the time penalty weight to smaller values, such

as rt = 0 in Fig. 5.6(a) or rt = 2000 in Fig. 5.6(b), results in the function

reaching an incorrect minimum away from the ground truth motion, multiple
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Figure 5.6: Effect of time penalty term rt on the objective function for a

ground truth velocity u = 0.8.

ambiguous minima or both. On the other hand, setting rt to larger values,

such as rt = 10000 in Fig. 5.6(c) or rt = 20000 in Fig. 5.6(d), results in

the function reaching a global minimum at the ground truth velocity. This

shows that ablating (rt = 0) or undertuning the time penalty results in

an erroneous data association due to the ambiguity caused by uncorrelated

events. Varying the ground truth velocity or maximum distance dmax did

not change these results.

To showcase the effect of undertuning the time penalty, we consider a
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camera moving with a sinusoidal ground truth velocity varying from 1 to 2

pixel/timestep over a period of 100 timesteps (frames). For each experiment,

we evaluate the objective function following the procedure described above.

Inspecting the resulting objective function, the predicted OF Ui,pred is found

as that satisfying the criterion 5.3 and used to evaluate AEE.

Figs. 5.7(a) and (b) compare the AEE obtained for two values of the time

penalty weight for rt = 20000 and rt = 2000, respectively. The larger rt

value results in a 4 fold increase in accuracy for planar motion estimation.

This highlights the importance of the time penalty weight.

(a) rt = 20000 (b) rt = 2000

Figure 5.7: Comparison of the AEE over a sequence of 200 synthetic frames

for the same sinusoidal ground truth velocity and acceleration and two values

of the time penalty weight rt.

Next, we use the synthetic dataset to demonstrate the feasibility of the

distance-based method on a more complex camera motion such as (Case II):

U =

[
0.8

0.6

]
and evaluate the generalized distance as a function of OF over the two dimen-

sional grid described above. For a time penalty weight rt = 10000, Fig. 5.8

shows that the global minimum, marked by a red dot, corresponds to the

ground truth motion.
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Figure 5.8: The objective function evaluated over an OF range for a ground

truth OF of (u, v) = (0.8, 0.6).

5.5.3 Results

In this section, we demonstrate the ability of our approach to estimate planar

motion. We use our distance-based method to solve the data association

problem. Instead of the brute force uniform discretization approach employed

above, we exploit our particle filter framework to search the optical flow space

for estimating planar motion.

Initially, all particles are uniformly initialized to cover an OF space rang-

ing from 0 to 10 pixels/timestep in both directions, and the number of par-

ticles N is varied between 100 and 400. Particles inconsistent with the mea-

sured event e receive a generalized distance of dmax and, therefore, a low

likelihood score that updates its weight via Eq. (5.7).

5.5.3.1 Synthetic Dataset

We consider a camera moving with 3 different types of ground truth mo-

tions, namely constant, linearly varying, and sinusoidally varying velocities.

For every 100th incoming event, we show in Figs. 5.9(a), (c) and (e) the

ground truth velocity (green dots), the predicted OF (red dots), and the
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particle distribution (black dots). The results show qualitatively that our

approach can accurately track the ground truth motion in all 3 cases. The

corresponding relative AEE, shown in Figs. 5.9(b), (d) and (f), confirm this

conclusion quantitatively. Our method accurately estimates various types of

planar camera motion with average errors less than 1%.
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Figure 5.9: Comparison of (a) sinusoidal, (c) linear and (e) constant ground

truth motions (green), our predictions (red), particle distributions (black),

and (b), (d) and (e) their corresponding relative AEE, respectively.
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5.5.3.2 AES Dataset

As a sample case, we show in Fig. 5.10(a) the ground truth velocity (blue

dots), the predicted OF (red dots), and the particle distribution (black dots)

for a sample of 200, 000 events from the slider far sequence. The results

show qualitatively that our approach can accurately track the ground truth

motion on an AES sequence. Figure 5.10(b) shows the corresponding End-

point Error (EE) per event. It confirms our conclusion quantitatively. Our

method accurately estimates the planar camera motion with an average er-

ror less than 0.6% over the sample. Similar results were obtained for all

four motion sequences. This performance is attributed to our asynchronous

distance-based method capability to correctly associate events and their pre-

vious firings along event tracks.

v
u

Events

(a) Slider far velocities

E
E

[%
]

Events

(b) Slider far error

Figure 5.10: Sample performance of our approach on the slider far sequence.

(a) It accurately tracks the planar OF vs a sample of 2 × 105 events. (b)

Relative Endpoint Error (EE) vs a sample of 2× 105 events for the slider far

sequence.

We compare in Table 5.1 the performance of our approach to those of

the event-based SAE approach [18] and the MATLAB implementation of the

frame-based LK approach [106]. The latter approach was implemented on

the companion grayscale images provided in the dataset. We used the code
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provided by Benosman et.al [18] to evaluate the camera motions. The SAE

approach [18] accumulates event within a few millisecond windows into an

image frame to track the camera motion. We used windows of 10 ms in our

implementation of SAE. Eq. (5.21) was used to evaluate the AEErel in all

sequences.

Table 5.1: Comparison among the asynchronous planar motion approach, the

event-based SAE [18], and the frame-based LK [106] in terms of the Relative

Average Endpoint Errors (AEErel).

Approaches slider far slider close slider hdr far slider hdr close

AEErel[%] AEErel[%] AEErel[%] AEErel[%]

This Approach 0.95 1.1 0.97 1.08

SAE [18] 3.9 3.7 4.9 4.6

Frame-based LK [106] 14.7 13.9 - -

Our approach clearly outperforms both the SAE and LK approaches on all

4 sequences. In particular, while LK approach fails on the high dynamic range

(hdr) sequences, due to the degradation in the quality of the grayscale images

affected by the large intensity differences in those scenes. Our approach

maintains the same accuracy level. This shows the advantages of events

cameras in hdr situations.

5.5.4 Discussion

5.5.4.1 Initialization of the Particle Filter

Carrying out an effective search for precedents of an event requires a history

of previous events. As a result, starting the particle filter search algorithm

requires an initialization period during which this history is generated. We

show an example of this initialization period by reporting the EE for every

100th incoming event over the first 10000 events of the slider far sequence
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in Fig. 5.11. The figure shows high errors during the first few thousands

events which diminishes reaching less than 2.5% EE beyond 3000 events as

the history of events acquires the necessary amount. This behaviour was

observed for all other sequences as the synthetic dataset, Appendix C. We

recommend that the initialization period be omitted from the motion tracking

results.

Figure 5.11: Relative Endpoint Error (EE) per 100th event for the first 10,000

events of the slider far sequence.

5.5.4.2 Rapid Motion Limitations

In this section, we test the limits at which the velocity constancy assump-

tion starts to undermine the accuracy of our motion estimation approach.

Towards that, we consider a synthetic dataset generated by our simulator

described above where the camera is moving with a ground truth horizontal

velocity that varies sinusoidally around a mean of 1.5 pixel/timestep over a

period of 100 timesteps (frames)

U =

[
1.5 + p cos( 2π

100
t)

0

]
As the amplitude of the velocity variation p is increased, we evaluate the

objective function for an OF range from 0 to 10 pixels/timestep, determine
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the predicted OF Ui,pred as that satisfying the criterion 5.3 and used it to

evaluate AEE.

Fig. 5.12 shows samples of the AEE for four values of the sinusoidal peak

to peak velocity variations and their corresponding accelerations. Comparing

the error profiles shown in Fig. 5.12, we found that unlike the velocity, which

varies periodically, the AEE was not periodic. In other words, the errors

encountered are not directly proportional to the magnitude of velocity. This

is expected since even where velocity variation is periodic the scene features,

and therefore event tracks, are not necessarily periodic. However, similar

velocity magnitudes had similar levels of AEE regardless of the terminal

peak to peak velocities. As the peak-to-peak velocity variation increased the

AEE increased monotonically signaling a loss in accuracy in Figs. 5.12(c)

and (d). However, the error was in all cases bounded and diminished as the

velocity approached its mean value.

To examine more closely the dependence of the AEE on the magnitude

of velocity, and the limits of our approach’s accuracy, we consider another

synthetic dataset with a constant ground truth velocity of

U =

[
u

0

]

For each value of u, we evaluated the AEE over 200 timesteps of the camera

motion. Five trials were conducted starting from five different points in

the reference image. The average AEE was calculated over all trials. This

procedure was repeated for the velocity u range from 0.1 to 12 pixels/timestep

in steps of 0.1 pixels/timestep. The results are shown in Fig. 5.13. The error

sensitive to velocity increases significantly beyond 3 pixels/timestep.

5.5.4.3 Texture Limitations

Textured scenes trigger event cameras to produce denser event streams (more

events per second). To visualize this effect, we show in Fig 5.14 50 event
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(a) p=0.1 (b) p=0.5

(c) p=0.75 (d) p=1

Figure 5.12: Samples of the AEE for a camera moving with 4 selected sinu-

soidally varying velocities as a function of the timestep (frame).

frames in a sparse scene (top) obtained by setting the data simulator to low

sensitivity and a dense scene (bottom) obtained by increasing the simula-

tor’s sensitivity over the same area of the reference image. The dense scene

quadruple the number events compared to the sparse scene, filling on aver-

age more than 70% of the image area (70% of all available 32 × 32 pixels)

compared to 20% of the area in the sparse scene.

To quantify the impact of textured scenes on our approach, we consider
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Figure 5.13: The mean AEE as a function of a constant ground truth velocity.

a camera moving with a ground truth velocity of

U =

[
0.8

0

]

We vary the sensitivity of our synthetic data generator to increase the ob-

served texture of the reference image. For each value of the sensitivity, we

evaluate the AEE as the camera moves for 1 second with respect to the ref-

erence image and calculate the mean AEE for all events. We repeat this

evaluation as the scene texture is varied in 30 steps and show in Fig. 5.15

the mean AEE as a function of the texture expressed in terms of the total

number of events generated during the motion. The results show that the

accuracy of the motion estimation decreases significantly with higher tex-

ture. For instance, the AEE for more textured scene that fired about 35,000

events/s (filling 70% of the area) is six times more than that of the sparse

scene generating 10,000 events/s (filling 20% of the area). This behaviour is

explained by the fact that events in textured scenes fire very closely in space

and time, making the problem of data association harder to resolve.
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Figure 5.14: Generated event frames for a true ground truth velocity u = 0.8,

Left: 20% of area is filled with events, and right: 70% of area is filled with

events

5.6 Conclusion

In this chapter, we have validated the thesis hypothesis by showing that our

proposed method which handles each event individually without assuming
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Figure 5.15: The mean AEE as a function of scene texture for a camera

moving with a ground truth motion u = 0.8.

any relationship to its neighbors beyond the consistency with the camera

motion, is sufficient for correct data association of events and their previous

firing along corresponding tracks. Our results show that this can successfully

identify the correct motion in situations of high speed, high dynamic range

and strong illumination changes. We characterized cases that limit its accu-

racy, mainly in highly textured environments and very fast motion. Further,

our results on real data are an order of magnitude more accurate than optical

flow based approaches.
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Chapter 6

Asynchronous General Motion

Estimation

6.1 Introduction

In this chapter, we extend the voting based approach presented in the previ-

ous chapter to solve the general form of the event-based motion estimation

problem Eqs. (3.4) and (3.6). In fact, our extended approach is also valid for

the case of general camera motion and arbitrary scene depth.

In the case where the camera is undergoing an arbitrary motion, each pixel

may have its own depth. To address that, we create a new asynchronous vot-

ing based method, which predicts forward a set of candidate image velocities

from the data association, then perform a search over all those candidates to

vote for the one that is most consistent with the camera motion. This allows

us to formulate a new depth-less objective function.
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6.2 Method

The general motion equation, Eq. (3.4), relates the image velocities (Optical

flow) U(x) and the camera translational and angular velocities (Ω,T) by:

U(x) =
1

Z(x)
A(x)T+B(x)Ω (6.1)

where

A(x) =

[
−f 0 x

0 −f y

]
, B(x) =

[
xy
f

−f+x2

f
y

f+y2

f
−xy
f

−x

]
Given a camera velocity (Ω,T) and an image velocityU, we want to quantify

the consistency of the image velocity, obtained from the data association

(Eq. (3.6)), with the camera velocity. While it is possible to solve for the

unknown depth Z(x) based on smoothness, by assuming that pixels that fire

within a close spatiotemporal distance represent areas that have the same

depth. However, as per our problem formulation we want to avoid the use of

smoothness assumptions. We, therefore, present a new voting-based method

to estimate general motion by solving for the unknown depth.

The distance-based method outlined in Section 5.2 involved a backward

projection êp of an event e(x, t, p) to associate it to its previous firing ep. We

now propose a different way to solve the data association problem, (Eq. (3.6)),

by searching for all previously fired events Ec in a spatiotemporal window

around x, evaluating candidate image velocitiesUc that forward project them

into e then minimizing an objective function to determine the candidate flow

consistent with the camera motion.

Let Ec(x, n,m) ∈ E , colored dots in Fig. 6.1, represent the set of can-

didate events within an n × n spatial window centered around the current

event location x, and a temporal window ±mδt centered around t− q δt the

previous firing time at x where m ≤ q. Using Eq. (3.6) we project each

candidate event ec forward to obtain a candidate image velocity:

Uc =
(

x−xc

t−tc

)
(6.2)
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Figure 6.1: Graphical outline of the forward prediction method. For an input

event e, look back at this pixel x just before this event fired and search for

previous event candidates in a spatiotemporal window around x. Project

each candidate forward to predict the image velocity Uc corresponding to

the correct ep that fired e (red in this example).

Only the correct flow candidate Uc that is consistent with the camera motion

(T,Ω) will associate the correct prior event ep to e.

Given Uc, three groups of unknowns are left in Eq. (6.1): the camera

translational and angular velocities T and Ω and the depth Z(x). Bruss and

Horn [27] derived a constraint that eliminates the depth from Eq. (6.1) by

resetting it in the form:

Tt · (x×U) + (T× x)t · (x×Ω) = 0 (6.3)
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which reduces to:Tx

Ty

Tz


t

(

 fv

−fu

yu− xv


︸ ︷︷ ︸

[I]

−

−(f 2 + y2) xy fx

xy −(f 2 + x2) fy

fx fy −(x2 + y2)


ωx

ωy

ωz

) = 0

(6.4)

where the matrix [I] is a function of the image velocity. We used Kanatani’s [83]

normalized translational form:

τ (x,T) =
1

∥A(x)T∥


[
A(x)T

]
y

−
[
A(x)T

]
x

 (6.5)

where [V ]x and [V ]y are the x and y components of a 2D vector V, to rewrite

the bilinear constraint in the form:

(U−B ·Ω)t
(
∥A ·T∥τ

)
= 0 (6.6)

F (U,T,Ω) = 0 (6.7)

where F is the bilinear constraint.

The scale ambiguity [9], imposed by the appearance of the translational

velocity and depth as a ratio T
Z

in Eq. (6.1), means that we can only infer

the direction of translation (the unit vector T̂) known as the translational

heading, but not its magnitude. Expressing the translational heading in

spherical coordinates, it can be written as:

T̂(ϕ, θ) =

sin θ cosϕ

sin θ sinϕ

cos θ

 (6.8)

where θ is the polar angle between the x-axis and the polar axis, and ϕ is

the azimuthal angle between the z-axis and the translational T̂ unit vector.
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Given a set of candidates image velocities EU = {Uc
i }ki=1 for a current

event e, we define a generalized motion function as:

G(Uc
i , T̂,Ω, tc, q) =

min(F (Uc
i , T̂,Ω) + P (tc, q), Vmax); pi = p

Vmax; otherwise
(6.9)

The function P (t) is a time penalty function:

P (tc, q) = rt|tc − (t− qδt)| (6.10)

where rt is the time penalty weight and Vmax is a maximum motion penalty.

In case of pure rotational motion, the translational velocity is T ≈ 0

rendering the bilinear constraint singular. Under this condition, the motion

equation Eq. (6.1) reduces to:

u = fωy − yωz +
x2

f
ωy −

xy

f
ωx

v = xωz − fωx −
y2

f
ωx +

xy

f
ωy

(6.11)

and we replace the function F by a rotational function Frot derived directly

from the above equation:

Frot(U
c,Ω) = ||Uc −U|| = (uc − urot)

2 + (vc − vrot)
2 = 0 (6.12)

Using the generalized motion function, we define an objective function

for general motion that votes the minimum camera motion over all image

velocity candidates:

M(e, T̂,Ω) = min
Uc

i ∈EU
(G(Uc

i , T̂,Ω, tc, q)) (6.13)

6.3 Framework

We extend our planar motion particle filter, Section 5.3, to use the objective

function defined above as the likelihood that votes the image velocity consis-

tent with the camera motion. The framework is described schematically in

Figure 6.2 and procedurally in Algorithm 2.
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Figure 6.2: A schematic of the framework. For a current event e, our forward

prediction method serves as the likelihood in a particle filter framework to

vote the flow candidate which is most consistent with the camera motion.

For a current event e, we identify a set of forward flow candidates EU .
The filter is represented by a set particles, P (t) = {P (t)

j }Nj=1 for each flow

candidate Uc
i . Each particle consists of the current state (T̂

(t)
j ,Ω

(t)
j ) and its

weight w
(t)
j . We update the state of every particle via the motion prediction

step such that:

T̂
(t)
j = T̂

(t−τ)
j +M(T̂

(t)
j ) (6.14)

Ω
(t)
j = Ω

(t−τ)
j +M(Ω

(t)
j ) (6.15)

where (T̂
(t−τ)
j ,Ω

(t−τ)
j ) is the previous state of particle j at t−τ , M(T̂

(t)
j ) and

M(Ω
(t)
j ) are sampled from a Gaussian distribution independently for each

vector such that M(T̂
(t)
j ) and M(Ω

(t)
j ) ∼ N(0, σ2), and σ is the standard

deviation.

In the measurement update step, we modify Eq. (5.7) to calculate the

likelihood P (e | T̂(t)
j , Ω̂

(t)
j ) for each particle given the measured event e as:

P (e | T̂(t)
j ,Ω

(t)
j ) = exp(−αpM

(t)
j (e)) (6.16)
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where αp is a scaling decay parameter. After assigning a likelihood to each

particle, we normalize the distribution, and resample as described in Sec-

tion 5.3. The camera egomotion (T̂
(t)
j ,Ω

(t)
j ) is estimated as the weighted

average over all the particles.

As shown in Fig. 6.2 and algorithm 2, for a current event e, a single pre-

dicted flow candidate votes multiple camera motions (particles), in order to

find the best set of image and camera velocities that minimizes the objective

function Eq. (6.13). This is a more efficient approach than that adopted in

the planar motion framework.
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Algorithm 2: Asynchronous General Motion Estimation

Input: Current Event

Output: Camera Egomotion (Heading and Angular Velocities)

1 Initialize N × 5 particles (camera velocities) with uniform weights;

2 if p > 0 then

3 Add and update the positive polarity history;

4 else

5 Add and update the negative polarity history;

6 end

7 if enough events then

8 Motion prediction step using Eq. 6.15;

9 Search for the closest events within a spatiotemporal window of e;

10 Predict forward flow candidates using Eq. 6.2;

11 for each particle in N do

12 if T ≈ 0 then

13 Evaluate F for each candidate using Eq. 6.12;

14 else

15 Evaluate F for each candidate using Eq. 6.7;

16 end

17 Compute each candidate’s motion cost using Eq. 6.9;

18 Evaluate the total cost using Eq. 6.13;

19 Compute the likelihood from the returned cost using Eq. 6.15;

20 Update the particle’s weight using Eq. 5.8;

21 end

22 Normalize the weights of all particles;

23 Resample if Neff ≤ N
2
;

24 Output the mean camera heading and angular velocities of all

particles;

25 end
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6.4 Experimental Setup

To experimentally validate our hypothesis that multiple event tracks can be

used to solve the data association problem, we use a real dataset and process

each event individually. The weight rt of the time penalty is varied in the

range of 0 to 25000 pixels/s. In our experiments, we use a spatial window

of n = 4 and a temporal window made of m = 50 resulting in a temporal

window of ±50µs. The maximum motion cost Vmax is varied between 2 and

3. All particles are uniformly initialized to cover angular velocities ranging

from -20 to 20 rad/s and all 360 degrees translational headings. The number

of particles N is varied between 500 and 1500. Particles inconsistent with

the measured event e receive a maximum motion cost of Vmax and, therefore,

a low likelihood score that updates its weight via Eq. (6.16)

6.4.1 Egomotion Dataset

We use a state-of-the-art Event-Camera Dataset and Simulator [120] which

contains scenes collected via the Davis [22] AES with a spatial resolution

of 240 × 180 pixels, a sampling period of δt = 1µs, and a dynamic range

130 dB. The Davis also has a built in Inertial Measurement Unit (IMU),

which measures the rates of the tilt (pitch), pan (yaw) and roll (optical axis

rotation) around the X, Y, and Z axes of the camera, Figure 6.3.

The dataset includes the 2D translation sequences described in Section 5.5.1.2

as well as general motion sequences that we will use in this section. Specif-

ically, we use two rotational sequences, namely shapes rotation and boxes

rotation, where the latter features a highly textured scene, and four general

motion sequences, namely shapes translation, shapes 6dof, poster 6dof, and

hdr poster, where the latter sequence features a high-dynamic-range (HDR)

created using spotlights. These sequences contain ground truth velocities

from the IMU collected at 1KHz, and ground truth camera pose from a mo-

tion capture system (mocap) collected at 200 Hz. Each sequence is about 1
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minute long and contains 100–200 million events.

Figure 6.3: Definition of the Davis IMU reference frame and axes defini-

tion [47].

6.4.2 Ground Truth

We recover the ground truth linear velocity and angular velocity of the cam-

era. Let [P] be the 4× 4 camera pose at time t:

P =

[
R X

0 1

]
(6.17)

where X is a 1 × 3 translation vector and [R] is a 3 × 3 rotation matrix

such that [R] ∈ SO(3). Given [P1] and [P2], the camera poses at t1 and t2

respectively, the transformation matrix [M21] from t1 to t2 is:

M21 = P−1
2 P1 =

[
R21 X21

0 1

]
(6.18)

where [R21] is the resulting 3 × 3 relative rotation matrix and X21 is the

resulting relative translation vector.

78



Assuming constant acceleration, the ground truth translational velocity

Tg and angular velocity Ωg of the camera can be obtained by numerical

differentiation as:

Tg =
X21

t2 − t1
(6.19)

Ω̆ =
logm(R21)

t2 − t1
(6.20)

where logm is the logarithmic map from SO(3) to so(3). It converts the rate

of [R21] into the corresponding skew symmetric matrix:

Ω̆ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (6.21)

Since we can only infer the camera heading T̂ not the actual translational

velocities T, we normalize the ground truth translation velocity vector to

obtain T̂g and recover the ground truth heading ϕ and θ using the spherical

coordinates equations (6.8).

6.4.3 Performance Metrics

To evaluate the performance of our approach, we compute the Axis (orien-

tation) Error for the translational heading (AET̂ ) and the angular velocity

(AEΩ). For a timestep ti, they measure the distance between the sampled

ground truth of the camera motion and that predicted using the closest event

to it. They are defined as:

AET̂ (ti) = cos−1(T̂pred · T̂g) (6.22)

AEΩ(ti) = cos−1(Ωpred ·Ωg) (6.23)
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We also compute their Averages for ensemble of events:

AAET̂ =
1

Ne

Ne∑
i=1

cos−1(T̂i,pred · T̂i,g) (6.24)

AAEΩ =
1

Ne

Ne∑
i=1

cos−1(Ωi,pred ·Ωi,g) (6.25)

whereNe is the number of events. Further, We evaluate the angular velocity’s

Magnitude Error ME at timestep ti as:

ME(ti) = |∥Ωpred∥2 − ∥Ωg∥2| (6.26)

and its average as:

AME =
1

Ne

Ne∑
i=1

|∥Ωi,pred∥2 − ∥Ωi,g∥2| (6.27)

Finally, we normalize the AME with respect to the ground truth angular

velocity to obtain the relative AME:

AMErel =
1

Ne

Ne∑
i=1

|∥Ωi,pred∥2 − ∥Ωi,g∥2|
∥Ωg∥2

(6.28)

6.5 Results

First, we show that our framework can accurately estimate the camera head-

ing for the same planar motion sequences analysed in Section 5.5.3.2. Note

that for these sequences

T̂g =

[
0°
90°

]
and

Ωg =

 0°
0°
0°


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Our predicted heading and angular velocity are shown in solid lines whereas

the corresponding ground truth motions are shown in dashed lines in Figs. 6.4(a)

and (b) for the slider far sequence. The difference between the predicted and

ground truth heading are small, Fig. 6.4(a), as quantified in Fig. 5.10(c). The

AE approaches zero over time. The predicted angular velocity, Fig. 6.4(b),

settles down to the ground truth within 1 second. The results show that our

approach can accurately track the ground truth motion on an AES sequence.

(a) Heading (b) Angular Velocities

A
x
is

E
rr
or
[d
eg
]

Time[s]

(c) Heading error

Figure 6.4: The predicted (solid lines) and ground truth (dashed lines) (a)

heading and (b) angular velocity for the slider far sequence and (c) the

corresponding heading AE.
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Next, we test our approach’s ability to accurately estimate motion in

general motion sequences. We show in Fig. 6.5 the AE and relative ME

evaluated over time for shapes 6dof and hdr poster sequences. The results

show, Figs. 6.5(a) and (b), that our approach can accurately track the camera

heading with an AAE < 2 deg and angular velocity with an AMErel < 1%

for shapes 6dof sequence. It also shows that our approach performance on

par for the high dynamic range sequence hdr poster, Figs. 6.5(c) and (d),

with an AAE < 1.5 deg and an AMErel < 1%. Similar results were obtained

for the other four general motion sequences.

(a) shapes 6dof AE (b) shapes 6dof ME

(c) hdr poster AE (d) hdr poster ME

Figure 6.5: Samples of the heading axis error, and relative angular velocities

error over time for the shapes 6dof and hdr poster sequences.
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Figure 6.6: Comparison of tilt (blue), pan (green), and roll (red) ground

truth angular velocities (dashed lines) to our predictions (solid lines) for the

shapes 6dof sequence. The top panel shows the full sequence and the bottom

panel zooms-in on the shaded area.
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To analyse these results in further detail, we show in Fig. 6.6 the compo-

nents of the predicted (solid lines) and ground truth (dashed lines) angular

velocity vectors for the shapes 6dof sequence. The top panel of the figure

shows their time evolution over the entire sequence. The bottom panel of

the figure zooms-in over a 7-seconds segment shaded in the top panel. The

predicted angular velocities follow closely the ground truth expect at large

extremities. This is true even for very large angular velocities, at the order of

hundreds of deg/s. This shows that event cameras equipped with our motion

estimation technique can be used as an event-based gyroscope.

We evaluated the AAE for the translational heading and the AAE, AME

and relative AME for the angular velocity estimated using our approach

over time for the four planar sequences described in Section 5.5.1.2 and the 6

general motion sequences described above. The results are listed in Table 6.1.

For the planar motion sequences our approach is able of accurately tracking

the camera heading with AAE below 0.3 deg for all four sequences. This

shows that the forward prediction objective function can accurately estimate

the heading of planar motions but not their magnitudes.

Furthermore, the translational and angular velocity headings AAE for all

general motion sequences, expect for the textured boxes rotation, are less than

2 deg. Similarly, the AMErel is less than 1% for all general motion sequences

except for the textured boxes rotation. We note that while the absolute error

in the angular velocity magnitude AME was on the order of a few deg/s,

for instance 4.65 deg/s on the shapes 6dof sequence, the underlying ground

truth velocity in those instances saw large excursions, reaching a maximum

of 700 deg/s for this sequence (see Fig. 6.6) and , therefore, those errors are

in fact relatively small.

We further evaluated the percentage of outlier events for all general mo-

tion sequences. Since the ground truth data is sampled at a much lower rate

than the AES (200 Hz), we used linear interpolation to create a continuous

estimate of the ground truth between each pair of readings. An event was
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Table 6.1: The average axis error AAE for translational and angular velocity,

the average magnitude error AME and relative average magnitude error

AMErel for angular velocity, and the % of outlier events for 10 sequences of

the Event-Camera Dataset and Simulator [120].

Sequence Translational Heading Angular Velocities Candidates

AAE[deg] AAE[deg] AME[deg/s] AMErel[%] Outliers[%]

slider far 0.07 0.11 N/A N/A N/A

slider close 0.072 0.16 N/A N/A N/A

slider hdr far 0.24 0.1 N/A N/A N/A

slider hdr close 0.23 0.11 N/A N/A N/A

shapes rotation 0.39 1.12 3.23 0.73 4.55

shapes translation 0.9 0.79 1.63 0.36 3.38

shapes 6dof 1.7 1.84 4.65 0.94 5.82

poster 6dof 1.55 1.81 4.22 0.91 5.79

hdr poster 1.21 1.43 3.76 0.84 4.9

boxes rotation 5.7 5.36 11.9 3.32 10.6

considered an outlier, if its ME ≥ 5% with respect to the continuous esti-

mate of the ground truth. The percentage of outlier events are listed in the

last column of Table 6.1 for all general motion sequences. The results show

that our forward prediction objective function associates more then 90% of

the events correctly while rejecting most of the outlier events that exacerbate

errors. We attribute the superior performance of our approach to its ability

to correctly associate events and their priors along event tracks.

6.6 Discussion

6.6.1 Weighting of the Time Penalty

We revisit the feasibility of tuning the time penalty to eliminate ambigui-

ties in the forward prediction objective function. We evaluated the AAE,

AMErel, and the percentage of outliers for a range of values of rt stretching
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from zero to 30,000. The results for 5 selected values of rt on the shapes 6dof

sequence are shown in Table 6.2.

Table 6.2: The impact of the time penalty weight for motion estimation on

the shapes 6dof sequence.

Time Penalty Translational Heading Angular Velocities Candidates

×104[pixels/s] AAE[deg] AMErel[%] Outliers[%]

0 3.81 3.37 11

1 1.76 1.06 5.98

1.5 1.7 0.94 5.82

2 2.25 1.3 6.59

2.5 2.49 1.66 7.2

We found that setting rt to optimal (intermediate) values, between rt =

10000 to rt = 15000, results in an optimal motion accuracy due to a low

number of outliers which was below 6%. Abating the time penalty (rt = 0)

or setting its weight to small values, compared to optimal weight, decreases

of accuracy by 3 folds due to the elevated number of uncorrelated outlier

events. Further, setting rt to larger than optimal values, progressively de-

creases the accuracy of motion estimation as it results in progressively larger

numbers of outliers. This is due to the time penalty weight overriding the

bilinear constraint term. Similar results were obtained on all the other se-

quences. Therefore, the time penalty weight should be tuned to optimal

values. Ablating (rt = 0), undertuning or overtuning it is undesirable.

6.6.2 Comparison to the State-of-the-Art

In the absence of open-source implementations of event-based general motion

estimation techniques and given the unavailability of the sequences used to

test techniques in the literature, we compare the global performance metrics

of our approach to the corresponding metrics of those techniques. We start
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by comparing to the pose estimation technique of Reverter et al. [147] who

report relative errors in the camera pose. Assuming that the differentiation

of the camera pose to obtain velocity will incur Gaussian noise, we expect

their estimate of angular velocity to have the same AMErel as that of the

pose itself. They report an AMErel in the range of 1.3–2% for 4 sequences of

simultaneously moving objects and an AMErel of 4% for a rapid motion se-

quence. Their sequences were not textured and our comparable performance

for this case is at less than 1%.

Next, we compare to the contrast maximization method of Peng et al. [138]

and the SLAM-based approaches of Wang et al. [168]. Since the magnitude

of angular velocity in these sequences vary, we follow Liu et al. [99] in es-

tablishing a metric that can compare performance among these sequences

defined as follows:

AMEN =
1

Ne

Ne∑
i=1

|∥Ωi,pred∥2 − ∥Ωi,g∥2|
∥Ωmax,g∥2

(6.29)

where Ωmax,g is the maximum ground truth angular velocity in the sequence.

Since the aforementioned sequences were not textured we compared them to

the first five untextured general motion sequences in our case. The AMEN for

the contrast maximisation approach [138] was in the range of 1.3–1.4%, and

for the SLAM-based approach [168] was 2.1–3.7%. Our approach outperforms

them with an AMEN of 0.5–0.75% over those five sequences.

Finally, we compare our approach to two recently developed approaches

limited to estimation of 3D rotation, namely CM [62] and its extension

CMBnB [99]. Since CM and CMBnB were evaluated on the textured boxes

rotation sequence, we compare our results for that sequence to theirs in Ta-

ble 6.3. Our approach show a notably better accuracy with an AMEN of

1.78% compared to 3.2% and 2.68% for CM [62] and CMBnB [99], respec-

tively.

We conclude that our approach outperforms the state-of-the-art for both

textured and untextured sequences. This shows that consensus voting of
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Table 6.3: Comparison of the AME and AMEN of our approach to CM and

CMBnB for the boxes rotation sequence [120].

Method AME[deg/s] AMEN [%]

This Approach 11.9 1.78

CM [62] 21.41 3.2

CMBnB [99] 17.97 2.68

event tracks via asynchronous processing is a more effective motion estima-

tion technique than those that accumulate events into image structures. Our

approach avoids the spatial smoothness assumption which is violated at ob-

ject boundaries and discontinuities specially at low speeds where events can

be very sparse, thereby deteriorating the accuracy of their motion estimation.

In fact, our approach is especially suited for sparse scenes where the accu-

mulation approaches suffer a lower information rate forcing them to either

estimate motion from a sparse scene resulting in inferior accuracy or accumu-

late events over longer windows thereby excluding faster motions. At higher

speeds, our approach has proven more effective at solving the data associa-

tion problem. Finally, the pure 3D rotational approaches ignore translation

which results in a lower motion accuracy, unlike the case for our approach.

6.6.3 Rapid Motion Limitations

In this section, we test the limits at which the velocity constancy assumption

starts to undermine the accuracy of our egomotion estimation. Towards

that end, we evaluate in Fig. 6.7 the relative ME for each of the angular

velocity components of the shapes 6dof sequence shown in the top panel of

Fig. 6.6. The relative error is limited to less than 1% for all rotations with

a magnitude less then 200 deg/s. Error grows as our algorithm encounters

large motion excursions but it settles down below 1% as they end. This

behaviour is consistent for all three angular velocity components. Errors
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Figure 6.7: The tilt (blue), pan (green), and roll (red) rotations of the shapes

6dof sequence and the corresponding relative ME as functions of time.

grow proportionally to the magnitude of those excursions as can been seen

by comparing the lager excursions of roll to the relatively smaller ones of

pan and tilt. Similar results were obtained for all other five general motion

sequences.
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We also note that the AMEN for our approach was less than that of the

comparable general motion approaches [138, 168] eventhough our sequences

included larger angular velocities excursions reaching maxima varying from

620 to 940 deg/s, whereas the maximum angular velocity in the sequences

handled by those approaches did not exceed 45 deg/s. Combined, these

results indicate that our approach maintains accuracy at much higher angular

speeds.

6.6.4 Texture Limitations

Textured scenes produce denser event streams (more events per second) un-

dermining the efficiency of event cameras. At the limit where all the pixels in

an event camera fire at the same time, it becomes equivalent to a traditional

camera with a similar latency due to hardware limitations. In these cases,

the arbiter (see Appendix A) decreases the bandwidth of the camera, decides

the order of events transmission, and assigns them incorrect timestamps. As

a result, correct candidate events may be delayed to lie outside our temporal

window mδt, and missed or the data association process fails due to events

carrying the wrong timestamp. The impact of texture on performance can

be observed in the boxes rotation sequence which returned higher errors than

all the other sequences, Table 6.1. The event rate for this sequence was four

times that of the other general motion sequences.

Figure 6.8 shows the relative ME for the boxes rotation sequence. The

presence of texture and rapid motion degrades accuracy over the second half

of the sequence. However, comparing the MErel for this sequence to that of

the shapes 6dof, Fig. 6.7, shows that while a similar level of rapid motions

in the latter sequence generated MEre] < 3%, in this sequence it generated

MErel > 6%. The texture is the factor exacerbating those errors. Further,

we note that the percentage of outlier events for this sequence was double

that rate for all sparse general motion sequences. The elevated rate of the

data association failure is due to the arbiter interference discussed above.
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Figure 6.8: Ground truth velocity, ground truth acceleration, and the relative

ME for the boxes rotation sequence.

However, eventhough the texture sequence had an increased level of error,

our approach was still able to estimate the motion accurately with an AMErel

of 3.32%.

6.6.5 Edge Normal to the Flow

The forward prediction objective function encountered an anomaly in scenes

that include edges or other patterns perpendicular to the direction of motion.

An example of this situation is the slider far sequence captured while the

camera moves parallel to the scene shown in Fig 6.9. In these cases, the

objective function can develop two local minima as events fire with very

close timestamps. As a result, the objective function encounters an ambiguity

whether the direction of motion is along the actual path or the sequence of

closely spaced events up the edge. To minimize the impact of this ambiguity,

our algorithm implements a two-step investigation. First, it investigates

whether the timestamps of the candidate events lie within a very small time

window. Second, for those events that lie within that time window, it finds

their time priors and again investigates whether those priors lie within a
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similar-sized time window. If both conditions are met, it concludes that those

events belong to a vertical pattern and the motion they suggest is spurious

and, therefore, they are removed from the candidate event pool. We found

that while this implementation was able to limit the impact of edges on the

accuracy of motion estimation. For instance, the AAE increased from 0.07

deg for the other planar motion sequence to 2.18 for the slider far sequence.

Figure 6.9: Events firing along an edge normal to the flow direction.

6.6.6 Processing Time

All experiments were ran on a desktop PC consisting of one GPU (NVIDIA

GeForce RTX 2070 Super) and one CPU (Intel Core i7 10700k 5.1GHz 8-

core). We used a brute force implementation of the particle filter which

processes each event individually. We found that the general motion frame-
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work was more efficient then the planar motion framework since all candidate

events were evaluated only once against all particles. For the former frame-

work, events processing times were on the order of a few µs when using a

particle filter consisting of 100 particles. Processing times increased linearly

with the number of particles reaching tens of µs for 1500 particles. We esti-

mate that for 100-particle filter our framework as implemented can process

more than 100 k-events/s in real-time. Using more particles will degrade

real-time capabilities to tens of k-events/s.

6.7 Conclusion

In this chapter, we validated the thesis hypothesis by presenting a new voting

based method which relies only on the consistency of camera motion and the

correct data association of events and their previous firing along correspond-

ing tracks. We showed that the proposed approach works even in the case of

arbitrary camera motion and arbitrary scene depth in which a single data as-

sociation can vote for multiple motions. Our results show that our approach

significantly outperforms other approaches in terms of accuracy and robust-

ness and can achieve high accuracy in situations of rapid motion and high

dynamic range in the presence of unknown depth. Finally, we characterized

situations that limit its accuracy, mainly in highly textured environments,

very fast motion and events firing along edge normal to the flow.
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Chapter 7

Conclusions and Future Work

Motion estimation is an essential problem at the core of various applications;

from robotics to self driving cars to multimedia use such as augmented reality

and gaming, the accuracy and robustness of motion estimation relies on the

cheap and low cost motion sensors that are commonly used. Event cameras

are new emerging motion sensors within this category with characteristics

which make them offer better alternatives to motion estimation that are

worth exploring. While viable event-based motion estimation solutions have

been emerging, there is still ample room for improvements.

In this thesis, we wanted to solve the event-based motion estimation prob-

lem in a fundamentally different way, by hypothesising that in the case of

a dominant motion between the camera and the scene, consistency with the

dominant motion is sufficient for correct data association of events and their

previous firings along event tracks and would result in more accurate and

robust motion estimation.

Towards that, we presented two novel voting based methods that rely

on considering all potential data association candidates that are consistent

with a single camera motion for candidates evaluation by handling each event

individually without assuming any relationship to its neighbors beyond the

common camera motion.
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The first method projects an event backward then search over all candi-

date events around its projection to select the one that is consistent with the

camera motion. We validated the posited hypothesis first mathematically by

conducting a mathematical analysis, then experimentally by exploiting the

proposed method in a particle filter framework for the simple case of pla-

nar motion which yielded motion estimates that were an order of magnitude

more accurate than optical flow based approaches.

The consensus based method was extended to solve the general case of

event-based motion estimation where the camera undergoes an arbitrary mo-

tion in the presence of unknown scene depth. This was achieved by present-

ing a novel voting method which projects forward a set of candidate image

velocities from the data association, then perform a search over all those can-

didates to vote for the one that is most consistent with the camera motion.

We validated the posited hypothesis experimentally in a particle filter based

motion estimation system on a challenging AES dataset, where we showed

that our approach can significantly outperform the state-of-the-art in terms

of accuracy and robustness.

Therefore, we proved that consistency with a single camera motion can

be used to solve the data association problem even in the case of unknown

depth. Based on that, we provided approaches that led to superior planar

and general motion estimation. Putting all the work of this thesis together,

we presented a system contribution towards a unified asynchronous event-

based motion estimation. Our approach benefits from the event cameras

advantages where it should be used in situations of rapid motion, high dy-

namic range, strong illumination changes, and in sparse scenes. However, it

is not recommended to use it in situations that limits its accuracy, namely in

textured environments where events fire at a high rate which decreases the

bandwidth of the camera and makes realizing real-time processing harder,

and in scenes with repetitive patterns such as events firing normal to the

flow direction.
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Moving forward, there are a couple of interesting aspects to improve. The

next step would tackle improving our particle filter. We used a particle filter

as the motion estimation framework. However, the brute force nature of a

particle filter requires monotonically increasing processing time with respect

to the number of particles being used. Our current particle filter is brute

force and need improvements to ensure it works in real-time applications.

One possible improvement to realize real-time processing is to directly use

the particles from the forward predictions, each prediction becomes a particle

if no particle is close enough to it, or it uses a voting mechanism to vote to

its closest (valid) particles. So particles are created from forward predictions.

The voting mechanism is based on their weight score, some of them are bad

and should eventually die, and some are good (valid) and should get updated.

Another improvement would be to use deep learning as the motion es-

timation framework. In particular, we will need a network that can han-

dle each event individually preserving the asynchronous nature of our ap-

proaches while building a history of events, such as Recurrent Neural Net-

works (RNNs) [149, 64]. However, the challenge is in building such an ar-

chitecture. One possible solution would require an embedding layer, a set of

deconvolutional layers, and a LSTM component to learn the temporal aspect

(e.g., PhasedLSTM [126]) that use our objectives functions as unsupervised

loss functions.

Finally, a by product of using the forward prediction is that we can deter-

mine not only the camera motion but the optical flow corresponding to each

event. After the estimate of the camera’s egomotion is obtained, the flow

prediction that is the most consistent with it can be selected as the estimate

of the optical flow. This optical flow could be use to analyze the assumption

of local smoothness and how often it is broken in the scenario of a camera

moving in a natural scene. Additionally, an optical flow computed in a simi-

lar way but using a ground truth camera motion instead of estimate motion

could be used to analyze the noise statistics and dynamics in the AES.
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Appendix A

Hardware Limitation

Our findings from working on a project involving tracking the vibrations of

a micro-structural dynamics component, confirms that textured objects or

environments, will be prone to major hardware limitation. Rich texture will

trigger a very big number of events (could be all pixels) to fire at the same

time. When all pixels fire at once we have a problem of timestamps loss, as

the pixels will not be sent to the FPGA in order. The latter is due to the

AES bandwidth: for instance, if 128× 128 pixels are firing at the same time

considering the 1 million events per second (see specs in Fig. 2.1), therefore

the maximum bandwidth becomes 60Hz or pixels/s. The latter implies that

the AE camera is now as slow as regular cameras. The problem is caused

by a hardware chip called the arbiter shown in Fig. A.1, and summarized as

follows [20]:

1 If all pixels are fire at once: only one pixel is allowed to pass at a

time. First the pixels send requests to the row arbiter, which randomly

decides the row that will be allowed to go first.

2 Then all pixels that fired on this row send requests to the column

arbiter.

3 The column arbiter would go through them one by one.
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Figure A.1: DVS block diagram circuitry. Figure taken from [20].

4 When all the pixels on the selected row are sent, the row arbiter would

select another row.

Thus, when many pixels fire at once, they are always processed row by

row. The arbiter is the cause of the 1Meps which causes the delay of 1/60s

if all the pixels fire at once.
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Appendix B

Event-based Data Generator

This is synthetic dataset to study the motion estimation and its limitations.

B.1 OF Ground Truth Generation

Simulation goal is to provide at each instant ti, the optical flow of a NxN

grid assuming the camera is facing an infinite wall of depth Z.

Ti: Translation at time instant ti. Ti would be made to be constant, linear

or, follows a sinusoidal pattern of the form:

Ti = f(ti) = (asin(rcti), bsin(rcti − θ)) (B.1)

so it varies smoothly within −a and a for T x
i and −b and b for T y

i . rc controls

the sine movement a b and rc can be chosen as the maximum desired velocity

Under a general simulation assumption the data can be generated as

follow:

• At each instant Ti:
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1. Generate for each grid point (xk, yk) a 3D point (Xk, Yk, Zk):

Xk = (xk − cx)
Zk

f
(B.2)

Yk = (yk − cy)
Zk

f
(B.3)

cx and cy can be considered = N/2

2. Translate the point by Ti = f(i):

XT = Xk + T x
i (B.4)

YT = Yk + T y
i (B.5)

ZT = Zk (B.6)

3. Project back to get (xT , yT ):

xT = fXT/Z + cx = xk + f
Tix

Z
(B.7)

yT = fYT/Z + cy = yk + f
Tiy

Z
(B.8)

4. Determine optical flow as the difference between (xT , yT ) and

(xk, yk)

• Note that the xt and yt could be obtained as expected without the pro-

jection for 3D, however the simulation should be made so it generalizes

to different cases of transformations. So for a different transformation

what it needs is the expression of XT and YT as functions of Xk and

Yk: [XT , YT , ZT ] = Fi(Xk, Yk, Zk) = Ri ∗ [Xk;Yk;Zk] + Ti , Where Ri is

the rotation matrix corresponding to the rotational velocity ωi

B.1.0.1 Important Parameters

⋆ Z = ZK , f , a, b and rc, are chosen in such a way to make the

optical flow in the order of few pixels
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⋆ Grids will be 32× 32 to capture the OF

⋆ timesteps increment will be linear of ∆t = 50µs: at each timestep

ti in Eq. B.1, ti = ti−1 +∆t

⋆ the instantaneous OF (u,v) at each timestep has the generalized

units of pixels/frame i.e. pixels/50µs. The average velocity will

be over the whole sequence to make the make sure we have few

pixels movements per sequence.

B.2 Events Generation

Once we have the optical flow at each grid, we have to generate events from

them. To obtain the events we need to have intensity values. Towards that,

we use a large dense image as shown in Fig B.1. We take a small patch grid

(reference grid) 32x32 at t0 which results in an intensity grid I0.

Figure B.1: 30000x17000 Large Dense Image

Then we warp I0 with the ground truth optical flow values to predict

the intensities at time t0 + 1 and generate I1. This is exactly like moving

the camera parallel to the main image (our static scene here) with a know
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velocity (ground truth) starting from the reference grid at t0. Points that do

not have predicted intensities in I1 get assigned new random intensities. The

process gets repeated for each time step t to obtain It for all the considered

sequences.

B.2.0.1 Image Warping

To do the image warping from I0 to I1, we start from every pixel of I1 and

determine its corresponding ancestor at 0:

[x̂0, ŷ0] = [x1, y1]− [u, v] (B.9)

Then the intensity of the pixel I1(x1, y1) is bilinearly interpolated from the

pixels neighbours of [x̂0, ŷ0]

let

im = floor(x̂0)

jm = floor(ŷ0)

ip = ceil(x̂0)

jp = ceil(ŷ0)

and

d0 = ip − x̂0

d1 = x̂0 − im

d2 = jp − ŷ0

d3 = ŷ0]− jm

if none of [im, jm], [im, jp], [ip, jm], [ip, jp] are within the bounds of I0 then

I1([x1, y1]) can be considered as a new pixel and assigned a new value.
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Alternatively, if [x̂0, ŷ0] itself is outside the bounds of I0 then I1([x1, y1])

can be considered as a new pixel and assigned a new value.

Let

v0 = I0([im, jm])

v1 = I0([ip, jm])

v2 = I0([im, jp])

v3 = I0(ip, jp])

Then, the interpolated value would be:

v = d2 × (v0 × d1 + v1 × d0) + d3 × (v2 × d1 + v3 × d0) (B.10)

Let δIt denote the difference It − It−1 then for each pixel x, y for which

the absolute value of δIt is greater than a certain threshold ϵ a corresponding

event is generated with the following value:

[x, y, t, sgn(δIt(x, y))], (B.11)

where sgn is the sign function.
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Appendix C

Initialization

We show that the distance-based method in Eq. 5.3 needs to gather events

history to initialize properly when processing each event individually. We

consider a camera moving with two different sinusoidal motion of 1 and 2 peak

to peak velocities respectively, and illustrate the number of events against

the ratio of error in motion (1 being the correct motion). Fig. C.1 shows

that the first 3− 4 frames (timesteps) do not have enough history of events

with ≤ 20% average number of events, resulting in the inability to properly

minimize the objective function.
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(a) 1 peak to peak

(b) 2 peak to peak

Figure C.1: Events against the ratio error in OF for a sample of 50 frames

for a camera moving with two different sinusoidal motion of 1 and 2 peak to

peak velocities respectively.
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[52] Randal Douc and Olivier Cappé. Comparison of resampling schemes

for particle filtering. In ISPA 2005. Proceedings of the 4th International

Symposium on Image and Signal Processing and Analysis, 2005., pages

64–69. IEEE, 2005.

113



[53] David Drazen, Patrick Lichtsteiner, Philipp Häfliger, Tobi Delbrück,
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