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Abstract

We propose MT-MAG, a novel machine learning-based software tool for the complete or
partial hierarchically-structured taxonomic classification of metagenome-assembled genomes
(MAGs). MT-MAG is capable of classifying large and diverse metagenomic datasets: a
total of 245.68 Gbp in the training sets, and 9.6 Gbp in the test sets analyzed in this
study. MT-MAG is, to the best of our knowledge, the first machine learning method for
taxonomic assignment of metagenomic data that offers a “partial classification” option,
whereby a classification at a higher taxonomic level is provided for MAGs that cannot be
classified to the Species level. MT-MAG outputs complete or partial classification paths,
and interpretable numerical classification confidences of its classifications, at all taxonomic
ranks. To assess the performance of MT-MAG, we define a “weighted classification accuracy,
with a weighting scheme reflecting the fact that partial classifications at different ranks
are not equally informative. For the two benchmarking datasets analyzed (genomes from
human gut microbiome species, and bacterial and archaeal genomes assembled from cow
rumen metagenomic sequences), MT-MAG achieves an average of 80.13% in weighted
classification accuracy. At the Species level, MT-MAG outperforms DeepMicrobes, the only
other comparable software tool, by an average of 35.75% in weighted classification accuracy.
In addition, MT-MAG is able to completely classify an average of 67.7% of the sequences
at the Species level, compared with DeepMicrobes which only classifies 47.45%. Moreover,
MT-MAG provides additional information for sequences that it could not classify at the
Species level, resulting in the partial or complete classification of 95.15%, of the genomes in
the datasets analyzed. Lastly, unlike other taxonomic assignment tools (e.g., GDTB-Tk),
MT-MAG is an alignment-free and genetic marker-free tool, able to provide additional
bioinformatics analysis to confirm existing or tentative taxonomic assignments.
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Chapter 1

Introduction

Metagenome assembled genomes (MAGs) are a technological innovation that has allowed
detailed insights into environmental microbial communities, and has strengthened under-
standing of the uncultured majority of microorganisms ( [16], [10]). Accurate taxonomic
assignment for these environmentally-derived genomes is a necessary step for identifying
populations, making connections across communities and environments, and anchoring
hypotheses on metabolic function and roles in biogeochemical cycles ( [33], [11]).

As methods for determining phylogeny, evolutionary relationships, and taxonomy,
evolved from physical to molecular characteristics, so did many species definitions change.
Recently, microbial taxonomy underwent drastic changes through the Genome Taxonomy
Database (GTDB, http://gtdb.exogenomic.org/) in an effort to ensure that taxonomic
classifications were standardized, normalized, and evolutionary consistent. In the first
GTDB release (i.e., GTDB release 80) nearly 58% of the approximately 84,000 genomes
with an attached National Center for Biotechnology Information (NCBI) taxonomy saw a
difference in nomenclature above Species-level [38]. With the fourth release (i.e., GTDB
release 89) of GTDB, over 30% of the nearly 114,000 genomes with an NCBI taxonomy
(out of 143,000 total genomes in GTDB at the time) saw a change in the assigned Species
taxon [37].

In the absence of a definitive ground truth, any existing and newly proposed Species
clusters would benefit from additional bioinformatics analysis by complementary genome-
based classification methods, to confirm tentative taxonomic assignments. Even though
existing taxonomic assignment tools (e.g., CheckM [39], BERTax [31], GTDB-Tk [8]) have
achieved good classification accuracies on benchmarked tasks, they are constrained by
various limitations, as described below.

Alignment-based tools (e.g., GTDB-Tk [3]) require DNA sequences to be aligned to
reference sequences to obtain sequence similarities [12]. In addition, alignment-based tools
assume that homologous sequences are composed of a series of linearly arranged and more


http://gtdb.exogenomic.org/

or less conserved sequence stretches, assumptions that may not always hold due to high
mutation rates, frequent genetic recombination events, etc. [54]. Lastly, the utility of
alignment-based tools is limited by their often prohibitive consumption of runtime and
computational memory.

Genetic marker-based tools such as IDTAXA [33] and GTDB-Tk [3] rely on taxonomic
markers (e.g., 16S ribosomal RNA genes, internal transcribed spacers) to identify microor-
ganisms. The use of genetic marker-based tools is limited by the fact that partial genomes
frequently lack major markers. The absence of major markers could be caused, e.g., by the
genome not being sequenced to a sufficient depth to assemble well, resulting in markers
of interest possibly missing from the assembly [15]. An additional reason could be that
fragments carrying the markers do not bin with the rest of the genome, which is a frequent
problem with 16S ribosomal RNA genes [53].

At the other end of the spectrum, alignment-free tools based on k-mer frequencies (e.g.,
DeepMicrobes [25], CLARK [36]) do not rely on alignment or genetic markers, and instead
use k-mer frequencies as the input feature. However, existing k-mer-based tools are also
limited by, e.g., the fact that they are only capable of taxonomic assignment at specific
taxonomic levels (e.g., Genus, Species), and a lack of interpretability of their predicted
taxonomic assignments.

To address these limitations, we propose MT-MAG, a machine learning-based taxonomic
assignment tool for metagenome-assembled genomes. Unlike most other tools (e.g., GTDB-
Tk) MT-MAG is an alignment-free and genetic marker-free software tool. In addition, by
using a hierarchically-structured local classification approach, MT-MAG is able to provide
partial classification at higher taxonomic levels for the majority of MAGs that it could not
confidently classify at the Species level. Lastly, for a query genome, MT-MAG outputs not
only a classification path, but also a numerical classification confidence of its prediction, at
each taxonomic rank. The main contributions of this paper are:

e Partial Classification: A novel feature of MT-MAG is that it outputs partial
classifications for the majority of sequences that it cannot confidently classify at the
Species level. This results in an average of 95.15% of the genomes in the datasets
analyzed being either partially or completely classified. In particular, MT-MAG
completely classifies, on average, 88.84% of the test sequences to the Phylum level,
88.39% to the Class level, 86.81% to the Order level, 81.17% to the Family level, and
71.13% to the Genus level.

e Interpretability: MT-MAG outputs numerical classification confidences for its
classifications, at all taxonomic ranks along the classification path. In addition,
reliability diagrams are used to assess the quality of the training sets and determine
the reliability of the MT-MAG classification confidences.



e Weighted Classification Accuracy: To assess the performance of MT-MAG, we
introduce the “weighted classification accuracy,” a performance metric defined as
the weighted sum of the proportions of complete and partial classifications. To the
best of our knowledge, this is the first metric that incorporates a weighting scheme
which reflects the fact that partial classifications at different ranks are not equally
informative.

e Large Datasets: MT-MAG is capable of classifying large and diverse metagenomic
datasets. The two datasets analyzed in this paper are: genomes from human gut
microbiome species (training set 6.15 Gbp, test set 7.42 Gbp), and bacterial and
archaeal genomes assembled from cow rumen metagenomic sequences (training set
239.53 Gbp, test set 2.18 Gbp).

e Superior Performance: MT-MAG achieves an average of 80.13% in weighted
classification accuracy, for the datasets analyzed. In particular, at the Species level
(the only comparable taxonomic rank with DeepMicrobes), MT-MAG outperforms
DeepMicrobes by an average of 35.75% in weighted classification accuracy. In addition,
MT-MAG is able to completely classify an average of 67.7% of the sequences at the
Species level, compared to DeepMicrobes, which only classifies 47.45%.

The remainder of this thesis is organized as follows: In Chapter 2, we describe existing
methods for taxonomic assignment in metagenomics. In Chapter 3, we describe the datasets
analyzed and corresponding, as well as introduce the MT-MAG algorithm. In Chapter
4, we analyze our results, including a discussion of the novel features of MT-MAG, and
a performance comparison with DeepMicrobes (the only other coomparable tool in the
literature) at the Species level. In Chapter 5, we discuss limitations of our method, and
future directions of research.



Chapter 2

Related Work

In Chapter 1, we discussed taxonomic assignment tools for metagenomics by grouping them
into three categories, which are not mutually exclusive. In this chapter we discuss in detail
one or two representative tools in each category. In Section 2.1, we discuss alignment-based
tools. In Section 2.2, we discuss genetic marker-based tools. In Section 2.3, we discuss
alignment-free tools. In Section 2.4, we present the rationale behind our selection of
DeepMicrobes for the benchmark comparison for MT-MAG later (in Chapter 3).

2.1 Alignment-based tools

Metagenomics taxonomic assignment tools that are based on sequence alignment include
MegaBLAST [32], DIAMOND |[5], GTDB-Tk [37], QIIME [7], QIIME2 [7] and CheckM [39].
In the following, we introduce GTDB-Tk [37], which was used in this research (see Section 3.1)
to determine the ground-truth labels for all training and test sets.

2.1.1 GTDB-Tk

The Genome Taxonomy Database (GTDB) [37] is an attempt to establish a standardised
microbial taxonomy based on genome phylogeny. The only official taxonomic assignment
tool for GTDB is GTDB-Tk [8], an alignment-based software tool developed by the GTDB
team. It is designed to work with recent advances that allow hundreds or thousands of
MAGs to be obtained directly from environmental samples. GTDB-Tk has two phases: the
placement of reference genomes and taxonomic classification. In the placement of reference
genome phase, GTDB-Tk accepts genome assemblies as FASTA files, identifies genes and
marker genes using Prodigal [20] and HMMER |[11]. Then, reference genomes are assigned
to a domain based on the highest proportion of identified marker genes, and placed into the
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domain-specific reference trees using pplacer [28]. In the taxonomic classification phase, a
new tree is constructed using reference genomes and the query genome. In most situations,
the classification is apparent from the topology of the tree; in other cases, the “alignment
fraction” check what this is, as well as the results of running RED [38] and FastANI [21]
are, used to determine whether to classify the query genome into an existing taxon, or
to an unknown group. Benchmarking experiments involving a set of diverse archaeal and
bacterial genomes demonstrates that GTDB-Tk classifications are nearly 90% consistent
with manual curation.

Note that, while generally accepted and relatively accurate, GTDB-Tk suffers from the
limitations of alignment-based tools, as discussed in Chapter 1.

2.2 Genetic marker-based tools

Metagenomics taxonomic assignment tools that are based based on genetic markers include
IDTAXA [33], QIIME [7], QIIME2 [7], and GTDB-Tk [37]. Since we have introduced
GTDB-Tk [37] as an alignment-based tool in Section 2.1, in the following, we introduce
IDTAXA [33], which is listed as the only third-party taxonomic assignment tool on the
GTDB official website (https://gtdb.ecogenomic.org/tools).

2.2.1 IDTAXA

IDTAXA was developed for taxonomic assignment of sequences involving marker genes
(e.g. 16S ribosomal RNA genes, internal transcribed spacer). The algorithm for IDTAXA
is split into a learning and a classifying phase. The learning phase consists of (i) learning a
taxonomic tree, and (7i) ensuring that the training sequences can be correctly re-classified.
More specifically, in (i), IDTAXA takes a set of training sequences and their taxonomic
labels, computes the k-mer frequencies for each training sequence, and records the “decision
k-mers” at each rank, which are the 10% of k-mers that best distinguish among subgroups
at each rank level. In (i), training sequences are re-classified via a “tree descent” approach.
Similar to how decision trees are constructed in machine learning, a training sequence
only descents to a subgroup if the subgroup is selected in 80 out of 100 bootstrapping
experiments using the decision k-mers. In the classifying phase, IDTAXA computes the
k-mer frequencies for a test sequence. It first classifies the sequence to a taxon via the
tree descent approach as in (i); except that IDTAXA increases the threshold to proceed
to further classifications to be 98 out of 100 bootstrapping experiments. It then uses the
subset of training sequences that are re-classified to this subset in (i) to determine the final
classification. In addition, IDTAXA also outputs interpretable classification confidences.
The confidences are a weighted summation of bootstrap hits in the classifying phase.
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Compared with MAPSeq [27], QIIME2 [7], etc., IDTAXA significantly avoids mis-
classifying sequences belonging to novel taxonomic groups. However, IDTAXA suffers from
the general limitations of genetic marker-based tools, as discussed in Chapter 1.

2.3 Alignment-free tools

Metagenomics taxonomic assignment tools that are based on k-mer frequencies include
DeepMicrobes [25], CLARK [36], CDKAM 2 [6] and BERTax [31]. In the following, we
discuss DeepMicrobes [25] and BERTax [31], the two most recent alignment-free tools for
metagenomic taxonomic assignment.

2.3.1 DeepMicrobes

DeepMicrobes [27] is a state-of-the-art alignment-free and genetic marker-free metagenomics
taxonomic assignment tool. DeepMicrobes is a deep learning-based computational framework
for taxonomic assignment of short metagenomic sequencing reads, at the Genus and
Species level. It has the advantage of bypassing the need of a well-curated taxonomy tree.
DeepMicrobes operates as follows. Firstly, a simulator simulates short sequencing reads from
human gut microbiome metagenomes. Secondly, the short sequencing reads are converted
to k-mer frequencies. Thirdly, DeepMicrobes employs a flat classification approach, and a
deep neural network predicts taxonomic assignments and their corresponding confidences
for the short sequencing reads. Lastly, the confidences are used for determining whether to
output (a)a Genus or Species prediction, or (b) an “unclassified” message, by comparing the
calculated confidences against a constant so-called “stopping threshold," as follows. Using
the Species classification model, if the classification confidence of a certain classification
exceeds or equals the confidence threshold, DeepMicrobes outputs a Species prediction;
otherwise, it outputs that the read is “unclassified.” During a classification task of classifying
reads from species in human gut microbiomes, DeepMicrobes reports an average of 94% in
constrained accuracy, and 43% in absolute accuracy.

Limitations of DeepMicrobes include the fact that it uses the same stopping threshold
for all classifications, with no consideration for designing class-specific unbiased stopping
thresholds. In addition, its classification model does not provide taxonomic assignment at
any rank other than Species.

2.3.2 BERTax

BERTax [31] is a state-of-the-art alignment-free and genetic marker-free metagenomics
taxonomic assignment tool. BERTax is a deep learning based framework to classify



DNA sequences (e.g. reads, contigs, or scaffolds) into Superkindom, Phylum, and Genus
taxa without the need for known representative genomes from a database. Similar to
DeepMicrobes, BERTax uses k-mer frequencies to transform DNA sequences into numerical
sequences, followed by a deep neural network to predict taxonomic assignments. To
discover “unknown” taxa for each taxonomic rank, BERTax groups taxa with fewer than
10,000 training fragments into an “unknown” taxon for each taxonomic rank. Having DNA
sequences classified to this “unknown” taxon indicates the discovery of new taxa. However,
this approach is problematic for classifying test/unknown sequences belonging to a taxon
for which fewer than 10,000 sequences exist in the training set. Such sequences will be very
likely to be misclassifed to the “unknown” taxon.

BERTax outperforms other tools such as Kraken2 [26], sourmash [1]|, Kaiju [29], etc.,
in the overall recall while preserving the same precision, and it demonstrates significantly
superior performance for de novo sequences. This being said, although BERTax promises a
significant benefit for metagenomics, it has not yet been experimented with metagenomics
sequences. In addition, it is limited to classifications at Superkingdom, Phylum and Genus
level.

2.4 Rationale for choosing DeepMicrobes for comparison

The rationale behind the selection of DeepMicrobes for a benchmark comparison with
MT-MAG is as follows. First, alignment-based tools and genetic marker-based tools both
place strong restrictions on the types of datasets that they are able to classify, due to their
requirement for aligned sequences, respectively the requirement to use genetic markers.
MT-MAG does not have such restrictions on the datasets it can classify, and selecting only
restricted datasets for a comparison would not showcase its full capabilities.

Second, among the alignment-free tools, we aimed to select one that (i) outperforms most
of state-of-art metagenomic taxonomic assignment tools, (i) relies on input features that
are similar to the ones used by MT-MAG, and (%ii) it can output classification confidences.
DeepMicrobes satisfies criterion (i), as being a recently developed metagenomic taxo-
nomic assignment tool, that has outperformed Kraken2 [20], Centrifuge [22], CLARK [30],
DIAMOND-MEGAN [19] and BLAST-MEGAN [18]. DeepMicrobes satisfies criterion (i),
as being based on k-mer frequencies as the input feature, similarly to MT-MAG. DeepMi-
crobes also satisfies criterion (%), because it not only outputs classification confidences, but
also compares the classification confidences with the stopping threshold to determine the
final output. To the best of our knowledge, DeepMicrobes is the only taxonomic assignment
tool that satisfies these three criteria. Thus, we selected DeepMicrobes as the tool for a
performance comparison.



Chapter 3

Materials and Methods

3.1 Materials: Datasets and task description

Two different tasks were performed in the computational experiments of this study, called
Task 1 and Task 2. The dataset analyzed in Task 1 was selected for direct performance
comparison purposes, as it was the dataset analyzed by DeepMicrobes [25]. More specifically,
the MT-MAG training set in Task 1 was based on representative genomes from species in
human gut microbiomes, and the test set comprised high-quality MAGs reconstructed from
human gut microbiomes from a European Nucleotide Archive study [I|. The MT-MAG
training set in Task 2 was based on representative and non-representative microbial genomes
from GTDB r202, and the test set comprised 913 “draft” bacterial and archaeal genomes
assembled from rumen metagenomic sequence data derived from 43 Scottish cattle [17].

The rationale behind the selection of DeepMicrobes for a benchmark comparison
with MT-MAG is as follows. Like MT-MAG, DeepMicrobes is a machine learning-based
alignment-free and genetic marker-free metagenomic taxonomic assignment tool that uses
k-mer frequencies as input feature to predict taxonomic assignments of short reads at the
Genus and Species level. DeepMicrobes has demonstrated better performance at the Species
level classification, and better comparative accuracy in Species abundance estimation over
other state-of-the-art tools, see [19,22,29 35 36,51]. In addition, like MT-MAG, DeepMi-
crobes estimates classification confidences: The reads with classification confidences below
a (constant) threshold are considered to be unclassified reads, while the rest are considered
to be classified reads. Within the set of classified reads, the reads whose classified Species
taxa are the same as their ground-truth Species taxa are considered to be correctly classified
reads. Lastly, to the best of our knowledge, DeepMicrobes is the only taxonomic assignment
tool that enables probabilistic classification using machine learning classifiers, similar to
MT-MAG’s design goals.



As MT-MAG and DeepMicrobes have different requirements on their inputs, in that MT-
MAG ideally requires the training sequences to be > 10,000 bp, while DeepMicrobes operates
with short reads, the datasets were prepared separately for MT-MAG and DeepMicrobes.

We conclude these general remarks on the datasets used in this study with a discussion
on the ground-truth labels that were used for both the training sets and test sets. We first
note that the NCBI [13] labels are outdated, due to the lack of consensus on uncultivated
taxa naming conventions [31]. In contrast, in GTDB a consistent naming scheme was
achieved by naming uncultivated taxa as ‘Genus name’ spl, ‘Genus name’ sp2, and so
on [38]. Second, we note that GTDB provides a complete taxonomic hierarchy with no
inconsistencies in naming, based on standardized phylogenetic distances used to define
taxonomic ranks [37]. Third, we observe that the numerical labels used by DeepMicrobes
are not biologically meaningful, and cannot be extended to other datasets. In consequence,
to obtain ground-truth labels for the training and test sets in this study, we opted for using
the results of running GTDB-Tk [3], based on GTDB R06-RS202, April 27, 2021.

3.1.1 Task 1: Sparse training set

The dataset for Task 1 was specifically chosen so as to allow a direct comparison between
the quantitative performance of MT-MAG and that of DeepMicrobes (see “Performance
metrics”). Since the genomes that the training sets for Task 1 were based on comprise only
2.4 % of the GTDB at the Species level, in the remainder of the paper this task will be
referred to as Task 1 (sparse).

We first note that we were unable to replicate the classification accuracies reported by
DeepMicrobes, using the datasets and software provided in [25]. Absent the possibility
to reproduce the results in [25] ab initio, and to give DeepMicrobes the best possible
scenario for comparison, we opted for the alternative of using the already trained Species
classification model reported in [25].

The training set for the Species classification model provided by [25], consisted of reads
extracted from 2,505 representative genomes of human gut microbial species. These genomes
were identified previously by a large-scale assembling study of the species in human gut
microbiomes, and are available on ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/
umgs_analyses. This genome set comprised 1,952 MAGs, and 553 microbial gut Species-
level genome representatives from the human-specific reference (HR) database. This 2,505
genome set was referred to in [25] as “HGR.” Starting from HGR, DeepMicrobes [25] first
assigned each species a numerical label from 0 to 2,504 (inclusive). Secondly, using the ART
[lumina read simulator [17], one hundred thousand 150 basepair (bp) paired-end reads were
simulated from HiSeq 2500 error model with the mean fragment size of 200 and standard
deviation of 50 bp per species. Thirdly, the simulated reads were trimmed from the 3’ end
to 75-150 bp in equal probability. Lastly, these trimmed simulated read sets with their
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numerical labels from 0 to 2504 (inclusive) were used as the input to DeepMicrobes. The
total size of the training set of this Species classification model trained by DeepMicrobes is

56.03 Gbp.

The test set of DeepMicrobes was prepared in [25] in a similar way to the training
set, and it comprised twenty-thousand 75-150 bp trimmed paired-end 75-150 bp reads
simulated using ART Illumina from 3,269 high-quality MAGs reconstructed from human gut
microbiomes from a European Nucleotide Archive study titled “A new genomic blueprint of
the human gut microbiota” (GBHGM) [1]. The ground-truth taxonomic labels for the test
set were derived by running GTDB-Tk. The total test set size for DeeMicrobes is 14.71
Gbp.

The training set of MT-MAG was prepared as follows. Since MT-MAG uses an enhanced
version of MLDSP as a subprocess (see “Methods: MT-MAG algorithm”), which achieves
optimal performance when the input sequence length exceeds 10,000 bp, all contigs in HGR
that were shorter than 5,000 bp were discarded. The remaining 14,358 contigs comprised
the training set of MT-MAG, totalling 6.15 Gbp. The process by which MT-MAG handles
the special case of imbalanced classes, and the special case of the input dataset being too
large to be loaded in memory are described in Section 3.1.3.3.

The test set of MT-MAG comprised 3,269 full MAGs in GBHGM. The total size of the
test set of MT-MAG is 7.42 Gbp.

Finally, to compare the DeepMicrobes classification results with those of MT-MAG,
we post-processed the numerical labels of the reads in the DeepMicrobes training set, as
follows. Recall that the reads in the training set were simulated from real genomes in the
HGR database. Post-processing the numerical label of a read in the training set entailed
using GTDB-Tk to obtain the GTDB ground-truth label of its originating genome, and
this GTDB label was then associated to the numerical label of that read.

3.1.2 Task 2: Dense training set

The training sets used in Task 2 were based on genomes comprising 7.7% of GTDB taxonomy,
hence this task will thereafter be referred to as Task 2 (dense).

The training set of MT-MAG was prepared using GTDB R06-RS202. Note that the
sizes of the genomes in GTDB are significantly larger than those of genomes in HGR.
Most GTDB MAGs contain multiple contigs per genome. All contigs belonging to a
given genome were pseudo-concatenated into a single sequence, by adding the symbol “O”
between contigs, so as to avoid creating artificial k-mers at the junction of contigs. Then, 4
non-overlapping fragments of length 100,000 bp were selected from each such genome, using
four random starts. The 4 obtained fragments belonging to the same genome were again
pseudo-concatenated to form a representative genomic fragment for that genome. To ensure
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that we had a sufficient number of representative genomic fragments to perform cross-
validation, the above sampling process was repeated 20 times for each genome, resulting in
20 separate representative genomic fragments with the same genome label. The total size
of the training set of MT-MAG is 239.53 Gbp. The process by which MT-MAG handles
the special case of imbalanced classes, and the special case of the input dataset being too
large or too small, are described in Section 3.1.3.3.

Regarding the preparation of the training set of DeepMicrobes, we note that the training
stage of DeepMicrobes entails creating and loading in random access memory of a 49,871-
dimensional tensor to encode the ground-truth labels of the training reads belonging to the
49,871 different species in GTDB. This tensor would consume an extremely large amount of
random access memory, and would make the convergence of the training process difficult to
achieve, due to the large number of classes (species labels) [24]. To make the benchmarking
comparison with MT-MAG possible, we opted to include in the DeepMicrobes training set
only reads belonging to the 601 Species present in its test set. Note that this design choice
gives DeepMicrobes a significant advantage, since it now has to choose its predicted answers
only from a small output space of 601 correct labels, while MT-MAG has to search for the
correct answers in a large output space of 49,871 Species labels. Most likely, this advantage
boosts the classification accuracy for DeepMicrobes by a large amount. Note also that, as a
consequence of this design decision, the total size of the training set of DeepMicrobes is
now significantly smaller than that of MT-MAG.

Following this design choice, the training set of DeepMicrobes was prepared from the
representative and non-representative genomes of the afore-mentioned 601 species, in a
similar way to the training set of DeepMicrobes in Task 1 (sparse). Approximately thirty-
thousand 75-150 bp paired-end reads were simulated per species, and each species was
assigned a numerical label between 0 and 600 (see Section 3.1.3.4 for details).

The test set of MT-MAG comprised 913 full microbial genomes from metagenomic
sequencing of cow rumen, which were derived from 43 Scottish cattle [17]. The total
sequence length of the test set of MT-MAG is 2.18 Gbp.

The test set of DeepMicrobes (reads) was prepared from the 913 full microbial genomes [17],
in a similar way to the test set of DeepMicrobes in Task 1 (sparse). In the end, 10,000
75-150bp trimmed simulated paired-end reads per MAG were generated as the input to
DeepMicrobes. The total size of the test set of DeepMicrobes is 2.04 Gbp, and 18,143,340
reads were simulated.

Table 3.1 and Table 3.2 provides a summary of the total number of basepairs analyzed,
number of FASTA files, and number of contigs or reads for training and test sets in Task 1
(sparse) and Task 2 (dense), for MT-MAG and DeepMicrobes.
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Table 3.1: Summary of total number of basepairs analyzed, number of samples and number
of contigs or reads for the training and test sets in Task 1 (sparse) for MT-MAG and
DeepMicrobes.

Dataset type Tool Total basepairs # of FASTA files # of contigs/reads
Training MT-MAG 6.15 Gbp 2,505 314,840
DeepMicrobes 56.03 Gbp 5,010 498,086,752

Test MT-MAG 7.42 Gbp 3,269 245,564
DeepMicrobes 14.71 Gbp 6,538 130,760,000

Table 3.2: Summary of total number of basepairs analyzed, number of samples and number
of contigs or reads for the training and test sets in Task 2 (dense) for MT-MAG and
DeepMicrobes.

Dataset type Tool Total basepairs # of FASTA files # of contigs/reads
Training MT-MAG 239.53 Gbp 635,248 2,540,992
DeepMicrobes 4.02 Gbp 1,202 35,765,154

Test MT-MAG 2.18 Gbp 913 158,102
DeepMicrobes 2.04 Gbp 1,826 18,143,340

3.1.3 Dataset and task details

In this section, we provide further details regarding the datasets and corresponding tasks.
Section 3.1.3.1 provides the histograms for genome size, contig count, and percent GC
distributions for the datasets in Task 1 (sparse) and Task (dense). Section 3.1.3.2 specifies
the seed values used in experiments. Section 3.1.3.3 discusses four special cases during the
data sampling stage for Task 1 (sparse) and Task 2 (dense). Section 3.1.3.4 specifies the
hyper-parameter values we used for DeepMicrobes in Task 2 (dense).

3.1.3.1 Genome size, contig count, percent GC distributions

The following histograms show the genome size, contig count and percent GC distributions
for different datasets in Task 1 (sparse) and Task 2 (dense). Specifically, we have:

e Figure 3.1 — Task 1 (sparse) training set: unclassified MAGs, and genomes from
human-specific reference (HGR) database.

e Figure 3.2 — Task 1 (sparse) test set: high-quality MAGs reconstructed from human
gut microbiomes from a European Nucleotide Archive study titled “A new genomic
blueprint of the human gut microbiota” (GBHGM) [1].
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e Figure 3.3 — Task 2 (dense) training set: genomes from Genome Taxonomy Database

(GTDB) R06-RS202.

e Figure 3.4 — Task 2 (dense) test set: microbial genomes from metagenomic sequencing
of cow rumen, which were derived from 43 Scottish cattle [17].
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Figure 3.1: Genome size, contig count and percent GC distributions for all genomes in the
HGR database. Recall that HGR comprises 1,952 MAGs and 553 microbial gut Species-level
genome representatives from the human-specific reference database. From the histograms,
we observe that the genome sizes are centered around 2 Mbp; the contig count is right-
skewed and peaks at around 38; the percent GC peaks at around 59%.
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Figure 3.2: Genome size, contig count and percent GC distributions for all GBHGM MAGs.
Recall that GBHGM comprises 3,269 high-quality MAGs reconstructed from human gut
microbiomes from a European Nucleotide Archive study titled “A new genomic blueprint
of the human gut microbiota” (GBHGM) [1]|. From the histograms we observe that the
genome sizes are centered around 2 Mbp; the contig count is right-skewed and peaks at
around 38; the percent GC peaks at around 44%.
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Figure 3.3: Genome size, contig count and percent GC distributions for all genomes (top
panels) and Species-level representative genomes in GTDB (bottom panels). Recall that
the full GTDB comprises 311,480 bacteria genomes and 6,062 archaeal genomes. From
the histograms in the top panels, generated for all genomes in GTDB, we observe that
the genome sizes are multimodal and peak at around 2 Mbp, 3 Mbp and 5 Mbp; the
contig count is right-skewed and peaks at around 13; the percent GC peaks at around 51%.
From the histograms in the bottom panels, generated for Species level representatives in
GTDB, the genome sizes are right-skewed and peak at around 2 Mbp; the contig count is
right-skewed and peaks at around 13; the percent GC peaks at around 41% and 64%.
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Figure 3.4: Genome size, contig count and percent GC distributions for all 913 cow rumen
MAGs. Recall that there are 913 “draft” bacterial and archaeal genomes assembled from
rumen metagenomic sequence data derived from 43 Scottish cattle. From the histograms, we
observe that the genome sizes are centered around 2 Mbp; the contig count is right-skewed
and peaks at around 63; the percent GC peaks at around 50%.

3.1.3.2 Seed fixing

To ensure our results are replicable, our presented results were produced by setting the
random seed to 0 for all processes that involve randomness (unless otherwise mentioned).

3.1.3.3 Special cases

e Dataset being too large for Task 1 (sparse). For the Phylum level classification, as
well as for the over-represented lineages from Class to Genus level classifications, we
randomly selected 10% of contigs from any child taxon with more than 100 contigs.
This reduced sampling bias in the datasets and reduced computational complexity
without omitting any taxon within the taxonomy.

e Dataset being too small for Task 2 (dense). One type of special case concerns the
taxa with insufficient number of representative genomic fragments. More specifically,
to perform five-fold cross-validation, each child taxon needs to have at least five
representative genomic fragments. To address this issue, in such cases, and for the
Phylum to Genus level taxa, the child taxa with fewer than five representative genomic
fragments were removed.

e Dataset being too large for Task 2 (dense). For Domain, Phylum, and over-represented
lineages from Class to Genus, where eMLDSP consumes an extreme large amount of
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random access memory, we randomly selected 10% of the representative genomes from
any child taxon with more than 100 representative genomes. For less-well represented
lineages from Classes to Genera, we selected all representative genomes. For Species,
we selected all representative and non-representative genomes.

Imbalanced classification for Task 1 (sparse) and Task 2 (dense). One scenario which
could lead to problematic classifications is that of imbalanced taxon sizes. This
is because significant differences in child taxon sizes may violate the assumption,
necessary for most classification algorithms, that the number of the training instances
for each class be roughly the same. Imbalanced class sizes may pose a challenge for
predictive performance, especially for the classes with few training instances [52]|. In
general, there is a trade-off between balanced class sizes and the amount of variability
reflected in each class. In the computational experiments in this paper, the situation
of imbalanced taxon sizes was dealt with differently, depending on the taxonomic
rank. For high-level classifications (i.e., Domain to Phylum, Phylum to Class, Class to
Order, Order to Family), no pruning of over-sampled child taxa was performed. This
is because the number of (representative) genomes in a child taxon is proportional to
the amount of variability in the taxon and, for high-level classifications, the differences
in the amounts of variability of different child taxa can be significant. Since the
training instances are intended to capture and represent the differences in the amount
of variability, the oversized child taxa must be preserved as being reflective of their
respective amounts of variability, and were not pruned.

The situation is different for low-level classifications (i.e., Family to Genus, and
Genus to Species), where the differences in the amounts of variability of various
child taxa is much smaller, and imbalanced taxon sizes can have a negative impact
on the training model and its performance. In these latter cases, all training child
taxa were pruned to relatively similar sizes as follows. After sampling, the number
of contigs/representative genomic fragments in each child taxon was counted. If
the number of contigs/representative genomic fragments was greater than 30, then
30 contigs/representative genomic fragments were randomly selected and used for
training.

3.1.3.4 DeepMicrobes training

For Task 2 (dense), via a hyper-parameter search, we found the attention model with the
following hyper-parameter values yielded the best performance: the embedding dimension
being 50, the batch size being 1024, the learning rate starting with 0.001. 30,000 150 basepair
(bp) paired-end reads were simulated from HiSeq 2500 error model in ART Illumina read
simulator [17], with the mean fragment size of 200, standard deviation of 50 bp per species
and seeds 1, 2 and 11.
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3.2 Methods: MT-MAG algorithm

This section describes the hierarchically-structured local classification approach used by
MT-MAG in Section 3.2.1, the eMLDSP subprocess that is at the core of MT-MAG
in Section 3.2.2, and the two main phases of MT-MAG (training and classifying) in
Section 3.2.3.

3.2.1 A hierarchically-structured local classification approach

Taxonomic assignment is a problem of hierarchical classification, whereby input items are
grouped according to a hierarchy. A hierarchy can be formalized as a directed acyclic graph
where every node can be reached by a unique path from the root node (see Figure 3.5). In
machine learning, there are generally three types of approaches to hierarchical classifica-
tion [3]. The simplest approach is flat classification where all parent nodes are ignored, and
a single classifier is trained to classify each instance directly into a leaf node. The second
approach is the so-called big bang classification where a single classifier is trained for all
nodes in the hierarchy. The third approach is the hierarchically-structured local classification,
whereby one multi-class classifier is trained for each parent-to-child relationship. This third
approach is an iterative classifying process where instances classified to a child node are
then further classified with the next-level classifier, where the child node is now the parent

node for the next-level classifier.
rank 1 rank 1
group 1 group 2
rank 2 rank 2 rank 2 rank 2
group 1 group 2 group 3 group 4

Figure 3.5: A sample hierarchy (taxonomy) with three parent-to-child relationships. A
parent node with all its children nodes forms a parent-to-child relationship. A parent node
without a child node is called a leaf node. The level of a node is the length of path from

that node to the root node. The part highlighted in red is a multi-child classification, while
the part highlighted in cyan is a single-child classification.

In contrast with DeepMicrobes which uses flat classification, MT-MAG uses hierarchically-
structured local classification, for reasons detailed below. First, in the case of flat classifica-
tion, an erroneous classification of a DNA sequence directly at the Species level is more
likely, due to the very large number of classes at the Species level. This, in turn, results in a
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higher likelihood of placing the sequence into an erroneous higher-level taxonomic rank, e.g.,
Order. Such a serious misplacement is less likely to happen with hierarchically-structured
local classification, whereby a sequence passes through multiple classifications, from higher
to lower taxonomic ranks, thus providing multiple check-points for the identification of an
incorrect classification. For example, an incorrect Order classification could be prevented if
any of the classifications prior to and including this level are deemed “uncertain.”

In addition, in the case of flat classification, if the classification confidence of a se-
quence into a Species taxon does not meet the required confidence level, this sequence
is simply deemed “unclassified,” with no further information being provided. In contrast,
the hierarchically-structured local classification provides the option of partial classification
and can output partial classification paths for such sequences, even if their Species level
classification is uncertain.

Finally, flat classification requires significantly more computational time and memory
resources, because it involves a single big classification task wherein all the training
sequences are loaded into memory simultaneously. In contrast, a hierarchically-structured
local classification approach involves multiple smaller classification tasks and, for each
classification task, one only needs to load into memory the sequences pertaining to the
specific parent taxon being classified at this step in the hierarchy. In particular, for
classifications at higher taxonomic ranks, one can use, e.g., only representative genomes as
opposed to all of the genomes available for that parent taxon.

3.2.2 The enhanced MLDSP (eMLDSP) subprocess

MT-MAG uses an enhanced version of MLDSP, an alignment-free software tool that
combines supervised machine learning techniques with digital signal processing for ultrafast,
accurate, and scalable genome classification at all taxonomic ranks [11].

The inputs to MLDSP are pseudo-concatenated DNA sequences, together with their
ground-truth taxonomic labels. After selecting a value for the parameter k, each such input
DNA sequence is converted into a numerical vector containing the counts of all of its k-mers,
where a k-mer is defined as a DNA subsequence of length £ that does not contain the symbol
“O” (used during the pseudo-concatenation process), or the symbol “N” (representing an
unidentified nucleotide). Each k-mer count vector is then converted into a k-mer frequency
vector, via dividing its k-mer counts by the total length of the sequence (excluding “O”s and
“N”s). These k-mer frequency vectors are computed via order k Frequency Chaos Game
Representation of a DNA sequence (FCGRy,) |2,9,50], and used as the input to MLDSP.

MLDSP consists of two main steps: (a) Pretraining, whereby several different classifiers’

performance is evaluated by 10-fold cross validation, and (b) Classify, whereby MLDSP
first trains the classifiers using the entire training set (Classify- Training), and then classifies
new DNA sequences in the test set (Classify-Classification).
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Figure 3.6 provides an overview of MLDSP, including the main steps to accomplish
MLDSP (Pretraining), MLDSP (Classify-Training) and MLDSP (Classify-Classification).

MLDSP (Pretraining) MLDSP (Classify-Training) MLDSP (Classify-Classification)
training set:
(@) (a) DNA sequences
(b) their ground-truth taxonomic
labels test set: set of DNA
sequences
training dataset training dataset
subset 1 subset 10 onvert using numerical representations or k= Convert using numerical representations or k=
mer frequencies mer frequencies
Convert using numerical representations or k= (b)
mer frequencies
q ®
training numerical vectors test numerical vectors
training numerical vectors training numerical vectors
subset 1 subset 10
Fourier transformation Fourier transformation
Fourier transformation
training magnitude test magnitude
training magnitude training magnitude spectrum spectrum
spectrum subset 1 spectrum subset 10
Compute pairwise distances in the training Compute pairwise distances between the training
O-fold cross validation using magnitude spectrum using PCC and test magnitude spectrum using PCC
several ML algorithms
training distance test distance matrix
classification matrix
accuracy for different
classifiers - . -
train classifiers using
several ML algorithms
taxonomic predictions
- . from different classifiers
Linear Discriminant Subspace K-Nearest
e &

Figure 3.6: An overview of MLDSP, including the main steps to accomplish MLDSP
(Pretraining), MLDSP (Classify-Training) and MLDSP (Classify-Classification). Ellipses
represent computation steps. Rectangles represent inputs to and outputs from the compu-
tation steps. Note that the training set comprises both (a) DNA sequences and (b) their
ground-truth taxonomic labels.

MT-MAG uses an enhanced version of MLDSP, called eMLDSP (enhanced MLDSP)
as a subprocess. The eMLDSP subprocess augments MLDSP in several significant ways.
First, it augments MLDSP by adding the capability to handle the special case where the
parent taxon has only one child taxon, as well as by adding the new feature of computing
classification confidences for its classifications. Second, it adds an stopping threshold
picking algorithm, called “STP algorithm,” which is at the core of the partial classification
option feature of MT-MAG. Specifically, the STP algorithm provides an individual stopping
threshold for each parent-child pair, at each taxonomic level, as opposed to the one-size-fits-
all stopping threshold of DeepMicrobes at the Species level. Third, eMLDSP combines the
hierarchically-structured local classification with the result of the STP algorithm to output
“uncertain classification,” if the classification confidence is below the stopping threshold.
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Figure 3.7 provides an overview of eMLDSP, including the main steps to accomplish
eMLDSP (Pretraining), eMLDSP (Classify-Training) and eMLDSP (Classify-Classification).

eMLDSP (Pretraining) eMLDSP (Classify-Training) eMLDSP (Classify-Classification)

training set:
(a) (a) DNA sequences, and

(b) their ground-truth taxonomic
@ labels
’ training set training set

subset 1 ‘ subset 5

convert using pseudo-concatenated 7-mer’
frequencies
(b)

training numerical vectors
subset 5

test set: set of
genomes

convert using pseudo-concatenated 7-mer’
frequencies

test numerical vectors

Fourier transformation
test magnitude
spectrum

Compute pairwise distances between the training
and test magnitude spectrum using PCC
test distance matrix

classify, and softmax-max/logit
transformation

predictions and
classification confidences
novelty QSVM for the test set

convert using pseudo-concatenated 7-mer’
frequencies

training numerical vectors
Fourier transformation
training magnitude
spectrum

compute pairwise distances in the training
magnitude spectrum using PCC

training numerical vectors
subset 1

Fourier transformation

training magnitude training magnitude
spectrum subset 1 spectrum subset 5

5-fold cross validation using QSVM
and softmax-max transformation

predictions and
classification
confidences for the
training set

training distance

matrix
multi-child classification 7

fully trained
QsvMm

Figure 3.7: Overview of eMLDSP, including the main steps that comprise eMLDSP
(Pretraining) (pink box), eMLDSP (Classify-Training) (yellow box), and eMLDSP (Classify-
Classification) (lavender box). Ellipses represent computation steps. Rectangles represent
inputs to, and outputs from, computation steps. The diamond represents a condition
checking. Note that the training dataset consists of DNA sequences together with their
taxonomic labels.

The MLDSP implementation of the algorithms assumes that the input DNA sequences
belong to multiple child taxa (multi-child classification). If this is the case, in the eMLDSP
(Classify-Training) step, a QSVM classifier called fully trained QSVM is trained, using
the entire training set. In the eMLDSP (Classify-Classification) step, eMLDSP computes
classifications (taxonomic assignments) for the DNA sequences in the test set by using the
fully trained QSVM, and the classification confidences of these classifications using Platt
scaling [12]. In contrast with its precursor, eMLDSP then applies five-fold cross-validation
to obtain classifications, and uses a softmax-max transformation to compute classification
confidences, for the entire training set.

Note that, when classifying a sequence belonging to a parent taxon, a single numerical
classification confidence is computed for this classification, namely the confidence of
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classifying the sequence into the most likely child taxon of that parent taxon. This
classification confidence is computed as the maximum of the posterior likelihoods over all
child taxa. These results are later used for determining the stopping thresholds for each
pair of parent and child taxon.

The case where the training/test sequences belong to a single child taxon (single-
child classification) is not addressed by MLDSP. In this case, in the eMLDSP (Classify-
Training) step, a QSVM classifier called novelty QSVM is trained, that uses the entire
training set, and sets a fraction (default 10%) of the training set as a second child-class
(called outlier taxon). In the eMLDSP (Classify-Classification) step, eMLDSP computes
classifications for the DNA sequences in the test set by classifying using the novelty QSVM,
and computes the classification confidences of these classifications by utilizing a normalizing
logit transformation. The eMLDSP (Pretraining) step is not applicable here, since there is
no need for picking stopping thresholds in the case of single-child classifications.

In the following, we describe the training phase, the classifying phase, and an additional
optimization step to combine the two phases formally.

3.2.3 The MT-MAG training phase and classifying phase

MT-MAG comprises two phases, training and classifying, as described below (see Sec-
tion 3.2.3.1, Section 3.2.3.2 and Section 3.2.3.3 for details of the two phases, and of the
optimization step that combines the two phases into a hybrid approach).

The MT-MAG training phase (of the training set comprising contigs in the case
of Task 1 (sparse), respectively representative genomic fragments in the case of Task 2
(dense), together with their ground-truth labels) comprises multiple training processes: For
each parent taxon, after preparing the training set (discarding short sequences, handling
imbalances in the dataset, etc.), two situations can occur, depending on the number of child
taxa:

o Multi-child classification. In contrast to DeepMicrobes which uses a single stopping
threshold, MT-MAG has multiple stopping thresholds, one for each parent-child pair.

Concretely, MT-MAG determines a stopping threshold for every parent-child pair,
based on the confidences calculated by eMLDSP (Pretraining) with the training
set as input. MT-MAG selects the stopping threshold from a list of candidate
stopping thresholds, and searches for the stopping threshold 7" which results in the
fewest number of contigs (resp. representative genomic fragments) with classification
confidences lower than 7', while at the same time resulting in the classification
accuracies of the other contigs (resp. representative genomic fragments) being higher
than the value of a user-specified accuracy parameter.
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More specifically, a stopping threshold is the result of subtracting a “variability”
parameter from the maximum of (a) the minimum of the candidate thresholds
(numbers between 0 and 1) that result in a “constrained accuracy” being greater
than the value of a user-specified parameter (default: 90%), and (b) the average of
classification confidences for the contigs (resp. representative genomic fragments)
with correct eMLDSP (Pretraining) classifications.

Subsequently, a QSVM classifier (the fully trained QSVM) is trained with the entire
training set of this parent taxon, as part of the eMLDSP (Classify-Training) step.

Single-child classification. A QSVM classifier called novelty QSVM is trained in the
eMLDSP (Classify-Training) step. The novelty QSVM sets a fraction of the contigs
(resp. representative genomic fragments) in the training set as a second child-class,
called outlier tazon. The default fraction is set to 10%.

The MT-MAG classifying phase (of the test set comprising test genomes with known
ground-truth labels, or unknown genomes) proceeds as follows. When, in the process
of hierarchically-structured local classification, MT-MAG has classified a test/unknown
genome into a parent taxon, and attempts to classify it further into one of its child taxa,
two possibilities can occur:

o Multi-child classification. If the parent taxon has multiple child taxa, then the fully
trained QSVM is used to classify the test/unknown genome into one of the child
taxa, and this result is also used to compute a classification confidence as part of
the eMLDSP (Classify-Classification) step. If this classification confidence is below
the stopping threshold for this parent-child pair, then this classification is considered
uncertain, and no further attempts are made to classify this test /unknown genome
from the child taxon into its own child taxa.

Single-child classification. If the parent taxon has a single child taxon, then the
novelty QSVM is used to classify the test/unknown genome into either the child
taxon or the outlier taxon as part of the eMLDSP (Classify-Classification) step, and
the result is used to compute a classification confidence. If the output is the outlier
taxon, then this classification is considered uncertain and no further classifications
are attempted.

Given a test/unknown genome, the output of MT-MAG is either (i) a complete classification
path down to the Species level, if all the intermediate classification confidences are greater
than or equal to the stopping thresholds, or (ii) a partial classification path, down to the
lowest taxonomic rank with a high enough classification confidence. In either case, the
output of MT-MAG also includes the classification confidence for each taxon along the
classification path.
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Figure 3.8 illustrates the MT-MAG training phase and classifying phase for classifying
two genomes belonging to a given parent taxon, into one of its two child taxa (multi-child
classification). Figure 3.9 illustrates the MT-MAG training phase and classifying phase
for classifying two genomes belonging to a given parent taxon, into its only child taxon
(single-child classification).
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Figure 3.8: MT-MAG pipeline for classifying two genomes, genome a and genome b, from the
parent taxon Genus Prevotella into its two child taza, Species Prevotella sp900290275, and
Species Prevotella stercorea (multi-child classification). Blue ellipses represent computation
steps. Gray rectangles represent inputs to, and outputs from, computation steps. In the
MT-MAG training phase (yellow box), the training set is prepared and given as the input
to eMLDSP (Pretraining). The classifications and classification confidences outputted in
eMLDSP (Pretraining) for the training set from all folds are used for determining the
stopping thresholds for every child taxon of this parent taxon. Furthermore, in eMLDSP
(Classify-Training), a fully trained QSVM is trained by using the entire training data. In
the MT-MAG classifying phase (violet box), the test set is given as the input to eMLDSP
(Classify-Classification), together with the fully trained SVM from the training phase.
eMLDSP (Classify-Classification) outputs a classification and a classification confidence for
each genome in the test set. Then, the classification confidence from eMLDSP (Classify-
Classification) to classify a genome from the parent taxon into a child taxon is compared
with the stopping threshold of that parent taxon and child taxon pair. If the classification
confidence is lower than its stopping threshold, then the output is “uncertain classification”
and further classification into children of this child taxon will not be attempted.
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Figure 3.9: MT-MAG pipeline of classifying two genomes, genome ¢ and genome d, from the
parent taxon Phylum Abyssubacteria into the single-child taxon Class SURF-5 (single-child
classification). Blue ellipses represent computation steps. Gray rectangles represent inputs
to and outputs from the computation steps. In the training phase, the training set is
prepared and given as the input to eMLDSP (Classify-Training), where a novelty QSVM is
trained using the entire training set by considering a fraction (default 10%) of the training
set to be outliers. In the classifying phase, the test set is given as the input to eMLDSP
(Classify-Classification), together with the novelty QSVM from the training phase. eMLDSP
(Classify-Classification) outputs a classification and a classification confidence for each
genome in the test set. If a genome is classified to be the outlier taxon, then the output is
an “uncertain” classification and further classification into children of this child taxon will
not be attempted.
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3.2.3.1 Training phase details

In this section, we will discuss MT-MAG training phase using mathematical notations.
First, we give an informal description of the MT-MAG training phase. Second, we give
a formal description of eMLDSP, a subprocess for MT-MAG. Third, we give a formal
description of the MT-MAG training phase for multi-child classification, with the formal
notations defined for eMLDSP. Lastly, we give a detailed description of the MT-MAG
training phase for single-child classification.

We start by an informal description of the MT-MAG training phase.

The MT-MAG training phase for the case of multi-child classification consists of two
steps: picking stopping thresholds, and training a classifier. A stopping threshold is the
result of subtracting a “variability" parameter from the maximum between (a) the minimum
of the candidate thresholds (numbers between 0 and 1) that result in a constrained accuracy
greater than or equal to a user-specified parameter (default: 90%), and (b) the average of
classification confidences of contigs/representative genomic fragments with correct eMLDSP
(Pretraining) classifications.

A stopping threshold for each pair (parent-class, child-class) is stored as a pair (child-
class name, child-class stopping threshold), and is utilized as follows. If a test genome is
classified to a child-class with a classification confidence that is strictly smaller than the
child-class’s stopping threshold, then this is considered to be an “uncertain” classification
and further classifications of this test genome at lower taxonomic ranks are not attempted.
There are three possible cases for an “uncertain” classification. Firstly, the test genome
belongs to the uncertain taxon that eMLDSP (Classify-Classification) classification classifies
into, however, MT-MAG is not confident about the classification. Secondly, the test genome
belongs to another existing taxon. Thirdly, the test genome belongs to a non-existing taxon
that is not among the training genomes.

The stopping thresholds were used in the classifying phase to prevent further classification
of test data. The classifier was used for classifying test data that have already classified
into the parent taxon, into one of the parent taxon’s child taxa. For example, in Figure 3.5,
in the training phase of the parent-to-child relationship highlighted in red, the ground-truth
labels of all the training genomes should be “rank 2 group 17, “rank 2 group 2” or “rank 2
group 3”. For the entire taxonomy in Figure 3.5, MT-MAG trained three classifiers, each
corresponding to one of the three parent-to-children relationships. The one from “rank 1
group 2” to “rank 2 group 4”, highlighted in cyan, is for a single-child classification, and the
other two (from root to “rank 1 group 1” and “rank 1 group 2", and from “rank 1 group 1” to
“rank 2 group 17, “rank 2 group 2,” and “rank 2 group 3”) are for multi-child classifications.

The second step of the training phase in the case of multi-child classification is to train a
classifier. During this step, for each parent taxon, we trained a QSVM (called fully trained
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QSVM) using all the training DNA sequences of the parent taxon. This fully trained QSVM
will be used, together with the aforementioned stopping thresholds, for the classifying phase.

The MT-MAG training phase for the case of single-child classification does not need a
stopping threshold, since the parent taxon has a single child taxon [1&]. In this case, all
training DNA sequences belong to one class (the single-child taxon), and the goal is for
any unknown /test genome to be either categorized as belonging to the present child taxon,
or categorized as an outlier taxon (e.g., belonging to a child taxon not represented in the
training set). With this goal in mind, a QSVM (called novelty QSVM) is trained, with
an optional user-specified outlier fraction (default: 10%) in eMLDSP (Classify-Training).
In other words, the novelty QSVM labels a fraction of the training set as outliers (i.e., a
second child taxon).

To formally describe the process of picking stopping thresholds in the training phase of
MT-MAG (the multi-child classifications case), we now introduce the formal definitions
and notations of the concepts involved.

Given a parent-to-child relationship of the multi-child classification type, let p be the
parent taxon, let D, denote the training set of p, and let ¢ be a child taxon of p, which
is a potential classification from eMLDSP (Pretraining). Let d be a DNA sequence. In
our benchmark tasks, d is a contig in the case of Task 1 (sparse), and is a representative
genomic fragment in the case of Task 2 (dense).

The subprocess eMLDSP (Pretraining) for classifying the genomes belonging to a parent
taxon p into one of its child taxa can be viewed as a function M,(d). This function maps
each DNA sequence d in the training set (all the genomes from the parent taxon p) to a
pair, i.e.,

My(d) = (pred"(d), conf™r(d))

where predr(d) is the taxonomic label of the child taxon of p that was assigned by
eMLDSP to the sequence d, and the numerical classification confidence conf*»(d) of this
classification.

Using this notation for eMLDSP, the process of determining a stopping threshold T),(c)
for each child taxon c¢ of the parent taxon p, can be described as follows.

Denote by 1,(d) the ground-truth label of the child taxon that d belongs to. Note that
l,(d) is a child taxon of p.

For a child taxon ¢ of p, define D,(c) to be the set of DNA sequences d in D, with
eMLDSP (Pretraining) classification being ¢, that is,

Dy(c) = {d € D,| pred™(d) = c}.

To determine the stopping threshold for the parent taxon p and its child taxon ¢, we
sequentially evaluate a series of candidate thresholds v € {0,0.01,0.02,...,1}, in increasing
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order of their magnitude. Given a candidate threshold «, we denote by D,(c, a) the set of
DNA sequences d in D,(c) with confr(d) greater than or equal to «, that is,

Dy(e,0) = {d € Dy(c)] conf™(d) > a},
Finally, denote by D (c, ) the set of DNA sequences d in D,(c, o) whose ground-truth

child labels coincide with ¢, that is,

D) (c,a) = {d € Dy(c,a)| I,(d) = c}.

We now define the constrained accuracy associated to o and ¢ as:
card(D,(c, a))
CAy(ec,a) = card(Dy(c, )’

1, otherwise

if card(Dy(c, ) # 0

where card(S) denotes the cardinality of a set S, that is, the number of its elements. In
other words, C'A,(c, &) measures how many, out of the DNA sequences in D,,, with eMLDSP
classifications equal to ¢ and classification confidences of their classification greater than or
equal to «, have been correctly classified by eMLDSP (Pretraining) (see Figure 3.10).

The absolute accuracy associated to o and ¢ is defined as
card(D,(c, a))
AA,(c,a) = card(Dy(c)) ’

1, otherwise

if card(D,(c)) # 0 '

In other words, AA,(c, ) measures how many, out of the DNA sequences in D,, with
eMLDSP classifications equal to ¢, have correct classifications and classification confidences
of their classification greater than or equal to w by eMLDSP (Pretraining) (see Figure 3.10).

Both CA,(c, ) and AA,(c, o) are between 0 and 1, and C'A,(c, ) > AA,(c, ). Indeed,
note that D,(c, «) is a subset of D,(c), and thus card(D,(c,«)) < card(D,(c)). Since the
numerators of C'A,(c, @) and AA,(c, ) are the same, and the denominator of C'A4,(c, a) is

smaller than or equal to the denominator of AA,(c, ), it then follows that C'A,(c, o) >
AA,(c, ).

The following are the three extreme cases that are possible for AA,(c, ) and C'A,(c, a):
e When all DNA sequences in D,(c) have classification confidences strictly less than
a, we have that both CA,(c, @) is 1, and AA,(c, «) is 0. Indeed, in this case, since

Dy(c, ) and Dy (c,a) are empty, it follows that the numerator of AA,(c, ) are 0,
and by definition C'A4,(c, «) is 1.
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Dp(c): Training DNA sequences

that belong to p and with
eMLDSP predictions being ¢

Figure 3.10: Training set for MT-MAG (the multi-child classification case).
Relationship among the four types of DNA sequences in D,(c) (the set of DNA sequences
of a parent-taxon p who are predicted by eMLDSP to have child taxon label ¢), for a
given candidate threshold . Within the set D,(c) (gray circle), there are two sets: the set
D,(c, ) (cyan circle), of DNA sequences whose classification confidence as being labelled ¢
is greater than or equal to «, and the set of DNA sequences whose ground truth child labels
is actually ¢ (orange circle). The intersection of the two sets (D (c, ), violet lens) is the
set of DNA sequences d in D,(c) with classification confidences > a and correct eMLDSP
(Pretraining) classifications. Visually, we have that C'A,(c, «) is the ratio of violet lens set
to the cyan circle set, and AA,(c, o) is the ratio of the violet lens set to the gray circle set.

e When all DNA sequences in D,(c) are correctly classified and have classification
confidences greater than or equal to «, we have that CA,(c, «) is 1, and AA,(c, o) is 1.
Indeed, in this case, since Dy(c) = D,(c, o) = D;(c, ), it follows that the numerators
and denominators of C'A,(c, a) and AA,(c, ) are the same.

e When all DNA sequences in D,(c) are incorrectly classified and have classification
confidences greater than or equal to a, we have that C'A,(c,«) is 0, and AA,(c, «)

is 0. Indeed, in this case, since D (c, a) is empty, it follows that the numerators of
CAp(c,a) and AA,(c, ) are both 0.
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To intuitively understand what a “reasonably good” o means, we now discuss the case
when C'A,(c, o) is 1, but AA,(c, o) is close to 0. In general, a high AA,(c, o) indicates a good
choice of a. If this is not achievable, an indicator of a“reasonably good” choice of « is that
CA,(c, @) is high, while AA,(c, ) is not too low. Intuitively, the latter requirements mean
that (i) a high proportion of DNA sequences classified as ¢ with classification confidence
> «, are correctly classified (have ground-truth label ¢) (i.e., high C'A,(c, «)), and that
(ii) in addition, among the training DNA sequences classified to have label ¢, there are
sufficiently many training DNA sequences whose classification confidence is at least «
(i.e., not too low AA,(c,a)). Note that requiring only that C'A,(c, a) be high could result
in situations as follows being considered a “reasonably good” choice for «, which would
be erroneous: Suppose we have 1,000 training DNA sequences, and that only one DNA
sequence has classification confidence > « and is correctly classified; then C'A,(c, «) attains
the maximum value of 1, but AA,(c, «) is close to 0.

For each pair comprising a parent taxon p and child taxon ¢, and given a list of candidate
thresholds {0,0.01,0.02, ..., 1}, our goal is to determine a stopping threshold 7},(c) from
the candidates in this list. The algorithm for computing 7},(¢) uses two criteria. Firstly,
the algorithm searches for the minimum candidate threshold oy € {0,0.01,0.02,...,1}
that results in the constrained accuracy C'A,(c, o) greater than or equal to an optional
user-specified constrained accuracy (default: 0.9). Since AA,(c, @) is a decreasing function
of a, choosing the minimum threshold candidate « results in the highest possible AA,(c, @),
balancing the twin objectives for C'A,(c, o) and AA, (¢, o). Secondly, the algorithm computes
the average a, of the classification confidences of the training DNA sequences in D,(c)
that are correctly classified as ¢, and computes maz{a1, as}. Furthermore, to account for
the additional variability in the test set (which results, in general, in lower classification
confidences for the test set compared to the training set), the algorithm accepts an optional
user-specified “variability” parameter v between 0 and 1 (default: 0.2). The stopping
threshold is now computed as T},(c) = maz{ay, az} — v.

Algorithm 1 shows the pseudocode for the Stopping Threshold Picking (STP) algorithm.
Algorithm 2 shows the pseudocode for the training phase.
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Algorithm 1 Stopping Threshold Picking Algorithm Pseudocode

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:

22:
23:
24:

25:

26:
27:
28:
29:
30:
31:

32:

1:
2:
3
4:
9:
6
7
8
9

Input p : the parent taxon with more than one child taxon
C'A, : user-specified constrained accuracy (default 0.9)
v : variability (default 0.2)
0 : the gap between candidate thresholds, default 0.01
Output 7),: pairs of child taxon of p and its stopping threshold

procedure STP(p, CA,,v,6 = 0.01)
A+ [0,6,20,...,1] > list of candidate thresholds
Qpum, < 1/ + 1 > number of candidate thresholds a
C) + child taxa of p
D,, < training set of p
for ¢ in C, do

D,(c) + {d € D, : pred»(d) = c} > assume non-empty
D}, < Qum of zeros > init, list of card(D;(c, a))
Dy < atpym, of zeros > init, list of card(D,(c, a))
> init, list of confidences for sequences with correct classifications in D,(c)

ape < ]

for d in D,(c) do
> the maximum candidate threshold that is smaller than the confidence
Qstart < maz{a < confr(d)|a € A}
Qige = et + 1 > the index of aigems In A
> if the stopping threshold « is in the first a;4, elements of A, d contributes
1 to card(D,(c, @))
l)pc[1 : dzdz] + +
if pred™»(d) = 1,(d) then > a correct classification
Dy 12 vige] + + > d contributes 1 to card(D,(c,a))
> store the confidence for the correct classification
append o, with confM»(d)
for card(D,(c,a)), card(Dy(c,a)),a in D, Dy, A do
CA,(a,c) « 1
if card(D,(c,a)) # 0 then

CAy(a,c) %ﬁg:g;
if CA,(a,c) > CA, then > check the first criterion
a1 <— &
break > found the minimum o € A that satisfies the first criterion
if card(oy.) # 0 then > no correct classifications for child taxon ¢
Qg — mean(ay.) > second criterion

Ty(c) < maz(ay, az) — v
Add (¢, Ty(c)) to T,
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Algorithm 2 Training Phase Pseudocode
Input p : the parent taxon with more than one child taxon
C'A, : user-specified constrained accuracy (default 0.9)
v : variability (default 0.2)
Output MJ*: a fully trained QSVM, and
T,: pairs of child taxon in p and its corresponding stopping threshold, or
M7 a novelty QSVM

1. procedure TRAINING(p, C'A,,v)

2 if p has multiple child taxon then > multi-child classification
3: MJ" < a fully trained QSVM trained by the training set of p

4: T, < STP(p,CA,,v)

5 else > single-child classification
6 M}" < a novelty QSVM trained by the training set of p

3.2.3.2 Classifying phase details

The classifying phase comprises both (i) classifying test genomes with known ground-truth
labels, and (ii) classifying unknown genomes (without known ground-truth labels). Note
that in (7), the ground-truth labels are not used in the classifying phase, and are only
needed for computing performance metrics.

In both cases, the classifying phase mimics the hierarchically-structured local classi-
fication to classify test/unknown genomes into a leaf taxon (Species-level). The process
starts from the root (the highest level parent taxon), and it follows a classification path
through increasingly lower taxonomic ranks. This is illustrated in Figure 4.1, which depicts
a fictional hierarchical classification of a genome g. The idea of the process is as follows.
Suppose that MT-MAG has already determined that the test/unknown genome ¢ belongs
to a taxon p.

If this is a multi-child classification, denote the fully trained QSVM associated to a
parent taxon p by MI*(g), where “ft" stands for “fully trained.” For a input genome g, the
function MJ*(g) outputs a pair

(pred™'(g), conf™ (g)),

where predef ' (g) is the taxonomic label of the child taxon of p that the fully trained QSVM
predicts for g, and con f Mj* (g) is the classification confidence of this classification.

Assume that predMi’H (g9) = ¢;, where ¢; is one of the child taxa of p. Two outcomes are
now possible. If the classification confidence for this classification is greater than or equal to

the stopping threshold for the pair p and ¢;, that is, if confMZ{t(g) > Ty(c;), then MT-MAG
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outputs “the genome ¢ as belonging to c;, with classification confidence con fMI{t (9)," and
then proceeds to further classify g into one of the child taxa of ¢;. If, on the other hand, the
classification confidence is lower than the stopping threshold for this parent-child pair, that
is, if con fMi' (9) < T,(c;j), then MT-MAG outputs “classification of g as ¢; is uncertain,

and the classification confidence is con fMg ' (g9),” and stops attempting to classify g further
down the taxonomy.

If this is a single-child classification, denote the novelty QSVM associated to a parent
taxon p by M]"(g), where “nv" stands for “novelty.” For a input genome g, the function
M}"(g) outputs a pair

(pred™s"(g), conf"""(g)),

where predr"(g) is the taxonomic label of the child taxon of p that the novelty QSVM
predicts for g, and confMr" (g) is the classification confidence of this classification.

Two outcomes are possible. If the novelty QSVM associated to p classifies g as belonging
to the single-child taxon c of p, that is, if pred™»” (g) = ¢, then MT-MAG outputs “the
genome ¢ belongs to ¢, with classification confidence confr"(g),” and then proceeds to
further classify g into one of the child taxa of c. If, on the other hand, if M classifies g to
the outlier taxon, that is, if MJ" # ¢, then MT-MAG outputs “classification of g as c is
uncertain, and the classification confidence is conf*»" (g),” and stops attempting to classify
g further down the taxonomy.

Algorithm 3 shows the pseudocode for the classifying phase.

3.2.3.3 Optimization step details

A careful analysis of MT-MAG’s time complexity reveals that a significant part of its
runtime comes from its training phase. In addition, in the task of classification of a
test /unknown genome, not all novelty QSVMs, fully trained QSVMs, and stopping thresholds
computed during the training phase are used in the classifying phase. Indeed, for a
test /unknown genome, only the novelty /fully trained QSVM’s and stopping thresholds
local to its classification path will be actually used for the classification.

Thus, MT-MAG can be optimized to prevent computation of unnecessary novelty/fully
trained QSVMs, and unnecessary stopping thresholds, as follows. First, with the exception
of the root taxon, MT-MAG will only train a novelty /fully trained QSVM of a parent taxon
p if there are test/unknown genomes that have been classified to p by the novelty /fully
trained QSVM of the parent of p. Second, the algorithm for determining the stopping
thresholds can be optimized by computing only the stopping thresholds for pairs of parent
taxon p and child taxon ¢, in the case where (i) there are test/unknown genomes that have
been classified to p by the novelty/fully trained QSVM of the parent of p, and (i) there
are test/unknown genomes that have been classified to ¢ by the fully trained QSVM of p.
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Algorithm 3 Classifying Phase Pseudocode

Input g : the test/unknown genome to be classified
Output cp : the classification path with classification confidences for g

1: procedure CLASSIFYING(g)

2 cp + (root, 1) > init, classification path with classification confidences
3 t < root > init, current taxon
4 while ¢ is not a leaf taxon do

5: if ¢ has more than one child taxon then > multi-child classification
6 if con fMZ{t (9) > T,(t) then > confidence passes stopping threshold
7 t+ p?“edMI{t (9)

8 append cp with (¢, conf™ (g))

9: else > confidence does not pass stopping threshold
10: append cp with (¢, “uncertain”, confMgt (9))
11: break
12: else > single-child classification
13: sc < the single child taxon of ¢
14: if pred™»"(g) = sc then > classified to the single child taxon
15: t < sc
16: append cp with (sc, con ™" (g))
17: else > classified to the outlier taxon
18: append cp with (sc,“uncertain”, conf*+" (g))
19: break
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Chapter 4

Results

In this section, we first describe the performance metrics used for measuring the performance
of MT-MAG in Section 4.1. Second, in Section 4.2 we present a detailed analysis of the novel
features of MT-MAG: (i) the capability to classify a DNA sequence at all taxonomic ranks,
(71) the capability to output an interpretable classification confidence for the classification
at each taxonomic rank along the classification path, and (i) the capability to output a
“partial classification” path when the classification confidence of a classification does not
meet a given threshold. Third, in Section 4.3, since DeepMicrobes is able to classify only at
the Species level, we summarize the results of a comparative analysis of the performance of
MT-MAG with that of DeepMicrobes at the Species level. Lastly, in Section 4.4, we discuss
several details of the computational experiments.

Note that for the benchmark comparisons between MT-MAG and DeepMicrobes, two
types of test genomes were excluded for Task 1 (sparse), as detailed below. First, the
ground-truth labels of the test set were determined by running GTDB-Tk [3]. If GTDB-Tk
classified the genomes to unnamed species, then these test genomes were excluded as not
having ground-truth labels to benchmark the performance of MT-MAG. Second, the test
genomes whose GTDB-Tk-predicted species did not exist in the training set were also
excluded. The rationale is that the species in the training set (HGR) form a finite subset
of GTDB, and the GTDB-Tk-predicted species for a test genome may not necessarily be
in this finite subset. If these genomes would not have been excluded, their MT-MAG and
DeepMicrobes classifications could not be correct, since their ground-truth labels had never
been seen during training. For Task 2 (dense), we only excluded the test genomes for which
GTDB-Tk-predicted unnamed species.

The tasks for MT-MAG were run using python3 and MATLAB R2019b on a x86_ 64
Ubuntu machine. The tasks for DeepMicrobes were run using python3 on Vector’s Vaughan
cluster.

36



4.1 Performance metrics

In this section, we define the terminology and the performance metrics used to discuss and
assess the performance of MT-MAG’s classification of test genomes.

In this section, we define the terminology and the performance metrics used to discuss
and assess the performance of MT-MAG's classification of test genomes.

A classification of a genome x from taxonomic rank ¢r; to taxonomic rank tr, is called
a classification at tro. Given a taxonomic rank ¢r, we call the classification of x a complete
classification at tr, if the classification confidences of classifying x at all taxonomic levels
higher than and including tr, are greater than or equal to the respective stopping thresholds.
The classification of x is called an uncertain classification at tr if the confidence of the
classification at tr is strictly less than the stopping threshold of this parent-child pair, and
the confidences of the classifications at ranks higher than tr are greater than or equal to
their corresponding stopping thresholds. If the classification is uncertain a rank higher than
tr, we call it an unattempted classification at tr. At the end of the MT-MAG classifying
phase for an input genome x, if the classification of x is uncertain at any taxonomic rank
lower than the first non-root rank, then we say that x is partially classified. On the other
hand, if the output of the classifying phase is that x is completely classified at the lowest
taxonomic rank (herein Species), then we say that z is completely classified.

We note that for a given test genome, the output of its classification at rank ¢r can
be only one of the following: complete classification at ¢r (if classifications all the way
down to tr exceed their thresholds), uncertain classification at ¢r (if classifications at all
higher ranks exceed their thresholds, but the classification at ¢r is below the threshold), or
unattempted classification at ¢r (if the classification at any rank higher than the one right
above tr is below the threshold).

Finally, we say that a classification of x is a correct classification down to tr if it is a
complete classification at tr, and a correct classification at all taxonomic ranks higher than,
and including, tr. By definition, all genomes have correct classifications down to the root.

As an example, in Figure 4.1, the classification of genome x is a complete classification
at rank 1, an uncertain classification at rank 2, and an unattempted classification at rank
3. In addition, if the ground-truth taxon of genome z at rank 1 is “rank 1 group 17, then
the classification of genome x is a correct classification at rank 1, as well as a correct
classification down to rank 1. Note that, for each classification of a parent taxon, the
number of stopping thresholds equals the number of that parent’s child taxa. In contrast,
each such classification has associated with it a single classification confidence, that of
classifying the genome into a single, “best-guess,” child taxon.
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classification
confidence: 0.99
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stopping threshold: stopping threshold:
0.94 0.90
classification
confidence: 0.90

rank 2 group 1
stopping threshold:
0.93

rank 2 group 4
stopping threshold:
0.9

rank 2 group 2
stopping threshold:
0.92

rank 2 group 3
stopping threshold:
0.9

rank 3 group 2
stopping threshold:
0.9

rank 3 group 1
stopping threshold:
0.91

Figure 4.1: Example of the classification path for a genome x. The pre-calculated stopping
thresholds are listed under the corresponding taxon labels. The classification confidences
are listed inside blue-bordered rectangles. MT-MAG classifies  from root into “rank 1
group 1”7 with confidence 0.99, which is greater than the stopping threshold for “rank 1 group
17 (0.94), so MT-MAG continues its classification for z. In the next iteration MT-MAG
classifies x from “rank 1 group 1”7 into “rank 2 group 2”7 with confidence 0.90, but since this
is below the stopping threshold of the parent into its child “rank 2 group 2” (0.92), this
classification is deemed “uncertain” and MT-MAG does not attempt further classifications.
The path in cyan indicates complete classification(s), the path in yellow indicates uncertain
classification(s), and the part in red indicates unattempted classifications.

With this terminology, for a given taxonomic rank ¢r, we define the following performance
metrics (the subscript g indicates that these metrics refer to genomes):

o CAy(tr) (constrained accuracy): the proportion of the test genomes with correct
classifications down to tr, to the test genomes with complete classifications at tr.

o AA,(tr) (absolute accuracy): the proportion of the test genomes with correct classifi-
cations down to tr, to all test genomes.

o WA,(tr) (weighted classification accuracy): the weighted sum of the proportions of
the test genomes with correct classifications down to tr to all test genomes, the test
genomes with uncertain classifications at ¢r to all test genomes, and the test genomes
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with unattempted classifications at tr to all test genomes. (Hereafter, weighted
classification accuracy will sometimes be called just weighted accuracy.)

The weights are assigned as follows. Consider a list of increasingly lower taxonomic
ranks trg, try, ..., tr;, where trq is the root, and tr; is tr. To calculate WA (tr), the
weight for a test genome with a correct classification down to tr; = tr (complete
classification at tr;, and a correct classification at tr;) is 1. Otherwise, the weight
of the test genome is j/i, where 0 < j < i, if it has a correct classification down
to tr;j, but does not have a correct classification down to trjy; (the latter condition
avoids double counting). The underlying assumption is that the test genomes are
always assumed to belong to the root, and note that genomes that do not have correct
classifications down to any taxonomic rank below the root are given weight 0.

This weighting scheme reflects the fact that partial classifications at different ranks
are not equally informative. For example, a correct classification of a test genome
down to the Phylum level is less informative than a correct classification of a test
genome down to the Genus level.

e CR,(tr) (complete classification rate): the proportion of the test genomes with
complete classifications at tr, to all test genomes.

The three accuracies C'A,(tr), AA,(tr) and WA, (tr) are numbers between 0 and 1, with
CA,(tr) > AA,(tr), and where higher values indicate better performance. The complete
classification rate CR,(tr) is a number between 0 and 1, and a higher value indicates a
higher proportion of genomes that are completely classified at tr. See Section 4.4.1 for the
formal definitions of these performance metrics.

4.2 MT-MAG novel features

We now present a detailed analysis of the novel features of MT-MAG. In Section 4.2.1, we
analyze the capability to classify a DNA sequence at all taxonomic ranks. In Section 4.2.2,
we analyze (i) the capability to output an interpretable classification confidence for the
classification at each taxonomic rank along the classification path, and (ii) the capability
to output a “partial classification” path when the classification confidence of a classification
does not meet a given threshold. In Section 4.2.3, we assess the reliability of the classification
confidences using reliability diagrams.

4.2.1 Classifications at all taxonomic ranks

In contrast with DeepMicrobes which only classifies reads at the Species level, a significant
feature of MT-MAG is its capability to classify genomes at all taxonomic ranks. Table 4.1
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and Table 4.2) provides a summary of MT-MAG’s performance metrics, at all taxonomic
ranks, for both Task 1 (sparse) and Task 2 (dense). Table 4.3 provides a summary of
the percentages of the test sequences completely classified by MT-MAG vs. classified by
DeepMicrobes, at all taxonomic ranks.

Table 4.1: Summary of MT-MAG performance metrics at all taxonomic ranks, for Task
1 (sparse): constrained accuracy C'A,(tr), absolute accuracy AA,(tr), weighted accuracy
WA, (tr), and complete classification rate CR,(tr) (higher is better).

Taxonomic Rank CA,(tr)(%) AA,(tr)(%) WA (tr)(%) CR,(tr)(%)

Phylum 100.00 93.80 93.80 93.80
Class 100.00 93.80 93.80 93.80
Order 99.56 91.99 92.59 92.40
Family 100.00 82.67 87.93 82.67
Genus 99.39 71.53 84.22 71.96
Species 81.53 57.60 81.90 70.65
Average 96.75 81.90 89.04 84.21

Table 4.2: Summary of MT-MAG performance metrics at all taxonomic ranks, for Task
2 (dense): constrained accuracy C'A,(tr), absolute accuracy AA,(tr), weighted accuracy
W A,(tr), and complete classification rate C'R,4(tr) (higher is better).

Taxonomic Rank CA,(tr)(%) AA,(tr)(%) WA, (tr)(%) CR,(tr)(%)

Domain 99.66 96.13 96.13 96.46
Phylum 97.50 83.82 89.83 83.87
Class 97.74 81.10 83.35 82.98
Order 97.96 79.56 82.46 81.22
Family 98.06 78.12 81.85 79.67
Genus 96.70 67.96 78.94 70.28
Species 98.63 63.87 78.36 64.75
Average 98.03 78.36 83.56 79.89

In Task 1 (sparse) MT-MAG achieves an excellent performance at all taxonomic ranks
from Phylum to Genus, with a slight drop in performance at the Species level (see Table 4.1).
Specifically, the MT-MAG constrained accuracies C'A,(tr) are above 99% at all taxonomic
ranks, except at the Species level C'A,(Species), where they drop to 81.53%. The increase
in the number of incorrect classifications at the Species level explains, in part, the 13.26%
drop in weighted accuracy WAy (tr) from the Genus to the Species level. In addition, due to
its partial classification capability, MT-MAG is able to completely classify 93.80% of the test
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Table 4.3: Summary of percentages of test sequences completely classified by MT-MAG
(quantified as C'Ry(tr)) vs. classified by DeepMicrobes (quantified as C'R,), at all taxonomic
ranks. A higher CR,(tr) (respectively C'R,.) is better, as it signifies that a higher proportion
of genomes (resp. reads) have been completely classified (resp. classified). Dash denotes
not applicable.

Task ID Taxonomic Rank MT-MAG CR,(tr)(%) DeepMicrobes CR,(%)
Phylum 93.80 —

Task 1 (sparse) Class 93.80 —
Order 92.40 —
Family 82.67 —
Genus 71.96 —
Species 70.65 45.02
Domain 96.46 —

Task 2 (dense) Phylum 83.87 —
Class 82.98 —
Order 81.22 —
Family 79.67 —
Genus 70.28 —
Species 64.75 49.88

genomes to the Phylum and Class levels, 92.40% to the Order level, 82.67% to the Family
level, and 71.96% to the Genus level, with 70.65% of the test genomes being completely
classified to the Species level (see Table 4.3). In contrast, in Task 1, DeepMicrobes classifies
only 45.02% of the test reads at the Species level, and it does not assess other taxonomic
levels.

In Task 2 (dense) MT-MAG has an excellent performance all around, with constrained
accuracies C'A,(tr) above 96% at all taxonomic ranks (see Table 4.2). In addition, due
to its partial classification capability, MT-MAG completely classifies 83.87% of the test
genomes to the Phylum level, 82.98% to the Class level, 81.22% to the Order level, 79.67%
to the Family level, and 70.29% to the Genus level, with 64.75% of the test genomes
being completely classified to the Species level (see Table 4.3). In contrast, in Task 2,
DeepMicrobes only classifies 49.88% of the test reads to the Species level, and does not
assess other taxonomic levels.

Overall, for the two benchmarking datasets, MT-MAG completely classifies an average
of 67.7% of the test sequences (to the Species level). In addition, MT-MAG provides
partial classifications for the majority of the remaining sequences. This results in 93.80% of
genomes analyzed in Task 1 (sparse) and 96.46% of genomes analyzed in Task 2 (dense) being
partially classified or completely classified. In particular, due to its partial classification
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capability, MT-MAG completely classifies on average 88.84% of the test sequences to the
Phylum level, 88.39% to the Class level, 86.81% to the Order level, 81.17% to the Family
level, and 71.13% to the Genus level.

4.2.2 Numerical classification confidences

In addition to the final classification path, MT-MAG also outputs numerical classification
confidences along the classification path, indicating how confident MT-MAG is in the
classification, at each taxonomic rank. For example, the final classification path for genome
x, illustrated in Figure 4.1 is interpreted as MT-MAG being 99% confident in classifying x
from “root” to “rank 1 group 1,” and 90% confident in classifying x from “rank 1 group 1”
to “rank 2 group 2.” However, since the confidence of the latter classification is strictly less
than the pre-calculated stopping threshold of 92%, this classification is deemed “uncertain”
and no further classifications are attempted for genome z.

As an example of a complete classification down to the Species level, in Task 2 (dense)
the final classification path for genome hRUGS888 is “Domain Bacteria (confidence 97%)
— Phylum Bacteroidota (confidence 97%) — Class Bacteroidia (confidence 100%) —
Order Bacteroidales (confidence 100%) — Family Muribaculaceae (confidence 99%) —
Genus Sodaliphilus (confidence 99%) — Species Sodaliphilus sp900314215 (confidence 99%).”
As an example of a partial classification path, the final classification path for genome
RUG412 is “Domain Bacteria (confidence 93%) — Phylum Bacteroidota (confidence 100%)
— Class Bacteroidia (confidence 100%) — Order Bacteroidales (confidence 100%) —
Family Muribaculaceae (confidence 98%) — Genus Sodaliphilus (confidence 99%) — Species
Sodaliphilus sp900318645 (uncertain).” The last output means that MT-MAG is uncertain
regarding its classification of RUG412 from Genus Sodaliphilus into Species Sodaliphilus
sp900318645.

4.2.3 Determining the reliability of the MT-MAG classification
confidences

The selection of training sets is important for MT-MAG, since the composition of the
training sets affects both (i) the parameters of the classifier that is trained on the training
set and then used to classify unknown genomes, and (7i) the computation of stopping
thresholds used to stop classifications once they become uncertain. A tool that can be
used to determine whether the training sets are well selected and whether the MT-MAG
classification confidences are reliable estimates is the so-called reliability diagram [16].

Reliability diagrams plot the observed frequency of an event against the predicted
probability of that event (see Figure 4.2 for an example). In the case of taxonomic
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classification, the event is a match between the ground-truth and the class assignment
predicted by the classifier under consideration. In a reliability diagram, the step-wise lines
(red in Figure 4.2) represent the reliability curves, that is, the observed frequency of the
event against the predicted probability of that event. The diagonal indicates a perfect
match between the observed frequency and predicted probability. A curve that is closer to
the diagonal (more specifically, where the total area formed by the curves and the diagonal
is smaller) indicates a better selected training set and a more reliable classifier. Usually,
a reliability diagram of a classification is accompanied by a reliability score, which is a
number greater or equal to zero (the smaller the number, the better the reliability, with 0
being the best reliability score).

In the case of MT-MAG, the predicted probability is the classification confidence,
and a reliability diagram is an indicator of the suitability of the training set and of the
reliability of the classification confidences computed by MT-MAG. Consider for example
the scenario whereby MT-MAG classifies a training DNA fragment to be Domain Bacteria
with classification confidence 0.90. If the classification confidence matches the observed
frequency, then out of all the training DNA fragments classified by MT-MAG as Domain
Bacteria with classification confidence 0.90, we would expect roughly 90% to have their
ground-truth taxa to be Domain Bacteria. In the reliability diagram, this match will be
indicated by a point on the reliability curve that falls on or near the diagonal. If the
classification confidences do not match the observed frequencies, this will also be observed
on the reliability diagram, and could be an indicator that the training set is imbalanced
at some parent-to-child classification (some of the child taxa have too few or too many
training DNA fragments compared to the others) [19]. Note that for analyzing MT-MAG,
we actually used an extended version of reliability diagrams, called stable reliability diagrams
[10] (see Section 4.4.2 for details).

Figure 4.2 displays the reliability diagrams and reliability scores of two parent-to-
child classifications for Task 2 (dense): (a) the parent taxon GTDB root into its two
child taxa, Domain Bacteria and Domain Archaea, and (b) the parent taxon Family
Campylobacteraceae into its five child taxa, Genus Campylobacter, Genus Campylobacter A,
Genus Campylobacter B, Genus Campylobacter D, and Genus Campylobacter FE. If we
compare the two reliability diagrams, we first observe that the reliability curve for the
classification of Family Campylobacteraceae deviates more from the diagonal than that
for the classification of the GTDB root. Secondly, we observe that the 0.001 reliability
score of the classification of the GTDB root is smaller than the 0.005 reliability score of
the classification of Family Campylobacteraceae. Together, these indicators suggest that
the training set of the GTDB root into its Domains is better selected, and its classification
confidences are higher, than those of Family Campylobacteraceae into its five genera. Thus,
for test/unknown genomes, we can expect more accurate classifications of the GTDB root
to its child taxa than from Family Campylobacteraceae to its child taxa.
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(a) Reliability diagrams for the classification (b) Reliability diagram for the classification
of the GTDB root into Domains Bacteria the Family Campylobacteraceae into genera.
and Archaea. Reliability score is 0.001. Reliability score is 0.005.

Figure 4.2: Reliability diagrams and reliability scores (smaller is better) for the classifica-
tion of (a) the GTDB root to its child taxa Domain Archaea and Domain Bacteria, and
(b) Family Campylobacteraceae to its five child taxa (i.e., Genus Campylobacter, Genus
Campylobacter A, Genus Campylobacter B, Genus Campylobacter D, Genus Campylobac-
ter E). The larger deviation of the reliability curve (red) from the diagonal in (b), and the
larger reliability score of (b), both indicate a lower reliability of the classification of Family
Campylobacteraceae (b) than that of the GTDB root (a).

4.3 Species level comparison of MT-MAG with DeepMi-
crobes

In this section, we compare the performance of MT-MAG against the performance of
DeepMicrobes at the Species level, the only taxonomic rank at which DeepMicrobes classifies.
The performance metrics we define here are used to assess the quality of DeepMicrobes’s
classification, and are defined analogously to the performance metrics for MT-MAG. The
subscript 7 indicates that these metrics refer to reads, and the exact definitions of the
terms used can be found in , “Materials: Datasets and task description”. These performance
metrics are:

e C'A, (constrained accuracy): the proportion of correctly classified test reads, to
classified test reads.
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e AA, (absolute accuracy): the proportion of correctly classified reads, to all test reads.

e WA, (weighted classification accuracy): the proportion of correctly classified reads.
Note that in this case W A, coincides with AA,., since DeepMicrobes does not provide
any classification at ranks other than Species. (hereafter, weighted classification
accuracy will sometimes simply be called weighted accuracy.)

e CR, (classified rate): the proportion of classified test reads to all test reads. Note the
difference in the definition between C'R,(tr) for MT-MAG (complete classification
rate for genomes, at rank t¢r), and C'R, (classified rate for reads, at the Species level)
for DeepMicrobes.

The three accuracies CA,, AA, and W A, are numbers between 0 and 1, with CA, > AA,,
and where higher values indicate better performance. The classified rate C'R, is a number
between 0 and 1, and a higher value indicates a higher proportion of classified reads, at the
Species level (for exact definitions, see Supplemental Information Section 3.3).

Since DeepMicrobes only makes classifications at the Species level, to compare its
performance with that of MT-MAG, we set the parameter ¢r (taxonomic rank) to Species
in MT-MAG, and proceeded to compare C'A, with C'A,(Species), AA, with AA,(Species),
WA, with WA, (Species), and C'R, with CR,(Species).

Of all the metrics we defined, we posit that the most informative metric for comparing
MT-MAG with DeepMicrobes is the weighted (classification) accuracy at the Species level.
Indeed, in the case of MT-MAG, W A,(Species) combines, into a single numerical indicator,
the information on the proportion of genomes that MT-MAG correctly classifies together
with that of genomes that it partially classifies. In the case of DeepMicrobes, W A, combines
the information on the proportion of reads that it correctly classifies together with that
of reads that it is unable to classify. In addition to this main comparison performance
metric, and for a more nuanced discussion, in the following we also compare the other
performance metrics, namely C'A, with C'A,(Species), AA, with AA,(Species), and CR,
with C'R,(Species).

Table 4.4 summarizes the MT-MAG and DeepMicrobes constrained accuracies, absolute
accuracies, and weighted accuracies, as well as the complete classification rates of MT-MAG,
respectively the classified rates of DeepMicrobes.

For Task 1 (sparse), as seen in Table 4.4, MT-MAG demonstrates significantly better
overall performance than DeepMicrobes, with the weighted accuracy of MT-MAG being
39.96% higher than that of DeepMicrobes. Regarding other performance metrics, the
constrained accuracy of DeepMicrobes 11.61% higher than that of MT-MAG, the absolute
accuracy for MT-MAG is 15.66% higher than that of DeepMicrobes, and the complete
classification rate of MT-MAG is 25.63% higher than the classified rate of DeepMicrobes.
The latter indicates that MT-MAG completely classifies significantly more sequences
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The metric that best captures the performance of the methods is the weighted accuracy (in
blue), since this metric combines information about sequences that have been completely
classified with information about the sequences that have not been completely classified to

the Species level.
Table 4.4: Summary of MT-MAG and DeepMicrobes accuracy statistics, as well as

the complete classification rates of MT-MAG and the classified rates of DeepMi-
crobes. The inputs are genomes in the case of MT-MAG, and reads in the case of
DeepMicrobes. A higher value indicates better performance (in boldface).

Task ID Metric MT-MAG (%) DeepMicrobes(%)
CA,(Species)/CA, 81.53 93.14

Task 1 (sparse) AA,(Species)/AA, 57.60 41.94
W A, (Species)/W A, 81.90 41.94
CR,(Species)/CR, 70.65 45.02
C'A,(Species)/CA, 98.63 93.87

Task 2 (dense) AA,(Species)/AA, 63.87 46.82
WA, (Species)/W A, 78.36 46.82
CR,(Species)/CR, 64.75 49.88

than DeepMicrobes, though DeepMicrobes demonstrates a slightly higher constrained
classification accuracy for the classified sequences.

For Task 2 (dense), as seen in Table 4.4, MT-MAG demonstrates significantly better
overall performance than DeepMicrobes, with the weighted accuracy of MT-MAG being
31.54% higher than that of DeepMicrobes. Comparing the other performance metrics, the
constrained accuracy of MT-MAG is 4.76% higher than that of DeepMicrobes, the absolute
accuracy for MT-MAG is 17.05% higher than that of DeepMicrobes, and the complete
classification rate of MT-MAG is 14.87% higher than the classified rate of DeepMicrobes.
This indicates that MT-MAG not only completely classifies significantly more sequences
than DeepMicrobes, but also demonstrates a slightly higher MT-MAG classification accuracy
for the completely classified sequences.

Overall, for Task 1 (sparse) and Task 2 (dense), MT-MAG outperforms DeepMicrobes
by an average of 35.75% in weighted accuracy. In addition, MT-MAG is able to completely
classify an average of 67.7% of the sequences at the Species level, the only comparable
taxonomic rank of DeepMicrobes, which only classifies 47.45%.

46



4.4 Result details

In this section, we discuss several details of the computational experiments. In Section
4.4.1, we introduce the formal definitions of the performance metrics used for benchmarking
comparisons. Lastly, in Section 4.4.2 we discuss a significant limitation of conventional
reliability diagrams, and our approach to addressing it.

4.4.1 Rigorously defined performance metrics

In the following, we will define the performance metrics for MT-MAG.

Let GG denote the test set. Given a test genome g € G and a taxonomic rank tr, let
I(g,tr) denote the ground-truth label of g at taxonomic rank ¢r and let out™T-MAC (g ¢r)
denote the label computed by MT-MAG for g at taxonomic rank ¢r. We use “uc” to denote
uncertain & unattempted classifications at tr, that is, if ¢ has an uncertain or unattempted
classification at tr, then outMT-MACG (g tr) is “uc.”

We denote by G.(tr) the set of genomes with complete classifications at ¢r (where ¢
indicates “complete classifications”) that is,

Ge(tr) = {g € G : outTMAC (g tr) # uc}.

We denote by G.(tr) the set of genomes with correct classifications down to ¢r, that is,

Gl(tr) = {g € Gu(tr) : outMTMAC (g tr) = (g, tr)}.

We define the constrained accuracy (of classifying genomes) for tazonomic rank tr as:

card(G.(tr)) .

TN i card(G(t
CAy(tr) = { card(G.(tr))’ if card(G(tr)) # 0

0, otherwise

In other words, C'A,(tr) measures how many, out of the test genomes in G with complete
classifications at taxonomic rank ¢r, have correct classifications down to tr (See Figure 4.3).

We define the absolute accuracy (of classifying genomes) for taxonomic rank tr as:

card(G.(tr))

Ady(tr) = card(Q)

In other words, AA,(tr) measures how many, out of the test genomes in G, have correct
classifications down to tr (See Figure 4.3).
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Figure 4.3: Composition of the test set for MT-MAG. A Venn diagram to show the
relationship of three types of genomes in G (the set of all test genomes, gray circle) for
taxonomic rank tr. The set G.(tr) (orange circle), of the test genomes which have complete
classifications at taxonomic rank tr, is a subset of G, and the set G.(tr) (cyan circle), of
the test genomes which have correct classifications down to taxonomic rank tr, is a subset
of G.(tr). Visually, we have that C'A,(tr) is the ratio of the cyan circle set to the orange
circle set, AA,(tr) is the ratio of the cyan circle set to the gray circle set, and CR,(tr) is
the ratio of the orange circle set to the gray circle set.

For a given classification task, denote by trg, try, ..., tr; the list of the 7 increasingly lower
taxonomic ranks, where trq is the root, and tr; = tr. We define the weighted accuracy (for
the classifications of genomes) for a given tazonomic rank tr as:

card(Gi(tr)) + S L (eard(GLltry) \ Gultrs 1))

WA (trs) = card(Q) ’

where “\” denotes set difference. The following theorem demonstrates that the definition
of WA,(tr;) is sound, by proving that for all k£ € {0, ..., — 1}, the two sets G.(tr;) and
GL(try) \ GL(trgs1) form a partition of the test set (that is, the two sets are disjoint, and
their union equals the test set). We begin by stating an auxiliary result, and the underlying
assumption is that all genomes belong to the root, try.

Lemma 4.4.1. For all 0 < ky < ko <4, we have that G.(try,) C GL(try,). Equivalently, if
a genome g in the test set G has a correct classification down to try for some k € {1, ...,i},
then g also has correct classifications down to trg, ..., try_q.

Proof. Follows from the definition of G”(tr). O

Theorem 4.4.2. For every g in the test set G, one and only one of the following statements
holds:

48



1. The genome g has a correct classification down to tr;, i.e., g € G.(tr;),

2. There uniquely exists k € {0, ...,i — 1} such that g € G.(try) \ GL(trr1)

(that is, g has a correct classification down to try, but does not have a correct
classification down to tryyq).

Proof. Suppose case 1. holds, that is, g € G.L(tr;). By Lemma 4.4.1, we have that
g € G.(tryy1) for all k € {0, ...,i — 1}. Consequently, for all k € {0,...,i — 1}, we have that
g & GL(tr) \ GL(trgs1). In other words, case 2. cannot hold.

Suppose now that there exists k € {0, ...,4 — 1} such that g € GL(trg) \ GL(trg+1).

We first prove that g ¢ G.(tr;), that is, case 1. cannot hold. Since g ¢ G.(trx41), it
follows that, for all ko € {k +1,...,i}, g & GL(try,). Thus, g ¢ G.(tr;).

Second, we prove that g ¢ G.(trs) \ GL(trs;1) where s is different from k.

Since g € GL(trg) \ G.(trry1), we have that g € G.(try) and g ¢ GL(trgs1). Since
g € G.(try), by Lemma 4.4.1, for all s € {0,....,k — 1},9 € G.(trs41). Hence, for all
s € {0,...,k — 1}, we have that g ¢ G’ (trs) \ GL(trsy1). Also, for all s € {k+1,...,i}, we
have that g ¢ G.(trs) \ G.(trs11). This proves the second claim.

The two claims above together prove that the sets G.(tr;), GL(tro) \ GL(tr1), GL(try) \
GL(trg), ..., GL(tri—1) \ GL(tr;) are all mutually disjoint.

Note now that the union of the aforementioned sets is

[G(tro) \ G(tr1)] U [GL(tr) \ GL(tre)] U ... U [GL(trioy \ GL(try)] U GL(tr;)
= Gé(t?"o)
e

This, together with the fact that the sets are mutually disjoint completes the proof of
the theorem. n

Corollary 4.4.2.1. The (i+1) sets GL.(tro)\G.(tr1), GL(tr1)\GL(tra),..., GL(tri—1)\GL(tr;),
and G.(tr;) form a partition of the test set G.

Recall now that WA (tr;) is defined by a weighted summation of card(G.(tr;)) with
card(G.(tr;) \ GL(trj11)), for all j € {0,1,....,i — 1}. By Theorem 4.4.2, in this sum g¢
contributes to WA, (tr;) through either the cardinality of G.(¢r;), or through the cardinality
of a single one of G/ (tr;) \ GL(tr;+1).
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Specifically, if g € G.(tr;), then g contributes 1 to card(G.(tr;)) and does not contribute

to card(GL(tr;) \ GL(trj11)), so the weight for g with a correct classification down to tr; is
1.

If, on the other hand, there exists a k € {0, 1,...,i— 1}, such that g € GL(try) \ GL(trk41),
then g does not contribute to card(G.(tr;)), it does not contribute to card(G.(tr;)\ GL(tr;+1)
for any j € {0,1,...,k—1,k+1,...,i— 1}, and it contributes 1 to card(GL(try) \ GL(trk+1)).
Consequently, the weight of a genome g with a correct classification down to trg, but
without a correct classification down to tryyq is (1 x k)/i.

One special case to note is when g does not have a correct classification down to any
taxonomic rank below the root. In this case, g € GL(tro) \ GL(tr1), and ¢ contributes to
card(G(tro) \ GL(tr1)) by 1. Since (1 x 0)/i = 0, the weight for such a genome g is 0.

Finally, we note that the formula defining W A,(¢r) can be simplified to:

1 2 card(Gy(try))

WA,(ir) card(@)

We also define the complete classification rate (for genome classifications) for tazonomic

rank tr as:
card(G.(tr))

card(Q)

In other words, C'R,(tr) measures how many, out of the test genomes in G, have complete
classifications at tr (See Figure 4.3).

CRy(tr) =

For DeepMicrobes, we define the following performance metrics, that correspond to the
MT-MAG metrics CAy(tr), AA,(tr), WA, (tr), and CR,(tr). To this end, we first define set
notations for different categories of test reads for DeepMicrobes. Using these set notations
we then formally define the DeepMicrobes performance metrics.

Let R denote the test set of reads. Recall that, given a test read, the output from
DeepMicrobes is either a classification of that read at the Species level, or “unclassified.”
Given a test read 7 € R, let [(r) denote the ground-truth Species label of r, and let out?™ (r)
denote the label computed by DeepMicrobes for this read if the read was classified, or “uc”
(unclassified) if the read was not classified.

Denote by R, the set of classified test reads, that is,
R.={r € R:out®(r) # uc},

where ¢ stands for “classified” (at the Species level).

Denote by R, the set of correctly classified reads, that is
R.={r € R.:out?™(r) =1(r)}.
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We now define the constrained accuracy (for the classification of reads), herein at the
Species level, as:

card(R.) .

— fcard(R.) # 0
CA, = { card(R.)’ if card(Re) #

0, otherwise

In other words, C'A, measures how many, out of the test reads in R with a Species
classification, have been correctly classified by DeepMicrobes (See Figure 4.4).

Figure 4.4: Composition of the test set for DeepMicrobes. A Venn diagram to show
the relationship of three types of test reads in R (the set of all test reads, gray circle). The
set R, (orange circle), of classified reads, is a subset of R, and the set R.. (cyan circle), of
correctly classified test reads, is a subset of R.. Visually, we have that C'A, is the ratio of
the cyan circle set to the orange circle set, AA, is the ratio of the cyan set to the gray set,
and C'R, is the ratio of the orange circle set to the gray circle set.

We define the absolute accuracy (for the classification of reads), herein at the Species
level, as:
card(R,)
card(R)
In other words, AA, measures how many, out of the test reads in R, have been correctly
classified by DeepMicrobes (See Figure 4.4). Note that C' A, and AA, were originally called
as Precision,e,q and Recall;eaq in DeepMicrobes [25].

AA, =

We define the weighted accuracy (for the classification of reads), herein at the Species
level, as being equal to the absolute accuracy AA,. This is because we introduced weighted
accuracy as a metric meant to combine the classification results of the software for completely
classified sequences, with its classification results for partially classified sequences. The
latter category does not exist for DeepMicrobes, as it does not provide any classification
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output about ranks other than Species, hence

B _ card(Ry)
WA, =AA, = card(R)’

We also define the classified rate (for the classification of reads), herein at the Species

level, as:
card(R,)

card(R)

In other words, C'R, measures how many, out of the test reads in R, could be classified by
DeepMicrobes (See Figure 4.4).

CR, =

4.4.2 Reliability diagrams

Reliability diagram were introduced as graphical diagnostic of model reliability. A reliability
diagram is used to visually assess whether the probability predicted by the model for an
event matches with the observed frequency of the event. In this section, we discuss a
significant limitation of conventional reliability diagrams (caused by the choice of bins, as
detailed below), and describe stable reliability diagrams proposed by [10] to overcome this
limitation.

One limitation of reliability diagrams is that they are not stable, with their shape being
affected by the choice of bins. Specifically, the choice of bins affects the computation
of observed frequencies. Stable reliability diagrams were introduced in [10] to address
this limitation, through the pool-adjacent-violators algorithm (PAVA) where PAVA is an
efficient and iterative algorithm to solve monotonic regression problems. Given the predicted
probabilities, ground-truth labels and classified labels, the algorithm proposed in [10] is able
to generate statistically consistent, optimally binned, and reproducible reliability diagrams.
In addition to the traditional reliability diagram, this method also outputs classification
confidence bands, and a reliability score. The confidence band measures, if one repeats
the experiment numerous times, the fraction of confidence intervals that contain the true
conditional event probabilities. The reliability score measures how much the conditional
event frequencies deviate from the forecast probabilities in terms of a Brier decomposition.
A reliability score is a number greater than or equal to zero, with a smaller magnitude
indicating higher level of reliability.
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Chapter 5

Concluding Discussion and Future Work

We proposed MT-MAG, a novel alignment-free and genetic marker-free software tool that
uses machine learning to obtain taxonomic assignments of metagenome-assembled genomes.
This is, to the best of our knowledge, the first machine learning method for taxonomic
assignment of metagenomic data that has a partial classification option, whereby MT-MAG
outputs a partial classification at a higher taxonomic rank for the majority of MAGs that
it could not confidently classify to the lowest taxonomic rank. In addition, MT-MAG
outputs interpretable numerical classification confidences of its classifications, at each
taxonomic rank. Reliability diagrams confirmed the quality of the training sets and the
overall reliability of the MT-MAG classification confidences.

To assess the performance of MT-MAG, we defined a “weighted accuracy,” with a
weighting scheme reflecting the fact that partial classifications at different ranks are not
equally informative. Compared with DeepMicrobes (the only other machine learning
tool for taxonomic assignment of metagenomic data, with confidence scores), for the two
datasets analyzed (genomes from human gut microbiome species, respectively bacterial
and archaeal genomes assembled from cow rumen metagenomic sequences), MT-MAG
outperforms DeepMicrobes by an average of 35.75% in weighted accuracy. In addition,
MT-MAG is able to completely classify an average of 67.7% of the sequences at the Species
level, the only comparable taxonomic rank of DeepMicrobes, which only classifies 47.45%.
Moreover, a novel feature of MT-MAG is that it provides additional information for the
sequences that are not completely classified at the Species level. This results in 95.15%
of the genomes analyzed being either partially classified or completely classified, averaged
over the two datasets analyzed. In particular, due to its partial classification capability,
MT-MAG completely classifies, on average, 88.84% of the test genomes to the Phylum
level, 88.39% to the Class level, 86.81% to the Order level, 81.17% to the Family level, and
71.13% to the Genus level.

Limitations of MT-MAG include the fact that, being a supervised machine learning
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classification algorithm, its performance relies on the availability of ground-truth taxonomic
labels for the DNA sequences in the training set. In addition, any incorrect or unstable
ground-truth labels in the training set may cause erroneous future classifications. This
limitation could be addressed, e.g., by extending the supervised machine learning approach
to semi-supervised machine learning (where some, but not all, information about the
training set is available), or even to unsupervised machine learning (where the training
process does not require any ground-truth taxonomic labels, see, e.g., [30]).

Second, even though MT-MAG significantly outperforms DeepMicrobes in Task 1 (sparse
training set) and Task 2 (dense training set) in weighted accuracy, there is still room for
improvement in accuracies and complete classification rates. An analysis of the Task 1
(sparse) training set suggests two possible reasons contributing to incorrect classifications.
One reason is the fact that the training set was the HGR database, which constitutes a
very small subset of the GTDB taxonomy, in terms of both the number of representative
genomes and of coverage of the GTDB taxonomy. This could be addressed by requiring a
specific level of coverage for known taxa, to ensure that feature characteristics are reasonably
well-represented. Another reason is the fact that, due to computational requirements of
MLDSP, the training set had to exclude any contigs shorter than 5,000 bp, and this selection
process resulted in the removal of 93% of the available basepairs. This could be addressed
by finding ways to relax the selection criteria for the training set, to allow more sequences
to participate in the training process without compromising the classification performance.

Third, the interpretability of classification could be further enhanced by exploring the
last layer of the classifier. For example, the process of computing classification confidences
could be used to identify pairs of child taxa that are difficult to distinguish from each other,
which could potentially be biologically relevant. In addition, while single-child cases are few
in the case of real DNA datasets, we note that their classification confidences are computed
via a transformation of the distances between a test sequence and decision boundaries in
the feature space into a valid probability distribution. To enhance the interpretability of
these single-child class confidences, one could consider applying more interpretable training
process and transformations such as those proposed in [15,41].

Fourth, the classification accuracy and computational efficiency of MT-MAG could be
further improved by taking advantage of user-provided information, so that the computation
does not always start from the root of the taxonomy. For example, if the user already
knows that an input genome belongs to Class Bacteroidia, then MT-MAG could bypass the
higher taxonomic ranks and start its training and classifying phases at the Class-to-Order
level directly.

Fifth, when defining the weighted accuracy for a classification at given taxonomic
rank tr (i.e., WAy(tr;)), the weights used in this computation can be further refined, to
reflect the dataset analyzed. Recall that the intent of defining a weighted classification
accuracy was to account for the fact that partial classifications of a genome at different
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ranks are not equally informative. For example, a partial classification of a genome down
to the Genus level is intuitively more informative than a partial classification to, say, the
Phylum level, and this is quantified as follows in the definition of weighted accuracy. The
root is assigned weight 0, the last taxonomic rank with a correct classification is assigned
weight 1, and intermediate taxonomic ranks are assigned weights that increase in equal
fractional increments, from the root to the last correctly classified rank. However, this
assumption of equal increments at each intermediate rank could be inadequate if, e.g.,
some of the intermediate taxonomic ranks are missing from the path. In such cases, the
individual weights of taxonomic ranks could be defined as being different, with each weight
corresponding to the amount of information that a classification at that rank contributes.

Lastly, even though MT-MAG achieves superior performance on the datasets analyzed
in this paper, it would be desirable to obtain mathematical proofs of the optimality of the
classifier, such as the Bayes optimality proofs in [43].
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