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Abstract

This thesis includes material from three papers that develop techniques for quantifying faint
dwarf satellite populations outside the Local Group. Dwarf satellites are important for our
understanding of small-scale structure formation, the history of galaxy formation, and the nature
of dark matter. Identifying faint satellites is technically challenging, however, because accurate
distance information for these objects is usually unavailable and very expensive to obtain.

In Chapter 2 we test a previously proposed method of estimating the average satellite pop-
ulation around nearby bright galaxies. The method uses structural cuts on size and magnitude
to preferentially select low-redshift dwarf galaxies, and clustering to estimate the faction of true
satellites within the selected sample. Using the high-precision photometric redshifts of the COS-
MOS survey, we were able to test the effectiveness of different structural cuts and optimize them
for several different redshift ranges. We also describe a set of very nearby dwarf galaxies (at
distances D < 200 Mpc) identified morphologically in the COSMOS field.

In chapters 3 and 4, we introduce a new method for quantifying satellite abundance specifically
designed for samples with high-quality photometric redshifts. The method allows us to measure
satellite abundance around primaries in crowded fields, improving on previous methods that
considered only isolated systems. The method also avoids the use of spectroscopic redshifts,
which makes it much more expensive in observation time to reach a given depth in the satellite
population.

Chapter 3 focuses on establishing and testing the method, and presents some initial science
results. In Chapter 4, we measure various satellite properties, including the satellite stellar mass
function, the relative stellar mass function, and the quiescent fraction, as well as their dependence
on primary properties such as mass, colour and specific star formation rate.
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Chapter 1

Introduction

Dwarf galaxies are of particular importance in the study of galaxy formation and structure
formation, as they provide important tests for different theories in these fields. However, due
to their being low-mass and faint, identifying them, especially outside the Local Group, is
observationally challenging. The goal of this thesis is to develop and test new methods for
identifying extra-galactic dwarfs, or at least to measure their abundance statistically. In this
introduction, we will first review background concepts in the study of galaxies, dark matter
structures, and galaxy groups and clusters. (Specific technical terms are also explained in the
glossary D.4.) We will then introduce the research goals of this thesis, as well as some of the
previous work on this problem.

1.1 Galaxies

In general, a galaxy refers to a gravitationally bound system of stars, stellar remnants, interstellar
medium, and dark matter1. Galaxies are the fundamental building blocks of most visible
structure in the Universe, and understanding galaxy formation and evolution is one of the most
important goals in astrophysics.

The Galaxy that hosts our Solar System was recognized very early on2. The term “Milky
Way” (MW) was used to describe the bright band that can be seen on a night sky. In 1610,
Galileo Galilei introduced the usage of telescopes to astronomy and discovered that the MW was

1See section 1.2 for explanations
2The following summary of the discovery and properties of galaxies was inspired by and closely follows that of

Evans (1998), as cited in the page https://en.wikipedia.org/wiki/Galaxy
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composed of a huge number of faint stars (Galileo, 1610, as cited in Evans, 1998). In 1750,
English astronomer Thomas Wright correctly speculated that the MW might be a rotating body
of a huge number of stars held together by gravitational forces, including our Solar System as a
part of it (Wright, 1750, as cited in Evans, 1998). Thus, the basic nature of our Galaxy has been
suspected for almost 300 years.

However, extra-galactic astronomy has a much shorter history. There are only a few large
external galaxies that are visible to the naked eye on a dark night, such as the Andromeda
Galaxy, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). Early
astronomers noticed their extended shapes, relative to point-like stars, and described them as
“small clouds” or “nebulae” (Astronomers did not know they were galaxies yet!). Toward the
end of the 18th century, the French astronomer Charles Messier built a well-known catalogue
containing about 110 brightest celestial objects having nebulous appearances, among which the
Andromeda Galaxy is listed as “Messier 31” and now commonly referred to as M31. Some early
hints suggested that the nebulae may be separate objects outside our Galaxy, rather than being
parts of the MW. In the early 1900s, Vesto Slipher discovered that the majority of the nebulae have
high Doppler shifts compared to most of the stars he observed, indicating that they are moving
away from us quickly (Slipher, 1913, 1915). In 1917, Heber Curtis found that nova events within
the M31 appear to be much fainter than the usual nova events that occur in our Galaxy, hinting
that M31 may be a remote object (Curtis, 1917, reprinted as Curtis, 1988). These hints led
to a historical debate among astronomers regarding the existence of extra-galactic objects and
the scale of the Universe. However, more direct evidence was still needed to settle the dispute.
Finally, in the 1920s, individual Cepheid variable stars were resolved by Edwin Hubble (Hubble,
1929), providing robust distance estimates to external nebulae, and most astronomers became
convinced that many of the “nebulous” objects in the sky were indeed external galaxies (Mo, van
den Bosch & White, 2010).

1.1.1 Galaxy classification

Our knowledge of extra-galactic galaxies has advanced greatly since their first discovery, with
hundreds of millions of galaxies having been identified. Galaxies can be classified into three main
categories by their visual appearance: spirals, ellipticals and irregular/peculiars. The visual
classification originated from the work by Hubble (1927), who developed a sequence of galaxy
morphology that further divides galaxies into a set of sub-categories, an arrangement known as
the Hubble sequence. A good review of modern galaxy classification can be found in Buta
(2013). Large, bright galaxies are typically found in either spiral or elliptical forms. For spiral
galaxies, most of their stars and other visible material are contained in a flattened, disk-shaped
plane. Their appearance in the sky highly depends on the orientation of their disk relative to
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our line of sight. In contrast, elliptical galaxies appear elliptical in shape, regardless of viewing
angle (See Conselice, 2014, for a detailed review of galaxy structure). Our MW is a typical spiral
galaxy with a well-developed galactic disk of approximately 30 kpc (100,000 ly) in diameter
and 0.6 kpc (2,000 ly) in thickness (Mo, van den Bosch & White, 2010). Our Solar System sits
about 8.3 kpc (27,000 ly) away from the galactic center. (See Bland-Hawthorn & Gerhard, 2016;
Gillessen et al., 2017, for reviews of the properties of the MW and its role as a benchmark in
galactic studies.)

Conventionally, elliptical galaxies are often referred to as “early-type” galaxies while spiral
galaxies are referred to as “late-type” galaxies. There is a common misconception that this
naming convention implies that the morphology of galaxies evolves from ellipticals, which
are pretty much featureless, to spiral galaxies with more structural complexity. However, this
terminology was proposed simply to distinguish simple systems from complex ones, without
any implication of an evolution connection. One property that is more closely related to galaxy
age is the intensity of new stars being formed, or the star formation rate (SFR). Interestingly,
the “early-type” galaxies typically consist mainly of old stellar populations, and have very low
SFRs; while the “late type” galaxies have a much higher rate of star formation, and thus have
younger stellar populations overall. The age difference in their stellar populations also leads to
a bimodality of galaxy colours (dividing galaxies into “red” and “blue” galaxies), as young stars
emit more blue light compared to old stars. I will discuss galaxy colour and star formation activity
in section 1.3.4.

Besides ellipticals and spirals, peculiar galaxies are usually the result of strong interactions
with other galaxies, during galaxy mergers. Irregular galaxies refer to galaxies that can not be
readily classified into an elliptical or spiral morphology. Irregular/peculiar types are most often
found in small, faint galaxy populations. I will discuss these “dwarf” galaxies next.

1.1.2 Galaxy masses; dwarf and giant galaxies

Here I will discuss the typical mass range of galaxies, and naming conventions in the field. It is
worth noting that a galaxy is a complicated structure that includes multiple components such as
stars, an interstellar medium, and a dark matter halo (discussed below); the definition of its mass
can vary, depending on the definition of galactic boundary and the components that are included.
Two descriptions are most commonly used to define the mass of a galaxy – stellar mass and
total mass. Stellar mass (𝑀∗) refers to the total mass of the stellar component of a galaxy, which
is normally inferred from the observed luminosity of the galaxy. The total mass refers to the
total mass of the visible part of the galaxy together with its host dark matter halo (which will be
discussed in the second part of this introduction.) In addition, we also use halo mass (𝑀ℎ) to
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describe the mass of the host dark matter halo. Note that the stellar mass of a given galaxy is
usually significantly smaller than the mass of its host dark matter halo, the halo mass is usually
quantitatively close to the total mass.

The total mass of the MW system, including dark matter, has been estimated in many ways over
the last few decades. Despite considerable effort, the uncertainties of these mass estimates remain
about a factor of two, ranging from 0.5 to 2.5 × 1012𝑀⊙ (Wang et al., 2015; Bland-Hawthorn &
Gerhard, 2016; Callingham et al., 2018), while its stellar mass is less than 1/10th of this. (See
Appendix A.1 for more references of MW mass estimates.) This makes the MW a luminous,
or “giant” galaxy. However, this thesis focuses mainly on “dwarf” galaxies. These are galaxies
with much smaller masses. Although not as noticeable as giant galaxies, dwarf galaxies make up
the majority of galaxies in the Universe in terms of abundance and have a huge implication on
our understanding of galaxy formation. (I will discuss the particular research interest of dwarf
galaxies in more detail in the next section.)

Observationally, there seems to be no limit to how small a galaxy can be. Prior to 2004,
the smallest galaxy known was Draco3, which has a stellar mass of 5 × 105 𝑀⊙, that is 105 less
massive than the MW. Today, we know of dwarf galaxies with stellar masses 1000 times smaller
(Bullock & Boylan-Kolchin, 2017). See also Willman (2010) for a more detailed review of the
search for faint dwarfs.

While the term “dwarf” generally applies to galaxies with stellar masses 𝑀∗ ≤ 109𝑀⊙, dwarfs
can be further divided into more sub-types depending on the mass ranges. Although there is not
a clear definition for each type of dwarf, there are some naming conventions that we can adopt
for this thesis: The “classical dwarfs”4 have a stellar mass range of 105–107𝑀⊙. Dwarfs with
larger stellar mass are usually called bright or luminous dwarfs, while dwarfs with smaller stellar
masses (around 102–105𝑀⊙) are called “ultra-faint dwarfs”.

1.1.3 Evidence for a dark component on galaxy scales

Studies of galaxy dynamics also played a key role in the discovery of dark matter (Frenk &
White, 2012). Some of the earliest pieces of evidence for the existence of dark matter, based
on the velocities of galaxies in the Coma Cluster5 (Zwicky, 1933), or the rotation curve of the
Andromeda “nebula” (Babcock, 1939) did not receive much attention till the 1970s. The change

3Draco is one of the classic “satellite” galaxies of our Milky Way. See section 1.3.1 and 1.3.3 for the explanations
of satellite galaxies and the Milky Way.

4Classical dwarfs usually refer to dwarf galaxies discovered early on within the Local Group (LG). See section
1.3.3 for the explanation of the LG.

5see section 1.3 for the explanation of galaxy cluster.
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was brought through several influential papers that argued that a massive spherical halo is required
to stabilize a spiral galaxy disk against instabilities (Ostriker & Peebles, 1973; Ostriker, Peebles
& Yahil, 1974; Einasto et al., 1974), as well as several improved rotational curve measurements of
edge-on spiral galaxies that suggest galaxies contain six times more mass than that being observed
(Rubin & Ford, 1970; Rubin, Ford & Thonnard, 1980). Several years after, White & Rees (1978)
proposed that a hierarchically merging population of dark matter halos (more discussion below)
could provide the basis for galaxy formation, gas cooling and condensing within the gravitational
potential well set by the dark matter halos.

1.2 Dark Matter and Structure Formation

There is now overwhelming evidence from many different tests that the majority of the matter in
the Universe is Dark Matter (DM), a mysterious substance that does not interact with light and
thus cannot be detected through the whole electromagnetic spectrum. Although the exact particle
nature of dark matter remains unknown, constraints on possible candidates have gradually grown
tighter over the past few decades (see Frenk & White (2012) for a review of the origins of the
ΛCDM model and recent progress on DM).

Observations of the Cosmic Microwave Background (CMB, Planck Collaboration et al., 2016,
2018) indicate that dark matter comprises approximately 85% of the total matter density in the
Universe, while dark and baryon matter together comprise roughly 31% of the energy density
of the Universe. The remaining 69% of the energy density is the even more mysterious “Dark
Energy” (DE). We also know dark matter needs to be “cold”6 to form the large scale structures
we see in the current Universe (Blumenthal et al., 1984).

The Universe is both homogeneous and isotropic at very large scales, but it also has structures
like the Solar System, galaxies and galaxy clusters at smaller scales. On the largest scales,
galaxies and clusters are not distributed randomly but form web-like structures. One of the
classical examples is the Sloan7 Great Wall, where hundreds of thousands of galaxies that are
roughly one billion light-years away form a giant wall-like structure across the sky.

All these structures originate from the tiny density fluctuations in the very early Universe
and grow through gravitational instabilities. As dark matter corresponds to the major part of
the mass density in the Universe, it also dominates the structure formation process and sets the
environment for the baryon mass to form visible structures like galaxies and galaxy clusters.

6“Cold” means that the motions of dark matter particles are non-relativistic in the early Universe; This differen-
tiates from “hot” dark matter, which consists of particles moving with ultra-relativistic velocities.

7The Sloan Digital Sky Survey (or SDSS) is a multi-spectral imaging and spectroscopic redshift survey using a
2.5m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States.
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1.2.1 Linear and nonlinear structure formation

The early Universe was much more homogeneous than today, with only very small variations
in density. The relative amplitude of these density fluctuations can be defined in dimensionless
terms as 𝛿 ≡ Δ𝜌/�̄�, where �̄� is the mean mass density and Δ𝜌 is the excess density. These density
fluctuations are seeded by primordial fluctuations in the early Universe, thought to be created by
quantum fluctuations in the field driving inflation. From CMB observations we know that the
primordial density fluctuations can be described by a power law in wavenumber 𝑘: 𝑃(𝑘) ∝ 𝑘𝑛

(Mo, van den Bosch & White, 2010), where 𝑛 ∼ 18. The primordial fluctuations grew through
gravitational instability, eventually forming all the visible structures in the Universe.

Initially, fluctuations grew slowly as long as their relative amplitude was small, but later the
growth rate accelerated as their amplitude approached 𝛿 ∼ 1. At the early stage, the fluctuation
growth over time can be described by linear perturbation theory, which predicts growth that is
linear with the expansion of the Universe (𝛿 ∼ 𝑎, where 𝑎 is the scale factor of the Universe).
This early-stage growth is called the “linear regime”, or linear evolution, of structure formation.
The physics of structure formation within the linear regime is particularly simple, compared to
later stages. Both the density map (matter distribution) and the velocity map (velocities of the
dark matter and baryon particles) of the Universe during this epoch can be calculated using linear
perturbation theory.

The linear growth model derived from perturbation theory starts to break down when the
amplitude of the density fluctuation becomes comparable to unity, making a transition to a quasi-
linear or non-linear regime. Individual particles start to orbit or oscillate around local potential
centres, instead of accelerating continuously towards these centers. The physics of structure for-
mation becomes increasingly complicated as fluctuations grow at this epoch. Analytic treatments
are only available under certain restrictive assumptions, such as very simplified geometries. In
general, non-linear structure formation is studied instead through 𝑁-body simulations.

1.2.2 Cosmological N-body simulations

An 𝑁-body simulation is a numerical simulation of the dynamics of 𝑁 particles, usually under
the influence of the gravitational forces of the system. In astronomy, the particles are typically
used to represent the matter distribution of the Universe (cosmological simulations) or the matter
distribution within smaller structures such as galaxy clusters or galaxies. As mentioned above, it is
difficult to study structure formation analytically in dense regions that are beyond the linear growth

8Recent measurements show 𝑛 = 0.9665 ± 0.0038 (Planck Collaboration et al., 2018)
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regime. Instead, the cosmological 𝑁-body simulation has provided a key tool to understand the
dynamics and evolution of the structures in the Universe.

Early efforts to use 𝑁-body simulations for astrophysics date back to the 1940s (e.g. Holmberg,
1941), where analog tools were used instead of modern computational tools (74 light bulbs were
used to represent two “galaxies” and simulate their gravity). The first cosmological 𝑁-body
simulation was conducted by Press & Schechter (1974), with only 1000 particles at the time.
The particle number and corresponding resolution have improved dramatically over the last
several decades, along with access to more powerful computational hardware and improvements
in algorithms. For instance, the Millennium Simulation (Springel et al., 2005) used over 10
billion (2,1603) dark matter particles, with each particle representing 109 solar masses of dark
matter, while several subsequent cosmological simulations have reached 10 times this number of
particles or more (e.g. Angulo et al., 2012; Heitmann et al., 2015).

To simulate individual structures in a cosmological context, a technique called the “zoom-
in” simulation was introduced to better reveal part of the simulation with significantly higher
resolution. In a zoom-in simulation, several regions of interest, such as certain halos, are picked
from the initial, low-resolution run and then the simulation is re-run with higher resolution within
the region of interest, while the rest of the volume is modelled with the same resolution as in
the initial run. The higher resolution in the region of interest helps to resolve finer structure,
while lower resolution in the surrounding regions provides a robust model of the gravitational
environment. Several parts of the Millennium run were reproduced with much higher resolution,
in the “Aquarius” project (Springel et al., 2008), for instance, with each particle in the high-
resolution volume representing (0.64–1.4)×104 solar mass of dark matter.

Modern 𝑁-body simulations have shown their strong capabilities of investigating the struc-
tural evolution of the Universe over cosmological spatial and time scales. The results of these
simulations indicate that the current Universe is largely filled with “voids”, whose matter density
is significantly lower than the mean density of the Universe. Most dark matter condenses and
forms large, filamentary structures. The match between the simulation predictions and the obser-
vation evidence of these large-scale structures is considered one of the greatest successes of the
CDM model. Among these filamentary structures, we can also find dark matter “halos”, where
dark matter is highly collapsed, forming highly dense, roughly spherical structures.

1.2.3 Dark Matter Halos

The concept of a dark matter “halo” dates back to the 1970s, when several papers pointed out a
massive spherical component was required to stabilized a spiral galaxy disk (Ostriker & Peebles,
1973; Ostriker, Peebles & Yahil, 1974; Einasto et al., 1974). At the time, it was widely considered
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that a very faint “stellar halo” might be responsible for such a mass background. Now we know
that it is dark matter halos, instead of stellar ones, that provide the gravitational potential wells
that are needed for disk galaxies to form and retain their structure. Hereafter in this thesis, the
term“halo” will always refer to a dark matter halo.

The dark matter halo is one of the basic non-linear structures predicted by cosmological
𝑁-body simulations. During the process of structure formation, self-gravity continually works
against the cosmic expansion. Soon after the relative density enhancement in overdense regions
reaches the non-linear regime, the local expansion will stop and start to turn around. The overdense
dark matter cloud will then start to contract/collapse. During the collapse, the potential energy
of the system will be converted into kinetic energy, until eventually the two energy components
reach equilibrium. This process is also called the virialization of the system (⟨𝑃⟩ + 2⟨𝐾⟩ = 0
for an isolated self-gravitating system in equilibrium, where ⟨𝑃⟩ refers to the averaged potential
energy and ⟨𝐾⟩ refers to the averaged kinetic energy). The net collapse will stop, as systems
reach equilibrium. These stable systems are dark matter halos.

The shapes of dark matter halos are not necessarily symmetric. Many studies have demon-
strated that dark matter halos are triaxial, and may even have different shapes in their inner and
outer regions, showing more prolate shapes towards the centre and more oblate shapes in the
outskirts (Frenk et al., 1988; Cole & Lacey, 1996; Jing & Suto, 2002; Thomas et al., 1998; Bailin
& Steinmetz, 2005; Bett et al., 2007; Hayashi, Navarro & Springel, 2007; Kuhlen, Diemand &
Madau, 2007; Vera-Ciro et al., 2011). Nevertheless, halos are usually analyzed in spherically
averaged terms. A characteristic radius – the “virial radius” (𝑟vir) is commonly used to quantify
the size of a halo. Within the virial radius, the matter can be considered virialized. Similarly, the
“virial mass” (𝑀vir, the mass within the virial radius) is used to quantify the mass of dark matter
halos.

Once higher-resolution simulations started to reveal the internal structure of the dark matter
halos in 1990s, Navarro, Frenk & White (1996) found that a single, universal density profile (the
‘NFW’ profile hereafter, specifying density as function of radius 𝑟) provided a good description
for all dark matter halos:

𝜌(𝑟) = 𝜌0

𝑟
𝑟𝑠

(
1 + 𝑟

𝑟𝑠

)2 . (1.1)

The scale radius (𝑟𝑠) and the density (𝜌0) are two free parameters that vary from halo to halo.
Subsequently, a slightly different model profile, the three-parameter Einasto profile (Navarro
et al., 2004), was shown to be a more precise description to the halo density profile. However, the
NFW profile works almost as well as the Einasto profile for most cases (especially for low-mass
halos), and has the advantage of fewer free parameters. Thus, we will adopt the NFW profile as
the default for the work in this thesis.
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Halos are formed in a hierarchical manner, through mergers on progressively larger mass
scales. As mentioned before, the density fluctuations in the early Universe have a power spectrum
𝑃(𝑘) ∝ 𝑘𝑛 with 𝑛 ≈ 1, which means the amplitude of density fluctuation is larger at smaller
scales. During linear growth, fluctuations at different scales grow independently and linearly
with the scale factor of the Universe. As a result, on average small structures are the first to reach
non-linear growth regime and collapse to form small halos. These small halos subsequently grow
into bigger halos by the accretion of the surrounding diffuse dark matter gas, and by merging with
other pre-existing halos.

In the late 1990s, as the resolution of 𝑁-body simulations continued to improve, the substruc-
ture within halos was revealed (Ghigna et al., 1998; Klypin et al., 1999a). It became clear that
the dense cores of the pre-existing small halos can survive the merging process, forming distinct,
self-bound substructures or “subhalos” within the larger system. On large (galaxy cluster) scales,
the prediction of halo substructure seemed a reasonable match to observations. However, the
(very similar) predictions for MW-sized halos seemed much less consistent with observations of
Local Group dwarfs, as discussed in detail in the next section.

Early cosmological simulations included only DM-like particles, and any non-gravitational
interactions were neglected. While these simulations were successful in explaining large-scale
structure, non-gravitational effects become more important at small scales and can no longer be
ignored when attempting to explain the inconsistencies between observations and the substruc-
ture predictions mentioned above. Full hydrodynamical simulations including baryonic physics,
despite being computationally expensive and much more complex and uncertain, are one of the ef-
fective directions of exploring the small- scale structure formation. Hydrodynamical simulations
have made important progress in the past decades and have succeed in making predictions that
generally match basic observations (Springel et al., 2018). Prominent examples include EAGLE9

(Schaye et al., 2015; Crain et al., 2015), FIRE10 (Hopkins et al., 2014), Illustris11 (Vogelsberger
et al., 2014; Genel et al., 2014), IllustrisTNG12 (Springel et al., 2018; Marinacci et al., 2018), and
Magneticum13 (Dolag, Komatsu & Sunyaev, 2016).

1.2.4 Galaxy formation

DM plays an important role during the process of galaxy formation. In the picture of the standard
ΛCDM paradigm, structures such as DM halos form first and provide gravitational potentials into

9Evolution and Assembly of Galaxies and their Environments, http://icc.dur.ac.uk/Eagle/index.php
10Feedback In Realistic Environment project, https://fire.northwestern.edu/
11http://www.illustris-project.org/
12http://www.tng-project.org/
13http://www.magneticum.org/
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which nearby baryonic matter can fall (White & Rees, 1978; Blumenthal et al., 1984).

During this process, baryonic gas heats up, leading to increased thermal radiation, which helps
the gas to cool and condense further into the center of the DM halos. This radiation is normally
fairly isotropic, and thus has very low efficiency for carrying away angular momentum. The
conservation of angular momentum during gas cooling should in principle lead to the formation
of a galactic disk (though the exact details at very high redshift are unclear). The disk itself
is not a stable structure, and the gas within it will further cool and condense. Eventually, gas
condensation leads to the formation of molecular clouds, which in turn lead to star formation,
and thus the formation of a stellar disk or the spiral galaxy.

Galaxies will continue to grow through the accretion of the surrounding gas and smaller
galaxies, or even through mergers with other galaxies. Note that the stellar disks in spiral galaxies
can be easily thickened or disrupted during the accretion of satellite galaxies or major merger
events (Velazquez & White, 1999). It is generally accepted that mergers are one of the driving
forces in the formation of elliptical galaxies.

Along with the initial gas condensation, there are also feedback mechanisms that regulate the
star-forming activity during the process of galaxy formation:

• Supernova (SN) feedback: at the end of stellar evolution, some stars can explode as
supernovae. These energetic events can significantly heat and redistribute nearby gas, and
release a large amount of ‘metals’, or heavy elements14

• Active galactic nucleus (AGN) feedback: in the most massive galaxies, SN feedback
becomes less effective. An AGN corresponds to a region at the center of a galaxy where
there is a supermassive black hole (SMBH) actively feeding on its surrounding gas and
also releasing powerful radiation. Radiation or winds from AGN can heat up or displace
surrounding gas, also limiting the star formation rate.

Both SN and AGN feedback can regulate star formation, as they release energy that can heat
up the gas and prevent it from cooling too quickly. SN feedback is more important for small
galaxies where the gravitational potential wells are generally shallower. AGN feedback requires
the existence of an SMBH inside the galaxy and is usually not relevant for small galaxies that
lack large SMBH, but it serves as the most important feedback mechanism for massive galaxies.
Several other environmental mechanisms can also limit star-forming in galaxies. Together with the
internal feedback mechanisms mentioned above, these factors can sometimes cause star formation
to shut down quickly, a process referred to as “quenching”. I will discuss the quenching process
in more detail in section 1.3.4.

14In astronomy, elements that are heavier than hydrogen and helium are conventionally referred to as ‘metals’.
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1.2.5 The stellar-to-halo mass relation (SHMR)

Understanding the co-evolution of galaxies and halos, and the physical processes involved, is
one of the primary goals of studies of galaxy formation and evolution (Hudson et al., 2015).
However, it remains difficult to directly associate our theoretical knowledge of dark matter halos
with observations of individual galaxies. We can observe snapshots of the distribution of galaxy
properties such as luminosity and stellar mass at different redshifts, whereas similar predictions of
halo mass and abundance can be obtained from numerical simulations; the question is how to put
the two together. Note that constraining the relationship between the total mass of a halo and the
stellar mass within it (the “stellar-to-halo mass” relation – SHMR), is a complicated topic, which
is hard to cover in the scope of this short introduction. Wechsler & Tinker (2018) gives a detailed
review of the SHMR and other relations between dark matter halo and galaxies. Leauthaud et al.
(2012, - in particular their Figure 10) also provides a good comparison for different techniques
for constraining the SHMR.

One simple way to connect the two is by a technique called “abundance matching (AM)” (e.g.
Marinoni & Hudson, 2002; Vale & Ostriker, 2004). In this approach, galaxies and halos are rank-
ordered in each set and matched one-to-one from largest to smallest in mass. With this technique,
Marinoni & Hudson (2002) found out that there is a “characteristic halo mass” 𝑀peak

ℎ
∼ 1012.5𝑀⊙

in the local Universe, at which the stellar-mass-to-halo-mass ratio is maximized/highest. A natural
interpretation is that 𝑀peak

ℎ
corresponds to the halo mass at which star formation, integrated over

the entire assembly history of the galaxy, has been the most efficient (Silk, 2013; Hudson et al.,
2015).

The AM method of Marinoni & Hudson (2002) was only considering all galaxies in one halo.
It has since then been extended to consider both central galaxies and satellite galaxies separately15,
in a variant know as subhalo abundance matching or SHAM (Yang, Mo & van den Bosch, 2003;
Vale & Ostriker, 2004; Conroy, Wechsler & Kravtsov, 2006; Moster et al., 2010; Behroozi,
Conroy & Wechsler, 2010; Hearin et al., 2013). Another popular approach to associating a
galaxy population to its corresponding halos is called the Halo Occupation Distribution (HOD)
model. This assigns a probability of each halo hosting one or more galaxies from a given sample,
as a function of its halo mass. This can populate halos with galaxies in such a way as to reproduce
the observed galaxy clustering pattern16 (Jing, Mo & Börner, 1998; Peacock & Smith, 2000;
Cooray & Sheth, 2002; Seljak et al., 2005; Coupon et al., 2012).

Both AM and HOD are powerful tools, but they are also model-dependent methods. They both
make critical assumptions about the statistical link between galaxies and their host halos. A more

15see section 1.3.1 for explanations.
16See section 1.3 for explanations.
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direct way to connect galaxies to their halos is to probe dark matter halos gravitationally. There
are several ways to do so. Traditionally, dynamical methods are commonly used to estimate the
total mass surrounding each galaxy. For instance, the well-known Tully-Fisher relation (Tully, de
Marseille & Fisher, 1975) shows an empirical correlation between the mass or intrinsic luminosity
of spiral galaxies and their disk rotational speed or emission line width. Similar estimates can
be pushed out further into the halo using satellite dynamics (van den Bosch et al., 2004; More
et al., 2011). Note that all dynamical methods require some assumptions regarding the dynamical
equilibrium of the galaxy and its surrounding halo.

Finally, the most powerful way to probe the mass distribution to large radii is using gravitational
lensing. Light from distant sources, usually galaxies, will be bent by any intervening gravitational
potential well before it reaches the observer. As a result, the images of the distant sources will
appear distorted. ‘Strong’ lensing systems refer to cases where the lensing effects are so strong
that the source images are split into multiple pieces. Strong lensing systems are rare, however,
and thus less useful relative to weak lensing systems, where the source images retain only single,
slightly distorted components. The signal from an individual weak lensing system is very small.
Only by stacking thousands of such systems do they become a powerful tool for measuring the
average mass distribution around galaxies (Brainerd, Blandford & Smail, 1996).

1.3 Galaxy Groups and Clusters

1.3.1 Satellite and Central Galaxies

During the hierarchical assembly of dark matter halos, small progenitor halos often survive
accretion onto a larger system, creating a population of bound remnants, or “subhalos”. The galaxy
formed by gas cooling within the central parent halo is called the “central” galaxy. Similarly, if the
gas in the progenitor halos of the subhalos managed to cool and form galaxies before these were
accreted onto the main system, it creates a population of “satellite” galaxies around the central
galaxy. Satellite galaxies comprise a significant fraction of the entire galaxy population. Many
studies have measured satellite abundance, using various methods, and generally find that about
30% of galaxies with stellar masses around 109𝑀⊙ are satellites. This fraction also decreases
with increasing stellar mass (Mandelbaum et al., 2006; Tinker et al., 2007; van den Bosch et al.,
2008; Yang, Mo & van den Bosch, 2008; Wetzel et al., 2013).
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1.3.2 Groups and clusters

The observed structures that contain multiple galaxies (central and satellite galaxies) are referred
to as galaxy groups or clusters. Structures that contain tens to hundreds of dwarf or giant galaxies
are usually referred to as galaxy groups; while structures that contain hundreds or thousands of
galaxies are referred to as galaxy clusters. (Multiple galaxy groups and clusters together can
also constitute an even larger structure known as a supercluster, but this is not a single, relaxed,
virialized object.)

Typically, galaxy groups only contain a few (optically) luminous galaxies and produce low
levels of X-ray emission. In contrast, galaxy clusters contain large numbers of bright galaxies,
and the space between the galaxies is filled with a hot intracluster medium that can be very bright
in X-ray (e.g. Giodini et al., 2009; Dai et al., 2010; Anderson et al., 2015). Another interesting
difference between groups and clusters lies in position on the SHMR. For low-mass galaxy groups,
the stellar-to-halo mass ratio increases with mass; while for high mass groups and clusters, this
ratio decreases with halo mass. This difference hints at different mechanisms that regulate the
star formation in groups and clusters (Bullock & Boylan-Kolchin, 2017).

1.3.3 The Milky Way and The Local Group

The Milky Way and its immediate surroundings hold a special place in astrophysics, not only
because they are the home of our planet Earth, but also they are the closest large structures to
us. Thus, they will always be the places where the most detailed observational information is
available across many branches of the field.

The Local Group (LG) is the group of galaxies consisting of the MW and nearby galaxies,
including the Andromeda galaxy (M31) and the satellite galaxies of the MW and M31. M31
is the nearest bright spiral galaxy to the MW and is about 780 kpc from us (Ribas et al., 2005;
McConnachie, 2012). It has a similar (though probably slightly higher) luminosity and mass as
the MW (Karachentsev & Kashibadze, 2006). The host halos of the MW and the M31 are both
estimated to have virial radii of ∼ 300 kpc (Klypin, Zhao & Somerville, 2002), so their halos do
not quite overlap with each other.

Being the nearest galaxy group, the LG is the best-studied group environment. It has a
large population of dwarf galaxies, with over 50 confirmed satellite members and more being
discovered in recent years (McConnachie, 2012; Bechtol et al., 2015; Drlica-Wagner et al., 2015,
2020).

McConnachie (2012) reviewed the content of the LG and provided an updated online cata-

13



logue17 of the 100 nearest (within 3 Megaparsecs (Mpc) from the Sun) dwarf galaxies that were
known by 2012, of which 76 galaxies are very likely to be members of the LG. Among these LG
member candidates, there are 27 galaxies that are within 300 kpc (the suggested virial radius of
the MW halo).

1.3.4 Quenching and environmental effects

Galaxies in the local Universe can be broadly classified into two populations by their relative
rates of star formation: blue star-forming galaxies that are actively adding to their stellar mass,
and red quiescent (or passive) galaxies that lack or have little active star-formation (Blanton et al.,
2003; Kauffmann et al., 2003b, 2004; Balogh et al., 2004; Baldry et al., 2004; Brinchmann et al.,
2004; Taylor et al., 2015). Based on our current understanding of galaxy evolution, galaxies are
initially star-forming, and grow through continued star formation and mergers, but may eventually
evolve into red, quiescent systems (Bell et al., 2004; Faber et al., 2007; Martin et al., 2007). The
distribution of galaxy properties is clearly bimodal, for example in the colour versus stellar mass
plane (Baldry et al., 2004; Taylor et al., 2015) or the star-formation rate (or specific star-formation
rate) versus stellar mass plane (Balogh et al., 2004; Moustakas et al., 2013; Davies et al., 2016),
with intermediate “green valley” objects being much rarer (Martin et al., 2007; Wyder et al.,
2007; Salim, 2014). This suggests that the transition process from blue to red (i.e. quenching) is
likely to be fast, across a broad range of stellar mass (Wetzel, Tinker & Conroy, 2012; Schawinski
et al., 2014; Bremer et al., 2018). The cause of star-formation shut down is still a matter of
vigorous debate and remains one of the most important goals in understanding galaxy evolution.

The mechanisms of galaxy quenching suggested by current observational evidence can be
roughly divided into two main modes. The first is secular quenching (or mass quenching), which
correlates with the internal properties of a galaxy, and can occur in a galaxy regardless of its
environment (Kauffmann et al., 2003a; Driver et al., 2006; Wake, van Dokkum & Franx, 2012;
Lang et al., 2014; Barro et al., 2017; Contini et al., 2020). The second quenching mode is driven
by the local environment of a galaxy. The occurrence of quenching is also found to be correlated
with the local environment density in galaxy groups/clusters (Peng et al., 2012), as well as the
locations respective to the group/cluster-centre (Wolf et al., 2009; Wetzel, Tinker & Conroy,
2012; Woo et al., 2015).

Overdense environments such as galaxy clusters, groups or even close pairs can remove
or inhibit the gas supply that sustains on-going star-formation (Patton et al., 2011; Robotham

17The catalogue of LG dwarfs from McConnachie (2012) is available here; or an easier-to-read version from
the SIMBAD database; or from the NASA/IPAC Extragalactic Database search result, which also contains links to
spectres and images of each dwarf.

14

http://vizier.cfa.harvard.edu/viz-bin/VizieR-3?-source=J/AJ/144/4/catalog
http://simbad.harvard.edu/simbad/sim-ref?querymethod=bib&simbo=on&submit=submit+bibcode&bibcode=2012AJ....144....4M
http://ned.ipac.caltech.edu/cgi-bin/nph-objsearch?search_type=Search&refcode=2012AJ....144....4M


et al., 2014; Davies et al., 2016), leading to quenching events (e.g. Peng et al., 2010; Schaefer
et al., 2017). There are various physical processes that can drive this mode of quenching,
including “starvation/strangulation”, where the fresh gas accretion is suppressed (Larson, Tinsley
& Caldwell, 1980; Moore et al., 1999b; Peng, Maiolino & Cochrane, 2015; Trussler et al., 2019),
tidal and ram-pressure stripping, where gas is actively removed from the satellites respectively by
gravitational tidal force and the ram-pressure while moving through intra-cluster medium (Gunn
& Gott, 1972; Moore et al., 1999b; Nichols & Bland-Hawthorn, 2011; Poggianti et al., 2017;
Brown et al., 2017; Fattahi et al., 2018; Trussler et al., 2019), and “harassment”, where satellites
get disturbed by the fly-by galaxy members (Moore et al., 1996). Galaxies with intermediate-to-
low mass are more prone to be affected by this environmental quenching (Davies et al., 2019).
This is likely due to the fact that it is more difficult for low-mass galaxies to retain or accrete gas
while moving through dense environments.

Since environmental quenching should only apply to satellites, it implies that centrals and
satellites will have different quenched fractions. At the low mass end, studies have shown that
satellite galaxies are on average redder and more concentrated than central galaxies with the
same stellar mass (van den Bosch et al., 2008), indicating quenching processes that are specific
to satellites. Similarly, Geha et al. (2012) showed that while the quiescent fractions of small
galaxies with 𝑀∗ = 108 − 109𝑀⊙ are consistent with zero for dwarfs that are sufficiently isolated
(more than 1 Mpc away from their nearest MW-mass or larger hosts), this fraction rises sharply at
smaller distances from massive systems. On the other hand, for halo masses larger than 1012𝑀⊙,
central galaxies have a higher red fraction (Yang, Mo & van den Bosch, 2008), so in that case
mass quenching mechanisms must dominate.

1.4 Previous Work and Motivation

As mentioned previously, the ΛCDM cosmological model has been a resounding success in
matching observations of the large-scale structure of the Universe (Frenk & White, 2012). How-
ever, challenges have arisen on small scales, where the correspondence between theory and
observed structure seems more complicated. In this section, I will review these challenges and
some of the proposed solutions to them. Then I will briefly discuss previous efforts to quantify
dwarf galaxy abundance in particular, as well as the work that still needs to be done in this area.

1.4.1 Small-scale challenges in 𝚲CDM

Cosmological 𝑁-body simulations with sufficiently high resolution have shown that MW-sized
halos should contain thousands of subhalos massive enough (> 107𝑀⊙ ) to support molecular
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cooling (Moore et al., 1999b; Klypin et al., 1999a). We would expect such objects to form stars,
and thus produce thousands of visible satellite galaxies. However, only about 50 satellite galaxies
with stellar masses larger than 300 𝑀⊙ are observed to orbit the MW within its estimated virial
radius (Drlica-Wagner et al., 2015). Although the observational inventory is likely incomplete,
and future surveys may bring up the total satellite number into the hundreds (Hargis, Willman
& Peter, 2014), the large discrepancy between the theoretical prediction and the observations is
unlikely to be resolved by improved observational data alone. The discrepancy in abundance
between the predicted dark matter substructure and the observed population of local satellite
galaxies is often referred to as the “Missing Satellite Problem” (MSP), or missing dwarf problem.

A complementary way to look at this discrepancy is to compare the mass function of dark
matter halos predicted by CDM simulations and observed galaxies. It is a characteristic prediction
of the ΛCDM cosmology that the dark matter halo mass function has a steep slope at the low-
mass end. That slope is much steeper than the faint-end slope of the galaxy stellar mass function,
which implies that low-mass CDM halos are significantly more abundant than faint dwarf galaxies
(Kauffmann, White & Guiderdoni, 1993).

The missing satellite problem is usually resolved by assuming that dwarfs form preferentially
in relatively massive halos because cosmic re-ionization and the energetic feedback from star
formation remove baryons from the shallow gravitational potentials of low-mass systems (Bullock,
Kravtsov & Weinberg, 2000; Benson et al., 2002; Somerville, 2002). However, Boylan-Kolchin,
Bullock & Kaplinghat (2011) put this explanation to the test by comparing the central mass of
MW satellites to the predictions from the Aquarius (Springel et al., 2008) and Via Lactea II
(Diemand et al., 2008) simulations. They pointed out that the most massive subhalos from the
simulations were systematically too centrally dense to host the bright satellites in the MW. While
there were subhalos that were comparable in terms of central mass to the MW satellites, those
were never among the top 10 most massive subhalos in the MW-size host halos. This raises
the question, why would luminous satellites preferentially avoid the most massive subhalos, but
occupy lower-mass ones? This question raised by Boylan-Kolchin, Bullock & Kaplinghat (2011)
is another small-scale challenge for the ΛCDM model, and is known as the “Too-Big-to-Fail”
(TBTF) problem. For a more comprehensive review of these small-scale challenges (SSCs), see
the review by Bullock & Boylan-Kolchin (2017).

1.4.2 Solutions to the SSCs

From the theory side, there has been much work exploring possible solutions that can resolve the
SSCs. These solutions mainly fall into two categories: fundamental modifications to the ΛCDM
model, or solutions related to baryonic processes, within the ΛCDM model.
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Alternatives to 𝚲CDM

The ΛCDM model can be modified in several possible ways, without disrupting its agreement
with large-scale observations. In particular, while the usual version of the model assumes a
power-law spectrum of initial fluctuations, subsequent processes will suppress fluctuations at
high wavenumbers. The high-𝑘 is normally set by the free-streaming damping18, which is tightly
related to the particle nature of DM. A larger free-streaming cut-off length means fewer seeds for
structure formation at small scales and thus leads to a lower abundance of DM substructure. This
in turn leads to a reduction in the expected number of satellites inside a MW-sized halo.

The effective free-streaming cut-off length scales inversely with the particle mass. The best-
known alternative theories with smaller particle masses include hot dark matter (HDM) and warm
dark matter (WDM). For CMD, the cut-off length scale set by the free-streaming damping is of
the order of 1 pc in comoving scale (Bullock & Boylan-Kolchin, 2017), which is much smaller
than the typical substructure scales, and therefore has a negligible effect on structure formation.
“Hot” dark matter particles retain very high (relativistic) velocities until relatively late times, and
their diffusion can damp out density perturbations even on super-cluster scales. This obviously
conflicts with observations of large-scale structure and is ruled out as a result. On the other
hand “warm” dark matter particles, whose masses are at the order of 1 keV, have smaller initial
velocities and become non-relativistic earlier than hot dark matter particles. The corresponding
damping will suppress perturbations on galactic or smaller scales (Bode, Ostriker & Turok, 2001).
WDM is not ruled out by observation but the current observed number of satellites can set a lower
limit on the WDM particle mass. (E.g. Lovell et al. (2014) claimed a constraint of 𝑚 > 2.3
keV with 95% confidence. One can also refer to Kennedy et al. (2014) for a good review of
constraining DM particle mass by comparing luminosity function predictions to MW satellite
data.)

Another possible modification to the ΛCDM model is to assume DM physics that modifies
non-linear evolution. As mentioned before, structures grow linearly in the early stage and then
make a transition to the non-linear growth regime once the density starts to pass a critical value.
One way to modify non-linear evolution is to assume non-negligible interactions between DM
particles. The simplest form is called self-interacting dark matter (SIDM, also sometimes called
collisional dark matter), which has a characteristic energy-exchange interaction cross-section 𝜎
(Spergel & Steinhardt, 2000). This gives a mean free path _ for DM particle motion _ = (𝑛𝜎)−1,
where 𝑛 is the local number density of DM particles. At large scales where the DM particle
density is low, the self-interactions between DM particles are still negligible and the picture is
consistent with CDM. It becomes important, however, in high-density regions, where the mean

18Free-streaming damping refers to the damping of density perturbation of collisionless particles due to their
random velocities (Mo, van den Bosch & White, 2010).
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free path is short and particles experience a high frequency of scattering events, making SIDM
act like a fluid. The halos produced with SIDM usually have a relatively large, constant-density
core in the center, compared to the sharp/cuspy density profile of conventional CDM halos.

Effects from Baryonic Physics

A less radical alternative to resolving the SSCs is to suppose that baryonic processes have a large
effect on surviving dark matter structures, or on star formation within subhalos. Hydrodynamic
simulations have shown that under the right conditions, stellar feedback can redistribute dark
matter and baryonic matter in the central region of halos, forming a flat, core-like central density
profile (Madau, Shen & Governato, 2014; Oñorbe et al., 2015; Read, Agertz & Collins, 2016).
This effectively lowers the central density of sub-halos, possibly resolving the TBTF problem.
However, we note that the effect of stellar feedback tends to be less significant for small dwarf
galaxies, whose stellar-halo mass ratio drops as the mass decreases. Results from multiple
simulations (Madau, Shen & Governato, 2014; Oñorbe et al., 2015; Read, Agertz & Collins,
2016; Fitts et al., 2017) suggests a threshold of 𝑀∗ ∼ 106𝑀⊙ or 𝑀vir ∼ 1010𝑀⊙, below which the
effect of stellar feedback shaping the halo density profile should become negligible.

In addition to internal stellar feedback, several forms of external feedback from the host galaxy,
such as tidal stripping, disk shocking and ram pressure stripping, can also reduce the central mass
of satellites. Those external feedback processes are shown to be important in simulations (Wetzel
et al., 2016) and may help to explain the TBTF problem as well. Disk shocking in particular
may be more effective at disrupting substructure than usually imagined, reducing the number of
surviving post-merger subhalos and partially explaining the MSP. If the external influences from
the host galaxies are the key to explaining the small-scale challenges, there should be a significant
difference between field dwarfs and satellite galaxies, and the properties of satellites may also
have a systematic dependence on the relative position inside the host halo and their infall history.
These expected differences need to be tested with observations.

Besides the theoretical explanations, there are also some observation complications that need
to be considered:

• The completeness of LG satellites: The current catalogue of MW and LG satellites may be
far from complete (Hargis, Willman & Peter, 2014). The galactic disk also adds an extra
difficulty in identifying the fainter MW satellites.

• The mass of the MW: Wang et al. (2012) pointed out that the severity of the TBTF problem
is very sensitive to the MW halo mass. The “problem” could be an indication of a smaller
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MW halo mass than is usually considered. They claimed that for 𝑀halo = 1012𝑀⊙ halos in
simulations, 40% of them show no TBTF problem.

• The conversion between HI line width and mass: The measured masses and density profiles
of many dwarf galaxies rely on rotation curves derived from neutral hydrogen (HI) emission
lines. Several factors complicate the interpretation of these results, however. There may
be some contribution of non-rotational support from turbulent pressure, radiation pressure,
etc., within these systems, and the neutral gas may not extend out to the regions where
the dark matter halo potential would cause peak rotation speed. Finally, the uncertainty of
inclination angles can also lead to systematics in the mass estimates (Bullock & Boylan-
Kolchin, 2017). Please see Papastergis & Ponomareva (2017) for a full discussion of the
issues related to HI line conversion.

1.4.3 The need to go beyond the Local Group

On one hand, the LG is currently the best-studied galaxy group, and it will likely continue to
be so in the future. The nearby Universe will always be the easiest place to detect the faint
end of the galaxy luminosity function and study resolved stellar populations (e.g. Weisz et al.,
2011; McConnachie, 2012; Garrison-Kimmel et al., 2014). We can measure kinematics, stellar
components and metallicities of the LG dwarf galaxies at a level of detail that would be very
difficult to obtain for galaxies that are further away (Tolstoy, Hill & Tosi, 2009).

On the other hand, it remains an open question whether what we learned from the LG is
representative of the rest of the Universe (van den Bergh, 2000; Weisz et al., 2011). Many recent
studies suggest that the LG has several properties that may be atypical compared to the rest of
the local Universe. For instance, observational studies have shown that it is relatively rare for
galaxies like the MW to have two bright, star-forming satellites like the LCM and SMC (Guo
et al., 2011; Liu et al., 2011; Strigari & Wechsler, 2012; Robotham et al., 2012; Speller & Taylor,
2014) and numerical simulations have reached similar conclusions (Boylan-Kolchin et al., 2010;
Busha et al., 2011; Kang, Wang & Luo, 2016; Zhang, Luo & Kang, 2019; Evans et al., 2020)

We also know that the properties of satellite galaxies are strongly influenced by their en-
vironment. Various environmental effects could destroy or transform the satellites during and
after their merging process, such as tidal heating or stripping (Gunn & Gott, 1972; Moore et al.,
1999b; Peng, Maiolino & Cochrane, 2015; Trussler et al., 2019), the encounter with other galaxies
(Moore et al., 1996), and external feedback (Patton et al., 2011; Robotham et al., 2012; Davies
et al., 2016). These environmental effects provide important insights that can help us to get a
better understanding of the complex picture of galaxy formation. The LG can only provide one
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example of a group environment; we need a much greater number of examples to explore the
effects of the environment on small-scale galaxy formation.

1.4.4 Prior Work

Given the motivation to study satellite populations beyond the LG, one of the basic observational
challenges is to distinguish satellites from the foreground and background systems, by obtaining
some form of distance information for them. There have been a few main approaches in the recent
literature: (1) use existing spectroscopy to identify satellites around the nearest bright systems
(e.g. Merchán & Zandivarez, 2005; Yang et al., 2007); (2) conduct a dedicated spectroscopic
survey of faint targets around a relatively small number of selected systems (e.g. the SAGA
survey19: Geha et al., 2017; Mao et al., 2021); (3) use photometric distance estimates such as the
tip of the red giant branch (TRGB) (e.g. Carlin et al., 2016; Danieli et al., 2017; Cohen et al.,
2018; Carlsten et al., 2019), or surface brightness fluctuations (e.g. van Dokkum et al., 2018;
Carlsten et al., 2019); (4) measure statistical abundance with clustering-based methods (e.g. Liu
et al., 2011; Guo et al., 2011, 2012; Strigari & Wechsler, 2012; Wang & White, 2012; Wang et al.,
2014; Sales et al., 2013; Speller & Taylor, 2014).

The four approaches have different strengths and weaknesses. Method (1) requires only
existing data, and spectroscopic distance estimates are reliable and accurate, but it is restricted to
the brightest satellites in the nearest systems, and it may also suffer from incompleteness due to
fibre positioning limitations in dense fields (e.g. Guo, Zehavi & Zheng, 2012; Smith et al., 2019).
Method (2) also benefits from accurate spectroscopy and has much higher completeness and depth
compared to method (1). However, it is extremely expensive in terms of observing time and has
a low efficiency of finding satellites given the very large background populations. The (SAGA)
Survey (Stage I, Geha et al., 2017), for instance, found only 25 new satellites around 8 MW
analog hosts, out of the 17,000 spectroscopic redshifts they obtained for satellite candidates. This
low efficiency limits the method to small numbers of primary systems. Method (3) is very limited
in target selection, requiring primary systems to be very nearby [<20 Mpc], at which distance
virial radii subtend large angles on the sky. This selection criterion makes complete coverage
difficult. Method (4) cannot confirm individual galaxies as satellites or centrals. However, it has
been very successful in making measurements of the average satellite abundance and is the least
resource-intensive method of the four.

Among the studies using method (4) mentioned above, Speller & Taylor (2014) proposed a
new method of selecting nearby galaxies based on morphological cuts, which we will test and
improve in the work in chapter 2. The method can effectively select dwarfs that are likely to be

19Satellites Around Galactic Analogs, https://sagasurvey.org/
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nearby, without spectroscopic information or high-quality photometric redshifts. By focusing on
the very nearby systems, they were able to reach fainter limits in terms of detection sensibility.
However, this morphological selection method also introduced issues such as incompleteness for
satellite detection. Besides, like most other studies with method (4), Speller & Taylor (2014)
applied an isolation cut while selecting their primaries, which excluded about two-thirds of all
potential systems. The isolation cut effectively limits the studies of dwarf galaxies to lower-
density environments, which could potentially bias the results. The new method we established
in chapters 3 and 4 will try to address this issue.

1.4.5 Our research goals

The main goal of the work included in this thesis is to advance existing techniques, as well as
develop new ones, for quantifying dwarf satellite populations outside the LG.

The work consists of two main parts:

1. Testing the effectiveness and optimizing the morphological selection method in Speller &
Taylor (2014). In particular, we verified the incompleteness and clustering signal boost
introduced by the morphological cuts. We also evaluated the effectiveness of the method at
a broader range of distances, exploring the limits where we can apply this method. Finally,
we tested different models of the morphological cuts and optimized model parameters at
different distances to achieve maximum effectiveness.

2. Developing and testing a new method of quantifying satellite abundance using clustering.
This method requires higher-precision photo-zs, making it less general than the method
in the first part, but still more cost-effective and applicable to fainter satellite candidates
compared to using spectroscopy. This new method also features a hierarchical primary
selection, which allows us to find systems in dense environments, and across a very large
mass range.

Given the techniques we developed, we also measured various satellite and central galaxy
properties such as their overall abundance, luminosity function, stellar mass function, and qui-
escent fraction, and determined how these properties are related to their environments. We
compared the LG to a broader sample of similar groups and discussed whether the LG is rep-
resentative of the rest of the local Universe. Through this work, we are hoping to improve our
understanding of dwarf satellite populations and the effects of the environment on these objects,
as well as to open new opportunities for future research.
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1.5 Organization of the thesis

The main research chapters of this thesis, Chapter 2, 3 and 4, correspond to two published and
one submitted paper; the first two are reproduced without modification, while the last has been
modified slightly based on thesis committee and referee comments, as explained in the Statement
of Contributions. Chapter 2 was published as Xi et al. (2018), “Quantifying the abundance of
faint, low-redshift satellite galaxies in the COSMOS survey”. Chapter 3 was published as Xi &
Taylor (2021), “A hierarchical clustering method for quantifying satellite abundance”. Chapter 4
is from the submitted paper: “The hierarchical clustering method: abundance and properties of
local satellite populations”. Chapter 5 reviews the main findings of the thesis and discusses the
limitations, potential improvements and future applications of this work.
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Chapter 2

Quantifying the abundance of faint,
low-redshift satellite galaxies in the
COSMOS survey

Abstract

Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly
characterized outside the Local Group, due to the difficulty of identifying them consistently
at larger distances. We review a recently proposed method for estimating the average satellite
population around a given sample of nearby bright galaxies, using a combination of size and
magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements
(to estimate the fraction of true satellites in the cut sample). We test this method using the high-
precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific
cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover
the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal
and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts.
These cuts are also fairly efficient, with more than one third of the selected objects being clustered
satellites. We conclude that structural selection represents a useful tool in characterizing dwarf
populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic
surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence
of several dozen objects that appear resolved or partially resolved in the HST imaging, and are
confirmed to be local (at distances of ∼250 Mpc or less) by their photometric or spectroscopic
redshifts. This underlines the potential for future space-based surveys to reveal local populations
of intrinsically faint galaxies through imaging alone.
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2.1 Introduction

The Milky Way, M31, and other bright galaxies in the nearby universe are observed to have
retinues of faint dwarf satellites. The ‘classical’ dwarfs of the Local Group, those identified
decades ago, have magnitudes brighter than 𝑀 ∼ −6 in the 𝐵 or 𝑉-band, while the more recently
discovered ‘ultra-faints’ can be many magnitudes fainter (see McConnachie, 2012, for a review).
Given their high velocity dispersions and implied high mass-to-light ratios, dwarf satellites are
inferred to trace the dense substructure seen in simulated dark matter halos. As such, they provide
a very important test of models of structure formation. The relationship between dwarf satellites
and halo substructure is complex, however, since the simplest models relating the two fail to
match the number (Klypin et al., 1999b; Moore et al., 1999a), spatial distribution (Kravtsov et al.,
2004) and central densities (Boylan-Kolchin, Bullock & Kaplinghat, 2011) of the known dwarf
galaxies of the Local Group. Detailed, careful modelling (e.g. Brooks & Zolotov, 2014; Sawala
et al., 2015) seems to be required to understand the properties of these objects.

Despite ongoing observational efforts (e.g. Karachentsev, Makarov & Kaisina, 2013; Chibou-
cas et al., 2013; Sand et al., 2014; Merritt, van Dokkum & Abraham, 2014; Javanmardi et al.,
2016; Crnojević et al., 2016; Müller et al., 2017; Greco et al., 2018, and references therein),
most of our information about faint satellites comes from the Local Group, and models of dwarf
galaxy formation typically set out to reproduce its properties. Our view of the Local Group
is limited, however, by obscuration and uneven (albeit gradually improving – Laevens et al.
2015b,a; Bechtol et al. 2015; Drlica-Wagner et al. 2015) sky coverage. Furthermore, studies of
bright satellites around Milky Way analogues suggest that our Galaxy may be unusual in some
respects; for instance, the presence of two bright, star forming satellites represents a 1 in 250
or rarer occurrence (Robotham et al., 2012). To reach robust conclusions about typical satellite
populations, we really need to expand the inventory of host systems with well-sampled satellite
distributions by a factor of 100 or more.

Identifying faint satellites around more distant primaries is, unfortunately, very challenging.
Over a reasonably large volume, such objects should be bright enough to be detected in large-
area surveys. But without some means of determining distances to faint galaxies, and thus of
associating them with nearby bright ones, local satellites are swamped by the much larger number
of faint background galaxies. Recent work by the SAGA survey (Geha et al., 2017) provides a
good indication of the challenge; a massive spectroscopic campaign measuring more than 17,000
redshifts found only two dozen new dwarfs down to a magnitude of −12, within a projected
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virial radius around their nearby targets. Going fainter would decrease the efficiency further, at
prohibitive cost in observing time.

There are alternatives to spectroscopic distance determinations. Photometric redshifts are one
example; in cases where many bands are available, these can be quite effective for determining
3D structure, at least on large scales (Scoville et al., 2007a, 2013). Unfortunately, photometric
redshifts of this quality are only available for a few small fields, notably the COSMOS field
(Scoville et al., 2007b). A second possibility is to use clustering to estimate the average distance
to a faint population of objects, by association with a brighter set of objects of known distance or
redshift. Association inferred from proximity on the sky provides distance estimates for a number
of the (relatively rare) dwarf galaxies in the ‘Local Volume’ out to 11 Mpc (Karachentsev, Makarov
& Kaisina, 2013), while the related statistical technique of ‘clustering redshifts’ (Ménard et al.,
2013; Rahman et al., 2015) has been used to determine mean redshifts for populations at greater
distances (e.g. Rahman et al., 2016). Even here, without any further sample selection beyond a
basic magnitude cut, the clustering signal from faint, nearby systems tends to be weak.

A third alternative for estimating distances (or at least selecting local galaxies preferentially)
is structural (size, magnitude, and/or surface-brightness) selection. As we will show below, the
intrinsically faint galaxies of the local universe occupy a distinct region of structural parameter
space. Cuts in size, magnitude, and/or surface brightness are not enough to uniquely identify them
at all redshifts, but can be quite effective for nearby objects. This method has been used implicitly
several times, e.g. in Ferrarese et al. (2012) or Karachentsev, Makarov & Kaisina (2013), but
without much systematic study. In (Speller & Taylor, 2014, ST14 hereafter) , we proposed a
specific structural selection criterion, based on size and magnitude, to identify satellites around
primaries at distances of 10–40 Mpc. We demonstrated that our structural cuts preferentially
select nearby dwarfs by measuring the clustering signal of the cut sample with respect to the
primaries. Overall, our cuts increased the signal-to-noise ratio (SNR) of the clustering signal
from undetectable levels up to a value ∼ 9, allowing us to measure a number of properties of the
satellite population. One major limitation of this method, however, is the incompleteness of the
resulting samples (down to a fixed magnitude or luminosity limit), which we estimated to be 50%
or more. Furthermore, our selection was tuned to relatively nearby systems. It is unclear how
well this selection method extends to fainter magnitudes, and more generally, how it depends on
the detailed form of the structural cut.

The goal of the current work is to study and test the structural selection method in more detail.
Ideally, we would do this with large (≳ 104 object), complete samples of faint (21–22 magnitude)
galaxies with measured spectroscopic redshifts. Unfortunately, no samples of sufficient depth
and areal coverage are currently available. The closest equivalent is the photometric redshift
catalog of the COSMOS survey (Mobasher et al., 2007; Ilbert et al., 2009; Laigle et al., 2016).
This provides photo-𝑧s with an accuracy of 1% or better down to magnitudes of 𝑖+ = 23 (or even
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deeper at low redshift), and thus gives a good indication of which faint galaxies are truly local,
albeit over a very small field. Since the COSMOS field is so small, we will push the limits of the
selection method developed in ST14, extending the distance range considered by a factor of 25,
in order to increase the size of the primary sample and allow a robust detection of the clustering
signal.

We apply structural selection to galaxies in the COSMOS field, using various cuts based on
structural properties measured at ground-based resolution by the Sloan Digital Sky Survey (SDSS
hereafter – York et al., 2000) , for consistency with ST14. Defining samples of bright, nearby
primaries with spectroscopic redshifts and fainter secondary samples selected structurally, we
measure the clustering of secondaries with respect to primaries, and use this to estimate what
fraction of the secondaries are true satellites. We study the effect of several different selection
cuts on the purity and completeness of the resulting satellites samples.

The outline of the chapter is as follows. In Section 2.3, we first introduce the surveys and
datasets used. In Section 2.3, we then present the basic argument behind structural selection,
using known dwarf populations from the Local Group or the ‘Local Volume’ within 11 Mpc to
estimate the intrinsic distribution of dwarf galaxy properties. In Section 2.4, we describe our
selection of primary and secondary samples in the COSMOS field, and explain how the primary-
secondary clustering amplitude is measured. To establish a baseline for the effectiveness of
structural selection, in Section 2.5, we measure this clustering amplitude for a secondary sample
with no structural cuts, as well as for a sample with photo-𝑧 cuts to isolate those objects most
likely to lie at the distance of the primary. In Section 2.6, we apply cuts on secondary structure
instead, and show how much of the clustering signal these can recover. Finally, in Section 2.7 we
consider the very nearest systems in the COSMOS catalog, that appear to be resolved or partially
resolved in the Hubble Space Telescope (HST) imaging available for the field (Koekemoer et al.,
2007), and give an indication of the samples that future wide-field, space-based surveys will
provide. In Section 2.8 we conclude by discussing the limitations of structural selection, and
the future prospects for this technique. Throughout the chapter we calculate distances assuming
a cosmological model with parameters Ω𝑚,0 = 0.31, ΩΛ,0 = 0.69 and ℎ = 0.678, consistent with
recent Planck analyses (Planck Collaboration et al., 2014, 2016).

2.2 Data

The data considered in this chapter includes several local samples of nearby galaxies, and the
galaxies of the COSMOS field. For the latter, we use information both from high-resolution
and/or space-based imaging, and from lower-resolution SDSS imaging. Each of the catalogs or
sets of measurements is described below.
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2.2.1 The Local Group

Although the inventory of identified local galaxies is always expanding, the Nearby Galaxy
Catalog of McConnachie (2012, M12 hereafter) provides a reasonably recent summary of all
known objects, up to a few Mpc from the Milky Way. We use the version of the catalog available
on the author’s web-site1, which was last updated in 2013. We have verified that with a few
exceptions (e.g. Canis Major), the objects in this version of the Nearby Galaxy Catalog also
appear in the Local Volume Catalog described below. For internal consistency, we will use the
distances, magnitudes and isophotal radii recorded in the latter, since it contains more objects
overall. We will use the different size measurements given in the two catalogs to estimate a
half-light radius for every object in the Local Volume Catalogue, as described below.

2.2.2 The Local Volume

As discussed in the Introduction, identifying distant dwarf galaxies is challenging, and current cat-
alogs of nearby galaxies are probably very incomplete. The most extensive list of nearby systems
beyond the Local Group is the ‘Local Volume Catalog’ (LVC), first described in (Karachentsev
et al., 2004). This catalogue was updated in Karachentsev, Makarov & Kaisina (2013, K13 here-
after) , and is available on-line2. We will use the LVC as an indication of what more distant dwarfs
might look like from a structural point of view. In particular, we will use the 𝐵𝑇 magnitudes and
𝑎26 sizes given in the on-line database, and documented in K13. These are, respectively, total
magnitudes in the Johnson 𝐵−band, from various sources listed in the database, and diameters
of the isophotal radius corresponding to 26.5 mag/arcsec2 in the 𝐵 band, estimated visually and
calibrated using light profiles, as described in (K13). (K13 also notes that for objects with a
central surface brightness equal to or fainter than 26.5 mag/arcsec2, the isophotal diameter def-
inition no longer makes sense; in these cases the values listed in the LVC correspond instead to
the exponential scale radius.)

For typical objects with exponential profiles, the radius 𝑟26 = 𝑎26/2 should be roughly equal to
the effective radius 𝑟eff (or ‘half-light radius’ 𝑟ℎ in M12). In principle, we could assume a specific
radial profile for each object and convert more carefully from 𝑎26 to the effective radius, but we
will not need this level of precision for the general arguments presented here. Comparing the LVC
𝑟26 values to the effective radii 𝑟eff for the same objects given in the Nearby Galaxies Catalog,
we find that the median ratio of the two radii is 1.05, although with large scatter and a systematic
dependence on morphological type. Thus, in what follows we will assume 𝑟eff = 𝑟26 = 𝑎26/2

1https://www.astrosci.ca/users/alan/Nearby_Dwarfs_Database.html
2https://www.sao.ru/lv/lvgdb
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for the LVC objects. When needed, we will calculate exponential scale radii 𝑟exp assuming an
exponential profile, such that 𝑟eff = 1.678𝑟exp. We will also use the mean surface density interior
to the effective radius, calculated as

⟨`⟩eff = 𝑚1/2 + 2.5 log(𝜋𝑟2
eff)

= 𝑚tot + 1.995 + 5 log(𝑟eff) (2.1)

where 𝑚1/2 and 𝑚tot are the magnitudes corresponding to half the luminosity and the total
luminosity, respectively.

2.2.3 More Distant Objects

At distances 𝐷 > 11 Mpc and out to a few tens of Megaparsecs, the Extragalactic Distance
Database (Tully et al., 2009)3 provides a summary of many of the objects with known distances.
We use the ‘Cosmicflows-3’ sample from the database (Tully, Courtois & Sorce, 2016, T16
hereafter) as indicative of the state of knowledge about galaxy populations in the distance range
10–50 Mpc. The database version of this catalog includes total 𝐵-band magnitudes, as well as
distances estimated as described in T16.

2.2.4 COSMOS

To test our structural selection methods, we need uniform imaging for a large sample of faint
galaxies with reasonably accurate (e.g. 𝜎𝐷 ≲ 100 Mpc) distance estimates. Given the difficulty
of obtaining spectra for faint objects, photometric redshifts (photo-𝑧s) provide the only realistic
solution. While photo-𝑧s derived from shallow, optical photometry in five or fewer bands are
of little use at low redshift (e.g. Speller & Taylor, 2014; Geha et al., 2017), those derived from
deeper imaging with large numbers of narrow- and intermediate-band filters across the ultraviolet,
optical and infrared range can achieve accuracies of 1% or less (e.g. Ilbert et al., 2009). The
largest sample of accurate photo-𝑧s is from the COSMOS survey (Scoville et al., 2007b), a deep,
multi-wavelength survey of a 2 deg2 equatorial field.

COSMOS photo-𝑧s were derived by template fitting, as described in Mobasher et al. (2007)
and Ilbert et al. (2009). More recently, they have been updated with the addition of new, deeper
NIR and IR data from the UltraVISTA (McCracken et al., 2012) and SPLASH (Spitzer Large
Area Survey with Hyper-Suprime-Cam4) projects (Laigle et al., 2016). In this chapter, we will use

3http://edd.ifa.hawaii.edu
4http://splash.caltech.edu
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this updated catalog (‘COSMOS 2015’ hereafter)5 for our analysis. The quality of the photo-𝑧s
has been verified by comparing to a large number (50,000 or more) of spectroscopic redshifts
available in the COSMOS field, notably from the zCOSMOS-bright sample (Lilly et al., 2007).
In the redshift range 𝑧 = 0–1.2, photo-𝑧s for objects of magnitude 𝑖+

𝐴𝐵
≤ 22.5 have an r.m.s.

scatter of 𝜎 = 0.7% with respect to the spectroscopic redshifts, while the fraction of ‘catastrophic
failures’ with relative errors |𝑧𝑝 − 𝑧𝑠 |/(1 + 𝑧𝑠) > 0.15 is 0.51% .

At very low redshift, these photometric redshift errors correspond to fairly small errors in
distance. Figure 2.1 shows the absolute value of the difference between the estimated photo-𝑧
and the measured spectroscopic redshift, converted to a distance error using the approximation
Δ𝐷 = 𝑐Δ𝑧/𝐻0, for very local objects in the COSMOS 2015 catalog (𝑧𝑠 < 0.06), as a function of
their 𝑖+ magnitude. (Six objects have differences of zero to within roundoff errors, and have been
placed at Δ𝐷 = 2 Mpc for clarity.) We see that for most (∼80%) objects brighter than 𝑖+ = 21, the
distance errors are less than 100 Mpc, and they are less than 40 Mpc for half the objects brighter
than 𝑖+ = 22. Thus, most bright objects from the catalog with very small photo-𝑧s (e.g. 𝑧𝑝 < 0.05)
should be genuinely nearby. We will return to this point in section 2.7.

In the process of fitting templates and estimating redshifts, Laigle et al. (2016) also calculated
stellar masses and star formation rates, which we will consider further below. Finally, high-
resolution imaging with ACS and/or WFC3 is available over most of the catalog area (Koekemoer
et al., 2007, 2011), via the IRSA cutout server6. Convenient visual browsers for the ACS mosaic7
and the multi-wavelength coverage8 of the field are also available.

While there is no single public redshift catalog for the COSMOS field, most measured
redshifts for the field are now available via the NASA Extragalactic Database9. We have used
these redshifts, and a few others available privately from the COSMOS collaboration, to correct
the photo-𝑧s when possible. Further work obtaining spectra in the COSMOS field is also ongoing,
e.g. with the C3R2 survey (Masters et al., 2017).

2.2.5 SDSS Photometry in the COSMOS Field

The structural selection initially introduced in ST14 was based on photometry from SDSS. SDSS
covers a large area, but is both shallow (with a typical limiting magnitude of 22.2 in 𝑟 10) and has

5ftp://ftp.iap.fr/pub/from_users/hjmcc/COSMOS2015
6http://irsa.ipac.caltech.edu/data/COSMOS/index_cutouts.html
7https://www.mpia.de/COSMOS/skywalker
8http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/cfhtls/scrollD2.html
9https://ned.ipac.caltech.edu
10http://www.sdss.org/dr12/scope
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Figure 2.1: The absolute value of the difference between the photometric redshift and the
spectroscopic redshift, converted to a distance error, for very local objects in the COSMOS 2015
catalog, as a function of their 𝑖+ magnitude.
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relatively poor seeing (a median value of 1.43′′ in 𝑟 11). Thus it represents an image quality easily
achievable by other large, ground-based surveys. For a fair comparison with the results of ST14,
we will also use SDSS photometry here, querying the spectroscopic and photometric galaxy
catalogs from the latest SDSS Data Release 13 (DR13 – Albareti et al., 2017) and matching the
results to the COSMOS 2015 catalog.

To match catalogs, we first selected a subsample of COSMOS 2015 objects likely to have
detections in SDSS. From the original catalogue of half a million objects, we selected objects
with 𝑖+ < 25.5, 0 < 𝑧 < 6.9, 𝜎𝑧 < 0.5, and 𝑧 − 2𝜎𝑧 < 0.3, where 𝑖+, 𝑧 and 𝜎𝑧 correspond to the
catalogue quantities IP_MAG_AUTO, PHOTOZ, and (ZPDF_H68 − ZPDF_L68)/2 respectively. These
cuts produced a subsample of roughly 22,000 objects. We also queried the DR13 SkyServer12 to
retrieve a photometric galaxy sample for the COSMOS region, with a ‘clean’ cut (as described at
http://skyserver.sdss.org/dr13/en/tools/search/sql.aspx) to ensure photometric
quality. We then associated objects from the reduced COSMOS and SDSS catalogs with positions
identical to within 1′′ of each other. Galaxies without spectroscopic redshifts were assigned
photometric redshifts and associated uncertainties from the COSMOS 2015 catalog, while those
with spectroscopic redshifts were assigned the spectroscopic values, with an uncertainty of
𝜎𝑧 =0.0001. The resulting matched catalogue contains 12,108 objects.

For each object in the matched SDSS-COSMOS catalog, we obtained and saved (𝑟-band)
magnitudes and sizes from SDSS. To be consistent with ST14, we used the composite model
(cmodel) magnitude, among the various magnitudes that SDSS provides. We did not apply a
𝐾-correction to these magnitudes, since our sample is relatively local. For galaxy sizes, we used
the (𝑟-band) exponential scale radius (expRad) provided by SDSS, as in ST14. Where necessary,
we convert from this scale radius to an effective radius using the relation appropriate for an
exponential profile, 𝑟eff = 1.678𝑟exp. The mean surface brightness within the effective radius is
as calculated above,

⟨`⟩eff = 𝑚tot + 1.995 + 5 log(𝑟eff)
or ⟨`⟩eff = 𝑚𝑡𝑜𝑡 + 3.1194 + 5 log(𝑟exp) , (2.2)

once again assuming an exponential profile.

2.3 The Basis for Structural Selection

Figure 2.2 shows a representative selection of nearby galaxies with distance estimates, including
LocalGroup/LVC and more distant objects from K13 and T16 respectively. Galaxies are plotted

11http://classic.sdss.org/dr7/products/general/seeing.html
12http://skyserver.sdss.org/dr13/en/tools/search/sql.aspx
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in terms of their absolute 𝐵-band magnitude, estimated as described in Section 2. In general,
both distances and magnitudes have considerable errors, particularly at faint magnitudes, but they
give an indication of our knowledge of nearby galaxies. The upper and lower curves show the
loci of objects with apparent magnitudes 17 and 22 respectively, roughly the completeness limits
for current, wide-field spectroscopic and photometric surveys such as SDSS.

In the Local Group, at distances of less than 3 Mpc, approximately 120 galaxies are known,
including ‘ultrafaints’ with absolute magnitudes 𝑀𝐵 > −6. Within the Local Volume, the
faintest identified objects generally correspond to the ‘classical’ dwarfs of the Local Group, with
magnitudes −15 < 𝑀𝐵 < −6. The total number of known objects in this volume is roughly
1000, though a comparison of the Local Group and LVC luminosity functions suggests the latter
is incomplete by factor of up to 2 at 𝑀𝐵 = −10, and a factor of 2–4 at the faintest magnitudes (see
K13 for further discussion of the completeness of the LVC).

Beyond this there is a much larger volume, out to distances of 40–50 Mpc, where classical
dwarfs should be easily detectable in the photometric catalogs of large-area surveys such as SDSS,
given their photometric limits 𝑀 ∼ 22 (lower curve), but will lie below the typical spectroscopic
limits of these surveys (𝑀 ∼ 17 – upper curve). Given the number of objects identified in the
Local Volume, for instance, we might expect ∼ (4–5)3 times as many, or ∼ 100,000 galaxies,
most of them dwarfs, out to 𝐷 = 50 Mpc. On the other hand, at faint magnitudes background
counts will overwhelm these local objects. The SAGA survey (Geha et al., 2017), for instance,
counts roughly 3000 galaxies per square degree down to an extinction-corrected magnitude limit
of 𝑟0 = 20.75, versus the handful of nearby dwarf galaxies expected per square degree. Their
spectroscopic follow-up around nearby bright galaxies obtained more than 17,000 spectra, but
yielded only 25 new satellites, that is a detection rate of less than 1/500. This inefficiency raises
the question of whether intrinsically faint, nearby galaxies could be preferentially selected by
their photometric properties alone, and if so, over what range of distances.

One possible, albeit crude, alternative to complete spectroscopic surveys is to use the structural
properties of dwarfs to separate them from background galaxies. Galaxies in the nearby universe
show a clear trend in surface brightness with intrinsic luminosity. At fixed apparent magnitude,
intrinsically faint galaxies have lower mean surface brightness on average, or equivalently, larger
angular sizes on the sky. Thus it may be possible to select them preferentially using size or
surface-brightness cuts. We can illustrate this by considering how the photometric properties of
objects in the LVC sample of K13 would change if we saw them at progressively larger distances.
The left and right panels of Figure 2.3 show how apparent magnitude, size and surface brightness
change as we move the LV sample from their original distances (D = 0–11 Mpc; black points) to
redshifts of 0.01–0.02 (blue), 0.05 (cyan), 0.1 (green), or 0.2–0.3 (yellow). Solid squares indicate
intrinsically bright galaxies (𝑀𝐵 < −16), while open squares indicate intrinsically faint galaxies
(𝑀𝐵 ≥ −16).
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Figure 2.2: Absolute 𝐵-band magnitude versus distance 𝐷 for nearby galaxies, from the catalogs
of K13 and T16. The colour scale shows the corresponding (total) apparent magnitude 𝐵𝑇 . The
upper and lower curves show the loci of objects with apparent magnitudes 17 and 22 respectively,
roughly the limits for current, wide-field spectroscopic and photometric surveys such as SDSS.
Note the lack of objects between the spectroscopic and photometric limits with distances 𝐷 > 11
Mpc. (Objects in a few known clusters in this distance range, such as Virgo and Fornax, are not
shown on this plot.)
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In the left hand panel, objects get smaller and fainter, moving down and to the left, as their
redshift increases. Intrinsically faint galaxies (open symbols) are more diffuse than intrinsically
bright ones, however; as a result, at fixed apparent magnitude, dwarfs are typically 2–3× larger
than intrinsically bright galaxies on the sky. A cut in size and/or magnitude that selects the tail of
the apparent size distribution will thus enhance the fraction of local, intrinsically faint galaxies
in a sample.

The right hand panel shows a similar effect in magnitude versus surface brightness. With
increasing redshift, objects move to fainter magnitudes, and then eventually shift to lower surface
brightness as cosmological dimming becomes important. Intrinsically faint galaxies start at lower
surface brightness, however, so the upper right hand side of the plot is dominated by low-redshift
dwarf galaxies. Once again, cuts in surface brightness and/or magnitude may select these objects
preferentially out of larger samples.

We note several caveats. First, the points in Figure 2.3 show the locus of typical galaxies
at each distance, but do not account for changing abundance due to the increasing volume
probed at larger distances. Second, we have assumed that the sample of K13 is representative of
cosmological volumes in general, while in fact some galaxy types (e.g. those found in clusters)
may be rare or missing entirely from the LVC sample. Finally, the region dominated by local
dwarf galaxies in the right-hand panel lies at fairly low mean surface brightness. SDSS catalogs
start to become significantly incomplete at central surface brightnesses of `0 ≃ 24–24.5 (Blanton
et al., 2005), although some objects can be recovered down to `0 ≃ 26–26.5 (Kniazev et al.,
2004). For the exponential surface-brightness profile typical of dwarf galaxies, these correspond
to ⟨`⟩eff = 25.1–25.6 or ⟨`⟩eff = 27.1–27.6 respectively. Thus, objects in the most interesting
region of parameter space may not be detectable in conventional, shallow surveys such as SDSS.

These complications motivate an empirical test of structural selection, using the COSMOS
photometric redshift catalog, one of the only samples with accurate distance estimates for large
numbers (tens or hundreds of thousands) of faint galaxies. In what follows, we will apply various
structural cuts to this catalog and estimate their effect on the satellite population by measuring
the resulting clustering signal.

2.4 Clustering Measurement Method

To confirm that our structural selection method works, we can measure the clustering of
structurally-selected samples with respect to nearby bright galaxies that have spectroscopic red-
shifts, and thus reliable distance estimates. A positive clustering signal will indicate that at least
part of the structurally-selected sample lies at the same distance as the primary sample, and thus
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Figure 2.3: Bottom Left Panel: Apparent 𝐵-band magnitude versus apparent size, for LVC
galaxies as seen at their original distances (D = 0–11 Mpc; black points), or at redshifts of 0.01–
0.02 (blue), 0.05 (cyan), 0.1 (green), and 0.2–0.3 (yellow). Solid symbols indicate intrinsically
bright galaxies (𝑀𝐵 < −16), while open symbols indicate intrinsically faint galaxies (𝑀𝐵 > −16).
Bottom Right Panel: Apparent magnitude versus mean surface brightness ⟨`⟩eff , for LVC galaxies
seen at various distances. Symbols and colours are as in the left-hand panel. Top panels show
the distributions of LVC galaxies at their original distances (i.e. the black points) only, for clarity.
Note some regions of parameter space in either panel are dominated by low-redshift dwarf galaxies
(open squares).
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that we are preferentially selecting intrinsically faint, local galaxies. We describe the construc-
tion of the primary and secondary samples, the clustering measurement, and the corrections for
masking below.

2.4.1 Selecting Primaries

Our goal in constructing the primary sample is to select bright galaxies similar to the Milky
Way, at distances small enough that their satellites will be included in the COSMOS catalog, yet
extending to high enough redshift that we have enough primaries to measure the clustering of
their satellites with a reasonable SNR. We take as a starting point the photometry and photometric
redshifts of the COSMOS 2015 photo-𝑧 catalog (Laigle et al., 2016), and proceed as follows:

1. First we select all galaxies with 𝑀𝐾𝑆
< −21.5.

2. We then select those galaxies with photometric redshifts 𝑧 − 2𝜎𝑧 < 0.3, such that they have
a reasonable chance of being low redshift objects (we choose a generous upper limit of
𝑧 = 0.3 at this stage to make sure we do not exclude any primaries at the upper end of our
highest redshift range.)

3. For this subsample, we then check for any available spectroscopy, and correct the red-
shift if necessary, adjusting the absolute magnitudes correspondingly. For objects with
spectroscopic redshifts, the redshift errors are assumed to be 𝜎𝑧 = 0.0001, or 𝜎𝑣 = 30
km s−1.

4. Finally, we select only those galaxies with redshift errors 𝜎𝑧 ≤ 0.1 (removing two galaxies
with redshifts 𝑧 > 0.3 from the primary sample.)

This selection process produces an initial sample of 735 primary galaxies. We estimate halo
masses and virial radii for these objects from their stellar masses, assuming a standard stellar-to-
halo mass relation (e.g. Leauthaud et al., 2012). The median stellar mass in this initial sample
is ⟨𝑀∗⟩ ∼ 2.5 × 1010𝑀⊙, corresponding to a halo of mass 𝑀ℎ ∼ 1012𝑀⊙, with a virial radius
𝑅200𝑐 13 ∼ 200 kpc. We find that a few of the nearest and most massive systems (with 𝑀∗ = 2–
3 × 1011𝑀⊙) are predicted to have very large halo masses and projected virial radii 𝑅200𝑐 > 1
Mpc, complicating the clustering calculations. Thus, we make an additional cut, removing from
the sample objects with absolute magnitudes brighter than −21.5 in the (SDSS) 𝑟-band. This cut
reduces the final number of primaries to 527 , and the median stellar mass to ⟨𝑀∗⟩ ∼ 2×1010𝑀⊙.

13Where 𝑅200𝑐 is the radius within which the halo has a mean density 200 times the critical density 𝜌𝑐.
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The largest stellar masses in the final cut sample are 𝑀∗ ∼ 7× 1010𝑀⊙, and have estimated virial
radii 𝑅200𝑐 < 300 kpc, such that our clustering calculations extend to more than three projected
virial radii, even in the largest systems.

The primary sample is then divided into three redshift ranges:

• z=0.07–0.15, which contains 34 primaries;

• z=0.15–0.20, which contains 57 primaries;

• z=0.20–0.25, which contains 149 primaries.

The remaining 287 primaries have redshifts of 0.25 or more, which we will show is beyond the
useful range for structural selection. The full redshift distribution of the primary sample is shown
in Figure 2.4.

Finally, we note that ST14 also applied isolation cuts to their parent sample, to select primaries
in the field or in poor groups (and thus close analogues of the Milky Way), as opposed to members
of rich groups or clusters. Applying similar isolation cuts to our sample reduces the number of
primaries considerably, so we will forego these cuts in the current chapter, since the focus here is
on testing structure as a distance indicator, rather than on characterizing the satellite population
of a given type of primary.

2.4.2 Selecting Secondaries

Our secondary source catalogue consists of those objects we were able to match between the
COSMOS 2015 and SDSS catalogues, as described in Section 2.2.5. This sample contains
12,108 objects in total. We do not place any further cuts on this sample, since our initial goal
is to test how much of the clustering signal we can recover without additional information. The
photometric redshift distribution of the secondary sample is shown in Figure 2.4, over the range
𝑧 = 0–1. (Note there are a few secondaries with redshifts beyond 𝑧 = 1 not shown on the plot.)

2.4.3 Masking Corrections

The COSMOS field includes regions with poor photometry in one or more bands, due to contam-
inating halos from bright stars, ghosts from internal reflection, or other artefacts. While detailed
mask files for these regions exist in each of the 30+ COSMOS bands, we have found it less
computationally demanding to calculate clustering using a single, approximate mask image with
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Figure 2.4: The cumulative and differential redshift distributions of the primary (lower curve &
histogram) and secondary (upper curve and histogram) samples, over the range 𝑧 = 0–1. Note
that a few secondaries lie beyond the redshift range shown on the plot.
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coarser sampling. We construct this mask empirically by making a 390 × 390 map of source
counts in the COSMOS field, based on the entire (uncut) COSMOS 2015 catalog. Cells in this
map with one or no counts are treated as potential masked regions. In a second round, any po-
tential masked cell is determined to be masked if it has multiple neighbours with no counts. The
resolution of our map file (∼ 14′′) and threshold of one count were set such that the probability
of masking a cell by chance due to Poisson fluctuations is extremely small (0.0026%). We have
experimented with variants on this method, changing the source count map resolution from 200
× 200 up to 600 × 600, and varying the threshold for counting cells as masked. We find that
our clustering signals are stable to within ∼ 5% with respect to these variations, but that the final
mask looks most accurate for resolutions around the value (390 × 390) adopted here.

2.4.4 The Clustering Calculation

To measure clustering, we calculate the (cross-)correlation function of secondaries with respect
to primaries, that is

b (𝑅𝑝) ≡
Δ𝑁

𝑁exp
(𝑅𝑝) =

𝑁obs − 𝑁exp

𝑁exp
(𝑅𝑝)

where 𝑁obs is the number of primary-secondary pairs observed at separation 𝑅𝑝, 𝑁exp is the
number of pairs expected for a uniform distribution, and 𝑅𝑝 is the projected physical separation,
assuming both members of the pair lie at the (spectroscopically determined) distance of the
primary. We will also consider the ‘excess number’, which is simply Δ𝑁 (𝑅𝑝) = b𝑁exp.

Our method is essentially the same as that described in ST14, with a few modifications in
order to apply it at larger distances, so that we can obtain reasonable statistics given the relatively
small field. First, we calculate the projected separations 𝑅𝑝 of all the primary-secondary pairs,
assuming the secondaries lie at the same distance as the primary. We then count the number of
pairs as a function of separation, in linear bins of width 50 kpc, ranging from 50 to 1000 kpc
(with the bins centered on separations of 75 kpc, 125 kpc, etc.). The innermost bin (𝑅𝑝 = 0–50
kpc, corresponding to 0–8.5′′ at 𝑧 = 0.25) is excluded to avoid potential contamination from
components (e.g. H ii regions) of the primary detected independently in the catalog, and because
it is comparable to the resolution of our mask for the highest redshift primaries.

To calculate the expected number of pairs, we use a local background density determined
from the secondary counts between projected separations of 𝑅𝑝 = 600 and 950 kpc (this range is
also consistent with ST14). Given the stellar masses of our primaries, this range of separations
should correspond to roughly 2–3 times the virial radius of their halos, and therefore measures
the larger-scale local background (the ‘2-halo term’), rather than the overdensity associated with
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the primary halo. The expected counts in the outer region are corrected for masking, and then
scaled to the masked area of each inner bin to determine the expected number in that annulus.

The excess counts in bin 𝑖 around primary 𝑗 are thus:

Δ𝑁𝑖, 𝑗 =
𝐴0,𝑖

𝐴𝑖, 𝑗

(
𝑁𝑖, 𝑗 −

𝐴𝑖, 𝑗

𝐴outer, 𝑗
𝑁outer, 𝑗

)
(2.3)

where 𝐴0,𝑖 = 2𝜋(𝑅2
𝑖
− 𝑅2

𝑖−1) is the full geometric area of bin 𝑖 in the absence of masking (and
assuming small angles), 𝐴𝑖, 𝑗 is the area of bin 𝑖 around primary 𝑗 after masking, 𝑁𝑖, 𝑗 are the total
counts in bin 𝑖 around primary 𝑗 , 𝐴outer, 𝑗 is the net area of the outer region used to calculate the
background, after masking, and 𝑁outer, 𝑗 are the total counts in this region.

2.4.5 Figure of Merit for Clustering

To quantify the extent to which structural cuts can preferentially select local samples, it is
convenient to define a single measurement of clustering that we can use as a figure of merit. In
what follows, we will consider the SNR of the mean excess counts per primaryΔ𝑁 (the ‘clustering
signal’), summed over the range of separations 𝑅𝑝 = 50–450 kpc, relative to a local background
estimated from the secondary counts at separations 𝑅𝑝 = 600–950 kpc. To calculate the error in
Δ𝑁 , we assume the main uncertainty in the mean excess counts comes from the Poisson errors
on the galaxy counts 𝑁𝑏inner and 𝑁outer, which are propagated into an error in the final value Δ𝑁

in the usual way.

2.5 The Clustering Signal

2.5.1 The Signal with no Additional Cuts on the Secondary Sample

To establish a baseline for subsequent measurements, we first calculate the clustering signal Δ𝑁 ,
by the method described in the previous section, using the entire secondary sample. Figure 2.5
shows the clustering signal of the full secondary sample with respect to primaries in the three
redshift ranges, 𝑧 = 0.07–0.15, 𝑧 = 0.15–0.20 and 𝑧 = 0.20–0.25 (left, middle, and right plots
respectively). In each plot, the top panel shows the mean excess counts per primary in each annular
bin; the middle panel shows the cumulative counts within 𝑅𝑝 (excluding objects at 𝑅𝑝 < 50 kpc),
and the bottom panel shows the SNR of the cumulative excess, given the uncertainties in the
excess counts in individual bins. (Note that since Δ𝑁 can be negative in any given bin, the
cumulative counts and SNR do not necessarily increase monotonically with radius.)
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Figure 2.5: Clustering between the full secondary sample and primaries in the redshift ranges
𝑧 = 0.07–0.15, 𝑧 = 0.15–0.20, and 𝑧 = 0.20–0.25 (left, middle, and right plots respectively). In
each plot, the three panels are, from top to bottom, the mean excess number of secondaries per
primary in each radial bin, the cumulative excess number per primary as a function of radius
(excluding objects with 𝑅𝑝 < 50 kpc), and the total SNR of the cumulative excess detection.
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In the lowest redshift range, we see that while there is some marginal evidence of clustering
– the differential counts interior to 600 kpc are positive on average – the SNR of the cumulative
excess is around 1 or less. We infer that more distance information is needed to determine which
secondaries are associated with these nearby primaries, and to remove background galaxies from
the secondary sample. The middle and upper redshift bins show stronger clustering, the SNR
peaking at a value of 5.5–7, at projected separations 𝑅𝑝 = 450–500 kpc. This scale corresponds
to ∼ 1.5 times the virial radius of our primaries, and matches the extent of the clustering signal
seen in ST14. In terms of our previously defined figure of merit, the SNR for Δ𝑁 cumulated over
the range 50-450 kpc is 0.6, 4.5, and 6.4 for the three redshift ranges respectively.

2.5.2 The Signal with Photo-z Cuts on the Secondary Sample

Whereas photometric redshifts derived from a few broad bands are of limited use at low redshift
(e.g. Geha et al., 2017), the COSMOS photo-𝑧s claim percent-level accuracies, even for relatively
faint galaxies at low redshift. In Figure 2.6, we test this accuracy. The plot shows the surface
density of secondaries around primaries, as a function of projected separation 𝑅𝑝 and of velocity
separation Δ𝑉 = 𝑐Δ𝑧 as inferred from the photo-𝑧s, the latter in units of the velocity/redshift
error 𝑒Δ𝑉 = 𝑐𝜎𝑧 claimed in the catalog. We see a clear clustering signal at small projected sepa-
rations, that is generally confined to the ±2𝜎𝑧 range around the primary velocity. Assuming this
excess corresponds to physically associated satellites, the width of the velocity offset distribution
indicates that the photo-𝑧 error estimates in the catalog are generally realistic.

Given the validity of the photo-𝑧 error estimates, we can select around each primary only
those secondaries whose redshifts lie within ±2𝜎𝑧. (We note that secondaries should have real,
physical velocity offsets with respect to the primary, but these will be negligible compared to
the photo-𝑧 errors, which are typically several thousand km s−1.) The resulting clustering signal
for this cut sample is shown in Figure 2.7. Comparing Figures 2.5 and 2.7, we see that the
photometric redshift cuts significantly improve the detection of the clustering signal, increasing
the SNRs from less than 1 to 5.5, from 4.5 to 6.9, and from 6.4 to 9.8, in the three redshift ranges
respectively.

If the photo-𝑧 selected sample were complete, these results and the results from Section 2.5.1
would bracket the range of clustering amplitude and SNR we could expect from structural
selection. If photo-z selection is relatively inefficient, we will measure clustering around the
different primary samples with SNRs comparable to those in the lower panels of Figure 2.5,
while if it is extremely efficient, we may approach the SNRs shown in the lower panels of
Figure 2.7. (If the photo-𝑧 selection is incomplete, e.g. because of missing photo-𝑧s or large
redshift errors for certain objects, structural selection could actually produce a larger amplitude
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Figure 2.6: The surface number density of primary-secondary pairs as a function of projected
separation 𝑅𝑝 and velocity offset Δ𝑉 = 𝑐Δ𝑧, where the latter has been calculated from the photo-
𝑧s, and is expressed in units of the velocity uncertainty 𝑒Δ𝑉 = 𝑐𝜎𝑧.
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Figure 2.7: The clustering signal, as in Figure 2.5, but after applying photo-𝑧 cuts to select only
those secondaries likely to be at the same redshift as their primary.
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signal than photo-z selection, albeit with lower a SNR.)

2.6 Effect of Structural Cuts

As shown in the previous section, the SNR of the clustering signal Δ𝑁 (the figure of merit
defined in section 2.4.5) can be increased significantly by removing background galaxies from
the secondary sample. We test the effect of five simple, single-parameter structural cuts, and two
slightly more complicated two-parameter cuts, on the SNR of this measurement.

2.6.1 Single-parameter Cuts

The single-parameter cuts we test are:

• a cut on bright magnitudes, 𝑟 > 𝑟bright

• a cut on faint magnitudes, 𝑟 < 𝑟faint

• a cut on small sizes 𝑟exp > 𝑟
low
exp

• a cut on high surface brightness, ` > `bright

• a cut on low surface brightness, ` < `faint

These are shown in the five panels of Figure 2.8, from top left to bottom right. In the latter two
cases, the surface brightness is the mean value within the effective radius, ⟨`⟩eff , as defined in
Equation 2.2.

Reviewing the results of the first two cuts, in the top left and middle panels of Figure 2.8, we
conclude that a bright magnitude limit on the secondary sample has little effect on the SNR, until
this limit becomes faint enough that it starts reducing the size of the sample substantially (at which
point the SNR drops correspondingly). A faint magnitude limit has more complicated effects.
For the lowest redshift primaries, the maximum SNR is achieved by cutting out secondaries
fainter than 𝑟 ∼ 21, while for the higher redshift primary samples, a faint magnitude cut has little
effect, provided it is fainter than 𝑟 ∼ 21–21.5. We note however that as we make the magnitude
cut fainter, the SNR increases before the size of the secondary sample does. We conclude that
objects brighter than 𝑟 ∼ 21 provide a large part of the clustering signal. (All of these results are
of course contingent on the magnitude distribution of our secondary sample, which extends only
to ∼22.5, since our secondaries are required to have SDSS photometry.)
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Figure 2.8: The clustering SNR as a function of bright and faint limits on the magnitude of the
secondaries (top row, left and centre panels), a lower limit on secondary size 𝑟exp (top row, right
panel), and bright and faint limits on secondary surface brightness ⟨`⟩eff (bottom row, left and
right panels). All quantities are measured in the SDSS 𝑟-band. In each panel, the three sets of
points are for the three primary redshift ranges. The smooth (blue) curve in each panel indicates
the total number of secondaries left in the sample after applying the magnitude cut (with the scale
indicated on the right side of the plot).
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The results of imposing a lower size limit depend on the redshift range of the primary sample
(top right panel). At low redshifts (𝑧 < 0.15), the SNR starts out at ∼ 0.5, and increases to 2.5
as the value of the lower size limit increases to 1.5′′. The initial increase in SNR makes it clear
that large objects are more often local, and that a lower size cut 𝑟exp ≳ 1–1.5′′ can enhance the
fraction of local dwarfs in the sample. If the size limit is increased beyond this value, the SNR
drops, probably due to the loss of objects from the secondary sample (as indicated by the smooth
curve). Also the effectiveness of size cuts is restricted to low redshift; for the two upper redshift
bins, a lower limit on secondary size reduces the SNR of the clustering signal overall.

Somewhat surprisingly, limits on surface brightness ` do not generally improve the SNR,
except possibly at low redshift. In the lowest redshift bin, cutting out objects with surface
brightness ` ≲ 24 increases the clustering SNR from ∼0.5 to 1.5, but for the higher redshift
bins, the highest SNR are achieved for no cuts at all. (A faint cut around ` ∼ 22 also appears to
increase the SNR of the clustering measurement for the lowest redshift primaries, but in this case
the size of the secondary sample is so small that we take this to be noise in the calculated SNR.)

Overall, we conclude that for low-redshift primaries, a lower limit on secondary size and/or
a faint limit on magnitude can significantly increase the SNR of the clustering measurement. At
higher redshift (𝑧 = 0.2–0.25), single parameter cuts generally have no effect, or reduce the SNR.
Given the distribution of local dwarfs in magnitude-surface brightness or magnitude-size space
(Figure 2.3), we expect that simultaneous cuts in two parameters may be more effective than
single-parameter cuts. Before we consider these, however, we will briefly discuss the purity of
the cut samples.

2.6.2 Purity of the Secondary Samples

While structural selection can enhance the SNR of the clustering signal significantly, the purity
of the final cut sample, that is the fraction of the sample that is physically associated with the
primaries, remains low. In terms of our previously defined quantities, the purity of a cut sample
can be defined as the ratio 𝑃 = Δ𝑁/(Δ𝑁 + 𝑁exp). The left panel of Figure 2.9 shows the purity
of samples produced by a faint magnitude cut. When all but the brightest secondaries are cut
out of the sample, the resulting purity is 20% or higher; on the other hand these cuts drastically
reduce the size of the sample, and thus the SNR of the clustering measurements. Less severe
cuts at 𝑟 =21–22 maximize the SNR, but reduce the purity to 5–15% or less. In particular, for
the lowest redshift primaries, the magnitude cut with the highest clustering SNR produces a final
sample with a purity 𝑃 ∼8% .

The right panel of Figure 2.9 shows the purity of samples produced by a cut on small sizes.
Here too, strict cuts on the secondary sample (removing all but the largest galaxies) produce higher
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Figure 2.9: Top: Purity 𝑃 = Δ𝑁/(Δ𝑁 + 𝑁exp) of the secondary sample, as a function of a faint
magnitude limit. Bottom: Purity as a function of a lower size limit on the sample. The smooth
(blue) curve in each panel indicates the total number of secondaries left in the sample after
applying the magnitude cut (with the scale indicated on the right side of the plot).
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purity (25–30%) but eliminate most of the sample, reducing the overall SNR of the clustering
signal. Less strict cuts generally increase the SNR at the expense of purity. The exception is for
the lowest redshift primaries, where size cuts around 1.4′′ maximize the SNR, while still retaining
a purity of almost 15% .

The purity in these two examples, 𝑃 ∼5–15% , is typical for all the single-parameter
structural cuts we have considered in this chapter. Cuts on two parameters can produce slightly
higher purity, as discussed below, but still have 𝑃 <50% . Thus, while structurally-selected
samples are useful for constraining overall satellite abundance, they should be used with caution
when, e.g., targeting objects for spectroscopic follow-up. Even extreme magnitude or size cuts
that eliminate most of the sample are relatively ineffective at conclusively identifying individual
objects as low-redshift dwarf galaxies, in the absence of spectroscopic information.

2.6.3 Two-parameter Cuts

The distribution of apparent (SDSS 𝑟-band) magnitude versus size and versus surface brightness
for the secondary sample is shown in Figures 2.10 and 2.11. The colour scale indicates the
photometric redshift, while galaxies at 𝑧 < 0.1 or 𝑧 > 0.7 are denoted by larger squares/circles
respectively, and shown separately in the side panels. We see that nearby galaxies (𝑧 < 0.1)
are generally larger and lower surface brightness, but that the typical size and surface brightness
depend on magnitude. Thus, two-parameter cuts in these planes seem promising for local galaxy
selection.

Size-magnitude Cuts

First, we consider a size-magnitude cut. After experimenting initially with linear cuts, we found
that cuts in log(size) produced slightly higher SNRs. These cuts select objects with 𝑟-band
magnitudes satisfying

𝑟 < 𝑟0 + 𝑚 log[𝑟exp/1′′] . (2.4)

For positive/negative values of 𝑚, selected objects lie above a line sloping downwards/upwards
(since magnitude increases downwards) in the magnitude-size space shown in Figure 2.10. The
two free parameters are 𝑟0, the intercept of the line at 𝑟exp = 1′′, and 𝑚, the slope in log(𝑟exp).

In Figure 2.12, we show the value of our figure of merit (the SNR of the mean excess counts,
integrated between projected separations of 50–450 kpc), as a function of the parameters 𝑟0 and
𝑚, for primaries in three redshift ranges. For the lowest redshift primaries, we find that a bright
value for 𝑟0 and a broad range of positive slopes (from ∼2–5) can increase the SNR from ∼0 to
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Figure 2.10: The magnitude-size distribution of the secondary sample. Points are coloured
by redshift (mainly photo-𝑧s, corrected with spectroscopic redshifts where they are available).
Larger squares and circles indicate the lowest and highest redshift objects, respectively, and are
also shown separately in the side panels for clarity. A few data points with very large exponential
scale radii are not shown on the plot. Lines indicate the optimal structural cuts in this space, for
primary redshift ranges 0.07–0.15 (upper/rightmost line), 0.15–0.20 (middle line) and 0.20–0.25
(bottom/leftmost line). In each case, the structural cut selects galaxies above the line.
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Figure 2.11: The magnitude-surface brightness distribution of the secondary sample. Points are
coloured by redshift, with the larger symbols indicating the highest and lowest redshift objects,
as in Figure 2.10. Lines indicate the optimal structural cuts in this space, for increasing primary
redshift from top to bottom. In each case, the structural cut selects galaxies above the line.
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Figure 2.12: SNR of the clustering measurement as a function of size-magnitude cuts on the
secondary sample, parameterized by an intercept 𝑟0 and a slope 𝑚 (Equation 2.4). The three
panels are for the three primary redshift ranges 0.07–0.15, 0.15–0.20, and 0.20-0.25, from left to
right, top to bottom.
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∼4. This (fairly aggressive) cut removes small and/or faint objects, which are generally farther
away. As we move to higher primary redshift, cuts with a fainter value of 𝑟0 become optimal,
including some with very large slopes 𝑚. For large values of 𝑚, these are close to pure size
cuts. Finally at the highest redshift range, faint magnitude cuts produce the highest SNR. In
particular, we need to include objects down to 𝑟 = 21–22 or fainter to recover the maximum SNR.
The lines on Figure 2.10 show the location of the best size-magnitude cuts for the three primary
redshift ranges. Overall, comparing to our results from Sections 2.5.1 and 2.5.2, we find that
size-magnitude cuts only improve the SNR significantly for low-redshift (𝑧 < 0.15) primaries.

Surface Brightness-magnitude Cuts

Next, we consider a cut in surface brightness and magnitude selecting objects with 𝑟-band
magnitudes

𝑟 < 𝑟0 + 𝑚(` − 25) (2.5)

where 𝑟0, the intercept at ` = 25, and 𝑚, the slope, are the two free parameters, and surface
brightnesses are all ⟨`⟩eff .

The results of this cut are shown in Figure 2.13. As in the previous figure, we see an initial
pattern for low-redshift primaries (top left panel), that gradually changes as we move to higher
primary redshift. At the lowest redshifts, this cut is relatively ineffective, except for one or
two specific points in parameter space, which may simply reflect noise in the sampling or the
clustering measurement. As the primary redshift limit increases, we find that cuts at fairly faint
𝑟0 with slopes close to 𝑚 = 0 (i.e. pure magnitude cuts) do best. Finally, for the highest redshift
limit, any cut with a negative slope seems to work well. The lines on Figure 2.11 show the
location of the best cuts for the three primary redshift ranges.

2.6.4 Optimal Structural Cuts

Table 2.1 lists the optimal parameter choices (i.e. those that maximize our figure of merit, the
SNR of the clustering measurement) for the (log) size-magnitude cuts (first six columns) and the
surface brightness-magnitude cuts (last six columns). For comparison, in the last two rows of
each section of the table, we also list the corresponding SNRs for the secondary catalogue with
no cuts (SNRnc), or with photo-𝑧 cuts around each primary (SNRpz). These SNRs were shown
previously in the lower panels of Figures 2.5 and 2.7.

Figure 2.14 shows the clustering signal around the lowest-redshift primaries (𝑧 < 0.15), for
the best of the structural cuts we have tested, a cut in (log) size and magnitude with the parameters
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Figure 2.13: SNR of the clustering measurement as a function of surface brightness-magnitude
cuts on the secondary sample, parameterized by an intercept 𝑟0 and a slope 𝑚 (Equation 2.5).
Panels are as in figure 2.12.
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Figure 2.14: The clustering signal between primaries in the redshift range 𝑧 =0.07–0.15 and the
secondary sample after an optimal size-magnitude cut has been applied.
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Table 2.1: Optimal values for cuts in size and magnitude (left six columns) and surface brightness
and magnitude (right six columns). SNRs for clustering measurements with no cuts (SNRnc)
and with photo-𝑧 cuts (SNRpz) are given for comparison.
Redshift Range 𝑚 𝑟0 SNR SNRnc SNRpz Redshift Range 𝑚 𝑟0 SNR SNRnc SNRpz

0.07–0.15 3.3 18.7 4.3 0.6 5.5 0.07–0.15 -0.12 18.3 3.9 0.6 5.5

0.15–0.20 5.7 22.5 5.4 4.5 6.9 0.15–0.20 0.62 22.5 5.1 4.5 6.9

0.20–0.25 3.7 23.3 6.9 6.4 9.8 0.20–0.25 0.12 22.7 6.7 6.4 9.8

listed in Table 2.1. The SNR reaches a value of 4.3 at 450 kpc, compared to 5.5 for the photo-
𝑧-selected sample (Figure 2.7), or 0.6 for the uncut secondary sample (Figure 2.5). Thus, we
recover about 80% of the maximum SNR obtainable with COSMOS-quality photo-𝑧s. We can
also calculate the purity of the cut sample, 𝑃 = Δ𝑁/(Δ𝑁 +𝑁exp). For the optimal size-magnitude
cut this is relatively high, 𝑃 = 0.34, so more than a third of selected objects are genuine satellites.

The net effect of the structural cuts on the redshift distribution of the secondaries can be seen
by comparing the photo-𝑧s of the uncut and cut samples. Figure 2.15 shows these distributions
for the entire secondary sample, and after applying best single-parameter cuts in magnitude or
size, or the best size-magnitude cut (our ‘optimal’ cut). We see that a size cut on its own is of
limited use, as it reduces the size of the sample but not the shape of the redshift distribution,
except perhaps at very low redshift. A cut in magnitude is more effective, reducing the number of
objects at 𝑧 > 0.4, and eliminating most objects beyond z∼ 0.6–0.8. The optimal size-magnitude
cut is most effective, however, eliminating most objects beyond 𝑧 = 0.4, and shifting the peak of
the redshift distribution from 𝑧 = 0.35 to 𝑧 = 0.1.

The completeness of our cut sample, relative to a photo-𝑧 selected one, is a little less clear.
On the one hand, applying the optimal (size-magnitude) cut to the secondary catalogue reduces
the number of objects with photo-𝑧s below 0.15 to 18% of the uncut number, suggesting our
completeness should be ∼ 20% or less. The best magnitude or size cuts reduce the sample size
by similar factors. On the other hand, comparing Figures 2.14 and 2.7, we see the excess counts
reach a value of Δ𝑁 ∼ 2 at 450 kpc, or Δ𝑁 ∼ 3 at large radii in the structurally selected secondary
sample with the optimal cut, versus Δ𝑁 = 3 or Δ𝑁 = 4, respectively, in the photo-𝑧 selected
sample. This suggests that the cut sample contains 66–75% of the true satellites in the photo-𝑧
selected one (with an uncertainty of about 20% on that fraction). One possible resolution to this
puzzle is if the photo-𝑧 selected sample is itself incomplete, due to missing photo-𝑧s, catastrophic
failures, or other problems. In this case, the amplitude of the clustering signal in Figure 2.7 would
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Figure 2.15: The redshift (mainly photo-𝑧) distributions of the entire secondary sample, and
secondary samples after the best cuts in magnitude, in size, or in both size and magnitude have
been applied.
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be an underestimate of the true signal. At the moment, we will content ourselves with comparing
the relative performance of structural selection and photo-𝑧 selection, and leave a discussion of
absolute performance and completeness to future work.

Overall, we conclude that at low redshift (𝑧 < 0.15), structural selection can be very effective,
recovering ∼80% of the clustering signal obtainable with high quality photo-𝑧s, with reasonable
completeness and purity (∼66% and 33% respectively, albeit with some uncertainty in the absolute
completeness). This result is particularly impressive, given that we have considered only simple
cuts, defined either by a single limit in magnitude, size or surface brightness, or by a linear relation
between magnitude and log(size) or between magnitude and surface brightness. Furthermore,
our cuts are based on relatively shallow SDSS photometry, whereas the COSMOS photo-𝑧s are
based on 30 bands of photometry, most of it from much deeper and/or higher-resolution imaging.

At higher redshift, it is worth noting that these simple structural cuts are not as effective.
The highest SNRs we achieve, 5.4 for 𝑧 < 0.15–0.20 and 6.9 for 𝑧 = 0.20–0.25, are only slightly
higher than those obtained without any cuts on the secondary catalog (cf. Figure 2.5), indicating
that we have not succeeded in separating foreground and background galaxies very effectively at
these distances.

2.6.5 Completeness and Bias in Other Properties

While we have shown structural selection can be effective in preferentially selecting faint satellites
around nearby galaxies, even out to redshift 𝑧 ∼ 0.15, one potential concern is the completeness of
such samples, and any biases that structural selection may introduce in other satellite properties.
In particular, since red and blue galaxies differ in structure, we might expect structural selection
to bias the colour distribution of the final samples. To test this possibility, Figure 2.16 compares
the (SDSS) 𝑔 − 𝑟 colour distribution for the whole secondary sample, and the distributions after
two of the optimal size-magnitude cuts are applied. The distributions look remarkably similar,
modulo an overall scaling, although the cuts do shift the mean colour slightly to the blue (from
⟨𝑔 − 𝑟⟩ = 1.11 for the whole sample to ⟨𝑔 − 𝑟⟩ = 1.10 after the optimal size-magnitude cut for
the redshift range 0.15–0.2 is applied, or ⟨𝑔 − 𝑟⟩ = 1.03 after the optimal size-magnitude cut for
the redshift range 0.07–0.15 is applied).

In fact, a significant part of the clustering signal comes from galaxies with blue or intermediate
colours. The top panel of Figure 2.17 shows the excess counts integrated from 50 to 450 kpc
around primaries in the redshift range 𝑧 = 0.07–0.15, as a function of satellite colour. As before,
the optimal size-magnitude cut for this redshift range has been applied to the secondary sample.
We see roughly equal signals from all three blue bins, but less signal for the reddest bin (albeit
with large uncertainties). On the other hand, our satellites are not necessarily forming stars
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Figure 2.16: From top to bottom, the (SDSS) 𝑔 − 𝑟 colour distribution of the entire secondary
sample (grey), the colour distribution of the sample after the optimal size-magnitude cut for the
redshift range 0.15–0.2 is applied (orange), and the distribution for the sample after the optimal
size-magnitude cut for the redshift range 0.07–0.15 is applied (blue).
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Figure 2.17: Top panel: excess counts Δ𝑁 as a function of secondary colour, around primaries
in the redshift range 𝑧 = 0.07–0.15. Bottom Panel: excess counts as a function of specific star
formation rate, for the same redshift range. In both panels, the optimal size-magnitude cut for
this redshift range has been applied to the secondary sample.
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rapidly. The bottom panel of Figure 2.17 shows the clustering signal for secondaries binned by
specific star formation rate (SSFR, as derived in the COSMOS 2015 catalog – cf. Laigle et al.
2016). Here we see that passive galaxies are generally more clustered than active ones. This
suggests that the pattern of clustering with colour seen in the top panel may be a result of the
redshift distribution of the secondary sample, rather than a dependence on rest-frame colour. In
some applications, colour cuts might provide a useful addition to structural cuts in selecting
satellites, albeit with significant implications for completeness.

2.7 Other Morphological Distance Indicators

Finally, while working with the COSMOS catalog, we have noted (and have had pointed out to
us) many individual galaxies that appear to be nearby from their detailed morphology, showing
features such as multiple point sources in the Hubble Space Telescope (HST) imaging. Although
it is slightly tangential to our main argument, in this section we will briefly consider the use of
these detailed morphological features to estimate distances to very nearby dwarfs.

2.7.1 Serendipitous Discoveries and their Redshifts

Over the years, close examination of COSMOS HST images has revealed a number of galaxies
that appear to be resolved, partially resolved, or otherwise unusual. Through visual examination,
we have divided these serendipitous discoveries into seven rough classes:

1. Class 1 objects contain many clearly recognizable point sources, which together account
for a significant fraction of their light. The implication is that they are close enough to be
resolved into regions dominated by individual bright stars in the COSMOS ACS images
(which have a resolution of approximately 0.095′′ in F814W – cf. Koekemoer et al. 2007).

2. Class 2 may be resolved or partially resolved into point sources, but are less distinct than
Class 1.

3. Class 3 objects appear to be high surface-brightness galaxies at larger distances, but still
close enough to have visible H ii regions and the like.

4. Class 4 objects are large and extremely LSB, suggesting some or all may be local LSB
dwarfs.
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Figure 2.18: Visual class versus distance, inferred from photometric (red squares) or spectroscopic
(blue triangles) redshift, for the serendipitous sample.

5. Class 5 objects appear to be distant galaxies whose light is significantly contaminated by a
single bright galactic star superposed on the galaxy.

6. Class 6 objects are LSB galaxies with a few superposed point sources that may or may not
be foreground galactic stars.

7. Class 7 includes all other strange or unusual objects that look like they might be nearby.

Class 1 appears to be complete, in the sense that an examination of bright, low-redshift objects
in the photo-𝑧 catalog reveals no other similar objects that were not already discovered serendip-
itously. Class 2 appears to be fairly complete as well, although it may be missing some similar
objects. The other classes are very incomplete, though enough objects are known in each to
provide a representative sample.

62



Given the COSMOS photo-𝑧s are accurate at the percent level, even at low redshift, as
discussed in section 2.2, we can use them to verify the robustness of this visual classification.
Figures 2.18 and 2.19 show the visual class and magnitude respectively, plotted versus distance
inferred from the (photometric or spectroscopic) redshift.14 For Classes 1–3, we see that visual
classification is surprisingly effective. All objects classified visually as being clearly nearby
(Class 1) lie at distances less than 𝐷 = 130 Mpc, and all but two are at 𝐷 < 80 Mpc. The less
certain Class 2 objects are also fairly local, but lie at distances up to 260 Mpc. Class 3 objects,
which appear to be more distant visually, generally are further away, with minimum distances of
90 Mpc. The other classes consist of objects whose distances are harder to estimate, or may be
incorrect due to foreground contamination; as expected, their photo-𝑧s indicate that they lie at a
wide range of distances (Classes 5–7 are possibly contaminated and/or confusing objects, so we
do not include them in Figure 2.18).

The distribution of serendipitous identifications with distance and magnitude (Figure 2.19)
also sheds some light on the net outcome of visual classification. Bright objects within 100 Mpc
are generally assigned Class 1; bright objects at larger distances are generally assigned Class
3; Class 2 objects are generally fainter and lie at a range of distances, while the other classes,
similarly, are faint and spread over a range of distances. We note that in some cases, the success of
visual classification is circular; the objects in the serendipitous catalog come from many different
sources, and some were flagged as having low photo-𝑧s before they were examined visually. The
majority of the serendipitous discoveries were identified directly in the HST imaging before their
photo-𝑧 was checked, however, so overall we can confirm that visual classification works fairly
well, even in the absence of other information.

From these figures, we conclude that visual classification of images with HST resolution can
reliably identify bright (𝑖+ < 19) local galaxies out to distances of ∼100 Mpc, and can identify
some fainter (𝑖+ = 19–21) galaxies out to ∼250 Mpc. The COSMOS field alone has more than
a dozen of each, in an area of less than 2 square degrees. This has interesting implications for
future wide-field, space-based imaging surveys. Surveys such as those planned with Euclid15 and
WFIRST16 can expect to discover tens of thousands of local, resolved galaxies, greatly enhancing
our knowledge of faint, nearby galaxy populations.

14We note that in a few cases, objects in the serendipitous sample had neither a spectroscopic redshift, nor a single
converged photo-𝑧 from template fitting. In these cases we took the midpoint between the 68% confidence limits as
the estimated photo-𝑧.

15http://sci.esa.int/euclid
16https://wfirst.gsfc.nasa.gov
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Figure 2.19: Apparent magnitude versus distance for the serendipitous sample.

64
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Class 1

Figure 2.20: Cutouts from the COSMOS ACS mosaics (Koekemoer et al., 2007) showing
examples of the different visual classes from the serendipitous sample. Each image is centred
on the catalog coordinates and scaled to 6.6 𝑟eff on a side (with the exception of 709026, where
the image is 15′′ on a side). Rows 1 and 2, from left to right, contain Class 1 (resolved) objects
213165, 260583, 331749, 401988, 458976, 561851, and 653748, 677414, 686606, 709026,
733922, 551648 respectively. (The last object on row 2, 551648 (ARK227), is Class 1 but
may have the wrong spectroscopic distance.) Row 3 contains the Class 2 (marginally resolved)
objects 259971, 279307, 589205, 627637, 642238, 997756. Row 4 contains the Class 3 (distant)
objects 460674, 660791, 706494, 915194, 923647, 955856. Row 5 contains the Class 4 (LSB)
objects 261496, 282078, 643833, 733610, 771819, 1038253. The final row contains Class 5
(contaminated) objects 377112, 484608, Class 6 (contaminated/LSB) objects 423926, 840592,
and Class 7 (unclear) objects 518816, 731241.
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Figure 2.21: An enlarged ACS F814W mosaic image (Koekemoer et al., 2007) of one of the Class
1 objects (ID 549719 in the COSMOS 2015 catalogue), showing diffuse, low surface-brightness
emission and multiple point sources. The image is 15′′ on a side.
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2.7.2 Notes on Individual Objects

Table B.1 lists the IDs, coordinates, redshifts and magnitudes of the serendipitous discoveries,
sorted by class. The IDs are from the COSMOS 2015 catalog, except where indicated. We note
the following about individual objects:

260583 (LSBC L1-099) This is a bright Magellanic-type irregular, first catalogued by Impey
et al. (1996), and detected in H i by Taylor et al. (1996). It has a spectroscopic redshift of 1816
km/s, and is part of a dwarf-dominated group in the COSMOS field at a distance of roughly 26
Mpc. This galaxy is highly fragmented in the COSMOS 2015 catalogue; as many as 18 separate
catalog entries may correspond to star-forming regions or nebulosity associated with this galaxy.

279307 This irregular galaxy may be a superposition or merger between two or more objects.
In the COSMOS 2015 catalogue, it is split into two separate components. It appears to have
multiple faint/marginal point sources, so we have placed it in Class 2 (marginally resolved),
although there is also a single, much brighter point source towards the edge of the object that
could be a contaminating foreground star.

549719 This low surface-brightness object, close to a bright star, is resolved into several dozen
faint point sources in HST images (see Figure 2.21). Unusually, it has imaging in three separate
ACS filters, F814W and F475W from the COSMOS survey, and F606W (as well as F814W)
from the CANDELS survey (Koekemoer et al., 2011). A comparison of the different HST images
shows that the point sources have a broad range of colours, suggesting that they may be the
brightest (supergiant) stars in an actively star-forming system. The object also appears bright
in GALEX images of the COSMOS field. The photometric redshift puts this object at a rough
distance of 21.5± 34 Mpc, but given many COSMOS galaxies in this distance range are part of
the previously mentioned group at 26 Mpc, it seems likely that this object is another faint member
of the group. If one or the other of these two distance estimates is correct, 549719 has an absolute
magnitude of −12.4 or −12.7 in 𝑖+, making it one of the faintest resolved galaxies known at this
distance.

On the other hand, another intriguing possibility is that 549719 could be a nearby analogue of
the ‘ultra-diffuse galaxies’ (UDGs) recently discovered in the Coma cluster (van Dokkum et al.,
2015). Slightly deeper HST imaging of these objects shows them to be diffuse, low surface-
brightness, roughly spheroidal systems, with dozens of bright point sources corresponding to
globular clusters (van Dokkum et al., 2017). While the point sources in 549719 show a broad
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range of colours, and depending on its distance, may be too faint to be globular clusters, the
possibility that this object is a field UDG warrants further investigation, as it does for several
other objects in the serendipitous catalogue (e.g. 458976, 316142, the very faint 300323, and the
objects in Class 4).

551648 (ARK227) This previously catalogued galaxy has a spectroscopic redshift of 1793 km/s,
putting it at a distance of 𝐷 ∼26 Mpc, in the same group as 26058 and 677414, and giving it an
absolute magnitude of −17.8. It seems likely this redshift is incorrect, however, as the galaxy
appears to be an intrinsically bright, regular elliptical with a large population of globular clusters.
The brightest of these have magnitudes of 𝑖+ ∼ 23–24, suggesting a distance up to two times
further away.

677414 (LSBC L1-100) This is another bright, Magellanic-type irregular, originally catalogued
by Impey et al. (1996). It has a spectroscopic redshift of 1729 km/s, and is likely part of the same
group as 260583. It is fragmented into at least four separate components in the COSMOS 2015
catalogue.

709026 The size of this object appears to be incorrect in the COSMOS 2015 catalogue, so we
have included a 15′′ cutout in Figure 2.20. It has many distinct point sources, however, as well as
extended diffuse emission, so it is clearly Class 1.

J100222.70+022520.3 This object is large and relatively diffuse, but is also located very close
to a bright star. In the deeper ground-based COSMOS images it appears to have a central bar
and twisting isophotes. It was masked out of the COSMOS 2015 catalogue, although it appears
in earlier versions of the COSMOS photometric and photo-𝑧 catalogues (Capak et al., 2007;
Mobasher et al., 2007), where it has a photo-𝑧 of 0.09 (i.e. a distance of 𝐷 ∼400 Mpc). It is not
clear whether it contains resolved point sources; the one or two in this area may be foreground
stars seen in projection. Given its unusual size and surface brightness, we have included it in
Class 7, although it is also another plausible candidate field UDG.

Finally, we note that two objects, 213165 and 259971, have multiple conflicting redshifts
listed within 1′′ of each other. 213165 has redshifts 0.03 and 0.1529 listed, while 259971 has
redshifts 0.01 and 0.8058 listed. Both objects appear to be local, however (particularly 213165,
which appears to be resolved into multiple point sources), so the status of these objects is unclear.

68



2.8 Summary and Conclusions

From a theoretical point of view, dwarf galaxies are particularly important as tracers of small-
scale dark matter structure, both in the field and within the halos of brighter galaxies. The faintest
identified dwarfs are members of the Local Group, but this sample may not be representative of
dwarf properties in general. In particular, if satellite populations depend on the properties – stellar
mass, morphology, and/or detailed star formation history – of their central galaxy, many more
examples of satellite populations will be needed to clarify these connections. Thus, identifying
intrinsically faint galaxies in the nearby universe beyond the Local Group is of considerable
importance.

Based on the local samples that exist, there should be a large population of objects just below
the spectroscopic limits of current wide-field surveys, whose distinct structural properties can be
used to separate them to some degree from the much larger number of faint background galaxies.
In this chapter, we have experimented with structural selection as a tool for quantifying local
dwarf populations, selecting samples with cuts in magnitude, size and surface brightness, and
using their clustering with respect to bright galaxies with known redshifts to confirm that some
fraction of the selected sample is indeed nearby.

We have tested this approach using the photometric redshift catalog of the COSMOS survey,
since it is one of the only sources of accurate redshift estimates for large numbers of faint galaxies.
In other ways, however, COSMOS is not the ideal survey for our purposes, as it covers only a
small field. As a result, we have pushed our approach, originally introduced in ST14 to identify
galaxies with ∼40 Mpc, out to a redshift of 𝑧 = 0.15 or more, that is roughly 15 times further
away.

We find that structural selection does work surprisingly well even out to these distances,
although it starts to fail beyond that. It produces samples enhanced in local dwarfs that are
neither complete nor unbiased in magnitude or luminosity, but can nonetheless be useful in
studying satellite abundance at a statistical level. Our best selection cuts recover two-thirds of the
clustering signal measured using the extremely high quality COSMOS photo-𝑧s, with 80% of the
SNR, and a purity of ∼33%.

The structural selection methods tested here were deliberately based on SDSS photometry
in the COSMOS field, which has both poor spatial resolution and fairly bright surface-brightness
limits (⟨`⟩eff ≲ 25–27). A new generation of low surface-brightness instruments (e.g. The
Dragonfly Telephoto Array – Abraham & van Dokkum 2014) and/or surveys (e.g. MATLAS17,
LSST18, HSC–SSP (Aihara et al., 2018)) will push detection limits much further into the region

17http://irfu.cea.fr/Projets/matlas/MATLAS/MATLAS.html
18https://www.lsst.org
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of parameter space populated by the known local dwarfs. Danieli, van Dokkum & Conroy
(2018), for instance, show that integrated light surveys with Dragonfly or similar instruments
could detect typical local dwarfs in the magnitude range 𝑀𝑉 = −5 to −10 out to distances of
𝐷 ∼ 10 Mpc. Thus, these surveys will fill in the gap between the ‘ultrafaints’, detected locally
using star counts, and the brighter populations we are able to characterize at larger distances
(𝑧 ≤ 0.15, or 𝐷 ≲ 600 Mpc), using structural selection and clustering. We note, however,
that spectroscopic follow-up may be challenging or impossible for very low surface-brightness
objects, so even with these new samples, clustering analysis may still be required to determine
the purity and true satellite fraction.

Our serendipitous discovery of dozens of local galaxies in the COSMOS field also augurs
well for future space-based imaging surveys. While the COSMOS samples of very local galaxies
are relatively small, surveys such as Euclid19 or WFIRST20 should detect tens of thousands of
similar objects. Here too, we expect structural selection to help significantly in separating nearby
galaxies from distant ones, revealing the faintest galaxies of the local universe.
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data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of
the UltraVISTA consortium.

71



Chapter 3

A hierarchical clustering method for
quantifying satellite abundance

Abstract

We present a new method for quantifying the abundance of satellites around field galaxies and
in groups. The method is designed to work with samples, such as local photometric redshift
catalogues, that do not have full spectroscopic coverage, but for which some redshift or distance
information is available. It consists of identifying the galaxies most likely to be centrals, and
using the clustering signal around them as a template to iteratively decompose the full population
into satellite and central populations. In that sense it is similar to performing crowded-field
photometry, after having first used isolated stars to determine the point spread function of the
image. The method does not identify individual satellites or centrals conclusively, but assigns a
probability to each galaxy of being one or the other. Averaged over a large sample, it provides a
statistical estimate of satellite abundance, even in crowded fields with large redshift uncertainties.
We test the method using data from the COSMOS field, which includes a large set of local
objects with accurate photometric redshifts. We measure satellite abundance as a function of
central stellar or halo mass, as well as the satellite luminosity function, and find results consistent
with previous studies, but extending over a broader range of central masses. We also consider
a number of possible systematic uncertainties in the method, and show that they are generally
smaller than our random errors. Having presented the method in this chapter, we will use it to
study the properties of the satellite populations in a forthcoming one.
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3.1 Introduction

In the current picture of hierarchical structure formation, cold dark matter (CDM) haloes merge
together to form progressively larger systems as the Universe evolves. Smaller dark matter halos
often survive accretion onto larger systems, leaving a population of distinct ‘subhalos’ within
CDM halos. While the gas that cools and settles into the centre of the main halo will contribute to
the growth of a central galaxy, smaller galaxies that formed within subhalos before they merged
can survive as distinct satellite galaxies, subject to a broad range of environmental effects that
may transform or destroy them, including tidal heating or stripping, encounters, and internal or
external feedback. The observed abundance of satellites in the local Universe provides a detailed
test of this complex picture and gives important insights into the overall effect of environment on
galaxy formation.

The dominant galaxies of the Local Group (LG), the Milky Way (MW) and M31, have the
best studied satellite populations in the Universe. Recent surveys have discovered many new,
faint members of the LG (e.g. Bechtol et al., 2015; Drlica-Wagner et al., 2015; Koposov et al.,
2015), such that the total abundance of LG satellites can be estimated with increasing confidence
(Newton et al., 2018). Over the past two decades, however, several points of tension have arisen
between the observed population of LG satellites and that expected from theory. The most famous
is the “missing satellite problem”, which contrasts the small number of observed satellites with
the large number of dark structures predicted by theory (Klypin et al., 1999b; Moore et al., 1999a).
A second, “too-big-to-fail” problem contrasts the low central densities estimated in the massive
satellites of the MW with the much higher densities expected from theory (Boylan-Kolchin,
Bullock & Kaplinghat, 2011). There may be other tensions as well, in the radial clustering
(e.g. Kravtsov, Gnedin & Klypin, 2004; Taylor & Babul, 2004) or 3-D spatial distribution (e.g.
Pawlowski et al., 2015). We refer the reader to Bullock & Boylan-Kolchin (2017) for a detailed
review of these challenges.

Many solutions have been proposed to resolve the tensions between theory and observations
of the LG satellites, including internal feedback due to star formation (e.g. Dekel & Silk, 1986;
Mashchenko, Wadsley & Couchman, 2008; Governato et al., 2010; Wetzel et al., 2016), the
effects of global (e.g. Bullock, Kravtsov & Weinberg, 2000; Gnedin & Kravtsov, 2006) and/or
inhomogeneous (e.g. Lunnan et al., 2012) reionization, tidal or other environmental effects (e.g.
Taylor & Babul, 2001; Mayer et al., 2006; Łokas, Kazantzidis & Mayer, 2012), or modifications
to the underlying dark matter model such as warm dark matter (e.g. Macciò & Fontanot, 2010;
Anderhalden et al., 2013; Kennedy et al., 2014; Lovell et al., 2014), self-interacting dark matter
(e.g. Spergel & Steinhardt, 2000; Fry et al., 2015; Elbert et al., 2015), or fuzzy dark matter (e.g.
Nadler et al., 2019).

There remains, however, the important question of whether the MW and/or LG satellites are
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representative of all satellite populations. Many observational studies have show that the MW is
not typical in having two LMC/SMC-like satellites (Guo et al., 2011; Liu et al., 2011; Strigari
& Wechsler, 2012; Robotham et al., 2012; Speller & Taylor, 2014), and similar conclusions
have been suggested by numerical simulations (Boylan-Kolchin et al., 2010; Busha et al., 2011;
Kang, Wang & Luo, 2016; Zhang, Luo & Kang, 2019). The ongoing Satellites Around Galactic
Analogs (SAGA) survey (Geha et al., 2017) has also shown that there is a large variation in
satellite populations from system to system. Theoretical models predict that the abundance of
halo substructure should vary more than expected from Poisson statistics alone, and should be
correlated with the formation redshift of the system (e.g. Jiang & van den Bosch, 2017; Chua
et al., 2017). These complications caution us from relying too heavily on the properties of a single
system to constrain models of galaxy formation. To determine whether the LG is representative,
and to understand satellite properties across a broad range of environments, we should seek out
satellites around as large a sample as possible of central galaxies.

Identifying satellites and distinguishing them from foreground or background systems requires
some form of distance information. The main approaches in the literature include: (1) the use
of existing complete spectroscopy to identify satellites around the nearest and brightest systems
(e.g. Yang et al., 2007); (2) dedicated spectroscopic campaigns to obtain spectroscopy for fainter
targets around a smaller number of selected systems (Geha et al., 2017); (3) the use of photometric
distance estimates from techniques such as the tip of the red giant branch (TRGB) (e.g. Carlin
et al., 2016; Danieli et al., 2017; Cohen et al., 2018; Danieli et al., 2019), or surface brightness
fluctuations (e.g. van Dokkum et al., 2018; Carlsten et al., 2019); (4) statistical abundance
measurements based on clustering (e.g. Liu et al., 2011; Guo et al., 2011, 2012; Strigari &
Wechsler, 2012; Wang & White, 2012; Wang et al., 2014; Sales et al., 2013; Speller & Taylor,
2014; Xi et al., 2018). The four approaches have different strengths and weaknesses. Method
(1) requires only existing data, but is restricted to the brightest satellites in the nearest systems,
and may also suffer from incompleteness due to fibre positioning limitations in dense fields (e.g.
Guo, Zehavi & Zheng, 2012; Smith et al., 2019). Method (2) is extremely expensive in terms of
observing time, and thus limited to small numbers of systems. Method (3) is restricted to very
nearby systems [<20 Mpc], whose virial radii subtend large angles on the sky, making complete
coverage difficult. Method (4) cannot confirm individual galaxies as satellites or centrals; it has
been very successful, however, in making measurements of the average satellite abundance, and
is the least resource-intensive method of the four a priori.

Clustering-based methods have generally been applied to samples at redshifts ∼0.05–0.2, se-
lected from the Sloan Digital Sky Survey (SDSS – York et al. (2000); e.g. Liu et al. (2011); Guo
et al. (2011, 2012); Strigari & Wechsler (2012); Wang & White (2012); Wang et al. (2014); Sales
et al. (2013)). A different strategy was adopted by Speller & Taylor (2014), who focussed on very
nearby systems (out to 42 Mpc). This allowed them to estimate the abundance of intrinsically
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faint satellites, at the expense of significant background contamination. They used a selection
technique based on galaxy structural properties (mainly apparent size) to reduce the background
contamination and boost the signal-to-noise ratio (SNR) of the clustering measurement. The
technique was further developed and tested in Xi et al. (2018), using a broader range of morpho-
logical cuts. An optimized version was shown to be effective up to 𝑧 ∼ 0.15, far beyond the range
considered in Speller & Taylor (2014).

These previous clustering-based studies have generally considered samples of primaries that
are clearly isolated, in the sense that they have no brighter companion within fixed projected and
line-of-sight separations. This approach works well for bright, massive primaries, but becomes
inefficient for less luminous ones. By dropping isolation cuts, Xi et al. (2018) were able to detect
a clear clustering signal and constrain satellite abundance using only observations from the fairly
small COSMOS field, but this resulted in a broad selection of primaries, including many systems
with overlapping virial regions. As a result, the interpretation of their results remains slightly
unclear, relative to previous studies, as not all of their primaries are true central galaxies.

In this work, we introduce a new method to deal with the complications of overlapping
systems and crowded fields. We start by identifying the subset of galaxies in a sample most
likely to be true central galaxies, using a hierarchical search in which galaxies are checked for
isolation in order of decreasing stellar mass, with isolation criteria that scale with the estimated
virial radius of the system. The cross-correlation function of the sample with respect to this
set of most likely primaries provides an initial template for the clustering signal. This template
is used to estimate the probability that any member of the sample is a primary or a secondary.
Finally, we can iterate through the last two steps, recalculating a probability-weighted cross-
correlation function and the modified primary/secondary probabilities until convergence. The
final primary/secondary probabilities for the whole sample then allow us to estimate satellite
abundance, luminosity functions, and other distributions of secondary properties. Note that we
have developed and optimized our method for low redshift samples. Some of our assumptions
may need modification, in order to apply the method at higher redshifts.

In this chapter we present the method and give some simple estimates of satellite abundance; in
a the next chapter we will study the properties of the detected satellite populations in more detail.
The chapter is structured as follows. In Section 3.2 we describe our data selection, including the
basic cuts that define our initial sample. In Section 3.3 we measure the clustering signal and use
it to define a “region of interest” around each primary likely to contain most genuine satellites. In
Section 3.4 we describe our iterative method for estimating primary and secondary probabilities
for each galaxy. In Section 3.5 we present our main results on satellite abundance. In Section 3.6
we test the method for possible systematic uncertainties. Finally, in Section 3.7 we summarize
our results and discuss future prospects for this new method.
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3.2 Data–COSMOS

The satellite galaxies we can hope to detect around a low-redshift primary (at most a few tens
per system, based on abundances in the Local Group) will be seen in projection with a much
larger number of foreground and background galaxies (on the order of thousands) that are not
physically associated with the primary. Precise distance information is essential for separating
true satellites from this foreground/background population. Spectroscopic redshifts are ideal for
this purpose, but impractical for large samples. For instance, if we want to search for satellites
brighter than −18 in absolute magnitude out to a redshift of 0.2, this requires distance information
for galaxies down to an apparent magnitude of roughly 22. However, with a few exceptions (e.g.
Geha et al., 2017), wide-field spectroscopic catalogues are usually only complete down to an
apparent magnitude of 17 to 18, far from the depth required. Thus, using photometric redshifts
(“photo-zs”) is the only realistic solution. The COSMOS field features high quality photo-zs
generated from 30+ deep bands (Scoville et al., 2007b; Ilbert et al., 2013; Laigle et al., 2016),
making it an ideal place to test our method.

3.2.1 The COSMOS photometric redshift catalogue

COSMOS is a deep (𝐴𝐵 ∼ 25–26), multi-wavelength (0.25 `𝑚–24 `𝑚) survey covering a 2
deg2 equatorial field (Scoville et al., 2007b). The multi-wavelength imaging includes Hubble
Space Telescope (HST) imaging with the Advanced Camera for Survey (ACS) and follow-
up observations from many other facilities across a wide range of wavelengths – X-ray, UV,
optical/IR, FIR/submillimeter and radio (Scoville et al., 2007b). In this chapter, we will use a
recently updated photometric redshift catalogue (Laigle et al., 2016, ‘COSMOS 2015’ hereafter)
for our analysis. The main improvement of this catalogue compared to the previous releases
is the addition of new, deeper NIR and IR data from the second data release (DR2) of the
UltraVISTA and SPLASH (Spitzer Large Area Survey with Hyper-Suprime-Cam Miyazaki et al.,
2012) projects. Compared to the first data release (DR1) of UltraVISTA, the exposure time of
DR2 was significantly longer (McCracken et al., 2012), providing the deeper IR and NIR data
as well as better SNRs (Laigle et al., 2016). On the other hand, the DR 2 data only covers a
part (namely ‘ultra-deep stripes’, roughly 0.6 deg2) of the COSMOS field. This causes a slight
inconsistency in depth and SNR across the field, which we will address below by applying a
magnitude cut.

The COSMOS photo-zs were derived using 𝜒2 template fitting, as described in Mobasher
et al. (2007) and Ilbert et al. (2009). The Spectral Energy Distribution (SED) templates used
in the COSMOS 2015 catalogue include a set of 31 spiral and elliptical galaxies from Polletta
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et al. (2007) and a set of templates for young blue star-forming galaxies generated using Bruzual
& Charlot (2003) models. Given the updated NIR and IR data and two additional star-forming
galaxy templates, Laigle et al. (2016) further improved on photo-z quality relative to previous
COSMOS catalogues (Capak et al., 2007; Ilbert et al., 2009, 2013). The accuracy of the photo-zs
has been verified by comparing them to a large number of highly reliable (97% confidence)
spectroscopic redshifts (Lilly et al., 2007) that are available in the COSMOS field. For the objects
of magnitude 𝑖+AB < 22.5 and redshift range of 𝑧 = 0–1.2, the photo-zs have an r.m.s scatter
of 𝜎 = 0.7% with respect to the spectroscopic redshifts, while the occurrence of “catastrophic
failures” with relative errors |𝑧𝑝 − 𝑧𝑠 |/(1+ 𝑧𝑠) > 0.15 is only 0.51%. For this work, we choose the
median of photo-z likelihood distribution from the template fitting (“ZPDF” in the catalogue) as
the base redshift. From this redshift we calculate angular-diameter and luminosity distances, and
corresponding luminosities and projected separations, assuming all galaxies follow the Hubble
flow. In the process of template fitting and photo-zs estimation, Laigle et al. (2016) also calculated
stellar masses and star formation rates for the galaxy samples, which will be used in our analysis
below. Specifically, we use “MASS_MED” and “SFR_MED”, the medians of the stellar mass
and star-formation-rate probability distribution functions (PDFs).

3.2.2 Additional spectroscopic redshifts

We can further improve on our distance estimates by supplementing the COSMOS photo-zs with
spectroscopic redshifts, where these are available. While there is no single public spectroscopic
redshift catalogue for the whole COSMOS field, most of the measured redshifts in the region are
now accessible through the NASA Extragalactic Database1. In addition to these redshifts, we also
obtained a few other unpublished redshifts from the COSMOS collaboration (M. Salvato, private
communication). The redshifts used in this work will be mainly photo-zs from the COSMOS
2015 catalogue, but replaced with spectroscopic redshifts where possible. Given the numerous
literature sources and slightly different qualities of the spectroscopic redshifts, a universal redshift
uncertainty of 0.0001 is assigned to each galaxy whose photometric redshift is replaced with a
spectroscopic value. Absolute magnitudes and stellar masses for those objects are also corrected,
based on the resulting change in the distance modulus.

3.2.3 The base sample

As mentioned above, the depth of the COSMOS 2015 catalogue varies across the field, depending
on whether the new “ultra-deep” (UltraVISTA DR 2) imaging is available or not. In general, the

1https://ned.ipac.caltech.edu
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catalogue appears to be relatively complete down to a magnitude of 𝑖+ < 25.5 (MAG_AUTO),
but becomes incomplete beyond this. [The 3𝜎 depths in the i+ band are 26.2 and 26.9 for 3′′
and 2′′ apertures respectively (Laigle et al., 2016).] To ensure reasonable completeness over the
redshift range of interest, we apply the following initial cuts on the catalogue, which are the same
cuts used in Xi et al. (2018):

• 𝑖+ < 25.5

• 0 < 𝑧pdf < 6.9

• 𝑧 − 2𝜎𝑧 < 0.3

• 𝜎𝑧 < 0.5

where 𝑧pdf refers to the median of photo-z likelihood distribution measured using galaxy template
fitting, and 𝜎𝑧 refers to the photo-z error, estimated by using the 68% confidence level upper
and lower limits of the photo-z likelihood distribution provided in the catalogue (i.e. 𝜎𝑧 =

(𝑧𝑈68
pdf − 𝑧𝐿68

pdf )/2). Note that we include the broad redshift cut 0 < 𝑧pdf < 6.9 to exclude stars and
X-ray sources in the catalogue, as well as objects in the masked regions, as these objects do not
have robust 𝑧pdf estimates; we include the upper limit cut of redshift 𝑧 − 2𝜎𝑧 < 0.3 to focus on
the local volume while keeping a reasonable completeness over a target redshift range of 0–0.25;
finally, we use a redshift error cut 𝜎𝑧 < 0.5 to exclude those galaxies with poor quality redshifts
(mainly faint galaxies) from the further analysis. These cuts produce a base catalogue of 41,559
galaxies (37,578 after excluding galaxies with large redshift errors). Fig. 3.1 shows the redshift
versus i+ absolute magnitude distribution for our base catalogue after applying the cuts above.
Given our cut in apparent magnitude, the sample galaxies have absolute magnitudes between -24
and -10 for the redshift range (z=0–0.25) we will consider below.

3.2.4 Stellar Mass Completeness

Laigle et al. (2016) estimated the stellar mass completeness of their catalogue; for redshift range
0 < 𝑧 < 0.35, they suggested a 90% completeness limit of 𝑀∗ = 108.6𝑀⊙. We are considering
systems at a slightly lower redshift range 𝑧 < 0.25. Examining the stellar mass function and
stellar mass errors for this redshift range, we conclude that we are complete down to at least
𝑀∗ < 108.2𝑀⊙, where the differential mass function peaks, and cut the main sample at this value.
For very low redshifts (𝑧 < 0.07) we appear to be complete down as low as 𝑀∗ < 107.2–107.5𝑀⊙;
we will discuss local satellite abundance at these lower stellar masses below and in subsequent
work.
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Figure 3.1: The redshift versus i+ band absolute magnitude distribution of our base catalogue,
coloured by the i+ band apparent magnitude, as indicated in the right-hand colour scale.
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3.3 Determining the Clustering Scale

We assume a model in which the galaxy with the largest stellar mass is the dominant galaxy
within each halo, and resides at or close to, its geometric and dynamical centre. To tell whether
a given galaxy is the dominant central galaxy (CG, or “primary” hereafter) within its own halo,
or a potential satellite of another primary, we need to search its surroundings to see if there is
another more massive galaxy close by. If there are more massive neighbours nearby, this suggests
the galaxy may be satellite, whereas if all nearby galaxies are less massive, it suggests the galaxy
is a primary. To quantify the characteristic scale on which satellites are associated with their
primaries, we measured the clustering pattern of all the galaxy pairs in our base sample. Based
on these clustering results, we will quantify “spatially nearby” and specify the region of interest
(ROI) for the primary-secondary classification.

3.3.1 Halo Mass Assignment

We expect the characteristic extent of the satellite distribution in a halo to scale with its virial
radius. We calculate a fiducial halo mass and virial radius for each galaxy, assuming that it is
the CG of its host halo. These masses and virial radii will be used to characterize the clustering
throughout this work.

To estimate halo masses, we could in principle use abundance matching, assuming a monotonic
relation between stellar mass and halo mass that we derived empirically by comparing the
observed stellar mass function and the predicted halo mass function within the observation
volume. However, the effective area of the COSMOS field (after correcting for masking as
discussed below) is only 1.46 deg2, giving an effective comoving volume of 1.67×105 Mpc3

up to 𝑧 = 0.25. The cosmic variance in the mean density for a volume this size is a factor of
approximately 0.4 (Somerville et al., 2004); if we consider ten independent, equal-volume redshift
slices, the relative cosmic variance of each slice increases to 0.7. Thus, there is a large systematic
uncertainty in the normalization of the halo mass function within this volume. Instead, we use the
Stellar-to-Halo Mass Relation (SHMR) derived by Behroozi, Wechsler & Conroy (2013) (B13
herafter). They provide a formula (Eqn. C.1) for the inverse Halo-to-Stellar Mass Ratio (HSMR),
with parameters as listed in Appendix C.1.

We note, however, that a combination of observational errors in the stellar mass estimates,
intrinsic scatter in the SHMR, and the non-linearity of the halo mass function will bias halo
masses estimated directly from the B13 formula. As there are many more low mass halos than
high mass ones, errors in stellar mass will more frequently scatter objects into a given mass
range from below than from above. Thus, directly applying the HSMR to estimate the halo mass
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corresponding to an observed stellar mass will lead to systematic overestimates, especially at the
high-mass end. To quantify and correct this bias, we have performed a Monte-Carlo simulation of
the effect of errors to obtain a bias-corrected HSMR based on [B13]. We explain this correction
in more detail in Appendix C.1.

Given an estimate of the halo mass for each galaxy, we also assign a corresponding virial

radius and virial velocity. The virial radius is taken to be
(

3𝑀ℎ

4𝜋𝜌𝑐Δ𝑐

)1/3
, where 𝜌𝑐 is the critical

density of the universe and Δ𝑐 is the mean overdensity of the halo within the virial radius, with
respect to the critical density. We use the fitting formula from Bryan & Norman (1998) for Δ𝑐.
Once the virial radius has been calculated, the virial velocity is given by

√︁
𝐺𝑀ℎ/𝑅vir.

The stellar mass completeness limit is estimated empirically, following the method described
in Laigle et al. (2016). They calculated the 𝐾𝑠-band magnitude limits for the COSMOS catalogue
to be 24.0 and 24.7 for the deep and ultra-deep fields respectively. In this work, we choose a limit
of 24.0 in order to have uniform depth across the whole field. Given this magnitude limit, the
limiting mass a galaxy would need to have to be observed at a given redshift is calculated as:

log𝑀lim = log𝑀 − 0.4 (𝐾𝑠lim − 𝐾𝑠) (3.1)

Next, a stellar mass limit is estimated for each redshift bin, within which 90% of the galaxies lie,
given the stellar mass errors. We also calculate a corresponding halo mass limit in each redshift
bin using the bias-corrected HSMR (although in this case we ignore the effect of scatter on the
completeness threshold).

3.3.2 Defining a Region of Interest (ROI)

Around each CG, we define a “Region of Interest" (ROI) in which we will search for potential
satellites. The size of ROI is determined by two considerations: first, the clustering signal should
be consistent across systems with different CG masses, and second, the ROI should include most
of the “one-halo” clustering signal associated with the main halo around the CG, while excluding
the regions that are dominated by the “two-halo” or background terms. We have explored
different possible choices of ROI boundaries by measuring the two-dimensional (line-of-sight
and projected) clustering signal of all pairs in our base catalogue.

For each pair in the catalogue, the galaxy with the larger stellar mass is assumed to be the
primary. We then count pairs as a function of separation in projected distance and line-of-sight
velocity offset, scaled by the halo virial radius and the velocity error respectively. These scaling
choices are found to give us relatively consistent clustering signals for primaries of different
masses (as shown in Fig. 3.2 below). Note that some fraction of an annulus around a given
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primary may be missing from the catalogue, as it overlaps with field boundaries and masked
regions. We carefully measure the shape of the survey boundaries and masked regions to produce
a single template for the whole field. Monte Carlo sampling of this template is then used to
determine the area completeness [ around each primary as a function of radius, as explained in
Appendix C.2, and the counts are corrected by this factor.

Fig. 3.2 shows the density of pair counts in 2D phase space for all galaxies (top panel), and
binned by primary halo mass (bottom panels), where the primary is defined to be the member of
the pair with the larger stellar mass. A clear overdensity of pairs can be seen both in the projected
separation and in the velocity separation directions. Overall, primaries with larger masses show
a stronger clustering signal. At the same time, the clustering patterns in the different mass ranges
have a similar dependence on separation scale: they all have the strongest clustering within 0.5
𝑅vir. The signals all extend to fairly large radii, but start to drop significantly after 1.5–2 𝑅vir.
Along the velocity axis, which is scaled by redshift error, the signals in all three mass bins drop
off at a similar rate, reaching the background level at Δ𝑣 ∼ 1–1.5 𝜎Δ𝑣. It is worth noting the
slight asymmetry of the clustering signal along the velocity separation axis, with slightly more
negative velocity separations than positive ones. This is due to the incompleteness at the faint,
high-redshift end of the survey volume (as shown in Fig. 3.1). We calculate the velocity offset
with respect to the more massive (and thus more luminous) member of the pair, which as a result
of Eddington bias due to incompleteness, trends to be further away on average. Thus, it produces
a negative velocity offset more often than a positive one.

Based on these clustering patterns, around each primary galaxy we will define a ROI for
potential satellites using the following cuts:

1. A cut in projected separation (assuming both galaxies are at the line-of-sight distance of
the primary), scaled by the virial radius of the primary: 𝑅𝑃/𝑅vir < 𝐴

2. A cut in velocity difference, scaled by the circular velocity of the primary: Δ𝑣/𝑣vir < 𝐵

3. A cut in velocity difference relative to the uncertainty in velocity difference between the
primary and secondary: Δ𝑣/𝜎Δ𝑣 < 𝐶

Note the final cut depends on the secondary properties as well as those of the primary, so this
is determined for each galaxy pair individually. Any secondary galaxy in a pair that meets
conditions (i) and ((ii) or (iii)) is considered a potential satellite of the more massive member.
We will choose the values (𝐴, 𝐵, 𝐶) = (3.0, 2.0, 1.5) as our default, but test the effect of changing
these definitions of the ROI in Section. 3.6 below.
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Figure 3.2: Primary-secondary clustering signal in the base catalogue. The colour scale shows
the density of galaxy pairs Σ = 𝑁/Δ𝑅Δ𝑣 as a function of projected separation and velocity offset,
where these have been scaled by the estimated virial radius and velocity error, respectively. Top
panel: all primaries; bottom panels: same quantity normalized and binned by primary mass.
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3.4 The iterative clustering method

Our goal is to quantify satellite abundance using the strength of the clustering signal. A obvious
complication is that any given galaxy may be a central or a satellite; without further selection,
the ‘raw’ clustering signal measured in the previous section consists of a complicated sum of
central-satellite and offset-satellite terms (e.g. Leauthaud et al., 2012). Depending on the stellar
mass and range of separations considered, the latter can significantly bias estimates of the true
satellite abundance.

To avoid this complication, our strategy will be to identify the galaxies most likely to be
centrals, and use the clustering signal around these objects as a template to separate out central
and satellite contributions. In this section, we will first describe the initial, ‘first-run’ primary
selection; then we will model the clustering of secondaries around these first-run primaries to
determine primary and secondary probabilities for all galaxies in the sample, and finally we will
test the results of iterating over this process, by adding new potential primaries to our initial
sample, weighted by their primary probability, and remeasuring a weighted clustering signal
around the enlarged primary sample.

3.4.1 Initial primary selection

We want to select primaries that dominate a ROI that scales with their halo mass, as described
in the previous section. Since the ROI is larger for the more massive systems, a smaller system
that has no more massive companions within its own ROI can still lie within the ROI of a larger
system. This asymmetry naturally leads us to a hierarchical search algorithm, where we start
searching around the most massive systems first. The detailed steps are as follows:

1. All galaxies in the catalogue are assigned a halo mass and virial velocity dispersion based
on their stellar mass, as if they were the CG in their own host halo.

2. We then go through the catalogue in ranked order of stellar mass, selecting the most massive
galaxy in the catalogue as the first primary.

3. All galaxies that lie in the ROI around the first primary (as defined in the previous section)
are classified as its secondaries and removed from the list of potential primaries;

4. The next most massive unclassified galaxy is then selected as the next primary candidate.

5. We check the stellar masses of all galaxies within the ROI around this next candidate. If
the candidate is the most massive galaxy in its ROI, then it is classified as a primary and
the other galaxies in the ROI are classified as its secondaries.
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6. We iterate over the last two steps until all the galaxies in the catalogue are classified as
primaries or secondaries.

This produces our first run primary sample. To guarantee reasonable completeness, we make
two additional cuts on this initial sample:

1. Primaries with ROIs that are heavily affected by survey boundaries or masking are removed
from the initial primary list.

2. Primaries with redshifts higher than 0.25 are removed from the initial primary list.

These cuts are necessary to remove primaries close to the sample boundaries, either on the sky
or in redshift. These galaxies may have more massive companions that lie just outside the field
or beyond our redshift cut. Thus, there is a higher probability that they are not actual CGs, but
are in fact satellites of another, more massive galaxy.

Overall, this process is very conservative in selecting primaries, producing a sample of
1,490 galaxies that is incomplete (in the sense of missing many genuine CGs), but relatively
uncontaminated by satellites. Cutting out systems with redshifts exceeding 0.25 reduces the
number of first-run primaries to 873, while excluding those with area completeness less than 0.65
(i.e. those with ROIs that are masked or cut off by field boundaries by more than 35%), reduces
the number to 815.

3.4.2 Clustering of the First-run Primary and Secondary Samples

To study satellite abundance and its dependence on primary properties, we first need to model and
separate the contributions to the clustering signal from the satellite population and the background
galaxy population. Having classified potential primaries and secondaries, we measure the surface
number density of secondaries within the ROI and in an extended region around it (with the same
velocity offset limits, but extended out to 3.2 Rvir in order to have a better estimate of the
background surface density).

Around each primary, we count secondaries in annuli spaced evenly in log[𝑅𝑃/𝑅vir]. The
annuli range from 0.1–3.2 𝑅vir, in steps of 0.25 dex. We exclude secondaries with projected
separations of less than 0.1 𝑅vir (∼25 kpc, for the Milky Way) to avoid outlying HII regions or
other components of the central galaxy. We calculate the surface density of secondary galaxies
around each primary in physical units (Mpc−2), assuming all secondaries lie at the same distance
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as the primary. Given counts 𝑁 𝑖, 𝑗 in radial bin 𝑖 of projected area 𝐴𝑖 around primary 𝑗 , the surface
density is:

Σ𝑖, 𝑗 =
𝑁 𝑖, 𝑗

[𝑖𝐴𝑖
=

𝑁 𝑖, 𝑗

[𝑖2𝜋𝑅𝑖Δ𝑅
(3.2)

where [𝑖 is the mean area completeness in radial bin 𝑖 (estimated as described in Appendix C.2),
𝑅𝑖 is the mean radius of the bin, and Δ𝑅 is the width of the bin. As we want to scale the
surface density of secondary galaxies in units of 𝑅vir, it is useful to define a separation variable
𝑋𝑖 ≡ 𝑅𝑖, 𝑗𝑃 /𝑅 𝑗vir. Thus, Eqn. 3.2 can be written as:

Σ𝑖, 𝑗 =
𝑁 𝑖, 𝑗

[𝑖2𝜋(𝑋𝑖 · 𝑅 𝑗vir)Δ𝑋 · 𝑅 𝑗vir

=
𝑁 𝑖, 𝑗

[𝑖2𝜋𝑋𝑖Δ𝑋
(
𝑅
𝑗

vir

)2 . (3.3)

In what follows, we will fit the surface density in bins of primary redshift and mass. Where
the primary sample contains more than 5 objects, we use the bootstrap method to estimate the
uncertainties in the surface densities, by re-sampling the primary sample 120 times. As the
bootstrap method does not work well when the sample size is smaller than 5, we have also
calculated Poisson uncertainties for each bin. The final uncertainties for the bin are taken to be
the larger of the two values.

The secondary surface density consists of two main parts: the contribution from clustered
satellites and the contribution from background or foreground galaxies.

Σ(𝑋 |𝑀halo, 𝑧) = Σsat(𝑋 |𝑀halo) + Σbg (3.4)

The first component Σsat should correlate with the halo mass of the primary, but should be
roughly independent of redshift over the narrow redshift range considered here, while the second
component should be roughly independent of halo mass, but should depend on redshift. There
should also be a more extended clustered component due to large-scale structure (the "two-halo"
term, e.g. Cooray & Sheth (2002) for a detailed review), but the characteristic scale of this
component (cf. 4–8 Mpc) is much larger than the scales considered here. Thus, we treat it as a
constant with respect to radius, and include it in the foreground/background term. To fit the two
terms, we split the primaries into 5 fixed redshift slices and 2–5 halo mass bins per slice, with
adaptive boundaries as shown in Fig. 3.3.

We assume that the satellite distribution roughly matches the subhalo distribution, which in
turn approximately follows a Navarro-Frenk-White (NFW – Navarro, Frenk & White (1996))
density profile. Over the range of radii we are most sensitive to, a projected NFW profile scales
as 𝑟−2 in the outer parts of the halo, and is somewhat shallower in the inner parts. We could fit
the density profile of the satellite component with the exact form of a projected NFW profile,
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Figure 3.3: The redshift-halo mass distribution of the first-run primary sample. The coloured
boxes show the boundaries for the 20 subsets used to fit the mass and redshift dependence of the
clustering signal.
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assuming some mean concentration-mass relation. Given the low SNR of the satellite component,
however, we choose to fit it with the simplified form:

Σsat(𝑋) = 𝑆halo𝐹 (𝑋) =
𝑆halo

𝑋2 + 𝛼𝑋 + 𝛽
(3.5)

where 𝑆halo is an overall normalization (in units of Mpc−2) that is independent of 𝑋 but depends
on the primary halo mass, while 𝛼 and 𝛽 are parameters describing the radial dependence. We
have compared this simplified form to a projected NFW profile over the range X = 0.05–3, for
concentration parameters c= 5–15, and found that using fixed values 𝛼 = 0.2 and 𝛽 = 0 gives a
good fit in all cases. For this choice of parameters,

∫ 1
0 2𝜋𝐹 (𝑋)𝑋𝑑𝑋 = log[1+𝛼]−log[𝛼] = 11.18,

so the total number of satellites within the virial radius is 𝑁sat = 11.18 𝑆halo𝑅
2
vir.

The resulting fits for the secondary surface density (fitting 𝑆halo and Σbg jointly for each
individual primary bin, with 𝛼, 𝛽 set to fixed values (0.2, 0)) are shown in Fig. 3.4. Summing
over all primary bins, a clustered excess in Σ is detected at a SNR of approximately 11. We can
see that the overall background surface density (as measured in physical units) decreases with
primary redshift, while the clustered satellite component increases with primary mass. In the
next section, we will explore these correlations in more detail.

Satellite/halo component

We fit the halo mass dependence of 𝑆halo over the 20 primary bins using a linear relation in log-log
space:

log10

(
𝑆halo

1Mpc−2

)
= 𝑎 · log10

(
𝑀halo

1012𝑀⊙

)
+ 𝑏 (3.6)

where 𝑎 and 𝑏 are free parameters. We choose 1012𝑀⊙ as the pivot mass in our fit, as this is
roughly the median halo mass of our 20 primary bins. The projected area of a halo will scale as
the virial radius squared, that is as 𝑀2/3. If we assume systems have a fixed number of satellites
per unit halo mass (as expected from subhalo abundance, e.g. Gao et al. 2004), then the projected
surface density should go as 𝑀1/3, so we expect 𝑎 ∼ 0.33. The value of 𝑏 (the normalization at
𝑀halo = 1012𝑀⊙) will depend on the depth of the catalogue, as discussed below. From our fits,
we find 𝑎 = 0.30+0.11

−0.10 and 𝑏 = 0.26+0.08
−0.11, so the scaling with halo mass seems fairly consistent

with the expected value.

Fig. 3.5 shows our fit for 𝑆halo as a function of mean halo mass, over all 20 bins in primary
mass and redshift. Given its sensitivity to smaller radial bins with larger errors, the fitted value of
the parameter has a SNR ∼ 8, significantly lower than the SNR for the whole clustering signal. To
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Figure 3.4: The surface density of secondaries around each of the primary subsamples shown in
Fig. 3.3 (separate panels, with redshift increasing from bottom to top and halo mass increasing
from right to left). Red points with error bars show the measured surface number density in
radial bins, while the orange shading shows the 1-𝜎 region around the best fit from Eq. 3.5. The
horizontal grey lines indicate the background level in the best fit model.
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Figure 3.5: Average 𝑆halo versus halo mass (log10(𝑀h/𝑀⊙)), with colour indicating the mean
redshift of the primary sub-sample. The blue curve and grey shaded area show the best-fit model
of the mass dependence (Eqn. 3.6), together with the 1-𝜎 uncertainty range.

Figure 3.6: As Fig.3.5, but with sub-samples of similar mean halo mass combined into single
bins for clarity. The top-left subplot shows the results for primaries with redshift 𝑧 < 0.15.
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illustrate the dependence on halo mass more clearly, we also show in Fig. 3.6 a version combining
bins with similar mean halo masses. We note that at the low-mass end (log(𝑀ℎ/𝑀⊙) < 11),
the fitted value is actually negative (although consistent with zero, given the uncertainties). This
may be partly due to completeness problems at low mass, which affect the high redshift bins in
particular. Repeating the fitting process for low redshift primaries (z<0.15) only, we obtain a less
negative value, that is once again consistent with zero. (as shown in the sub-panel of Fig. 3.6).

Background component

Our surface densities are calculated in physical units (Mpc−2) at the distance of the primary.
Thus, if the foreground/background component consisted of a fixed field population with a broad
redshift distribution and thus a fixed number per square degree, we would expect its inferred
physical surface density to scale as 𝑑𝐴−2, where 𝑑𝐴 is the angular diameter distance of the
primary. (It is worth noting that this assumption will not necessarily hold if extending the method
to higher redshift.) Fig. 3.7 shows the fitted value of the background surface density Σbg in each
bin, versus the average value of 𝑑𝐴−2 for that bin. We fit the trend with a simple linear model:

Σbg = 𝑐 + 𝑑 ·
[(

𝑑𝐴

103Mpc

)−2
− 2.0

]
(3.7)

where 𝑐 and 𝑑 are free parameters.

Fitting the 20 bins gives tight constraints on the parameters: 𝑐 = 79.5+0.6
−0.6 and 𝑑 = 21.6+0.5

−0.5.
Note that if the background scaled exactly as the inverse of the angular diameter distance, we
would expect the constant term 𝑐 − 2𝑑 ∼ 0 to be small; in practice, various minor effects, notably
the varying width of the redshift range Δ𝑧 over which we measure the background, will cause
the background density to deviate from the simple scaling. As it is, for our fitted values of the
parameters we find 𝑐 − 2𝑑 = 36.3, which is small relative to the typical values of Σbg.

Single-step Fit

While the two-step fitting procedure outlined above is useful to illustrate the features the model,
it is more robust to fit the entire 4-parameter model for both terms in the surface density in a
single step, given the potential covariance between the model parameters. We use the function
Minimizer.emcee2 from the Python module LMFIT (Least-Squares Minimization Fitting) to do
MCMC sampling of the likelihood (Foreman-Mackey et al., 2013). The marginalized results of

2See this page for a detailed description of LMFIT and Minimizer.emcee
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Figure 3.7: The background surface density Σbg versus 𝑑𝐴−2. The grey area shows the 1-𝜎
uncertainty range around the best-fit model (Eqn. 3.7).

this fit are shown in Fig. 3.8 and are also included in Table 3.4.3. We note that the parameters
𝑎 and 𝑏 are strongly (anti-)correlated; indeed, with higher SNR data we could imagine a more
detailed, HOD-based fit to the halo-mass dependence of the satellite abundance. There is also
some correlation between parameters 𝑐 and 𝑏 (or to a lesser degree 𝑐 and 𝑎), indicating that
satellite abundance estimates do require careful accounting for the background term.

Assigning Probability

Given our model fit to the clustering measurements, we can estimate the amplitude and radial
distribution of the satellite component and background components around each primary. We
define the probability of a secondary galaxy in the ROI being an actual satellite as:

𝑃sat
𝑖, 𝑗 (𝑋, 𝑀ℎ, 𝑧

𝑝) = Σsat

Σtot
=

Σsat(𝑋, 𝑀ℎ)
Σsat(𝑋, 𝑀ℎ) + Σbg(𝑧𝑝)

, (3.8)

where 𝑀ℎ and 𝑧𝑝 are the halo mass and redshift of the primary, respectively.

This equation can result in very small probabilities at large radii. Since real satellites (objects
that have crossed the virial radius at least once) almost all lie within 3 𝑅vir (e.g. Wetzel et al.,
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Figure 3.8: Likelihood distributions for the clustering model parameter values, derived by fitting
the full model to all 20 primary sub-samples simultaneously. Panels show the distribution
marginalized over the two (or, on the diagonal, all three) other model parameters.
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2014), we truncate the probability around 𝑋 = 3 as follows:

𝑃′(𝑋) = 𝑃(𝑋) · 1
1 + 1000𝑋−3 . (3.9)

3.4.3 Iterating over the Fit

Our initial primary selection ignores many galaxies that may well be primaries, but appear close
to more massive systems when seen in projection. To attempt to correct for this, we iterate over
our clustering measurement, including a weighted contribution from all galaxies, proportional to
their probability of being a primary.

For each iteration, we run the top-down selection again. During the new selection process,
every galaxy starts with a 100% probability of being a primary. Starting with the most massive
galaxy as the first primary, we assign probabilities of nearby galaxies being its satellites, using the
method described in the last section. The probability of each of these galaxies being independent
primaries is reduced accordingly. We then proceed through the catalogue in order of decreasing
stellar mass. If a galaxy has a probability of being a primary between zero and 1, we estimate
that nearby galaxies have a probability of being its satellites that is the product of its probability
of being a primary and the satellite probability given in section 3.4.2. Proceeding through the
entire catalogue in decreasing order of stellar mass ensures that the calculation is well-defined
and that every galaxy is assigned a final probability of being a primary, equal to 100% minus the
sum of all probabilities that it is a satellite of nearby systems.

Running through this process once, we find 8,920 primaries with probabilities greater than
0.99, of which 3,567 lie at redshifts of 0.25 or less. If we further remove systems with areal
completeness of 0.65 or less, the number of high-confidence primaries is 3,246, versus 815 in our
original sample; repeating this exercise for systems with primary probabilities of 0.999 or more,
reduces the number to 1,478.

If we include primaries with probabilities greater than 0.99 (and weight all satellites by their
CGs primary probability), the effect of iteration on the fit to the clustering signal is shown
in Table 3.4.3. Overall, the parameter values after iteration show good consistency with our
initial estimates, shifting by less than 2-𝜎 in all cases. The uncertainties in the fitted parameter
values drop, but only slightly. This suggests that in a dataset like the COSMOS catalogue that
has extremely precise photometric redshifts, even the first-run sample of isolated primaries can
provide a good estimate of satellite abundance. Since the use of lower probability primaries
may dilute the clustering signal and introduce some bias, in what follows we will use our initial,
first-run estimates of the fitted parameters to derive satellite abundance. We anticipate that in
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Table 3.1: The model fitting results from the first run and first iteration
a b c d

F0 0.33+0.09
−0.07 0.29+0.08

−0.10 79.5+0.6
−0.6 21.6+0.4

−0.5

F1 0.26+0.07
−0.07 0.38+0.05

−0.06 79.3+0.5
−0.5 20.8+0.4

−0.4

datasets with less accurate redshifts, iteration will become more important in deriving accurate
estimates of the clustering signal.

3.5 Estimating Satellite Abundance

In this section, we will make some basic estimates of the overall abundance of satellites, as well
as their abundance as a function of properties such as stellar mass or luminosity. In each case, our
estimate is based on the clustering signal, which is typically small compared to the background.
The simplest way to estimate satellite abundance is to count every galaxy in the ROI, weighted by
the satellite probability calculated in Section 3.4.2, so we will use this approach first in Section
3.5.1, referring to it as “method A”.

As explained below, method A assumes that the clustering amplitude is uncorrelated with
stellar mass, luminosity, or any of the other secondary properties considered. More generally,
we expect the fraction of galaxies in the ROI that are true satellites to depend on these other
properties. In section 3.5.2 we develop a more sophisticated approach, “method B”, similar to
the one introduced in Speller & Taylor (2014), that attempts to correct for possible correlations
in the limit of a weak clustering signal. Future surveys with stronger detections of clustering
should be able to bypass these complications by dividing the galaxy sample directly into bins of
secondary property value before they measure the clustering amplitude, simplifying the analysis
considerably; we call this “method C”.

3.5.1 Abundance Estimates Using Method A

In method A, to estimate satellite abundance 𝑁 𝑖sat around primary galaxy 𝑖 we simply add up the
probabilities 𝑃𝑖

𝑗
of each galaxy 𝑗 in its ROI being a true satellite:

𝑁 𝑖sat =
∑︁
𝑗

𝑃𝑖𝑗 . (3.10)
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Figure 3.9: Satellite abundance as a function of primary stellar mass, estimated using method
A. Red and blue points show the results for independent primary samples at higher redshifts
(𝑧 =0.17–0.25) and lower redshifts (𝑧 =0.07–0.17), respectively.

Note that although 𝑃𝑖
𝑗

can remain non-zero at large distances from the primary, to compare to
previous results from literature we set a radial limit of 1.5 𝑅vir by default, and only count towards
the total satellite abundance secondaries that lie within this projected separation of the primary.

We can study the dependence of satellite abundance on primary mass by stacking systems with
similar stellar or halo masses, as shown in Fig. 3.9 (black points with error bars). As expected,
there is a strong trend in satellite abundance with halo mass. As a consistency check, we also split
our primary sample in two by redshift, and calculate satellite abundance separately for each of the
two sub-samples (red and blue points). The results for both sub-samples show good consistency
with those for the whole sample. We note that 𝑁sat increases faster with primary stellar mass at
the high mass end of the range (𝑀h > 1010.5𝑀⊙). This is consistent with the pattern seen in Halo
Occupation Distribution (HOD) modelling (e.g. Seljak, 2000; Peacock & Smith, 2000; Berlind
& Weinberg, 2002) and is a result of the changing slope of the SHMR; halo mass increases faster
with stellar mass at large stellar masses, resulting in a faster increase in satellite numbers.
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3.5.2 Abundance Estimates Using Method B

Method A provides the simplest estimate of satellite abundance, and is guaranteed to be correct
when averaging over all galaxies in the secondary sample used to calculate the satellite probability
(Eqns. 3.8 & 3.9). It is not necessarily correct, however, for subsamples of secondaries selected
by luminosity, stellar mass, colour, or other properties, if these properties are correlated with the
clustering amplitude. As a simple example, one can imagine a galaxy population that consisted
of two distinct types, labelled “red" and “blue". If the red galaxies were completely clustered, but
the blue galaxies were completely unclustered, then we would measure some intermediate average
clustering strength for the combined population, and give every galaxy a satellite probability based
on this average value. If we weighted all galaxies by this average satellite probability, but then
split them back into subsamples by colour, we would conclude that the satellite and background
populations both had the same net colour distribution. In effect, the true colour distribution of the
satellite population (100% red, in this example) would be contaminated by the colour distribution
of the field population. More generally, whenever the background population is significantly
different from the satellite population, the satellite properties inferred using method A will be
biased towards those of the background population.

With sufficient SNR in the clustering signal, we could avoid this problem by selecting sub-
samples with a limited range of the desired satellite property (stellar mass, luminosity, colour,
etc.) before measuring the clustering amplitude and calculating the satellite probability (we refer
to this as “method C”). In the limit of low SNR, however, splitting the galaxies into narrow bins
in a given property will increase the shot noise in the background estimate until it is unacceptably
large. Instead, we have developed an intermediate solution, “method B”, based on the approach
in Speller & Taylor (2014).

In method B, first the number of the background galaxies within a given radius is estimated
for each primary, by summing up the non-satellite probabilities of each pair:

𝑁 𝑖bg =
∑︁
𝑗

(1 − 𝑃𝑖𝑗 ) . (3.11)

We then measure the fraction of all background galaxies (i.e. summing over the ROIs of all
primaries, or over the whole field) with a property of interest (e.g. stellar mass, luminosity,
colour, etc.) in a given range, and scale the total number of background galaxies in the ROI by
this fraction. This gives the expected background contribution to a particular subsample, that we
then subtract to calculate satellite abundance. For instance, if we want to measure the luminosity
function of satellites, Φsat, we first need to measure the total luminosity function within the ROI,
ΦTTL, and the total luminosity function for all background galaxies, Φbg. Then we remove the
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background contribution from the total abundance in each bin 𝑘 in luminosity, such that:

Φsat,𝑘 = ΦTTL,𝑘 −
𝑁bg

𝑁TTL
Φbg,𝑘 . (3.12)

Here 𝑁bg and 𝑁TTL refer to the number of background galaxies, and the total number of galaxies
within the radial cut around each primary, respectively (before any cut in luminosity). Note that
this approach can be used for individual primaries, except for the lowest-mass systems, where the
galaxy counts are so small that Poisson fluctuations dominate. To correct for this, if the number
of objects within the ROI is less than three times the number of luminosity bins, then we stack
results for multiple primaries at similar redshifts, and use the average signal.

We used this method to calculate satellite abundance for different luminosity ranges (below),
as well as full satellite luminosity functions (see Sec. 3.5.4). Fig. 3.10 shows abundance for
various cuts in 𝑀𝑖+ . Overall, the dependence of abundance on primary stellar (top panel) or halo
(bottom panel) mass has a similar form for different luminosity cuts, although there may be a
truncation at lower stellar masses that depends on the luminosity cut. Here too, this pattern is
very similar to those seen for brighter galaxies in HOD modelling. Plotted as a function of stellar
mass, satellite abundance shows a change in slope around 10.5 𝑀⊙ at all luminosities. Plotting
as a function of halo mass, this feature disappears, confirming that it is a result of the non-linear
SHMR. We also indicate on the plot the abundance of MW satellites brighter than 𝑉 = −14.5
with a galactocentric distance greater than 20 kpc (brown diamond – three satellites meet these
criteria), assuming a MW halo mass of 12.1𝑀⊙, as discussed below.

3.5.3 Comparison to Previous Work

For massive galaxies, a number of other estimates of satellite abundance exist in the literature. In
Fig. 3.11, we compare our abundance estimates to the results of Conroy, Wechsler & Kravtsov
(2006, C06). These are based on HOD modelling (e.g. Seljak, 2000; Peacock & Smith, 2000;
Zehavi et al., 2002) of the luminosity functions and correlation functions of samples from the
SDSS (York et al., 2000) and DEEP2 (Newman et al., 2013) surveys. HOD modelling provides
an estimate of the average number ⟨𝑁gal⟩ of galaxies within a halo of a given mass, so in the
limit where ⟨𝑁gal⟩ ≫ 1, ⟨𝑁gal⟩ − 1 should match our measured satellite abundance. As ⟨𝑁gal⟩
decreases, some halos will contain no galaxies over a given magnitude limit, so we can only
compare results in the large ⟨𝑁gal⟩ regime, i.e. for large halo masses. In addition, the results in
C06 are given in bins of 𝑀𝑟 − 5 log(ℎ); we convert to our 𝑖+-band assuming a fixed mean colour
⟨𝑀𝑟 − 𝑀𝑖+⟩ ∼ 0.25 (roughly the value measured for our sample in the COSMOS catalogue),
which produces a shift of (𝑀𝑟 −𝑀𝑖+) −5 log(ℎ) ∼ 1 magnitude exactly in the C06 bin boundaries.
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Figure 3.10: Satellite abundance as a function of primary stellar/halo mass (top/bottom panels
respectively), estimated using method B. The individual shaded regions show results for different
cuts in satellite luminosity, as indicated in the legend. The brown diamond shows the number of
MW satellites brighter than 𝑉 = −14.5 with a galactocentric distance greater than 20 kpc (three
satellites meet these criteria).

99



Figure 3.11: Comparison to the HOD-based results of Conroy, Wechsler & Kravtsov (2006,
Fig. 5). Their luminosity bins have been converted to 𝑖+-band magnitudes, assuming a mean
colour of ⟨𝑀𝑟 − 𝑀𝑖+⟩ = 0.25, and have had 1 subtracted from them to account for the central
galaxy.

Given these conversions, examining Fig. 3.11, we see that there is excellent agreement between
our results and those of C06. Our estimated satellite abundance matches that measured by C06 to
within half a standard deviation, for all four of the magnitude cuts in that study (two lie between
our luminosity cuts, but are clearly consistent with our results.) The slope of the 𝑁sat–𝑀h relation
is harder to judge given the limited baseline in C06, but generally it appears to be consistent with
our inferred slope at halo masses of log(𝑀/𝑀⊙) > 13 or more. The agreement between these two
sets of results is particularly striking, given that they employ completely different samples and
methods, and that there is no parametric freedom in adjusting our results. Overall, SDSS provides
a more robust estimate of satellite abundance for massive halos, but as a deeper survey with more
accurate redshift estimates, COSMOS is better able to probe the low-halo-mass regime.

We have also compared our results to more recent work by Besla et al. (2018, B18), which is
one of the few studies to estimate satellite abundance at lower halo mass. Fig. 3.12 compares our
results to theirs, for the primary stellar mass range 108 – 109𝑀⊙. The B18 results are based on
a SDSS spectroscopic sample at redshift 0.013–0.0252, with 𝑟-band magnitudes between 14 and
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Figure 3.12: Comparison to the observed and mock results of Besla et al. (2018, ; see their
Fig. 11,12). (Note that the points are shifted to left or right by up to 0.02 dex for clarity).

17.77, and primary stellar masses in the range 0.2–5 ×109𝑀⊙. (The apparent magnitude limit
of 17.77 corresponds to absolute magnitude limits of -16.03 or -17.5 at z=0.013 or z=0.0252
respectively, equivalent to -16.3 and -17.8 in the 𝑖+-band.) They also compare these to a mock
catalogue generated using the Illustris hydrodynamical simulations (Vogelsberger et al., 2014;
Nelson et al., 2015). Four sets of results are shown. The "uncorrected SDSS" results are from raw
counts of nearby companions; the “completeness corrected” version is after correcting for obser-
vational selection effects, using the mock catalogues. The “physical" simulation results show the
abundance of real satellites, while the "projected" counts show the result including a background
contribution introduced by projection effects. Completeness and projection corrections move the
measured abundance up and down, respectively; overall, the best estimate of satellite abundance
from B18 is the completeness corrected (orange) curve, decreased by a factor of ∼50% to account
for projection effects.

Over the mass range 0.2–5 ×109𝑀⊙ covered by B18, our estimates for magnitude cuts
𝑀𝑖+ < −16 or 𝑀𝑖+ < −18 are consistent with their measured values. Given their effective
magnitude limits range from -16.3 and -17.8 in the 𝑖+-band, there once again seems to be
excellent consistency in the overall abundance estimated by the two methods. In contrast, B18
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measure almost no trend in satellite abundance with primary stellar mass. It is worth pointing
out, however, that the mean redshift of the sample in B18 is lower at smaller primary masses
(see their Fig. 3). Thus, the satellite luminosity function may be measured to greater depth for
these systems, explaining the flatter slope. B18 also point out that they may be biased towards
preferentially identifying multiple systems at low stellar mass, due to their bluer colours. We
conclude that our results are consistent with B18, once again despite very different methods and
samples.

3.5.4 The Satellite Luminosity Function

Finally, we can use method B to estimate satellite luminosity functions directly (for comparison,
results using method A are shown in Appendix C.3). In Fig. 3.13 we present the luminosity
function of satellites for three subsets of primaries. The subsets were chosen such that the mean
halo mass of the middle bin, ⟨𝑀h⟩ = 12.1𝑀⊙, is close to the estimated mass of the Milky Way
(MW) or M31 (Bland-Hawthorn & Gerhard, 2016; Posti & Helmi, 2019), such that we can
compare to the observed luminosity functions for these systems. For method B, we are able to
measure the satellite luminosity functions reliably down to absolute magnitudes of -14. Within
this magnitude range, the observed abundance of satellites around the MW and M31 are close to
the average value. One exception is at the bright end of the MW satellite luminosity function,
where the presence of the LMC and SMC represent a slight (1–2 𝜎) departure from the average.
This unusual feature of the MW’s satellite population has been noted and discussed extensively
elsewhere (e.g. Robotham et al. 2012 – see Speller & Taylor 2014 for further references). We
will consider satellite luminosity and stellar mass functions in more detail in the next chapter.

3.6 Testing for Systematic Uncertainties in the Method

While we have shown that our method produces estimates of satellite abundance consistent with
previous studies using larger samples, there remain a number of choices, assumptions or free
parameters in the method that could take on different values. In this section, we will perform a set
of tests to understand the effects of the various assumptions and free parameters in the clustering
method.
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Figure 3.13: Satellite luminosity functions, for three ranges of primary halo mass, estimated
using method B (see Appendix C.3 for the same results derived using method A). The mean halo
mass for each range is given in parentheses. The observed luminosity functions of the MW and
M31 are shown for comparison (black and purple points and lines). These magnitudes have been
converted from the 𝑉-band, assuming a fixed average colour of 𝑉 − 𝑖+ = 0.3.
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Figure 3.14: Results of a null test where the halo component of the clustering signal is measured
using galaxies outside the velocity limits of the ROI. A black dashed line corresponding to no
clustering is included for comparison.

3.6.1 Null Test

First, as a null test, we calculated the clustering signals around our initial sample of primaries,
using only secondaries that lay within the radial cuts, but outside the redshift cuts we defined in
Section 3.3.2. Following the procedure in Section 3.4, we measured the surface number density
of the secondaries for the 20 bins in primary mass and redshift, and re-fit our surface density
model. The satellite component from the fit is shown in Fig. 3.14.

Most of secondaries in this test should not be physically associated with the primaries, expect
for a small number of real satellites that are scattered into the foreground or background by the
redshift errors. Thus, we expect the clustering signal to be close to zero, and to show little
dependence on the primary halo mass. This is confirmed in Fig. 3.14.

3.6.2 Parameter and Systematic Tests

We have tested for systematic effects and uncertainties in our method by varying the parameters
that define the initial primary selection and the calculation of the satellite probability. The tests
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include:

• Using radial cuts of 2 𝑅vir or 3.5 𝑅vir to define the radial extent of the ROI.

• Using velocity cuts of 1 𝜎Δ𝑣 or 3 𝜎Δ𝑣 to define the velocity extent of the ROI.

• Increasing/decreasing the stellar mass by 0.16 dex, which is comparable to or larger than
the typical stellar mass uncertainties in our data.

• Increasing/decreasing the halo mass derived from our fiducial SHMR by 50%.

• Varying the slope of bias-corrected SHMR (see Appendix C.1) at the high mass end to 1.5
and to 2.5, with respect the original value ∼2.1 from B13.

• Varying the definition of the virial radius, increasing or decreasing it by 20%.

• Adding 1𝜎 scatter to the initial stellar masses before ranking them. (We perform this test
three times to check the consistency of the potential effects.)

• Keeping the primary-secondary selection fixed, but adding 0.2 𝑅vir scatter to the coordinates
of the primaries, to test the effects on potential mis-centering. (We repeat this test three
times to check for the consistency of the effects.)

In each case, all other parameters and steps in the method are kept fixed. The results of these
tests are summarized in Tab. 3.2.

3.6.3 Discussion

Considering the results of the individual tests in detail, changing the halo mass mainly just shifts
the points horizontally on the 𝑆halo–𝑀ℎ plot, so the fitted parameters 𝑎 and 𝑏 remain relatively
constant. Changing the stellar mass has quite a different effect, however. As the HSMR is shallow
at the low-mass end but steep at the high-mass end, increasing or decreasing the stellar mass does
not change the inferred halo mass much at the low-mass end, but can produce significant change
at the high-mass end. As a result, the slope (𝑎) of the 𝑆halo–𝑀ℎ relation is more strongly affected.

Similarly, changing the slope of the HSMR at the high-mass end will mainly affect the halo
mass estimates in this range. As a result, the slope 𝑎 is shifted systematically to higher or lower
values. As for the mass ranking test, in addition to the random scatter in individual mass estimates
and resulting variations in detailed primary selection, there is a net change in the mass function.
Since there are more low-mass galaxies than high-mass ones, adding the random scatter tends to

105



Table 3.2: The fitting results of all tests
a b c d

F0 0.33+0.09
−0.08 0.29+0.08

−0.10 79.5+0.6
−0.6 21.6+0.5

−0.5
LMh 0.29+0.08

−0.07 0.24+0.09
−0.10 79.0+0.5

−0.5 21.7+0.5
−0.5

SMh 0.28+0.08
−0.07 0.37+0.06

−0.08 79.0+0.5
−0.6 21.6+0.5

−0.5
LMs 0.30+0.09

−0.08 0.12+0.09
−0.12 78.8+0.5

−0.5 21.7+0.5
−0.5

SMs 0.45+0.12
−0.10 0.33+0.08

−0.09 80.2+0.6
−0.6 22.0+0.5

−0.5
𝜎Δ𝑣 1 0.32+0.08

−0.07 0.22+0.07
−0.09 78.2+0.5

−0.5 21.2+0.4
−0.4

𝜎Δ𝑣 3 0.21+0.10
−0.09 0.29+0.08

−0.10 79.9+0.7
−0.7 21.1+0.6

−0.5
R2 0.30+0.06

−0.06 0.32+0.06
−0.06 78.7+0.5

−0.5 21.4+0.4
−0.4

R3.5 0.23+0.09
−0.08 0.28+0.06

−0.08 82.2+0.5
−0.5 21.0+0.4

−0.4
LR 0.28+0.09

−0.08 0.14+0.08
−0.10 78.1+0.5

−0.5 21.2+0.4
−0.4

SR 0.26+0.10
−0.09 0.28+0.09

−0.12 80.7+0.7
−0.7 22.1+0.5

−0.5
H SHMR 0.20+0.06

−0.06 0.31+0.05
−0.07 80.2+0.5

−0.5 21.3+0.3
−0.4

L SHMR 0.34+0.10
−0.09 0.28+0.07

−0.09 79.4+0.6
−0.6 21.6+0.5

−0.5
RS 1 0.26+0.08

−0.07 0.28+0.07
−0.09 78.6+0.6

−0.5 21.6+0.5
−0.5

RS 2 0.25+0.08
−0.07 0.29+0.07

−0.08 78.7+0.6
−0.5 21.6+0.5

−0.5
RS 3 0.25+0.08

−0.07 0.28+0.07
−0.09 78.6+0.5

−0.5 21.6+0.5
−0.6

CS 1 0.34+0.12
−0.10 0.05+0.11

−0.15 79.4+0.5
−0.5 21.8+0.5

−0.5
CS 2 0.25+0.10

−0.08 0.11+0.9
−0.12 79.3+0.5

−0.5 21.8+0.5
−0.5

CS 3 0.26+0.08
−0.08 0.21+0.08

−0.10 79.6+0.6
−0.6 21.6+0.5

−0.5

(Key to the tests:
F0 = original fit result;
LMh = larger halo mass; SMh = smaller halo mass;
LMs = larger stellar mass; SMs = smaller stellar mass;
𝜎Δ𝑣 1 = using 1𝜎Δ𝑣 velocity cut to define ROI; 𝜎Δ𝑣 2 = using 3𝜎Δ𝑣 velocity cut for ROI;
R2 = using 2 𝑅vir projected separation cut for ROI; R3.5 = using 3.5 𝑅vir projected separation cut for ROI;
LR = larger 𝑅vir (increasing the primary virial radius by 20%);
SR = smaller 𝑅vir (decreasing the primary virial radius by 20%);
H SHMR = using a higher slope of HSMR at high mass end;
L SHMR = using a lower slope of HSMR at high mass end;
RS = ranking shuffle (adding 1-𝜎 scatter to the primary stellar masses before ranking them);
CS = centering shift (adding 0.2 𝑅vir scatter to the coordinates of the primaries before measuring clustering).
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increase the number of massive galaxies relative to the fiducial catalogue. This leads to slight
shifts in the fitted satellite abundance, although they are less important than in the case of the
mass tests.

The parameter values obtained in each test are given in Tab. 3.2. Tests that produce a
variation of more than 2-𝜎 in the fitted parameters are highlighted in bold. We note that only
one test (our first re-centering test) produces a significant change in the parameters of the satellite
component. Three of the 38 tests produce significant deviations in the background fit, but this
is only slightly higher than the expected rate of 2-𝜎 deviations given the random errors (8%
versus 5%). Thus overall, the systematic uncertainties associated with our tests do not appear to
significantly increase the random errors quoted in the fiducial model fit.

3.7 Conclusions

In this work, we have developed and tested a method for quantifying satellite abundance, us-
ing galaxy clustering. The method establishes a basic template for the radial dependence and
amplitude of the satellite component of the clustering signal by using a subsample of isolated
(or at least locally dominant) systems, but then applies this template iteratively to estimate the
probability that any given galaxy in the field is a satellite of a nearby system. (Note that the form
of the template assumes that the surface number density of background galaxies is inversely pro-
portional to the square of angular-diameter distance; this assumption works well at low redshift,
but may need modification if applying the method at higher redshift.) In that sense it is similar
to crowded-field photometry, where an initial sample of isolated stars is used to determine the
point spread function of the image, and that point spread function is then applied iteratively to the
entire field. Using our method, we have estimated satellite abundance as a function of primary
stellar and halo mass, and also measured the satellite luminosity function, over a very broad
range of primary halo mass (1010–1013.5𝑀⊙). We have also tested the method for systematic
uncertainties by varying the model parameters, and found variations in the final results that are
generally smaller than our random error estimates.

We have compared the results of this new technique to several previous estimates of satellite
abundance from the literature, that were derived using larger catalogues. Our results are fully
consistent with those of Conroy, Wechsler & Kravtsov (2006) at the high mass end, and of Besla
et al. (2018) at the low mass end, while covering a much larger range in primary mass overall.
We have also compared our measured luminosity functions to those of the dominant LG galaxies,
assuming an average halo mass of 12.1 𝑀⊙ for these systems. The LG satellite populations seem
fairly typical, with the exception of the bright satellites of the MW (the LMC and the SMC),
as noted previously in the literature. The main purpose of this chapter was to describe and
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validate our method; in subsequent work we will consider in more detail the properties of the
detected satellite populations, including their spatial distribution, colours, star formation rates,
and dependence on primary properties.

The COSMOS catalogue was chosen for this work for its deep photometry and extremely
accurate photo-zs. Other deep surveys with accurate distance information will also be good
candidates to apply our method. One potentially important survey is planned with SPHEREx3,
an all-sky survey satellite with a wide-field spectral imager. SPHEREx is currently scheduled to
launch in 2024, and will produce, during its two-year mission, four all-sky maps, with hundreds
of millions of near-infrared stellar and galactic spectra (0.75–5.0 micron) (Bock & SPHEREx Sci-
ence Team, 2018; Spangelo et al., 2015). The redshifts in the SPHEREx surveys are estimated by
fitting template SEDs to observations, similarly to COSMOS. While COSMOS used photometry
in 30 bands to derive its photo-zs, SPHEREx will produce low-resolution (R∼20–100) spectra,
with a similar final redshift accuracy, as discussed in Stickley et al. (2016). While the main survey
will be shallower than COSMOS, two regions at the polar caps will be visited multiple times,
providing ∼100 square degrees of coverage to a depth similar to COSMOS. Thus, SPHEREx
should provide a redshift catalogue of similar accuracy to the COSMOS catalogue used here, but
covering an area 50 times larger. The resulting increase in the SNR of the clustering signal would
allow much finer binning in primary or secondary properties, giving a much more detailed view
of the relationship between satellites and their central galaxies.
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3.8 Data Availability

Most of the data underlying this article are publicly available. The COSMOS 2015 catalogue
(Laigle et al., 2016) can be accessed from the COSMOS website, at http://cosmos.astro.
caltech.edu/page/photom. A few spectroscopic redshifts that are unpublished from the
COSMOS collaboration (M. Salvato, private communication) will be shared on reasonable request
to the corresponding author with permission of the COSMOS collaboration. The derived data
generated in this research will also be shared on reasonable request to the corresponding author.
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Chapter 4

The hierarchical clustering method:
abundance and properties of local satellite
populations

Abstract

The faint satellites of the nearby Universe provide an important benchmark for our understanding
of structure formation and galaxy formation, but satellite populations are hard to identify beyond
the Local Group. We recently developed an iterative method to quantify satellite abundance
using galaxy clustering, and tested it on a local sample in the COSMOS field, where accurate
photometric redshifts are available for a large number of faint objects. In this chapter, we
consider the properties of these satellite populations in more detail, studying the satellite stellar
mass function (SSMF), the satellite-central connection, and quenching as a function of satellite
and central mass and colour. Despite the limited sample size, our results show good consistency
with those from much larger surveys, and extend measurements of the SSMF down to the lowest
primary masses (log(𝑀ℎ/𝑀⊙) ∼ 10.2, or log(𝑀∗/𝑀⊙) ∼ 8) considered to date. We reproduce
several known trends in satellite abundance and quenching, and find evidence for one new one, a
dependence of the quiescent fraction on the primary-to-secondary halo mass ratio. We discuss
the prospects for the clustering method in current and forthcoming surveys.

Key words: dark matter – galaxies: dwarf – galaxies: formation – galaxies: groups: general
– galaxies: luminosity function, mass function – Local Group
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4.1 Introduction

On large scales, the visible structure of the universe is clearly dominated by cold dark matter
(CDM), or something that behaves very much like it. Given this framework, galaxies are
predicted to form and grow in the centers of dense, virialized regions known as CDM halos.
Halos themselves grow both by the gradual accretion of diffuse matter, and by stochastic mergers
with other halos. During these mergers, smaller halos falling into larger ones will often survive
as distinct, long-lived sub-structures within the final system. The central galaxies of these smaller
halos will correspondingly survive as distinct “satellite" galaxies, orbiting the central galaxy
of the larger halo. Dark matter substructure is intrinsically hard to detect directly, so satellite
galaxies provide an important tracer of small-scale structure and halo assembly.

Galaxy formation is clearly strongly modulated on these small scales; a number of feedback
mechanisms related to internal star formation (e.g. Dekel & Silk, 1986; Mashchenko, Wadsley
& Couchman, 2008; Governato et al., 2010; Wetzel et al., 2016), the photo-ionizing background
(e.g. Bullock, Kravtsov & Weinberg, 2000; Gnedin & Kravtsov, 2006; Lunnan et al., 2012;
Katz et al., 2020), and/or environmental effects (e.g. Taylor & Babul, 2001; Mayer et al., 2006;
Łokas, Kazantzidis & Mayer, 2012; Richings et al., 2020) probably combine to greatly reduce
the abundance of dwarf satellites, but it is possible dark matter structure itself is modified
or suppressed on these scales (e.g. Spergel & Steinhardt, 2000; Macciò & Fontanot, 2010;
Anderhalden et al., 2013; Kennedy et al., 2014; Lovell et al., 2014; Fry et al., 2015; Elbert et al.,
2015; Nadler et al., 2019). Satellite populations provide an important test of this rich array of
physical processes.

The Local Group (LG), a composite system dominated by the Milky Way (MW) and the
Andromeda Galaxy (M31), has the best-studied satellite populations. We can detect LG satellites
down to much fainter magnitude and surface brightness limits than in any external group, and
can resolve systems into individual stars, allowing detailed studies of their evolutionary history
(McConnachie, 2012). It is not clear, however, that the LG is completely representative of
the group environment or of satellite populations. Observational studies have shown that it
is relatively rare for galaxies like the MW to have two bright star forming satellites like the
Magellanic Clouds, for instance (Guo et al., 2011; Liu et al., 2011; Strigari & Wechsler, 2012;
Robotham et al., 2012; Speller & Taylor, 2014), and numerical simulations have reached similar
conclusions (Boylan-Kolchin et al., 2010; Busha et al., 2011; Kang, Wang & Luo, 2016; Zhang,
Luo & Kang, 2019; Evans et al., 2020). Complete spectroscopic surveys (e.g. Geha et al., 2017;
Mao et al., 2021) are the ultimate tool for extending our understanding of satellite populations to
other groups, but they can be very expensive in observing time, particularly for low-mass systems
where genuine satellites are rare.

In previous work (Speller & Taylor, 2014; Xi et al., 2018, – chapter 2) we have explored the
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use of galaxy clustering to quantify satellite populations around isolated primaries. In chapter
3 (published as Xi & Taylor (2021)) we developed and tested a new, hierarchical method for
quantifying satellite abundance from galaxy clustering measurements (the ‘clustering method’
hereafter). The method uses the most obvious central galaxies, those that clearly dominate a
volume in projected area and redshift around them, to establish a basic clustering template for
the radial dependence and amplitude of the satellite population. This template is then applied
iteratively to the entire survey, assigning probabilities that any given galaxy is a satellite of a given
nearby primary galaxy. The clustering method is somewhat similar to the group-finding methods
of Yang et al. (2007) and Kourkchi & Tully (2017), which also use adaptive search radii for group
members, and iteratively update satellite membership and group properties. Our method does
not assign definite membership for each satellite, however, but only estimates the probability of
each galaxy pair being associated as primary and secondary. The method is particularly useful
in crowded fields, or where distance information is limited.

We tested the method using data from the low-redshift part of the COSMOS field. COSMOS
is a deep (𝐴𝐵 ∼ 25–26), multi-wavelength (0.25 `𝑚–24 `𝑚) survey covering a 2 deg2 equatorial
field (Scoville et al., 2007b). The data available for the COSMOS field includes high-quality
photometric redshifts (photo-zs) generated from the 30+ deep bands (Scoville et al., 2007b;
Ilbert et al., 2013; Laigle et al., 2016; Weaver et al., 2021), providing distance information for
a large sample of faint galaxies below the spectroscopic limit. The combination of depth and
photo-z accuracy make this data set an ideal test case for the clustering method. In COSMOS,
we made significant detections of the satellite population over a wide range of primary mass
(∼ 1010–1013.5𝑀⊙ in halo mass). We measured the overall satellite abundance and the satellite
luminosity function, as well as their dependence on primary halo mass. We also tested for a
large number of possible systematic uncertainties, and showed that these are generally within the
derived statistical uncertainties.

In this chapter, we explore the properties of the detected satellite populations further. The
outline of this chapter is as follows. First, in section 4.2 we review the clustering method and
define the base catalogue, the first-run primary sample, and the primary and satellite probabilities
used in subsequent calculations. In section 4.3 we measure the satellite stellar mass function
(SSMF), both in absolute terms, and relative to the stellar mass of the primary. In section
4.4 we study satellite abundance as a function of primary colour or specific star formation rate
(sSFR, the star formation rate per unit stellar mass) and discuss the evidence for ‘conformity’
in our spectroscopic subsample. In section 4.5 we measure the quiescent fraction as a function
of secondary stellar mass, primary stellar mass, primary colour, and primary-to-secondary halo
mass ratio. Finally, we summarize our results and discuss future prospects for the clustering
method in section 4.6.
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4.2 Review of the method

4.2.1 The Hierarchical Clustering Method

To characterize satellite populations, we need to measure the abundance of satellite (or ‘sec-
ondary’) galaxies around central (or ‘primary’) galaxies. This is challenging, as satellites are
faint and relatively rare with respect to foreground and background galaxies seen in projection.
Our method uses projected clustering, relying on the fact that satellites are located close to cen-
trals, and thus cause a slight density excess in the projected galaxy distribution. This overdensity
can be used to estimate the satellite abundance statistically, giving each galaxy a probability of
being associated with a given central, based on the measured clustering strength.

In chapter 3, we tested our method using data from the COSMOS field. Starting with the
COSMOS2015 photometric redshift catalogue (Laigle et al., 2016), we applied the following cuts
to select a low-redshift sample of galaxies with reasonably accurate redshift information:

• 𝑖+ < 25.5;

• 0 < 𝑧pdf < 6.9;

• 𝑧 − 2𝜎𝑧 < 0.3;

• 𝜎𝑧 < 0.5 .

These cuts give us a ‘base’ catalogue of 37,578 galaxies to work with. In most of our analysis,
we also apply a stellar mass cut at 𝑀∗ > 107.3𝑀⊙, as our sample is reasonably complete above
this mass (see section 2.4 of chapter 3).

To define an initial sample of primaries, we make a conservative selection of systems most
likely to dominate their surrounding region. First, a halo mass is assigned to each galaxy in the
base catalogue as if it were the central galaxy of its own host halo, using a mean halo-to-stellar
mass ratio based on Behroozi, Wechsler & Conroy (2013) (see chapter 3, section 3.1), and the
virial radius 𝑅vir and circular velocity at the virial radius 𝑣vir corresponding to this halo mass are
calculated. Each galaxy, in order of the assigned halo mass from high to low, is then checked to
see if it is the most massive galaxy within its local Region of Interest (ROI), and thus a potential
primary.

As discussed in chapter 3, the ROI is a cylindrical region around each primary, extending
out to a maximum radius 𝐴𝑅vir in projected separation 𝑅𝑃 (calculated at the distance of the
primary) and a length ±𝐵𝑣vir with along the velocity-difference axis Δ𝑣. In addition, since
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velocity uncertainties often exceed 𝑣vir, we put an additional cut of Δ𝑣 > 𝐶𝜎Δ𝑣 on the sample of
galaxies within the ROI, where 𝜎Δ𝑣 is the uncertainty in velocity difference Δ𝑣. Based on the
clustering signal measured in stacked samples, we choose the values (𝐴, 𝐵, 𝐶) = (3.0, 2.0, 1.5) to
define the limits of the ROI, as discussed in section 3.2 of chapter 3.

Primary candidates close to the boundaries of the survey volume in position or in redshift,
or near heavily masked regions, could have more massive companions that were not included in
the catalogue. Thus, we apply two additional cuts to the list of potential primaries, to ensure
reasonably complete coverage of the ROI around each one:

• 𝑧 < 0.25;

• area completeness > 0.65;

This selection produces an initial sample of 815 galaxies, which we will refer to as the ‘first-
run’ primary sample. All other galaxies in the catalogue at this point are considered potential
secondaries.

We measure the clustering signal around the first-run sample of primaries and model it as the
sum of two components, a satellite component and a background component of constant surface
density. We assume that the background component depends only on redshift, while the satellite
component depends only on halo mass (given the fairly narrow redshift range of our sample).
Fitting this two-component model to the data, we can estimate what fraction of all galaxies at a
given distance from the primary are genuine satellites. Thus, in a second step, for every secondary
in the ROI of a primary 𝑖, we calculate this probability 𝑃𝑖sat of being a satellite. (We will also
refer to the converse ‘field’ probability, 𝑃𝑖field = 1− 𝑃𝑖sat, that a galaxy is not a satellite of primary
𝑖.) Given that the probability 𝑃𝑖sat depends both on the secondary and on the primary, we will
also refer to primary-secondary pairs, and associate with each a probability 𝑃 = 𝑃𝑖sat. We note
that since ROIs can overlap, a given secondary may be a member of more than one pair, having a
non-zero probability of being a satellite of more than one nearby primary. Thus, the total number
of pairs exceeds the number of objects in the base catalogue.

Fig. 4.1 shows the number of pairs versus satellite probability (lower red histogram), as well
as the cumulative number over a given probability, with (upper black histogram) and without
(middle blue histogram) the spectroscopically confirmed pairs discussed in Section 4.2.3 below,
which we assume to be 100% probable (point on the right-hand axis). We note that the pair
distribution is very close to a power law in probability 𝑝, 𝑛(𝑝) ∝ 𝑝−2.

For a galaxy to be a primary, it must not be a satellite of any other system. Thus, if a secondary
is a member of more than one pair, then treating the probabilities 𝑃𝑖field as independent, the net
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Figure 4.1: Number of pairs versus satellite probability (red histogram), as well as the cumulative
number over that probability, with and without the spectroscopically confirmed pairs (blue and
black histograms respectively). The spectroscopic pairs are assumed to have a probability of 1.0
(black square on the right-hand axis).
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primary or field probability 𝑃field is the product of the individual probabilities:

𝑃field = Π(𝑃𝑖field) = Π(1 − 𝑃𝑖sat) . (4.1)

Similarly, the net probability of a galaxy being a satellite of some system, 𝑃sat, is:

𝑃sat = 1 − 𝑃field = 1 − Π𝑖𝑃
𝑖
field = 1 − Π𝑖 (1 − 𝑃𝑖sat). (4.2)

The initial primary selection is deliberately very conservative, including only those galaxies
most likely to dominate their ROI. Given the non-zero background at all radii, however, no
secondary is identified as a satellite with 100% probability, and thus any galaxy in the catalogue
could be a potential primary. To account for this, we iterate, measuring the clustering signal
stacked around all objects in the base catalogue, but weighting the contribution of each galaxy
by its primary (i.e. field) probability. This iteration is particularly important at low masses, as
these galaxies are mainly excluded from the first-run primary sample (see Fig. 3.3 of chapter 3;
the first-run sample includes almost no objects below log(𝑀ℎ/𝑀⊙) = 10.5, whereas the base
catalogue extends down to log(𝑀ℎ/𝑀⊙) ∼ 10).

4.2.2 Calculating Distributions of Satellite Properties

The satellite probabilities described above allow us to study statistically the distribution of
ancillary properties such as colour, luminosity, stellar mass, or star-formation rate (SFR). The
simplest approach, which we called ‘Method A’ in our previous chapter, is to use the satellite
probabilities as weights when calculating the distribution of a given ancillary property. Thus, for
instance, we could estimate the satellite colour distribution by calculating the colour distribution
for the entire base catalogue, weighted by the satellite probability. This assumes, however, that
the ancillary property in question (colour, in this example) is uncorrelated with the clustering,
which may not be true in many cases. Results calculated using Method A can be biased if the
unclustered background population has a different distribution of ancillary properties than the
satellite population (cf. Appendix C of chapter 3); in this case, selecting on the ancillary property
first will change the clustering strength.

Ideally, we would resolve this problem by splitting the catalogue into narrow bins in the
ancillary property, and recalculating the clustering signal and satellite probabilities for each of
these bins individually. (We called this ‘Method C’ in the previous chapter.) Given the limited
signal-to-noise ratio (SNR) of the clustering signal, however, binning our sample to this degree
would increase the Poisson noise in the background estimate to unacceptable levels. In chapter 3
we described a practical alternative (‘Method B’) that works as follows: the total abundance of the
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satellite and background components within the ROI are estimated from the satellite probabilities
described above. We also use these probabilities to define ‘field’ galaxies, with net probabilities
of being satellites of less than 1%, throughout the entire survey. This field population is used
to define a (normalized) background distribution in the ancillary property, e.g. colour, stellar
mass, etc., and it is assumed the background component in the ROI follows this same distribution.
Thus, we can calculate the background contribution to a given bin in the ancillary property, as the
fraction of field galaxies in that bin, times the total number of background galaxies in the ROI.
(See sections 5.1 & 5.2 of chapter 3, as well as Speller & Taylor (2014), for further discussion).

4.2.3 Spectroscopically Confirmed Subsample

A total of 2,506 spectroscopic redshifts are also available for the base catalogue. Searching
through this sample, we find 278 spectroscopically confirmed primary-secondary pairs with
projected separations of less than 2.0 times the virial radius of the primary and redshift separations
of less than 10−3 (roughly 300 km/s). This subsample includes 136 unique primaries and 271
unique satellites (by the definitions above, there are a few objects that could be satellites of more
than one primary). On average, each primary in the spectroscopic subsample has slightly more
than two confirmed satellites, but the most massive primaries contain significantly more satellites
than the rest. There are 15 primaries with log(𝑀∗/𝑀⊙) > 10.9, with a total of 65 confirmed
satellites (or 4.3 each on average). We will treat the 278 primary-secondary pairs as completely
certain, and use this subsample to test some of our results. We note however that it is assembled
from many different redshift sources, and is not complete nor homogeneous.

The spectroscopic sample provides an interesting test of our estimated satellite probabilities.
The clustering method identifies 442 (130) secondaries with 𝑃sat larger than 0.3 (0.5), of which
26 (14) have spectroscopic redshifts, and 7 (2) are spectroscopically-confirmed satellites. This
is completely consistent with expectations for the 𝑃sat > 0.3 sample (46% probability of getting
7/26 = 27% or fewer confirmed satellites), but inconsistent for the 𝑃sat > 0.5 sample (only a
0.64% probability of getting 2/14 = 14% or fewer confirmed satellites, corresponding to a 2.7𝜎
deviation.) Given the small numbers of objects involved, however, it is unclear whether the
latter discrepancy is important, or simply an artifact of uneven spectroscopic follow-up (e.g. with
coverage that undersamples close pairs).

We note that the high-probability samples provide an interesting set of possible targets for fur-
ther spectroscopic follow-up; it would be fairly easy, for instance, to obtain spectra for magnitude-
limited samples of the (442-26) = 416 objects with 𝑃sat > 0.3, or the 2008 objects with 𝑃sat > 0.1,
with the expectation that significant fractions of these objects were genuine satellites.
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4.3 Satellite Stellar Mass functions

Our base COSMOS catalogue includes large numbers of intrinsically faint, low-redshift galaxies,
and thus it provides a good opportunity to study the low-mass end of the SSMF. In this section,
we will explore the SSMF and various related quantities, and their dependence on environment
(i.e. primary halo mass). We will then compare our results to previous measurements from the
literature.

Laigle et al. (2016) derived stellar mass estimates for the COSMOS2015 catalogue using a
library of synthetic spectra generated by the stellar population synthesis model of Bruzual &
Charlot (2003), the same method also described in Ilbert et al. (2015). They also estimated
the stellar mass completeness limit empirically, based on the masses of detected galaxies and
their 𝐾s magnitudes relative to the limiting magnitude in this band. For the redshift range of
𝑧 < 0 < 0.35, they estimate a 90% completeness limit of 𝑀∗ = 108.4𝑀⊙ for quiescent galaxies
and 𝑀∗ = 108.1𝑀⊙ for the star-forming galaxies. In chapter 3, examining number counts, we
concluded that our local sample is complete down to at least 𝑀∗ = 108.2𝑀⊙ for the redshift range
(z<0.25). For very low-redshift systems (z<0.07), our sample appears to be complete down to as
low as 𝑀∗ = 107.2–107.5𝑀⊙. For primary masses, these limits are amongst the deepest published,
as discussed in section 4.3.3 below.

4.3.1 Absolute Stellar Mass Functions

In Figs. 4.2 and 4.3 we show the (cumulative) satellite stellar mass function (SSMF), binned
in six ranges of primary stellar mass and six ranges of primary halo mass, respectively. The
mass functions are calculated using method B described above. Only satellites within 1.5 𝑅vir in
projection are included in the total.

We note that since these are cumulative plots, the error bars in different bins of secondary
stellar mass are not independent; as an indication of the overall significance of the clustering
signal, we can consider the measured abundances at any single value of 𝑀∗. Also, as explained
in chapter 3, the halo-background decomposition used to fit the clustering signal and set the
initial satellite probabilities assumes and fits a power-law dependence on halo mass; although
the connection to the final measured satellite abundance is indirect, this may smooth slightly the
variation of the SSMF with primary mass. From the results of chapter 3, fitting the clustering
signal in each bin of primary mass independently might add an additional scatter of 20-30% to
the normalization of the SSMF, particularly at lower primary masses. This is generally less than
the errors shown here, however, so the net effect would be minor.
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Figure 4.2: The (cumulative) satellite stellar mass function, for 6 bins of primary stellar mass.
Only satellites within 1.5 𝑅vir in projection are included. The mass range and average mass of
each primary mass bin are given in the legend.
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Figure 4.3: The (cumulative) satellite stellar mass function, for 6 bins of primary halo mass.
Only satellites within 1.5 𝑅vir in projection are included.
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Overall, the mass function appears Schechter-like, with a power-law dependence on secondary
stellar mass and an exponential cutoff at the high-mass end. The amplitude of the SSMF also
scales fairly smoothly with primary stellar or halo mass (given the caveat about smoothing
discussed above). A similar conclusion was reached in chapter 3 (see e.g., Fig. 10). Previous
work by Wang & White (2012) claimed a change in the slope of the (differential) SSMF with
primary mass, but subsequent work (e.g. Lan, Ménard & Mo (2016); Zu & Mandelbaum (2015))
suggests that this comes from fitting a single power-law to a multi-component SSMF that was
sampled over different ranges of secondary mass for different ranges of primary mass. The true
SSMF probably includes Schechter-function components for red and blue satellites at the faint
end, plus a separate log-normal component of red galaxies above 𝑀∗ ∼ 109.5–1010𝑀⊙ (Lan,
Ménard & Mo, 2016). While there is a faint suggestion of this log-normal component in our
1–2 most massive primary ranges, we lack the SNR to distinguish it clearly. For less massive
primaries, we clearly see the exponential cutoff in the SSMF at large masses.

Satellites in the lowest stellar mass bin on Figs. 4.2 and 4.3 are approaching the stellar mass
completeness limit of 108.2𝑀⊙ mentioned above. This is particularly true for massive primaries
(where the slope of the SSMF appears to flatten slightly below 109𝑀⊙ ), as these are rare, and
tend to lie at higher redshift within our target volume (see Fig. D.2 in Appendix D.2); the highest
mass bin, for instance, has no primaries below z = 0.22. We suspect completeness effects toward
the high redshift limit of the sample may reduce the counts slightly at faint magnitudes.

4.3.2 Relative Stellar Mass Functions

The subhalo mass function predicted by theory is approximately scale invariant, that is, the number
of subhalos with a given fraction of the main halo mass or circular velocity is roughly independent
of primary halo mass (e.g. Moore et al., 1999a). Alternately, since the cumulative subhalo mass
function goes roughly as (𝑀sub)−1, this scale-invariance also implies that the number of subhalos
of a given (dark matter) mass 𝑀sub per unit primary halo mass is roughly constant (e.g. Gao et al.,
2004).

We can compare this prediction to the equivalent quantity in terms of stellar mass, that is the
abundance of satellites of a given stellar mass, per unit primary halo mass. We refer to this as the
net ‘efficiency’ of subhalo occupation on these scales, assuming a monotonic relation between
subhalos and satellites. Fig. 4.4 shows this efficiency or relative abundance, for the same bins of
primary halo mass as in Fig. 4.3. At the low-mass end, we see that the SSMF per unit halo mass
is constant to within the uncertainties, at least for the top four primary halo mass bins. At the
high-mass end, the relative mass function is truncated when the satellite mass is roughly equal to
the primary mass; this is a natural consequence of our requirement that 𝑀sat

∗ < 𝑀
𝑝
∗ .
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Figure 4.4: The SSMF per unit halo mass, or ‘efficiency’ of subhalo occupation, using the same
same bins of primary halo mass as in Fig. 4.3.
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Overall, these results are consistent with subhalo occupation being fairly universal at the
masses probed here; that is, it seems that a subhalo of a given dark matter mass will tend
to host a satellite galaxy of a set average stellar mass, independent of environment (where by
‘environment’, we mean primary halo mass). We can compare these results to those of Zu &
Mandelbaum (2015). Down to primary halo masses of log(𝑀∗/𝑀⊙) = 12.2, they measure a
constant efficiency in the differential counts for satellite masses log(𝑀∗/𝑀⊙) = 8.5–10.2. The
value they measure does vary with primary mass at satellite masses log(𝑀∗/𝑀⊙) ≳ 10.2. This
will shift the cumulative mass functions slightly, but given the steep slope of the counts we might
expect cumulative counts to agree to within ∼20% for the top 4 bins shown in Fig. 4.4, which is
certainly consistent with our results. Thus, our measured efficiencies are consistent with those of
Zu & Mandelbaum (2015), over the primary mass range where they overlap.

At the lowest primary halo masses, we do see a possible indication of a drop in efficiency,
but only at 1–2𝜎 level. To test or demonstrate universal subhalo occupation conclusively, we
would need higher SNR data, as well as more information on the radial distribution of satellites
in different environments (particularly around low-mass primaries), to show that subhalos of a
given mass are occupied in exactly the same way.

Some evolutionary effects, such as infall due to dynamical friction, should depend on environ-
ment, however; specifically, they will depend on the subhalo-to-main halo mass ratio. Relatively
massive satellites (i.e. small primary-secondary mass ratios) will experience stronger dynamical
friction, and will merge faster, depleting the observed satellite population. We can look for
evidence of such effects by measuring satellite abundance in terms of the corresponding stellar
mass ratio `∗ ≡ 𝑀∗,main/𝑀∗,sat. We will call the abundance as a function of this ratio the ‘relative
stellar mass function’ (RSMF).

Fig. 4.5 shows the RSMF, estimated using method B, for the same primary halo mass bins
used previously. Note that since we have applied a fixed stellar mass completeness cut to the
base catalogue at 108.2𝑀⊙, the relative depth varies with the primary stellar mass. Points where
satellites around more than half the primaries would lie below this completeness limit for a given
stellar mass ratio are excluded. We can see that the top mass bin has a very good SNR, and probes
the RSMF down to 3.4 dex in stellar mass ratio. For smaller halos we only reach depths of 1.5–2
dex.

For the higher primary mass bins, the amplitude of the RSMF varies as expected from Fig. 4.4.
For the lower bins, the overall scaling is harder to determine given the low SNR, but it seems
to flatten, and may even be inverted. This could be a result of the flatter stellar-to-halo mass
relation (SHMR – e.g. Leauthaud et al., 2012; Behroozi, Wechsler & Conroy, 2013; Grossauer
et al., 2015, Shuntov et al. in prep.) at these halo masses (which would produce more overlap
between the primary halo mass bins), but it may also indicate residual background contamination
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Figure 4.5: Satellite abundance as a function of the primary-to-secondary stellar mass ratio
`∗ (the RSMF). Points where 50% or more of the primaries would lie below the stellar mass
completeness limit of the sample are excluded from the plot.
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problems in the lowest bins.

The shape of the RSMF is similar in all bins, with a fairly shallow slope at large mass ratios
(low-mass satellites), and a steeper slope at small mass ratios (massive satellites). There is a slight
indication that the rise at small mass ratios is steeper for less massive primaries than for more
massive ones. Re-binning the results into two bins of primary mass to increase the SNR, we find
that for higher primary masses (𝑀ℎ > 12.8), 𝑑 ln 𝑁/𝑑 ln `∗ ∼ 1.5 ± 1, whereas for (𝑀ℎ < 12.8),
𝑑 ln 𝑁/𝑑 ln `∗ ∼ 3 ± 2. Thus, there is a difference, but it is less than 1-𝜎 significance. Here
again, this difference would be expected from the flatter slope of the SHMR at low masses. For
a flatter SHMR, the range of `∗ covered by the first bin in the figure would map onto a smaller
range of dark matter mass ratios. Thus, the first data point would represent a purer sample of
major mergers, and dynamical friction effects would be stronger in this bin. Clearly, it would take
a larger sample to confirm this. We revisit this point and show further evidence for dynamical
friction effects below, however, in Section 4.5.

4.3.3 Comparison with Literature Results

The satellite luminosity function and stellar mass function have been measured many times,
using different techniques to identify satellites individually or statistically. Fig. 4.6 shows one
comparison of some previous measurements, in terms of their limiting secondary stellar mass
sensitivity and primary halo mass coverage. Symbol types indicate measurements of the lumi-
nosity function (triangles), the stellar mass function (squares), both (pentagons), or the relative
luminosity function (the number as a function of magnitude offset – circles). Note that the limits
are approximate, as they have been converted from various bands and/or assume different model
mass-to-light ratios. Different surveys also vary enormously in size and SNR. With these caveats,
we see that the our current work extends the sensitivity to the lowest primary halo masses to
date. The sensitivity in secondary mass is less exceptional, although at very low redshift we do
in principle have some sensitivity down to masses of log(𝑀∗,sat/𝑀⊙) ∼ 7.5 (not shown here).

Given these previous results, we will compare the measured amplitude of the SSMF to the
values in Wang & White (2012) and Lan, Ménard & Mo (2016), since these are the deepest
published SSMFs; for the shape of the SSMF, we will convert the relative luminosity function
published by Mao et al. (2021) to stellar mass.

Fig. 4.7 shows our measured amplitude of the SSMF, as a function of primary halo mass,
compared to the results of (Wang & White, 2012, – blue) and (Lan, Ménard & Mo, 2016, –
cyan). We have used the value of the cumulative mass function at 𝑀∗,sat = 109𝑀⊙, as a measure
of the amplitude, as this point is reasonably well sampled over the whole range of primary halo
mass considered. Symbols show the halo mass range in each bin as horizontal width, and the
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Figure 4.6: Limiting sensitivity, in secondary stellar mass versus primary halo mass, of a number
of previous studies of satellite abundance (from top right to bottom left, Conroy, Wechsler &
Kravtsov, 2006; Zu & Mandelbaum, 2015; Wang & White, 2012; Wu et al., 2021; Nierenberg
et al., 2016; Lan, Ménard & Mo, 2016; Besla et al., 2018; Mao et al., 2021; Speller & Taylor,
2014; Wang et al., 2020). Triangles indicate published luminosity functions; squares indicate
published mass functions; pentagons indicate both, while circles indicate relative luminosity
functions (i.e. number versus magnitude offset). Values are approximate, as discussed in the text.
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uncertainty as height (the uncertainties for Wang & White (2012) and Lan, Ménard & Mo (2016)
were not directly reported, but are assumed to be small – thus the nominal height shown here).
Note that the different studies also used slightly different limiting radii to define the satellite
abundance – Wang & White (2012) used a fixed radius of 300 kpc (or 170 kpc in their lowest
mass bins), Lan, Ménard & Mo (2016) used the virial radius 𝑅vir, which should have a value
of ∼250 kpc for primary halo mass log(𝑀h,p/𝑀⊙) = 12, while we have used 𝑅vir ∼ 375 kpc at
log(𝑀h,p/𝑀⊙) = 12. Testing our model with different radial cuts, we expect these differences
may shift the measured amplitude by ∼20% between Lan, Ménard & Mo (2016) and Wang &
White (2012), and a further ∼20% between Wang & White (2012) and ourselves. These shifts
would slightly improve the agreement between our results and Wang & White (2012), particularly
at the high-mass end, but they are relatively small compared to the uncertainties, so we have not
included them here.

Overall, we see excellent consistency between our measured amplitude of the SSMF and the
values found in previous work; while there appears to be a slight offset between results around
log(𝑀∗,p/𝑀⊙) = 10.8, it is well within our uncertainties. The amplitude appears to vary as a
simple power law in log𝑀∗,p, over four decades in primary stellar mass.

We can also test the shape of the SSMF, or equivalently the RSMF, at a given primary mass.
Here we compare to Mao et al. (2021), who recently presented the data release from the SAGA
II spectroscopic survey, as well as some initial science results, including a relative luminosity
function. Estimating stellar masses for the SAGA sample as described in appendix D.3, we can
use their satellite and host catalogues to construct a RSMF for MW-like hosts.

The comparison is shown in Fig.4.8. Once again, the agreement is excellent; over the range
of mass ratios log(𝑀∗,p/𝑀∗,s) = 0.5–2, the SAGA results lie well within the uncertainties of our
RSMF measurements. Our results appear to roll over, becoming incomplete around mass ratios
of `∗ = 2–2.5, depending on the primary mass bin; the SAGA results extend deeper, with rising
counts down to a mass ratio of around `∗ = 3. (Given the SAGA II magnitude limit is about
𝑀𝑟 = −12.3, and their hosts are selected in the range −23 > 𝑀𝐾 > −24.6, which corresponds
approximately to −20.5 > 𝑀𝑟 > −22.1, the SAGA results should be relatively complete down to
the last few points plotted, or `∗ ∼ 3.2.)

We note that Mao et al. (2021) include only satellites at separations 𝑅𝑝 < 300 kpc and velocity
offsets Δ𝑣 < 250 km s−1, which are slightly more restrictive than our limits. Judging from Figure
10 of their first paper (Geha et al., 2017), this might reduce their measured satellite abundance
by ∼30% relative to ours, but this is still consistent with our results (and in fact a slightly better
match at low mass ratios/large satellite masses).

Overall, we conclude that for the ranges of primary and secondary mass where we can directly
compare them, both the normalization and shape of our SSMF (and/or RSMF) are in excellent
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Figure 4.7: Amplitude of the cumulative stellar mass function at 𝑀∗ = 109𝑀⊙, for the current
study (red points and squares), compared to previous results from Wang & White (2012) and
Lan, Ménard & Mo (2016). The horizontal extent of the symbols indicates the bin width, while
the vertical extent indicates the approximate uncertainty in the central value (red points).
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Figure 4.8: The RSMF for MW-mass hosts, compared to the SAGA II results of Mao et al.
(2021). We have included two of our primary halo mass bins that bracket the range covered by
the SAGA sample. The legend specifies the primary halo mass range, together with the median
halo mass and the median COSMOS 𝐾𝑠 band magnitude for each bin. (Note COSMOS uses AB
magnitudes, while SAGA II uses Vega magnitudes.)
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agreement with previous results. The clustering method has allowed us to extend these previous
measurements to very low primary masses, however, despite the relatively small COSMOS field,
and thus shows great potential for future surveys.

4.4 Satellite-Central connection

Given the overall consistency of our SSMF measurements with previous results, we will proceed
to consider satellite populations as a function of primary properties. In particular, there is
already considerable evidence that primary morphology influences the abundance and properties
of satellites:

• Several previous studies find that red/blue primaries have a higher/lower abundance of
satellites at fixed stellar mass (e.g. Wang & White, 2012; Mandelbaum et al., 2016).

• Central galaxies of different morphological type may follow different SHMRs (Wojtak &
Mamon, 2013; Hudson et al., 2015; Mandelbaum et al., 2016; Correa & Schaye, 2020,
Spitzer et al. in prep.), which might or might not explain the first point.

• Satellite populations also show “conformity” in colour, that is red primaries tend to have
more red satellites, while blue primaries have more blue satellites (e.g. Weinmann et al.,
2006; Wang & White, 2012; Hartley et al., 2015; Knobel et al., 2015).

These patterns could reflect assembly bias (Gao, Springel & White, 2005), red primary
galaxies lying preferentially in denser regions where structure has formed earlier and dwarf
galaxies are more abundant, but satellites tend to be quenched. Alternately, they could be due
to effects at the single-halo scale, including a different SHMR for central galaxies with different
colours or morphologies. If central morphology depends on the detailed merger history of
the system, this may also influence the satellite population; a simple example is fossil groups
(Ponman et al., 1994), where recent mergers appear to have depleted the bright end of the satellite
luminosity function.

To test for these effects, we consider satellite populations around subsamples of primaries
split by colour or by sSFR, compare our results to previous measurements from the literature,
and also consider the question of conformity.
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4.4.1 Satellite Populations Split by Central Colour or sSFR

First, we consider the division of primaries into subsamples. For colour, we choose to split on
the index 𝑐 = (𝐵 − 𝑖+), as explained in Appendix D.4. We use a colour cut at 𝑐 = 1.6 for massive
primaries (log(𝑀∗/𝑀⊙) > 10), while for less massive primaries, we move this to 𝑐 = 1.5, to
reflect the evolution of the red sequence at lower stellar mass. For sSFR, we split at the value
−11, which produces roughly comparable subsamples of star-forming and passive galaxies, as
explained in Appendix D.4.

Fig. 4.9 shows the SSMF in subsamples split by colour. Note that the signal of the highest
primary mass bin is entirely from red primaries, as the primary sample has no blue galaxies in
this mass range. While our results are consistent with those mentioned above (the SSMF for
red primaries lies above the SSMF for blue primaries), we lack the SNR to reach significant
conclusions. In the intermediate primary mass bin, there is a significant detection of massive
satellites (log(𝑀∗,sat/𝑀⊙) > 10) around red primaries, versus no detection around blue primaries;
thus the two populations differ at the ∼ 1.5𝜎 level. (This measured difference is also consistent
with earlier results, e.g. Wang & White 2012.)

A number of previous studies have indicated that the host halos of red primaries are, one
average, more massive than those of blue ones (e.g. Wojtak & Mamon, 2013; Mandelbaum et al.,
2016; Correa & Schaye, 2020). Correa & Schaye (2020), for instance, find that disk galaxies
have stellar masses up to 1.5 times larger at fixed halo mass, at the high-mass end of the galaxy
population. Given the slope of the SHMR, this is equivalent to a factor of ∼ 2 difference in halo
mass at fixed stellar mass. Earlier work by Mandelbaum et al. (2016) found a similar result:
for primary stellar masses log(𝑀∗/𝑀⊙) = 10.3– 11.6, the halos of passive centrals are at least
twice as massive as those of star-forming centrals of the same stellar mass. If we assume that
total satellite number is directly proportional to host halo mass (as suggested by Fig. 4.4), we
would expect a higher number of satellites around red primaries than around blue primaries of
equal stellar mass. The amplitude of this effect is only a factor of ∼ 2, however, which is within
the uncertainties in Fig. 4.9. There could also be other factors that affect the normalization
of the SSMF; if the satellites of red or passive primaries are more often quenched themselves
(‘conformity’), they may have a different subhalo SHMR, which could cancel out some or all of
the effect of the primary halo mass difference. We consider conformity below, and quenching
rates in Section 4.5.

We have also measured the SSMF in subsamples split by sSFR, as shown in Fig. 4.10, to
test whether they showed more evidence of systematic differences in satellite populations. At
the highest mass bins, we find no significant difference between the satellite abundance around
high-sSFR primaries and low-sSFR ones. At intermediate and low primary mass, low-sSFR
primaries seem to have more satellites, consistent with previous results, but once again the SNR
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Figure 4.9: The SSMF for red/blue primaries in three primary stellar mass ranges. The bins in
primary mass are adjusted to give the red and blue subsamples comparable mean stellar mass.
The top dashed line is the SSMF for primaries with stellar mass larger than 1010.9𝑀⊙, the range
in which there are no blue primaries.
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Figure 4.10: As Fig. 4.9, but for primary samples split by sSFR.

of the detection is only about 1𝜎.

4.4.2 Conformity in the Spectroscopic Sample

While we lack the SNR to properly test conformity with the clustering method (our attempts to
measure it were inconclusive), the spectroscopic sample does show some evidence for this effect.
First, Fig. 4.11 shows the distribution of colour versus stellar mass for the spectroscopically
confirmed secondaries (a similar plot is shown for the primaries in Appendix D.4). We see a
strong correlation between the stellar mass and colour, with a well-defined red sequence visible
at the high-mass end.

Fig. 4.12 then compares the colour indices of primary and secondary galaxies. The horizontal
line indicates the division between red and blue primaries (at high primary mass), while the
horizontal line indicates the median colour of the secondary sample. Examining each quadrant,
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Figure 4.11: Colour index versus stellar mass for the spectroscopically confirmed satellites; points
are coloured by the redshift.
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Figure 4.12: The colour index of the spectroscopically confirmed satellites versus the colour index
of their primaries. The dashed vertical line marks the division between red and blue primaries
(at low stellar mass); the horizontal line marks the median colour of the secondary sample.

we see that red secondaries are rare around blue primaries. Thus, red satellites occur mainly
around red primaries, while blue satellites occur around a range of primaries; also the satellites of
blue primaries tend to be blue, while the satellites of red primaries have a range of colours. While
this pattern is broadly consistent with previous measurements of conformity (e.g. Weinmann
et al., 2006; Wang & White, 2012; Hartley et al., 2015; Knobel et al., 2015), we caution that
the spectroscopic sample is inhomogenous and incomplete, particularly for the more massive
primaries, which tend to lie at higher redshift (see Appendix D.2). Thus it is possible that we are
missing some faint blue satellites around distant, massive red primaries, (although it seems less
likely that we are missing red satellites around nearby, low-mass blue primaries).
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4.5 Environmental Quenching

The quenching of star formation in a galaxy can be driven by internal processes (e.g. rapid
gas loss via violent starbursts), or environmental ones (e.g. ram pressure stripping by the intra-
cluster medium). There are clear indications of environmental quenching even on small scales;
in the Local Group, for instance, most nearby dwarfs are quiescent, and star-forming dwarfs are
generally distant, with the notable exception of the Magellanic clouds (McConnachie, 2012).
Studies of environmental quenching consider either the total quiescent fraction in the satellite
population, or the “environmentally quenched fraction”. This is the fraction of those galaxies
that would be expected to be star-forming in the field, but that are observed to be quiescent in
satellite populations. It can be calculated as

𝑓qe = ( 𝑓s − 𝑓f)/(1 − 𝑓f) (4.3)

where 𝑓s refers to the quiescent fraction of satellites and 𝑓f refers to the quiescent fraction of field
galaxies. Thus for instance, if 𝑓f = 0.2 and 𝑓s = 0.8, we conclude that the fraction of (star-forming)
systems quenched by their environment is 0.6/0.8 = 75%.

The environmentally quenched fraction has previously been found to depend on secondary
stellar mass, with hints of an abrupt change around a secondary stellar mass log(𝑀∗/𝑀⊙) ∼ 8
(Wheeler et al., 2014), but measurements in the LG (Wetzel, Tollerud & Weisz, 2015) and in the
SAGA II survey (Mao et al., 2021) do not confirm this feature, and in general there is limited
information in the secondary mass range 107–109𝑀⊙. Quenching may also vary as a function of
primary properties, as mentioned above, so we will consider it in the various primary subsamples
defined in Section 4.4.

To distinguish quiescent galaxies from star-forming ones, we use the ‘CLASS’ flag in the
COSMOS2015 catalogue, which classifies galaxies based on their location in the (NUV−𝑟)-
(𝑟 − 𝐽) colour-colour plane (Laigle et al., 2016). We noticed, however, that about 30% of the
galaxies in the base catalogue do not have valid NUV-band measurements. In principle, these
galaxies should not have been classified, due to the lack of NUV−𝑟 colour. In practice, however,
they were classified as ‘CLASS=1’ (or star-forming) in the COSMOS2105 catalogue. To correct
this, for these galaxies we apply our own classification, similar to that of Laigle et al. (2016),
but replacing the missing NUV−𝑟 colour with ‘MNUV_MR’, an estimated colour given in the
catalogue that appears to be available for most objects, and is also corrected for dust-extinction.
Using this colour ensures full completeness for our base catalogue, and for galaxies where valid
NUV measurements are available, the MNVU_MR-(𝑟 − 𝐽) colour-colour distribution appears to
be roughly equivalent to the (NUV−𝑟)-(𝑟 − 𝐽) distribution.

The new classification ‘CLASS_XI’ is defined as:
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1. ‘CLASS_XI=0’ (Quiescent) if [‘CLASS=0’ OR ( ‘MNUV_MR> 3.1’ AND ‘MNUV_MR>
3 × (𝑟 − 𝐽) + 1’)];

2. ’CLASS_XI’=1 (Star-forming) for the rest.

4.5.1 Quenching versus Secondary Stellar Mass

To estimate the environmentally quenched satellite fraction, we can proceed in two ways. First,
we can consider the whole catalogue (binned by stellar mass) and use the previously calculated
overall satellite/field probabilities, 𝑃sat and 𝑃field, without reference to particular primaries.

Suppose the catalogue contains 𝑁q,tot quiescent galaxies in a given stellar mass bin. We can
divide this into satellite and field or primary populations, such that

𝑁q,sat = 𝑁q,tot − 𝑁q,field . (4.4)

On the other hand, the total number of satellites can be written:

𝑁sat =
∑︁
𝑖

𝑃𝑖sat , (4.5)

and we can estimate the number of quiescent field galaxies by assuming an universal quiescent
fraction for field galaxies within the given mass bin, 𝑓q,field, such that

𝑁q,field = 𝑓q,field𝑁field = 𝑓q,field
∑︁

𝑃𝑖field . (4.6)

Combining these expressions, the quiescent satellite fraction 𝑓q,sat is:

𝑓q,sat =
𝑁q,sat

𝑁sat
=
𝑁q,tot − 𝑓q,field

∑
𝑃𝑖field∑

𝑖 𝑃
𝑖
sat

(4.7)

To estimate 𝑓q,field, we select objects with 𝑃field > 0.99 as the field galaxy subset, and measure
the field quiescent fraction as a function of stellar mass, based on this subset. For the satellite
sample, including galaxies with very low 𝑃sat will lower the SNR of satellite quiescent fraction,
but restricting the sample to objects with the highest values of 𝑃sat will limit the sample size. As
a compromise, we choose to limit the sample to objects with 𝑃sat > 0.8 for the calculation in
Eqn. 4.7.

Fig. 4.13 compares the quiescent fractions as a function of stellar mass for these different
galaxy populations. In the legend, “Total” (filled black circles) indicates the whole base catalogue.
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Figure 4.13: Quiescent fraction versus stellar mass. Results are shown for the three different
samples defined in the text, the whole base catalogue (black circles), field galaxies (𝑃field > 0.99;
blue squares), and satellites (𝑃sat > 0.8; red triangles). For comparison, the SAGA II (Mao et al.,
2021) and LG (Wetzel, Tollerud & Weisz, 2015) results are shown as green and orange shaded
regions respectively.
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"Field/Central" (blue squares) indicates objects likely to be field galaxies, defined as above, while
"Satellites" (red triangles) indicates objects likely to be satellites. The quiescent fraction for the
satellites is estimated using Eqn. 4.7.

Overall, the quiescent fraction of all galaxies in the base catalogue is low, but increases both
towards the high-mass end and towards the low-mass end. The trend at the high-mass end is
expected as a result of the increasing mass quenching effect for high-mass field galaxies. We
suspect the increase at low masses is largely contributed by satellites. Note that we do also see
a small increasing trend at the low-mass end for field galaxies as well, which may come with an
increasing fraction of mis-classification between field galaxies and satellites at very low masses.
The field galaxies have significantly lower quiescent fractions than the average of all galaxies,
implying a high quiescent fraction for satellites. The significant difference between the satellites
and field galaxies provides strong evidence for environmental quenching effects.

Note that this discussion assumes the COSMOS2015 definition of quiescence; if we consider
instead the red fraction with 𝑐 > 1.5 or 1.6, as defined in Section 4.4.1, we find red fractions of
33% 54%, and 93% (or 22.5/54/93% for a uniform cut at 𝑐 = 1.6) for the top three stellar mass
bins shown in Fig. 4.13. These are ∼20% higher than the red fractions measured for isolated
samples (e.g. Wang & White, 2012; Geha et al., 2012), but closer to the fractions measured in
Wang & White (2012) for the SDSS main sample. The difference may be partly due to the colour
index we use, but it probably reflects the fact that the isolation cuts in these studies were quite
strict, whereas our field probability calculation includes some primaries in denser regions.

For satellites, the quiescent fraction is fairly high, around 0.4–0.9. This is comparable to the
result of Wetzel, Tollerud & Weisz (2015) but systematically higher than the fraction reported
in Mao et al. (2021) except for the lowest stellar mass bin around 107.5𝑀⊙. We will consider a
few possible explanations for this discrepancy below. Beyond log(𝑀∗/𝑀⊙) = 10, the measured
fractions are very uncertain, as we have very few pairs in this mass range with satellite probabilities
of 0.8 or more. Below log(𝑀∗/𝑀⊙) = 8, the quiescent fraction drops significantly, it is likely
due to a higher fraction of misclassified field/satellites at the low-mass end.

4.5.2 Quiescent Fraction versus Primary Morphology and Stellar Mass

As noted earlier, quenching may be correlated with central properties, so we will also consider
the satellite quiescent fraction for the red and blue primary subsamples defined in Section 4.4,
as well as for several bins of primary stellar mass. To calculate these fractions, we follow the
procedure described above (Eqn. 4.7), but first split the satellite samples by primary properties,
while still using the whole sample to estimate 𝑓q,field. For instance, we can calculate the satellite
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quiescent fraction around red primaries as

𝑓
q,RP
sat =

𝑁RP
q,sat

𝑁RP
sat

=
𝑁RP

q,tot − 𝑓q,field
∑
𝑃
𝑖,RP
field∑

𝑖 𝑃
𝑖,RP
sat

, (4.8)

where the notation “RP” indicates quantities measured around red primaries. A single galaxy
will often be a potential satellite of several primaries. In these cases, we associate the satellite
with central for which it has the largest satellite probability, although this may introduce some
noise into our split by primary properties, by mixing satellites from the two subsamples.

Fig. 4.14 shows the quiescent fraction for red and blue primary subsamples, as well as for
the entire base catalogue. We note that the SNR of the blue sample is lower, due to the smaller
sample size. Despite the large uncertainties, we can see that the satellites around blue primaries
show a significantly lower quiescent fraction than the ones around red primaries, over the stellar
mass range of log(𝑀∗/𝑀⊙) = 8.5–10. We note that a difference in the quiescent fraction of
satellites around red and blue primaries might affect the normalization of the SSMF, as discussed
above. The contribution of the high satellite quiescent fraction of red primaries may also explain
why our measurements are higher than the MW results from Wetzel, Tollerud & Weisz (2015) at
the stellar mass of log(𝑀∗/𝑀⊙) ∼ 9.

Finally, in Fig. 4.15 we test the dependence of the quiescent fraction on primary stellar mass.
For the mass bins plotted, low-mass primaries generally have lower quiescent fractions, but the
SNR is too poor to reach a definitive conclusion. If we bin together the results for the secondary
mass range log(𝑀∗/𝑀⊙) = 7.5–10, we find fractions 0.64 ± 0.04 for the higher primary mass
range, versus 0.52 ± 0.15 for the intermediate mass range, a difference of ∼ 0.8𝜎. For the
lowest mass range, there is too little SNR to reach any conclusion. Nonetheless, the suggestion
that the quiescent fraction may be lower around low-mass primaries motivates us to consider its
dependence on the primary-to-secondary mass ratio; we will discuss this next.

4.5.3 Quiescent fraction vs relative mass

Dynamical friction will drag any satellites that are comparable in mass to the primary into the
centre of the main halo on a very short timescale, equivalent to a few orbits (e.g. Colpi, Mayer &
Governato, 1999; Taylor & Babul, 2004). By implication, the most massive surviving satellites
are necessarily recent mergers. We anticipate that this could produce a selection effect, whereby
satellites with large relative masses are still star-forming, and the quiescent fraction depends on
the primary-to-secondary mass ratio.
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Figure 4.14: Quiescent fraction as function of secondary stellar mass, for the red and blue primary
subsamples (red and blue points), as well as the whole base catalogue (black points).
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Figure 4.15: Quiescent fraction as function of secondary stellar mass for three primary stellar
mass bins (red, green and blue points), and for the whole base catalogue (black points).
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Colpi, Mayer & Governato (1999) have estimated the timescale for infall due to dynamical
friction, on an orbit of a given initial energy and angular momentum, as

𝑇DF = 1.2
𝐽circ𝑟circ

(𝐺𝑀h,s/𝑒) log(𝑀h,m/𝑀h,s)
𝜖0.4

= 0.519𝑃vir
`

log(`) 𝜖
0.4

= 0.5𝑃rad
`

log(`)

( 𝜖
0.5

)0.4
(4.9)

where 𝐽circ and 𝑟circ are the angular momentum and radius of a circular orbit of the same energy,
𝑀h,m and 𝑀h,s are the mass of the primary halo and the mass of the satellite halo at the initial time,
` = 𝑀h,m/𝑀h,s is the ratio of the two, and 𝜖 = 𝐽/𝐽circ is the initial circularity of the orbit (𝑒 in the
equation is simply Euler’s number). The second equality assumes the energy of the orbit is equal
to that of a circular orbit at the virial radius (with period 𝑃vir), while in the final equality, we have
substituted the radial orbital period 𝑃rad (Binney & Tremaine, 2008). By comparison, the first and
second pericentric passages, where tidal effects are strongest and quenching through triggered
starbursts is likely to occur, take place after approximately 0.2 𝑃rad and 1.2 𝑃rad, respectively.

Suppose satellites are all star-forming on initial infall into the main system (as indicated by
Fig 4.13). If systems are completely quenched at the first pericentric passage, and then fall into
the centre of the main halo and merge by 𝜏DF, then assuming a uniform distribution of infall
times, the quiescent fraction of the surviving satellites will be (𝜏 − 0.2)/𝜏 = 1 − 0.2/𝜏, where
𝜏 ≡ 𝑇DF/𝑃rad. Similarly, if systems are only quenched after the second pericentric passage, the
quiescent fraction should be 1 − 1.2/𝜏.

Figure 4.16 shows the quiescent fraction for our satellite sample, binned by mass ratio (points
with errorbars). We see a clear difference between the first data point and the subsequent ones; it
is ∼ 2𝜎 below the next bin, and deviates from the average of the others by almost 3𝜎. The smooth
curves indicate the expected fraction as a function of mass ratio, if quenching is 100% efficient at
the first pericentric passage (short dashed lines), 100% efficient at the second pericentric passage
(solid lines), or 50% quenching efficiency at the first and 30% efficiency at the second (long-
dashed line). In the first two cases, the three curves are for orbital circularities 𝜖 = 0.9, 0.5, 0.1
from top to bottom; in the final case, for clarity we show only the results for 𝜖 = 0.5. While we
have not fit the data explicitly to any of these models, a model with partial quenching at each of
the first two pericentric passages clearly matches the general trend in our results.

In the limit of large mass ratios, the quiescent fraction goes to ∼ 0.65, rather than 100%.
This could be because a significant fraction of all satellites have fallen in recently (e.g. Taylor &
Babul, 2005, suggest the median number of orbits spent in the main halo is around 2 for low-mass
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satellites); it could be because some satellites are on circular orbits with large pericentres, and
don’t experience strong tidal triggering, or it could be because quenching/triggering is not 100%
effective at quenching galaxies, even on radial orbits. We also note that the lowest bin may be
affected by misclassification of near-equal-mass secondaries. Since the scatter in the SHMR is
∼ 0.16 dex (cf. chapter 3), the uncertainty in the primary-secondary mass ratio is approximately
0.25 dex, so a +1𝜎 deviation could result in an primary and secondary with the median mass
ratio of the first bin being switched. Assuming this positive deviation happens 16% of the time,
and that the field quenched fraction is low (cf. Fig. 4.13), this will reduce the quiescent fraction
measured in this bin by up to 16%. The red diamond shows the value after correcting for this
effect.

4.5.4 Quenching: Summary

We can summarize our results on environmental quenching as follows:

1. The quiescent fraction in our satellite populations does not appear to depend strongly on
secondary mass (Fig. 4.13), at least not below secondary stellar masses log(𝑀∗/𝑀⊙) ∼ 10
where we can measure it reliably.

2. The quiescent fraction may depend on primary colour (cf. Fig. 4.14); blue primaries appear
to have lower quiescent fractions then red primaries, though the difference is only significant
at 1𝜎. This is consistent the idea of “conformity", for which there is clear evidence in the
spectroscopic sample (cf. Section 4.4.2).

3. The quiescent fraction may depend on primary mass, with a higher fraction in more massive
halos (cf. Fig. 4.15), though we lack the SNR to establish this conclusively.

4. There is stronger evidence for the quiescent fraction depending on the primary-to-secondary
mass ratio (cf. Fig. 4.16). This is consistent with a model where the quiescent fraction
reflects the mean accretion time of satellites, and massive satellites that have only recently
fallen in to the main halo are not yet quenched (see Section 4.5.3).

Given the complex, multi-variate dependence of quiescence on primary and secondary prop-
erties, we clearly need more data to map out these trends in detail. For low-mass groups, dedicated
spectroscopic campaigns targeting local examples, such as Mao et al. (2021), are probably the
most promising approach, as the provide additional information about satellite orbits, quenching
times and infall times.
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Figure 4.16: Satellite quiescent fraction versus the mass ratio of the primary halo mass to the
satellite infall halo mass (black points with errorbars). Curves indicate the expected fraction,
assuming 100% quenching efficiency at the first pericentric passage (short dashed lines), 100%
quenching efficiency at the second pericentric passage (solid lines), or 50% quenching efficiency
at the first and 30% efficiency at the second (long-dashed line). In the first two cases, the three
curves are for orbital circularities 𝜖 = 0.9, 0.5, 0.1 from top to bottom; in the final case, for clarity
we show only the results for 𝜖 = 0.5. Note the lowest bin may be affected by misclassification
of near-equal mass secondaries; the red diamond shows the corrected value if we assume these
artificially reduce the quiescent fraction by 16%.
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4.6 Summary and Outlook

In chapter 3, we established a new, iterative method for quantifying satellite abundance using
clustering in catalogues with accurate photo-zs. The method allows us to measure the clustering
signal even in crowded fields, avoiding biases that may arise from selecting only the most isolated
systems. We tested the method using the COSMOS2015 photo-z catalogue of Laigle et al. (2016),
which has excellent photo-z accuracy, but covers only a very small field.

In this chapter, we have explored the properties of the satellite populations detected in the
COSMOS field. We measure the amplitude and shape of the SSMF, and find results for both
that are consistent with previous measurements by Wang & White (2012) and Lan, Ménard &
Mo (2016), but extend these down to primary masses log(𝑀∗/𝑀⊙) ∼ 10.2. We also measure
the SSMF per unit halo mass, an indicator of the net efficiency of galaxy formation in different
environments, and find fairly constant efficiency at primary halo masses log(𝑀ℎ/𝑀⊙) ≳ 12,
consistent with previous studies (e.g. Zu & Mandelbaum, 2015), while at lower primary halo
masses there is some marginal evidence for reduced efficiency. Expressing the SSMF as a function
of the primary-to-secondary mass ratio (the ‘RSMF’), we find marginal evidence for dynamical
friction effects depleting the low-mass ratio end of the satellite population (i.e. relatively massive
satellites). Splitting the primary sample by colour, we find some evidence for greater satellite
abundance around red primaries, particularly for large secondary masses. Here again, this is
consistent with previous results where we overlap in primary mass (e.g. Wang & White, 2012).
Examining the spectroscopic subsample within our data, we also see evidence for conformity in
colour; in particular, red satellites appear rarer around blue galaxies. Finally, we study quenching
as a function of secondary mass and primary properties, seeing evidence for a number of trends.
The most significant one (and previously unreported, to our knowledge), is a selection effect
whereby the satellites with the largest relative masses have lower quiescent fractions (cf. Fig. 4.16),
because they have only merged into the main halo recently, and have not yet been quenched by
pericentric passages.

Overall, our results show good consistency with previous studies, and extend these to lower
primary mass; they are limited, however, by low SNRs and the small size of the COSMOS field.
Many large surveys currently underway, or planned for the near future, will greatly increase the
deep imaging data available; on the other hand, most will also have much larger photo-z errors,
relative to COSMOS. One of the most promising surveys for applying our method is the deep
polar-cap component of SPHEREx1, an all-sky survey satellite with a wide-field spectral imager
that will produce low-resolution (R∼20–100) spectra, with a final redshift accuracy similar to
COSMOS, but over an area 50 times larger (see chapter 3). The resulting increase in the SNR of

1see this https://spherex.caltech.edu/ for more details
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the clustering signal should confirm or rule out many of the marginal trends seen in the current
work, and further clarify the complex relationship between satellite and central galaxies.
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Chapter 5

Conclusion

We will conclude the thesis by summarizing the key findings of each chapter and discussing the
significance of each in relation to our initial research aims. We will also review the limitations of
our work, and propose opportunities for future research.

The properties of dwarf galaxies provide important tests for the theories of galaxy formation,
cosmic structure formation, and the nature of dark matter. While the properties of bright galaxies
are relatively well determined, those of faint dwarf galaxies are much less well known. To
understand the Local Group relative to other similar environments, however, it is precisely these
objects we have to identify and study. To do so efficiently requires new methods for estimating
distances and group membership, either individually or statistically. This thesis presented three
papers that aim to advance techniques, in that area, and open up opportunities for future research
with new samples.

In chapter 2, we tested the effectiveness of using structural properties to identify nearby dwarf
populations statistically, selecting samples using cuts in magnitude, surface brightness and size,
and confirming the fraction of galaxies that are indeed nearby by measuring their clustering with
respect to bright galaxies with known redshifts. Although we considered only a relatively small
field in the sky, (the 1.5 square degree COSMOS field), we demonstrated that structural selection
works surprisingly well out to a redshift of 0.15. The sample selected by this method is not
complete nor unbiased, but can nevertheless be very useful in placing a lower limit on mean
satellite abundance. In the best case, we are able to recover about two-thirds of the clustering
signal measured from samples selected using the extremely high-quality COSMOS photo-zs,
with 80% of the SNR, and a net purity of 33% on the final sample.

We deliberately tested our method using SDSS photometry data within the COSMOS field.
The SDSS photometry has fairly bright surface brightness limits (`eff ≤ 25–27) and limited spatial
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resolution. New generations of surveys with deeper photometry and better image resolution may
push the detection limits much deeper, and therefore explore a much larger parameter space in
structural properties. We are able to find hundreds of MW-like systems in our analysis of a
very small sky field. Large-area surveys such as Euclid and WFIRST will identify hundreds of
thousands of such systems, and thus greatly improve the statics of our detections.

In chapter 3, we developed and tested a more complex method of using clustering to quantify
satellite abundance. This method allows us to measure satellite abundance around centrals even in
crowded fields, and thus it can help to reduce biases introduced by selecting only the most isolated
systems. The method relies on high-precision photo-zs, rather than spectroscopic redshifts, and
thus it can push satellite detection to greater depths with a relatively modest investment of
observing time.

With this method, we are able to estimate luminosity functions and various other properties
of satellite populations over a very broad range of primary halo mass (1010–1013.5𝑀⊙). We
compared our estimate of satellite abundance to several previous results from the literature that
were derived from larger data sets, including Conroy, Wechsler & Kravtsov (2006) for high-mass
primaries and Besla et al. (2018) for low-mass primaries. In both cases, we found excellent
consistency, while our results cover a much larger range of primary mass overall. We also
compared our results for primaries with a halo mass of around 12.1 𝑀⊙ to the luminosity function
of the two main LG primaries, the MW and M31. The LG luminosity functions lie close to
the measured average, except for the two brightest satellites of MW (the LMC and SMC). This
confirms that the LG is statistically rare in having two bright satellites like the LMC and SMC.
Finally, testing the method for systematic uncertainties by varying the model parameters used in
the analysis, we confirmed that systematic uncertainties in the method are generally smaller than
our random error estimates.

In chapter 4, we used the method established in the previous chapter to explore the properties
of the local satellite populations detected within the COSMOS field. We measured the shape and
amplitude of the satellite stellar mass function (SSMF) and find results that are consistent with
previous literature (e.g. Wang & White, 2012; Lan, Ménard & Mo, 2016). At the same time, we
were able to extend estimates of the SSMF down to a primary halo mass of 1010.2𝑀⊙, which is
close to the lowest limit in the literature. As an indicator of the net efficiency of galaxy formation
in different environments, we calculated the SSMF per unit halo mass. We found fairly constant
efficiency for larger primary halo masses (log(𝑀ℎ/𝑀⊙) ≤ 12), which is also consistent with
previous studies (Zu & Mandelbaum, 2015, e.g.). At lower primary halo mass, our results show
some evidence for reduced efficiency, but only with marginal significance. We also calculated
the RSMF, that is the SSMF as a function of primary-secondary halo mass ratio, and found
some slight evidence that dynamical friction effects deplete the low-mass ratio end of the satellite
population (i.e. relatively massive satellites).
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Splitting the SSMR by primary colour, we found that red primaries have marginally higher
satellite abundance, especially at the high secondary-mass end (relatively massive satellites).
This is also consistent with previous studies (e.g. Wang & White, 2012), at least in the range
where we overlap in primary mass. While examining the spectroscopic subsample within our
data, we found some evidence for colour conformity, in that red satellites seem particularly rare
around blue primaries.

Finally, we studied quenching as a function of primary and secondary mass, noticing several
trends. The most significant one is that relatively massive satellites (i.e. those with small
primary-to-secondary mass ratios) have a lower quiescent fraction. We speculate that this is
because satellites in this relative mass range must have merged recently, since they will not
survive long in the main system due to dynamical friction effects; thus a large fraction has not
yet been quenched by pericentric passages, and continue to form stars.

5.1 Discussion

The work presented in the thesis has a number of shortcomings and limitations, of which we
summarize the main ones below.

• Our work has focused on developing and testing new methods. In practice, the significance
of many of our measurements is limited by the small volume probed by the COSMOS field
at low redshift. With data from large-area surveys, we could not only improve the statistics
of our current measurements, but focus on the lowest redshift range, where our methods
are most effective. For the moment, however, most current and forthcoming surveys have
limited quality photo-zs, so the techniques of chapters 3 & 4 will be less effective.

• In chapter 2, we only considered the simplest linear cuts in size and magnitude or surface
brightness and magnitude. This was partly due to the limited SNR of the clustering signal,
which would make the effectiveness of more complicated cuts harder to assess. With larger
data sets and higher SNR, however, we could explore the problem in a larger number of
dimensions and test more sophisticated selection criteria.

• The method developed in chapters 3 & 4 relies on high-quality photo-zs, as mentioned
previously. We have not tested it on samples with the lower precision photo-zs expected
from 5-band photometry. Redshift uncertainties will increase the depth of the ROI around
each primary, as described in section 3.3.2. This will not only introduce more noise from
foreground/background populations, decreasing SNR of any clustering detection, but it may
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also raise issues of sample completeness. Completeness is strongly related to distance; if
the ROI gets too large as a result of poor photo-zs, the completeness limit at the backs
of the ROI may be significantly different from that at the front. Additional precautions
might then be needed, such as applying more aggressive cuts in magnitude or modelling
the variation in completeness along the line of sight. We would recommend testing these
effects extensively with mock catalogues, to develop a better understanding of this issue.

• When selecting the primaries (section 2.4.1), we excluded candidates close to the field
boundaries, as they may be satellites of more massive galaxies outside the field. This
means that we lose a certain percentage of the effective survey area, especially at low
redshift, where the radius of the ROI corresponds to a large angle. This would be less of
an issue for contiguous, large-area surveys, where the affected area makes up a smaller
fraction of the total sky coverage. One might also address this issue by identifying large
galaxies near the main field in shallower ancillary data.

• In section 3.4.2, given the relatively low SNR of the clustering signal, we used a simple,
approximate model (Eqn. 3.5) to fit its radial dependence profile of the clustering signal.
With larger sets of data and better SNR, one should use a projected NFW or Einasto profile,
and consider varying the concentration parameter with primary mass.

• When fitting the clustering signal, we ignored satellites at the smallest projected separations
(see section 3.4 and section 3.4.2), as artifacts such as blending between galaxies or
fragmentation of single galaxies occur more frequently on small scales. This means
omitting a part of the satellite population that lies very close to the primary. The effect is
small overall but may lead to bias in certain cases. For example, galaxies with distant H2
regions can block or confuse satellite detections at small separations, relative to early-type
galaxies. One could try to model and/or correct for these effects, so as to capture the
innermost satellite population.

• We modelled the bias of SHMR with a simple linear fit at the high mass end (see section
C.1). This helped us to avoid overestimating the halo mass associated with large galaxies.
Within the mass that is considered in the work of this thesis, our simple model actually
works very well and shows good consistency with the literature (e.g. Zu & Mandelbaum,
2015, Figure 11). However, a more sophisticated model may work more consistently within
a larger range of mass. More importantly, the potential uncertainty of the fitting parameters
was not considered/propagated into subsequent calculations. We tested and demonstrated
that the potential effects of SHMR uncertainties are not major, but properly quantifying
and utilizing these uncertainties, e.g. by using Markov Chain Monte Carlo methods, would
make our results more robust.
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• In section 3.5, we introduced two background-correction methods, “method A” and “method
B” to estimate satellite abundance given secondary cuts on satellite properties. While
“Method B” is an improvement over “method A”, the optimal approach (which we referred
to as “method C”) would be to divide the sample by the secondary property first (e.g.
by colour into red/blue galaxies) and then measure the clustering amplitude separately on
each subsample. This would mitigate any potential bias where the secondary property is
correlated with clustering strength. We did not attempt “method C” in COSMOS, as we
did not have the SNR to do so. This should be an obvious improvement when applying our
method to a significantly larger data set.

• We relied on the “CLASS” flag provided by the COSMOS2015 catalogue to distinguish
quiescent galaxies from star-forming ones (see section 4.5). As we pointed out in chapter
4, the cuts the catalogues used to determine quiescent galaxies are very conservative.
This makes it harder to compare our results n quenching to the literature. Furthermore,
the quiescent cuts in COSMOS2015 were optimized for the whole redshift range of the
catalogue up to 𝑧 ∼ 6. Since our focus is only on nearby systems at 𝑧 < 0.25, it might be
worth trying a dedicated analysis optimized to this low redshift range.

Despite these limitations, our work provides useful tools for exploring faint satellite popula-
tions outside the LG. Both the morphological selection developed in chapter 2 and the satellite
probability estimate developed in chapters 3 and 4 can also be useful in providing nearby dwarf
candidates for spectroscopic follow-up, greatly improving the efficiency of such surveys.

Our work in chapters 3 and 4 explored the potential of using high-quality photo-zs to search for
nearby dwarf galaxies, rather than depending on spectroscopic redshifts. Although spectroscopic
measurements will always be required to confirm individual satellites, photo-zs provide a cheap
way to obtain statistical information down to much fainter magnitudes. Currently, COSMOS is
one of the few datasets with sub-percent precision photo-zs. An important forthcoming survey
is SPHEREx (Stickley et al., 2016), which features the innovative approach of imaging with
rectangular linear variable filters (LVFs). This technique allows the instrument to scan and
perform photometry in multiple bands simultaneously, and then stack them into a full sky, low-
resolution spectral (0.75–4.2 `m at R = 41; and 4.2–5 `m at R = 135) survey. The net quality
of the redshifts produced by this technique is expected to be comparable to COSMOS photo-zs
or better. While most of the survey area will be shallower than COSMOS, the two polar regions
will be visited multiple times, producing a final depth comparable to COSMOS over an area 50
times larger (about 100 square degrees). With the future data from SPHEREx, we can overcome
many of our current limitations by achieving ∼7 times greater SNR in the clustering signal. This
should allow us to split primary and secondary samples further, and study their properties in
exquisite detail. More importantly, this mission will highlight the value of high-quality photo-zs
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in observational studies of galaxy evolution and cosmology, which we hope may influence the
observation strategy of future astronomical surveys.

5.2 Future Research Directions

As discussed above, the work presented in this thesis suffers from a number of limitations and
compromises, many of which came from the limited survey field and sample size. With the new
generation of surveys, there are many opportunities for improvements for future studies.

In chapter 2, we developed a method to identify nearby dwarfs, based on structural properties
including magnitude, size and surface density. One key idea was to use the known distribution
of nearby dwarfs in this parameter space to identify other nearby systems. For future work, it
might be interesting to apply more sophisticated techniques, such as machine learning, to explore
this or other spaces of structural parameters. In going to higher-dimensional spaces, there is of
course a risk of over-fitting the sample data, so some caution will be required.

In general, there is a trade-off in the clustering method between SNR and how deep we can
go in brightness and stellar mass. If we want to put more emphasis on the low-mass end of the
satellite population, one obvious solution is to focus on the very nearest systems, but this will
lower the overall sample size and lead to a lower SNR of clustering detection. In practice, we
found we were not able to measure a significant signal for primaries at 𝑧 < 0.07 in COSMOS,
given the size of the field. With surveys with similar depth but a much larger field, it would be
quite interesting to study this very low redshift range.

As mentioned above, we used several simplified models, such as a two-parameter fit for the
SHMR at the high mass end, and a simple model for the projected halo density profile. These
worked sufficiently well at the SNR that we were able to achieve, but could be improved in future
work with larger samples. Very high SNR data should even allow us to study the true radial
distribution of satellites, as a function of primary mass, morphology and other properties.

Thus, there remains much interesting science to explore by combining the methods we have
developed with new, larger datasets.
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Appendix A

Additional Materials for Introduction

A.1 Additional references for the total mass of MW

The following are estimates of the total mass of the MW from recent studies. Note that there
are mainly two types of mass definition – 𝑀vir and 𝑀200𝑐 – which refer to the virial mass and
the mass within a volume that has an average density of 200 times of the critical density of the
Universe, respectively.

• Zaritsky et al. (2019) suggests a lower limit of 𝑀200 > 0.91 × 1012𝑀⊙, and a best estimate
at 1.4 × 1012𝑀⊙. It uses 32 far-side stars from the H3 survey, which have galactic radii
𝑅 > 60 kpc.

• Posti & Helmi (2019) derives 𝑀vir = 1.3±0.3×1012𝑀⊙ by analyzing the phase distribution
of 75 globular clusters from Gaia and Hubble data, with an assumption of a concentration-
mass relation. They also estimate a stellar mass of 𝑀 (< 20 kpc) = 1.91+0.18

−0.17 ×1011𝑀⊙ and
a central dark matter mass 𝑀𝐷𝑀 (< 20 kpc) = 1.37+0.18

−0.17 × 1011𝑀⊙.

• Fritz et al. (2018) estimates 𝑀𝑀𝑊 = 0.8 to 1.6×1012𝑀⊙ from the proper motions of 39
dwarf galaxies within 420 kpc, based on Gaia DR2 data.

• Sohn et al. (2018) estimates 𝑀vir = 2.05+0.97
−0.79 × 1012𝑀⊙ using HST to measure the proper

motion of 20 globular clusters at 10–100 kpc. (looking for the relative displacement
between images at two epochs, with a time separations that vary from 6 to 10 years). They
also estimate an enclosed mass 𝑀 (< 39.5 kpc) = 0.61+0.18

−0.12 × 1012𝑀⊙.
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• Callingham et al. (2018) derive 𝑀200 = 1.17+0.21
−0.15 × 1012𝑀⊙ by comparing the dynamics

of MW satellites to the EAGLE hydrodynamic simulations. Fig. 7 of this paper is a good
review of literature of MW mass estimates. (Although it appears to include a few some
mistakes in the cited values. e.g. Patel18 and Eadie16.)

• Watkins et al. (2018) estimates 𝑀vir = 1.41+1.99
−0.52 × 1012𝑀⊙, using the kinematics of 34

globular clusters within 2.0–21.1 kpc. Combining this with another similar result using 46
HST globular cluster proper motion measurements, they conclude that 𝑀vir = 1.67+0.79

−0.50 ×
1012𝑀⊙.

• Patel et al. (2018) estimates 𝑀vir = 1.19+0.19
−0.21 × 1012𝑀⊙ by analyzing the proper motions of

the classical satellites. Note that the result cited here excludes the Sagittarius dSph, which
reportedly biases the result towards lower masses.

• Eadie & Harris (2016) estimates 0.91 × 1012𝑀⊙ (0.57–1.09, 𝑟vir = 198+19
−24 kpc, only using

the GCs beyond 10 kpc); Another “conservative” estimate is 0.68 × 1012𝑀⊙ (0.61–0.75,
𝑟vir = 185+7

−7 kpc, all GCs). This paper uses a Bayesian estimates based on phase-space
distribution function of globular clusters (89 GCs after several selection cuts). It also
discusses how using subsamples with different radial distributions affects the estimates.
This paper also contains a good review of the literature.

• Bland-Hawthorn & Gerhard (2016) is a literature review of MW properties. Its section 6.3
is a good summary of the recent studies on MW total mass estimates. Overall, this review
suggests 𝑀200 = 1.1 ± 0.3 × 1012𝑀⊙ or 𝑀vir = 1.3 ± 0.3 × 1012𝑀⊙.

• Wang et al. (2015): Fig. 1 of this paper also gives a review of the MW mass estimates, using
various dynamical tracers and several different analysis methods. Those results include
several estimates range from 0.5 to 2.5×1012𝑀⊙). This paper also tests various methods
using mock samples and estimating bias in the results.
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Appendix B

Appendix for Chapter 2

B.1 The Serendipitous Catalogue

In Table B.1 we list the serendipitous catalogue of nearby objects. Columns are visual class (as
explained in section 2.7), ID from the COSMOS 2015 catalogue (where available), coordinates,
redshift, redshift error (for objects with photometric redshifts only), apparent 𝑖+-band magnitude,
approximate absolute magnitude in the same band (assuming a distance 𝐷 = 𝑐𝑧/𝐻0 with 𝐻0 =

0.678), and any comments. As noted previously, repeated visual searches suggest classes 1 &
2 are reasonably complete, while classes 3–7 contain only a few representative examples of the
many objects of this kind.
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Table B.1: The Serendipitous Catalog
Class COSMOS ID R.A. Decl. 𝑧 𝜎∗

𝑧 𝑖+ 𝑀𝑖+ Comments
(Laigle et al. 2016) (𝐽2000) (J2000) (mag) (mag)

1 213165 150.6950 1.6139 0.030 18.02 -17.5 conflicting redshift 0.1529
260583 149.6202 1.6936 0.006 17.90 -14.2 part of group at 26 Mpc
331749 150.3456 1.7936 0.019 18.96 -15.6
401988 150.0245 1.9110 0.006 17.15 -15.0 part of group at 26 Mpc
458976 149.8663 2.0071 0.013 18.59 -15.2
549719 150.1254 2.1498 0.005 0.008 19.00 -12.7
551648 150.0433 2.1560 0.006 14.24 -17.8 appears more distant?
561851 150.6131 2.1668 0.006 18.02 -14.1 part of group at 26 Mpc
653748 150.3134 2.3064 0.027 17.42 -17.9
677414 149.6951 2.3477 0.006 17.37 -14.6 part of group at 26 Mpc
686606 150.3666 2.3404 0.007 20.28 -12.2 part of group at 26 Mpc
709026 150.0284 2.3793 0.012 19.45 -14.1 size incorrect in catalogue?
733922 150.4743 2.4138 0.007 17.40 -14.9 part of group at 26 Mpc

2 219550 149.8758 1.6103 0.040 0.034 19.87 -16.3
221686 149.5820 1.6156 0.043 0.035 21.77 -14.6
259971 149.4614 1.6750 0.010 20.20 -13.0 conflicting redshift of 0.8058
279307 149.9644 1.7067 0.025 19.60 -15.6
300323 150.4282 1.7425 0.045 0.045 22.28 -14.1
316142 149.4853 1.7645 0.018 0.029 20.19 -14.2
424575 149.5127 1.9533 0.005 0.008 17.97 -13.7
556961 149.6577 2.1597 0.005 0.008 20.84 -10.8
589205 149.8118 2.1923 0.025 19.92 -15.2
627637 149.7679 2.2548 0.025 19.07 -16.1
642238 149.4566 2.2722 0.005 0.008 19.93 -11.8
689831 150.6784 2.3433 0.005 0.008 21.32 -10.3
880363 149.9964 2.6334 0.060 0.040 21.10 -16.0
918161 150.3921 2.6917 0.012 20.25 -13.3
989145 150.4089 2.8052 0.044 20.26 -16.1
997756 149.6831 2.8163 0.023 0.023 20.19 -14.8

3 183741 149.5938 1.5848 0.028 15.89 -19.5
246757 149.4982 1.6542 0.022 19.83 -15.0
460674 150.5469 2.0216 0.021 16.21 -18.6
532836 150.5065 2.1134 0.046 18.78 -17.7
534651 150.1830 2.1148 0.100 0.060 21.62 -16.5
538389 150.0464 2.1188 0.029 21.86 -13.6
622498 150.1930 2.2445 0.677 21.30 -21.0
660791 149.9128 2.3040 0.705 21.91 -20.5
706494 150.2301 2.3955 0.045 15.44 -21.0
718332 149.8389 2.3875 0.028 22.17 -13.2

∗ redshift error, listed only for objects with photometric redshifts
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Table B.2: The Serendipitous Catalog
Class COSMOS ID R.A. Decl. 𝑧 𝜎∗

𝑧 𝑖+ 𝑀𝑖+ Comments
(Laigle et al. 2016) (𝐽2000) (J2000) (mag) (mag)

824852 149.7570 2.5499 0.029 18.66 -16.8
905622 150.4302 2.6859 0.047 17.31 -19.2
915194 149.8467 2.6938 0.048 16.78 -19.8
923647 150.0386 2.7132 0.033 16.77 -19.0
955856 150.0338 2.7651 0.029 15.41 -20.1

4 261496 149.5315 1.6786 0.021 0.026 20.63 -14.1
282078 149.8230 1.7285 0.055 0.183 20.18 -16.7
643833 149.9028 2.2784 0.005 0.008 19.86 -11.8
733610 150.1712 2.4130 0.043 19.50 -16.9
771819 150.3126 2.4689 0.005 0.008 20.92 -10.7
1038253 149.8371 2.8744 0.050 0.035 20.08 -16.6

5 377112 150.1917 1.8634 0.027 20.84 -14.5
484608 150.4819 2.0372 0.005 0.008 20.66 -11.0
494700 150.4874 2.0533 0.093 20.86 -17.1
648571 150.3759 2.2856 0.051 0.036 20.76 -15.9
864285 150.6092 2.6075 0.104 20.68 -17.6

6 380820 150.0600 1.8665 0.024 20.04 -15.0
423926 150.3431 1.9400 0.046 20.08 -16.4
532809 150.7758 2.1105 0.005 0.008 18.45 -13.3
840592 150.7351 2.5780 0.005 0.008 17.78 -14.0
880547 150.0023 2.6332 0.024 20.20 -14.9

7 216843 149.6873 1.6104 0.050 0.035 19.93 -16.7
349181 149.8123 1.8196 0.081 0.051 19.39 -18.3
400833 150.7306 1.9004 0.005 0.008 21.05 -10.7
516283 150.6366 2.0837 0.093 20.92 -17.1
518816 150.7234 2.0883 0.069 21.37 -16.0
523477 150.4045 2.1067 0.054 0.040 18.10 -18.7
731241 150.1731 2.4042 0.036 0.032 19.32 -16.6
757311 150.0542 2.4513 0.082 20.38 -17.4
837992 150.6170 2.5750 0.007 0.024 18.84 -13.5
840823 150.4003 2.5727 0.092 21.09 -16.9
862172 149.7740 2.6061 0.188 21.47 -18.0
908277 150.7575 2.6765 0.005 0.008 21.56 -10.1
943231 150.0981 2.7438 0.059 0.040 19.21 -17.8

(masked) 150.5946 2.4223 0.090 0.090 21.46† -16.5 SDSS J100222.70+022520.3
†SDSS 𝑖-band model magnitude

∗ redshift error, listed only for objects with photometric redshifts
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Appendix C

Appendix for Chapter 3

C.1 Bias in Halo Masses Derived from the SHMR

Throughout this work we assume the SHMR proposed by Behroozi, Wechsler & Conroy (2013):

log10(𝑀∗(𝑀ℎ)) = log10(𝜖𝑀1) + 𝑓

(
log10

(
𝑀ℎ

𝑀1

))
− 𝑓 (0) , (C.1)

where the function 𝑓 (𝑥) is defined as:

𝑓 (𝑥) = − log10(10𝛼𝑥 + 1) + 𝛿
(log10(1 + exp(𝑥)))𝛾

1 + exp(10−𝑥) . (C.2)

The free parameters vary with redshift as follows:

log10(𝑀1) = 𝑀1,0 + (𝑀1,𝑎 (𝑎 − 1) + 𝑀1,𝑧𝑧) exp(−4𝑎2) (C.3)
log10(𝜖) = 𝜖0 + (𝜖𝑎 (𝑎 − 1) + 𝜖𝑧𝑧) exp(−4𝑎2) + 𝜖𝑎,2(𝑎 − 1)

𝛼 = 𝛼0 + (𝛼𝑎 (𝑎 − 1)) exp(−4𝑎2)
𝛿 = 𝛿0 + (𝛿𝑎 (𝑎 − 1) + 𝛿𝑧𝑧) exp(−4𝑎2)
𝛾 = 𝛾0 + (𝛾𝑎 (𝑎 − 1) + 𝛾𝑧𝑧) exp(−4𝑎2) .

where 𝑎 = 1/(1 + 𝑧) is the scale factor. (The 1-𝜎 uncertainty range in these parameter values is
listed on p.9 of Behroozi, Wechsler & Conroy (2013).) In our case, since our primary sample
covers the fairly narrow redshift range of 𝑧 = 0–0.25, little variation is predicted in the SHMR.
Thus, we simply use an intermediate redshift of z= 0.15 for the analysis below.
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Figure C.1: Stellar mass errors versus stellar mass in the mock sample (for clarity, only a third of
the data points are shown), together with the mean relation in bins of stellar mass (red points and
errorbars).

The (Behroozi, Wechsler & Conroy, 2013) relations are theoretical, unbiased mean values
of 𝑀∗, given a specific halo mass 𝑀ℎ. In any real survey, this relationship will be biased by
intrinsic scatter and observational errors (B13,Leauthaud et al. (2012)). To quantify this bias for
the COSMOS catalogue, we generated a random Monte-Carlo sample of 12,000 halos selected
from the halo mass function given in Tinker et al. (2008). “True” stellar masses were calculated
for these objects using the SHMR given above. We then added intrinsic scatter and random errors
to each stellar mass 50 times independently, to simulate an “observed” stellar mass sample. The
intrinsic scatter in the SHMR is about 0.14–0.2 dex at redshift of 0 (More et al., 2009; Yang, Mo
& van den Bosch, 2009; Reddick et al., 2013), and there is no evidence for any trend with mass,
at least down to halo masses of 1012 𝑀⊙ (Reddick et al., 2013; Behroozi, Wechsler & Conroy,
2013). Thus we added an intrinsic scatter of 0.15 to all stellar masses derived for our “observed”
sample. Average observational errors, as a function of stellar mass, were estimated directly from
the COSMOS 2015 catalogue, as shown in Fig. C.1. We added these in quadrature to determine
the final stellar masses of the mock sample.

The light blue points in Fig. C.2 show the “observed” stellar masses of the mock sample, after
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Figure C.2: Halo-to-stellar mass relation of the Monte-Carlo samples. The dark blue dots are
our Monte-Carlo halo mass sample with stellar masses assigned using B13. The light blue points
show the “observed” stellar masses of the sample after adding intrinsic scatter and observational
errors. (Note that only 15% of the mock sample is shown for clarity.) The red crosses with error
bars are the average halo mass in each bin of “observed” stellar mass. The solid black line is a
linear fit to the red crosses (in log(𝑀∗/𝑀·)), over the range 10.7–11.8.

adding the intrinsic scatter and observational errors. The dark blue points show the underlying
“true” stellar masses, while the black dashed line shows the theoretical SHMR from B13. The
red crosses show the mean halo mass in each “observed” stellar mass bin. We can see that the
“observed” SHMR follows the theoretical SHMR reasonably well at low masses, but departs from
it at the high masses. Given this pattern, we will use a two-part SHMR to assign halo masses in
our work. For stellar masses of 1010.7𝑀⊙ or less, we use an unmodified B13 SHMR, while for
masses greater than 1010.7, we use the linear fit to the average “observed” values listed and shown
as a black solid line on the plot.
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C.2 Measuring the Masking and field boundaries

Regions of the COSMOS field have poor photometry in one or more bands, due to contamination
from bright stars, internal reflections, or other artifacts. Data from these regions are tagged
with a “masking” flag (“FLAG_PETER” in the COSMOS 2015 catalogue), which can be used to
exclude those data from further analysis. The shape of these masked regions, together with the
field boundaries, needs to be measured to determine the area completeness [ around any given
primary. Although detailed mask files are available for the COSMOS field, we found it less
computationally demanding for our work to use a single, approximate mask image with coarser
spatial sampling. We use the method described in Chapter 2 to generate this global mask. First,
a coarse map consisting of 390 × 390 cells is constructed, covering the whole COSMOS field.
We search for objects in each cell of this map, to determine whether it should be included or
masked out. In the first round, any cell with one or fewer objects counts is selected as a potential
masked region. In a second round, these candidates are confirmed as masked if they have one or
more neighbouring cells with no counts. This two-step selection process reduces to 0.0026% the
probability of artificially eliminating cells due to Poisson fluctuations in their object counts. The
map resolution and count threshold were determined empirically after testing various resolutions
from 200 × 200 to 600 × 600, with different thresholds in each case. We found that the effect
on the clustering signal of variations in the masking parameters is small, producing variations in
𝑆halo of roughly 5% or less. The final resolution was selected to provide the most accurate overall
mask, relative to the full images.

Given a single global mask for the COSMOS field, we then generated a large, random
sample of points, and used the distribution of the points around each primary to estimate its area
completeness as a function of projected separation. For each galaxy, we counted the number of
random samples in projected radial bins with and without applying the masks and boundaries.
Each bin had a size of 0.2 𝑅vir of the galaxy, up to 3.6 𝑅vir. The area completeness is then

[(𝑅𝑃) ≡
𝐴M(𝑅𝑃)
𝐴T(𝑅𝑃)

=
𝑁M(𝑅𝑃)
𝑁T(𝑅𝑃)

(C.4)

where 𝐴M and 𝐴𝑇 are the masked and total areas, and 𝑁M and 𝑁T are the random counts with
and without masking.

Besides the area completeness in individual radial bins, we also measured the total area
completeness of each primary within 3.0 𝑅vir. Galaxies with poor completeness were excluded
from the primary sample, as described in the main text.
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C.3 Comparing Background Estimation Methods A and B

While Method A is simple to implement, it may introduce systematic biases in the inferred
satellite properties, as described in section 3.5.1. Method B removes the contribution from the
background statistically, and should produce less biased, albeit noisier, results.

Fig. C.3 shows the (cumulative) satellite luminosity function for three sets of primaries with
different halo mass ranges, using methods A (dashed lines) and B (solid lines). Overall, method
A produces a luminosity function with a steeper slope, that continues to rise at faint magnitudes,
whereas for method B, the cumulative luminosity function flattens. As shown in Fig. 3.13, the
method B results are in better agreement with Local Group data.
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Figure C.3: Cumulative satellite luminosity functions estimated using methods A (dashed) and
B (solid), for primaries in three halo mass bins (as in Fig. 3.13).
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Appendix D

Appendix for Chapter 4

D.1 Catalogue completeness

In this chapter, we used several quantities from the COSMOS 2015 catalogue that are not available
for all objects. This incompleteness could introduce systematic errors in some of our analysis.
The most important examples of incomplete quantities are stellar mass, sSFR and colour. To
test for effects related to incompleteness, we constructed a test sample from the COSMOS 2015
catalogue that includes galaxies within the same redshift range as our base catalogue, but with
no magnitude cut applied (though masking was still applied). From this sample, we identified
objects with missing or invalid values; for instance, a galaxy without a reasonable B-band or
𝑖+-band magnitude was identified as lacking a valid B−𝑖+ colour. Fig. D.1 shows the number
of galaxies lacking particular measurements, versus 𝑖+-band magnitude. By comparing these
distributions to the magnitude distribution of the whole test sample, we can see that the samples
without valid values comprise only a small tiny fraction of the total. In the worst case, galaxies
that lack a proper colour only make up less than 0.5% of the whole sample near our magnitude
cut. Thus, we conclude that the potential effects of incompleteness in these quantities on our
analysis are negligible.

D.2 Redshift distribution for the six primary mass bins

We split our first-run primaries into six bins over their halo mass in some of our analysis. The
redshift distributions the six bins are shown in Fig. D.2. The dashed vertical lines indicate the
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Figure D.1: Histogram of the 𝑖+-band magnitude for the whole test sample and the galaxies lack
valid values for certain quantities. The black line shows the whole test sample; the blue line
shows the sample without a valid B-𝑖+ colour; red line shows the sample without a valid stellar
mass measurement; the orange line shows the sample without a valid sSFR measurement. The
vertical dash line shows the magnitude cut we used for our base catalogue.
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Figure D.2: Cumulative redshift distributions for the six primary halo mass bins used in the
SSMF calculation. The dashed lines indicate the median redshift for each bin. The solid black
line shows the upper redshift cut for the first-run primary selection.

median redshift for each bin. Note that the median redshift clearly increases with primary halo
mass, as discussed in the main text.

D.3 Comparison to SAGA II (Mao et al. 2021)

To construct the RSMF for the SAGA II survey, we need stellar mass estimates for both primaries
and secondaries. A full set of primary stellar masses were not published in Mao et al. (2021),
though masses are given for a subset of the same sample in Geha et al. (2017). We estimate the
remaining masses from the published K-band absolute magnitudes, using a mean mass-to-light
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ratio derived from the published values:

log[𝑀∗/𝑀⊙] = −0.4𝑀𝐾 + 𝐶S1 , (D.1)

where 𝐶S1 = 1.042 is the median of log[𝑀∗/𝑀⊙] + 0.4𝑀𝐾 for the subsample in Geha et al.
(2017).

The satellite stellar masses published in Mao et al. (2021) were instead estimated by using the
𝑟-band magnitude and 𝑔 − 𝑟 colour:

log[𝑀∗/𝑀⊙] = 1.254 + 1.098(𝑔 − 𝑟)𝑜 − 0.4𝑀𝑟,𝑜 , (D.2)

where 𝑀𝑟,𝑜 refers to K-corrected 𝑟-band absolute magnitude and (𝑔 − 𝑟)𝑜 is the K-corrected 𝑔 − 𝑟
colour.

D.4 Primary Subsamples in Colour and sSFR

To separate red and blue primaries, we use 𝑐 = 𝐵 − 𝑖+ as our colour index. Among the various
photometric bands for the COSMOS2015 catalogue, 𝐵-band is the deepest Subaru broad band
that covers the whole field. For the other band, we select 𝑖+ for the best combination of wavelength
baseline, depth, and noise properties (cf. Laigle et al. 2016, Table 3). For consistency, we use
the magnitudes measured using a fixed 3′′ aperture in each case. We also applied K-corrections
to our colour indices, using the public tool available at this URL1, which based on the method
in Chilingarian, Melchior & Zolotukhin (2010). As our filters are not included in this tool,
we assume the nearest equivalents in colour; since our objects are fairly low-redshift, the error
introduced by the conversion should be minor.

Fig. D.3 shows primary colour versus stellar mass. There is a clear correlation, as well as
clustering of points at 𝑐 = 𝐵 − 𝑖+ > 1.6 that we identify as the red sequence. We will use this
colour cut to define the red primary sample for log(𝑀∗/𝑀⊙) > 10. For lower stellar masses, the
red sequence moves bluewards due to metallicity effects, so we move our cut to 𝑐 = 1.5. Note
that by these definitions, all primaries with a stellar mass over log(𝑀∗/𝑀⊙) = 10.9 are red.

The star formation rate (SFR) and sSFR in the COSMOS2015 catalogue were derived along
with the redshift and stellar mass, by using the best-fit templates from Polletta et al. (2007) and
Bruzual & Charlot (2003). The catalogue includes median best-fit estimates, as well as upper and
lower limits. Fig. D.4 shows the sSFR versus colour for the first-run primary sample. To define
a cut in sSFR that roughly corresponds to our colour selection, we choose the median value for
the red sample, which is approximately 𝑠𝑆𝐹𝑅 = 10−11yr−1.

1http://kcor.sai.msu.ru/getthecode/
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Figure D.3: The 𝐵 − 𝑖+ colour versus stellar mass distribution for the primaries. The two dashed
lines show the two colour cuts used in our analysis.
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Figure D.4: sSFR versus 𝐵 − 𝑖+ colour for the primaries. The vertical dashed line indicates the
division between red and blue primaries; the horizontal dashed line indicates the division between
star-forming and passive primaries.
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Glossary

𝑁-body simulation In astronomy, an N-body simulation is a simulation of a dynamical system
of particles, usually under the influence of physical forces, such as gravity. 7

baryon A type of composite subatomic particle which contains an odd number of valence quarks
(at least 3), such as protons and neutrons. 5

Cepheid variable A Cepheid variable star is a type of star that pulsates radially, varying in
both diameter and temperature and producing changes in brightness with a well-defined
stable period and amplitude. The strong direct relationship between a Cepheid variable’s
luminosity and pulsation period allow it to be used as a distance estimator. 2

Cosmic Microwave Background Electromagnetic radiation which is a remnant from an early
stage of the universe. 5

Dark Matter Matter that does not interact with light. 5

electromagnetic spectrum The full range of all frequencies of electromagnetic radiation and
also to the characteristic distribution of electromagnetic radiation emitted or absorbed by
that particular object. 5

galaxies A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas,
dust, and dark matter. 5

galaxy clusters a galaxy cluster is a structure that consists of anywhere from hundreds to thou-
sands of galaxies that are bound together by gravity, with typical total masses ranging from
1014–1015 solar masses. 5

gravitational instabilities The distribution of material is unstable when only under the effect
of gravity. Material is set to be brought together to form structures due to gravitational
instabilities. 5
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parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to
astronomical objects outside the Solar System, approximately equal to 3.26 light-years or
206,000 astronomical units (au). 14

primordial fluctuations Primordial fluctuations are density variations in the early universe
which are considered the seeds of all structure in the universe. Currently, the most widely
accepted explanation for their origin is in the context of cosmic inflation. 6

redshift A redshift is an increase in wavelength of electromagnetic radiation, or a decrease in
frequency. 5

wavenumber In physics, the wavenumber is defined as the number of wavelengths per unit
distance of the spacial wave frequency and is known as spatial frequency. 6
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Abbreviations

ΛCDM Dark energy plus Cold Dark Matter 5

AGN Active Galactic Nucleus 10

AM Abundance matching 11

CMB Cosmic Microwave Background 5, 6

DE Dark Energy 5

DM Dark Matter 5

HDM Hot Dark Matter 17

HOD Halo Occupation Distribution 11

kpc kilo-parsec 3

LG Local Group 4, 13

LMC Large Magellanic Cloud 2

LVC Local Volume Catalogue 27

ly light year 3

M31 Messier 31 2, 13

Mpc Mega-parsec 14
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MSP Missing satellite Problem 16

MW Milky Way 1

ROI Region of Interest 82

SAGA Satellites Around Galactic Analogs 20

SDSS Sloan Digital Sky Survey 5

SFR Star Formation Rate 3

SHAM Sub-halo Abundance Matching 11

SHMR Stellar-to-Halo mass relation 11

SIMBAD the Set of Identifications, Measurements and Bibliography for Astronomical Data 14

SMBH Suppermassive black hole 10

SMC Small Magellanic Cloud 2

SSCs Small-Scale Challenges 16

TBTF Too Big To Fail 16

TRGB Tip of the Red Giant Branch 20

WDM Warm Dark Matter 17
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List of Symbols

𝛿 Density fluctuation. Defined as 𝛿 ≡ Δ𝜌/�̄�, where �̄� is the mean mass density and Δ𝜌 is the
excess density. 6

𝑀ℎ Halo mass. The total mass of dark matter within a halo. 3

𝑀∗ Stellar mass. The total mass that is in the form of stars. 3

𝑀⊙ Solar mass. A commonly used mass unit, which equals to the mass of the Sun. 4

𝑀vir Virial mass. It is one of the common descriptions for halo mass. 8

𝑟vir Virial radius. It is one of the common descriptions for halo size. 8

𝑎 Scale factor of the Universe. It describes the relative expansion of the Universe. 6
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