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Abstract

In this thesis, we evaluate the feasibility of verifying the effect of gravity on the quantum
entanglement by simulating gravity’s effects with other physical systems. Specifically, we
work in the framework of the Event Formalism, a non-standard theory about gravitational
decoherence. We consider simulating gravity with acceleration as well as refractive mate-
rials. We find that these scenarios can not simulate the effect of gravity on entanglement
as imagined by the Event Formalism.
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Chapter 1

Introduction

Since quantum mechanics and general relativity were discovered, they became the most
important theories in physics. Both are successful and have been supported by many
experiments. However, the two theories are in conflict about the concept of “locality.”
General relativity is a local theory, while quantum mechanics is inherently nonlocal due to
a phenomenon known as quantum entanglement [7, 8]. Scientists are exploring the overlap
area of quantum theory and general relativity and trying to explain the conflict. One of
the overlap areas is the gravitational effect on quantum entanglement [1, 9, 10, 11].

Several experiments on quantum entanglement have been performed. However, such
experiments all happened in a weak gravity environment (on the earth). Because of this,
we could only assume that gravity does not affect quantum entanglement. In recent years,
many satellite experiments have also been performed [12, 13]. Satellites can provide more
gravitational potential difference so that the effects of gravity on entanglement may show
up. However, the potential difference between satellites and the earth are still not strong
enough for some of the effects [14]. Higher orbit satellites are needed, which cost more
money.

In this thesis, we explore proposals for testing gravitational effects on quantum entan-
glement using simulated gravity. The idea starts with the Event Formalism proposed by
Ralph et al. [1, 3, 5], which is a similar concept to the hidden variable that appears in a
strong gravity environment. Notice that this hidden variable does not question the exis-
tence of entanglement like the hidden variable hypotheses disproved by the Bell experiment
[15]; it is just a possible factor that affects correlation. The factor can be integrated into
one with the absence of gravity or entanglement, such that whether the factor exists or
not, it will not affect our current theories. I will investigate the possibility of detecting the
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effect of gravity on entanglement in several ways.

In Chapter 3, I will introduce the possibility of experimental testing the Event Formal-
ism and talk about testing it with acceleration. Because acceleration can simulate gravity
due to Einstein’s equivalence principle. However, the theoretical result shows that it is not
possible to generate strong enough effects of the Event Formalism to be detected.

In Chapter 4, I will discuss the possibility of using simulated gravity to test the event
formalism. Because I hope that the simulated gravity could be strong enough to test the
Event Formalism and can be realized on the earth so that it can cost less than satellite
experiments. I will use refractive material as the gravity simulation, since it is a common
way. Using an optical medium to mimic gravity is not rare; many experiments on optic
black holes or other phenomena have been studied [16, 17, 18, 19]. In this chapter, I
will focus on the testing of Event Formalism with static refractive materials and determine
whether refractive materials are good choices. The result shows that the effect of the Event
Formalism will not be observed in the refractive material.

In Chapter 5, I will introduce another gravitational quantum decoherence theory, grav-
itational time dilation decoherence, which is a standard theory proposed by Zychet al.
[20, 21]. I will discuss the possibility of testing the gravitational time dilation decoherence
with refractive material. The reason of doing so is that we can study which gravitational
properties can (or can not) be simulated by the refractive material by trying to reproduce
the phenomenon predicated by standard quantum theory in the refractive material. The
result shows that the refractive material can simulate the phase shift caused by gravity but
can not simulate the decoherence caused by the Event Formalism.

My research indicates that, testing the Event Formalism on the earth directly or us-
ing refractive material is impossible. It also shows the limitation of simulating gravity
with refractive material so that can be a reference of testing other effects of gravity on
entanglement.
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Chapter 2

Background

In this chapter, we review several concepts that will serve as a starting point for the work
in this thesis. We begin with an introduction to quantum optics, then come to Event
Formalism, discussing both the theoretical proposal as well as a experimental test. We
then review some theories behind the existence of the refractive index.

2.1 Introduction to Quantum Optics

Quantum optics is a study that takes classical optics into the quantum world. Classical
optics studies classical light, while quantum optics studies quantized light. This includes
photons, atoms, and molecules, and the interaction between them, for example, the light-
matter interaction. Quantum optics has wide application in experiments in many quantum
areas, such as fundamental quantum mechanics, quantum communication, quantum com-
puting, and quantum information.

2.1.1 Wave Packet

Harmonic Oscillator and Fock state

This section is based on [22].

The electromagnetic field can be considered as a harmonic oscillator, which describes
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the motion with potential energy which has the formula:

V (x) =
mω2

2
x2. (2.1)

The time-independent Schrodinger equation of the harmonic oscillator will be

Ĥψn = Enψn =
1

2m

[
p̂2 + (mωx̂)2

]
ψn, (2.2)

where p̂ is the momentum operator and p̂ = ~
i
d
dx

. ψn is the eigenstate of Hamiltonian Ĥ,
and the corresponding energy eigenvalue En is

En = ~ω(n+
1

2
), (2.3)

where n = 0, 1, 2, 3... is a natural number. ψn is also known as Fock state and can be
written as |n〉.

Annihilation and Creation operator

The annihilation and creation operators are also known as ladder operators in simple
harmonic oscillation. They can be expressed in Fock state:

â =
∑
n

√
n+ 1|n〉〈n+ 1|, (2.4)

â† =
∑
n

√
n+ 1|n+ 1〉〈n|, (2.5)

[â, â†] = 1. (2.6)

Light, which is an electromagnetic field, can be described by a harmonic oscillation. For
light, the Fock state can be understood as the state of a different number of photons, where
n is the photon number. The operator â can reduce the photon by −1 so it is called the
annihilation operator. In the same way, â† can increase the photon by 1 so it is called the
creation operator. People often write a single photon state as â†|0〉.

The relationship between the position and momentum operators and the annihilation
and creation operators are:

x̂ =

√
~

2mω
(â† + â), (2.7)

p̂ = i

√
mω~

2
(â† − â). (2.8)
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Inserting this relationship (2.8) into (2.2), we can express the Hamiltonian with annihilation
and creation operators:

H = ~ω(a†a+ 1/2). (2.9)

Wave Packet

The wave packet is comprised of several waves that have different frequencies, amplitudes,
phases, and wavenumbers. These waves can travel in a wide space but only interfere
constructively in a small region. This region changes its position and size over time, and
this is the propagation of the wave packet. The shape of the wave packet may change
during propagation, and it depends on whether the material has dispersion. Dispersive
material has the property of changing the refractive index with frequency. As for non-
dispersive material, the shape of the wave packet remains constant, while in dispersive
material it will change.

Mode operator

In quantum optics, a monochromatic light wave with exact frequency is named “a mode”,
and the annihilation operator we introduced above is a single-mode operator. When we
describe a wave packet of plane waves with some spectrum structure, we may mix different
modes, so we need a multiple modes operator

â(x, t) =

∫
dkG(k)eik(x−t)âk, (2.10)

where k is the wavenumber and âk is the annihilation operator of k, which means that
it can annihilate a photon with frequency 1/k. G(k) is a distribution that describes the
spectrum, for example, it can be Gaussian. Here we assume that the speed of light c = 1
and the plane waves are traveling in the positive direction.

2.1.2 Displacement Operator

The displacement operator can displace a state in phase space.
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Coherent state

A coherent state is an eigenstate of an annihilation operator:

â|α〉 = α|α〉. (2.11)

where eigenvalue α is a complex number. Also, |0〉 is a coherent state:

â|0〉 = 0 = 0 ∗ |0〉. (2.12)

The coherent state is an important concept in quantum optics experiments; it has many
benefits. For example, the coherent state is stable under linear optical operations. Imagine
two sources, one light source provides Fock states with 5 photons |5〉, while one laser source
provides coherent states. Due to the loss photons, the light source output is not stable, it
may provide |4〉 sometimes. However, coherent state will keep stable even under the loss
of photons, since the coherent state is an eigenstate of annihilation operator.

We can also write the coherent state in terms of Fock states:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (2.13)

Displacement operator

The definition of displacement operator is [22]

D(α) = eαa
†−α∗a, (2.14)

where α is a complex number.

The displacement operator can move a state in phase space. When it acts on a coherent
state α:

D(β)|α〉 = eiIm(βᾱ)|α + β〉. (2.15)

The phase moving from α to α + β is shown in Figure 2.1

D†(α)aD(α) = a+ α (2.16)

Recall that the mode operator is made up of ladder operators of different modes. Then
the displacement of the mode operator [1] is

D(α) = e
∫
dkG(k)eik(x−t)âkα

∗−h.c.. (2.17)
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Figure 2.1: phase moving

2.1.3 Coherence

Coherent waves

The coherent wave is a commonly used concept in quantum optics. Coherent waves have
identical frequencies and waveforms. When two waves are coherent, they can form stable
interference fringes.

The mathematical definition of interference visibility is as follows [23]:

γ12 =
G(1)(x1, x2)√

G(1)(x1, x1)G(1)(x2, x2)
, (2.18)

where

G(1)(x1, x2) = Tr(ρÊ†(x1)Ê(x2)). (2.19)

This mathematical formula describes the spatial coherence since we consider the wave E
at different position x. If |γ12| = 1, the state ρ is complete coherent, while |γ12| = 0, it
is incoherent. We can also study temporal coherence, spectral coherence, and so on, by
writing the wave function as other physical quantities.
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Coherence time and coherence length of light

This section is based on [24].

Coherence time and coherent length are similar concepts. The light source in an ex-
periment often uses coherence time as a parameter. The concept of coherent time comes
from temporal coherence. Temporal coherence describes the correlation between a wave at
time t and t+ τ , that is, the correlation of it with itself after an amount of time τ . If the
coherence significantly decreases after τ , then we call τ the ”coherence time.”
The coherence time of a wave packet is:

τ = 1/∆ν, (2.20)

where ∆ν is the bandwidth, which is the width of the spectrum.

The coherence time can indicate how monochromatic a light source is. If a light source
is perfectly monochromatic, the coherence time will be infinite, because the waveform does
not change after any amount of time, it can interfere with itself perfectly after any period of
time. For a non-monochromatic source, the waves with different frequencies and velocities
will wander and spread in the process of propagation, so it will make the shape of the
wave packet change from tight to loose. After a period of time, the shape changes more
obviously, and the coherence decreases. Some experiments require a coherent light source,
and the experimental time should be shorter than the coherent time of the source, for
example in a Mach-Zehnder interferometer with asymmetric path lengths.
The coherence length is the distance at which the wave propagates in coherent time. In
the vacuum, it is

L = cτ = c/∆ν. (2.21)

Quantum coherent

Since all objects have wave-like properties in quantum mechanics, they can interfere as well.
For example, in Young’s double-slit experiment, the electrons passing through the two slits
act like the light passing through the two slits. The probability wave of the electrons will
form interference fringes on the screen [25].

2.1.4 Beam Splitter

The beam splitter is an optical device that can split light from one mode into two output
modes by reflecting and transmitting a portion of the beam.
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To understand the effect of beam splitters, it will be convenient if we write the photon
state as a creation operator acting on vacuum. As shown in Figure 2.2, the input states
are â†|0〉 and b̂†|0〉, the output states are ĉ†|0〉 and d̂†|0〉.

Figure 2.2: Beam Splitter.

Notice that the reflection on one of the surfaces will shift the phase by π.

A beam splitter with transmittance T will give the relation:(
â

b̂

)
=

(√
1− T

√
T√

T −
√

1− T

)(
ĉ

d̂

)
. (2.22)

2.1.5 Hong–Ou–Mandel effect

This section is based on[26, 27]

The Hong–Ou–Mandel (HOM) effect is a kind of two-photon interference effect with a
50:50 beam splitter. The detectors count the photon number. For convenience of writing,

Figure 2.3: HOM effect. To measure the HOM effect, two photons will enter modes a and
b of a beam splitter, and the output modes c, d will be observed with photon detectors.
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if both detectors click once, we say that they count (1,1). While if one detector clicks twice
and the other does not click, we say that they count (0,2) or (2,0). We do not distinguish
(0,2) and (2,0) in the following chapter.

Assuming the two input photons are distinguishable, for example, they have orthogonal
polarization: âV and b̂H . The effect of the beam splitter is

âV =
1√
2

(ĉV + d̂V ), (2.23)

b̂H =
1√
2

(ĉH − d̂H). (2.24)

The output is:

â†V b̂
†
H |0〉 =

1

2
(ĉ†V + d̂†V )(ĉ†H − d̂

†
H)|0〉 =

1

2
(ĉ†V ĉ

†
H − ĉ

†
V d̂
†
H + ĉ†H d̂

†
V − d̂

†
V d̂
†
H)|0〉. (2.25)

The detectors might count (0,2) or (1,1) with a 50:50 probability. The outcome of the
detectors is classically correlated.

If the input photons are not distinguishable, the output is as follows:

â†b̂†|0〉 ==
1

2
(ĉ†ĉ† − ĉ†d̂† + ĉ†d̂† − d̂†d̂†)|0 =

1

2
((ĉ†)2 − (d̂†)2) =

√
2|2, 0〉+

√
2|0, 2〉

2
.

(2.26)

The detectors will count (0,2) and (2,0), they are quantum correlated.

2.2 Event Formalism

Event Formalism is a hypothesis raised by Ralph et al. [1, 3, 5], which describes a grav-
itational effect on quantum entanglement. The most well-known gravitational effect is
curved space time. In a curved space time, an object traveling in different world lines
may experience time differences. In Ralph’s hypothesis, this time difference is essential
because he supposes there exists an operator named event operator that is sensitive to the
time difference between the world lines of the entangled pair. The difference between the
standard theory and the Event Formalism is that the event operator keeps track of the
time experienced by a particle on its past trajectory, and therefore the Event Formalism
predicts decoherence which is different from the standard theory’s prediction. We have
not observed the event operator so far because the gravity on the earth is weak and the
space-time is almost flat. In flat space-time, the effect of the event operator will not show
up. Up to now, no experiment has proved the event operator is existing or not.
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2.2.1 Motivation: Closed Time Curve

Ralph got his idea from the close time curve [2, 21], which allows a system to travel to the
past and interact with itself as showed in Figure 2.4 and Figure 2.5.

Figure 2.4: a particle interacts with the ”younger” itself. Note. The figure is from [1]

The interaction was described by a gate U and a part of the output was also the input.
To keep a consistent output, Bacon mentioned that the evolution from the input to the
output was nonlinear [28]. It made Ralph want to build a non-standard theory that allows
the commutator along the geodesic, which is the event formalism.

For time travelers inside the close time curve, it is obvious that they experience different
time lengths as the outside. Based on this difference, Ralph constructed the event operator.
Besides the close time curve, the curved space time can also make different rest times; this
is the reason the event operator has the potential to describe the gravitational effects.

2.2.2 Event Operator

Recall the mode operator 2.1.1 of plane waves is

âK(x, t) =

∫
dkK(k)eik(x−t)âk. (2.27)

where âk is an annihilation operator at frequency k, K(k) is a distribution on k. This
equation means we generate waves with multiple modes and a spectrum.
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Figure 2.5: particles interacts with the ”younger” others. Note. The figure is from [2]

Then, imagine a new annihilation operator based on âK . We want the new operator
not only to depend on the wave number k but also on local time because local time is a
manifestation of the gravity effect. Define ∆ as the time difference: global time - local
time.

To define global time and local time, Ralph has put forward several ideas. The final
definition is showed in Figure 2.6. The global time td is the propagation time measured
by a detector placed at the end of the particle path. Local time is measured by a series of
detectors placed along the particle’s world line. Each detector measures the time it takes
for particles to pass by (from t′ to t(n)). Then add up all of them, we can get the local
time.

The time difference ∆ is

∆ = td −
∫ td

t

ds. (2.28)

Where td =
√
−g00|x=xd

∫ xd
xs

√
gii
−g00

dxi , gii are spacial component is the global time, xs

12



Figure 2.6: Definition of time difference. Note. The figure is from [3]

and xd are the position of the source and the detector. ds is the time that the light passing
by the detector, the integral of ds is the local time.

For particles in flat space-time, ∆ is zero, while in curved space-time or time travelling
in closed time curve, ∆ will be nonzero. We also introduce the Fourier Complement of
the time difference, which is Ω. With ∆ and Ω, the new annihilation operator and event
operator are defined as fellows:

āK(x, t,∆) =

∫
dkK(k)eik(x−t)

∫
dΩ|K(Ω)|ei∆Ωâk,Ω. (2.29)

The new annihilation operator âk,Ω and the event operator āK(x, t,∆) will obey bosonic
commutator relation:

[âk,Ω, â
†
k′,Ω′ ] = δ(k − k′)δ(Ω− Ω′), (2.30)
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[āK(x, t,∆), ā†K′(x
′, t′,∆′)] =

[âk,Ω, â
†
k′,Ω′ ]∫

dΩ|K(Ω)K ′(Ω)|
. (2.31)

If the event operator does exist, it will change correlation under some conditions, and it
is what makes the event operator different from the regular mode operator. Let’s consider
the correlation in 3 possible conditions: (1)in flat space time, (2)classical correlated pair
in curved space time, and (3)entangled pair in curved space time.

Condition (1): if two wave packets are in flat space time, in other words, have the
same time differences ∆ = ∆′, then we can get

[āK(x, t,∆), ā†K′(x
′, t′,∆′)] = [âK(x, t), â†K′(x

′, t′)]. (2.32)

The event operator acts the same as the mode operator, so the effect of ∆ will not show
up here.

Condition (2): the two wave packets have different time differences ∆ 6= ∆′ and are
classically correlated. Imagine this case: we have classically correlated laser beams, then
send one to the flat space time and send the other to a curved space time. In this condition,
we use two coherent states to build the classical correlation.

Recall the displacement operator in 2.1.2, which will generate coherent state from the
vacuum is

D(α) = eāα
∗−ā†α. (2.33)

The expected photon number given by the detection can be described by a projection

〈α|ā†ā|α〉 = 〈0|ā′†ā′|0〉 = |α|2, (2.34)

where ā′ is the Heisenberg picture evolution:

ā′ = D(α)†āD(α) = ā+ α. (2.35)

α is the displacement of photon number. Here we assume that the coherent state we
generated and the detector (the state to project on) have the same spectrum K(k). By
adjusting the light path, they can also have the same phase, so that α can reach the
maximum value αmax, or it would be

α =

∫
dk|K(k)|2eikφαmax, (2.36)
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where φ is the phase different between the coherent state and the detector. Then consider
the photon number correlation of the two pumps

C = 〈0|ā′†1ā′
†
2ā
′
1ā′2|0〉 = |α1|2|α2|2, (2.37)

where

α1 =

∫
dk|K(k)|2eikφ1αmax, (2.38)

α2 =

∫
dk|K(k)|2eikφ2αmax. (2.39)

The phase difference φ1 and φ2 are classical related since they both depends on the phase
of the detector. By adjusting the light path, which means we set φ1 = φ2, then C can
reach the maximum value |αmax|4 We can also see that the correlation C is independent
on time difference ∆, the effect of the gravity still not show up.

Condition (3): the two pumps have different ∆ and are entangled. The parametric
entangling operator, which can generate a time-energy entangled pair from the vacuum
(like an entangled version of displacement operator) is

U(α) = eαā1ā2−α∗ā†1ā
†
2 . (2.40)

The Heisenberg picture evolution is

ā′1 = U(α)†ā1U(α) = coshαā1 + sinhαā†2, (2.41)

ā′2 = U(α)†ā2U(α) = coshαā2 + sinhαā†1. (2.42)

We can see that ā1 and ā2 are mixed together after the evolution, and this is the most
important difference from the classical correlation.

The photon number correlator is

C = |α|2
∫ ∫

dkdΩ|K(k)|2eikφ|K(Ω)|2eiΩ∆. (2.43)

This time, the correlation is decreased by the term eiΩ∆. It means gravity can make the
entangled pair decoherence if their time difference is nonzero. Notice that C will not reach
|αmax|4 even after adjusting phases, because of the term eiΩ∆.
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2.2.3 Satellite Experiment Result

In 2019, Ping Xu and colleagues did a satellite experiment to test the Event Formalism
[14]. They considered the gravitational decoherence near the earth. The experiment set
up a source on the ground products an entangled photon pair. Send one photon to the
satellite, and keep the other one on the earth. The time difference for the one on the earth
is neglectable, and the time difference for the one sent to the satellite, caused by gravity,
is

∆ =

∫ re+h

re

(
M

r
− M

re + h
)(1 +

2M

r
+
r2
e tan2(90− θ)

r2
)1/2dr, (2.44)

where re is the radius of the Earth, h is the height of the satellite, M is the earth mass in
the unit of length, and θ is the altitude angle.

If we assume the spectrum of Ω is Gaussian:

K(Ω) =

√√
2dt√
π
e−(Ω−Ω0)2d2

t , (2.45)

where dt is the coherence length of source. To find the coherence length, we can use the rela-
tionship between counting rate and the coherent length in Hong-Ou-Mandel measurement[26]:

Nc = 1− e
− δt2

4d2t , (2.46)

where δt is the difference between the interferometer’s two arms. In this experiment, the
coherence length dt = o.o7mm. The photon pair are polarization entangled.

The decoherence factor is therefore

D = e
− ∆2

2d2t . (2.47)

The experimental results did not find evidence of the existence of the event operator,
because the theoretical decoherence factor in this satellite experiment is 0.96, which is
too close to 1 to be tested given the quality limitations of the experiment. Before the
experiment, the laboratory team used Prof. Ralph’s old definition of time difference that
theoretically can be measured. After the experiment, Ralph corrected the definition. This
chapter will introduce the corrected definition.
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2.3 Generation of Refractive Index

The speed of light is constant in vacuum, however it can be slowed down by refractive
material. The refractive index is the ratio of the slowed speed and the speed in vacuum,
it describes the ability of the material to slow down light.
Since the gravity and the refractive material can both slow down the light, several inter-
esting situations allow for one to simulate the other, for example gravitational lensing [29].

Before using the refractive material to simulate gravity, it is necessary to know how the
refractive index generates. There are many models to explain the generation of refractive
index, but some of them do not make sense. For instance, some think photons are absorbed
by atoms in refractive material and emitted again and this process needs time. So, it seems
like the material slows down the light. However, atoms emit photons in many different
directions, but refracted light always travels in one direction as we can observe in the real
world.

I will show two models to explain, one in classical and another one in quantum.

2.3.1 Classical Model of Refractive Index

I want to introduce the classical model given in Feynman’s lecture [25] which consider
light as electromagnetic wave. And for dielectric material, we consider that it has some
free electrons. The basic idea is that, an electromagnetic wave can act on free electrons,
and the moving free electrons will produce an additional wave. The slow light is the result
of the sum of the original wave and the new wave. light sources in vacuum, the light from
the sourcs, which the original wave is

Es = E0e
iω(t−z/c), (2.48)

propagating along z axis.

We now assume the electrons in the material experience damped oscillation along the
x-axis, which is the direction of the electric field. The driving force is provided by the
incident light. Newton’s 2nd Law of Motion with this driving force can be rearranged as

m(ẍ+ γẋ+ ω2
0x) = qeE0e

iωt, (2.49)

where m is the mass and qe is the charge of an electron, ω0 is the resonant frequency of
the electron. Notice that the electron’s position in the material is almost stable, so the
original light can be simplified to Es = E0e

iωt
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From solving the former equation, we can get the motional function. Of the electron as

x =
qe/m

−ω2 + iγω + ω2
0

E0e
iωt. (2.50)

The material is dielectric. The dipole moment of an atom in the material is

p = qex =
q2
e/m

−ω2 + iγω + ω2
0

E0e
iωt. (2.51)

Rewrite it as

~p = ε0α(ω) ~Es, (2.52)

where

α(ω) =
q2
e/mε0

−ω2 + iγω + ω2
0

. (2.53)

α is called the atomic polarizability.

We consider the whole material, not only an atom. If the atom number density is N ,
the total polarization P will be

~P = Np = ε0Nα(ω) ~Es. (2.54)

Consider the isotropic dielectric here, so P and Es always have the same direction.

From Maxwell equation:

∇(∇ · ~Es)−∇2 ~Es = − 1

ε0c2

∂2 ~P

∂t2
− 1

c2

∂2 ~Es
∂t2

, (2.55)

∇2 ~Es −
1

c2

∂2 ~Es
∂t2

= − 1

ε0
∇(∇ · ~P ) +

1

ε0c2

∂2 ~P

∂t2
. (2.56)

To solve the equations, we first try to find a solution propagating along the z-axis.
Assume it polarizes along the x-axis:

Ex = E0e
i(ωt−kz). (2.57)
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Knowing that the refractive index is n satisfy n = kc/ω, we rearrange the solution:

Ex = E0e
i(ωt−nz/c). (2.58)

Assume the material is linear dielectric, the polarization Px will be dependent on time
as eiωt, so ∂2Px

∂t2
= −ω2Px. Put this and (2.58) into (2.56):

−n
2

c2
Ex +

ω2

c2
Ex = − ω2

ε0c2
Px. (2.59)

Recall (2.54) Px = ε0Nα(ω)Ex. Insert this into (2.59):

n2 = 1 +Nα(ω) = 1 +
Nq2

e

mε0

1

−ω2 + iγω + ω2
0

. (2.60)

However, this result is not under the condition for dense material that the surrounding
atoms will produce a field that is comparable to Ex. Assume the distance between the
atoms is much smaller than the wavelength of the field, this condition can be described by
the model: an atom placed in a spherical hole of the dielectric. From this model, we have:

Elocal = Ex +
Px
3ε0

, (2.61)

Px = ε0Nα(ω)Elocal. (2.62)

Solving the equation for Px:

Px =
Nα(ω)

1− Nα(ω)
3

ε0Ex
. (2.63)

Finally we obtain

n2 = 1 +
Nα(ω)

1− Nα(ω)
3

, (2.64)

with α(ω) = q2
e/mε0

−ω2+iγω+ω2
0
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2.3.2 Quantum model of Refractive Index

In the classical model, the energy level of the atom is not considered, and we will see how
it makes difference in the quantum model. There are several approaches of applicable to
slow light. Some of them use dispersion to get slow group velocity. I am going to introduce
the model that gives slowed phase velocity. It is raised by W. G. Unruh and R. Schutzhold
[30] with Λ energy model of atoms, which means two low energy levels and one excited
level.

Assume the two low energy states are |a〉 and |b〉 with energy −ωa and −ωb, the excited
state |c〉 has energy 0 and decay constant Γ.

The Lagrangian of electromagnetic field is

LE(x) =
1

2
(E2 −B2) =

1

2
[(∂tA)2 − (∂xA)2], (2.65)

where A is the potential vector.

For each of the atoms, it is in the state ψa|a〉 + ψb|b〉 + ψc|c〉. The Lagrangian of an
atomic is

LA = i(ψ∗a∂tψa + ψ∗b∂tψb + ψ∗c∂tψc) + ωaψ
∗
aψa + ωbψ

∗
bψb + iΓψ∗cψc. (2.66)

Use dipole approximation for the light-matter interaction. Let Ma, Mb be the transition
amplitude, which describe the transition probability from low energy state to high energy
state, and let x be the location of the atom.Then the Lagrangian of light-matter interaction:

LI = E(x)(Maψ
∗
cψa +Mbψ

∗
cψb) + h.c. (2.67)

Then we use a strong background field (can be caused by a input field) to place the
atoms in the “dark state”, where we can cancel the spontaneous emission. Such background
field should have the expression:

A0 = Ω[
cos θ

Maωa
eiωa(t−x) +

sin θ

Mbωb
eiωb(t+x)] + h.c. (2.68)

the background field is constituted by a left-going beam and a right-going beam. θ describes
the relative strength of them., and Ω is the average Rabi frequency of the two beams. With
rotation wave approximation [31], the non-decaying solution under this background field is

ψ0
a = eiωa(t−x) sin θ, (2.69)

ψ0
b = −eiωb(t+x) cos θ, (2.70)

ψ0
c = 0. (2.71)
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The total electromagnetic field contains the strong background field A0 and external
part:

A(t, x) = [Ω
cos θ

Maωa
+ Φa(t, x)]eiωa(t−x) + [Ω

sin θ

Mbωb
+ Φb(t, x)]eiωb(t+x) + h.c. (2.72)

where Φ represents the external part of the electromagnetic field and assume it changes
slowly.

The atom state under the total electromagnetic field can be write as

ψa = eiωa(t−x)(Φa + sin θ), (2.73)

ψb = eiωb(t+x)(Φb − cos θ), (2.74)

ψc = Φc, (2.75)

where Ψ are also change slowly.

Input A, ψa, ψb and ψc into Lagrangian (2.65), (2.66) and (2.67). Consider the effective
Lagrangian with second order terms of Φ and Ψ, the Lagrangian of electromagnetic field
is

LE ' 2iωaΦ
∗
a(∂t + ∂x)Φa + 2iωbΦ

∗
b(∂t − ∂x)Φb. (2.76)

The Lagrangian of an atom is

LA ' i(Ψ∗a∂tΨa + Ψ∗b∂tΨb + Ψ∗c∂tΨc + ΓΨ∗cΨc)− iΩ(Ψ∗cΨa cos θ + Ψ∗cΨb sin θ − h.c.).
(2.77)

The interaction Lagrangian is

LI ' −iωaMa sin θΦa(x)Ψ∗c + iωbMb cos θΦb(x)Ψ∗c + h.c. (2.78)

We obtain the equation of motion from Lagrangian:

dtΨa = −Ω cos θΨc,

dtΨb = −Ω sin θΨc,

dtΨc = Ω(cos θΨa + sin θΨb)− ΓΨc + ωaMa sin θΦa(x)− ωbMb cos θΦb(x)

. (2.79)

(∂t + ∂x)(2Φa) = −ρMa sin θΨc(x), (2.80)

(∂t − ∂x)(2Φb) = ρMb cos θ
∑
i

Ψc(xi), (2.81)
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where ρ is the density of atoms in the media.

Then solve the electromagnetic field Φ from the equation of motion. Remember that
Φ and Ψ are changing slowly, we can neglect 2nd order derivative:

(∂t + ∂x)Φ
′
a = −ρωaM

2
a sin2 θ

2Ω2
(∂tΦ

′
a − ∂tΦ′b), (2.82)

(∂t − ∂x)Φ′b =
ρωbM

2
b cos2 θ

2Ω2
(∂tΦ

′
a − ∂tΦ′b), (2.83)

where Φ′a = ωaMa sin θΦa, Φ′b = ωbMb cos θΦb.

We can choose a θ to simplify the math, make the coefficients equal:

ρωaM
2
a sin2 θ

2Ω2
=
ρωbM

2
b cos2 θ

2Ω2
= N. (2.84)

Then we can rewrite the field from (2.83) to:

(∂2
t − ∂x

1

1 + 2N
∂x)Φ± = 0, (2.85)

where Φ± = Φ′a ± Φ′b.

Assume the density ρ is constant, then the refractive index is

n =
√

2N + 1 =

√
ρωaM2

a sin2 θ

Ω2
+ 1 =

√
ρωbM2

b cos2 θ

Ω2
+ 1. (2.86)

2.4 Commutation Relation Provide by Refractive Ma-

terial

Using a refractive material to simulate gravity is not only popular in theories and exper-
iments of classical phenomenon, but also in quantum area. Many scientists have used re-
fractive materials to build analogue event horizons and test Hawking radiation [32, 33, 34].

However, using refractive material to test Hawking radiation is not favored by William
Unruh, who is the first one to use analogue gravity to observe Hawking radiation [35].

Unruh found that the commutation relation of light slowed by a refractive material is
not suitable to simulate some quantum phenomenon [30]. With the model introduced in
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2.3.2, the commutators of field in (2.85), which is the electromagnetic field inside refractive
material are

[Φ±(t, x),Φ±(t′, x′)] = [Φ±(t, x)†,Φ†±(t′, x′)] = 0, (2.87)

[Φ+(t, x),Φ†+(t, x′)] = δ(x− x′), (2.88)

[Φ−(t, x),Φ†−(t, x′)] =
δ(x− x′)
1 + 2N

. (2.89)

The equal-time commutators are

[Φ+(t, x),Φ†−(t, x′)] = [Φ†+(t, x),Φ−(t, x′)] = 0. (2.90)

We can compare the above commutators with the commutators of other fields. The scalar
field commutators [36] are

[φ(t, x), φ(t, x′)] = [∂tφ(t, x), ∂tφ(t, x′)] = 0, (2.91)

[φ(t, x), ∂tφ
†(t, x′)] = iδ(x− x′). (2.92)

The commutators of (1+1 dimensional) bosonic Schrodinger field are

[φ(t, x), φ(t′, x′)] = [φ†(t, x), φ†(t′, x′)] = 0, (2.93)

[φ(t, x), φ†(t′, x′)] = δ(x− x′). (2.94)

Comparing the commutators of above three fields, we can see that the commutation
relation of electromagnetic field inside refractive material is different from the scalar field
and it is bosonic. It should not be used to simulate any system based on scalar field, for
example, Black Hole horizon nor Hawking radiation.

In my research, I am questioning if the light inside the refractive material can simulate
the light inside gravity and test the Event Formalism. Gravity is scalar field, however, the
light inside gravity still has a bosonic commutator, which is not the same condition that
were disproved by Unruh and Schutzhold, in other words, it is still meaningful to raise this
question.
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Chapter 3

Testing the Event Formalism under
Angular Acceleration

Gravitational effects on quantum entanglement, such as Event Formalism, are difficult to
study experimentally. One reason is that, if it exists at all, the effect will be very weak.
To see such a weak effect, one approach is to make use of large differences in gravitational
potential. One way to achieve this is by sending light between Earth and satellites orbiting
Earth. However, that is a challenging task, especially when it requires a huge amount of
financial support. Furthermore, as discussed in Chapter 2.2.3, a recent satellite experiment
testing the Event Formalism was inconclusive [14]. Therefore, we propose an simulation
approach to test these effects on Earth. In this approach, we consider the simulation of
gravity by using acceleration, and investigate whether its effect on entanglement validates
the Event Formalism introduced in Chapter 2.

Ultimately, we are interested in the effect of gravity on entanglement, but since it is
not practical to create strong gravitational fields on the Earth, we can simulate them by
accelerating our experiment setup. This analogue is possible to the connection between
gravity and acceleration thanks to Einstein’s equivalence principle [37]. The question is,
how to design such an experiment? Is the experiment doable?

The experiment proposed in this chapter was inspired by an experiment performed by
Fink et al. [4], which was designed to find the effect of a constant acceleration on the
entanglement. I will consider a modified version of the configuration with the attempt
to make it sensitive to the Event Formalism. This new experiment I designed should
theoretically allow to show the effect of the Event Operator. However, it requires large scale
equipment and a high angular velocity, which makes the experiment practically infeasible.
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3.1 Testing effect of acceleration on entanglement

I will first revisit the analysis done by Fink et al. [4], where the authors considered two
experiments: one experiment applies a free fall and another rotates the setup to observe
its effects on polarization entanglement.

The effect was expected to be weak, so large acceleration was required. To ensure
completion of the measuring without any optical equipment damaged, they built an ultra-
stable entangled photon source. They placed the source and detectors in a crate that could
withstand the large force while falling or rotating. In addition, another device is involved
to keep the temperature stable. The source and detector are shown in Figure 3.1.

Figure 3.1: The source and detection in the experiment. Note. The figure taken from [4]

The source in their experiment was a nonlinear crystal that generated pairs of polarization-
entangled photons, where the state is as follows:

|Ψ〉 =
1√
2

(|H1V2〉 − |V1H2〉), (3.1)

where H and V represent the horizontal and vertical polarization states, respectively.

They derived a lower bound for the fidelity of the experimental state with the ideal
Bell state |Ψ〉:

F = 〈Ψ|ρexp|Ψ〉 ≥
1

2
(VHV + VDA), (3.2)
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where VHV and VDA are the visibilities of the H/V and D/A basis. D/A are the diagonal
and anti-diagonal basis, respectively. This equation indicates that the similarity between
the experimental state and the ideal Bell state can be seen by measuring the visibility.

Four detectors were used to measure the correlation visibility. Detectors 1 and 2 mea-
sure Photon 1 on the H/V (or D/A) basis. Detectors 3 and 4 measure Photon 2 on the
V /H(or A/D) basis. Then the visibility is

V =
N13 +N24 −N14 −N23

N13 +N24 +N14 +N23

, (3.3)

where Nij is the number of coincidences between detectors i and j. A coincidence is
detected when the detectors i and j click. Both experiments were performed under the
constant acceleration in time and position.

In the free-fall experiment, they dropped the crate which gained a high velocity right
before hitting the ground. The stopping acceleration reached 16g, where g = 9.80m/s2.
They collected data from 400,000 signal photon clicks.

In the rotation experiment, their set-up is shown in 3.2A. They placed the crate on the
edge of a rotating bar. The source and the detector were about 3m away from the rotation
axis. The acceleration of the setup was raised from 1g to 30g in 5g steps, making about
140,000 coincident counts for each acceleration.

They found that compared to the low acceleration (= 3× 10−3g), the lower bound on
Bell-state fidelity did not change much. The mean value was 0.9645. After considering
the error caused by temperature fluctuations and other factors, the fidelities for different
accelerations were all in the range of the mean value. Therefore no abnormal or unexpected
effects were observed in the observed entanglement quality.

3.2 Proposed Event Formalism Test with Accelera-

tion

The experiment described in the previous section was a good approach for testing the
gravitational effect on entanglement; however, the experiment was not designed to test
the event formalism, because they were placed in the same crate so that both felt the
same acceleration, and therefore does not determined that the existence event operator,

26



Figure 3.2: Modified setup. A shows the original setup that Fink used. B shows the
modified setup introduced in this chapter. The source and the detection module A and B
are the same as showed in Figure 3.1. The x axis is rotating with the bars.

nor can it confirm other theories based on changes on gravity [38, 39, 40, 41]. This is
the case because the Event Formalism requires each photon from an entangled pair to feel
different gravitational fields however. We therefore seek to modify the experiment in the
previous section such that each photon experiences different accelerations. Out of the two
experiments presented, the rotating setup makes this modification easier. Furthermore, it
makes it possible to gain even larger accelerations. We thus focus on the rotating setup in
this section.

My proposed modification is to move the photon source and detector module A to the
rotation axis and keep the detector module B at the edge of the bar, as shown in Figure
3.2B. As the bar rotates, one photon of the entangled pair is sent from the rotation axis to
the edge, while the other photon does not leave the rotation axis, instead traveling along
the axis. Thus, the two photons experience different accelerations.
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To observe the expected decoherence, we need the time difference ∆ in the Event For-
malism, which describes how curved the space time is. Recall that the time difference
(2.28) is the difference between the global time and the local time along the light path. In
the rotating setup, the time difference in the event formalism can be calculated by special
relativity. We consider the case with a small angular velocity since the bar’s length and
angular velocity that can be produced in the laboratory are small.

To calculate the time difference, we need the global time and the local time. Recall
that the global time (2.28), which is also the propagation time, is measured by placing
a detector at the end of the photon’s path. The photon’s path in the rotating setup is
along the bar. We now want to know the Lorenz factor, so we can use it to calculate the
local traveling time between imaginary detectors along the light path. The local time is
measured by a series of imaginary detectors placed along x axis. The Lorenz factor [25]
for the detector is

γ =
1√

1− v2

c2

=
1√

1− r2ω2

c2

, (3.4)

where ω is the constant angular velocity, and r is the distance between the detector and
the axis in the laboratory frame. The velocity is rω.

We define the travelling time to be the time that takes a photon to pass by point-like
detectors. For the local time, each detector measures the travelling time as the photon
passes by that detector, and the local time is the sum of these travelling times. The
travelling time in the detector frame is ∆r/cγ, where ∆r is a short distance located at
the detector, and the travelling time is the time that takes a photon to travel this short
distance. The local time τ is

τ =

∫ L

0

dr

c

1

γ
, (3.5)

where L is the total length of the bar.

The global time, which is the propagating time measured by the detector at the edge
of the bar in the detector’s frame:

t′d =
L

c

1

γ
(3.6)
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Insert (3.5) and (3.6) into (2.28), we can get the time difference (result calculated by
Mathematica):

∆ = τ − t′d = −
L
√

1− L2ω2

c2

2c
+

arcsin(Lω
c

)

2ω
. (3.7)

With the time difference, we can derive the decoherence factor D = e
− ∆2

2d2t , where dt is the
coherence time of the source. According to [4], the source has about 5% systematic errors.
The expected decoherence should be at least larger than 5% to be observed.

3.3 Results

To determine the feasibility of observing the effect of gravity on entanglement as predicted
by the Event Formalism, we will consider specific experimental parameters. If we set the
length of the bar L = 10 m, and the angular velocity ω = 30 rad/s, then the time delay will
be ∆ = 1.11107× 10−20 s, and the decoherence factor is then D = 1− exp (−0.5∆2/d2

t ) =
0.55 × 10−15 where dt in the unit of length is 0.07 mm, which is the same as the source
used in the satellite experiment. [14]. While this assumed 10-meter-long bar with angular
velocity = 30 rad/s is not easy to be accomplished in the lab, the decoherence is still much
too small to be observed. If we want to observe the decoherence, for instance, 10% gives
the time difference of 5× 10−10 s with dt = 0.07 mm.

Other rotating equipment, such as ultracentrifuge, could provide a larger acceleration
with a shorter length and a higher angular velocity. To decide whether to choose the longer
length or higher angular velocity, I plotted Figure 3.4 and found that a longer length L
can increase the time difference more significantly, which helps more in verifying the event
operator.

3.4 Discussion

Since a longer rotation bar can make the effect of the Event Formalism more observable
and the effect increases nonlinearily with L, I prefer a larger experimental equipment with
a longer centrifuge’s length is preferred. My estimates show that the length and angular
frequency of the setup are too difficult to achieve with current technology, and therefore
in conclusion, this experiment is unlikely to be feasible.
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Figure 3.3: Time difference ∆ vs L and ω. The figure shows the the region near the point
that the decoherence is observable (∆ = 5× 10−10 s). The length and the angular are too
big to be achieved.

Since it is too difficult to verify the event operator with an accelerating setup, I will
explore other ways in the following chapters using refractive index.
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Figure 3.4: Time difference ∆ vs L or ω. The figure shows the time difference. Red: Bar
length changes from 10m to 100m. Orange: Angular velocity changes from 10 rad/s to
100 rad/s. The time difference is extremely small in this region. We can see that the time
difference increases faster as L increases, compared to the increase with ω. The increasing
of ω looks almost linear, while the increasing of L is higher order. For example, at L=10 m
and ω= 10 rad/s, when L increases 10 times, the time difference will be around 1000 times
larger. When ω increases 10 times, the time difference will be around 100 times bigger.
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Chapter 4

Testing the Event Formalism with
Refractive Index

Simulating the effect of gravity on light using analogue systems has received a lot of atten-
tion lately [42]. An example of such an analogue system is an optical medium in which the
refractive index, like gravity, slows down light. Simulating gravity with refractive materials
can be done in different ways, such as the use of moving materials [43, 44], using nonlinear
hyperbolic metamaterials [45], or changing refractive index [34].

In the previous chapter 3, we looked at simulating gravity with acceleration to test the
effect of gravity on entanglement. We show that conditions that would lead to observable
effects were difficult to engineer in a laboratory setting on the earth. In this chapter, we
will consider simulating gravitational effects with refractive materials. As in the previous
chapter, we will specifically focus on the Event Formalism. In section 2.4 we already know
that the commutation relation we need in the Event Formalism can be realised in refractive
materials.

The question is, if it is to test the Event Formalism using refractive materials? Is
the refractive material a suitable one? It may be unclear if slowing light is enough to
provide evidence for the necessity of Event Formalism, or whether the gravitational effect
on quantum entanglement has other properties that cannot be simulated by the refractive
material. In this chapter, I will formulate a map between gravity and the refractive index,
and then describe an experimental set-up using stationary refractive materials. This setup
is chosen because it is easier to be set up in a laboratory. We find that under conditions
regularly met in laboratory settings, one would already expect to see an effect. The fact
that we have not seen this in existing experiments suggests that either the Event Formalism
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is wrong or the refractive material should not be used to test the Event Formalism.

4.1 Space-time Metric of Refractive Material

In general relativity, the geometric structure of the universe can be described by its metric.
I will introduce a way to map from the metric to the refractive index of a stationary
material.

We set the direction of propagation of light to be x1 and assume that the direction of
propagation does not change. For instance, the light travelling straight towards the center
of a stationary black hole will not change direction. The refractive index is defined as the
ratio of the speed of light in a vacuum c to the speed of light in the material v = dx1

dt
[23]:

n =
c

v
= c

dt

dx1
. (4.1)

The propagation of light under general relativity is described in the following way [46]

g00(cdt)2 + g01(cdt)dx1 + g10dx1(cdt) + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 = 0, (4.2)

where gij is the element of the metric, which describes the space time. Since the light
strictly propagates in the x1 direction, dx2 = dx3 = 0. We solve equations (4.1) and (4.2)
and obtain

cdt =
−2g01x

1 ±
√

(4g2
01 − 4g00g11)dx1

2g00

(4.3)

c
dt

dx1
=
−g01 ±

√
(g2

01 − g00g11)

g00

= n. (4.4)

For convenience, we may consider a metric with g01 = 0 (many space time have this prop-
erties, for example, the Schwarzschild metric). We are trying to artificially create a curved
space-time, so it is reasonable to describe the setup environment with the Schwarzschild
metric. We find:

n =

√
g11

−g00

. (4.5)

This equation will be our main relation between the refractive index and the curvature of
space-time.
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According to general relativity, our metric (which contains the refractive index) would
be equivalent to the metric that describes the linearized gravity field (where a weak gravity
field is considered) [46]:

gµν = ηµν + hµν =


−1

1
1

1

+


0

χ
χ

χ

 =


−1

n2

n2

n2

 , (4.6)

where χ is the susceptibility. We can see that g11 = n2, g00 = −1, therefore

ds2 = −(c0dt)2 + n2(dx1)2. (4.7)

This result agrees with others, we get the same map as in [47].

However, we will consider stronger gravity to verify Event Formalism and the effect
will therefore become noticeable. We thus consider the Schwarzschild metric elements
from general relativity [46]:

g00 = −
(

1− rs
r

)
(4.8)

g11 =
(

1− rs
r

)−1

(4.9)

We insert (4.9) into (4.5) to find

n =
(

1− rs
r

)−1

= g11 =
1

−g00

. (4.10)

In this way, the metric elements can be expressed by the refractive index. We will apply all
these relations in the simulation. Note that air, which refractive index ≈ 1, can simulate
flat space time, which is equivalent to an observer being infinitely far away.

4.2 Testing the Event Formalism

We can now create the experimental simulation to verify Event Formalism. Using the
metric tensor that we just defined in terms of the refractive index. The Event Formalism
studies the possibility of decoherence between an entangled pair experiencing different
gravity. We will use a refractive material to generate an artificial Schwarzschild metric,
and air to generate an infinitely far region. The setup is shown in Figure 4.1
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Figure 4.1: Proposed experiment set up to test the Event Formalism. The entangled source
provides photon 1 and photon 2. Due to [5], I choose time-energy entangled pair because
the decoherence will be easier to be observed. Photon 1 travels to the photon detector
through air. Photon 2 travels through a refractive material (blue box). Path 1 would be
longer than path 2 to keep the two photons in the same phase while being detected. The
detectors record the arriving time

, and we want the rate of coincidence detection.

The first step is to find the time difference ∆ between global time and local time [1],
and then calculate the decoherence factor, given a material with a refractive index n and
its length L. The global time is measured by an observer at the end of both light paths,
which is described by [14]

t′d =
√
−g00|x=xd

√
g11

−g00

xl, (4.11)

where xd is the position of the observer, xl is the length of light path in the observer frame,
and corresponds to L in the simulation experiment. Note this equation is a simplified
version when gravity is constant along the light path (we can assume xl � r because the
light path is very short compared to the radius of the Earth, so that gravity does not
affect much along the light path), which can be exactly simulated by refractive material,
since the refractive index is constant inside the material. The observer at the end of the
path is outside the material, in the air. It is equivalent to the observer in flat space time.
Therefore, −g00|x=xd = 1.

Next, we insert (4.5) into (4.11) to get:

t′d =
nL

c
. (4.12)

The local time is measured by the imaginary observers inside the material, which means
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that inside the curved space time, it is given by [14]

τ = xl

(√
1− rs

r

)−1

. (4.13)

Again, this is the simplified version for constant gravity. Insert (4.10) into (4.13):

τ =

√
nL

c
. (4.14)

Then the time difference is

∆ = t′d− τ = (n−
√
n)
L

c
. (4.15)

Recall that the decoherence factor was defined as (2.47):

D = exp

(
−0.5∆2

d2
t

)
= exp

(
−0.5

(n−
√
n)2L2

d2
t

)
, (4.16)

where dt is the coherence time of the source. For our analysis, we assume that our source
has the same coherence was the one used in the satellite experiment [14], so that the
coherence length is 0.07 mm.

If we have L = 0.5cm, n = 1.5, which is the data for a beam splitter slice, the decoher-
ence factor will be:

D = exp

(
−0.5

((1.5−
√

1.5)0.5cm)2

(0.07mm)2

)
≈ 0. (4.17)

This corresponds to complete decoherence.

4.3 Discussion

I used the metric tensor derived in terms of the refractive index, and designed an experiment
using a beam splitter as the refractive material. Calculation of the expected decoherence
factor (D = 0) indicated that the photon pair is fully decoherent. However, the beam
splitter is a commonly used device in many quantum experiments. If a beam splitter
can efficiently make photons decoherent, the decoherence event would have been observed
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before. Note that the decoherence caused by Event Formalism cannot be canceled by
adjusting the light path, refer to (2.43). However, the decoherence caused by non-dispersive
materials can be canceled in this way. To do this, we just need to change the longth of the
light path until the phases of the photons at the detectors are the same. Since no scientist
has observed non-canceled decoherence, the simulation experiment failed to support the
Event Formalism.

Since the experiment fails to support Event Formalism, I speculate that this is explained
in one of two probable ways: 1. The hypothesis of Event Formalism is not plausible.
2. Using dielectric material to test Event Formalism is inappropriate. Regarding the
first possible explanation: The Event Formalism is just a hypothesis for a newly defined
event operator, which is incorrect. Regarding the second possible explanation: The Event
Formalism is directly related to time. Although using dielectric material to simulate a
curved space-time is mathematically feasible, it does not mean that the simulated time
has the same physical properties as the real world time. Inside the dielectric material, the
speed and phase of photons act as if time is stretched, but we cannot be sure whether it is
really stretched. In addition, the following question remains unanswered: Is the stretched
simulated time enough to test Event Formalism? We will answer these questions in Chapter
5.
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Chapter 5

Testing Quantum Decoherence due
to Gravitational Time Dilation

If a quantum system is not perfectly isolated, it will be correlated with the environment
and the system will decohere. This is called quantum decoherence. One of the recent
quantum decoherence theories, is that it could be caused by gravitational time dilation,
the topic of which was introduced by Zych et al. [20, 21]. Like the Event Formalism, it
is based on both relativity and quantum mechanics, however, it only contains standard
theory without new assumptions.

Since refractive materials can mimic a curved space-time, can they also mimic the
decoherence effect induced by gravitational time dilation? In this chapter, we will study the
gravitational time dilation decoherence. I will briefly talk about the possibility to observe
the decoherence on satellites. Then I will focus on the decoherence between entangled
photons and design a simulation experiment that uses refractive material to simulate the
effects of gravity.

By studying this topic, we will try to answer the following questions raised in Chapter
4: (i) Does the refractive material experiment disprove the Event Formalism since it does
not show decoherence? (ii) Is the refractive material experiment inappropriate for testing
the Event Formalism?

In this chapter we will find that the refractive material can only simulate the phase
shift effect of gravitational time dilation. In other words, it is not suitable to test the Event
Formalism.
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5.1 Gravitational Time Dilation Decoherence

Decoherence caused by gravitational time dilation of massive particles was introduced in
Pikovski et al. [20]. In order to explain why its not possible to observe a large group of
massive particles -for example, chemical compounds- in the superposition of positions [20].
As for nanoparticles, this kind of quantum superposition is still possible [48]. Pikovski and
Zych’s theory combined relativity and quantum mechanics.

The basic idea that Pikovski et al. is proposed as follows. In relativity, if a system with
mass (m) has Hamiltonian (H0) for its time evolution of the internal degrees of freedom,
then the total rest mass is

mtotc
2 = mc2 +H0. (5.1)

The gravitational potential energy is mtotΦ(x) = mΦ(x) + Hint, where Φ(x) is the gravi-
tational potential at position x. The interaction term Hint = Φ(x)H0

c2
. If we also consider

the momentum, then we have

Hint =

(
Φ(x)− p2

2m2

)
H0

c2
. (5.2)

Hint describes how gravity couples to the internal energy. For example, if the massive
particle is a harmonic oscillator, then the gravitational effect leads to a frequency change:
ω → ω(1 + Φ(x)

c2
). This result agrees with the gravitational redshift [49, 50].

Consider a system that is in the superposition of two different gravitational potentials,
we can express it as |Ψ〉 = 1√

2
(|x1〉 + |x2〉) (different potential may be caused by different

height), where x1 and x2 represent the position where the particles appear. The time
evolution generated by Hint will lead to decoherence. By theoretically calculating the
visibility of the superposition state, Pikovski et al. obtained the decoherence time:

τdec =

√
2

N

~c2

kBTg∆x
, (5.3)

where N is the number of particles. We can see that with a large particle number, the
decoherence time will be very small. If N ∼ 1023 and ∆x = 10−6 m, then τdec ≈ 10−3 s.
The short decoherence time explains why we do not observe the superposition of a large
group of particles in everyday situations.

Next, we will apply the gravitational time dilation to photons. The derivation follows
the similar method that Pikovski et al. used, but we replace the massive particle’s Hamil-
tonian with the photon’s Hamiltonian, and use a Gaussian distributed state instead of
thermal state. This allows us to find that the decoherence time for photons has a similar
expression as the decoherence time of massive particles they found.
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5.2 Photon Decoherence

We will assume that the theory of decoherence by gravitational time dilation shown in
Section 5.1 has applications beyond massive particles, and can also apply to photons,
because photons also have decoherence under Hint, and we will show this decoherence
theoretically. This photon decoherence makes it possible to use the refractive material to
test the theory.

The internal Hamiltonian for photon is

H0 = ~ω(a†a+ 1/2). (5.4)

The interact Hamiltonian is

Hint = Φ(x)
H0

c2
=

Φ(x)

c2
~ω(a†a+ 1/2), (5.5)

where Φ(x) is the gravitational potential at position x.

We consider a photon at the superposition of different gravitational potentials (height),
as shown in Figure 5.1. The gravity metric on the earth can be considered as Schwarzschild
metric since other objects’ gravity are weak comparing to earth’s gravity.

Figure 5.1: A light beam is prepared in a superposition of different height. The beam
splitter (blue) generates a superposition of an optical signal along paths x1 and x2. If
the paths have a height difference ∆x, this will cause a superposition of different heights.
There is no superposition of spectrum or polarization.

The initial density matrix (after the beam splitter) of this photon is

ρ(t = 0) = |ψ(0)〉〈ψ(0)|
⊗

ρ′, (5.6)
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where |ψ(t = 0)〉 represents the path term, it is

|ψ(0)〉 =
1√
2

(|x1〉+ |x2〉). (5.7)

ρ describes the internal freedom of the photon. Assume that it has a Gaussian spectrum:

ρ′ =

∫
dω|G(ω)|2a†ω|0〉〈0|aω, (5.8)

where |G(ω)|2 = 1√
a0π
e
− (ω−ω0)2

a0 . We will see that the path terms cause red shift in the

following calculation.

Insert (5.7) and (5.8) into (5.6):

ρ =
1

2

∫
dω|G(ω)|2a†ω(|x1, 0〉+ |x2, 0〉) (〈x1, 0|+ 〈x2, 0|) aω

=
1

2

∫
dω(|x1(0, 0)〉+ |x2(0, 0)〉)(〈x1(0, 0)|+ 〈x2(0, 0)|)

(5.9)

where |xi(0, 0)〉 = G(ω)a†ω(0, 0)|xi, 0〉
In plane wave modes, the mode operator is [1]

aω(s, l) = e−iω(s−l/c)aω(0, 0), (5.10)

where s is the local time and l is the local position. The speed of light is always c =
2.99 ∗ 108m/s when measured locally. For convenience, we rewrite aω(0, 0) as aω in the
following equations. With (5.10) we can get the evolution of |xi(s, l)〉, which is the photon
at (s, l):

|xi(s, l)〉 = G(ω)e−iω(s−l/c)a†ω|xi, 0〉. (5.11)

If we observe the photon at infinite distance from a mass, we need to translate the local
time s and local position l into our space time coordinate. The translation will obey [1]:

ds =

√
1− rs

r
dt, (5.12)

dl =

(√
1− rs

r

)−1

dr, (5.13)

where t and r are the time and position at an infinite distance. rs is the Schwarzschild
radius, a constant related to the center mass. For the earth, rs is very small (about 9mm).
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By setting the initial point (0,0) in both (s, l) and (t, r) frame, we can have rewrite (5.12)
and (5.13) as

s =

√
1− rs

r
t

l =

(√
1− rs

r

)−1

r

, (5.14)

Assume that the most part of the light path is horizontal, so that the path x1 has constant

height r = x1, and
√

1− rs
x1

is also constant. We obtain
√

1− rs
x1

= η1 for path x1, and√
1− rs

x2
= η2 for path x2. After inserting η1, η2 and (5.14) into (5.11), we obtain the

evolution of path x1:

|x1(t, r)〉 = G(ω)e
−iω(η1t− r

η1
)
a†ω|x1, 0〉. (5.15)

And for path x2:

|x2(t, r)〉 = G(ω)e
−iω(η2t− r

η2
)
a†ω|x2, 0〉. (5.16)

Next we look at the non-diagonal elements of the density matrix at time t, because they
are related to decoherences as the state evolves from a pure superposition state to a mixed
state. Assume that the lengths of the two paths are z1 and z2, measured by an observer
infinitely far away. Then the nondiagonal element is ρ12 = 〈x1|ρ|x2〉. The time evolution
of the nondiagonal element is

ρ12(t) =
1

2
〈x1(0, 0)|

(∫
dω|G(ω)|2e−iω(η1t− z

η1
)
a†ω|x1, 0〉〈x2, 0|aωeiω(η2t− z

η2
)

)
|x2(0, 0)〉

=
1

2

1
√
a0π
〈x1(0, 0)|

(∫
dωe

− (ω−ω0)2

a0 e
−iω(η1t− z

η1
)
a†ω|x1, 0〉〈x2, 0|aωeiω(η2t− z

η2
)

)
|x2(0, 0)〉

,

(5.17)

which can be simplified to

ρ12(t, z1, z2) =
1

2

1
√
a0π

∫
dωe

− (ω−ω0)2

a0 e
−iω((η1−η2)t−(

z1
η1
− z2
η2

))
a†ω|0〉〈0|aω. (5.18)

In order to concentrate on the decoherence caused by the time dilation, we adjust the
length of each path to make their propagation times cancel each other out:

z1

η1

− z2

η2

= 0. (5.19)
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The visibility is defined as [20]

v(t) = 2|ρ12
ψ (t)| = |Trω[ρ12(t)]|. (5.20)

The result is calculated by Wolfram Mathematica:

v(t) = | 1
√
a0π

∫
dωe

− (ω−ω0)2

a0 e∗iω(η1−η2)t| = |e−i(η1−η2)tω0− (η1−η2)2t2a0
4 | = e−(η1−η2)2t2a0/4.

(5.21)
If we write the visibility in the form v(t) = e−(t/τdec)

2
, then we can define the decoherence

time τdec:

τdec =

√
4

a0

1

η1 − η2

. (5.22)

In the following sections, we will calculate the expected decoherence time to determined if
the experiment is doable and if the theory is supported.

5.3 Possible Satellite Experiment

If we perform the experiment on a satellite to observe the decoherence in time, the grav-
itational potential will be varied along the radial path from the Earth’s center such that
the evolution of a state will be [21]

|τ〉 = e
−i
~

∫
γ dτHint|τ(0)〉, (5.23)

where γ is the path and τ is the proper time along the path. If the path has higher
gravitational potential, it will produce faster decoherence. To simplify the equations,
we assume that the potential along the whole light path is equal to the potential on the
satellite. This assumption is not true since the path between the satellite and the earth has
lower potential. This assumption makes the total potential much higher so that it will make
the decoherence much stronger than the real condition, which means the decoherence time
will be much shorter. However, the following analysis shows that even the upper bound is
not strong enough to be observed. With this assumption, we can use the decoherence time
in (5.22):

τdec =

√
4

a0

1√
1− rs

Rsate
−
√

1− rs
RE

, (5.24)
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where Rsate is the radius of the satellite orbit, and RE is the radius of the Earth. The
decoherence time depends on the spectrum of the source, and the coherence time of the
source also depends on the spectrum. One should not confuse the decoherence time with
coherence time: the decoherence time describes the density matrix losing its nondiagonal
element, becoming a mixed state. While the coherence time is only determined by the
source, which is introduced in Chapter 2.1.3. We can express the relationship between the
decoherence time and the coherence time, then evaluate whether the experiment is feasible.

The full width at half maximum (FWHM) of gaussian is 2
√

ln 2 ∗ a0, and the coherence
time of the Gaussian source is [24]:

τ = 1/∆ω =
1

2
√

ln 2 ∗ a0

. (5.25)

Rearranging for a0, then insert (5.25) into (5.24); then we have the relation between deco-
herence time τdec and coherence time τ :

τdec = 4
√

ln 2
1√

1− rs
Rsate

−
√

1− rs
RE

τ. (5.26)

If we wanted to do the experiment with a satellite at 36000 km altitude orbit, then τdec =
7.5 × 108τ . The decoherence time would be much longer than the coherence time, which
means that it would not be possible to observe the decoherence because the gravitational
decoherence will be covered by the decoherence caused by other perturbations. With a
larger gravitational potential difference can be larger, the decoherence time could decrease.
However, earth orbiting satellites are not able to provide the potential we need (even the
sun can not provide enough potential.). Therefore, in the next section, we will discuss the
probability of using simulated gravity.

5.4 Consideration of an Experiment using Refractive

Material

5.4.1 Proposed Experiment Setup and Expected Outcome

We will consider if we can use refractive index in an optical material to simulate strong
gravity and test the gravitational time dilation decoherence. We can test the feasibility
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Figure 5.2: Proposed experimental setup to test Gravitational Time Dilation Decoherence.
bs1 and bs2 are two beam splitters. After bs1, the photon is in the superposition state
of path a1 and path a2. Path a1 has no refractive material, which simulates a path the
flat space-time (infinite far away in Schwarzschild space). While the refractive material on
path a2 simulates some other path in Schwarzschild. The superposition of path a1 and a2

simulates the height superposition. The detector c and d are single photon detector. We
can use single photon interference to find out the visibility.

of using refractive index by testing the decoherence time. The setup of the proposed
experiment is shown in Figure 5.2.

First, we want to calculate the expected decoherence time. Recall that for the Schwarzschild
metric (4.5):

n =
(

1− rs
r

)−1

. (5.27)

Fellow the similar calculations from (5.10) to (5.15), the light in Schwarzschild will travel
like:

|ψ〉 =

∫
G(ω)e−iω((1− rs

r
)1/2t−(1− rs

r
)−1/2z)a†ω|0〉 =

∫
G(ω)e−iω(ηt− z

η
)a†ω|0〉. (5.28)

We can see that:

η =
(

1− rs
r

)1/2

=
1√
n
. (5.29)
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For path a1, the refractive index = 1. We insert η1 = 1 and η2 = 1/
√
n into (5.22), then

we can get the expected decoherence time:

τdec =
4
√

ln 2

(1− n−1/2)
τ, (5.30)

where τ is the coherence time of the source. The limit for an extremely high refractive
index is τdec = 3.3τ . In the laboratory, the high refractive index could be 3 to 4.

In the experiment, we can test the visibility with single photon interference. From the
definition of the decoherence time, (5.21) to (5.22), the expected visibility is:

v(t) = e−(t/τdec)
2

. (5.31)

The way to find out the visibility with the experiment measurement outcome (the click
rates of detectors) is introduced in Appendix B. By recording the measurement outcomes at
different time, we can find out the visibility at different time, and compare to the expected
v(t).

Recall that the decoherence time (5.30) works under the condition (5.19): z1
η1
− z2

η2
= 0.

I will determine the lengths of l1, l2 and L to satisfy this condition.

Recall that l2 is the part of path a2 that is outside the material. This part has the
same refractive index as path a1, so that the time-like dilation will not cause decoherence,
but will cause phase shift. To cancel the phase shift, we need to add the same length to
path a1. We can divide path a1 into two parts; one has length l2 for canceling phase shift,
the other part has length l1 − l2 for simulating time dilation decoherence, which we can
call l1− l2 the“effective length”. In the following calculation, we only consider the effective
length, because we only want to study the decoherence. The effective length for path a1 is
l1 − l2, for path a2 is L.

z in (5.19) is the length of the path measured in the flat frame, which is the laboratory
frame. Therefore, z is the effective length:

z1 = l1 − l2, (5.32)

and
z2 = L. (5.33)

From (5.19) and (5.29), we have √
nL = l1 − l2. (5.34)

In the experiment, we can choose the material with exact n and make the L, l1 and l2
satisfy (5.34) and test if the measurement results satisfy (5.30).
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5.4.2 Calculation of Decoherence time for Refractive Material

The simulation experiment has not been done yet, and we now have some doubt that
one will observe the decoherence effect. Lets for a moment forget the time dilation and
determine the decoherence generated by the experimental set up. We only consider the
effective length because only the effective length affects decoherence. Assume the state in
path a1 is

ρa1 =

∫
dωG(ω)e−iω(t−l1/c)a†ω|a1, 0〉〈a1, 0|aωeiω(t−l1/c). (5.35)

The state in path a2 is

ρa2 =

∫
dωG(ω)e−iω(t−l2/c−nL/c)a†ω|a2, 0〉〈a2, 0|aωeiω(t−l2/c−nL/c). (5.36)

As introduced in 2.1.4, the superposition that is produced by beam splitter 1 is:

ρ =
1

2

∫
dωa†ω(e−iω(t−l1/c)|a1, 0〉+ e−iω(t−l2/c−nL/c)|a2, 0〉)

(eiω(t−l1/c)〈a1, 0|+ eiω(t−l2/c−nL/c)〈a2, 0|)aω
(5.37)

The visibility is:

V (t) = 2|ρ12
a (t)| = |Trω[ρ12(t)]|

=
∑
ω

〈0|aω|a1〉〈a2|a†ω|0〉 =

∫
dω|G(ω)|2e−iω(t−l1/c)eiω(t−l2/c−nL/c).

(5.38)

We insert (5.34) into (5.38) (the integral calculated by Mathematica) and obtain:

V (t) =

∫
dω|G(ω)|2e−iω((

√
n−n)L/c) = e−(

√
n−n)2(L/c)2a0/4 = e

− (L/c)2

τ2
dec , (5.39)

where

τdec =
2
√
a0

1√
n− n

. (5.40)

Using (5.25) for the coherence time, we find that the decoherence time is

τdec =
4
√

ln 2

(
√
n− n)

τ. (5.41)
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We can see that the decoherence time here is different from the expected value in previous

section (5.30): τdec = 4
√

ln 2
(1−n−1/2)

τ , they are different by a factor of
√
n. Moreover, the

visibility in 5.39 is not a function of time, but a function of length. It is not surprising that
we observe the decoherence caused by the arm length difference in the HOM measurements
many times. The difference between the two decoherence times comes from the gravity
simulation: In the previous section, I mapped the refractive index to gravity and applied
the gravitational decoherence formula to it, while in this section, I did not perform the
simulation and studied the decoherence that occurs in refractive materials. The difference
in the decoherence time shows that the map is inappropriate and refractive material cannot
reproduce the gravitational time dilation decoherence.

5.5 Try a Different Map

The refractive index cannot simulate the time dilation decoherence with the map I showed
because in the simulation experiment, the states |a1〉 and |a2〉 always have the same time
term so that their time terms cancel each other and will not affect the decoherence.

Assume that we find another map from refractive index to gravity. With such a map,
we could do the simulation experiment, and the visibility can have the same formula as the
visibility in gravitational time dilation decoherence. To do this, the new map should allow
interference to happen between the photons at different times, so that the time terms will
not cancel each other. Fortunately, the map exists.

For example, let the time evolution for a curved space time be

a = e−iω(ηt−x/η)a†|0〉, (5.42)

then the evolution in a refractive material is

a′ = e−iω(t′−nx′/c)a†|0〉. (5.43)

We can make a′ equivalent to a by simply setting t′ = ηt, nx′/c = x/η. Notice that n can
be any value, it does not need to satisfy (5.29).

The method we use here is space-time translation in Euclidean geometry, it can only
simulate the effect of phase shift. For gravitational time dilation decoherence, we can always
reproduce the same value of the phase shift that caused by the red shift, by choosing the
appropriate t′ and x′. Therefore, we can reproduce the decoherence.
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5.6 Discussion

In Section 5.4, we introduced a map that lets the refractive material simulate the curved
space-time. In this map, the states |a1〉 and |a2〉 (the two states to interfere) always have
the same time terms, because the interference as an event can not have two times (in
the same frame). However, this method does not predict the correct decoherence time nor
reproduces the correct gravitational time dilation decoherence, which indicates that it does
not simulate the gravity appropriately.

While in Section 5.5, we tried another map which is a translation in Euclidean Geome-
try. This map could only reproduce the phase shift, thus reproducing the correct value of
the gravitational time dilation decoherence.

For the decoherence caused by other gravitational effects, especially when the decoher-
ence requires more than a phase shift, the refractive material will not reproduce it. For
example, the Event Formalism. Remember that the Event Formalism decoherence effect
cannot be canceled by moving the detector (adjusting the phase). Therefore, refractive
materials are not suitable for verifying the Event Formalism. It answers the questions we
left in the previous chapter.
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Chapter 6

Discussion

In this thesis, I studied the Event Formalism and gravitational time dilation decoherence
and investigated the feasibility of using the refractive material to test the gravitational
effect on entanglement.

The previous satellite experiment [14] and my own analysis show that the earth and
the satellite cannot achieve sufficient gravitational potential difference to observe the effect
of the Event Formalism. In Chapter 3, I showed that the acceleration experiment on
the Earth is also not doable. I selected the rotation acceleration experiment rather than
the free-falling acceleration experiment because the former could offer higher acceleration
and met the requirement of testing the Event Formalism. However, due to the tough
requirement of long rotation radius and high angular velocity, it is not possible to observe
the effect of this experiment on the Earth.

Due to the failure of satellite experiment and acceleration experiments, I turned to
simulated gravity to study the gravitational effect on entanglement in Chapters 4 and 5. I
chose to use the refractive material to simulate gravity. In Chapter 4, I introduced the map
from refractive index to gravity and an experiment setup that could show the decoherence
caused by the Event Formalism. By theoretical analysis, we showed that we would not
observe the Event Formalism decoherence in refractive materials.

The question becomes, is Event Formalism disproved? Or is refractive material suitable
to be used in testing the Event Formalism? To answer these questions, I used refractive
material to test other gravitational effects on entanglement in Chapter 5. I chose to
test the gravitational time dilation decoherence. It is a standard theory, and its effect
can be observed through decoherence like the Event Formalism does. I first applied the
gravitational time dilation decoherence to the photon. I found that the refractive material
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cannot reproduce such decoherence. The refractive material can simulate the decoherence
caused by phase shift, but cannot simulate other properties of gravity, nor the gravitational
effect caused by possible hidden variable (like the Event Formalism). It means that the
Event Formalism (or any other gravitational decoherence phenomenon that requires more
than a phase shift) and therefore cannot be tested with refractive material. However,
more complex ways to create slow light have been realized or will be realized, for example,
negative refractive index. The complex refractive materials have the possibility to simulate
more properties of gravity.
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Appendix A

Canceling Dispersion

A.1 Dispersion

The refractive index is a function of frequency ω. This is a characteristic of refractive
materials called “dispersion”. Since different frequency lights propagate with different
velocity, the wave packet spreads while it is propagating through the medium which can
causes decoherence.

To describe the dispersion, we use the definition of the group delay α and group-velocity
dispersion (GVD) β [54]

α =
1

vg
=
dk

dω
, (A.1)

β =
d2k

dω2
= −v−2

g

dvg
dω

, (A.2)

where k is the wavenumber and vg is called group velocity. The wavenumber can be
expressed as

k(Ω + dω) = k(Ω) + αdω + βdω2. (A.3)

A.2 Nonlocal Dispersion Cancelation

Because I am planning to study using refractive material to test the decoherence caused
by the Event Formalism; it is important to make sure that the dispersion decoherence is
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taken into account. So-Young Baek and his colleagues found a way to cancel the disper-
sion nonlocally with entangled photons, which could restore the two-photon coincidence
more effectively than nonentangled photons [6][55] This method can cancel the dispersion
without need of the photon pair to meet again prior to detection.

The experiment set up they used is showed in Figure A.2

Figure A.1: Note.The figure is from [6]. The two materials have length z1 and z2, and
GVD dispersion β1 and β2

The entangled pair generated by the source is

|Ψ〉 =

∫
dω1dω2F (ω1, ω2)a†(ω1)a†(ω2)|0〉. (A.4)

Since they are entangled, F (ω1, ω2) 6= F (ω1)F (ω2). The central frequencies of the two
photons are Ω1 and Ω2. In their experiment, they chose a monochromatic pump as the
source

|Ψ〉 =

∫
dωF (ω)a†(Ω1 + ω)a†(Ω2 − ω)|0〉. (A.5)

Where F (ω) ≈ e−γ(ωDL)2
and γ = 0.04822. L is the thickness of BBO crystal and D =

α1 − α2 is the difference between the group delay inside the two materials.

The two-photon coincidence to be measured is the Glauber second-order correlation,
which is defined as

G(2)(t1, t2) = |〈0|E2(t2)E1(t1)|Ψ〉|2, (A.6)

where E1(t1) =
∫
dω1a(ω1)ei(k1z1−ω1t1) is the electric field at the detector with positive

frequency. Recall A.3, we can rewrite the wavenumber k in the equations

G(2)(t1, t2) = |
∫ ∞
−∞

dωF (ω)eiω(t1−t2) × ei(α1z1−α2z2)ωei(β1z1+β2z2)ω2|2. (A.7)
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In Chapter 5, I use the same method showed above to determined the effect of dispersion.

With F (ω), we obtain

G(2)(t1, t2) ≈ Ce−(t1−t2−τ)2/2σ2

, (A.8)

where C = π√
γ2D4L4+(β1z1+β2z2)2

, τ = α1z1−α2z2, and σ2 = γD2L2 + (β1z1 +β2z2)2/γD2L2

The FWHM of G(2) is

∆t ≈ 2

√
2 ln 2

γD2L2
(β1z1 + β2z2). (A.9)

Consequently, if one of the materials has positive dispersion and the other one has negative
dispersion, then they can cancel each other. So-Young Baek and his colleagues’ experiment
also support the above result.

If the pair is not entangled where F (ω1, ω2) = F (ω1)F (ω2), F (ω) = e−ω
2/2σ2

0 , then the
state is

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉, (A.10)

where |Ψ1〉 =
∫
dωF (ω)a†(Ω1 + ω)|0〉. The Glauber second-order correlation is:

G(2)(t1, t2) = |〈0|E2(t2)|Ψ2〉〈0|E1(t1)|Ψ1〉|2

= |
∫
dωF (ω)ei(α1z1ω+β1z1ω2−ωt1)

∫
dωF (ω)ei(α2z2ω+β2z2ω2−ωt2)|2

≈ Ce
− (t1−−t2−α1z1+α2z2)2

2σ2
T ,

(A.11)

where σ2
T = 1/σ2

0 + 2σ2(β2
1z

2
1 + β2

2z
2
2), and C is a constant depends on β1, β2, z1, z2. The

FWHM of G(2) is

∆t ≈ 4
√

ln 2σ0

√
(β2

1z
2
1 + β2

2z
2
2), (A.12)

which can not be canceled by positive and negative β
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Appendix B

Calculate the Visibility from the
Experiment Measurement Outcomes

I will now introduce how the visibility value is obtained from the detector outcomes for the
interference studied in Section 2.1.5. Every single photon passing through the interferom-
eter is detected by either detector c or detector d. As introduced in chapter 2.1.5, use c†|0〉
to represent detection happens on detector c, and d†|0〉 to represent detection happens on
detector d.

The state path a1 is:

|a1〉 =

∫
dωG(ω)e−iω(T−l1/c)a†ω|0〉, (B.1)

where l1 is the length of path a1. For a beam splitter, it is a†ω = (c†ω+d†ω)√
2

, so the state
becomes:

|a1〉 =

∫
dωG(ω)e−iω(T−l1/c) (c†ω + d†ω)√

2
|0〉. (B.2)

The state path a2 is:

|a2〉 =

∫
dωG(ω)e−i(ωT−kL−ωl2/c)a†ω|0〉, (B.3)

where L is the length of the refractive material, and l2 is the length of the path outside the
material. For the simulation, it is not necessary to have l2, but it is impossible to remove
l2 in the experiment. How such an effect can be cancelled is discussed in l2.
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I also consider the dispersion of the material, because it will cause errors in the result.
The dispersion makes the refractive index as a function of ω. Here I will consider the first
order dispersion. Assume that

k(ω) = (n/c)ω + β(ω − ω0)2, (B.4)

where β is a constant that describes the dispersion. Then the state path a2 is:

|a2〉 =

∫
dωG(ω)e−iω(T−nL/c−l2/c)−iβ(ω−ω0)2La†ω|0〉. (B.5)

After the Beam Splitter 2, I have aω = (c†ω−d†ω)√
2

that can be rewritten into:

|a2〉 =

∫
dωG(ω)e−iω(T−nL/c−l2/c)−iβ(ω−ω0)2L (c†ω − d†ω)√

2
|0〉. (B.6)

Assume state |a1〉 is (1, 0)> and |a2〉 is (0, 1)>, then the density matrix of the photon
with visibility V is:

ρ =

(
1/2 V/2
V/2 1/2

)
, (B.7)

where V = exp [−(t/τdec)
2] [20].

The probability of the photon causing a click in detector c is:

P (c) = 〈0|cρc†|0〉 = 〈c|1
2

((|a1〉〈a1|+ |a2〉〈a2|) +
V

2
(|a1〉〈a2|+ |a2〉〈a1|))|c〉. (B.8)

We can see that the probability includes V . Next I will express this function with n, L, l1,
l2 and β.

Insert (B.2) and (B.6) into the first and second term 1
2
(|a1〉〈a1| + |a2〉〈a2|) in (B.8), I

obtain:

〈c|1
2

(|a1〉〈a1|+ |a2〉〈a2|)|c〉 =
1

2
(〈c|a1〉〈a1|c〉+ 〈c|a2〉〈a2|c〉) = 1/2. (B.9)

Then insert (B.2) and (B.6) into the third term in (B.8):

〈c|a1〉〈a2|c〉 =

∫
dω〈cω|a1〉〈a2|cω〉 (B.10)
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=

∫
dωG(ω)e−iω(T−l1/c)〈cω|

(c†ω + d†ω)√
2
|0〉〈0|eiω(T−nL/c−l2/c)+iβ(ω−ω0)2L (cω − dω)√

2
G∗(ω)|cω〉

(B.11)

=
1

2

∫
dω|G(ω)|2eiω(l1−nL−l2)/c+iβ(ω−ω0)2L. (B.12)

Similarly, the fourth term in (B.8) is

〈c|a1〉〈a2|c〉 =
1

2

∫
dω|G(ω)|2e−iω(l1−nL−l2)/c−iβ(ω−ω0)2L, (B.13)

which can be reformulated:

V

2
〈c|(|a1〉〈a2|+ |a2〉〈a1|)|c〉 =

V

2

∫
dω|G(ω)|2cos[ω(l1 − nL− l2)/c+ β(ω − ω0)2L].

(B.14)

The probability is (B.9) + (B.14) and the equation is:

P (c) = 1/2 +
V

2

∫
dω|G(ω)|2cos[ω(l1 − nL− l2)/c+ β(ω − ω0)2L]. (B.15)

Then we can do the experiment and measure the probability of detection by c and determine
visibility. If the visibility satisfies (5.30), the gravitational time dilation decoherence theory
is proved.
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