Volumetric Weak Supervision for
Semantic Segmentation

by

Sharhad Bashar

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2022

(© Sharhad Bashar 2022



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Abstract

Semantic segmentation is a popular task in computer vision. Fully supervised methods
are data hungry, they require pixel precise annotations for thousands of images. To reduce
user annotation efforts, weak supervision for semantic segmentation is becoming an area
of increasing interest. Weak supervision can take many forms: bounding boxes, scribbles,
image level labels. Image level supervision is the least annotation demanding, as the user
is asked to just name the object classes present in the image.

In this thesis, we propose a new type of weak supervision which is a generalization of
image level supervision: Volumetric Supervision. In addition to providing the object
classes present in the image, the user also provides the approximate size of each object
class present in the images. This type of annotation is still very undemanding on the users
time.

To incorporate volumetric information into weakly supervised segmentation, we develop
two volumetric loss functions that penalize deviation from the object size annotated by the
user. Almost any semantic segmentation method with image level weak supervision can
be transformed into a segmentation method with volumetric supervision using volumetric
loss functions. To show the usefulness of volumetric supervision, we chose four popular
methods for image level weak supervision and transform them into volumetric supervision
methods.

For evaluation, we create a simulated dataset that contains size information for the
object classes. We also test the sensitivity of our approach to the possible mistakes in the
size information dataset. Our experimental evaluation shows that volumetric supervision
gives a significant improvement over image level supervision, however it is sensitive to
mistakes in the size information provided by the user.
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Chapter 1

Introduction

Image segmentation is one of the most fundamental topics in Computer Vision. The
goal is to represent an image in a more meaningful and easier to analyze format. Image
segmentation is the process of dividing an image into smaller regions or segments such that
the pixels in each segment share similar properties like color, texture. Each segment, as
shown in figure 1.1, is given a discrete label. The labels do not carry any special meaning,
rather they are used to identify segment membership and boundaries. Segments with the
same label have similar characteristics, while adjacent segments are significantly different
with respect to those characteristics. Together, these segments cover the entire image.

Figure 1.1: Example of image segmentation based on color. There are four distinct seg-
ments, each with its own discrete label [120]

By assigning a label to every pixel, image segmentation can perform deeper analysis of
an image. Unlike other computer vision problems such as image classification and object
detection, which produces a single classification label and an object bounding box, image



segmentation can yield a pixel precise answer, revealing fine-grained information about
image contents.

Earlier methods on image segmentation are usually based on local heuristics: threshold
segmentation [29, 28, 63, 58], region segmentation [13, 119], edge segmentation [15, 100,
71, 130], texture features [62], clustering [I31, 96] and so on [87]. Later methods for
image segmentation tend to perform more global reasoning and/or rely on classification:
graph theory [39], clustering [25, 114], classification and combination of clustering and
classification [37].

Semantic segmentation is a type of image segmentation where labels have meaning:
each label corresponds to a particular class out of a predefined set of classes of interest.
Figure 1.2 shows the input and output of a semantic segmentation model. The model has
detected three classes in the image: person, bicycle and background. The model has thus
assigned each pixel with a label describing which class the pixel belongs to. Unlike general
purpose image segmentation methods, most semantic segmentation methods require pixel
precise ground truth for training.

Person
Bicycle
Background

Figure 1.2: Input and output of semantic segmentation. The output has three labels:
person, bicycle and background, each highlighted with a different color

The human visual system performs the semantic segmentation task seemingly without
an effort, but it is a challenging problem for machine vision. Semantic segmentation is a



field that has been researched for decades and hundreds of methods have been proposed.
In 1972, David Walts developed an algorithm for generating semantic descriptions from
drawings of scenes with shadows [128]. Later, Feldman developed a statistical method that
could semantically analyze each region of specified images [35].

Since 2010, the rise of neural networks, and the development of deep learning, specifi-
cally Convolutional Neural Network (CNN), has radically changed how semantic segmen-
tation is done [11]. CNN was initially proposed in the late 1980’s by Yann LeCun. The
network, called LeNet [66] was able to recognize and classify hand written digits. But due
to a lack of sufficient amount of labeled data and computational power, it was not used
widely. The popularity and importance of CNNs rose in 2012, when Krizhevsky et al. won

the Imagenet large-scale visual recognition challenge [102] with their model AlexNet [60].
The success of CNN in classification led to its first use for semantic segmentation in 2014
by Liang-Chieh Chen et al. in their network DeepLab [18]. Since then CNN have become

the gold standard for semantic segmentation. CNN’s are further discussed in chapter 2.

Semantic segmentation has a wide range of applications. These include autonomous

driving [14, 73], medical imaging and diagnosis [23, 74, 75], facial segmentation [16], hand-
writing detection and analysis [(0], agriculture [77, 4], use cases in fashion [72, 73], video
surveillance [124, 56], image editing [76, 80], and a lot more [38].

Training a neural network for semantic segmentation can either be fully supervised or
weakly supervised. Both are further explored in the following sections.

1.1 Fully Supervised Semantic Segmentation

In the 215 century, semantic segmentation has primarily revolved around deep learning
and artificial neural networks. Of these, Convolution Neural Networks (CNN) gained
immense popularity in the task of segmentation. CNN’s can extract features from a large
number of images without hand engineering features. In order to train a fully supervised
semantic segmentation network, we need to provide it with a dataset of images with pixel
level annotation. This is where each pixel is labeled as part of a class from a set of
predetermined classes. These are known as ground truth. Classes can range from a wide
variety of objects. For example, the Pascal VOC 2012 segmentation dataset [35, 30, 31]
has more than 10,000 images with 21 classes (20 class objects and 1 background). This
dataset will be discussed further in later sections.

During training, a CNN finds features and representations of each class label. Once
trained, the CNN is given a new image, and the neural network model identifies and labels

3



which class each pixel belongs to. This process of training a CNN with images and their
pixel level labels is known as Fully Supervised Semantic Segmentation. In recent years
CNN models such as FCN [65, 70, 20, , 33], U-Net [33], Mask R-CNN [18, 33], ResNet
[49, 50, 40, , 1] and DeepLab [19, 18, 73, 26, 50] achieved excellent results in fully
supervised semantic segmentation.

1.2 Weakly Supervised Semantic Segmentation

While fully supervised semantic segmentation methods achieve excellent results, it is ex-
tremely difficult and time consuming to create datasets with pixel level annotations. Thus
a lot of research is focused on creating semantic segmentation methods which do not re-

quire pixel level ground truth. This is known as Weakly Supervised Semantic Segmentation
(WSSS).

In weakly supervised semantic segmentation, pixel level annotations are not present.
Instead other types of information about the image and the objects present in them is
provided. There are many different types of weakly supervised semantic segmentation. Of
these, the most common is image level annotation [0, 92, 93, 59, 53, 3, 67, 37, ]. For
each image, we are only given the object classes that are present in each image. Figure
1.3 (a) shows an example of image level annotation. Most of the methods that use such
image level weak supervision are based on Class Activation Maps (CAMs) [137] to generate
pseudo ground truth labels that are in turn used to train a CNN. CAMs is a technique that
highlights pixels of an image that are associated with a particular class. CAMs identify
which regions in the image are relevant to detect a particular class. Figure 1.4 shows an
input image, its image level annotation, pixel level ground truth and its CAM highlighting
the different regions where the class is likely to be present. CAMs are further discussed in
chapter 2.

There are other types of weak supervision such as bounding boxes [90, , 27, 57,

, , 61] where one specifies a bounding box around each object, and image scribbles
[132, 69, , , ] where only some image pixels are annotated with their object class.
Figure 1.3 (b) and (c) shows examples of bounding box and image scribble annotations
respectively. Bounding boxes and scribbles require much more time to annotate, compared
to image level labels.



1.3 Contributions

The summary of the contributions of this thesis are listed as follows:

1. We propose a new type of weak supervision: Volumetric Supervision.This is a
type of weak supervision that generalizes previously proposed image level weak su-
pervision. In addition to specifying which object classes are present in an image, the
user also specifies rough size of each object class, relative to the image size. We do
not expect the user to provide an accurate size estimate, but rather estimate the size
bucket each object class belongs to, where “bucket” is quantization of all possible
sizes. We use a coarse quantization with 10 evenly spaced buckets. Figure 1.5 shows
an example of annotation for Volumetric Supervision for an input image. It also
shows the ground truth, the results of a method [133] with image level supervision,
and the results of our transformation of that method into volumetric supervision
method using quadratic volumetric loss. As shown in the image, Volumetric Su-
pervision annotation consists of image level labels and size of each class present in
the images. The image is from the Pascal VOC 2012 dataset [30, 35, 31] and the
classes present are background, bicycle, and person, with background and person
each occupying roughly 40% of the image, and bicycle occupying roughly 20% of the
image.

When the user annotates the image with the classes present in it, they already have
an approximate idea of the area occupied by the class, as they do a visual inspection
of an image. Thus such additional information should be easy to provide. This
additional volumetric information is helpful for weakly supervised setting, as CNN
class estimates that are too large or too small in size can be penalized, providing
an additional guidance for training and leading to more accurate results. As seen in
figure 1.5, volumetric supervision helps to recover objects more accurately.

e name “volumetric” instead of “size” is used for historical reasons. One of the
Th “volumetric” instead of “size” d for hist | O f th
first works to use constraints on size was [127], who used size constraints on 3D recon-
structed volumes, therefore, the name ”volumetric” is popular for size constraints.

2. In order to implement Volumetric Supervision, we propose two new volumetric loss
functions based on the approximate size of each object class present in the images.
These loss functions are named Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss respectively.

(a) The first loss function,which we call Quadratic Volumetric Loss is based on
Mean Square Error. For each pixel in the image, the network outputs a distri-



bution over the classes it belongs to. We take this probability as an estimate of
the class membership. For each class, we average the corresponding estimated
probabilities over all image pixels, and this gives us an approximation for the
size of the class. Then we take the square of the difference between the esti-
mated size and the size of the bucket this class falls into (given by the user
annotation).

(b) For the second loss function, which we call Outside Quadratic Volumetric
Loss, the idea is to penalize the network when its prediction is not within two
end points of the bucket of the corresponding class. The end points are denoted
as a and b, where b is greater than a. As for the Quadratic Volumetric loss,
we first compute an approximation of the size of the class, derived from class
probabilities for each pixel. Note that Quadratic Volumetric loss penalizes any
class size which is not strictly equal to the size of the corresponding bucket. Since
the user specifies only a course set of object buckets, we want to make the penalty
less strict, i.e., zero when the estimated size falls inside its bucket, and increasing
when the estimated object size falls outside its bucket. For object size estimates
that fall outside their bucket, the penalty is quadratically increasing, depending
on the distance to the bucket. Thus we call this loss Outside Quadratic loss,
since it is zero inside the appropriate bucket, and quadratically increasing when
the estimate size moves away from the bucket.

These volumetric loss functions are further detailed in chapter 3.

. We show how to incorporate our volumetric loss functions into four previously devel-
oped methods for weakly supervised semantic segmentation with image level labels
[133, 6, 17, 22]. These approaches are described in more details in chapter 4. This
converts these methods from weak supervision with image level labels into volumetric
weak supervision methods.

. We create a new simulated dataset containing size information for the classes for each
image from a popular semantic segmentation benchmark [36, 35, 34]. The dataset is
based on size buckets. We quantize possible object sizes into 10 buckets, and place
each object class appropriately.

. We evaluate the performance of the new volumetric supervision that was incorporated
into the four methods [133, 6, 17, 22], mentioned in step 2. First we run these
methods as is with no modifications. Then we incorporate the two loss functions
described above into the methods and compare the results. Different experiments
with different parameters are conducted, all detailed in chapter 5. The results from



the different experiments are compared to the original unmodified results. More
detailed visualizations are shown in chapter 5.

6. We test if we can minimize the user annotation efforts by adaptively estimating class
sizes without having the user specify them manually. We assume that the background
occupies 50% of the image, and split the foreground evenly among all object classes
present in the image. This is our initial size estimates, which we change adaptively
during training of the algorithm, depending on whether the sizes of classes increase
or decrease, compared to their initial size.

7. Finally we test the sensitivity of our approach. This is done by introducing errors
into the volumetric datasets to emulate human error that might occur while creating
the datasets. To do so, we take the bucket dataset and randomly place up to 20% of
objects in incorrect buckets. The experiments conducted are outlined in chapter 5,
where these results are compared to the unmodified results of the four recent image
level weak supervision approaches [133, 6, 17, 22].

1.4 Thesis Organization

Chapter 2 introduces basic machine learning concepts, their applications in semantic seg-
mentation and related work in both fully and weakly supervised semantic segmentation.
In chapter 3, we introduce the two newly proposed volumetric loss functions, namely
Quadratic Loss and Outside Quadratic Loss. In chapter 4, we introduce the four
recently published weakly supervised semantic segmentation methods [133, 6, 17, 22] and
describe how we modify each for volumetric supervision. In chapter 5, we evaluate our
volumetric loss supervision using the four methods discussed in chapter 4. First we create
an artificial dataset with volumetric annotations. Then we discuss our main evaluation
measure, mean over intersection (mIOU). Next we discuss and analyze the results for
Quadratic loss and Outside Quadratic loss. Finally, we summarize and conclude our work
in this thesis in chapter 6.
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(a) Image level Annotation
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Figure 1.3: Different types of weak supervision for semantic segmentation for an input
image. (a) is image level annotation. (b) is bounding box annotation. (c) is image scribble
annotation. The image on the right is full supervision
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Input Image Image level annotation Pixel level ground truth CAM

Figure 1.4: Input image, image level annotation, pixel level ground truth and the CAMs
that show where the different class objects are located

bg: 0.4,
bicycle: 0.2,
person: 0.4

(a) Input Image (b) Volumetric (c) Ground Truth (d)Jsws [ (e) JSWS [132] with
Annotation Volumetric Supervision

Figure 1.5: (a) Input image from the Pascal VOC dataset [30, 35, 34]. (b) Volumetric Su-
pervision annotation. Volumetric Supervision consists of naming the object classes present
in the image, together with a rough size of each object class relative to the image size. In
this example, only three classes, background (bg), bicycle, and person are present out of 21
possible classes in the Pascal dataset. (c) Pixel level ground truth. (d) Output from Joint
Learning of Saliency Detection and Weakly Supervised Semantic Segmentation (JSWS)
[133] without any modification. (e) Output from JSWS [133] with Volumetric Supervision
prediction



Chapter 2

Related Work

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) have become
immensely popular in all circles in recent years. ML is a subset of artificial intelligence
that uses computer science and statistics, and DL is a further subset of ML. The goal is
for a machine to learn from past information without specific coding. Given a data set,
data is fed as input, and the machine “learns” from the data using analysis methods and
outputs predictions. In this thesis we tackle semantic segmentation as a ML and DL task.

The three main types of machine learning are: Supervised, Unsupervised and Reinforce-
ment Learning. Supervised learning algorithms take labeled data as input. Unsupervised
is the opposite, where the data do not have any labels. Reinforcement learning has an
agent making a series of decisions in an environment, and is rewarded on the outcome of
the actions. The goal is to maximize rewards. This thesis uses labeled data, thus the focus
is on supervised learning.

Supervised learning algorithms can be applied to either classification or regression prob-
lems. Classification is predicting discrete labels, whereas Regression is for continuous data,
for example predicting temperature. Semantic segmentation is a classification problem,
since we need to predict discrete class labels for each pixel. Supervised learning has three
different settings: Fully Supervised, Semi Supervised, Weakly Supervised. As mentioned
previously, fully supervised has data inputs where each entry in the dataset has the correct
label. Weakly supervised has noisy, and sometimes incorrect labels. Semi supervised is a
mixture of the two. As mentioned above, the importance of weakly supervised semantic
segmentation lies in the ease of creating a training dataset, compared to its fully supervised
counterpart. In the following sections, we establish key machine learning fundamentals.
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2.1 Fundamentals

The most important components of a neural network (NN) are the layers and neurons.
Layers are vertically stacked components in a NN. Figure 2.1 shows a NN with different
layers. The first layer is the input layer, where the data is passed into the next layer,
the hidden layer. The hidden layers are where all the computation takes place. In figure
2.1, there are three hidden layers, but NN can have any number of hidden layers. The
final layer is where all the information learned from the hidden layers are outputted, thus
naming it the “output layer”.

Hidden layer 1 Hidden layer 2 Hidden layer 3

Input layer

U

Figure 2.1: Different layers in a Neural Network [11]

Each layer consists of neurons. A neuron in a NN is similar to the neurons in the brain
[2]. A neuron is made up of inputs, weights, biases and an activation function, all of which
combine to produce an output. Figure 2.2 shows all the components of a neuron in detail.
The inputs are x; and x9, with their respective weights w; and ws. The bias is b with
its weight wy. The inputs and bias are multiplied by their respective weights, and then
summed. The summation is passed into the activation function f(x), which produces the
output. In mathematical term, y = f(z), where x = 1 x w; + x9 * ws + bxwy, [2]. A neural
network "learns” by modifying these weights.

Neural networks have two essential directions of movement, Feed Forward and Back
Propagation [I1]. In feed forward, the inputs and bias are multiplied by their respective
weights, the result is fed into the activation function, which produces the output. The
output is then sent to the next layer. In back propagation, the weights are repeatedly
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adjusted to minimize the difference between the actual network output and the desired
output, also known as minimizing the cost function. Cost function gradients determine
the level of adjustment to apply to parameters like activation function, weights and bias.

X4

W4

X

Wh
b

Inputs Node Output

Figure 2.2: Different components of a neuron [11]

The activation function decides if a neuron should be activated and adds non-linearity
to a neural network, and allows the network to learn complex tasks. There are three
main types of activation function: Binary, Linear and Non linear [2]. A binary activation
function activates a neuron if a certain threshold value is met. A binary activation function
can be represented as:

1 ifz>0
f(x)_{o if 2 < 0

A linear activation function is where the output is simply the sum of the product of the
inputs and weights. It is represented as:

flx) ==

The issue with binary and linear activation functions is that their gradient is constant.
Back propagation requires non-constant gradient, and thus the model cannot learn to ad-
just weights. Non-linear activation functions solve this problem. A non-linear activation
function allows back propagation and enables us to create complex combinations by stack-
ing multiple layers. Stacking these non linear units together gives us a fully connected
layer, as known as a multi-layer perceptron (MLP). Some non-linear activation functions
and their equations are:

1. Sigmoid / Logistic function [9, 2]. Not used in Hidden layers. Used primarily for
binary or multilabel classification




2. Hyperbolic Tangent function [85]. Not used in Hidden layers

ef —e®

et +e %

flz) =
3. Rectified Linear Unit (ReLLU) function [35, 41]. Only used in hidden layers. Figure

2.3 shows the graph of the ReLU function

f(z) = max(0,x)

4. Exponential Linear Units (ELUs) function [85]

f(x):{x ifz>0

ale® —1) ifx <0

5. Softmax function [35]. Used primarily for multiclass classification

exp(x;)
Zj exp(7;)

Softmax(z;) =

6. Swish function [85]
T

1+e=®

f(x) =z % sigmoid(z) =

RelLU

Figure 2.3: ReLLU function

ReLU functions [11] are primarily used with CNNs, which is the focus of this thesis.
With a basic explanation of the components of a neural network, we now explore how it
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functions, i.e., how does a NN learn from data. But first, we need to introduce two impor-
tant components that a NN needs to learn how well it performed before back propagating:
loss function and optimizer.

Loss functions tell a NN how well it is performing. A loss function quantifies the
difference between the actual output in the dataset and the prediction that the NN outputs.
In other words, it evaluated how well the NN models the given data. There are two main
categories of loss functions, classification and regression [91]. Some common loss functions
for classification are:

e Hinge loss [7]

e Cross Entropy Loss [31]
Some common regression loss functions are :

e Mean Absolute Error also known as L1 Loss [54]
e Mean Square Error also known as L2 Loss [51]

e Mean Bias Error [91]

The main contribution of this thesis are two new loss functions based on the size of objects
in an image as discussed in chapter 4.

Optimizers work with the loss function to modify different parameters of a NN, such
as weights, activation functions, learning rate and more. This optimization is done in
conjunction with the loss function to minimize the latter as much as possible. Some
common optimizers are [101]:

e Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

e Adam
AdaDelta

Adagrad (Adaptive Gradient Descent)
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e RMSProp (Root Mean Square)
e AdaMax

e Nadam

Before a ML algorithm starts, the weights of the NN are randomly set. The data set
consists of features, and the expected output, or labels. Training the NN implies modifying
the weights such that it can represent a correlation between the features and the label. A
sample is a single row in a dataset, or for our purposes, it is an image along with its labels.
For each iteration, we take a batch of samples from the training data and send them to
the NN. The NN outputs predictions, which are then processed by the loss function. The
loss functions measures the difference between the predictions and the true labels. The
difference is passed to the optimizer, which uses those differences to adjust the weights so
that the next iteration the loss will be smaller.

An epoch is the number of times the NN sees the entire dataset. For each epoch, we
run the above steps a number of times based on the batch size. Optimizers specify the
direction the weights need to go, as well as how big of a change is needed to decrease
the loss. Figure 2.4 shows a graph of how optimizers work to reduce loss. We start with
our initial weights, and the gradient vector from the optimizers represent the direction
and speed of the weights such that they reach a global minimum and that loss is minimal.
Optimizers can be configured to keep running until the loss is no longer decreasing (reached
a global minimum as shown in figure 2.4), or can be manually set to halt after a number
of epochs. All this information is conveyed back to the NN or back propagated to the NN
so that it can rerun the model on the updated weights.

To summarize, the goal is to utilize input data, the loss functions and optimizers to
train a NN. In weakly supervised semantic segmentation, the input data is the images,
and their image level labels, as well as other information, which will be discussed in later
sections. In computer vision, a special kind of neural network is used. This is known as
Convolutional Neural Network.

2.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a form of Artificial Neural Network (ANN),
that has been specifically designed to work with images. CNNs were initially proposed in
the late 1980’s by LeCun et al., who called it “LeNet” [66]. This NN was able to recognize
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Figure 2.4: Graph representing how optimizers work to change weights such that loss is
minimal. The gradient vector initially suggests bigger changes to the weights, but as they
reach global minimum, the changes are smaller

and classify hand written digits. But due to a lack of image data and computational
power, LeNet did not garner any interest from the research community. The popularity
and importance of CNN rose in 2012, when Krizhevsky et al. won the Imagenet large-scale
visual recognition challenge [102] with their model AlexNet [60]. This network classified
images from ImageNet [30] with 1000 predefined classes. AlexNet would pave the path to
future CNN model architectures.

A fully connected NN as discussed in the previous section can be used for small image
classification, for example if we take a image of a hand written number of size 7 x 7 pixel
from the MNIST dataset [31]. Assume the network has one hidden layer. The input layer
will have 49 (7 x 7) nodes, the hidden layer will have the same, and the output layer will
have 10 nodes, for ten digit classification. The number of weights in the NN is 2891. Figure
2.5 displays such a NN and all its connections. But for larger images, such as an image of
size 1920 x 1080 x 3, there would be over 6 million weights in the first layer itself. Weights
between inputs and the hidden layers would be over 24 million. This is excessive level of
computation and parameters, which would lead to over fitting. Other disadvantages of
ANN are it treats local pixels similarly to pixels far apart. And ANNs are sensitive to the
location of objects in an image. These problems are solved by using a CNN. CNNs can
represent images in a different form and preserve the features that are important for the
model to learn.
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Figure 2.5: Fully connected NN with one hidden layer for classifying hand written 7 by 7
pixel image numbers

In CNNs, generally there are three main layers: input, hidden and classification layers
[79]. The input layer contains the input image. The hidden layer contains the Convolution
layer with an activation function (ReLLU is most commonly used) and pooling layers, which
reduce the output size. The classification layer is a fully connected layer where the image
is classified. Figure 2.6 shows a simple architecture of a CNN used for image classification.

Convolution Layer

The convolution layer is the main layer of a CNN. The input to a convolution layer is the
image. Most images are RGB, and have three layers or depth (one for each color). Thus
the input size is h *x w * 3. In addition, each neuron has access to a partial number of
neurons from the previous layer, unlike a fully connected NN.

A convolution layer consists of filters or kernels [103]. These filters are used to detect
patterns or features in an image [55], for example shapes or edges. Commonly the first
layers capture low level features such as edges, colors and such, whereas the deeper layers
focus on higher level features. The filters are smaller than the image, but have the same
depth as the image [12]. The convolution layer performs a convolution operation between
the filter and a restrictive portion (spatial position) of the input of the same height and
width as the filter [55].
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Figure 2.6: Simple architecture of a CNN used for image classification

A convolution operation is a dot product between the filter and the restrictive portion
of the input. The filter starts at the top left of an image, where it performs a convolution
operation and produces a single value as output. The filter then moves one step, or stride
to the right and repeats [103]. The filters stride can vary from architecture to architecture.
This process produces a 2D activation map of the input. Figure 2.7 shows this operation
with an example. The input is 4 x 4. The filter is 2 x 2. The filter starts at the top left and
moves with a stride of 1. At each spatial position, it performs a dot product. The result
is stored in the 3 x 3 output shown below, as well as the values in each of the individual
positions of the output 2D activation map with respect to the input and filter.

Figure 2.8 shows a convolution operation with an input of depth three.The filter has
dimensions of 3 x 3 x 3. And finally there is a bias of 1. Bias is an extra parameter used
to adjust the output. Matrix multiplication (dot product) is performed between the input
channel and the corresponding filter (or kernel), and the three products are summed up
with the bias. Mathematically: IC; - KC, + ICy- KCy+ IC5 - KC5+ bias to get the value
in the corresponding output position [103].

The resulting operation reduces the dimensionality compared to the input. If we want
to increase the dimensionality, we can use a method called Padding [103]. Padding is
surrounding each layer of the input to increase its dimensions. In figure 2.8, the inputs are
surround by a layer of zeros. This is known as Zero Padding.
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Figure 2.7: Convolution operation with a stride of one

The parameters in the convectional layer that can be controlled are the number of
filters, the filter size, the filter stride and the padding width. The number of filters will
determine the depth of the output or output channel. If the stride is one, then the filter
moves one step to the right and then one step down. If the stride is two, then it moves two
steps to the right and then two steps down. This will produce a smaller output spatially
compared to a stride of 1. The output size is calculated as follows: If the input has a shape
of W x W x D, with a padding of P, and the filter has a size F' x F' X D and a stride of
S, then the output size is W,y X Woyue X D, where W, is:

W —F+2P

Wou =
' S

+ 1[79]

Activation Layer

The second layer is the activation layer, where an activation function is applied to the
activation map [12]. ReLU is the most common activation function used. As mentioned
carlier, this increases non linearity in the CNN [12]. Each filter is responsible for a certain
detection. For example, a filter that detects loops in an image [109]. The activation map
will have positive values for pixels that are part of the loop, and negative values for pixels
that do not. ReLLU activation will replace all the negative values with zero, and leave the
positive values as is. Figure 2.9 shows the inputs and outputs of such an example.
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Figure 2.8: Convolution operation on a M x N x 3 image matrix with a 3 x 3 x 3 filter and
padding of 1 [79]
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Figure 2.9: ReLU function to detect loops in images

Pooling Layer

Up till this point, the output dimensions have not reduced significantly, or not reduced at
all if it was padded. Dimension reduction is done in the pooling layer. The pooling layer
is used to reduce the output size and involves downsampling of features, thus reducing
the computation required [103]. Pooling is also useful for extracting dominant features,
regardless of object location or rotation in an image [103]. Another benefits of pooling is
it reduces overfitting since there are fewer parameters. Pooling is applied to every layer
of the output channel. The pooling layer also has parameters such as filter size and stride
[12]. But instead of doing a convolution operation, this layer performs a pooling operation.
The output size is calculated as follows: If the activation map has a shape of W x W x D,
and the pooling layer filter has a size F' x F' x D and a stride of S, then the output size is
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Wout X Wour X D, where W, is:
W —F
S

Wout = + 1[79]

There are two types of pooling: max and average [103]. Suppose we have an activation
map of 8 x 8 and a kernel of of 2 x 2 as shown in figure 2.10. The kernel starts on the top
left and moves with the stride value. At each step, the kernel performs either a max pool
or average pool operation. For max pool, the kernel takes the max value of the portion of
input covered by the Kernel. For average pool, the kernel takes the average of all those
values.

max pooling

20|30

112 37
12120 30
811212 | 0
34 (70| 37| 4 average pooling
1121100] 25 | 12 13| 8

79| 20

Figure 2.10: Max and average pooling on an input of size 8 * 8 with a kernel of size 2 * 2
[103]

Average pooling reduction does dimensionality reduction as a noise suppressing mech-
anism [103]. Max pooling acts as a noise Suppressant by discarding the noisy activations
by performing denoising alongside dimensionality reduction [103]. Thus in most cases max
pooling out performs average pooling [103]. Figure 2.11 shows the entire hidden layer with
the convolution layer, the ReLLU and finally a max pooling with a kernel of size 2 with
stride 1.

Classification Layer

The final layer is a fully connected dense classification layer. This layer helps representation
between the input and the output [79]. Figure 2.12 shows a CNN architecture with an
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Figure 2.11: All the steps in a hidden layer of a CNN

emphasis on the classification layer. The hidden layer with the convolution, ReLU and
pooling layers extract features from the image. These features are flattened into a column
vector before being sent to the classification layer [103]. In figure 2.12 the output of max
pool is 14 x 14 x 3, and this three-dimensional image becomes a column vector of size
588 after being flattened. The classification layer is a feed-forward neural network and
backpropagation applied to every iteration [103]. Over a series of epochs (going over every
image in the data set once), the model is able to distinguish features in images and classify
them using Softmax or Sigmoid [12]. The final output layer has dimensions 1 1% C, where
C' is the number of class objects.

Output Volume  output Volume
588x1 20x1
- Output Nodes
s5x1
Output Volume
14x14x3 Class 1
ReLU Activation Fn.
Volume-28x28x3 Q O 2 >
<L : Class 2
O Class 3
Class 4
Convolution 2 %
layer Stride 1 4 . O Class 5
Max Pool : i //
layer Stride 2 O O SOl
Fully connected Soft-M
Input Volume Flattenlayer |, er ReLu Activation Activation Fn
32:32x1 En.

Figure 2.12: CNN architecture with emphasis on the fully connected classification layer
(in red) [103]
Benefits of CNNs

CNNs are designed and can extract spatial and temporal information from images. Benefits
of CNNs include:

e Connections sparsity reduces over fitting
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e Convolution and pooling allows for feature detection regardless of location or orien-
tation

e Parameters can be shared. When a CNN learns the parameters for a filter, this filter
can be applied to the entire image

e Using ReLU introduces non linearity, and it speeds up training
e Having a pooling layer decreases dimensionality and reduces computation

e Pooling also reduces overfitting and makes the model tolerant towards small distor-
tions and variations

2.2.1 Famous Convolutional Neural Network Models

As mentioned earlier, LeNet was the first CNN proposed in 1989 by LeCun to recognize
hand written numbers [66], but CNNs were made popular in 2012 when Krizhevsky created
AlexNet [60] and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
ImageNet is a dataset consisting of more than 14 million images belonging to 1000 classes
[30]. Since then numerous CNN architectures for image classification task have been de-
veloped. Here we will briefly talk about some of the famous CNNs in computer vision.

Vanishing Gradient Problem

Before exploring famous CNN architectures, we should address Vanishing Gradient
Problem. As more layers are added to a NN, the deeper the network gets. And more layers
mean more activation functions. Certain activations functions such as sigmoid transforms
a larger input to a smaller input space [129]. For shallow networks it is not a problem. But
for deeper networks, the gradient (derivative) of sigmoid becomes small in saturated re-
gions. The gradients are found by back propagation [129]. However, when n hidden layers
use an sigmoid activation function, n small derivatives are multiplied together, resulting in
small gradients [129]. Small gradient means weights and biases are not effectively updated.
This is known as the Vanishing Gradient Problem.

AlexNet

As mentioned previously, AlexNet was introduced in 2012 by Krizhevsky. It won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC). They scored Top-1 and
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Top-5 error rates of 37.5% and 17.0% respectively [60, G4], which outperformed other
approaches. AlexNet is a eight layer CNN, with 5 convolution layers and 3 dense layers
[64]. Figure 2.13 shows the full architecture of AlexNet. The first layer is the input. The
next five layers are the convolutional layers with max pooling. The first two convolution
layers are connected to overlapping max-pooling to extract maximum features [64]. And
the final three layers are the fully connected dense classification layers.

The network takes in an RGB image of the shape 247 x 247 x 3. This image is passed
to the first convolution layer. Conv 1 has 96 filters of shape 11 x 11 x 3, with a stride of

4 [104]. Filtering with conv 1 creates a feature map of shape 55 x 55 x 96 [104], which is
passed through ReLU activation function to get the activation map. The activation map
is passed to a max pooling layer with a kernel shape of 3 x 3 x 3 and stride of 2 [104]. This

pooling layer produces an output of shape 27 x 27 x 96 from the first layer [10].

Conv 2 is the next layer. This convolution layer has 256 filters of shape 5 x 5 x 3 with
a stride of 1 and padding of 2 [104]. Filtering with conv 2 creates a feature map of shape
27 x 27 x 256 [104], which is passed through ReLU activation function to get the activation
map. The activation map is passed to a max pooling layer with a kernel shape of 3 x 3 x 3
and stride of 2 [104]. This pooling produces an output of shape 13 x 13 x 256 from the
second layer [104].

The output of the last layer is passed to Conv 3. It has 384 filters of shape 3 x 3 x 3
with a stride of 1 and padding of 1 [104]. Filtering with conv 3 creates a feature map of
shape 13 x 13 x 384 [104], which is passed through ReLU activation function to get the
activation map. There is no pooling.

The output of the previous layer is passed to Conv 4, which is the same as Conv 3.
Filtering with conv 4 creates a feature map of shape 13 x 13 x 384 [104], which is passed
through ReLU activation function to get the activation map. There is once again no
pooling.

Conv 5 is the final convolutional layer and it has 256 filters of shape 3 x 3 x 3 with a

stride of 1 and padding of 1 [104]. Filtering with conv 5 creates a feature map of shape
13 x 13 x 256 [104], which is passed through ReLLU activation function to get the activation
map. The activation map is passed to a max pooling layer with a kernel shape of 3 x 3 x 3
and stride of 2 [104]. This pooling produces an output of shape 6 x 6 x 256 from the final
layer [L04].

Then comes the first dropout layer with p = 0.5 [104]. The output from this layer is
also 6 x 6 x 256 [1041], which is passed to the fully connected layers.

The first fully connected layer has 4096 neurons and uses the ReL.u activation function
[104]. Then comes another dropout layer with p = 0.5 [104]. This dropout is followed by
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the second layer which also has 4096 neurons and ReLU activation function [L104]. The
output of the second fully connected layer is connected to the final layer with 1000 neurons,
since there are 1000 classes [104]. This layer uses the softmax function to make the final
predictions.

This model has a total of 62.3 million parameters [104].

Figure 2.13: AlexNet Architecture [!]

The key take away from this architecture was the use of ReLLU over Sigmoid. The
advantages of ReLU over sigmoid is that it trains faster by avoiding the vanishing gradient
problem [1].

Another key advantage AlexNet has was the use of Dropout layers [1]. Dropout layers
applies a probability p to each individual neuron in the activation map separately, and
randomly switches off the activation with probability p. This is illustrated in figure 2.14

a) Standard Neural Net (b) After applying dropout.

Figure 2.14: Standard Neural Network with and without Dropout Layer [1]

VGG

VGG stands for Visual Geometry Group. This method was proposed in 2014 by Zisserman
and Simonyan. There are two model architectures: VGG 16 and VGG 19 [100]. The
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numbers 16 and 19 stand for the number of layers respectively [13]. The VGG16 model
achieves almost 92.7% Top-5 test accuracy in ImageNet [17, 13]. VGG made significant
improvements over AlexNet by replacing the larger sized filters with several 3 x 3 sized
continuous filters [1].

Figure 2.15 and 2.16 shows the architecture and filter/pool shapes for each layer of
VGG 16 respectively. There is the input layer, a RGB image of shape 224 x 224 x 3. This
layer is followed by 13 conv layers [I11, 61]. The unique thing about VGG is that each
filter has a stride of 1, and each max pool has a stride of 2, and all the layers have the
same padding [13]. Thus after a convolution layer, the height and width always remains
the same as shown by the black layers in figure 2.15 | only the depth changes based on the
number of filters in each layer, which is shown in figure 2.16. The height and width are
only cut in half whenever a max pooling layer is reached, as shown by the red layers in

figure 2.15.

After the final convolution layer, the output is passed to a fully connected dense NN.
This network follows the same structure as AlexNet, with 4096 neurons in the first two

)

layers and 1000 neurons, one for each class in the final layer with a sigmoid function [13].

224 x224x 3 224 x224 x64

112 x 112 x 128

56|x 56 x 256
28 x 28 x 512

7x7x512

14 x 14 x 512 1x1x4096 1x1x1000

= convolution+ReLU
=) max pooling
fully nected+RelLU
softmax

Figure 2.15: Architecture and output shape of each layer of VGG 16 [17]

Figure 2.17 shows the difference between VGG 16 and VGG 19. There are three more
convolution layers for VGG 19, which can be found in conv layers 4 and 5.
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Figure 2.16: Filter and max pool size of each layer of VGG 16 [13]

GoogleNet /Inception

While VGG has exceptional performance, it is a computational heavy architecture. For
example a convolution layer with a 3 x 3 filter with an input and output of 512 channels,
has 9 x 512 x 512 = 2359296 operations [!]. However most of the activations in a deep
network are redundant because they have a value of zero or do not have any correlations
between them [1]. Thus there are sparse connections between the activations, which implies
that all 512 input and output channels will not be connected to each other. GoogleNet
created a module called Inception that approximates a sparse CNN [117]. The idea behind
Inception is to have multiple size filters on the same level. This arrangement will make the
network wider rather than deeper.

Figure 2.18 shows two versions of the inception module. The figure on the left is the
naive version, with three different size filters (1 x 1,3 x 3,5 x 5). The native version
performs convolution on its input, with these three filters, alongside max pooling [117].
The outputs are concatenated and sent to the next layer [91]. To make it further cheaper,
computationally, the input channels are limited by adding an extra 1 x 1 convolution layer
before the multi size filters, which is shown in the right image of figure 2.18 [94].

The Inception module is the core of GoogleNet. Figure 2.19 shows it has 22 layers (27
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Figure 2.17: VGG 16 vs VGG 19 [100]

with the max pooling) [117]. The input is fed into three preliminary layers, which is called
the stem [94], shown in the green box in figure 2.19. The output is a fully connected layer
with global average pooling at the end, shown in the blue box in figure 2.19. In between
are nine inception module stacked linearly, shown in the black boxes in figure 2.19. As
mentioned before, this is a deep network, and thus suffers from the vanishing gradient
problem. To solve this problem, the network has two auxiliary classifiers, shown in the red
boxes in figure 2.19 [94]. Tt applies softmax to the outputs of two of the inception modules.
The total loss function is a weighted sum of the auxiliary loss and the real loss, given by
the following formula:

totalipss = realpss + 0.3 X (auZipss, + aUT 55, )[ 117, 9]

The above model in figure 2.19 is the first version, Inception V1. It finished top in
the classification tasks in the ILSVRC 2014 classification challenge, with a top-5 error of
6.67% [641]. Currently there are a few other models as well: Inception V2, Inception V3
and Inception V4, all essentially building on the previous version to improve performance
[118, 116].

28



Filter
Filter concatenation

concatenation ﬂ

T 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

1x1 convolutions [} ) )

wjtions 1x1 convolutions 3x3 max pooling

Previous layer Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

Figure 2.18: Inception module. (a) is the naive version, and (b) has dimension reductions

[117]

ResNet

ResNet, short for Residual Network is a CNN that was introduced in 2015. It won first place
in the ILSVRC 2015 classification competition with a top-5 error rate of 3.57% and came
out on top at the COCO 2015 competition in ImageNet Detection, ImageNet localization,
Coco detection and Coco segmentation [122].

The main goal of ResNet was to combat the vanishing gradient problem [10]. As
mentioned previously, as more layers are added to a NN, the network hits a threshold and
its performance degrades. The last two architectures show a few ways to deal with this
problem, but ResNet incorporates a brand new method: the addition of a residual module

[49].

The main idea of a residual module is the identity shortcut connection, also known as
skip layers [0, |. Skip layers, as the name suggests, skips one or more layers. Figure
2.20 shows a diagram of the residual module. The input is x, which is both fed to the next
layer, and has a direct connection, which skips a number of layers in between. Due to the
skip connection, the output of the layer is changed. The output of the layer if it were a
regular NN would be H(z) = f(x), where f() is the activation function [122]. But with
the skip layer, the new output is H(z) = f(z) + = [122]. The number of layers that are
skipped is adjustable.

Skip connections help alleviate the vanishing gradient problem by creating a shortcut
path for the gradient to flow through [122]. This skipping also allows the model to learn
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Figure 2.19: GoogleNet model architecture with the different components. The stem is in
the green box. Nine inception modules are in the black boxes. The two auxiliary classifiers
are shown in the red boxes. And the fully connected layer with global average pooling is
in the blue box [117]
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Figure 2.20: Residual module with skip layers [19]

identity functions ensuring that higher layers perform at least as good as lower layers [122].

The residual module allows stacked layers to fit a residual mapping, which is easier than
directly fitting them to the underlying mapping. Researchers argue that deeper models
should not produce higher training errors than its shallower models [122]. This indicates
that stacking layers do not degrade network performance, because it stacks identity map-
pings, which are layers that do not do anything, on the current network [50].

Figure 2.21 shows a regular 34 layer CNN on the left and the ResNet34 architecture
with 34 layers on the right [19]. ResNet34 has two layer skip connections, meaning that the
identity mappings are skipped every two layers. Dotted skip connections indicate increase
in channel dimensions. Similar to GoogleNet, ResNet also has an average pooling with
a fully connected layer with 1000 outputs for classifying 1000 classes. ResNet comes in
different variations: ResNet18, ResNet34, ResNet50, ResNet101, ResNet110, ResNet152,
ResNet164, ResNet1202 and more [19, 122]. All of these follow the same format, just differ
in the number of layers, which is indicated by the number. For example, ResNet50 has 50
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layers.

Figure 2.21: Left: Regular 34 layer CNN Resnet. Right: ResNet34 network with skip
connections [19]

2.3 Deep Learning for Semantic Segmentation

The success of CNNs in image classification has led to its increased popularity in the task
of semantic segmentation. For image classification, the output is in the shape of 1 x 1 x C,
where C is the number of classes in the dataset. For semantic segmentation, we need
to classify each pixel as part of a class object set. Therefore, the input for a semantic
segmentation model is still an image of shape H x W x 3, but the output is H x W x C,
where H and W are the image dimensions [20]. The difference in output shape requires
the model to up sample abstract small feature volumes back to the output shape [20].

In image classification the initial weights are randomly set. But this is not the case
for semantic segmentation. Image classification CNN models are used to capture useful
visual information like identifying colors, shapes, edges and curves. Thus the features
learned by convolutional layers before the output layer are used as the initial weights for a
semantic segmentation model. This image classifier is called backbone or feature extractor.
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Most semantic segmentation models [70, 98, 18, 21] use an image classification CNN as a
backbone to extract features [1 11, 19]. The backbone is trained on a classification dataset,
such as ImageNet. This idea of reusing weights from a previously trained backbone CNN
is called transfer learning [11]. ResNet [19] is one of the most commonly used backbones.

2.3.1 Fully Convoutional Network

A regular CNN has convolutional layers with pooling, where the image is down sampled,
and then fully connected layers where it is classified. Fully Convolutional Networks were
introduced in 2014, and it substitutes the fully connected dense layer with a 1 x 1 convo-
lution layer, achieving the same results [73]. But the advantage of this substitution is the
input size can now vary [65].

For a normal sized input image, the output is a class output. If the input image is
bigger, the output will be a feature map, representing a heat map, shown in figure 2.22
[73]. This heat map can be further refined and used for segmentation.

“tabby cat”
ﬁjﬁ@_e_b_o
25° i
9©

1

convolutionalization

tabby cat heatmap

Figure 2.22: Difference between a regular sized image vs a bigger image. The regular size
input outputs a classification, while the larger image outputs a heat map [70]

The heat map is the output down sampled. To get segmentation, the feature map needs
to be up sampled. Down sampling is refereed to as encoder, and up sampling is decoder
in a NN [73]. The input is reduced in size with the encoder and de-convoluted back up
with the decoder. In FCN, specifically FCN-32, the input has been down sampled 32 times
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using convolution layers [70]. This requires up sampling by the same amount. However,
down sampling 32 times results in loss of information at the final feature layer [73]. It
is difficult to up sample 32 times with the resulting loss of information [73]. Thus the
resulting segmentation is rough, shown in the left most image of figure 2.23.

The paper proposed two other model architectures: FCN-16 and FCN-8 [70]. In FNC-
16, information is extracted from one pooling layer before the final convolution layer and
is fused with the final feature map (element-wise addition) [123]. For FCN-8 information
is extracted from the second to last pooling layer and is fused with the final feature map
(element wise addition) [123]. A detailed diagram of these operations is shown in 2.24.
For both these models, the output of the pooling layer is up sampled 16 and 8 times
respectively. The segmentation results of both these models are shown in figure 2.23.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 2.23: Outputs of FCN-32, FCN-16 and FCN-8 [70]
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Figure 2.24: Information extraction for FCN-16 and FCN-8 [7(]
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2.3.2 UNet

UNet was initially developed by Ronneberger for the medical field to identify tumors. UNet
was inspired and built on top of FCN (Fully Convolutional Network) [70]. It only contains
convolutional layers and no dense layers. UNets name comes from its architecture, which
is shaped like a U, as shown in figure 2.25. The network has two parts, the encoder (on the
left) and the decoder (on the right) as well as shortcut connections (grey horizontal arrows
connecting layers from the encoder to the decoder) [56]. The encoder down samples the
image to a feature map, and the decoder does the opposite, up samples the feature map
to input image size, using deconvolution layers [73].
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Figure 2.25: UNet Architecture. The left side of the red line is the encoder and the right
side is the decoder. The horizontal grey lines connecting the encoder and decoder layers
are the shortcut connections [9¥]

The encoder functions just like a normal CNN, with convolution layers and max pooling.
Each level in the encoder portion of figure 2.25 consists of two 3 x 3 convolutional layers,
followed by ReLU activation [98]. Transition between the levels is done by a 2 x 2 max
pooling layer with a stride of 2 [98]. For every level in the encoder, the shape of the input
halves, while the number of channels doubles. At the end of the encoder stage, the model
knows the objects present in the image. The decoder handles the localization of these
objects.
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The decoder is essentially the reverse of the encoder. At each level, instead of max
pooling, transpose convolutions or deconvolutions are carried out [32]. Figure 2.26 shows
how a 3 x 3 input is up sampled to a 5 x 5 feature map. To do so, the decoder needs to add
extra pixels in between and around the incoming pixels in the input from previous layers.
The blue pixels are the original input. They are padded with zeros both on the outside and
in between pixels, shown by the white squares. To improve performance, the zero padding
is often replaced by weighted average of the input pixels such as bilinear interpolation [32].

Figure 2.26: An example of transposed convolution which takes a 3 x 3 input and outputs
a b x b feature map [32]

The final component of UNet is the shortcut connections. For localization of objects
to be more precise, these shortcut connections or skip connections are used [73]. The
feature maps of each level of the encoder are concatenated to the output of the transposed
convolutions of each level in the decoder [73]. By sending information to every up sampling
layer in decoder from the corresponding down sampling layer in the encoder the model can
capture finer information. Layers at the beginning of the encoder have more information
and would bolster the up sampling operation of decoder by providing finer details and
improving the results [98].

2.3.3 DeepLab Network

DeepLab is a family of CNNs from Google. These networks focus on improving techniques
to get better results at lower computational costs. These networks introduce three main
improvements [50]:

1. Atrous convolutions
2. Atrous Spatial Pyramidal Pooling (ASPP)
3. Conditional Random Field (CFR)
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As discussed previously with the FCN, consecutive pooling causes excessive down sam-
pling. The down sampled image also needs to be up sampled to get the segmentation
results. Down sampling results in a loss of information which is important for getting
good segmentation results. Also deconvolution is computationally expensive since there
are additional parameters involved in up sampling.

Atrous convolutions [20] or dilated convolutions was introduced to combat this issue.
The idea is to increase the size of the filters by padding the weights around and in between
with zeros or holes. The number of holes/zeroes in between the filter weights is known as
dilation rate [73]. Figure 2.27 shows filters with different dilation rates. Dilation rate of
1 means no padding, and is thus a regular filter. Dilation rate of 2 means a padding of 1
between the filter weights, essentially turning the 3 x 3 filter to a 5 x 5 filter, while only
using the same 9 parameters of a 3 x 3 filter. This enlarges the receptive field with no
increase in computational cost.
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Figure 2.27: Atrous convolutions with dilation rate of 1, 2 and 3 [7]

Atrous Spatial Pyramidal Pooling (ASPP) [19] was introduced to capture multi-scale
information from a feature map or capture objects at multiple scales. The idea is to apply
Atrous convolutions with multiple dilation rates on an input, and put the results together
[19]. Figure 2.28 demonstrates how its performed. ASPP helps account for the fact that
objects will have different sizes in images, and thus improve results [73].

Pooling reduces the parameters, but also introduces invariance [73]. Invariance causes
a NN to be unaffected by slight changes in input [19]. Thus the segmentation output
obtained by a NN is coarse and the boundaries are not well defined. DeepLab proposes
Conditional Random Field (CRF) to tackle this problem [19]. CFR is a post-processing
step that tries to improve the results by defining sharper boundaries [73].

The Deeplabv3+ architecture combines the encoder-decoder design from UNet with the
ASPP to get sharper boundaries. Figure 2.29 shows the model architecture. Instead of
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Figure 2.28: Atrous Spatial Pyramidal Pooling with Atrous convolutions of different dila-
tion rates [19]

directly up sampling features from ASPP to the input dimensions, the decoder concatenates
low-level features from both before and after ASPP and then upsamples to the output
dimensions [19]. This encoder-decoder model design of Deeplab network is able to obtain
sharp object boundaries.

2.4 Deep Learning for Weakly Supervised Semantic
Segmentation

Weakly Supervised Semantic Segmentation (WSSS) deals with ground truth that does not
have pixel level annotations. The neural network architecture and backbones are similar
to Fully Supervised counterparts. The difference is the use of loss functions, the method of
training the CNN and the use of additional data such as Saliency to combat the absence
of pixel level annotation. In this section we explore a few WSSS Deep Learning methods
that use image level annotation. Prior to that, we also introduce Class Activation Maps
(CAMs) which are used as localization cues for most WSSS methods [3].
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Figure 2.29: DeepLabV3+ model architecture

Class Activation Map (CAM)

Given an input image, Class Activation Maps (CAM) highlights all the important regions
of the image a NN uses to make decisions, such as output predictions, or classifications [%].
Visually, it looks like a heat map of objects present in an image, as shown in figure 2.30
[12]. Mathematically, it is the weighted activation map generated for each image [137].
CAMs were proposed by a team in MIT in 2015.

Figure 2.30: Class Activation Map (CAM) of image of a shoe. The highlighted heat map
is the region of the image a NN looks at for classifications [12]

CAMs are trained in a weakly supervised manner [15]. Below in figure 2.31 is the model
architecture for producing CAMs. The model consists of a few convolution layer. The fully
connected layer at the end is removed to keep the spatial information that is present at
the final convolution layer. A global average pooling (GAP) is performed before the final
output layer. GAP is an average that is taken across all the activation maps which help
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find all the important regions of the image [21]. Global Max Pooling (GMP) is another
layer that can be used, but it focuses on finding the top most important region, instead
of all the important regions, and thus is less effective than GAP [24]. The final layer is a
softmax layer, with neurons that match the number of classes in the classification list.
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Figure 2.31: Class Activation Map (CAM) model architecture [137]

The importance regions of the image are found by projecting back the weights of the
output layer obtained from the last conv layer onto the convolutional feature maps [15].
At the first iteration, the input image is fed to the network to output the image classifi-
cation. In the next iteration the weights connected to the correct classification neuron are
used. The output of the final convolution layer is stored and used to calculate CAM, by
multiplying each depth from the output of the final convolution layer with corresponding
weight connected to the correct neuron [15]. These products are summed and up sampled
using bilinear up sampling to match the size of the input [15]. Figure 2.30 shows the input
image and its corresponding CAM.

2.4.1 From Image-level to Pixel-level Labeling with Convolu-
tional Networks

Pinheiro and Collobert [93] devised a method based on the Multiple Instance Learning
Framework, which works as follows. Given an image and its object class, the image is known
to have (or not) at least one pixel corresponding to the object class, and the segmentation
task is inferring the pixels belonging to the object class. To this end the method uses a
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CNN which is trained to put more weight on pixels that are important for classifying the
image.

The task of segmentation is challenging as each object can generate an infinite amount
of images with different position, pose, lightning, texture, background etc. Segmentation
has to keep up with these variations with limited training data. CNNs are used because of
their ability to learn general information and thus excel in transfer learning, which can be
exploited for different vision tasks. However the disadvantage is the need for a large fully
labeled training dataset.

Pinheiro and Collobert [93] uses a CNN, but it is not trained with segmentation labels,
or bounding box annotations [93]. Instead, their method considers a single object class label
for a given image, and the model puts more weight on important pixels for classification
[93]. This approach can be seen as an instance of Multiple Instance Learning (MIL).

As mentioned before, CNN learns a hierarchy of filters. The type of features learned
make it ideal for transfer learning. Since the amount of classification data is much bigger
than segmentation data, it is natural to leverage the former to solve the later. Pinheiro
and Collobert’s method considers segmentation with a set of classes C' [93]. They assumes
that the classification dataset contains at least the same classes. The classes that are in
the classification dataset but not the segmentation dataset are considered to be a part of
the background class.

Figure 2.32 shows the architecture of the model. The CNN has 10 layers with pooling.
The CNN takes an RGB image of 400 x 400 and outputs C' + 1 planes, one for each class
and one for the background. During training, an extra layer, the Log-Sum-Exp layer is
used to aggregate pixel level labels to image level labels [93].

oOoverfeat Segmentation Net
C1-C2-C3-C4-C5-C6 C7-C8-C9-C10

Overfeat Features: Output Features Map LSE output:
H':@1024 x h' x w' Y @(|C[+1) x h? x w® s:@(C[+1) x1x1

Figure 2.32: The full RGB image is forwarded through the network (composed of Overfeat
and four extra convolutional features), generating output planes of dimension (C+1)xhxw.
These output planes can be seen as pixel-level labels of a sub-sampled version of the input
image. The output then passes through the Log-Sum-Exp layer to aggregate pixel-level
labels into image-level ones. The error is backpropagated through layers C10-C7 [93]
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The model starts with the Overfeat feature extractor developed by Sermanet el at [93].
This feature extractor has been trained on the ILSVRC13 challenge and corresponds to
the first six layers of the model. The feature extractor takes the 400 x 400 RGB image and
generates feature maps of dimensions 1024 X h X w, where h and w are the size of the RGB
input image, the convolution kernel sizes, convolution strides and max-pooling sizes [93].
After the first 6 convolution layers and 2 pooling layers of Overfeat, the RGB 400 x 400
image is transformed to a 1024 x 29 x 29 feature representation [93].

The other 4 layers are for the feature planes coming from Overfeat. The first three
layers are followed by a pointwise ReLU:

H? = max(0, WPH?™" + bP), pe(7,8,9)[93]
Parameters of layer p are (WP, b7). The last layer Y is:
Y:Wlng—l—blO[ ]

There is no max pooling, but a drop out regulation strategy is applied on all layers. The
network outputs C' 4+ 1 planes, one for each class and one for the background.

The network also produces a score sﬁ ;= szj for each pixel location (i, j) in image I,
for each class keC' [93]. These scores need to be aggregate from pixel level into image level
classification. Aggregation drives the network towards correct pixel-level assignments, such
that the network could perform decently on segmentation tasks. This aggregation is done
by the Log-Sum-Exp (LSE):

1 1
k o k
st = ;log[h o E exp(r, s;;)][03]

1,J

The parameter r controls how smooth the approximation is.

During inference, the padded and normalized RGB image is sent to the network, where
the aggregation layer has been removed. This generates C' + 1 planes of pixel-level scores

k

s;; and the CNN densely classifies every pixel of the image. The entire process is shown

in figure 2.33.

2.4.2 Weakly and Semi Supervised Learning of a Deep Convolu-
tional Network for Semantic Image Segmentation

Papandreau et al. [J0] propose an online Expectation-Maximization (EM) method for
training CNN semantic segmentation models from weakly annotated data [90]. The pro-
posed algorithms alternate between estimating the latent pixel labels (subject to the weak
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Figure 2.33: Top: (1) The model is trained using weakly annotated data. (2) The CNN
generates feature planes. (3) These planes pass through an aggregation layer to constrain
the model to put more weight on the right pixels. (4) The system is trained by classifying
the correct image-level label. Bottom: During inference, the aggregation layer is removed
and the CNN densely classifies every pixel of the image [93]

annotation constraints), and optimizing the CNN parameters using stochastic gradient
descent (SGD) [90].

DeepLab for semantic segmentation uses a CNN to predict label distribution per pixel,
followed by a fully connected dCRF to smooth predictions [90]. This method focuses on
methods for training the CNN parameters using weak labels.

Figure 2.34 (a) shows how DeepLab model trains from fully supervised annotated im-
ages. The image is sent to a CNN and produces an output. The output is used with
the ground truth to produce a loss which is used to optimize the model and its parame-
ters. Figure 2.34 (b) shows the changes to the model when only image level annotation
is available. The main difference is the addition of the weakly supervised E-step module.
The method pursues a EM-approach in order to learn the model parameters from training
data by adopting a hard-EM approximation, estimating in the E-step of the algorithm the
latent segmentation by argmax [90].

The method described in the paper for image level labels shows results that are close to
[93], without using any external objectness or segmentation module [90]. The main focus
of this paper is semi supervised learning where having access to 2.9k pixel level labels and
9k image level annotated images yields results that 2% inferior to the performance of the
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Figure 2.34: (a) DeepLab model training from fully annotated images (b) DeepLab model
training using image level labels [90]

system trained with all 12k images strongly annotated at the pixel level [90].

2.4.3 FickleNet: Weakly and Semi-supervised Semantic Image
Segmentation using Stochastic Inference

Pixel level annotations allow fully supervised methods to effectively learn location and
boundaries of objects. Weakly labeled data on the other hand only indicates the existence
of objects in an image. Most weakly supervised methods use localization maps such as
Class Activation Maps (CAM) to bridge the gap between full and weak supervision. But
these maps focus on small parts of an image and do not effectively capture boundaries. This
problem can be addressed by diverting the classifier from its primary task of discrimination
between objects to discovering the relations between pixels [67].

This paper [67] proposes a three step method to tackle the task of WSSS. First it
introduces a new network, FickleNet, which using the dropout method, discovers the re-
lationship between locations in an image and enlarges the regions activated by the classifier
[67]. FickleNet uses stochastic selection of hidden units and is trained for multi class clas-
sification [67]. The classification scores from the first step are used to generate localization
maps of training images. These two steps address the problem described above. Finally,
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the localization maps are used as pseudo ground truths to train a segmentation network
[67].

FickleNet can generate a variety of localization maps from a single image using random
combinations of hidden units in a convolutional neural network, as shown in figure 2.35 (a)
[67]. Starting with a feature map created by a generic classification network such as VGG
16 or ResNet 101, the network chooses hidden units at random for each sliding window
position, which corresponds to each stride in the convolution operation, realized by the
drop out method , as shown in figure 2.35 (b) [67]. Selecting all the hidden units in a
sliding window does not allow distinction between foreground and background. Random
selection of hidden units produces regions of different shapes which can delineate objects
more sharply [67]. Since the patterns of hidden units randomly selected by FickleNet
include the shapes of the kernel of the dilated convolution with different dilation rates,
FickleNet can be regarded as a generalization of dilated convolution, but FickleNet can
potentially match objects of different scales and shapes using only a single network because
it is not limited to a square array of hidden units, whereas dilated convolution requires
networks with different dilation rates just to scale its kernel [67].

Input image Convolution layers Stochastic feature selection

= = ﬂ aeroplane

Figure 2.35: (a) FickleNet allows a single network to generate multiple localization maps
from a single image. (b) Conceptual description of hidden unit selection. Selecting all hid-
den units produces smoothing effects as background and foreground are activated together.
Randomly selected hidden units (stochastic, center and right) can provide more flexible
combinations which can correspond more clearly to parts of objects or the background [67]
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As mentioned before this method is a three step process:

e Stochastic Hidden Unit Selection
e Inference Localization Map

e Training the Segmentation Network

Stochastic hidden unit selection is used in FickleNet to discover relations between parts
of objects by exploring the classification score computed from the randomly selected pairs
of hidden units, with the aim of associating a nondiscriminative part of an object with a
discriminative part of the same object. This process is realized by applying spatial dropout
to the feature at each sliding window position, as shown in figure 2.36 (a). However to
implement the method shown in figure 2.36 (a) would require calling the convolution and
the dropout function w x h times in each forward pass [07]. By expanding the input feature
map as shown in figure 2.36 (b), so that no sliding window overlaps, reduces to a single
call to each function during each forward pass [07]. Zero padding is applied to the feature
before expanding so that the size of the final output is the same as the input.

Stochastic hidden unit selection is realized by applying dropout method to spatial loca-
tions. Applying spatial dropout with a rate p outputs feature map x;xp“”d [67]. Applying
global average pooling and a sigmoid function to this map, outputs a classification score .S
for each randomly selected hidden unit [67]. A combination of randomly selected hidden

units generates various classification scores from a single image.

The second step is generating the localization maps. FickleNet allows many localization
maps to be constructed from a single image, because different combinations of hidden units
are used to compute classification scores at each random selection [67]. GradCAM, which is
a generalization of CAM, is used to create these localization maps. N different localization
maps are created from a single image and aggregated into a single localization map, as
shown in figure 2.35 (a) [67].

The final step is training the segmentation network. The localization maps created
above are used as pseudo ground truths to train a segmentation network. Using the same
background cues as Deep Seeded Region Growing (DSRG) [53], the generated localization
maps from FickleNet are fed into DSRG as the seed cues for weakly supervised segmentation
[67]. Figure 2.37 shows comparisons between DSRG and FickleNet using both VGG 16
and ResNet 101 on Pascal VOC 2012 dataset [36, 35, 34].
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Figure 2.36: (a) Naive implementation of FickleNet, which requires a dropout and con-
volution function call at each sliding window position (the red and green boxes). (b)
Implementation using map expansion: convolution is now performed once with a stride of
s. The input feature map is expanded so that successive sliding kernels (the red and green
boxes) do not overlap [67]

2.4.4 Learning Pixel-level Semantic Affinity with Image-level Su-
pervision for Weakly Supervised Semantic Segmentation

In the weak supervision setting with only image level labels the model does not know object
location or shape. The only information available is the existence of classes. A popular
choice to supplement this gap of location cue knowledge is by using Class Activation
Maps (CAM). CAMs, highlight discriminative parts of a target object by investigating the
contribution of hidden units to the output of a classification Deep Neural Network (DNN)

[3].

In weak supervision trained models are known to segment local discriminative parts
rather than the entire object area. One solution is to propagate local responses to nearby
areas with the same semantic entity. To do so, this method introduces a DNN called
AfinityNet that predicts semantic affinity between a pair of adjacent image coordinates [3].

The pipeline for this method is shown in figure 2.38. It has three distinct stages:

1. First, CAMs of input images are created and used to generate semantic affinity labels,
which in turn are used to train AffinityNet [3]

2. Second, the trained AffinityNet is applied to each training image to revise its CAM
and synthesize segmentation labels. This revision is done by first building a neigh-
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Figure 2.37: Comparisons between DSRG and FickleNet using both VGG 16 and ResNet
101 on Pascal VOC 2012 dataset [67]

borhood graph where each pixel is connected to its neighbors within a certain radius,
and estimate semantic affinities of pairs connected in the graph through AffinityNet
[3]. Sparce activations in CAMs are diffused by random walk, which revises CAMs
significantly, producing fine object shapes. Finally, this process is applied to training
images for synthesizing their segmentation labels by taking the class label associated
to the maximum activation of the revised CAMs at each pixel [3]

3. Third, the segmentation labels are used to train a DNN for semantic segmentation

Training AffinityNet Generating Segmentation Labels Learning Segmentation Net

1 Training Class Activation| | Affinity Training Class Activation Segmentation Training Segmentation
| Maps (CAMs) Labels Ll Maps (CAMs) | Labels Labels

AN
=
(4

bel
Ilnpu AfflnltyNet  Label I

;L.L ¢ L - .
B AfinityNet B PCTTITT seg Net

Figure 2.38: Pipeline for the method. Salient areas for object classes and background are
first localized in training images by CAMs [3]

The entire framework is based on three DNNs:

e Network to compute CAMs

o AffinityNet
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e Semantic Segmentation network

Each of these networks use ResNet-38 as the backbone. The first two networks are used to
generate segmentation labels of training images for the last network which does semantic
segmentation.

The architecture for computing CAMs, as described previously, is a typical classification
network with global average pooling (GAP) followed by a fully connected layer, trained
by a classification network with image-level labels [3]. For this method, three layers are
added on to ResNet-38: a 3 x 3 conv layer with 512 channels, a GAP layer for feature
aggregation, and finally a fully connected layer for classification [3].

AffinityNet is designed to predict a convolutional feature map f*// [3]. Figure 2.39
shows the architecture of AffinityNet. The network predicts class agnostic semantic affinity
between a pair of adjacent coordinates in an image [3]. The predicted affinities are used in
random walk as transition probabilities so that random walk propagates activation scores
of CAMs to nearby areas of the same semantic entity, which improves the quality of CAMs
significantly [3]. The network acquires semantic information at various field of views by
aggregating multi level feature maps from the last three levels of the ResNet-38 network.
Before aggregation, the channel dimensionalities are reduced to 128, 256, and 512, for the
first, second, and third feature maps, respectively, by individual 1 x 1 convolution layers
[3]. These are concatenated to a single feature map with 896 channels. Finally one more
1 x 1 convolution layer with 896 channels is added on the top for adaptation [3]. The
trained AffinityNet is now used to revise CAMs for training images using random walk.

concat

Backbone

Figure 2.39: Architecture of AffinityNet.The output feature map f// is obtained by ag-
gregating feature maps from multiple levels of a backbone network so that f%// can take
semantic information at various field of views [3]

Finally, the revised CAMSs are used to train the segmentation network. The CAMs need
to be upsampled by bilinear interpolation, to match the input image size. A segmentation
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label of a training image is then obtained simply by selecting the class label associated
with the maximum activation score at every pixel in the revised and upsampled CAMs
[3]. The segmentation network is created by adding two more atrous layers to ResNet-38.
These layers have the same dilation rate of 12, and 512 and 21 channels respectively.

2.4.5 Seed, Expand and Constrain: Three Principles for Weakly-
Supervised Image Segmentation

This paper [59] introduces a new loss function for weak supervision called SEC. This loss
function is based on three principles: Seed, Expand and Constrain [59].

The first insight is to seed with weak localization cues. Classification networks can
output object localization cues or seeds, but cannot predict their exact spatial extent.
This method incorporates seeding loss that encourages a segmentation network to match
localization cues [59].

The second insight is to expand objects based on the information about which classes
can occur in an image. Global pooling layer is used to aggregate segmentation masks into
image-level label scores. There are two prominent choices: global average pooling (GAP)
and global max pooling (GMP). The former overestimates the quality of segmentation,
while the latter underestimates it. This method generalizes max pooling and average
pooling by using a global weighted rank pooling that is leveraged by expansion loss to
expand the object seeds to regions of a reasonable size [59)].

Finally the third insight is to constrain the segmentation to coincide with object bound-
aries. This method proposes a new constrain-to-boundary loss that alleviates the problem
of imprecise boundaries at training time [59]. The method constraints predicted segmen-
tation masks to respect low-level image information

Figure 2.40 shows the model architecture of SEC with the three paths, each correspond-
ing to one of the three principles.

The top path, corresponding to seed, is shown in more details in figure 2.41. The
method proposes to use a seeding loss to encourage predictions of the neural network to
match only landmarks given by the weak localization while ignoring the rest of the image

[59].

The middle path corresponds to expansion. To measure if a segmentation mask is con-
sistent with the image level labels one can aggregate segmentation scores into classification
scores and apply the standard loss function for multi label image classification [59]. Two
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Figure 2.40: Schematic illustration of SEC that is based on minimizing a composite loss
function consisting of three terms: seeding loss, expansion loss and constrain-to-boundary
loss [59]

= -
Il‘ Extract Localization Cues 3
from Classification Network " <]

Figure 2.41: Schematic illustration of the weak localization [59]

prominent techniques are used: GMP and GAP. For classes which are present in an image
GMP only encourages the response for a single location to be high, thus resulting in a seg-
mentation network that often underestimates the sizes of objects while GAP encourages
all responses to be high, which overestimates the sizes [59)].

The method proposes Global Weighted Rank Pooling (GWRP) that is a combination
of GMP and GAP. GWRP computes a weighted average score for each class, where weights
are higher for more promising locations [59]. This encourages objects to take up a certain
fraction of an image without overestimating their size.

2.4.6 Weakly supervised image semantic segmentation using graph
convolutional networks

As seen in previous methods, one common approach to WSSS is to use Class Activation
Maps (CAMs) and a random-walk mechanism to create pseudo ground truths for training
a fully supervised semantic segmentation network. However, the feed forward nature of
the random walk imposes no regularization on the quality of the resulting pseudo ground
truths. To overcome this issue, Pan et al. proposes a Graph Convolutional Network (GCN)
based feature propagation framework [39].

This paper [389] uses a two stage framework that is common with most weak supervision
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methods. The first stage is producing pseudo ground truths, and the second is using these
labels to train a segmentation network. Producing pseudo ground truths is done in three
steps:

1. First, predict crude estimates of labels using CAMs. These are called partial pseudo
labels [89]

2. Second, use these partial labels to train an affinity network, where pixels with the
same labels have similar features

3. Third, the affinity network is applied to evaluate a Markov transition matrix for
propagating the activation scores of CAMs through a random-walk mechanism, with
the aim of producing complete pseudo labels for all the pixels [39]

This paper addresses step 3 through a GNN. The high level semantic features of image
pixels are propagated on a graph using a 2-layer graph convolutional network, followed
by decoding the propagated features into semantic predictions [29]. A separate GCN is
learned for every training image by back-propagating a Laplacian loss and an entropy loss
to ensure the consistency of semantic predictions with image spatial details [39].

GCN is chosen over CNN because of the affinity relations between features. Figure 2.42
shows the overall architecture of the method, with the two stages. Stage I generates the
pseudo ground truths and Stage II trains the segmentation network.

Stage I » Post-processing Stage II

Downscaled image
T € RIXHISXW/S

Figure 2.42: Overview of the proposed 2-stage weakly-supervised image semantic segmen-
tation framework with GCN-based feature propagation [39]
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Chapter 3

Volumetric Loss

For weakly supervised semantic segmentation with volumetric annotation, we need a new
loss function. Namely we need a loss function that encourages an object of a given class
have size matching to that in the user annotation. The name “volumetric” instead of “size”
is used for historical reasons. One of the first works to use constraints on size was [127],
who used size constraints on 3D reconstructed volumes, therefore, the name volumetric is
popular for size constraints. We are the first to introduce volumetric weak supervision for
semantic segmentation.

In this chapter, we describe two types of volumetric losses that we designed, namely
Quadratic Loss and Outside Quadratic Loss. Quadratic loss penalizes any deviation
from the size provided by the user. Since user sizes are only approximate, our second
volumetric loss, Outside Quadratic, has nonzero penalty only if the size estimated by CNN
falls outside the bucket estimate provided by the user.

3.1 Introduction

To develop volumetric loss, we need an estimate of the size of each class in the output
produced by a CNN. We can estimate the size of each class from the output of a CNN
as follows. Suppose we have a total number of ¢ classes. Let t be the CNN output, and
assume this output has the same spatial resolution as the input image, as is usually the
case in semantic segmentation. Then for each pixel, the output has as many channels as
there are classes. Let ¢! be the CNN output corresponding to pixel p in the input image
and class 7. Furthermore, we assume that the last CNN layer is softmax, so that ¢/ € [0, 1].
A pixel p is assigned to the class that maximizes t! over i.
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Since each pixel p is assigned to the class that maximize ¢! over i, to estimate the size
of class 7 in the network output ¢, we add ¥ over all image pixels p, namely let

=Yt (3.1)
p

Note that this is only an estimate of the size of class ¢, but the closer network outputs
are to 0 and 1, the more precise this estimate gets. In practice CNN output often has low
entropy, i.e., t¢ is indeed close to either 0 or 1.

Our volumetric loss functions are based on encouraging #; to be close to the size that
is provided by user annotation.

3.2 Quadratic Volumetric Loss

The first loss function, Quadratic Volumetric Loss, is based on Mean Square Error. Let [
be an input image, and let size; be the size of class 7 in image I as estimated by the user.
This loss function penalizes any deviations from the size of the class ¢ estimated by the
network, namely %;, see Eq. 3.1 from the size estimated by the user. Let ¢ be the output
corresponding to image I. Then this loss for a single image is defined as:

[

Lovi(t) =Y (f; — size;)?, (3.2)

=1

where size; is the size of class ¢ for image I, as annotated by the user, and ¢; as defined
in Eq. 3.1. When we train, we average the loss in Eq. 3.2 over all images in the training
dataset. Quadratic loss encourages each class to have size equal to the estimate provided
by the user. Figure 3.1 shows the relationship between network prediction and Quadratic
loss for a class with annotated size equal half of the image.

The advantage of Quadratic loss is that it has a smooth nonzero gradient almost ev-
erywhere, and thus might be easier to optimize with gradient descent. The disadvantage
is that it encourages each class ¢ to have exactly the size as estimated by the user, namely
stze;. However, we know that the user estimate is only approximate, and ideally, there
should not be much (if any) penalty if class size is within some radius from the user
estimate. Thus we develop another loss function, described in the next section.
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Quadratic Volumetric Loss for annotated images size equal to half of the image size
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Figure 3.1: Plot of Quadratic loss when the network estimate of object size is z, for the
case when the user annotates the class size to be half of the image size, i.e. 0.5

3.3 Outside Quadratic Volumetric Loss

In the second loss function, Outside Quadratic Volumetric Loss, the idea is to penalize the
prediction of the network when the class sizes it estimates are outside of the size bucket
provided by the user. Let I be an input image, and let size; be the size of class ¢ in image
I as estimated by the user.

For each class i in image I, let a(i) be the lower end of the size bucket, and b(i) be the
upper end of size bucket, i.e. a(i) < size; < b(i). Let ¢t be the output corresponding to
image I. If £; is within a(i) and b(), the corresponding loss will be 0. If it is less than a(i),
the penalty term will be dependent on the distance from a(i), and if its greater than b(7),
the penalty term will be dependent on the distance from b(i). We take the square of the
difference between the network prediction and the end points if the prediction falls outside
the end points and sum them up for each class. The loss for a single image is defined as:
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(x—a)® ifz<a
f(z,a,b) =< (x —0)* ifz>0b (3.3)
0 ifa<zx<b

[

~

Logvr(t) =) f(Ei, ali), b(i)) (3.4)

=1

Similar to the previous loss, when we train, we average the loss in Eq. 3.4 over all
images in the training dataset.

Outside quadratic loss considers the fact that the user estimates the object size only
approximately. Thus there is no penalty if the size estimated by the network is not too far
from the estimate (bucket) provided by the user. Figure 3.2 shows the relationship between
network prediction and outside quadratic loss for the bucket with endpoints a = 0.4 and
b=0.5.
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Outside Quadratic Volumetric Loss for Volumetric Annotation with End Points a = 0.4, b = 0.5
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Figure 3.2: Plot of Outside Quadratic loss when the network estimate of object size is x,
for endpoints a = 0.4 and b = 0.5. The loss is 0 between the end points.
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Chapter 4

Volumetric Supervision

In this chapter, we show how weak volumetric supervision can be used for semantic image
segmentation. We can take almost any method for weak supervision with image labels,
and convert it to a method for volumetric supervision, using the volumetric loss functions
introduced in chapter 3, assuming that a dataset with object sizes, in addition to image
level tags, is available. In this chapter, we show how four recent methods [133, 6, 17, 22]
for weakly supervised semantic segmentation with image level labels can be converted to
weak volumetric supervision methods.

4.1 Joint Learning of Saliency Detection and Weakly
Supervised Semantic Segmentation

The paper [133] proposes a unified multitask learning framework to jointly solve Weakly
Supervised Semantic Segmentation and Saliency Detection using a single network. This
method is called Saliency and Segmentation Network (SSNet) [133]. SSNet consists of two
parts: Segmentation Network (SN) and Saliency Aggregation Module (SAM) [133]. For
an input image, SN generates segmentation results and SAM predicts the saliency of each
category.

We first describe [133] in section 4.1.1, and then describe how we incorporate volumetric
loss in section 4.1.2.
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4.1.1 Method Description

Saliency Detection (SD) identifies the important objects in an image [133]. Given the
advances of CNNs this method has been heavily used for both saliency detection and
semantic segmentation. Both these tasks involve generating pixel level masks, and thus
have close connections. As the name suggests, this paper depends heavily on Saliency
Maps.

Saliency Maps

Given an image, the Saliency Map of that image are the regions that gets noticed first.
Saliency Segmentation is the process of identifying objects in an image as either being
part of the background or the foreground [134]. Therefore the pixels in an image have two
labels: background and foreground. Figure 4.1 shows the four images and their correspond-
ing Saliency Segmentations. Black corresponds to background, and white corresponds to
foreground [131]. It is a lot simpler and computationally cheaper to obtain a dataset of
Saliency images compared to pixel level segmentation annotations. The first WSSS method
[133] below heavily depends on Saliency Segmentation in creating a WSSS method.

Semantic segmentation and saliency detection both use CNN and both involve gen-
erating pixel level labels. Given a segmented output, the salient map can be derived by
selecting objects as foreground, and the remaining pixel assumed to be background. The
sliency map can be used to reduce the computational load of generating semantic segmen-
tation of an image. A very common approach is to use CAMs to find the objects in an
image, and SD to find the background.

Most WSSS methods use the results from pretrained SD models as a preprocessing
step to create annotations for the WSSS models. However, these methods over look the
connection between WSSS and SD, preventing them from fully exploiting segmentation
cues of saliency annotations. This paper takes this interaction into account to create an
end to end method to solve both WSSS and SD jointly [133].

Figure 4.2 shows the comparison between a WSSS method using only image level an-
notation versus the method proposed in the paper [133]. The method uses pixel level
saliency information with image level category labels. Image level information help a CNN
recognize semantic categories, but in terms of spatial distribution, the inference is coarse.
Figure 4.2 (b) shows the output of using just image level annotation. As previously men-
tioned the proposed network SSNet is made up of two components, segmentation network
(SN) and saliency aggregation module (SAM). Given an input image, SN generates the
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Figure 4.1: Saliency Segmentation. Black corresponds to background, and white corre-
sponds to foreground

segmentation, shown in 4.2 (b). SAM predicts a saliency score for each semantic class
and aggregates the segmentation map into a single channel saliency map according to the
saliency score of each class, as shown in 4.2 (d). They both combine to give the result in
4.2 (c).

There are two variations of SSNet: SSNet-1, and SSNet-2 [133]. SSNet-1 is trained
with pixel level saliency and image level annotation. SSNet-2 is trained with pixel level
saliency, image level annotation and semantic segmentation results from SSNet-1. For the
purposes of this thesis, we only focus on SSNet-1.

Figure 4.3 shows an overview of SSNet-1. Both the SN and the SAM are highlighted.
The SN consists of a feature extractor to extract features from the input image and several
convolution layers to predict segmentation results given the features. The SN follows the
VGG-16 architecture, with 5 convolution layers. The fully connected classifier is removed
and the convolution blocks are used as a feature extractor. To obtain larger feature maps,
the down sampling operator is removed from the last two convolution blocks and dilated
convolution is used to retain the original receptive field. The feature extractor generates
feature maps of 1/8 the input image size. Thus the input images are resized to 256 * 256,
so the resulted feature maps are 32 % 32 in size [133].
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Figure 4.2: (a) input image. (b) segmentation results predicted by the model trained with
only image-level labels. (c) segmentation results predicted by paper. (d) saliency map
predicted paper [133]

A 1 x 1 convolution layer is used for generating segmentation results. The predicted
C-channel segmentation map and one channel background map are 1/8 the input image
size, in which C is the number of semantic classes. Each element of the segmentation map
and background map is a value in [0, 1]. The values of all classes sum to 1 for each pixel.
Then the segmentation results are upsampled by a deconvolution layer to the input image
size.

SAM takes the 32%32 outputs F of the feature extractor, and generates a C-dimensional
vector v with a 32%32 convolution layer and a sigmoid function, of which each element v; is
the saliency score of the i-th category. Then the saliency map S is given by a weighted sum
of the segmentation masks of all classes, where H; is the i-th channel of the segmentation
results:

S=> v-H (4.1)

Training is done using two datasets [133]:

1. Saliency Dataset D, = (X", Y™)Y* where X" is the image and Y™ is the ground
truth, where each element is either 1 or 0 corresponding to salient object or back-

ground respectively

2. Segmentation Dataset D, = (X, t")" where X™ is the image and " is the one hot
encoding of the categories of the image.

As mentioned, for an input image, SN generates the segmentation results. The prob-
ability of each category can be derived by averaging the segmentation results over spatial
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Figure 4.3: The proposed method trained with (a) images annotated with category labels
and (b) images with saliency ground-truth. For an input image, the segmentation network
generates a (c) segmentation results, of which the average over spatial locations indicates
(d) the probability of each category. The saliency aggregation module predicts (e) saliency
score of each category to aggregate segmentation masks of all categories into a (g) saliency
map. In the first training stage, the network is trained with the (h) category labels and (i)
saliency ground truth [133]

locations. This loss, denoted as L. is defined as:

N, c
1 c " n n n
L,= _Fc [ E trlogt! + (1 —t1)log(1 — t1)], (4.2)

n=1 i=i

in which:

e {7 is the i-th element of t". ¢} is either 1 or 0, representing image X" containing the
t-th category or not, respectively.

e " is the average over spatial positions of the segmentation maps H" of image X",
of which each element ¢ € [0, 1] represents the predicted probability of the i-th class
objects existing in the image.

This equation allows to recognize semantic categories. Spatial information is discovered
using pixel level saliency data. SAM generates saliency score of each category. A loss
function is used so that the segmentation network has to precisely cut the recognized
objects to make the derived saliency maps match the ground-truth. This loss, denoted as
L, between the derived saliency maps and ground truth is defined as:
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1 &

La=—% > D umlog sy, + (1—yh)log(1 - s7)], (4.3)

n=1 m

in which:

e y" is the value of the m-th pixel of the saliency ground truth Y. y € [0, 1]

e s is the value of the m-th pixel in the saliency map of image Y. s € [0, 1]

SSNet-1 is trained with the two losses defined above. A trained SSNet-1 is run on the
classification dataset to obtain C + 1 channel segmentation results [133]. (C + 1 is the
number of segmentation classes, and the background). The channels are cross multiplied
with the one hot class label t" to suppress wrong predictions and refined CRF to enhance
smoothness [133].

4.1.2 Adapting for Volumetric Supervision

The method in [133] is straightforward to adapt for volumetric supervision. The net-
work used in [133], see figure 4.3, produces semantic segmentation output to which we
can directly apply our volumetric loss functions developed in Chapter 3. In particular,
the network produces output ¢, see the upper right branch in figure 4.3, where ¢! is the
probability of pixel p to be of class 7. Thus, as described in chapter 3, we can approximate
the size of class i by averaging ¢! over all image pixels p, obtaining the size estimate t;.

The original method uses the sum of two losses L. and L, in SSNet-1. These losses are
used to optimize the model. To implement volumetric loss, at each iteration, we calculate
the value of the volumetric loss function using t; and the size of the objects using the
methods described in chapter 3. The result is then added to the two original losses L. and
Lg;. The method now uses this updated loss value to optimize the model.

Finally, we add an additional loss function which is not related to the size of an object.
This component we add to the overall loss is for classes that are not present in the image,
penalizing any pixel p that is assigned to that class. We call this Negative Loss, as it
penalizes any pixel which is assigned to some class not present in the image. This loss is
defined as:

Ln(t) =) > wil-log(l —# + )], (4.4)

p=1 i=1
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where epsilon is a small constant for numerical stability, (in practice we use e = 179), the
output ¥ is the prediction from the network run through softmax and y; is 0 if the class
i is present and 1 otherwise. This loss function is used in conjunction to one of the two
volumetric loss functions described in chapter 3.

Notice the difference and similarities of our negative loss to the loss in Eq. 4.2. For
classes not present in the image, the loss function in Eq. 4.2 penalizes any pixels assigned
to that class. However, the penalty in Eq. 4.2 works on the image level. That is, for
any class ¢ not present in the image, the network first averages predictions for that class
in variable tZ‘, and then calculates a penalty. Thus, it is still possible to predict a small
number of pixels that may belong to the class not present in the image, since predictions
are averaged over the whole image. Our negative loss is pixel precise, meaning any pixel
assigned to the class not present in the image incurs a loss, without averaging predictions
over the whole network first. Results of this method with Volumetric Supervision is shown
in chapter 5.3.1.

4.2 Single Stage Semantic Segmentation from Image
Labels

This paper [0] performs WSSS in a single stage by exploring three properties of a WSSS
method: local consistency, semantic fidelity, and completeness [6]. Using these properties as
guidelines, this paper develops a segmentation-based network model and a self-supervised
training scheme to train for semantic masks from image level annotations in a single stage.

We first describe [0] in section 4.2.1, and then describe how we incorporate volumetric
loss in section 4.2.2.

4.2.1 Method Description

Weakly supervised segmentation from image labels is more challenging compared to other
weakly supervised methods such as bounding boxes and scribbles because of the complete
lack of localization cues. Attention mechanisms, such Class Activation Maps (CAM) [137]
are used as they offer a partial solution. CAMs localise the most important regions in the
image using a pretrained classification network.

Figure 4.4 shows the three properties and short comings of most WSSS [6]:
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1. Local Consistency. Two areas in close proximity with similar appearance maybe
assigned different classes. Thus local consistency implies that neighbouring pixels
with similar appearance share the same label.

2. Completeness. Attention maps like CAMs often do not cover the whole extent of the
object. Completeness means that model identifies all visible class occurrences in the
image

3. Semantic Fidelity. While the area of the attention maps dominates for the correct
object class, parts of the map may still be mislabelled i.e., are semantically inaccurate.
Semantic fidelity is exhibited by models producing segmentation masks that allow
for reliable classification decisions

[

incomplete

semantically inaccurate

Figure 4.4: Typical shortcomings of attention maps (left) vs. pixel level annotations (right).
Three defining properties of segmentation: local consistency, completeness and semantic

fidelity [0]

Since classification requires only sufficient evidence, CAMs ensure neither completeness
nor local consistency [0]. Using these properties, the paper proposes a model that signifi-
cantly outperforms CAMs in terms of segmentation accuracy. First there is a normalized
global weighted pooling, for computing classification scores and allowing concurring train-
ing for segmentation task. Secondly a Pixel adaptive mask refinement was implemented
to make sure masks heed appearance cues. Finally, the paper introduces Stochastic Gate
that counters the compounding effect of inaccuracies in the pseudo masks. Stochastic gate
mixes feature representations with varying field sizes.

Figure 4.5 shows the model architecture. The method follows the established design of
a fully convolutional segmentation with a softmax and skip layers. The figure also shows
the three new additions [0]:
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1. New class aggregation function
2. Pixel Adaptive mask refinement module

3. Stochastic gate

Score Semantic

Skip Connection Maps Masks

softmax

-

L
cseg

Stochastic Gate

Lcls

Figure 4.5: Model Overview [0]

The purpose of the class aggregation function is to provide semantic fidelity. This
function leverages segmentation masks for classification decisions. To address this, the
paper proposes normalized Global Weighted Pooling (nGWP) [6]. nGWP utilizes pixel
level confidence predictions for relative weighting of the corresponding classification scores.
Additionally focal mask penalty is incorporated into the classification scores to ensure
completeness.

Pixel Adaptive Mask Refinement (PAMR) [0] is used to comply with local consistency,
which revises the coarse mask predictions with respect to appearance cues.

Stochastic Gate (SG) [0] is the final component. Masks from PAMR might contain
deviations from the ground truth and supervised learning can further compound these
errors and overfit. SG combines deep feature representation responsible for this event with
more robust but less expressive shallow features in a stochastic way.

4.2.2 Adapting for Volumetric Supervision

This method is also straightforward to adapt to volumetric supervision. The model in
Figure 4.5 outputs per-pixel class prediction x. Their per-pixel class predictions are passed
through a softmax layer, which normalizes prediction for each pixel over the possible classes
to be between 0 and 1. This produces the normalized (between 0 and 1) class predictions
t. Then we compute ; for each class i and apply volumetric loss functions as described in
chapter 3.
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The original method uses one loss L. to optimize the model. To implement volumetric
loss, at each epoch, we calculate the value of the volumetric loss function using the score
maps and the size of objects using the methods described in chapter 3. The result is then
added to the original loss L.s. The method now uses the updated loss value to optimize
the model.

Similar to the previous method, we add Negative Loss, Eq. 4.4 to the overall loss.
Results of this method with Volumetric Supervision is shown in chapter 5.3.2.

4.3 Weakly Supervised Semantic Segmentation via Sub-

category
CAMs [137] are most responsive to the most discriminative parts of an object. Chang et
al. [17] focuses on enforcing the network to pay attention to other parts of an object and

thus improving the quality of the response maps. This enforcement is done by performing
clustering on image features to generate pseudo sub-categories labels within each anno-
tated parent class, and construct a sub-category objective to assign the network to a more
challenging task [17]. By iteratively clustering image features, the training process does
not limit itself to the most discriminative object parts, hence improving the quality of the
response maps [17].

We first describe [17] in section 4.3.1, and then describe how we incorporate volumetric
loss in section 4.3.2.

4.3.1 Method Description

The two previous methods we discussed in sections 4.1 and 4.2 were single stage methods.
The method of Change et al. consists of two main stages, first constructing pseudo ground
truth, and then training a standard semantic network using the pseudo ground truth
instead of ground truth.

This method [17] focuses on the first step, improving the quality of the constructed
pseudo-ground truth. Currently CAMs [137] are used for initial localization of a class.
However because CAMs are trained with classification, rather than localization objective,
they tend to focus on the most discriminative part of the object instead of localizing the
entire thing. This leads to poor accuracy for the pseudo-ground truth. Thus Chang et
al. proposes an unsupervised method for the network to learn better representations by
discovering subcategories [17]. They accomplish this in two steps:

66



1. Perform clustering on image features of the parent class, i.e., the actual classes present
in the dataset

2. Use clustering from each image as pseudo labels to optimize the subcategory objective

The method starts with a baseline mode achieved using CAMs [137]. As previously
mentioned, CAMs only highlight the important parts of an image, which is not sufficient for
semantic segmentation. This issue is addressed using the subcategory learning to discover
more object parts.

For each parent class, K subcategories are determined by using KMeans clustering [17].
Each image is assigned a pseudo label, which is the index of the subcategory. Then a sub-
category object is created to jointly train the network. By iteratively upgrading the feature
extractor, classifiers and subcategory pseudo labels, the enhanced feature representation
leads to better response maps that cover more complete regions of the object [17].

The method uses CAM to generate an initial response. Chang et al. uses a typical
network: first convolution layers for feature extraction, followed by global average pooling
and finally a fully connected layer producing the output. For each parent class P. there are
K subcategories s*, where k = {1,2,3,..., K}. Each image I has parent label Yy in {0,1}
where ¢ corresponds to the list of classes. The subcategory for each category c is denoted
as Yo% in {0,1}. The parent class has a classifier H, and a classification loss L,. The
subcategory class has classifier H, with parameters 6, and a standard multi classification
loss Ly with a larger label space Y;. The objective is to learn H, while sharing the same
features with H,.

Since there is no ground truth label for subcategory objective loss, these are generated
using unsupervised clustering. The clustering for each class c is:

1

. . c 2
min ~z > min|f = TV, (4.5)

where:
e T'is a D x K centroid matrix
e N¢is the number of images with class ¢
e f is the extracted feature

e Y for each image is the subcategory pseudo label for optimizing L,
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After getting the subcategory labels Y, the feature representations and the two classi-
fiers are jointly optimized in the following equation:

1 N

g}HEﬁZLP(HP(ﬁ%Sfp) + ALS(HS(f’L>7YS)7 (46)

i=1

where:

e N Number of images

e )\ is the weight to balance the two functions

The parent classifier learns the feature space through supervised training, and the the
subcategory provides more gradients to enhance feature representations. Figure 4.6 shows
the entire model architecture. Resnet 38 is used as the backbone to generate the activation
maps [17]. First the input image features are extracted. Then unsupervised clustering is
performed on the features to get the subcategory pseudo labels Y,. Next joint training
is done to optimize both parent and subcategory classifier. Finally, iteratively perform-
ing unsupervised clustering and pseudo training the classification module, the optimized
classification network is used to produce the final activation map.

Parent Class P Parent Class Label Y
’ Classification Module

e Sub-category 5% Sub-category
fray Pseudo Label Y Parent
XX P Classifier H,
/ VXXXX --- /X] T

" A cAM

[ - Clustering 7/ 0 — .
=S BN Feature W | y - _.-” //I e
Extractor | [xxxxx X Shared
£ e LT XIX 3| ‘ [
/‘ Image Feature / ‘
! g J"
Feature Space ot B =
i' . " Sub-category
B Classifier H, o
Input Image | Activation Map
Re-training M

Figure 4.6: Model architecture [17]

4.3.2 Adapting for Volumetric Supervision

The model, shown in figure 4.6, shows two feature extractors outputting to the parent
classifier, H, and the sub-category classifier H;. The outputs of both these classifiers are

68



used to calculate the respective losses L, and L. For the purposes of this thesis we only
use the output of the parent classifier. Taking first the softmax and then the mean of the
output of H, gives us the average over spatial positions of the segmentation map of each
image. This is denoted as t; which is used in the volumetric functions in chapter 3.

The original method uses the sum of the two losses L, and L, to optimize the model.
To implement volumetric loss, at each epoch we calculate the value of the volumetric loss
function using the output of the parent classifier H, and the size of objects using the
methods described in chapter 3. The result is then added to the sum of the two original
losses L, and L,. The method now uses the updated loss value to optimize the model.

Similar to the previous methods, we add Negative Loss, Eq. 4.4 to the overall loss.
As mentioned, this method has two stages, constructing pseudo ground truths, and then
training a standard semantic network using the pseudo ground truth instead of ground
truth. In this thesis, we only evaluate the first stage of the method in [17], namely the
accuracy of the pseudo ground truth constructed. We do not proceed to the second stage,
training on the pseudo-ground truth. This is because the more accurate is the pseudo
ground truth, the more accurate the final results (those of the second stage) will be. Thus,
it is sufficient to evaluate if we can obtain more accurate pseudo ground truths. Results of
this method with Volumetric Supervision is shown in chapter 5.3.3.

4.4 Weakly Supervised Semantic Segmentation with
Boundary Exploration

This paper [22] proposed a network called BENet to explore the idea of using object
boundaries in WSSS. The approach is based on the idea of explicitly exploring object
boundaries from training images to keep coincidence of segmentation and boundaries [22].
Boundary annotations are created by exploiting coarse localization maps obtained from
CNN classifier, and annotations are used to train BENet which further excavates more
object boundaries to provide constraints for segmentation [22]. The pseudo annotations
generated are used to train an off the shelf segmentation model.

We first describe [22] in section 4.4.1, and then describe how we incorporate volumetric
loss in section 4.4.2.
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4.4.1 Method Description

Similar to the previous method [17], this method [22] consists of two main stages, first
constructing pseudo ground truth, and then training a standard semantic network using
the pseudo ground truths instead of ground truths.

Classification requires translational invariance. But semantic segmentation requires
translational variance, that is it should be sensitive to the position of the class of interest
in the image [22]. CAMs are proposed to overcome this difference by using a global
average pooling [137]. However, CAMs activate the more important regions and thus obtain
incomplete segmentation results. Most methods thus focus on getting better foreground
regions, instead of focusing on an objects boundaries.

Object boundaries are essential to segmentation performance, but is difficult to detect
without proper annotations. This paper proposes boundary exploration based segmenta-
tion (BES) [22]. BES is done in three steps. First a simple scheme is used to obtain a small
amount of boundary labels by filtering localization maps. Second, BENet [22] trained by
synthetic boundary labels is designed to explore more object boundaries. Finally, mas-
sive explored boundary information is used to provide constraints for localization maps
propagation.

Figure 4.7 shows the model architecture of BENet. The figure highlights the two key
components: Boundary Exploration and Attention pooling CAM.

First coarse localization maps are obtained through the attention-pooling CAM. Attention-
pooling CAM is an improved CAM mechanism to obtain better initial object localization
maps. Fully convolutional network (FCN) architecture of CAM is used to capture ob-
ject’s spatial information. The only modification is changing the calculation for obtaining
classification scores by applying attention pooling which can dynamically assign different
weights per pixels.

Boundary labels are synthesized to train BENet which is able to excavate more object
boundaries [22]. Boundary exploration targets to predict precise boundary maps with
the original training images as input. Boundary labels are manually synthesized from
localization maps and used to train BENet to predict boundaries [22]. The boundary
classification ability of BENet helps to explore massive boundaries which are then used for
revising localization maps [22].

Finally, semantic segmentation is generated by applying predicted boundary informa-
tion to revise localization maps [22].
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Figure 4.7: Model architecture[22]

4.4.2 Adapting for Volumetric Supervision

The output of BNet as shown in figure 4.7 is used to calculate the losses. Similar to the
previous methods, taking first the softmax of the output and then the mean gives us the
average over spatial positions of the segmentation map of each image. This average is
denoted as ¢; which is used in the volumetric functions in chapter 3.

The original method uses one loss Lg to optimize the model. To implement volumetric
loss, at each epoch we calculate the value of the volumetric loss function using the output
of BNet and the size of objects using the methods described in chapter 3. The result is then
added to the original loss L. The method now uses the updated loss value to optimize
the model.

Similar to the previous methods, we add Negative Loss, Eq. 4.4 to the overall loss.
Similar to the previous method [17], there are two stages, and in this thesis, we only
evaluate the first stage of the method in [22], namely the accuracy of the pseudo ground
truth constructed. We do not proceed to the second stage, training on the pseudo ground
truth. This is because the more accurate the pseudo ground truth, the more accurate the
final results (those of the second stage) will be. Thus, it is sufficient to evaluate if we
can obtain more accurate pseudo ground truths. Results of this method with Volumetric
Supervision is shown in chapter 5.3.4.
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Chapter 5

Experimental Evaluation

In this section, we evaluate our volumetric loss supervision using the four methods discussed
in Chapter 4. Since currently, there is no real dataset with volumetric annotations collected
from the users, we first create a simulated dataset with volumetric annotation from the
most commonly used benchmark for semantics segmentation, the Pascal VOC 2012 dataset
[36, 35, 34]. The creation of the simulated dataset is outlined in section 5.1. Next, in
section 5.2, we discuss our main evaluation measure, mean over intersection (mIOU). In
section 5.3, we discuss the results for the Quadratic loss and Outside Quadratic loss. In
section 5.4, we measure the performance of our methods assuming there is error in user
annotation. Finally, in section 5.5, we develop a method for estimating class sizes directly
from image-level annotations, without asking user to provide volumetric annotations.

5.1 Semantic Segmentation Dataset with Volumetric
Annotation

We propose a new type of weakly supervised semantic segmentation, namely volumetric
supervision. For volumetric supervision, one needs not only the object classes present in
the image, but also a rough size of each object class. Currently, there is no real dataset
with volumetric information for semantic segmentation available. Therefore, we simulate
a dataset with volumetric information from an already existing semantic segmentation
dataset with full ground truth available. We use the most common such dataset, namely
the Pascal Visual Object Class (VOC) 2012 dataset [30, 35, 31]. We use the full ground
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truth just to construct a simulated volumetric annotations. We do not use full ground
truth when training our weakly supervised methods.

5.1.1 Pascal VOC 2012 Dataset

The Pascal Visual Object Class (VOC) Challenge 2012 is an image recognition challenge
that has run since 2005. The main goal is to recognize objects from a number of classes.
The challenge is a supervised learning problem. There are twenty object classes. These
classes are grouped into four categories [30, 35, 34]:

1. Person: person
2. Animal: bird, cat, cow, dog, horse, sheep
3. Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

4. Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

There are three main object recognition competitions: classification/detection, segmen-
tation and action classification [30, 35, 34]. For this thesis we focus on segmentation.

Table 5.1 shows the break down of images for training and validation for Pascal VOC
2012 dataset [30, 35, 34]. The dataset contains 20 classes, plus one extra for background.
Label 255 is also used as void label. Void labels are ignored during training and testing.
Void pixels are pixels that are difficult to annotate correctly. There are 1464 training
images with 3507 objects and 1449 validation images with 3422 objects [30, 35, 34]. Figure
5.2 shows an example image and its respective segmented ground truth.

5.1.2 Pascal VOC 2012 Augmented Dataset

In accordance with all the WSSS methods, we augment the dataset with additional images
from the Semantic Boundaries Dataset (SBD) [16]. SBD was created for the task of
predicting semantic contours rather than semantic segmentation. SBD has 11355 image
annotations [16]. There are 8498 training images, and 2857 validation images [16]. These
images are from the Pascal VOC 2011 dataset, for the 20 classes. Table 5.3 shows the
breakdown of the number of objects in images per class for both training and validation
for the Semantic Boundaries Dataset.
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train val trainval
img obj img obj img obj

Aeroplane 88 108 90 110 178 218
Bicycle 65 94 79 103 144 197
Bird 105 137 103 140 208 277

Boat 8 124 72 108 150 232
Bottle 87 195 96 162 183 357

Bus ™ 121 74 116 152 237

Car 128 209 127 249 255 458

Cat 131 154 119 132 250 286

Chair 148 303 123 245 271 548

Cow 64 152 71 132 135 284
Diningtable 82 86 75 82 157 168
Dog 121 149 128 150 249 299

Horse 68 100 79 104 147 204
Motorbike 81 101 76 103 157 204
Person 442 868 445 865 887 1733
Pottedplant 82 151 8 171 167 322
Sheep 63 155 57 153 120 308
Sofa 93 103 90 106 183 209

Train 83 96 84 93 167 189
Tvmonitor 84 101 74 98 158 199
Total 1464 3507 1449 3422 2913 6929

Figure 5.1: Table showing the breakdown of total images and images per class for segmen-
tation task in the Pascal VOC 2012 dataset [30, 35, 3]

5.1.3 Train and Validation split

Following common practises in [133, 6, 17, 22], the original Pascal VOC training set is
augmented with images from SBD. In total there are 10582 images used for training. Only
image level labels are used. For validation, 1449 images from the Pascal VOC validation list
are used. Volumetric annotation is created for each image for both training and validation
sets.

5.1.4 Volumetric Annotations

We simulate volumetric user annotations as follows. First, for each image and for each class
present in the image, we compute the number of pixels of that class present in the image,
and normalize by the image size. Since we do not expect users to be able to give us precise
object size, we then simulate imprecise user input by quantizing the size information into
ten equally space buckets. Bucket i, for 1 < ¢ < 10 contains objects with size between
(1 —1) % 10% and i * 10% of the image size. If the object falls into bucket i, then its size is
approximated by ¢ x 10% of the image size.
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a. b.

Figure 5.2: Segmentation dataset example. Image (a) is the training image. Image (b)
is the segmentation ground truth showing the different classes: car, horse and person.
Background is in black. The cream color represents 255 or void label [36, 35, 34]

Background|AeropIane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Diningtable Dog Horse Motorbike Person Pottedplant Sheep Sofa Train Tvmonitor| Total |
train 8498 458 402 595 367 542 330 871 797 822 222 396 923 352 384 3014 393 251 272 297 430 20616
val 2857 173 124 165 123 158 91 174 278 284 80 138 328 127 132 1024 127 74 134 145 140 6876
trainval 11355 631 526 760 490 700 421 1145 1075 1106 302 534 1251 479 516 4038 520 325 507 542 570 27793

Figure 5.3: Table showing the breakdown of objects in images per class for both training
and validation for the Semantic Boundaries Dataset

5.2 mean Intersection over Union (mloU)

Before moving to the results section, we introduce the metric used to measure the perfor-
mance of the methods. The performance of a semantic segmentation models on the Pascal
VOC 2012 dataset are measured by mean Intersection over Union (mloU) [99]. mloU is
calculated by first getting the Intersection over Union (IoU) for each of the 20 classes at a
pixel level [56]. The equation to calculate IoU is as follows:

< 100% — overlap

ToU = —»
¢ T,+ F,+ F, union ’

(5.1)

where:

e T, stands for true positive. These are correctly predicted pixels that belong to the
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class

e [, stands for false negative. These are incorrectly predicted pixels that belong to
the class

e [, stands for false positive. These are pixels that do not belong to the class but are
predicted as in the class

Figure 5.4 shows the original image and the ground truth of segmentation result in the first
two images respectively. The third image is the segmentation generated by the model. The
difference between the ground truth and prediction is shown in the fourth image, which
represents the three components of IoU. is T),, Green is F), and Red is F, [51].

Predicted

Expected Difference

Origin

Figure 5.4: The input image, ground truth and model segmentation prediction. Difference
between the ground truth and prediction is the last image. is T,, Green is F,, and

Red is F), [51]

Figure 5.5 shows the visual results of IoU. When IoU is 0, it means the ground truth
and prediction have no overlap. IoU of 1 means the ground truth and prediction perfectly
overlap each other. ToU of % means only a 7" of the prediction matches the ground truth.
Once we have the IoU of all the 20 classes, the mean of all these values are taken and
reported as the mIoU. mloU is a value from 0 to 100. The higher the value, the more
accurate the segmentation.

IoU=0 IoU=1/7 IoU=1

Figure 5.5: Visual representation of IoU in terms of ground truth and prediction [107]
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5.3 Results for Quadratic loss and Outside Quadratic
loss

In this section, we perform two experiments using the Volumetric Annotations described
in section 5.1.4. We perform the tests using both Quadratic Volumetric Loss and
Outside Quadratic Volumetric Loss. For Outside Quadratic Volumetric Loss, the
endpoints a and b are the endpoints of the volumetric annotation buckets. The result for
all four methods [133, 6, 17, 22] are shown below in terms of both mIoU and visually. For
each test we also show the IoU of each individual classes.

5.3.1 Joint Saliency and Semantic Segmentation

The mloU result of method [133] is 0.5420. Table 5.1 shows the mloU values of using
Quadratic Volumetric Loss and Outside Quadratic Volumetric Loss with Volumetric An-
notations on Joint Learning of Saliency Detection and Weakly Supervised Semantic Seg-
mentation. For these two trials the individual class IoU as well as the original class ToU
are shown in table 5.2. Figure 5.6 shows the visual results of using Quadratic Volumetric
Loss and Outside Quadratic Volumetric Loss with Volumetric Annotations. For an input
image, we show its ground truth, the results without using Volumetric Loss and the results

of QVL and OQVL.

mloU
Original 0.5420
Quadratic Volumetric Loss 0.6098
Outside Quadratic Volumetric Loss | 0.5979

Table 5.1: mloU results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Joint Learning of Saliency Detection and
Weakly Supervised Semantic Segmentation.
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Original

Figure 5.6: Visual results of using Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss with Volumetric Annotations on Joint Learning of Saliency Detection and
Weakly Supervised Semantic Segmentation. For an input image, we show its ground truth,
the results without using Volumetric Loss and the results of QVL and OQVL
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IoU
Class Original | QVL OQVL
Background 0.8866 0.9330  0.9211
Aeroplane 0.6660 0.7324  0.7205
Bicycle 0.3183 0.3674  0.3555
Bird 0.7019 0.7619  0.7500
Boat 0.5554 0.6302  0.6183
Bottle 0.6165 0.6590  0.6471
Bus 0.6885 0.7621  0.7502
Car 0.6123 0.6900  0.6781
Cat 0.7162 0.7860  0.7741
Chair 0.1306 0.1890  0.1771
Cow 0.5493 0.6474  0.6355
Dinningtable 0.2045 0.2572  0.2453
Dog 0.6706 0.7478  0.7359
Horse 0.5476 0.6308  0.6189
Motorbike 0.5851 0.6448  0.6329
Person 0.6732 0.7292  0.7173
Pottedplant 0.3419 0.4076  0.3957
Sheep 0.5872 0.6587  0.6468
Sofa 0.2671 0.3434  0.3315
Train 0.5682 0.6559  0.6440
Tv/monitor 0.4951 0.5730  0.5611
mloU 0.5420 0.6098 0.5979

Table 5.2: ToU for each individual class for Original, Quadratic Volumetric Loss and Out-
side Quadratic Volumetric Loss with Volumetric Annotations on Joint Learning of Saliency
Detection and Weakly Supervised Semantic Segmentation

As we see from the results of the first experiment, introducing volumetric supervision
with QVL has significantly increased performance, with an increase in mloU of 6.78 %.
Looking at the individual IoU of each of the class for the first experiment, we can see overall
all the classes benefit from volumetric supervision, some more than others. Classes such as
Cow, Train, Horse and Tv/monitor all show over 8% increase in mIoU, while others such
as Bottle or Person show increases that are slightly less than the mean.

Using OQVL has resulted in a 5.59% increase in mloU. This too has increased the
performance of the method, although by not as big of a margin as the first loss. This
observation is also evident in the IoU for each of the individual classes. The results from the
first two experiments also show that Quadratic Volumetric Loss (QVL) performs slightly
better than Outside Quadratic Volumetric Loss (OQVL).

This is somewhat against our expectations, as we expected Outside Quadratic loss to
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perform better, as it has no penalty if object class falls into the correct size bin. The reason
might be that Quadratic loss may be easier to optimize, given that it is smooth and has
nonzero gradient almost everywhere, unlike the Outside Quadratic loss, which has a large
stretch of zero gradient.

Visually in figure 5.6, the results of Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss are quite similar. Compared to the original method, with volumetric
supervision, there are much fewer pixels being assigned to classes not present in the image.

5.3.2 Single Stage Semantic Segmentation

The mloU result of method [0] is 0.5818. Table 5.3 shows the mloU values of using
Quadratic Volumetric Loss and Outside Quadratic Volumetric Loss with Volumetric An-
notations on Single Stage Semantic Segmentation from Image Labels. For these two trials
the individual class IoU as well as the original class IoU are shown in table 5.4. Figure
5.7 shows the visual results of using Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss with Volumetric Annotations. For an input image, we show its ground
truth, the results without using Volumetric Loss and the results of QVL and OQVL.

mloU
Original 0.5818
Quadratic Volumetric Loss 0.6114
Outside Quadratic Volumetric Loss | 0.6008

Table 5.3: mloU results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Single Stage Semantic Segmentation from
Image Labels

As we see from the results of the first experiment, introducing volumetric supervision
with QVL increases performance, although not as much as the previous method [133]. The
first experiment resulted in an increase in mIoU of 2.96 %. Looking at the individual IoU
of each of the class for the first experiment, we can see that not all the classes benefit from
volumetric supervision. Classes such as Aeroplane, Bicycle, Potted plant and Sofa show
great increase in mloU, while others such as Bird, Tv/monitor, Train, show a decrease in
individual IoU.

The second experiment using OQVL as the loss shows a slight decrease in mlou com-
pared to the first one. It still has a 1.9% increase in mloU over the original method.
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Individual class IoU follow the same pattern as the first experiment. However, the overall
results from the first two experiments match the pattern of the previous method and show
that QVL performs slightly better than OQVL. Visually, in figure 5.7 we can see that the
shape of objects tend to be more precise when the volumetric loss is used.

Image GT Original QVL oQvL
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Figure 5.7: Visual results of using Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss with Volumetric Annotations on Single Stage Semantic Segmentation
from Image Labels. For an input image, we show its ground truth, the results without
using Volumetric Loss and the results of QVL and OQVL
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IoU
Class Original | QVL OQVL
Background 0.8621 0.8691  0.8685
Aeroplane 0.6162 0.7045  0.6935
Bicycle 0.3417 0.4892  0.4785
Bird 0.6829 0.6448  0.6335
Boat 0.4562 0.4990  0.4885
Bottle 0.6113 0.5993  0.5885
Bus 0.7078 0.7721  0.7615
Car 0.6363 0.6597  0.6485
Cat 0.7626 0.7762  0.7655
Chair 0.2748 0.3434  0.3325
Cow 0.6112 0.6698  0.6585
Dinningtable 0.2757 0.3290  0.3185
Dog 0.7383 0.7640  0.7495
Horse 0.6272 0.6762  0.6655
Motorbike 0.6785 0.6175  0.6065
Person 0.6848 0.6632  0.6525
Pottedplant 0.4221 0.5067  0.4955
Sheep 0.6713 0.7319  0.7205
Sofa 0.3444 0.4693  0.4585
Train 0.7011 0.6472  0.6365
Tv/monitor 0.5120 0.4066 0.3955
mloU 0.5818 | 0.6114 0.6008

Table 5.4: ToU for each individual class for Original, Quadratic Volumetric Loss and Out-
side Quadratic Volumetric Loss with Volumetric Annotations on Single Stage Semantic
Segmentation from Image Labels

5.3.3 Semantic Segmentation via Sub-category

The mloU result of method [17] is 0.4977. Table 5.5 shows the mloU values of using
Quadratic Volumetric Loss and Outside Quadratic Volumetric Loss with Volumetric An-
notations on Single Stage Semantic Segmentation from Image Labels. For these two trials
the individual class IoU as well as the original class IoU are shown in table 5.6. Figure
5.8 shows the visual results of using Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss with Volumetric Annotations. For an input image, we show its ground
truth, the results without using Volumetric Loss and the results of QVL and OQVL.
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mloU

Original 0.4977
Quadratic Volumetric Loss 0.5138
Outside Quadratic Volumetric Loss | 0.5114

Table 5.5: mloU results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Weakly Supervised Semantic Segmentation
via Sub-category Exploration

As we see from the results, introducing volumetric supervision with QVL slightly in-
creases performance. The first experiment resulted in an increase in mIoU of 1.61%. Look-
ing at the individual IoU of each of the class for the first experiment, we can see that all
the classes benefit equally from volumetric supervision. Background, has had the biggest
increase in IoU, with over 5% increase.

The second experiment using OQVL as the loss shows a slight decrease in mIoU com-
pared to the first experiment. This loss still has a 1.37% increase in mloU over the original
method. Similar to the first experiment, all the classes benefit equally from the use of vol-
umetric supervision. The overall results from the first two experiments match the pattern
of previous methods and show QVL performs better than OQVL. Visually, from figure 5.8,
we can see that our method labels pixels with classes not present in the image less often,
compared to the original method.
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Figure 5.8: Visual results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Weakly Supervised Semantic Segmentation
via Sub-category Exploration. For an input image, we show its ground truth, the results
without using Volumetric Loss and the results of QVL and OQVL
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IoU
Class Original | QVL OQVL
Background 0.7521 0.8158  0.8134
Aeroplane 0.3632 0.3769  0.3745
Bicycle 0.2954 0.3091  0.3067
Bird 0.3813 0.3950  0.3926
Boat 0.3253 0.3390  0.3366
Bottle 0.5421 0.5558  0.5534
Bus 0.6773 0.6910  0.6886
Car 0.5301 0.5438  0.5414
Cat 0.6231 0.6368  0.6344
Chair 0.2767 0.2904  0.2880
Cow 0.5023 0.5160  0.5136
Dinningtable 0.4761 0.4898  0.4874
Dog 0.5717 0.5854  0.5830
Horse 0.5712 0.5849  0.5825
Motorbike 0.5853 0.5990  0.5966
Person 0.5212 0.5349  0.5325
Pottedplant 0.4132 0.4269  0.4245
Sheep 0.5509 0.5646  0.5622
Sofa 0.4901 0.5038  0.5014
Train 0.5305 0.5442  0.5418
Tv/monitor 0.4721 0.4858  0.4834
mloU 0.4977 0.5138 0.5114

Table 5.6: ToU for each individual class for Original, Quadratic Volumetric Loss and Out-
side Quadratic Volumetric Loss with Volumetric Annotations on Weakly Supervised Se-
mantic Segmentation via Sub-category Exploration

5.3.4 Semantic Segmentation with Boundary Exploration

The mloU result of method [22] is 0.6572. Table 5.7 shows the mloU values of using
Quadratic Volumetric Loss and Outside Quadratic Volumetric Loss with Volumetric An-
notations on Single Stage Semantic Segmentation from Image Labels. For these two trials
the individual class IoU as well as the original class IoU are shown in table 5.8. Figure
5.9 shows the visual results of using Quadratic Volumetric Loss and Outside Quadratic
Volumetric Loss with Volumetric Annotations. For an input image, we show its ground
truth, the results without using Volumetric Loss and the results of QVL and OQVL.
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mloU
Original 0.6572
Quadratic Volumetric Loss 0.6760
Outside Quadratic Volumetric Loss | 0.6678

Table 5.7: mloU results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Weakly Supervised Semantic Segmentation
with Boundary Exploration

As we see from the results of the first experiment, volumetric supervision with QVL
has increased performance. This loss resulted in an increase in mloU of 1.88%. Looking
at the individual IoU of each of the class for the first experiment, we can see that most
classes benefit from volumetric supervision. Classes such as Bottle, Bus, Car and Potted
plant saw a big increase in IoU, where as classes such as Chair, Cow and Sheep saw slight
increases. Some classes such as Dining table and Sofa saw a decrease in performance.

The second experiment using OQVL as the loss shows a slight decrease in mloU com-
pared to the first one. This loss still results in a 1.06% increase in mloU over the original
method. Individual class IoU do not follow the same pattern as the previous experiment.
Classes such as Boat, Cat, Dinning table, Sofa and Train performed better than the first
experiment. However, the overall results from the first two experiments match the pattern
of the previous methods and show that QVL performs slightly better than OQVL. Visually,
from figure 5.9, we can see that our method produces better object shapes, compared to
the original method.
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Figure 5.9: Visual results of using Quadratic Volumetric Loss and Outside Quadratic Vol-
umetric Loss with Volumetric Annotations on Weakly Supervised Semantic Segmentation
with Boundary Exploration. For an input image, we show its ground truth, the results
without using Volumetric Loss and the results of QVL and OQVL
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IoU

Class Original | QVL OQVL
Background 0.8711 0.8831  0.8814
Aeroplane 0.6601 0.6811  0.6738
Bicycle 0.3285 0.3504  0.3554
Bird 0.8047 0.8180  0.8147
Boat 0.5113 0.5143  0.5669
Bottle 0.5970 0.6384  0.6058
Bus 0.7861 0.8400  0.8120
Car 0.6737 0.7228  0.7199
Cat 0.8210 0.8123  0.8290
Chair 0.3669 0.3712  0.3714
Cow 0.8226 0.8273  0.8182
Dinningtable 0.5142 0.4465  0.4735
Dog 0.7773 0.8063  0.7630
Horse 0.7927 0.8210  0.8003
Motorbike 0.7511 0.7841  0.7283
Person 0.6796 0.7084  0.6957
Pottedplant 0.4876 0.5595  0.5196
Sheep 0.7936 0.7947  0.7738
Sofa 0.6187 0.6182  0.6212
Train 0.6068 0.6263  0.6422
Tv/monitor 0.5374 0.5722  0.5586
mloU 0.6572 0.6760 0.6678

Table 5.8: ToU for each individual class for Original, Quadratic Volumetric Loss and Out-
side Quadratic Volumetric Loss with Volumetric Annotations on Weakly Supervised Se-
mantic Segmentation with Boundary Exploration

Auxiliary Experiment

In this experiment we evaluate the effect of the negative loss in Eq. 4.4 on the performance
of our method. We evaluate the results with and without Negative loss for the modified
Joint Learning of Saliency Detection in section 4.1.2. For reference we use the results of
Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation [133].
The results are shown in table 5.9. Negative loss somewhat improves results, but as seen
from the table, most of the progress is achieved by incorporating volumetric loss.

Original Quadratic Volumetric Loss Outside Quadratic Volumetric Loss
Result | No Negative Loss | Negative Loss | No Negative Loss Negative Loss
mloU ] 0.5420 0.6010 0.6098 0.5854 0.5979

Table 5.9: Auxiliary Experiment to show the effectiveness of Negative Loss in Eq. 4.4
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5.4 Results with noise in user annotation

In this section, we test the sensitivity of our approach to human error in annotating sizes
of object classes. We repeat the experiments in section 5.3, but with some misslabeled
data, as explained below in section 5.4.1. In total, four tests are performed, two for each
loss functions.

5.4.1 Noise in Volumetric Annotations

To stimulate human error while annotating, we introduce noise in the Volumetric Annota-
tions. Two variations of annotation noise are introduced. The first is called Neighbouring
Bucket Error, while the second one is called Random Bucket Error.

For Neighbouring Bucket Error, we randomly place 5%, 10%, 15% and 20% of the classes
in a bucket neighbouring the correct bucket placement. This simulates the situation where
the user makes a size annotation error, but this error is actually not far from the correct
size bucket.

For Random Bucket Error, we randomly place 5%, 10%, 15% and 20% of the objects
in a randomly chosen bucket, excluding the correct bucket. This simulates an annotation
error when the user mislabels object size randomly, i.e., the mislabeled size is equally likely
to be any bucket, except the correct bucket.

5.4.2 Joint Saliency and Semantic Segmentation

For all the four tests, the mloU are shown in table 5.10. The left side of the table show
the results of placing 5%, 10%, 15% and 20% of the objects in a neighbouring bucket. For
comparison, we also show the results of placing 0%, i.e., placing all objects in their correct
bucket. These are the results of using QVL and OQVL from section 5.3.1. We also shows
the results of the original method, without the use of volumetric supervision.

The right side of the table is the same as its left counterpart, with the only difference
being that the objects are placed in a random bucket instead of its neighbouring bucket.
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Neighbouring Bucket Random Bucket

Noise Exp. | mIoU | Original mIoU Noise Exp. | mIoU | Original mIoU
0% | 0.6098 0% | 0.6098
5% | 0.5757 5% | 0.5338

QVL 10% | 0.5428 0.5420 QVL  10% | 0.4809 0.5420
15% | 0.4507 15% | 0.3888
20% | 0.3169 20% | 0.2423
0% | 0.5979 0% | 0.5979
5% | 0.5650 5% | 0.5031

OQVL 10% | 0.5222 0.5420 OQVL 10% | 0.4603 0.5420
15% | 0.4051 15% | 0.3432
20% | 0.2550 20% | 0.1804

Table 5.10: mloU results of the different noise experiments for Joint Learning of Saliency
Detection and Weakly Supervised Semantic Segmentation

For the four noisy experiments, we use the same dataset, with the only difference being
where and how many objects are misplaced. For the first experiment where we use QVL
and the objects are placed in a neighbouring bucket, we can see that when up to 10% of
objects are placed in the incorrect bucket, it still outperforms the original methods score.
When we change the loss function to OQVL, we see that the model becomes more sensitive
to incorrect object size annotations. The model gets outperformed by the original method
when more than 5% of objects are misplaced. This aligns with our previous findings
that QVL outperforms OQVL and that OQVL is more sensitive to incorrect volumetric
annotations than QVL.

For the third and fourth experiments, we repeat the previous experiments, but this
time the objects are misplaced randomly. We can see that regardless of the loss function
used, even when 5% of objects are places in random buckets, the model suffers greatly.
This shows that the method is highly sensitive when objects size annotations are randomly
incorrect, and we should try to ensure that volumetric annotations are done as precisely
as possible. Looking at the results of the individual scores for the two experiments, we can
see that Random Bucket QVL mloU scores are better than Random Bucket OQVL, which
aligns with our previous results that QVL does better than OQVL.
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5.4.3 Single Stage Semantic Segmentation

For all the four shift experiments the mloU are shown in table 5.11. The left side of the
table show the results of placing 5%, 10%, 15% and 20% of the objects in a neighbouring
bucket. For comparison, we also show the results of placing 0%, i.e., placing all objects in
their correct bucket. These are the results of using QVL and OQVL from section 5.3.2.
We also show the results of the original method, without the use of volumetric supervision.

The right side of the table is the same as its left counterpart, with the only difference
being that the objects are placed in a random bucket instead of its neighbouring bucket.

Neighbouring Bucket Random Bucket
Noise Exp. | mIoU \ Original mIoU Noise Exp. | mloU \ Original mIoU
0% | 0.6114 0% | 0.6114
5% | 0.5942 5% | 0.5836
QVL 10% | 0.5444 0.5818 QVL 10% | 0.5238 0.5818
15% | 0.4523 15% | 0.3917
20% | 0.3185 20% | 0.2439
0% | 0.6008 0% | 0.6008
5% | 0.5882 5% | 0.5773
OQVL 10% | 0.5338 0.5818 OQVL 10% | 0.5132 0.5818
15% | 0.4067 15% | 0.3461
20% | 0.2579 20% | 0.1833

Table 5.11: mloU results of the different noise experiments for Single Stage Semantic
Segmentation from Image Labels

For the four noisy experiments, we use the same dataset, with the only difference being
where and how many objects are misplaced. For the first and second experiments, where
we use QVL and OQVL respectively, and with the objects are placed in a neighbouring
bucket. For both we see that the model performs better than the original when up to 5%
of object are placed in neighbouring buckets, with QVL performing better than OQVL.
When 10% or more objects are misplaced, the results start to deteriorate.

For the third and fourth experiments, we repeat the previous experiments, but this
time the objects are misplaced randomly. For the third noise experiment, where QVL is
the loss used, the model outperforms the original when upto 5% of object are placed in
random buckets. The fourth noise experiment where we use OQVL, the model suffers,
even when 5% of objects are misplaced. These results show that the model is sensitive to
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size annotation mistakes when over 5% of objects are misplaced. This also confirms all the
previous findings that QVL outperforms OQVL.

5.4.4 Semantic Segmentation via Sub-category

For all the four noisy experiments the mloU are shown in table 5.12. The left side of the
table show the results of placing 5%, 10%, 15% and 20% of the objects in a neighbouring
bucket. For comparison, we also show the results of placing 0%, i.e., placing all objects in
their correct bucket. These are the results of using QVL and OQVL from section 5.3.3.
We also show the results of the original method, without the use of volumetric supervision.

The right side of the table is the same as its left counterpart, with the only difference
being that the objects are placed in a random bucket instead of its neighbouring bucket.

Neighbouring Bucket Random Bucket
Noise Exp. mloU ‘ Original mIoU Noise Exp. | mloU ‘ Original mIoU
0% | 0.5138 0% | 0.5138
5% | 0.4995 5% | 0.4961
QVL 10% | 0.4854 0.4977 QVL  10% | 0.4640 0.4977
15% | 0.4444 15% | 0.3761
20% | 0.3798 20% | 0.2981
0% | 0.5114 0% | 0.5114
5% | 0.4985 5% | 0.4937
OQVL 10% | 0.4692 0.4977 OQVL 10% | 0.4264 0.4977
15% | 0.3920 15% | 0.3547
20% | 0.3274 20% | 0.2209

Table 5.12: mlIoU results of the different noise experiments for Weakly Supervised Semantic
Segmentation via Sub-category Exploration

For the first and second noise experiments where we use QVL and OQVL respectively,
and with the objects are placed in a neighbouring bucket, the scores align with the previous
method. For both experiments we can see that the model outperforms the original when
upto 5% of object are placed in neighbouring buckets, with QVL performing better than
OQVL. When 10% or more objects are misplaced, the results start to deteriorate.

For the two experiments with random buckets, we repeat the previous experiments,
but this time the objects are misplaced randomly. We can see that regardless of the
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loss function used, even when 5% of objects are places in random buckets, the results
suffer. This shows that the method is sensitive when objects size annotations are randomly
incorrect, and we should try to ensure that volumetric annotations are done as precisely
as possible. Looking at the results of the individual scores for the four experiments, we
can see that the experiments using QVL generates mloU scores that are better than the
experiment using OQVL, which aligns with our previous results that QVL performs better
than OQVL.

5.4.5 Semantic Segmentation with Boundary Exploration

For all the four noisy experiments the mloU are shown in table 5.13. The left side of the
table show the results of placing 5%, 10%, 15% and 20% of the objects in a neighbouring
bucket. For comparison, we also show the results of placing 0%, i.e. placing all objects in
their correct bucket. These are the results of using QVL and OQVL from section 5.3.4.
We also show the results of the original method, without the use of volumetric supervision.

The right side of the table is the same as its left counterpart, with the only difference
being that the objects are placed in a random bucket instead of its neighbouring bucket.

Neighbouring Bucket Random Bucket
Noise Exp. | mloU ‘ Original mIoU Noise Exp. | mloU ‘ Original mIoU
0% | 0.6760 0% | 0.6760
5% | 0.6649 5% | 0.6567
QVL  10% | 0.6539 0.6572 QVL  10% | 0.6410 0.6572
15% | 0.6217 15% | 0.5907
20% | 0.5704 20% | 0.5127
0% | 0.6678 0% | 0.6678
5% | 0.6583 5% | 0.6401
OQVL 10% | 0.6457 0.6572 OQVL 10% | 0.6228 0.6572
15% | 0.6135 15% | 0.5725
20% | 0.5622 20% | 0.4945

Table 5.13: mlIoU results of the different noise experiments for Weakly Supervised Semantic
Segmentation with Boundary Exploration

For the first and second noise experiments where we use QVL and OQVL respectively,
the objects are placed in a neighbouring bucket, the scores align with the previous method.
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For both experiments we can see that the model performs better than the original when
upto 5% of object are placed in neighbouring buckets, with QVL performing better than
OQVL. When 10% or more objects are misplaced, the results start to deteriorate.

For the third and fourth experiments, we repeat the previous experiments, but this
time the objects are misplaced randomly. We can see that regardless of the loss function
used, even when 5% of objects are places in random buckets, the model performs worse
than the original method without volumetric supervision. This shows that the method is
sensitive when objects size annotations are randomly incorrect, and we should try to ensure
that volumetric annotations are done as precisely as possible. Looking at the results of the

individual scores for the four experiments, we can see the scores aligns with our previous
results, showing that QVL does better than OQVL.

5.5 Estimating class sizes directly from image level
annotations

In this section, we develop a method for estimating class sizes directly from image level
annotations, without asking the user to provide volumetric annotations.

5.5.1 Estimating Class Sizes

Asking the user to provide volumetric annotations is more time consuming than asking the
user to provide image level tags. In this section, we experiment with a method where we do
not ask the user to provide size annotations, but try to estimate class sizes automatically.

The idea is as follows. We start with some initial estimate of class sizes, which may be
be far from correct. Then we run semantic segmentation model training for a few epochs,
and check, for every class and every image if the size went up or down from the original
estimate. If the size went up, we increase the size estimate, and if the size went down,
we decrease the size estimate. In this way, we can adaptively change the size of classes
present in the image. Our intuition is that if the initial class size is underestimated, then
after training, it should increase, and if it is overestimated, then after training, it should
decrease.

To obtain the initial size estimates, we proceed as follows. Since the background typi-
cally is the largest class in an image, we estimate the size of the background as 50% of the
image. The remaining 50% of the image we split evenly among all classes present in the
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image. This is a very rough estimate of class sizes, and may be far from correct. However,
our goal is to see whether the tendency for the class is to increase or decrease in size, and
change our estimate adaptively.

In total, four tests are performed. The first two tests use Quadratic Volumetric Loss
and Outside Quadratic Volumetric Loss with initial size estimates without adaptation,
i.e. the background stays at 50% and the sizes of other classes present in the image are
split evenly to add up to the remaining 50%. These tests are called No Re-estimation, and
are denoted as N Rgy and NRogyy, in the tables below.

The next pair of tests are the same as the first two, with the difference being the sizes
of the objects in the training images are recalculated after every epoch. We start with
50% background and the classes present in images split evenly to add up to the remaining
50%. After the first epoch, the model is used to make predictions on the training images.
Then the updated sizes from these images are used in the following epoch. These steps are
repeated after every epoch to recalculate the size of objects in the training images. These
tests are called with Re-estimation and are denoted as Rgyr and Roqyy in the tables
below.

5.5.2 Joint Saliency and Semantic Segmentation

The mloU result of method [133] is 0.5420. Table 5.14 shows the mloU values of the
four different experiments performed on Joint Learning of Saliency Detection and Weakly
Supervised Semantic Segmentation, compared to the original. For each of these tests, table
5.15 shows the individual class IoUs as well as the original class IoU.

mloU

Original | 0.5420
NRgvr | 0.5582
NRogvr | 0.5445
Rovr 0.5804
Rogvr 0.5702

Table 5.14: mloU results of the different experiments for Joint Learning of Saliency De-
tection and Weakly Supervised Semantic Segmentation

For NRqy and NRogvr, the model approximates the size of objects in an image
without any user effort, by assuming 50% background and 50% foreground. We can im-
mediately see a significant drop in mIoU. The experiments gives us a result of 55.82% and
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54.45% which is a mere 1.62% and 0.25% increase respectively from the original method’s
score. These results also align with the previous findings, showing that QVL outperforms
OQVL. The decrease of results also follow the same pattern in the individual class IoU.

The next two experiments Rgyy and Rogyr are the same as the previous two exper-
iments, with the only difference being that the size of objects in images are recalculated
after every epoch. We initially start by assuming that background and foreground each
cover 50% of the image. After an epoch the model outputs its segmentation results. We
recalculate the exact sizes of the objects using these predictions and use the updated val-
ues for the next round of training. This process is repeated after every epoch. This size
reevaluation after every epoch shows an increase in the results compared to the previous
experiments. We get a 2.22% and 2.57% increase from the previous experiments respec-
tively, and a 3.84% and 2.82% increase from the original methods mIoU. Similar to previous
experiments, Rqgyr, which uses QVL, outperforms Rogy which uses OQVL.

While the results are worse than that with user provided size annotations, see table
5.14, these results are significantly better than the original method, so estimating object
size using our approach is a viable technique for some semantic segmentation methods.
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IoU
Class Original NRQVL NROQVL RQVL ROQVL
Background 0.8866 0.8898 0.8891 0.9036  0.8934
Aeroplane 0.6660 0.6725 0.6685 0.7030  0.6928
Bicycle 0.3183 0.3226 0.3208 0.3380  0.3278
Bird 0.7019 0.7216 0.7044 0.7325 0.7223
Boat 0.5554 0.5833 0.5579 0.6008  0.5906
Bottle 0.6165 0.6142 0.6190 0.6296  0.6194
Bus 0.6885 0.7076 0.6910 0.7327  0.7225
Car 0.6123 0.6427 0.6148 0.6606  0.6504
Cat 0.7162 0.7390 0.7187 0.7566  0.7464
Chair 0.1306 0.1426 0.1331 0.1596  0.1494
Cow 0.5493 0.5776 0.5518 0.6180  0.6078
Dinningtable 0.2045 0.2127 0.2070 0.2278  0.2176
Dog 0.6706 0.6923 0.6731 0.7184  0.7082
Horse 0.5476 0.5717 0.5501 0.6014  0.5912
Motorbike 0.5851 0.6049 0.5876 0.6154  0.6052
Person 0.6732 0.6823 0.6757 0.6998  0.6896
Pottedplant 0.3419 0.3410 0.3444 0.3782  0.3680
Sheep 0.5872 0.6082 0.5897 0.6293  0.6191
Sofa 0.2671 0.2838 0.2696 0.3140  0.3038
Train 0.5682 0.5914 0.5707 0.6265 0.6163
Tv/monitor 0.4951 0.5219 0.4976 0.5436  0.5334
mloU 0.5420 0.5583 0.5445 0.5804 0.5702

Table 5.15: IoU for each individual class for Joint Learning of Saliency Detection and
Weakly Supervised Semantic Segmentation

5.5.3 Single Stage Semantic Segmentation

The mloU result of method [6] is 0.5818. Table 5.16 shows the mIoU values of the four dif-
ferent experiments performed on Single Stage Semantic Segmentation from Image Labels,
compared to the original. For each of these tests, table 5.17 shows the individual class
IoUs as well as the original class loU.
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mloU
Original | 0.5818
NRgyr | 0.5820
NRogvr, | 0.5814
Rovr 0.5979
Rogvr 0.5856

Table 5.16: mloU results of the different experiments for Single Stage Semantic Segmen-
tation from Image Labels

For NRgyr and NRogvr, as we can see from the results, these two experiments do
not improve the result very much. N Rgy, only gives us an improvement of 0.02%, while
NRogvr actually performs worse that the original results. However looking at the in-
dividual ToU, we can see that the classes such as Bird, Tv/monitor, Train that saw a
decrease in scores for NRgyr and NRogvr, perform much better in this setting. These
two experiments also confirm that QVL outperforms OQVL, although by a small margin.

For Rgyvr and Rogv 1, where the size of objects are recalculated after every epoch, we
can see that the results are an improvement over the previous two sets of experiments.
Rgv 1, gives an increase of 1.59% in mloU over N Rgy . Rogvr gives an increase of 0.42%
over N Rogy . Comparing them to the results of the original method, we see an increase of
1.61% and 0.38% for Rgvy, and Rogy, respectively. These two experiments follow the same
pattern as the previous method, showing that recalculating the size of objects after every
epoch improves results and that QVL does better than OQVL. For this method, again, we
get better results than the original method with our approach for size estimation, so it is
a viable method to employ when user annotated sizes are not available.
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IoU
Class Original NRQVL NROQVL RQVL ROQVL
Background 0.8621 0.8622 0.8619 0.8782  0.8659
Aeroplane 0.6162 0.6162 0.6160 0.6323  0.6200
Bicycle 0.3417 0.3412 0.3415 0.3578  0.3455
Bird 0.6829 0.6822 0.6827 0.6990  0.6867
Boat 0.4562 0.4562 0.4560 0.4723  0.4600
Bottle 0.6113 0.6112 0.6111 0.6274 0.6151
Bus 0.7078 0.7072 0.7076 0.7239  0.7116
Car 0.6363 0.6382 0.6361 0.6524  0.6401
Cat 0.7626 0.7622 0.7624 0.7787  0.7664
Chair 0.2748 0.2742 0.2746 0.2909  0.2786
Cow 0.6112 0.6112 0.6110 0.6273  0.6150
Dinningtable 0.2757 0.2772 0.2755 0.2918  0.2795
Dog 0.7383 0.7382 0.7381 0.7544  0.7421
Horse 0.6272 0.6272 0.6270 0.6433  0.6310
Motorbike 0.6785 0.6782 0.6783 0.6946  0.6823
Person 0.6848 0.6842 0.6846 0.7009  0.6886
Pottedplant 0.4221 0.4222 0.4219 0.4382 0.4259
Sheep 0.6713 0.6762 0.6711 0.6874  0.6751
Sofa 0.3444 0.3442 0.3442 0.3605 0.3482
Train 0.7011 0.7012 0.7009 0.7172  0.7049
Tv/monitor 0.5120 0.5102 0.5118 0.5281 0.5158
mloU 0.5818 0.5820 0.5814 0.5979 0.5856

Table 5.17: IoU for each individual class for Single Stage Semantic Segmentation from
Image Labels

5.5.4 Semantic Segmentation via Sub-category

The mloU result of method [17] is 0.4977. Table 5.18 shows the mloU values of the four
different experiments performed on Weakly Supervised Semantic Segmentation via Sub-
category Exploration, compared to the original. For each of these tests, table 5.19 shows
the individual class IoUs as well as the original class IoU.
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mloU

Original | 0.4977
NRqgyr | 0.3429
NRogvr, | 0.3381
Rovr 0.4651
Rogvr 0.4448

Table 5.18: mloU results of the different experiments for Weakly Supervised Semantic
Segmentation via Sub-category Exploration

NRgyr, and NRogyy assumes 50% background and 50% foreground. As we can see
from the results, these experiments decrease mloU compared to the original method.
NRogvr sees a decrease of 15.96% while N Rgy 1, performs slightly better with a decrease
of 15.48%.

Rovr and Rogvr, where the sizes of objects are reevaluated, perform significantly
better than N Ry, and N Rogvr. But these still fall short when compared to the original
methods scores. Ry, gives an improvement of 12.22% while Rogy 1, gives an improvement
of 10.67%. These results show that recalculating the size of objects gives us a significant
advantage and better results, as well as confirming all the previous methods findings that
QVL performs better than OQVL. For this method, we get a decrease in performance,
compared to the original method, using our method for estimating sizes.
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IoU
Class Original NRQVL NROQVL RQVL ROQVL
Background 0.7521 0.7575 0.7527 0.8344  0.8141
Aeroplane 0.3632 0.3650 0.3602 0.6322  0.6119
Bicycle 0.2954 0.2319 0.2271 0.3819  0.3616
Bird 0.3813 0.3406 0.3358 0.3670  0.3467
Boat 0.3253 0.3127 0.3079 0.4292 0.4089
Bottle 0.5421 0.3123 0.3075 0.5320  0.5117
Bus 0.6773 0.4068 0.4020 0.5193  0.4990
Car 0.5301 0.3092 0.3044 0.3969  0.3766
Cat 0.6231 0.2716 0.2668 0.4080  0.3877
Chair 0.2767 0.1739 0.1691 0.4098  0.3895
Cow 0.5023 0.4797 0.4749 0.3878  0.3675
Dinningtable 0.4761 0.1856 0.1808 0.4488  0.4285
Dog 0.5717 0.3082 0.3034 0.4224  0.4021
Horse 0.5712 0.5056 0.5008 0.3718  0.3515
Motorbike 0.5853 0.3720 0.3672 0.4909  0.4706
Person 0.5212 0.1941 0.1893 0.4374 0.4171
Pottedplant 0.4132 0.3010 0.2962 0.4236  0.4033
Sheep 0.5509 0.3631 0.3583 0.4447  0.4244
Sofa 0.4901 0.3145 0.3097 0.3948  0.3745
Train 0.5305 0.4293 0.4245 0.6113  0.5910
Tv/monitor 0.4721 0.2659 0.2611 0.4233  0.4030
mloU 0.4977 0.3429 0.3381 0.4651 0.4448

Table 5.19: ToU for each individual class for Weakly Supervised Semantic Segmentation
via Sub-category Exploration

5.5.5 Semantic Segmentation with Boundary Exploration

The mloU result of method [22] is 0.6572. Table 5.20 shows the mloU values of the
four different experiments performed on Weakly Supervised Semantic Segmentation with
Boundary Exploration, compared to the original. For each of these tests, table 5.21 shows
the individual class IoUs as well as the original class IoU.
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mloU

Original | 0.6572
NRgyr | 0.6602
NRogvr, | 0.6598
Rovr 0.6606
Rogvr 0.6604

Table 5.20: mloU results of the different experiments for Weakly Supervised Semantic
Segmentation with Boundary Exploration

NRgvr, NRogvr, Rovr and Rogyr all performed better than the original meth-
ods scores. All the experiments assume 50% background and 50% foreground. Rgvyr
and Rogvr, where the sizes of objects are reevaluated, perform better than NRgy . and
NRogvr. For this method, we have a slight improvement in performance, compared to
the original method, with our technique for class size estimation.
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IoU
Class Original NRQVL NROQVL RQVL ROQVL
Background 0.8711 0.8769 0.8774 0.8767  0.8766
Aeroplane 0.6601 0.6421 0.6453 0.6470  0.6481
Bicycle 0.3285 0.3380 0.3408 0.3417  0.3409
Bird 0.8047 0.7701 0.7646 0.7637  0.7666
Boat 0.5113 0.4894 0.4955 0.5028  0.5113
Bottle 0.5970 0.6135 0.6152 0.6192 0.6210
Bus 0.7861 0.8180 0.8184 0.8156  0.8166
Car 0.6737 0.7047 0.7029 0.7009  0.7047
Cat 0.8210 0.8173 0.8165 0.8149  0.8144
Chair 0.3669 0.3588 0.3559 0.3549  0.3606
Cow 0.8226 0.8227 0.8203 0.8217  0.8221
Dinningtable 0.5142 0.4511 0.4356 0.4622 0.4491
Dog 0.7773 0.7666 0.7725 0.7709  0.7641
Horse 0.7927 0.8090 0.8087 0.8112  0.8095
Motorbike 0.7511 0.7730 0.7701 0.7690  0.7686
Person 0.6796 0.7009 0.7043 0.6971 0.7022
Pottedplant 0.4876 0.5368 0.5378 0.5327  0.5305
Sheep 0.7936 0.8015 0.7940 0.7919  0.7929
Sofa 0.6187 0.6267 0.6300 0.6301  0.6250
Train 0.6068 0.6273 0.6292 0.6262  0.6160
Tv/monitor 0.5374 0.5188 0.5199 0.5215 0.5266
mloU 0.6572 0.6602 0.6598 0.6606 0.6604

Table 5.21: ToU for each individual class for Weakly Supervised Semantic Segmentation
with Boundary Exploration

5.6 Overall Findings

Overall findings from the different experiments on the four methods demonstrate the fol-
lowing;:
1. Volumetric Supervision does indeed improve results

2. Of the two loss functions used, Quadratic Volumetric Loss (QVL) performs better
than Outside Quadratic Volumetric Loss (OQVL)

3. The model is sensitive to wrong annotations. When placing up to 5% objects in the
neighbouring bucket, the model still performs better with volumetric annotations, but
placing 5% or more objects in the wrong random bucket results in poorer performance
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4. Using Volumetric Annotations with the ten buckets improves performance signifi-
cantly than assuming 50% background and 50% foreground split amongst objects.
Reevaluating the size of objects after every epoch helps improve results. Our method
for adaptively estimating sizes of classes without needing user provided size annota-
tion improved the results over the original methods in three out of four cases
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Chapter 6

Summary and Conclusion

Fully supervised methods need pixel precise annotations for thousands of images. To re-
duce expensive annotation efforts, weak supervision for semantic segmentation is gaining
popularity. In this thesis, we propose a new type of weak supervision for semantic segmen-
tation: Volumetric Supervision. In addition to providing the image level labels, the
user also provides approximate size of each object class present in the images. This type
of annotation is still undemanding on the users time.

In order to incorporate volumetric information into weakly supervised segmentation,
in this thesis we introduced several volumetric loss functions that penalize deviation from
the object size annotated by the user. In order to test the effectiveness we incorporate
our volumetric loss functions into four recently developed methods for weakly supervised
segmentation with image level labels.

To evaluate our weak supervision, we outline several different experiments. We also
created a simulated dataset that contains size information for the object classes. We also
test the sensitivity of our approach to the possible mistakes in the size information dataset.

Our experimental evaluations shows that volumetric supervision gives a significant im-
provement over image level supervision. However it is sensitive to mistakes in the size
information provided by the user.

Our simple method for estimating size of classes without relying on user size annotations
worked in three out of four cases. Thus an interesting direction is improving our proposed
method. For example, instead of replacing the size with a new estimate computed from
the current CNN output, we could replace the size with a weighted combination of the
previous size and currently estimated size, providing estimates that change more smoothly.
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Another is the use in semi supervised semantic segmentation, where the dataset contains
pixel precise labels as well as image level labels. For the images with pixel level labels,
we provide exact size information, while using this thesis’s methodology for the data with
image level labels and train a model with the combination of the two.
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