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Abstract

Our work aims to solve some of the most significant and fundamental theoretical prob-
lems involved in the current statistical modeling of stochastic processes in single-molecule
experiments, for which a well recognized yet mathematically very difficult model is the
generalized Langevin equation (GLE). We mainly focus on the following three directions.

In Chapter 2, we prove a remarkable representation theorem that fundamentally con-
nects a continuous stationary process, a widely adopted statistical model in various ap-
plications, with the GLE, a ubiquitous tool in physics to model stochastic dynamics in a
thermodynamic system. However, there are two important statistical challenges. First, the
dynamics of the observed particle must be deconvoluted from a postulated covariance struc-
ture of an unobservable thermal force, rendering statistical modeling typically intractable.
Second, for a given covariance structure of the latent force, the likelihood function for
parameter estimation can rarely be written in closed form in the time domain. Parameter
estimation that involves numerical approximation of the given memory kernel via repeated
application of the Fast Fourier Transform (FFT) often incurs significant information loss
and computational burden. We aim to fill the gaps by establishing a representation theo-
rem that any continuous stationary process can be represented by a physically valid GLE.
The upshot is that statistical modeling and inference can be performed entirely in the time
domain with the guarantee of satisfying the fundamental laws of physics. The result can
also be extended to continuous process with only stationary increments.

In Chapter 3, we carefully study the asymptotic properties of some important spec-
tral density estimators for high-throughput (HTP) data commonly obtained in modern
nanoscopic scientific experiments where the sampling frequency of an underlying process
set to be extremely large and the recordings of such a continuous process can also be ex-
tended for a very long time, giving us more and more observations. Traditional asymptotic
results with fixed sampling frequency would break down in such a situation. In the current
literature, the asymptotic results for the spectral density estimator given HTP data are
rarely seen to the best of our knowledge at the time of writing our work (Lysy et al., 2022).
We fill this gap by laying the theoretical foundations for high-frequency sampled stationary
processes, based on which a novel and effective two-stage approach was proposed by Lysy
et al. (2022) to get a robust and efficient parametric estimation for the noisy HTP data.

In Chapter 4, we design an original non-degenerate sampling scheme using the particle
filter method with bridge proposal to better estimate parameters in the quasi-Markovian
approximation of the GLE which exhibits hypoellipticity. The proposed method if evalu-
ated numerically would be extremely helpful for efficient parameter estimation in statistical
modeling and inference problems tackling the nonlinear GLE.

v



Acknowledgements

First and foremost, I would like to express my eternal gratitude to my Ph.D. supervisor,
Martin. I am privileged to collaborate with him working on some of the most difficult yet
fascinating problems in the interdisciplinary field of statistics and physics. He generously
gave me the extraordinary idea that any continuous stationary process can be represented
as the generalized Langevin equation that he had been pondering for more than a decade.
I am incredibly honored that I could be the one who collaborated with him to rigorously
realize such a remarkable conjecture bit by bit in the past three years. It would never be
exaggerated how much I learned from him in both statistical reasoning and programming
paradigm. This thesis would never be possible without the patient guidance and constant
help from him. His passion and rigorous altitude towards academic research as well as his
sense of responsibility have always been an outstanding example for me to follow.

My sincere thanks go to Dr. Paul Marriott for offering me admission to the doctoral
program and kindly being one of my research supervisors for the first year. I am also
grateful for his constructive comments on my thesis.

I truly appreciate the help from Dr. Gregory Rice, and thank him for all the insightful
discussions of the project covered by Chapter 3, as well as his inspiring teaching in STAT
929: Time Series. I can still remember the meeting we had in his office where we discussed
some arguably the most delicate mathematical details involved in the discrete Fourier
transform, periodogram and high-frequency asymptotics, etc. I am also grateful that he
lent me one of his most treasured books — Stochastic Curve Estimation written by Murray
Rosenblatt, from which I benefited a lot.

I would also like to thank the other committee members Dr. Alexandros Beskos and
Dr. Roger Melko with my sincere gratitude for serving on my thesis committee and also
for their time and effort to review my thesis, providing thoughtful and valuable comments.

The faculty and staff in the Department of Statistics and Actuarial Science are amazing.
I acknowledge all their collaborative efforts to build our department such a lovely place. In
particular, I offer my heartfelt thanks to Ms. Mary Lou Dufton and Ms. Lisa Baxter who
helped me with all the necessary paperwork for graduation.

My collaborators Mr. Bryan Yates and Dr. Aleksander Labuda definitely deserve my
special acknowledgement. Without their previous work, it would be impossible for me to
get a paper published before my graduation in Technometrics, a leading journal in the
subfield of statistics for physical, chemical, and engineering sciences.

I will not forget how much I was inspired by my brilliant peers. Thanks Mohan Wu for
your help in the derivation of the bridge proposal designed in Chapter 4. Thanks Michelle

vi



Ko for our discussions about programming in Julia language. Thank you to all the fellow
members in the Differential Equation (DE) research group led by Martin.

Moreover, no words can express my sense of gratitude towards all my Ph.D. colleagues
and lifelong friends, especially to those in my office M3 4233, Zhiyi Shen, Yumin Wang,
and Qiuqi Wang, as well as my best roommate Han Weng. It is the serendipity that led
me to meet all of you. Thank you all for making my Ph.D. life much more colorful and
meaningful.

Finally, I am indebted to my parents in Wuhan, China, for their enduring love and
selfless support for almost 30 years, especially for their courage and optimism at the very
beginning of the COVID-19 outbreak when thousands of people died around them within
merely a month back in February 2020. Even in their hardest time, they were always
showing me their spiritual strength and caring love, encouraging me to continue my research
and overcome all the difficulties in my life. My deepest gratitude and warmest affection
are always dedicated to them.

vii



Dedication

To my parents, for everything

viii



Table of Contents

List of Figures xiv

List of Tables xvi

List of Algorithms xvii

1 Introduction 1

1.1 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Our Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Generalized Langevin Equation Representation of Continuous Stationary
Processes 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Hamiltonian Dynamics on Hilbert Spaces . . . . . . . . . . . . . . . . . . . 10

2.2.1 Hamiltonians and C0-Semigroups . . . . . . . . . . . . . . . . . . . 13

2.3 Hamiltonian Representation of Autocorrelation Functions . . . . . . . . . . 16

2.4 Stochastic Processes on Hamiltonian Systems . . . . . . . . . . . . . . . . 19

2.5 Mori–Zwanzig Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Mori–Zwanzig Formalism . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The GLE Representation Theorem . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Memory Kernel in the Laplace Domain . . . . . . . . . . . . . . . . 24

ix



2.7 Numerical Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.1 Example: Gaussian Autocorrelation Function . . . . . . . . . . . . 27

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Parametric Spectral Density Estimation for High-Throughput Data 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Statistical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Sampling Continuous-Time Processes . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Finite Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Different Types of Memory . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 High-Frequency Asymptotics . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Parametric Spectral Density Estimation . . . . . . . . . . . . . . . . . . . 40
3.3.1 Whittle log-Likelihood Estimator . . . . . . . . . . . . . . . . . . . 41
3.3.2 Central Limit Theorem for the Whittle MLE . . . . . . . . . . . . . 43

3.4 Semiparametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Nonlinear Least-Squares Estimator . . . . . . . . . . . . . . . . . . 45
3.4.2 Log-Periodogram (LP) Estimator . . . . . . . . . . . . . . . . . . . 46
3.4.3 Central Limit Theorem for the LP Estimator . . . . . . . . . . . . . 47

3.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1 Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Baseline Estimation Comparison . . . . . . . . . . . . . . . . . . . 52
3.5.4 Electronic Noise Contamination . . . . . . . . . . . . . . . . . . . . 53
3.5.5 Application: Calibration of an AFM . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



4 Quasi-Markovian Approximation of the Generalized Langevin Equation 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Statistical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 SDE Inference with Particle Filters . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 SDE Bridge Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Parameter Estimation of the Quasi-Markovian GLE . . . . . . . . . . . . . 72

4.3.1 Reparameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Degenerate Euler Scheme . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Hypoelliptic Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.4 Modified Discretization Scheme . . . . . . . . . . . . . . . . . . . . 76

4.3.5 Particle Filtering with Bridge Proposal . . . . . . . . . . . . . . . . 79

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion and Future Work 83

References 85

APPENDICES 104

A Appendix for Chapter 2 105

A.1 Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1.1 Spectral Theorem: Direct Integral Form . . . . . . . . . . . . . . . 107

A.1.2 Spectral Theorem: Projection-Valued Measure Form . . . . . . . . 108

A.2 ACF Representation with Hamiltonians of Interest . . . . . . . . . . . . . . 110

A.2.1 Wave Equation Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 111

xi



A.2.2 The Klein–Gordon Hamiltonian . . . . . . . . . . . . . . . . . . . . 113

A.3 Proofs of Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.3.1 Proof of Proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . 115

A.3.2 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3.3 Proof of Theorem 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.3.4 Proof of Proposition 2.5.1 . . . . . . . . . . . . . . . . . . . . . . . 122

A.3.5 Proof of Proposition 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . 122

A.3.6 Proof of the Zwanzig Operator Identity . . . . . . . . . . . . . . . . 122

A.3.7 Proof of Proposition 2.5.3 . . . . . . . . . . . . . . . . . . . . . . . 124

A.3.8 Proof of Lemma 2.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3.9 Some Calculations for the Acceleration Form GLE . . . . . . . . . . 126

A.3.10 Proof of Lemma 2.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3.11 Laplace Transforms of Observables and Correlation Functions . . . 127

A.3.12 A Useful Lemma About the Time Derivatives of ACFs . . . . . . . 128

A.3.13 Hardy Space and the Boundary Value of the Laplace Transform . . 130

A.3.14 Technical Derivations of the Fourier Formulas . . . . . . . . . . . . 131

B Appendix for Chapter 3 136

B.1 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.1 Technical Details in Remark 3.3.1 . . . . . . . . . . . . . . . . . . . 139

B.2 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.1 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.2 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2.3 Summary of the Main Results in Moulines and Soulier (1999) . . . 143

B.2.4 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2.5 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 148

xii



C Appendix for Chapter 4 150

C.1 Covariance Structure of q-times Integrated Wiener Process . . . . . . . . . 150

C.2 Proof of Lemma 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.3 A General Derivation of the Result in Section 4.3.5 . . . . . . . . . . . . . 153

xiii



List of Figures

2.1 (a) Memory kernel numerically recovered by FFT. (b) Theoretical PSD v.s.
the recovered PSD using numerical parameters. (c) Memory kernel ana-
lytically recovered using Dawson function. (d) Theoretical PSD v.s. the
recovered PSD using analytic parameters. All the figures are displayed on
the log-log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Illustration of HTP data recorded from observing a continuous stationary
process X(t), with an increasing sampling frequency fs = 1/∆t for extended
periods of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Baseline PSDs over a range of quality factors (Q). The dashed vertical lines
indicate the frequency bandwidth used for parameter estimation. . . . . . 51

3.3 Comparison of NLS, LP, and MLE estimators in the baseline simulation
environment. Numbers indicate MSE ratios of the corresponding estimators
relative to MLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Simulated SHO periodogram with Q = 100 and added electronic noise, along
with the FWER periodogram cutoff corresponding to an FDR level of α = 1%. 54

3.5 Comparison of NLS, LP, and MLE preliminary estimators (i.e., prior to noise
removal), in the noise-contaminated environment. Numbers indicate MSE
ratios of the corresponding estimators relative to their own performance at
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 (a) Periodogram for a TR400-S Olympus cantilever recorded for 5 s at 5MHz
(N = 2.5× 107 observations). The data have been averaged by bins of size
B = 100 to enhance visibility. (b-c) Magnified view of first and second
eigenmodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiv



3.7 Periodogram (averaged by bins of size B = 100) and the fitted SHOW and
SHOF models using NLS, LP and MLE estimators (not shown is SHOW
- MLE which failed to converge). The large spikes indicate frequencies at
which there is electronic noise contamination. . . . . . . . . . . . . . . . . 58

3.8 NLS, LP, and MLE estimators for bin size B = 10 to 1000. (a) Parameter
estimates. (b) Standard errors. (c) Coefficient of variation (CV). . . . . . 59

4.1 Illustration of the state-space model. . . . . . . . . . . . . . . . . . . . . . 66

4.2 Illustration of the bridge proposal with resolution m = 3. . . . . . . . . . . 70

xv



List of Tables

3.1 SHO parameters in baseline environment. . . . . . . . . . . . . . . . . . . . 51

xvi



List of Algorithms

2.1 Numerical algorithm to recover memory kernel K(t). . . . . . . . . . . . . 29
4.1 Particle filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



Chapter 1

Introduction

There’s Plenty of Room at the Bottom.
— Richard Feynman, 1959

Back in 1959, the famous theoretical physicist Richard Feynman gave a talk titled “There’s
Plenty of Room at the Bottom” at an annual meeting of the American Physical Society at
Caltech. In this lecture, Feynman imagined a day when a new field of scientific research
full of potential opportunities may be all about nanoparticles or even atoms, and a process
by which the ability to manipulate individual atoms and molecules could be developed.

It was nearly 40 years later since then when an inspiring field of nanotechnology began
to flourish.

1.1 Background and Challenges

Over the last two decades, advances in nanoscopic instrumentation have allowed researchers
to constantly push down the bottom level of single particles that can be observed and
traced in various scientific experiments (e.g. Nie and Zare, 1997; Radmacher, 1997; Xie and
Trautman, 1998; Weiss, 1999; Loudet and Burgess, 2007; Sugimoto et al., 2007; Marchetto
et al., 2008; Li et al., 2010), creating a proliferation of opportunities to study the dynamics
of single particles interacting with their environment, leading to remarkable discoveries in
a wide range of scientific disciplines (e.g. Xie and Lu, 1999; Tamarat et al., 2000; Weiss,
2000; Seisenberger et al., 2001; Valentine et al., 2001; Moerner, 2002; Yang et al., 2003;
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Sikula and Levinshtein, 2004; Ebbinghaus et al., 2007; Zhang et al., 2007; Gerardi et al.,
2009; Go et al., 2012). As the resolution of such experiments approaches the limits of
deterministic modeling, the intrinsic stochastic dynamics of complex interacting particle
systems emerges as a dominating factor, which on the one hand motivates the necessity of
applying probability distribution and statistical models to extract the hidden information
given the random or even noisy observations, but on the other hand poses new challenges
for statistical modeling and inference in many new scientific fields as well.

Du and Kou (2019, 2020) recently gave an up-to-date survey of major statistical
methodologies used in single-particle experiments and the current challenges faced by sci-
entists in various research studies, e.g. subdiffusion dynamics (and anomalous diffusion
phenomenon), heterogeneity in single-molecule trajectories, Fluorescence correlation spec-
troscopy (FCS), single-molecule signal analysis, polymer dynamics, etc. Moreover, Didier
et al. (2012) also presented a great overview of the statistical challenges in microrheology
which is the study of the properties of a complex fluid through the diffusion dynamics of
small particles by using small tracers to probe material structure at micron length scale or
smaller. All the statistical challenges can be summarized into three categories:

(i) Analytically complicated mathematical models are used extensively in single-molecule
study. These models are often developed from the well-established fundamental prin-
ciples of physics, in order to provide a clear interpretation or convincing intuition of
the mechanisms of the underlying system. Many of the too intricate models cannot
fit into the existing statistical inference framework due to either the intractable likeli-
hood functions, or failure of efficient approximations in high-dimensional settings, or
violation of classic assumptions (e.g. Markov property, linearity, independence etc.)
behind many standard statistical models. Moreover, statistical modeling is typically
restricted by the laws of physics. A valid statistical model should not violate first
principles of physics, which to some extent limit the choices available to statisticians.

(ii) There is no well-established model comparison framework in single-particle studies.
The existing model selection tools in statistics are designed for relatively generic
linear models and therefore may not be suitable for comparing complicated non-
linear stochastic models. By using Bayesian approach, indeed, one may address the
gap. However, it may be hard to design a suitable sampling algorithm to incorporate
competing models under the same framework for comparison. A recent study by
Lysy et al. (2016) made some contributions in this realm by developing rigorous and
computationally efficient Bayesian methodology to compare two prevailing models in
the study of single particle tracking.
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(iii) Complex data with additional layers of complexity are usually produced in mod-
ern single-molecule experiments that involve the use of sophisticated measurement
techniques. For example, in some experiments, the strong interactions between the
measurement methods and the dynamics of molecules may alter the data generating
process. Statisticians should attempt to incorporate the relevant information into
the inference framework. Moreover, data at different coordinates can evolve on a
wide range of timescales from fast and small vibrations between neighboring atoms
linked by chemical bonds with a characteristic timescale of t ≈ 10−13s to large-scale
conformational changes caused by folding of a protein molecule on timescales of at
least t ≈ 10−6s, which gives rise to problems known as multiscale diffusions (Pavliotis
and Stuart, 2007). For an overview of this application area, please see Schlick (2010).

Regarding the first type of challenges, in many applications under dynamic thermal
environment, the fundamental laws of physics to govern a single particle trajectory are
written in the form of a generalized Langevin equation (GLE) (e.g. Zwanzig, 2001; Tuck-
erman, 2010). As a ubiquitous model of single particle dynamics, the GLE is a stochastic
integro-differential equation

mẍ(t) = −U ′(x(t))−
∫ t

0

K(t− u)ẋ(u)du+ F (t) (1.1)

for which parameter inference is an open challenge, even in the linear setting. Here x(t)
denotes the trajectory of a particle with mass m, and ẋ(t) and ẍ(t), respectively, represent
the first and second order derivatives of x(t) with respect to time t (i.e. velocity and
acceleration), U(x(t)) is the external potential energy (e.g. a magnetic field), K(t) is a
function called memory kernel which characterizes the non-Markovian frictional force and
F (t) is the latent random force.

To understand the GLE (1.1) better, let us conceptually decompose the total force
exerted on the particle as follows:

total force = potential force + kinetic force
Ftotal = −U ′(x(t)) + (Ffriction + Fthermal)

By the Newton’s second law of motion,

Ftotal = mass× acceleration = mẍ(t).

The potential force is set outside of the system depending on the experiment. The kinetic
force comes from the particle’s collisions with its environment, which can be further de-
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composed into deterministic and stochastic components. For systems in thermodynamic
equilibrium, the stochastic “thermal” force Fthermal = F (t) is modeled as a mean-zero sta-
tionary process with autocorrelation function γF (t). The deterministic “friction” force

Ffriction =

∫ t

0

K(t− u)ẋ(u)du

depends on the history of the particle velocity, weighted by the memory kernel K(t).

Remarkably, the precise GLE form (1.1) can be derived directly from the Hamiltonian
dynamics — the fundamental laws governing any physical motion — for the so-called Kac–
Zwanzig “heat-bath” interacting particle model (Ford and Kac, 1987; Ford et al., 1965;
Kupferman, 2004). Moreover, due to the fluctuation-dissipation theorem (Kubo, 1966),
the thermal force dynamics and the memory kernel are intrinsically related to each other,
such that

γF (t) = kBT ·K(t)

Due to the ubiquitous nature of the Kac–Zwanzig model, the GLE (1.1) has found applica-
tions in a wide range of scientific disciplines, including chemistry (Kantorovich, 2008; Kan-
torovich and Rompotis, 2008; Xing and Kim, 2011), climatology (Gritsun and Branstator,
2007), molecular biology (Kou and Xie, 2004; McKinley et al., 2009), molecular dynamics
(Xiang et al., 1991; Lange and Grubmüller, 2006) and quantum physics (Celli et al., 2002;
Ceriotti et al., 2011).

Given the prevalence of the GLE in single-particle dynamics modeling, however, there
are two main challenges faced by statisticians. First, given some observations of particle
trajectory, if we want to fit a GLE model, the dynamics of the observed particle must be
deconvoluted from a postulated covariance structure of an unobservable thermal force 1,
rendering statistical modeling typically intractable. Second, for a given covariance struc-
ture 2 of the latent force, the likelihood function for parameter estimation can rarely be
written in closed form in the time domain. As a consequence, likelihood-based parame-
ter estimation involves numerical approximation of the given memory kernel via repeated
application of the Fast Fourier Transform (FFT), which incurs significant information loss.

Moreover, in systems far from equilibrium (Zwanzig, 1980), the analytic solution of the
1When the particle is under the influence of a harmonic potential, i.e., in the linear GLE case, the

GLE can be solved analytically via Fourier analysis with a fractional Brownian motion noise embedded, as
given by Kou (2008). But for a relatively general settings, without a good postulate of the random force,
statistical modeling would be hard.

2For some experiments, researchers may have a good candidate of memory kernel or force structure in
mind based on their domain knowledge.
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nonlinear GLE is usually intractable. With the exhibit of non-Markovian property due to
the convolution term involved, it is of huge difficulty to perform parameter inference for the
nonlinear GLE. Some methods to approximate the GLE have been proposed, among which
a very promising one is the quasi-Markovian approximation (Ottobre and Pavliotis, 2010)
which convert the original GLE to a Markovian system of stochastic differential equations
(SDEs) by introducing some auxiliary variables. However, the resulting SDE system —
which we call qmGLE — is a hypoelliptic diffusion (Ottobre and Pavliotis, 2010), for which
numerical discretization must be done with great care to perform parameter inference
correctly (Pokern et al., 2009; Ditlevsen and Samson, 2019). To the best of our knowledge,
the only existing method of inference for the qmGLE is the Bayesian Gibbs sampling
algorithm proposed by Pokern et al. (2009), which can become arbitrarily inefficient as the
desired accuracy of the numerical discretization increases (Roberts and Stramer, 2001).

1.2 Our Contribution and Outline

In this thesis, our focus is mainly on the theoretical challenges posed by the GLE, while
we also discuss how to deal with a special type of complex data introduced by increasingly
large sample size and ultra-high sampling frequency.

In Chapter 2, we rigorously prove a striking result that every twice differentiable weakly
stationary process is the solution of the linear GLE arising from many possible interacting
particle systems. Any such process can thus be used for statistical inference within a
modeling framework which does not violate the laws of physics. We give explicit forms for
the GLE parameters in terms of the autocorrelation of the observed particle process, and
examine the accuracy of a computational approximation.

For a large sequence of complex data generated with ultra-high sampling frequency from
complex (but stationary) underlying dynamics, e.g. the GLE process or CARFIMA models
(as explained in Chapter 3), we can easily perform statistical inference without worrying
about violating the underlying physical dynamics. Moreover, we derive the asymptotic
properties of some most widely used parametric/semi-parametric estimators which extends
the classical time series theory of asymptotics, which is given in Chapter 3.

As for fitting the nonlinear GLE, as long as the memory kernel can be written as a sum
of exponential functions with some proper regularity (e.g. Fricks et al., 2009; McKinley
et al., 2009; McKinley and Nguyen, 2018), the GLE can be well approximated by the
qmGLE, for which we design an efficient parameter inference scheme using particle filters
in Chapter 4.
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Chapter 2

Generalized Langevin Equation
Representation of Continuous
Stationary Processes

2.1 Introduction

Over the last two decades, advances in nanoscopic instrumentation have allowed researchers
to observe the dynamics of single particles interacting with their environment at unprece-
dented resolution and accuracy (e.g. Nie and Zare, 1997; Radmacher, 1997; Xie and Traut-
man, 1998; Weiss, 1999; Loudet and Burgess, 2007; Sugimoto et al., 2007; Marchetto et al.,
2008; Li et al., 2010). This has led to remarkable discoveries in a wide range of scien-
tific disciplines like physics, biophysics, chemistry, electrical engineering etc. (Xie and Lu,
1999; Tamarat et al., 2000; Weiss, 2000; Seisenberger et al., 2001; Valentine et al., 2001;
Moerner, 2002; Yang et al., 2003; Sikula and Levinshtein, 2004; Ebbinghaus et al., 2007;
Zhang et al., 2007; Gerardi et al., 2009; Go et al., 2012). As the resolution of such experi-
ments approaches the limits of deterministic modeling, stochastic modeling of nanoscopic
phenomena satisfying the fundamental laws of physics becomes of critical importance (Yang
et al., 2003; Kou, 2008; Didier et al., 2012). In many applications, these laws are expressed
in the form of a so-called generalized Langevin equation (GLE) (Kubo, 1966; Zwanzig,
2001).

Let x(t) denote the displacement of a single particle in a thermodynamic environment.
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The GLE for x(t) is a stochastic integro-differential equation given by

mẍ(t) = −U ′(x(t))−
∫ t

0

K(t− u)ẋ(u)du+ F (t) (2.1)

In (2.1), m is the mass of the particle, and ẋ(t) = d
dt
x(t) and ẍ(t) = d2

dx2
x(t) are its velocity

and acceleration. Heuristically, the GLE decomposes the total force acting on the particle
— expressed using Newton’s second law of motion on the left-hand side of (2.1) — into
three terms on the right: the force U ′(x(t)) due to the spatially-dependent potential energy
U(x) in the system (e.g., due to magnetic, electric or gravitational field etc.), the frictional
force

∫ t
0
K(t−u)ẋ(u)du relying on the history of the particle’s velocity weighted by the so-

called memory kernel K(t), and the thermal force F (t), modeled as a stationary stochastic
process with mean zero and autocorrelation function (ACF)

CF (t) = cov(F (t), F (0)).

In his description of Brownian motion, a key observation made by Einstein (Einstein,
1905, 1956; Nelson, 2001) is that the frictional and thermal forces acting on the particle
originate from the same source, i.e., collisions with the enormous number of particles in the
surrounding environment. Thus, if the system is in some sense stationary, the frictional
and thermal forces ought to balance out. Indeed, according to the fluctuation-dissipation
theorem (FDT) (Kubo, 1966), the time correlation CF (t) of F (t) and the memory kernel
K(t) of the friction are intrinsically related to each other, such that

CF (t) = kBT ·K(t), (2.2)

where kB is Boltzmann’s constant and T is the temperature (in Kelvin) of the system.

Remarkably, the heuristic decomposition above has a solid underpinning in theoretical
physics. That is, the GLE can be rigorously derived from Hamiltonian dynamics — the
fundamental laws governing any physical motion — for the so-called Kac–Zwanzig or “heat
bath” interacting particle model (Ford et al., 1965; Mazur and Oppenheim, 1970; Albers
et al., 1971; Zwanzig, 1973, 1980; Ciccotti and Ryckaert, 1981; Xiang et al., 1991; Zwanzig,
2001; Tuckerman, 2010). In a system of N +1 particles, the Kac–Zwanzig model described
by the Hamiltonian function

H(x, v, q, p) = U(x) +
v2

2m
+

1

2

N∑
i=1

p2i + (αiqi − γix)2,
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where x and v are the position and momentum of a “distinguished particle” in the system,
and q = (q1, . . . , qN), p = (p1, . . . , pN) are the positions and momenta of the N heat bath
particles in the surrounding environment. Letting Γt = (xt, vt, qt, pt) denote the state of
the system at time t, the evolution of the system is given by the Hamiltonian equations of
motion

d

dt
xt =

∂

∂v
H(Γt),

d

dt
qit =

∂

∂pi
H(Γt)

d

dt
vt = −

∂

∂x
H(Γt),

d

dt
pit = −

∂

∂qi
H(Γt).

(2.3)

When the initial state Γ0 is drawn from the Boltzmann distribution of the system,

pB(Γ) ∝ exp

{−H(Γ)

kBT

}
,

an elementary calculation (e.g., Zwanzig, 2001) shows that the solution of (2.3) produces
the GLE (2.1) with

K(t) =
N∑
i=1

γ2i cos(αit),

and for which F (t) a Gaussian process. The GLE with arbitrary K(t) and Gaussian F (t)
can be obtained either by carefully taking N → ∞ (Ariel and Vanden-Eijnden, 2009) or
using infinite-dimensional Hilbert spaces (e.g., Rey-Bellet, 2006; Pavliotis, 2014). It is this
latter approach we adopt for the developments in Sections 2.2.

Due to the ubiquitous nature of the heat-bath model, the GLE has found applications
in a wide range of scientific topics and interdisciplinary fields, including atom-solid surface
scattering (Adelman and Doll, 1974; Doll et al., 1975; Adelman and Doll, 1976; Doll and
Dion, 1976), climatology (Gritsun and Branstator, 2007), conformational dynamics in pro-
teins (Kou and Xie, 2004; Kou, 2008; Lange and Grubmüller, 2006), microrheology/polymer
physics (Mason and Weitz, 1995; Mason et al., 1997; Fricks et al., 2009; McKinley et al.,
2009; Panja, 2010; Squires and Mason, 2010; Démery et al., 2014; Hohenegger and McKin-
ley, 2017; McKinley and Nguyen, 2018), molecular dynamics (Kantorovich, 2008; Kan-
torovich and Rompotis, 2008; Li et al., 2015), sampling of molecular systems (Celli et al.,
2002; Ceriotti et al., 2011), and transport in magnetized plasmas (Krommes, 2018b,a),
and even quantum mechanics (Cortés et al., 1985; Ford and Kac, 1987; McDowell, 2000;
de Oliveira, 2020).

From a statistical perspective, the GLE is not only a fundamental physical model
with countless applications, it also provides an interpretable framework for modeling x(t).
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Indeed, x(t) is a stationary process with invariant (Boltzmann) distribution

p(x) ∝ exp

{−U(x)
kBT

}
when the above is integrable. In this sense, physically valid statistical modeling of x(t)
reduces to specifying the stationary distribution of x(t) and the autocorrelation of the
thermal force F (t). In many applications (e.g., Chandler, 1987; Kou and Xie, 2004), the
potential energy can be well approximated by a harmonic potential,

U(x(t)) =
1

2
κx2(t),

in which case we obtain the “linear” GLE

mẍ(t) = −κx(t)−
∫ t

0

K(t− u)ẋ(u)du+ F (t). (2.4)

If F (t) is taken to be Gaussian, then so is x(t). The statistical objective is now to infer the
dynamics of x(t) from discrete time observations x = (x(t1), . . . , x(tn)), where tn = n∆t.
However, two significant complications typically stand in the way.

First, what can be observed empirically are the particle positions x. However, statistical
modeling of the GLE requires one to postulate an ACF CF (t) for the unobservable thermal
force, of which the precise effect on position dynamics is difficult to deconvolute. As a
result, statistical modeling in GLEs is often limited to asymptotic behavior (e.g., Morgado
et al., 2002; Kou and Xie, 2004; Kneller, 2011; McKinley and Nguyen, 2018).

Second, even upon assuming that a parametric model CF (t | θ) for the force ACF is
given, the likelihood function L(θ | x) can rarely be written in closed form. This is because
the ACF Cx(t | θ) of x(t) is typically available only in the Fourier domain. Therefore,
likelihood-based parameter estimation involves numerical approximation of Cx(t | θ) via
repeated application of the Fast Fourier Transform (FFT), which is both computationally
intensive and prone to information loss (Mason and Weitz, 1995; Solomon and Lu, 2001).

In the face of such challenges, one might wonder to what extent the theoretical appeal
of the GLE model limits its use in statistical practice. The main result of this paper suggest
the answer is “very little”. Indeed, let

L{f(t)} = L{f(t)}(z) =
∫ ∞

0

etzf(t)dt
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denote the Laplace transform of a locally integrable exponentially bounded f(t). Then we
prove the following:

Theorem 2.1.1. Let x(t) be a twice differentiable weakly stationary process. Then there
exists a Hamiltonian interacting particle system for which x(t) is one of the observables,
and x(t) satisfies the linear GLE (2.4), with parameters explicitly given by

κ =
kBT

var(x(t))
, var(x(t)) = ⟨x(t), x(t)⟩

m =
kBT

var(ẋ(t))
, var(ẋ(t)) = ⟨ẋ(t), ẋ(t)⟩

Ǩ(z) = m

(−(z2 + κ/m)Čx(z) + zCx(0)
zČx(z)− Cx(0)

)
, K(t) = L−1{Ǩ(z)}

ČF (z) = kBT · Ǩ(z), CF (t) = L−1{ČF (z)}.

The upshot of Theorem 2.1.1 is that any twice differentiable (weakly) stationary process
x(t) — Gaussian or otherwise — can be used to model nanoscopic phenomena without
violating the laws of physics. This is a considerably stronger result (see Theorem 2.4.1) than
related ones for only the autocorrelation functions (Okabe, 1986) or restricted to Gaussian
processes (Pavliotis, 2014). Inference about x(t) can be performed using any statistical
method of choice, with the GLE parameters of scientific interest being recoverable post-
inference using the formulas in Theorem (2.1.1).

The remainder of this Chapter is organized as follows. Section 2.2 defines Hamiltonian
dynamics on infinite dimensional Hilbert spaces using semigroup theory. Sections 2.3 and
2.4 show how to construct arbitrary continuous stationary processes in such systems. Sec-
tions 2.5 and 2.6 derive the GLE for twice continuously differentiable stationary processes.
Section 2.7 provides a means of computing certain GLE memory kernels using the fast
Fourier transform (FFT). Section 2.8 closes with concluding remarks.

2.2 Hamiltonian Dynamics on Hilbert Spaces

We begin this section with a motivating example. Suppose that each possible state of a
physical system is represented by a function of the form

Γ : R+ → R2, Γ(x) = (q(x), p(x)).
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in the Hilbert space H defined by the inner product

⟨Γ1,Γ2⟩ =
∫ ∞

0

x ·
[
q1(x)q2(x) + p1(x)p2(x)

]
dx, Γ1,Γ2 ∈H .

In the context of Hamiltonian systems, we may think of q = q(x) as the positions of
particles indexed by x ∈ R+, for which p = p(x) denotes the (conjugate) momenta. In this
context, Γ = Γ(x) is called an element of the phase space H .

Suppose that H is used to model an interacting particle system in thermal equilibrium,
i.e., for which no energy is exchanged between the system and its surrounding environment.
Then the laws of physics governing the system are determined by a function

H : R5 → R; (x, q, p,∇q,∇p) 7→ H(x, q, p,∇q,∇p)

and the corresponding functional

H : H → R, H(Γ) =
∫ ∞

0

H(x, q(x), p(x), d
dx
q(x), d

dx
p(x))dx.

These are called, respectively, the Hamiltonian density (H) and the Hamiltonian energy
function (H) of the system. Let Γt = Γt(x) = (qt(x), pt(x)) denote the state of the system
at time t. Then the time evolution of the system is given by

q̇t(x) =
∂

∂t
qt(x) = +

∂

∂p
H(Γt),

ṗt(x) =
∂

∂t
pt(x) = −

∂

∂q
H(Γt),

(2.5)

where ∂
∂q
H(Γ) = ∂

∂q
H(q, p) denotes the functional derivative with respect to q,

∂

∂q
H(Γ) : x 7→ ∂

∂q
H(x, q(x), p(x), d

dx
q(x), d

dx
p(x))

− ∂

∂x

[
∂

∂∇qH(x, q(x), p(x),
d
dx
q(x), d

dx
p(x))

]
,

and ∂
∂p
H(Γ) is similarly defined.

The precise conditions under whichH defines a valid physical system are given by Cher-
noff and Marsden (1975). As a concrete example, we take H to be defined by the norm of
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H , such that
H(Γ) = 1

2
⟨Γ,Γ⟩ = 1

2
∥Γ∥2.

The Hamiltonian equations of motion (2.5) then become

q̇t = x · pt(x),
ṗt = −x · qt(x),

(2.6)

for which the solution in terms of the initial state of the system Γ0 = (q0, p0) is[
qt(x)
pt(x)

]
=

[
cos(xt) sin(xt)
− sin(xt) cos(xt)

] [
q0(x)
p0(x)

]
. (2.7)

More compactly, we may express (2.7) as Γt = Φt(Γ0), and note that

Φu ◦ Φt = Φu+t, ∥Γt∥ = ∥Γ0∥.

In most systems of interest, the complete state Γ is far too large to observe directly.
Instead, attention is focused on specific observables of the system, which are mathemati-
cally represented as functionals of the form X : H → R. The simplest of these functionals
are linear and continuous, the complete set of which is H ′, the continuous dual space
of H . By the Riesz representation theorem, H and H ′ are isometrically isomorphic.
In particular, there is a unique f = (α, β) ∈ H such that X(Γ) = ⟨f,Γ⟩. To simplify
presentation, we shall identify X with f whenever confusion can be avoided, thus writing
X(Γ) = ⟨X,Γ⟩. Similarly, we do not distinguish between the inner product on H or H ′,
i.e., ⟨·, ·⟩ = ⟨·, ·⟩H = ⟨·, ·⟩H ′ .

For a given observable X ∈ H ′, let us define the trajectory of X as the family of
observables {Xt ∈H ′ : t ≥ 0} such that

Xt : Γ→ X(Γt) = X(Φt(Γ)).

Then for X = (α, β) we have

Xt(Γ) = ⟨X,Γt⟩

=

∫ ∞

0

x
[
α(x) β(x)

] [ cos(xt) sin(xt)
− sin(xt) cos(xt)

] [
q0(x)
p0(x)

]
dx

= ⟨Φ−t(X),Γ0⟩,
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and

⟨Xu+t, Xu⟩ = ⟨Φ−u−t(X),Φ−u(X)⟩

=

∫ ∞

0

x ·
[
α(x) β(x)

] [cos(xt) − sin(xt)
sin(xt) cos(xt)

] [
α(x)
β(x)

]
dx

=

∫ ∞

0

cos(xt) ·
[
xα2(x) + xβ2(x)

]
dx,

such that ⟨Xu+t, Xu⟩ does not depend on u. In fact, let C(t) denote the autocorrelation
function (ACF) of any continuous stationary process. Then there exists (e.g., Khintchine,
1934; Itô, 1954) a non-negative symmetric finite measure µ(ω) such that

C(t) = 2

∫ ∞

0

cos(ωt)dµ(ω).

If C(t) arises from a continuous stationary process which is purely nondeterministic in the
sense of its Wold decomposition (Cramér, 1961), then µ(ω) is an absolutely continuous
measure with dµ(ω) = S(ω)dω (Cramér, 1967). Thus, let α(x) = β(x) = (S(x)/x)1/2.
Then for X = (α, β) we have

⟨Xu+t, Xu⟩ =
∫ ∞

0

cos(xt) ·
[
xα2(x) + xβ2(x)

]
dx

= 2

∫ ∞

0

cos(xt) · S(x)dx = C(t).
(2.8)

Thus, any autocorrelation function C(t) arising for a power spectral density (PSD) S(ω)
can be expressed as C(t) = ⟨Xu+t, Xu⟩ for a suitably chosen observable X ∈H ′.

2.2.1 Hamiltonians and C0-Semigroups

In light of the connection between ACFs and observables established in the motivating
example above, we pose the following questions:

Q1. The representation result (2.8) is for the specific Hamiltonian system given by (2.6).
In the same spirit, we can show the result also holds for some other well-known
Hamiltonians (see Appendix A.2). Our question then becomes: To what extent does
the result generalize to other Hamiltonian systems?

13



Q2. The result only reveals a connection between Hamiltonians and ACFs. How can this
be extended to stochastic processes in Hamiltonian systems?

In order to address Q1, we now give the precise definition of Hamiltonian systems on
infinite-dimensional separable Hilbert spaces established by Chernoff and Marsden (1975).

Definition 2.2.1. Let {Φt : t ≥ 0} be a family of bounded linear operators defined on a
Banach space B (real or complex) satisfying the following conditions:

(i) Φ0 = I, the identity operator.

(ii) Φu ◦ Φt = Φu+t.

(iii) Φt is strongly continuous, i.e., limt→0+ ∥Φtx− x∥ = 0 for every x ∈ B.

Then Φt is called a C0-semigroup on B. Furthermore, consider the (possibly unbounded)
linear operator L defined by

Lx = lim
h→0+

1

h
(Φhx− x) (2.9)

with domain dom(L) consisting of all x ∈ B for which the limit (2.9) exists. Then L is
called the infinitesimal generator of Φt.

The generators of C0-semigroups are characterized by the Hille–Yoshida theorem (Engel
and Nagel, 2000). Of particular interest to us is when L is a skew-adjoint operator on a
complex Hilbert space H , in which case there is a one-to-one correspondence between such
L and unitary C0-semigroups, i.e., those for which ⟨Φtx,Φty⟩ = ⟨x, y⟩, due to the celebrated
Stone’s theorem (Stone, 1930, 1932; von Neumann, 1932; Reed and Simon, 1981; Lax, 2002)
We return to this point in Section 2.3. We shall also eventually require a number of results
about self-adjoint and skew-adjoint operators, which are detailed in Appendix A.1.

The notion of C0-semigroups allows us to give a firm theoretical foundation for the
so-called abstract Cauchy problem (ACP), i.e., for the solution of abstract differential
equations of the form

d
dt

Γt = LΓt, t ≥ 0

Γ0 = x, x ∈ B.
(2.10)

Indeed, the following is a well-known result in semigroup theory:
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Theorem 2.2.1 (Arendt et al., 2011, Theorem 3.1.12). Let L be the generator of a C0-
semigroup Φt. Then for x ∈ dom(L), Γt = Φtx is differentiable with respect to t and
satisfies the ACP (2.10), i.e., Γ0 = x and

lim
h→0+

∥ 1
h
(Γt+h − Γt)− LΓt∥ = 0, t ≥ 0.

Due to this result, the C0-semigroup Φt with generator L is typically denoted etL, a
convention we follow for the remainder of this Chapter.

Definition 2.2.2. Consider a Hilbert space H over the field F = R or C equipped with a
mapping ω : H ×H → F having the following properties:

(i) ω is a bilinear form.

(ii) ω(Γ,Γ) = 0 for all Γ ∈H .

(iii) ω(Γ1,Γ2) = 0 for all Γ2 ∈H implies that Γ1 = 0.

Then ω(·, ·) is called a symplectic form.

Symplectic forms and C0-semigroups are the two main ingredients for characterizing
“linear” Hamiltonian systems on infinite-dimensional separable Hilbert spaces.

Theorem 2.2.2 (Chernoff and Marsden, 1975, Theorem 1). Let H be an infinite-dimensional
separable Hilbert space over R with symplectic form ω(·, ·), and let L be the generator of a
C0-semigroup on H . If L is skew-symmetric with respect to ω,

ω(LΓ1,Γ2) = −ω(Γ1,LΓ2), Γ1,Γ2 ∈ dom(L),

then the ACP (2.10) solved by Γt = etLx describes the dynamics of a Hamiltonian system
whenever x ∈ dom(L), with the Hamiltonian energy function given by

H(Γ) = 1

2
ω(LΓ,Γ).

For the remainder of the paper, we shall refer to linear Hamiltonian systems on real
Hilbert spaces as constructed above simply as Hamiltonian systems.
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As in the motivating example, the observables of these more general Hamiltonian sys-
tems are the elements of the continuous dual space H ′ of H , and the trajectory of an
observable X ∈H ′, is the family of observables {Xt ∈H ′ : t ≥ 0} such that

Xt : Γ→ X(Γt) = X(etLΓ).

When L is skew-adjoint, since its generated C0-semigroup is unitary (e.g. Hall, 2013), by
the property of semigroup, it immediately follows that

(
etL
)†

=
(
etL
)−1

= e−tL on H
where † denotes adjoint as explained in Appendix A.1, we may further have

Xt(Γ) = ⟨X, etLΓ⟩ = ⟨e−tLX,Γ⟩,

and thus Xt = e−tLX. But when L is unbounded in general, we may only define the adjoint
semigroup

(
etL
)† on the adjoint dual space of H . For details, see van Neerven (1992).

Moreover, we have the following:

Proposition 2.2.1. Consider an observable X ∈H ′ with corresponding trajectory {Xt =
e−tL : t ≥ 0. Then ⟨Xu+t, Xu⟩ is independent of u. In fact, C(t) = ⟨Xt, X0⟩ is continuous,
symmetric, and positive-definite, i.e.,

N∑
i=1

C(ti − tj)zizj ≥ 0

for any choice of t1, . . . , tN ∈ R and z1, . . . , zN ∈ C. Thus, C(t) is an autocorrelation
function.

The proof is given in Appendix A.3.1.

2.3 Hamiltonian Representation of Autocorrelation Func-
tions

Let H denote the real infinite-dimensional separable Hilbert space underlying the Hamil-
tonian system defined by the symplectic form ω(·, ·) and the Liouville operator L. For
the results to follow, we restrict our attention to Hamiltonian systems in which H can be
embedded into a complex Hilbert space HC , in the sense that x ∈ H ⇐⇒ x ∈ HC , in
such a way that L is a skew-adjoint operator of HC .
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That is, let HC = {VC , ⟨·, ·⟩C} be a complex separable Hilbert space with inner product
⟨·, ·⟩C . Then HC can be constructed from a “base” real Hilbert space H0 = {V0, ⟨·, ·⟩0},
with VC = V0 × V0 and

⟨Γ1,Γ2⟩C = ⟨(q1, p1), (q2, p2)⟩C
= ⟨q1, q2⟩0 + ⟨p1, p2⟩0 + i ·

(
⟨q1, p2⟩0 − ⟨q2, p1⟩0

)
= ⟨Γ1,Γ2⟩R + i · ω(Γ1,Γ2),

where ⟨·, ·⟩R is the inner product on the direct sum (real) Hilbert space HR = H0 ⊕H0,
and ω(·, ·) is a symplectic form.

Now suppose that L is a skew-adjoint operator on HC . Then by Stone’s theorem etL

is a C0-semigroup on HC , and it is straightforward to check that it is also a C0-semigroup
on HR. Moreover, by the definition of skew-adjointness we have

ω(LΓ1,Γ2) = −ω(Γ1,LΓ2), ∀ Γ1,Γ2 ∈ dom(L).

Thus, etL generates the Hamiltonian equations of motion on the real Hilbert space HR by
Chernoff and Marsden (1975) Theorem 1.

Example 1. The Hamiltonian system in the motivating example can be recast into the
form above with

H0 =

{
f : R+ → R :

∫ ∞

0

x|f(x)|2dx <∞
}

and

L =

[
0 x
−x 0

]
, dom(L) =

{
(q, p) ∈H0 ⊕H0 :

∫ ∞

0

x2[q(x)2 + p(x)2]dx <∞
}
.

Example 2. A famous example of an infinite-dimensional Hamiltonian system is defined
as follows (Chernoff and Marsden, 1975). Let Hk denote the Sobolev space with square-
integrable k-th order derivatives (details in Appendix A.2.1 and A.2.2). The Hilbert space
underlying the Hamiltonian system is

H = H1 ⊕ L2,

the symplectic form is

ω((q1, p1), (q2, p2)) = ⟨q1, p2⟩ − ⟨q2, p1⟩,
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where ⟨·, ·⟩ denotes the L2 inner product, and the Liouville operator is

L =

[
0 I

−m2I + ∂2x 0

]
, dom(L) = H2 ⊕H1,

where ∂2x is the second order differential operator. The Hamiltonian equations of motion
are

q̇t = pt

ṗt = ∂2xqt −m2qt,

or upon rearranging (and with slightly different notation),(
∂2

∂t2
− ∂2

∂x2
+m2

)
q(x, t) = 0.

This is known as the Klein–Gordon equation in physics. For m = 0, it reduces to the wave
equation. In either case, the Hamiltonian system cannot be embedded as desired into a
complex Hilbert space HC.

In Proposition 2.2.1, we showed that for any observable X ∈ H ′, ⟨Xu, Xt⟩ is the co-
variance function of a stationary process with autocorrelation function C(t) = ⟨Xt, X0⟩. By
Bochner’s theorem (e.g., Lax, 2002, Theorem 8, Chapter 14), any autocorrelation function
C(t) is the Fourier transform of a nonnegative, symmetric measure ν, such that

C(t) =
∫
R

eitωdν(ω).

It turns out that a skew-adjoint operator L on a complex Hilbert space HC can also be
associated with a nonnegative measure µ on R, as a consequence of the spectral theorem
(Appendix A.1.1 and A.1.2). This leads us to the answer of Q1, i.e., to characterize
exactly when an autocorrelation function can be expressed as the inner product between
observables along a trajectory {Xt ∈H ′}.
Theorem 2.3.1. Consider the real Hamiltonian system {H , ω(·, ·),L}, and suppose it
can be embedded in the complex Hilbert space HC on which L is skew-adjoint. Then an
autocorrelation function

C(t) =
∫
R

eitωdν(ω)

can be represented as ⟨e−tLX,X⟩ for an observable X ∈ H ′ if and only if ν is absolutely
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continuous with respect to the measure µ associated with {HC ,L} via the spectral theorem.

The proof is given in Appendix A.3.2.

We close this Section by noting that a wide variety of ACFs can be represented by
the wave equation and Klein–Gordon Hamiltonian systems of Example 2 as shown in
Appendix A.2. That being said, for the remainder of this Chapter we assume that whenever
we have a Hamiltonian system {H , ω(·, ·),L}, the real Hilbert space H can be embedded
in a complex Hilbert space HC on which L is skew-adjoint.

2.4 Stochastic Processes on Hamiltonian Systems

The basic idea for constructing a stochastic process on a Hamiltonian system is merely
to sample the initial phase-space variable Γ0 from some distribution p(Γ0). Then for any
observable X ∈H ′,

Xt(Γ) = ⟨e−tLX,Γ⟩
is a well-defined stochastic process.

Ideally, we would like to do this in such a way that

cov(Xs, Xt) = ⟨Xs, Xt⟩,

i.e., such that the covariance function of the stochastic process coincides with the inner
product of the corresponding observable trajectory. However, this turns out to be im-
possible even in the Gaussian case (e.g., Gross, 1967). Rather, one must proceed via the
construction of abstract Wiener measures (Gross, 1967). Such a construction guarantees
that there exists a space H ∗ ⫌ H along with a bilinear form ⟨·, ·⟩∗ : H ×H ∗ → C such
that

⟨·, f⟩∗ = ⟨·, f⟩, f ∈H , (2.11)

and a probability distribution p(Γ∗) on H ∗ such that for any X1, . . . , XN ∈H , sampling
Γ∗ ∼ p(Γ∗) results in

(⟨X1,Γ
∗⟩∗, . . . , ⟨XN ,Γ

∗⟩∗) ∼ N (0,Σ), Σij = ⟨Xi, Xj⟩.

Consequently, ⟨e−tLX,Γ∗⟩∗ is a Gaussian stochastic process with autocorrelation ⟨e−tLX,X⟩.
In Appendix A.3.3, we generalize this idea to address Q2:
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Theorem 2.4.1. Consider the real Hamiltonian system {H , ω(·, ·),L}, and suppose it can
be embedded into the complex Hilbert space HC on which L is skew-adjoint. Let

C(t) = ⟨e−tLX,X⟩

be an autocorrelation function obtained from a given X ∈ H ′. Then for any continuous
stationary process Xt having autocorrelation function C(t), there exists a space H ∗ ⫌ H ,
a bilinear form ⟨·, ·⟩∗ : H ×H ∗ → C satisfying (2.11), and a probability distribution p(Γ∗)
on H ∗ such that

Xt = ⟨e−tLX,Γ∗⟩∗, Γ∗ ∼ p(Γ∗).

2.5 Mori–Zwanzig Projections

The GLE for Hamiltonian systems is obtained by a procedure known as the Mori–Zwanzig
projection technique (Mori, 1965b; Zwanzig, 1973, 2001; Nordholm and Zwanzig, 1975).
The results in this section, having been derived in the references above and below for the
N -particle setting in irreversible statistical mechanics (Zwanzig, 1960, 1961), are extended
here to the setting of infinite-dimensional (separable) Hilbert spaces.

Definition 2.5.1. Consider the observables A1, . . . ,Ad ∈H ′. The projection operator P
is the operator on H ′ defined by

PB = ⟨B,A⟩Σ−1
A A† , B ∈H ′

where

A = [A1, . . . ,Ad]1×d ,
⟨B,A⟩ = (⟨B,A1⟩, . . . , ⟨B,Ad⟩)1×d
ΣA i,j = ⟨Ai,Aj⟩, i, j = 1, . . . , d.

Projection operators have the following elementary properties (proved in Appendix
A.3.4 and A.3.5. ):

Proposition 2.5.1. The projection operator P and Q = I − P are both self-adjoint.

Proposition 2.5.2. The projection operator P and PL are bounded. In particular, we
have ∥P∥ = 1.
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By the bounded perturbation theorem (Engel and Nagel, 2000, III.1.3), QL = L−PL
is the generator of a strongly continuous semigroup etQL. Therefore, we can well establish
the exponential operators etPL and etQL as strongly continuous semigroups. etQL is also
known as the orthogonal dynamics whose existence and uniqueness for classical dynamic
systems under Mori’s projection operator has been proved by Givon et al. (2004). Indeed,
for the development to follow we require the operator identity

etL = et(I−P)L +

∫ t

0

e(t−s)LPLes(I−P)Lds, (2.12)

which is valid on dom(L) provided that A ∈ dom(L). Identity (2.12) is a type of Nakajima–
Zwanzig equation (Nakajima, 1958; Zwanzig, 1960), and is also called a Dyson operator
identity (Zhu et al., 2018). Indeed, it can be transformed into the Dyson-Phillips series
using the Volterra operator (e.g., Engel and Nagel, 2000, III.1.8-10). Hereinafter, we will
just call it the Zwanzig operator identity.

It is rigorously proved in Appendix A.3.6.

2.5.1 Mori–Zwanzig Formalism

Consider the observables A = (A1, . . . ,Ad),B ∈ dom(L) ⊂ H ′ and suppose that LB ∈
dom(L).

Let us start with the abstract Cauchy problem,

Ḃ(t) = d

dt
B(t) = LB(t), B(0) = B. (2.13)

By Theorem 2.2.1, since L generates a strongly continuous unitary group, (2.13) has a
unique classical solution

B(t) = etLB(0), B(t) ∈ dom(L). (2.14)

Substituting (2.14) into (2.13) and noting that etL and L commute, we obtain

d

dt
B(t) = etLLB(0) = etL (P + I − P)LB(0) = etLPLB(0) + etL (I − P)LB(0). (2.15)
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First, we focus on the first term on the right side, i.e.

etLPLB(0) = etLP (LB(0)) = etL⟨LB(0),A(0)⟩Σ−1
A(0)A

†(0)

= ⟨LB(0),A(0)⟩Σ−1
A(0)e

tLA†(0)

= ΩA†(t),

where

Ω = ⟨LB(0),A(0)⟩Σ−1
A(0),

A(t) = etLA(0) =
[
etLA1(0), . . . , e

tLAd(0)
]
= [A1(t), . . . ,Ad(t)] .

Now let us turn our attention to the second term on the right side of (2.15). Note that
(I − P)LB(0) ∈ dom(L), and thus applying the operator identity (2.12) to it gives

etL(I − P)LB(0) = F (t) +

∫ t

0

e(t−s)LPLF (s)ds

where
F (t) = et(I−P)L(I − P)LB(0). (2.16)

Moreover, ∫ t

0

e(t−s)LPLF (s)ds =
∫ t

0

e(t−s)L⟨LF (s),A(0)⟩Σ−1
A(0)A

†(0)ds

=

∫ t

0

⟨LF (s),A(0)⟩Σ−1
A(0)e

(t−s)LA†(0)ds

=

∫ t

0

⟨LF (s),A(0)⟩Σ−1
A(0)A

†(t− s)ds

= −
∫ t

0

K(s)A†(t− s)ds

= −
∫ t

0

K(t− s)A†(s)ds,

where we define the 1× d matrix

K(t) = −⟨LF (t),A(0)⟩Σ−1
A(0) = ⟨F (t),LA(0)⟩Σ−1

A(0).
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Finally, we combine all the pieces together to rewrite (2.15) as the Mori–Zwanzig projection

d

dt
B(t) = ΩA†(t)−

∫ t

0

K(t− s)A†(s)ds+ F (t).

The following properties of the force term F (t), proved in Appendix A.3.7, shall become
useful momentarily.

Proposition 2.5.3. The random force F (t) is second-order stationary in the sense that
⟨F (s+ t), F (s)⟩ = ⟨F (t), F (0)⟩ is an ACF. Moreover, we have ⟨F (t),A(0)⟩ = 0.

2.6 The GLE Representation Theorem

Consider a Hamiltonian system {H , ω(·, ·),L} on which L is skew-adjoint. Let X ∈ H ′

denote an observable of which the corresponding autocorrelation function

CX(t) = ⟨e−tLX,X⟩

is that of a twice continuously differentiable stationary process.

Lemma 2.6.1. For the Hamiltonian system above, let X ∈ H ′ such that ⟨e−tLX,X⟩
is the autocorrelation of a k-times continuously differentiable stationary process. Then
LmX ∈ dom(L) for m = 0, . . . , k − 1.

This is proved in Appendix A.3.8. With Lemma 2.6.1 in hand, we may derive the GLE
of Theorem 2.1.1 for the trajectory Xt by simply applying the Mori–Zwanzig formalism
of Section 2.5.1 with A = [X, Ẋ] and B = Ẋ, where Ẋ = LX. Indeed, it is verified in
Appendix A.3.9 that

Ω =
(

⟨X,Ẍ⟩
⟨X,X⟩ , 0

)
, ΩA†(t) = −⟨Ẋ, Ẋ⟩⟨X,X⟩X(t),

K(t) =
(
0, ⟨F (t),Ẍ⟩

⟨Ẋ,Ẋ⟩

)
, K(s)A†(t− s) = CF (s)

⟨Ẋ, Ẋ⟩
Ẋ(t− s),

where Ẍ = LẊ and CF (t) = ⟨F (t), F (0)⟩. Putting it all together we have

Ẍ(t) = −θX(t)−
∫ t

0

γ(t− s)Ẋ(s)ds+ F (t), (2.17)
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where θ = ⟨Ẋ, Ẋ⟩/⟨X,X⟩ and γ(t) = CF (t)/⟨Ẋ, Ẋ⟩. If we multiply both sides by m =
kBT/⟨Ẋ, Ẋ⟩, we obtain the standard GLE (2.4)

mẌ(t) = −κX(t)−
∫ t

0

K(t− s)Ẋ(s)ds+ F̃ (t), (2.18)

where

κ =
kBT

⟨X,X⟩ , F̃ (t) = mF (t), K(t) = kBT ·
CF (t)
⟨Ẋ, Ẋ⟩2

,

and we may verify the fluctuation-dissipation theorem (FDT) (2.2):

CF̃ (t) = ⟨F̃ (t), F̃ (0)⟩ = m2⟨F (t), F (0)⟩ =
(

kBT

⟨Ẋ, Ẋ⟩

)2

CF (t) = kBT ·K(t).

2.6.1 Memory Kernel in the Laplace Domain

So far in the GLE of Theorem 2.1.1 we have obtained the explicit formulas for m and κ,
but not for the memory kernel K(t). We now produce such a result by passing to the
Laplace domain.

Taking the inner product of (2.18) with X(0) we obtain

m⟨Ẍ(t), X(0)⟩ = −κ⟨X(t), X(0)⟩ −
∫ t

0

K(t− s)⟨Ẋ(s), X(0)⟩ds, (2.19)

where we have eliminated the force term via ⟨F̃ (t), X(0)⟩ = m⟨F (t), X(0)⟩ = 0 as shown
in Proposition 2.5.3.

Next, we make use of the following lemma proved in Appendix A.3.10:

Lemma 2.6.2. For ψ, ϕ ∈ H ′ let Cψ,ϕ(t) = ⟨e−tLψ, ϕ⟩. If ψ ∈ dom(L), then Cψ,ϕ(t) is
continuously differentiable and

d

dt
Cψ,ϕ(t) = ⟨e−tLLψ, ϕ⟩.
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Thus, we may rewrite (2.19) as

mC̈X(t) = −κCX(t)−
∫ t

0

K(t− s)ĊX(s)ds, (2.20)

where ĊX(t) = d
dt
CX(t) and C̈X(t) = d2

dt2
CX(t).

We now wish to take the Laplace transform of (2.20), and justify why this can be
done term by term. First, we note that K(t) is an ACF. Thus, we have the spectral
representation

K(t) =

∫
R

e−itλdµ(λ),

and for z = a+ ib ∈ C, note that∣∣∣∣∫ ∞

0

e−ztK(t)dt

∣∣∣∣ = ∣∣∣∣∫ ∞

0

e−zt
∫
R

e−itλdµ(λ)dt

∣∣∣∣
≤
∫ ∞

0

e−|a|t
∫ ∣∣e−it(b+λ)∣∣ dµ(λ)dt ≤ ∫ ∞

0

e−|a|tM0dt

where the finite constant M0 <∞ just depends on µ(λ). Therefore, the region of (absolute)
convergence (ROC) of the Laplace transform

L{K(t)}(z) =
∫ ∞

0

e−ztK(t)dt

is the right half plane {z ∈ C : ℜ{z} > 0} where Ǩ(z) = L{K(t)}(z) should be analytic.
A slightly different argument is used to take the Laplace transform of CX(t), ĊX(t) and
C̈X(t) in Appendix A.3.11.

Let Ǩ(z) = L{K(t)}(z) and ČX(z) = L{CX(t)}(z). Then applying the Laplace trans-
form to (2.20) and using the properties of the Laplace transform for derivatives and con-
volutions yields

z2ČX(z)− zCX(0)− ĊX(0) = −θČX(z)− Ǩ(z) ·
(
zČX(z)− CX(0)

)
,

which we rearrange to obtain

Ǩ(z) =
−(z2 + θ)ČX(z) + zCX(0)

zČX(z)− CX(0)
. (2.21)
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Note that θCX(0) = ⟨Ẋ(0), Ẋ(0)⟩ = −C̈X(0) (see Appendix A.3.12), ĊX(0) = 0 and the
denominator zČX(z)−CX(0) ̸= 0 for {z ∈ C : ℜ{z} > 0} as explained in Appendix A.3.11.

2.7 Numerical Computation

In the previous section, we derived the GLE for a twice-continuously differentiable station-
ary process X(t) and obtained closed-form expression for the term in (2.17).

While the mere existence theorem would be sufficient to use any twice continuously
differentiable process as a valid physical model, these formulas can be used to provide
important physical insights via interpretation and analysis of the GLE parameters and
memory kernel.

In this respect, the Laplace transform representation of the memory kernel is of limited
practical applicability due to the difficulty of numerical inversion to recover the mem-
ory kernel K(t) in the time domain. To this end, we now provide a representation of
the memory kernel K(t) in the Fourier domain, for which numerical inversion is readily
accomplished by means of the fast Fourier transform (FFT).

Let C(t) be a general ACF and suppose C(t) ∈ L1(R), its Fourier transform is then
defined as

F{C(t)}(ω) =
∫ ∞

−∞
e−2πitωC(t)dt.

The Laplace transform L{C(t)}(z) is then well-defined in the ROC {z : ℜ{z} ≥ 0}, and a
simple calculation gives

F{C(t)}(ω) = 2 · ℜ{Č(2πiω)}, Č(z) = L{C(t)}(z)

where z = 2πiω and ℜ{·} denotes the real part of a complex number. This relation helps
us convert the explicit formula (2.21) in the Laplace domain to the Fourier domain (see
Theorem 2.7.1 below). However, the assumption that C(t) be integrable is quite restrictive.
If instead we only assume that C(t) ∈ L2(R) (this is indeed less restrictive than L1(R) since
C(t) is continuous), then F{C(t)}(ω) is well defined as the L2 limit of F{C(t)1(|t| ≤ N)}(ω)
where 1(E) is the indicator function of set E. Furthermore, we can establish the following
limit

Č(2πiω) = lim
a→0+

Č(a+ 2πiω) = F{1(t)C(t)}

in either the L2 sense or in the pointwise (a.e. for every ω) sense where 1(t) is the Heaviside
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function, i.e.

1(t) =


1, x > 0
1
2
, x = 0

0, x < 0

.

Please see Appendix A.3.13 for a complete discussion.

So for numerical purposes, let us assume for the given process x(t), the ACF C(t),
its time derivative Ċ(t) = dC(t)/dt, and the memory kernel K(t) are all in L2(R). Then
we can safely carry out all the calculations in Appendix A.3.14 to derive another explicit
representation formula of the memory kernel K(t) for Theorem 2.1.1, i.e.

Theorem 2.7.1 (Fourier version of Theorem 2.1.1). Let x(t) be any twice differentiable
stationary process. Suppose its ACF Cx(t), Ċx(t) ∈ L2(R) and the memory kernel K(t) ∈
L2(R). Then there exists an interacting particle system for which x(t) is one of the observ-
ables, and x(t) satisfies the linear GLE (2.4) with parameters explicitly given by

κ =
kBT

Cx(0)
, m = − kBT

C̈x(0)

K(ω) = F{K(t)}(ω) = 1

πω
ℑ
{

1

ψ̂(ω)

}
,

where
ψ̂(ω) = − 1

kBT
F{1(t) · Ċx(t)}.

2.7.1 Example: Gaussian Autocorrelation Function

To illustrate the computational result of Theorem 2.7.1, we consider the example of a
stationary process x(t) with ACF given by

Cx(t) = σ2e
− t2

2η2 , σ, η > 0. (2.22)

By taking its Fourier transform F{·}, we can get the analytic PSD which is again a
Gaussian kernel

Sx(ω) = F {Cx(t)} (ω) =
√
2πσ2ηe−2π2η2ω2

.

Our goal is to estimate the GLE parameters m, κ, and K(t) using either Cx(t) or Sx(ω),
which is often available in practice.
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Analytically, we have

d

dt
Cx(t) = −σ2 t

η2
e
− t2

2η2 ,

d2

dt2
Cx(t) = −

σ2

η2
d

dt

(
te

− t2

2η2

)
= −σ

2

η2

(
1− t2

η2

)
e
− t2

2η2 .

Thus, we can obtain κ = kBT/Cx(0) = kBT/σ
2 and m = −kBT/C̈x(0) = kBTη

2/σ2

analytically. In practice, if Cx(t) and its derivatives are not analytically available (whereas
Sx(ω) is known to us), then we could obtain them using numerical integration as follows

κ =
kBT∫∞

−∞ Sx(ω)dω

m =
kBT∫∞

−∞(2πω)2Sx(ω)dω

where the denominators, which are derived from the fact that Ċx(t) = F−1{2πiωSx(ω)}
and C̈x(t) = F−1{(2πiω)2Sx(ω)}, can be approximated by Riemann sums numerically (or
by some other more advanced numerical methods).

As for the memory kernel

F{K(t)}(ω) = 1

πω
ℑ
{

1

ψ̂(ω)

}
,

For the Gaussian ACF (2.22) we have

ψ̂(ω) =

∫ ∞

0

e−2πiωt σ2t

kBTη2
e
− t2

2η2 dt, (2.23)

which can be obtained analytically using the Dawson function and associated error func-
tions (Ng and Geller, 1969). In general, we can estimate K(ω) numerically from either
Ċx(t) or Sx(ω) as described below.

For an arbitrary infinite sequence {an : n ∈ Z}, let a[N ] = (a0, . . . , aN) and a[±N ] =
(a0, . . . , aN , a−(N−1), . . . , a−1). Let FFT denote the discrete Fourier transform operator,

y[N−1] = FFT(x[N−1]) ⇐⇒ yk =
N−1∑
n=0

xne
−2πikn/N ,
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and iFFT denote its inverse transform,

x[N−1] = iFFT(y[N−1]) ⇐⇒ xk =
1

N

N−1∑
n=0

yne
2πikn/N .

For a given sample size N and sampling frequency fs = 1/∆t, we can estimate K(t) at
time points t[N ] = (0,∆t, . . . , N∆t) by following Algorithm 2.1.

Algorithm 2.1 Numerical algorithm to recover memory kernel K(t).

1: if Ċx(t) is analytically available then
2: ψ[±N ] ← −(kBT )−1Ċx(t[±N ]), where tn = n∆t.
3: else
4: ψ[±N ] ← −(kBT )−1 · iFFT{2πif[±N ] · Sx(f[±N ])}, where fn = n

N
fs
2
.

5: end if
6: ψ̂[±N ] ← FFT{1(t[±N ] · ψ[±N ]}
7: K[±N ] ← iFFT{(πf[±N ])

−1 · ℑ{1/ψ̂[±N ]}}
8: Keep the symmetric half K[N ] as the approximation to K(t) at time points t[N ].

In order to assess the accuracy of Algorithm 2.1, we verify that the estimated GLE
parameters recover the original PSD Sx(ω) by

Sx(ω) =
kBT ·K(ω)∣∣∣κ+ 2πiω · K̂(ω)− 4π2ω2

∣∣∣2
where K(ω) (i.e., the memory kernel in the Fourier domain K(f[±N ])) has already been
obtained in Algorithm 2.1, and K̂(ω) = F{1(t)·K(t)}(ω) can be numerically approximated
by using FFT and iFFT, i.e.,

K̂(f[±N ]) = FFT{1[±N ]K[±N ]} = FFT{1[±N ] · iFFT{K(f[±N ])}}.

Figure 2.1 displays estimates of K̂(f) and Sx(f) computed for T = 298K, σ = 0.01m,
η = 0.0001 sec, with N = 1000 000 samples and sampling frequency fs = 100 000Hz. If we
approximate (2.23) numerically using the FFT, we can only recover it in the frequency do-
main up to about 10 000Hz, the result may suffer severe numerical errors for the ultra-high
frequency (due to the condition number (Trefethen and Bau, 1997) inflated by 1/ψ̂(ω)), as
shown in Figure 2.1a. But note that in the ultra-high frequency range over 10 000Hz, the
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PSD decays dramatically and is essentially too small to be numerically significant. If we
truncate the frequency up to about 10 000Hz, we can see the recovered PSD is perfectly
matched up with the theoretical one, as shown by Figure 2.1b.

If we calculate (2.23) analytically using Dawson function and replace ψ̂(ω) obtained at
the step 4 in Algorithm 2.1 with this analytic result, then the recovered K(ω) is exact for
all the frequencies ω ∈ R, as shown in Figure 2.1c. We can also compare the recovered
PSD using the analytic GLE parameters with the theoretical PSD shown by Figure 2.1d.

2.8 Discussion

We rigorously showed that any twice differentiable stationary process x(t) can be used to
model nanoscopic phenomena without violating the fundamental laws of physics. Inference
about x(t) can be performed using any statistical method of choice, with the GLE param-
eters of scientific interest being recoverable post-inference using the formulas presented. It
might sound “trivial” at first glance, but in a deeper sense, our result establishes a fun-
damental connection between the dynamics of motion in an abstract infinite dimensional
Hamiltonian space and any continuous stationary process defined on a probability measure
space, which allows us to model the single-particle dynamics without too much restriction.

One might question however if our result is still valid for non-stationary processes.
Indeed, we believe our result can be extended to any continuous increment stationary
process. However, a mathematically rigorous and complete proof is the subject of future
research.
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Figure 2.1: (a) Memory kernel numerically recovered by FFT. (b) Theoretical PSD v.s. the
recovered PSD using numerical parameters. (c) Memory kernel analytically recovered using
Dawson function. (d) Theoretical PSD v.s. the recovered PSD using analytic parameters.
All the figures are displayed on the log-log scale.
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Chapter 3

Parametric Spectral Density Estimation
for High-Throughput Data

3.1 Introduction

3.1.1 Background

Over the last two decades, development of scientific instruments has opened a new era
in biological research, allowing scientists to observe and measure biophysical dynamics
with extremely short time interval as well as ultra-precision. For example, an atomic
force microscope (AFM) can be used to produce ultra-high resolution measurements of
nanoscopic objects and forces (Binnig et al., 1986; Kirmizis and Logothetidis, 2010) which
now becomes an indispensable tool for various scientific studies in biophysics, biomedical
engineering, chemical engineering and molecular biology, etc. (Radmacher, 1997; Hoffmann
et al., 2001; Evans and Calderwood, 2007; García et al., 2007; Sugimoto et al., 2007;
Alsteens et al., 2008; Yu et al., 2017). A huge amount of time series data can be recorded
in those advanced experiments at high-frequency and for extended periods of time. Such
“high-throughput” (HTP) data give us unprecedented opportunities to probe the molecular
mechanisms of many biological processes, yet leading statisticians to theoretical difficulties
in estimation and inference.

As such “high-throughput” (HTP) data typically span timescales over several orders of
magnitude, often it is convenient to analyze them in the frequency domain. That is, suppose
the phenomenon of interest Xt is a continuous-time mean-zero stationary Gaussian process
with autocorrelation C(t) = cov(Xs, Xs+t). Then a frequency domain analysis involves the
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Fourier transform of the autocorrelation, namely the power spectral density (PSD) function
of Xt,

S(f) =
∫ ∞

−∞
e−2πitfC(t)dt = F{C(t)}. (3.1)

While the large size of HTP datasets can be dealt with by some nonparametric PSD
estimation techniques (e.g., Bartlett, 1950; Welch, 1967; Thomson, 1982; Gasser et al., 1985;
Nason and Silverman, 1995), in many scientific applications a parametric spectral model
is still preferred. Many such models are members of the continuous-time autoregressive
fractionally integrated moving average (CARFIMA) family (Tsai and Chan, 2005), for
which the PSD is

S(f) = σ2

2π
Γ(2H + 1) sin(πH)× |f |1−2H |1 +∑q

k=1 βk(if)
k|2

|(if)p −∑p
m=1 αm(if)

m−1|2 , 0 < H < 1.

Some CARFIMA processes have a direct physical interpretation. A widely used model for
HTP data is the simple harmonic oscillator (SHO) model as discussed later in Section 3.5.
Others are able to capture diverse stochastic characteristics, such as long-range dependence
(H ̸= 1

2
), and the shape or size of multiple spectral modes. For narrowband features such

as the width and location of sharp spectral peaks, parametric methods can offer lower
estimation uncertainty than nonparametric alternatives. Therefore, CARFIMA and other
parametric models have found numerous applications in HTP data analysis, for example:
mRNA molecule tracking in live cells (Burnecki, 2012); identification of chemical bond
lengths and angles (Tsekov, 2016); electroencephalogram (EEG) signal processing (Sanei
and Chambers, 2013); persistence analysis of geophysical processes (Witt and Malamud,
2013); turbulence characterization of oceanographic surface drifters (Sykulski et al., 2016);
and modeling of X-ray emissions from neutron stars (Barret and Vaughan, 2012).

3.1.2 Statistical Challenges

While parametric spectral density estimation serves a wide range of scientific applications,
HTP data present two outstanding challenges as pointed out by Lysy et al. (2022). The
first relates to the theoretical foundation of statistical inference for the HTP data.

(i) The large size of HTP data can render likelihood-based estimation method pro-
hibitively expensive due to the intractability of time-domain maximum likelihood esti-
mation, i.e. the computationally-intensive extraction of C(t) from the PSD model (3.1).
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(ii) The existing asymptotic results in the field of time series are mostly based on fixed
time interval (i.e. with fixed sampling frequency). In recent literature, Fasen and
Fuchs (2013) studied the limiting behavior of the periodogram of high-frequency
sampled stable continuous-time autoregressive moving average (CARMA) processes.
However, the asymptotic properties of many important estimators as the sampling
frequency goes to infinity are still unknown.

The second challenge to PSD estimation is that HTP recordings are often contami-
nated by various sources of instrumental noise. While in many cases such noise can be
incorporated into the PSD model itself, the periodic noise inexorably emitted by electronic
circuitry cannot, and has been shown to severely affect PSD estimates (e.g., Lees, 1995;
Kast et al., 2003; Yang et al., 2009; Littenberg and Cornish, 2015).

To solve the second issue (which will not be covered in this thesis), Lysy et al. (2022)
proposed a two-stage noise elimination approach. The basic idea goes as follows:

(i) Adapt the variance-stabilized least-squares estimator of Moulines and Soulier (1999);
Fay et al. (2002) to the HTP regime, proving its consistency and asymptotic efficiency.

(ii) Eliminate electronic noise outliers via a novel statistical testing framework for hidden
periodicities, for which the Type-I error and false discovery rate can be controlled.
The two-stage procedure refits the least-squares estimator after the outliers have been
removed.

For details, please refer to Lysy et al. (2022) where extensive simulations and experimental
results are included for a popular spectral model for HTP data, a substantial reduction in
parameter mean squared error can be achieved. All the methods discussed and applied in
(Lysy et al., 2022) are implemented efficiently in the R package realPSD developed by Zhu
and Lysy (2021).

3.1.3 Our Contribution

In this Chapter, we establish the theoretical foundations of parametric statistical inference
for HTP data, then propose a robust and efficient parametric spectral density estimation
method based on the Whittle likelihood (Whittle, 1953a,b, 1957), which provides a good
approximation to the likelihood of a stationary Gaussian process and allows us to perform
parameter estimation directly in the frequency domain.
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Under mild regularity conditions, the Whittle estimator is consistent and asymptotically
efficient (Fox and Taqqu, 1986; Dahlhaus, 1989). However, for discrete-time data recorded
at sampling frequency fs, the Whittle estimator involves the discrete-time PSD

Sfs(f) =
1

fs

∞∑
n=−∞

e−2πinf/fsC(n/fs) =
∞∑

n=−∞

S(f + nfs), (3.2)

which typically is not available in closed form. Even if it were, the large volume of HTP
data can render the Whittle estimator prohibitively expensive (Nørrelykke and Flyvbjerg,
2010). Thus, practitioners routinely employ a much faster, nonlinear least-squares (NLS)
estimation method, at the cost of substantial reduction in statistical efficiency to ease the
computational burden. In order to avoid the efficiency loss incurred by using the NLS
method, another least-squares estimator based on the log-periodogram (LP) is proposed.
We will rigorously verify and discuss the asymptotic properties of all these estimators for
HTP data.

3.1.4 Outline

The remaining Chapter is organized as follows: In Section 3.2, we discuss some basic set-
tings of HTP data by introducing continuous processes and its sampled processes, revealing
the Poisson summation formula (3.2), a key relationship between the spectral densities of
the two processes. Besides, we also introduce the basic characterization of different pro-
cesses by using different types of memory, and discuss two different ways of describing the
high-frequency asymptotics and explain the rationale behind our choice of HTP settings
motivated by real experiments. Our main results will be shown in Section 3.3 and 3.4 where
we establish the consistency and asymptotic normality of the (bandlimited) Whittle esti-
mator and the log-periodogram estimator. In Section 3.5, we verify the theoretical results
based on a simulation study of a ubiquitous model in scientific research and a real-world
application of AFM calibration.

3.2 Sampling Continuous-Time Processes

In this chapter, we only discuss stationary processes which can always be represented as the
GLE according to our remarkable representation theorem revealed in Chapter 2. Inference
for nonstationary processes is beyond the scope of our current work. Gaussian processes are
often desirable enough in many applications and it can be fully characterized by its mean
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and autocovariance structure. In the following sections, all the processes under discussion
are implicitly assumed to be stationary and Gaussian.

3.2.1 Continuous Time

Consider the continuous-time stationary (zero-mean) Gaussian process {X(t) : t ∈ R} with
autocorrelation function C(t) = Cov(X(s), X(s+ t)). The power spectral density (PSD) of
X(t) is defined as the unique nonnegative symmetric integrable function S(f) satisfying

C(t) =
∫ ∞

−∞
e2πitfS(f) df.

Here, frequency f is measured in Hertz. When C(t) is integrable (e.g., when S(f) is
continuous), we have the Fourier inversion theorem

S(f) =
∫ ∞

−∞
e−2πitfC(t) dt.

3.2.2 Discrete Time

Suppose that X(t) is sampled at frequency fs = 1/∆t to produce the discrete-time pro-
cess {Xn = X(n∆t) : n ∈ Z}. The discrete-time PSD Sfs(f) is defined as the unique
nonnegative symmetric integrable function on f ∈ (−fs/2, fs/2] such that

C(n∆t) = C(n/fs) =
1

fs

∫ fs/2

−fs/2
e2πinf/fsSfs(f) df.

Here f is also measured in Hertz. When {C(n∆t)} is absolutely summable, we have the
Fourier inversion formula

Sfs(f) =
1

fs

∞∑
n=−∞

e−2πinf/fsC(n/fs).

Moreover, under appropriate conditions we have the Poisson summation formula

Sfs(f) =
∞∑

n=−∞

S(f + nfs).
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3.2.3 Finite Samples

Now suppose we have a finite sample of observations X = (X0, . . . , XN−1) and N = 2K+1.
The discrete Fourier transform of X is defined as the vector X̃ = (X̃−K , . . . , X̃0, . . . , X̃K)
such that

X̃k =
N−1∑
n=0

e−2πikn/NXn. (3.3)

As with each observation Xn we associate a time point tn = n · ∆t, with each Fourier
observation X̃k we associate a frequency fk = k/N · fs. Moreover, if FFT(·) denotes the
fast Fourier transform (FFT) algorithm function in R or MATLAB, then

FFT(X) = (X̃0, . . . , X̃K , X̃−K , . . . X̃−1).

3.2.4 Different Types of Memory

Time series data observed in experiments or real applications are rarely i.i.d., that is,
there are always some kind of (weak or strong) dependence between two observations
at different time points. There are many ways to generally characterize the dependence
involved in a stationary processes, e.g. α-mixing or m-dependence. But since we are
discussing stationary Gaussian processes, a more natural way of describing and measuring
dependence is by using second-order autocovariance structure (time-domain) or spectral
information (frequency-domain). Therefore, we have the following concepts:

Definition 3.2.1. A stationary process {Xn} with autocovariance function γ(k) is said to
have

short memory (short-range dependence) if∑
k∈Z

|γ(k)| <∞ and
∑
k∈Z

γ(k) > 0;

long memory (long-range dependence) if∑
k∈Z

|γ(k)| =∞;
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negative memory (antipersistence) if∑
k∈Z

|γ(k)| <∞ and
∑
k∈Z

γ(k) = 0.

Definition 3.2.2. Suppose the spectral density of a stationary process {Xn} exists, satis-
fying

Sfs(f) = |f |−2dg(f), f ∈ [−fs/2, fs/2], |d| < 1

2

where the sampling frequency fs is fixed and g(f) is a continuous function bounded away
from zero. The process is said to have negative memory, short memory or long memory,
if d ∈ (−1

2
, 0), d = 0 or d ∈ (0, 1

2
), respectively.

Note that for a long-memory process, the spectral density, provided it exists, is un-
bounded at the origin.

These concepts are adapted from two great resources on this subject, Beran et al.
(2013) and Giraitis et al. (2012). We only introduce them in a minimal way necessary
for our discussions in the following sections. For further details, please check out the
aforementioned references.

3.2.5 High-Frequency Asymptotics

High throughput data are collected in a situation where we have a very large (and also
flexible) sampling frequency (i.e., extremely short observation time interval) with an in-
creasing amount of observations, as shown in Figure 3.1. The limiting behavior of various
statistics in this situation is generally called “high-frequency asymptotics”. This topic is
rarely seen in the current literature. Generally, there are two ways to approach this type
of asymptotics:

(1) Assume the sampling frequency fs is a function of the total number of observations
N , i.e. N → ∞ and fs → ∞ happen simultaneously. Usually N∆t = N/fs ∼ Nα

with some rate α, as N →∞. Fasen and Fuchs (2013) adopted this kind of approach.
The advantage is that it allows us to view the asymptotic process in a straightforward
way. However, it usually incurs more mathematical complexity.1 Moreover, this type

1We may need to modify the standard triangular array argument to account for non-independent row
observations to get the asymptotic distribution. Besides, analysis on manifolds may be an indispensable
tool to get a rigorous result. Please see Fasen and Fuchs (2013).
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of asymptotics is not realistic at all in many physical experiments in which people
always need to set a sampling frequency first and then collect more and more data.
It is impossible to alter the sampling frequency after the experiment begins. This
kind of restriction in real experiments leads us to another procedure of asymptotics.

(2) Assume the sampling frequency fs is always chosen (can be arbitrarily large) before-
hand, and then we allow the observation number N to increase. Even though both
fs and N can increase to infinity, we always require taking N → ∞ under a given
fixed fs. This order indeed makes sense from a practitioner’s perspective because
in experiments we can only first determine the sampling frequency (no matter how
large it is) based on the error bound we would like to control and then collect more
and more observations.

fs

t

X(t)

fs = 1

fs = 2

fs = 4

fs = 8

Xn = X(n∆t) = X(n/fs)

fs = 16

Figure 3.1: Illustration of HTP data recorded from observing a continuous stationary
process X(t), with an increasing sampling frequency fs = 1/∆t for extended periods of
time.

In mathematical language, the consistency of a statistical estimator θ̂fs,N to the
true parameter θ0 can be described as: for any ϵ > 0, there exists a large sampling
frequency f0 such that for fs > f0,

lim
N→∞

∣∣∣θ̂fs,N − θ0

∣∣∣ < ϵ.
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More generally, given any random variable {Xfs,N}, the limiting process is

lim
fs→∞

lim
N→∞

Xfs,N := lim
fs→∞

( lim
N→∞

Xfs,N) = lim
fs→∞

Yfs

where
Yfs := Xfs,∞ := lim

N→∞
Xfs,N .

This procedure is referred to as the high-frequency asymptotics later on.

3.3 Parametric Spectral Density Estimation

Ideally one would perform parameter estimation2 with the log-likelihood ℓ(θ∥X) directly
in the time domain. However, this approach is typically inviable in practice due to the
computational intractability of the autocorrelation of X. Instead, most spectral estimators
make use of the following result.

Proposition 1. Let N = 2K+1 and define the finite Fourier transform as in ((3.3)). For

each X̃k, let fk = kfs/N denote the corresponding frequency and let Yk =
∣∣∣X̃k

∣∣∣2 /(Nfs).
Then under suitable conditions on the discrete-time PSD Sfs(f) defined in (3.2), as N →∞
we have

Yk
ind∼ Sfs(fk)× Expo(1), 0 < k < K.

A precise meaning of the convergence in Proposition 1 as the number of variables
K → ∞ is given by e.g., Proposition 4.5.2 of Brockwell and Davis (2006), or more gen-
erally, by Theorem 2 of Moulines and Soulier (1999) which we have summarized in Ap-
pendix B.2.3. For ease of exposition, we shall employ Proposition 1 heuristically to mo-
tivate our estimators, providing rigorous derivations of their theoretical properties in the
Appendix.

2A underlying model or an estimation method is said to be parametric if its spectral density or autoco-
variance structure is known up to an unknown Euclidean parameter, e.g. CARFIMA model. If the spectral
density is known to depend on an Euclidean parameter and an unknown infinite-dimensional parameter,
it is called semiparametric, e.g. S(u) = |u|−dg(u) where |d| < 1

2 and g is some unspecified function. For
details please see Giraitis et al. (2012). The distinctions between parametric and semiparametric methods
are not the focus of our work here. We just mention these concepts for a better organization of our results.
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3.3.1 Whittle log-Likelihood Estimator

The Whittle likelihood (first introduced by Whittle (1953a)) is an approximation to the
exact Gaussian likelihood which is usually intractable for complex models. Usually it can
be defined in both a continuous form and a discrete form as used in Hannan (1973); Fox
and Taqqu (1986); Dahlhaus (1989). The continuous form Whittle likelihood ℓWN (θ|X) can
be written as

ℓWN (θ) := ℓ̄WN (θ|X) = − 1

4π

∫ π

−π

(
logSfs(f ;θ) +

IN(f)

Sfs(f ;θ)

)
df

where IN(f) := 1
2πN

∣∣∣∑N−1
n=0 e

−i·f ·nXn

∣∣∣2 for f ∈ [−π, π].

For computational purposes, we also need its discretized form ℓ̃WN (θ|X), i.e.

ℓ̃WN (θ) := ℓ̃WN (θ|X) = − 1

2N

∑
j∈ΠN

(
logSfs(fj;θ) +

IN(fj)

Sfs(fj;θ)

)
. (3.4)

where j ∈ ΠN := {−⌈N/2⌉ + 1, . . . ,−1, 0, 1, . . . , ⌊N/2⌋}, fj = j/N · fs and IN(fj) is
similarly defined.

Since the periodogram IN = (IN(f1), . . . , IN(fj), . . . , IN(fK)) can be computed in
O(N logN) time using the FFT, maximization of the Whittle log-likelihood (3.4) is con-
siderably easier than that of the original likelihood ℓ(θ∥X).

Motivated by Proposition 1, the discretized Whittle log-likelihood function (Whittle,
1953a,b, 1957) can be written as

ℓ(θ∥Y ) = −
K∑
k=1

[
logSfs(fk,θ) +

Yk
Sfs(fk,θ)

]
. (3.5)

For the same reason due to FFT, maximization of the Whittle log-likelihood (3.5) is con-
siderably easier than that of the likelihood ℓ(θ∥X) in the original time domain.

For fixed interval (i.e. fs fixed) stationary processes, the asymptotic behavior of the
Whittle MLE θ̂WN = argmaxθ ℓ

W
N (θ∥X) has been widely studied in the literature. Consis-

tency and asymptotic efficiency of the Whittle MLE θ̃W = argmaxθ ℓ(θ∥Y ) have been es-
tablished by Fox and Taqqu (1986); Dahlhaus (1989). Since for HTP applications Sfs(f,θ)
is not available in closed form, a natural approximation is to truncate (3.2) at a finite
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number of terms
Sfs(f,θ) ≈

∑
|n|<M

S(f,θ), (3.6)

with M = 100 being commonly recommended in practice (e.g. Comte, 1996; Tsai and
Chan, 2005). However, fs →∞ requires that M →∞ in order to maintain the same order
of accuracy (Comte, 1996). Moreover, each evaluation of the Whittle log-likelihood (3.5)
with the truncated approximation (3.6) requiresKM evaluations of S(f,θ), which for HTP
datasets with K in the millions would bear a massive computational burden. In contrast,
we show in Lemma B.1.2 of Appendix B that under mild conditions we have

lim
fs→∞

sup
θ∈Θ

sup
|f |<fmax

|Sfs(f,θ)− S(f,θ)| = 0, (3.7)

for a compact set Θ and predetermined frequency fmax < fs. In other words, approxima-
tion (3.6) becomes arbitrarily accurate even with a single term M = 1 over a predetermined
bandwidth, leading to the following extension of the Whittle estimator to the HTP setting:

Theorem 3.3.1. Let θ0 denote the true parameter value, and consider the bandlimited
Whittle likelihood

ℓfmax(θ | Y ) = −
Kmax∑
k=1

[
logS(fk,θ) +

Yk
S(fk,θ)

]
,

where Kmax = ⌊fmaxN/fs⌋, and let θ̂W = argmax ℓfmax(θ | Y ). Then for fixed fs and under
Assumptions 3.3.1 – 3.3.5, there exists θfs and Ifs such that for N →∞ we have

√
N(θ̂W − θfs)→ N (0, I−1

fs
),

and as fs →∞ we have θfs → θ0 and Ifs → Ifmax, where

Ifmax =
1

4fmax

∫ fmax

−fmax

[
∂
∂θ

logS(f,θ0)
] [

∂
∂θ

logS(f,θ0)
]′
df. (3.8)

The estimator θ̂W defined in Theorem 3.3.1 is bandlimited optimal, in the sense that

θ̌W = argmax
θ

Kmax∑
k=1

[ −Yk
Sfs(fk,θ)

− logSfs(fk,θ)
]
,
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the bandlimited Whittle estimator with the exact discrete-time PSD, has Fisher informa-
tion converging to Ifmax as fs →∞. In contrast, the asymptotic variance of the full Whittle
estimator defined by (3.5) has Fisher information

IW
fs =

1

4fs

∫ fs

−fs

[
∂
∂θ

logSfs(f,θ0)
] [

∂
∂θ

logSfs(f,θ0)
]′
df.

If limfmax→∞ Ifmax = I∞ exists, then (3.7) implies that limfs→∞ IW
fs

= I∞ as well, such that
the loss of efficiency due to bandlimiting can be made arbitrarily small. However, for the
CARFIMA model

S(f,H) =
|f |1−2H

f 2 + 1
,

as fmax →∞ we have

Ifmax =
2

fmax

∫ fmax

0

(log f)2 df = 2(log fmax)
2 − 4 log fmax + 4→∞.

Since IW
fs
> Ifmax for sufficiently large fs, bandlimiting incurs an arbitrarily large penalty

in asymptotic efficiency relative to the full Whittle estimator, for fixed fmax as fs →∞.

Remark 3.3.1. If the tail of the spectral density S(f,θ) depends on θ, e.g. S(f,θ) =
O(1/|f |1+δ(θ)) for |f | → ∞, we should get new information as we increase the frequency
bandwidth 2fmax. Then the asymptotic variance of our bandlimited estimator θ̂W cannot be
arbitrarily close to that of the full Whittle estimator given by Dahlhaus (1989), since the
amount of information accumulated can never converge. This reveals the motivation for
the assumption in Lemma B.1.2, i.e., S(f,θ) ∼ O(1/|f |1+δ) as |f | → ∞ by which we can
show Ifmax converges to the Fisher information matrix of the full Whittle estimator given
by Dahlhaus (1989), as fmax → ∞ and thus is optimal. See Appendix B.1.1 for further
details.

3.3.2 Central Limit Theorem for the Whittle MLE

We now provide a general central limit theorem for estimating equations of Whittle type.
This theorem may be of independent interest for the study of PSD estimation under model
misspecification.

Theorem 3.3.2. For fixed fs, let Sfs(f) denote the discrete-time PSD of {Xn : n ∈ Z},
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and consider the integrated periodogram

IN(f) =
1

Nfs

∣∣∣∣∣
N−1∑
n=0

e−2πinf/fsXn

∣∣∣∣∣
2

.

Let g(f,θ) : R⊗Θ→ R+ where Θ is a compact p-dimensional parameter space, and let

θ̂N = argmin
θ∈Θ

ℓN(θ), ℓN(θ) =
1

2fs

∫ fs/2

−fs/2
log g(f,θ) +

IN(f)

g(f,θ)
df,

θ0 = argmin
θ∈Θ

ℓ0(θ), ℓ0(θ) =
1

2fs

∫ fs/2

−fs/2
log g(f,θ) +

Sfs(f)
g(f,θ)

df,

Now suppose there exists a compact ball Θ0 ⊂ Θ containing θ0 such that g(f,θ) satisfies
the following assumptions:

Assumption 3.3.1. θ0 lies in the interior of Θ. If θ ̸= θ′ ∈ Θ, the set {f : g(f,θ) ̸=
g(f,θ′)} has positive Lebesgue measure.

Assumption 3.3.2. 1
2fs

∫ fs/2
−fs/2 log g(f,θ)df is twice differentiable in θ under the integral

sign.

Assumption 3.3.3. The functions g(f,θ) > 0, g−1(f,θ) = 1/g(f,θ), ∂
∂θ
g−1(f,θ), and

∂2

∂θ∂θ′ g
−1(f,θ) are continuous at all (f,θ) ∈ {R \ 0} ⊗Θ0.

Assumption 3.3.4. There exists −1 < α, β < 1 such that α + β < 1
2
, g(f,θ0) ≤ C|f |−α,

| ∂
∂θ
g(f,θ0)| ≤ C|f |−α−1 and | ∂

∂θ
g−1(f,θ0)| ≤ C|f |−β, as f → 0.

Assumption 3.3.5. If α ≤ 0, then there exists s(f) ∈ L1(R) such that | ∂2

∂θ∂θ′ g
−1(f,θ)| ≤

s(f) as f → 0. If α > 0, then ∂2

∂θ∂θ′ g
−1(f,θ) is continuous in (f,θ) ∈ R⊗Θ0.

Then as N →∞, θ̂N → θ0 almost surely, and
√
N(θ̂N − θ0)

d→ N
(
0, A−1BA−1

)
,

where

A = ∂2

∂θ∂θ′ ℓ0(θ0), B =
1

2fs

∫ fs/2

−fs/2

[
∂
∂θ
g(f,θ0)

−1
] [

∂
∂θ
g(f,θ0)

−1
]′
(Sfs(f))2 df.
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Remark 3.3.2. The assumptions given above are adapted from Section 2 of Fox and Taqqu
(1986) and Section 8.3 of Giraitis et al. (2012) which are compatible with short-memory,
long-memory (persistent) and negative memory (anti-persistent) processes.

Remark 3.3.3. As pointed out by Dahlhaus (1989), θ̂N may equivalently be defined in
terms of the discretized Whittle-type likelihood

ℓ†N(θ) =
K∑
k=1

− log g(fk,θ)−
IN(f)

g(fk,θ)

without affecting the result. We proceed with the integrated likelihood IN(f) in order to
simplify the proof.

All the proofs are given in Appendix B.2.

3.4 Semiparametric Methods

Despite its advantages relative to time-domain methods, calculating the Whittle estimator
θ̃W in the HTP setting still often remains a computational challenge, even when Sfs(f,θ)
is analytically tractable. Each evaluation of ℓ(θ | Y ) can require millions of evaluations of
Sfs(f,θ). This is compounded with the fact that numerical optimization of ℓ(θ | Y ) can
be unstable, with many iterative algorithms requiring a large number of steps to achieve
convergence.

3.4.1 Nonlinear Least-Squares Estimator

To reduce the computational burden, a common technique to overcome these issues is
to compress the periodogram frequencies into consecutive and non-overlapping bins (e.g.,
Daniell (1946), (Brockwell and Davis, 2006, Section 10.4), (Fay et al., 2002, Section 2)).
That is, assume that K = B ·NB is a multiple of the bin size B, and consider the average
periodogram value in bin m,

Ȳm =
1

B

∑
k∈Im

Yk, Im = {k : (m− 1)B < k ≤ mB}.
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It then follows from Proposition 1 that if Sfs(fk) is relatively constant within bins, the
distribution of Ȳ = (Ȳ1, . . . , ȲNB

) can be well-approximated by

Ȳm
ind∼ Sfs(f̄m)×Gamma(B,B), (3.9)

where f̄m = (1/B)
∑

k∈Im fk, and Gamma(B,B) is a Gamma distribution with mean 1 and
variance 1/B. This leads to a popular nonlinear least-squares (NLS) estimator

θ̃NLS = argmin
θ

NB∑
m=1

(
Ȳm − Sfs(f̄m,θ)

)2
, (3.10)

which produces a consistent estimator of θ (Nørrelykke and Flyvbjerg, 2010).

3.4.2 Log-Periodogram (LP) Estimator

Not only does the sum-of-squares criterion (3.10) reduce the number of calls to Sfs(f,θ)
by a factor of B, it can also be minimized using specialized algorithms such as Levenberg–
Marquardt (Levenberg, 1944; Marquardt, 1963), thus rendering the calculation of θ̃NLS

considerably faster than that of θ̃W . The drawback of the NLS estimator is that it of-
ten incurs a significant loss in statistical precision, since (3.10) does not account for the
parameter-dependent variance term var(Ȳm) = Sfs(f̄m,θ)/B. However, taking the loga-
rithm of the compressed periodogram converts model (3.9) to that of constant-variance
additive errors, such that

Zm = log Ȳm = logSfs(f̄m) + ϵm, (3.11)

with exp(ϵm)
iid∼ Gamma(B,B). Noting that IE[ϵm] = CB = ψ(B) − logB, where ψ(·)

is the digamma function, the least-squares estimator corresponding to (3.11) is the log-
periodogram (LP) estimator

θ̃LP = argmin
θ

NB∑
m=1

(
Zm − CB − logSfs(f̄m,θ)

)2
.

The LP estimator was pioneered by Moulines and Soulier (1999) for the purpose of long-
range dependence modeling, i.e., for estimating H in a PSD model of the form Sfs(f) ∼
|f |1−2H as |f | → 0. In this context and with bin size B = 1, the LP estimator is akin to that
of Geweke and Porter-Hudak (1983) (GPH). However, as B increases, the LP estimator
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dominates that of GPH both in terms of convergence rate (Hurvich et al., 1998; Moulines
and Soulier, 1999) and asymptotic efficiency (Robinson, 1995).

The LP estimator was originally developed to model long-range dependence in a semi-
parametric fashion, and has since been extensively used in this context (e.g., Andrews and
Guggenberger, 2003; Sun and Phillips, 2003; Moulines and Soulier, 2003; Andrews and
Sun, 2004; Dalla et al., 2006). In the fully-parametric setting, asymptotic properties of
the LP estimator have been derived by Fay et al. (2002), and compared favorably therein
to the family of efficient estimators proposed by Taniguchi (1987). However, the theory
of Fay et al. (2002) applies only to PSD models with short-range dependence. The follow-
ing Theorem both circumvents this limitation and extends the LP estimator to the HTP
setting.

Theorem 3.4.1. Let θ0 denote the true parameter value, and for arbitrary frequencies
fmin < fmax, consider the bandlimited LP estimator objective function

θ̂LP = argmin
θ

Nmax∑
m=Nmin+1

(
Zm − CB − logS(f̄m,θ)

)2
,

where Nmax = ⌊fmaxN/fs⌋ and Nmin = ⌊fminN
δ/fs⌋ for any 1

2
< δ < 1. Then for fixed fs,

suppose both Sfs(f,θ) and S(f,θ) satisfy Assumptions 3.3.1 – 3.3.5, as well as B.2.1 –
3.4.2, there exists θfs and Ifs such that for N →∞ we have

√
N(θ̂LP − θfs)→ N (0, DB × I−1

fs
),

where DB = Bψ′(B). Moreover, as f → ∞ we have θfs → θ0 and Ifs → Ifmax, the
bandlimited optimal Fisher information defined by (3.8).

As noted by Fay et al. (2002), the loss of asymptotic efficiency due to binning is typically
negligible, since DB converges very quickly to 1. For example, D10 ≈ 1.05 and for B = 100,
D100 ≈ 1.005. Also note that Ifs here is different from the one in Theorem 3.3.1 for Whittle
MLE, which will be clear in the proof.

The proof of Theorem 3.4.1 is provided in Appendix B.2.5 which relies upon the theo-
retical setup introduced in the following section.

3.4.3 Central Limit Theorem for the LP Estimator

Based on the results of Moulines and Soulier (1999) (summarized in Appendix B.2.3), with
two classical assumptions (adapted from Jennrich (1969)), an analog of Theorem 3.3.2 for
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log-periodogram regression is provided below. Once again this may be of independent
interest for parametric PSD estimation under a misspecified model.

Assumption 3.4.1. Suppose the true data-generating process is the discrete-time process
characterized by Sfs(f) and g(f,θ) is some proposed spectral density function, let

D(θ) =

∫ fs

0

(log g(f,θ)− logSfs(f))2 df.

Then we assume D(θ) is a continuous function in θ ∈ Θ, and D(θ) has a unique minimum
at

θ0 = argmin
θ∈Θ

D(θ) (3.12)

where θ0 is in the interior of Θ.

Assumption 3.4.2. Suppose ∂
∂θ
g(f,θ) and ∂2

∂θ∂θ′ g(f,θ) exist and are bounded for all θ
near θ0 and

I(θ0) =
1

2fs

∫ fs

0

[ ∂
∂θ

log g(f,θ0)][
∂
∂θ

log g(f,θ0)]
′df (3.13)

is positive definite.

Besides, we also need the following technical assumptions to complete our later proof.

Assumption 3.4.3. The function g−1(f,θ) is continuous at all (f,θ) ∈ {R \ 0}⊗Θ0 and
g−1(f,θ0) ≤ C|f |α, where Θ0, C and α are the same as in Assumptions 3.3.3 and 3.3.4.

Based on the above assumptions, we obtain the following result.

Theorem 3.4.2. For fixed fs, let Sfs(f) denote the discrete-time PSD of {Xn : n ∈ Z},
such that Sfs(f) satisfies Assumption B.2.1. Let g(f,θ) : R⊗Θ→ R+ satisfy Assumptions
3.4.1 – 3.4.3 as well as Assumptions 3.3.1 – 3.3.5 in Theorem 3.3.2. Now consider the
least-squares estimator θ̂N = argminθQN(θ), where

QN(θ) =
1

NB

NB∑
m=1

(
Zm − CB − log g(f̄m,θ)

)2
, NB = [N/2B].

Then θ̂N → θ0 where θ0 is defined by (3.12), and

√
N
(
θ̂N − θ0

)
d→ N

(
0, (2 I(θ0)−A(θ0))

−1 · 4Bψ′(B)I(θ0) · (2 I(θ0)−A(θ0))
−1) ,
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where I(θ0) is defined in (3.13) and

A(θ0) =
1

fs

∫ fs

0

(logSfs(f)− log g(f ;θ0))
∂2

∂θ∂θ′ log g(f,θ0)df.

The proof is given in Appendix B.2.4.

3.5 Numerical Study

In order to visually reveal the statistical properties proposed in Theorem 3.3.1 and Theorem
3.4.1, we introduce the following simulation study that is based on a ubiquitous model for
HTP data known as the Simple Harmonic Oscillator (SHO).

3.5.1 Simple Harmonic Oscillator

The SHO model is a stochastic extension of the deterministic mass-spring system, describ-
ing a type of periodic motion where movement from rest state entails a restoring force
directly proportional to the displacement. Physics of oscillators have been employed to
model ocean surface drifter trajectories (Sykulski et al., 2016) and AFM cantilever calibra-
tion (Chon et al., 2000). That is, the time-dependent position Xt of a particle of interest
satisfies the differential equation

mẌt = −kXt − ςẊt + Ft, (3.14)

where Ẋt and Ẍt are the particle’s velocity and acceleration, m is its mass, k is the spring-
like restoring force, ς is the friction coefficient, and Ft is the thermal force driving the
particle’s motion. It is modeled as a mean-zero white noise process with cov(Fs, Fs+t) =
2kBTςδ(t), where δ(·) is the Dirac delta function, T is absolute temperature in Kelvin and
kB is Boltzmann’s constant.

In fact, equation (3.14) can be regarded as a degenerate GLE influenced by a harmonic
potential U(xt) = −1

2
kx2t with the memory kernel being δ(t), then the noise term is white

or Markovian. A detailed construction of such a simple harmonic oscillator heat bath is
given in Zwanzig (2001, Section 1.6).
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Applying Fourier transform simply gives us the spectral density of Xt

S(f) = kBT/(k · πf0Q)[
(f/f0)2 − 1

]2
+
[
f/(f0Q)

]2 , (3.15)

where f0 =
√
k/m /(2π) is SHO resonance frequency and Q =

√
km /ς is its “quality

factor”, which measures the width of the spectral peak around f0. The SHO is used
pervasively in the natural sciences, e.g., describing the random oscillations of a particle
trapped in an optical tweezer (Nørrelykke and Flyvbjerg, 2010), chemical bond lengths
and angles (Tsekov, 2016), X-ray emissions from neutron stars (Barret and Vaughan, 2012),
and oceanographic surface drifters (Sykulski et al., 2016).

3.5.2 Simulation Setup

In our simulation study, the true underlying data were generated using a standard FFT-
based algorithm (e.g., Labuda et al., 2012). The parameters used in all simulations are
displayed in Table 3.1. Each dataset consists of a 5 s time series sampled at 10MHz
(N = 5× 107 data points) from the SHO model (3.15).

When we fix all parameters exceptQ ∈ {1, 10, 100, 500}, the corresponding SHO spectra
displayed in Figure 3.2 represent a broad range of stochastic oscillatory phenomena.

For the estimation comparison, we added pure white noise to the original data such
that the noisy observations follow the following PSD.

S(f,θ) = Aw +
kBT/(k · πf0Q)[

(f/f0)2 − 1
]2

+
[
f/(f0Q)

]2 ,
for which Aw represents the additional noise component in the frequency domain, and the
parameters to be estimated are θ = (k, f0, Q,Aw).

For each simulation setting M = 1000 datasets were generated, and for each dataset
we calculated the three estimators θ̂W , θ̂NLS, and θ̂LP. Bandlimiting was applied by using
only the Nband = 325000 periodogram frequencies between fmin = 15 kHz and fmax =
80 kHz, outside of which the remaining frequencies add little information about θ. In
practice, determining a suitable frequency bandwidth may require a combination of good
domain knowledge and a preliminary nonparametric estimation. For the NLS and LP
estimators, the bin size was set to B = 100. For all estimators, the optimization problem
was reduced from four to three parameters by a profile likelihood procedure (Lysy et al.,
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Table 3.1: SHO parameters in baseline environment.

SHO Parameter Value
Temperature T = 298K

Noise Magnitude Aw = 19 000 fm2Hz−1

Cantilever Stiffness k = 0.172Nm−1

Resonance Frequency f0 = 33.533 kHz
Quality Factor Q ∈ {1, 10, 100, 500}
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Figure 3.2: Baseline PSDs over a range of quality factors (Q). The dashed vertical lines
indicate the frequency bandwidth used for parameter estimation.

2022, Appendix A). The profile likelihood was maximized using the Levenberg–Marquardt
algorithm (Levenberg, 1944; Marquardt, 1963) for θ̂LP and θ̂NLS, whereas for the Whittle
estimator the more general BFGS algorithm (Fletcher, 1987) was used. Both algorithms
require gradient information, for which we have provided an efficient C++ implementation
via automatic differentiation in the R/C++ package realPSD (Zhu and Lysy, 2021).
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3.5.3 Baseline Estimation Comparison

Figure 3.3 displays parameter-wise boxplots for each of the estimator standardized relative
to its true value. The numbers on top of each boxplot correspond to the mean squared error
(MSE) ratios between each estimator and the Whittle estimator θ̂W , hereafter referred
to as the MLE. That is, for each of the SHO parameters φ ∈ (f0, k, Q) and estimator
j ∈ {NLS,LP,MLE}, the corresponding MSE ratio in Figure 3.3 is calculated as

Rj(φ) =

∑M
i=1(φ̂

(i)
j − φ0)

2∑M
i=1(φ̂

(i)
W − φ0)2

,

where φ0 is the true parameter value and φ̂(i)
j is its estimate by method j for dataset i.
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Figure 3.3: Comparison of NLS, LP, and MLE estimators in the baseline simulation envi-
ronment. Numbers indicate MSE ratios of the corresponding estimators relative to MLE.

For low quality factor Q = 1, the NLS method has roughly 1.5-2 times higher MSE
than the MLE. For higher values of Q, the MSE of NLS increases to roughly 3-5 times
that of MLE. In contrast, the LP estimator achieves virtually the same MSE as the MLE,
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but at a 150 to 200 times smaller computational cost. This is due in large part to the bin
size B = 100 providing must faster log-likelihood evaluations, and also to the Levenberg–
Marquardt algorithm typically converging in fewer steps than BFGS.

3.5.4 Electronic Noise Contamination

In many real applications, observations are usually contaminated by some electronic noise.
In order to assess the performance of three estimators, we simulated periodic noise com-
ponent of the following form.

g(t) = D · sin(2πζt+ ϕ)

The frequency ζ of each sine wave was drawn from a Normal with mean and standard
deviation

µsine = f0 = 33.533 kHz, σsine = 20Hz.

This scenario is particularly difficult for SHO parameter estimation due to the proximity
of ζ to the SHO frequency f0, but it is not particularly uncommon. For details, please
refer to Lysy et al. (2022).

Figure 3.4 displays a simulated dataset with electronic noise contamination. The cutoff
line was based on the noise-removal procedure proposed by Lysy et al. (2022) which we do
not care about here.

Figure 3.5 displays boxplots of each parameter estimate relative to its true value with
the existence of electronic noise. To assess the impact of the noise contamination, these
estimates do not include the preliminary denoising step. The numbers in the plot corre-
spond to MSE ratios between the estimator with noise contamination, relative to its own
performance in the baseline dataset. The ratios formula is given below.

Rj(φ) =

∑M
i=1(φ̂

(i)
j,noise − φ0)

2∑M
i=1(φ̂

(i)
j,base − φ0)2

,

where φ̂(i)
j,base and φ̂(i)

j,noise are parameter estimates with method j for dataset i under baseline
and noise-contaminated settings, respectively. At low Q, the MSE ratios are close to one,
suggesting that the estimators are relatively insensitive to the electronic noise. However,
for high Q the effect of the noise is considerably more detrimental, particularly for NLS. In
all cases, the performance of the LP estimator is affected the least, indicating it is naturally
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Figure 3.4: Simulated SHO periodogram with Q = 100 and added electronic noise, along
with the FWER periodogram cutoff corresponding to an FDR level of α = 1%.

more robust than NLS and MLE to periodic noise contamination, even before the denoising
technique is applied.

So far, we have gained some basic insights into the performance of three different es-
timators. Since we are not focused on the two-stage noise removal method, we will not
discuss the improvement of estimates after the noise removal. For the details of effective-
ness of our noise removal method and further simulation based on severe periodic noise
conditions, please refer to Lysy et al. (2022).

3.5.5 Application: Calibration of an AFM

Finally, we introduce a real-world application of fitting the SHO model — the calibra-
tion of an atomic force microscopy (AFM), a very-high-resolution type of scanning probe
microscopy, with demonstrated resolution on the order of fractions of a nanometer.

In a typical AFM experiment, the cantilever’s bending response is measured in oppo-
sition to its spring-like restoring force, which requires proper calibration of the cantilever
stiffness in order to convert measured displacement readings into force (Cleveland et al.,
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Figure 3.5: Comparison of NLS, LP, and MLE preliminary estimators (i.e., prior to noise
removal), in the noise-contaminated environment. Numbers indicate MSE ratios of the
corresponding estimators relative to their own performance at baseline.

1993; Burnham et al., 2002; Clarke et al., 2006; Sader et al., 2011). This is accomplished
by fitting various parametric models to a baseline spectral density recording, i.e., to a
cantilever driven by thermal noise alone.

The problem of calibrating an AFM cantilever mainly focuses on fitting its periodogram
which is displayed in Figure 3.6. The data consist of a 5-second time series recorded
by a commercial cantilever (TR400-S Olympus) at a sampling frequency of fs = 5MHz
(N = 2.5 × 107 observations). The objective is to determine the parameters of the best-
fitting model to the first cantilever eigenmode (Figure 3.6b), which is severely contaminated
by electronic noise near its peak (around 33.5 kHz).

While the PSDs in the simulations of Section 3.5.2 are dominated at low frequencies
by white noise, that of the experimental data in Figure 3.6a exhibits power-law behavior,

S(f) ∼ 1/fα as f → 0.

This phenomenon is referred to as “1/f noise” and features prominently in AFM experi-
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Figure 3.6: (a) Periodogram for a TR400-S Olympus cantilever recorded for 5 s at 5MHz
(N = 2.5 × 107 observations). The data have been averaged by bins of size B = 100 to
enhance visibility. (b-c) Magnified view of first and second eigenmodes.

ments (e.g., Harkey and Kenny, 2000; Giessibl, 2003; Heerema et al., 2015). It is due in
this case to slow fluctuations of the measurement sensor. Depending on the value of α, 1/f
noise induces long-range dependence in the cantilever displacement (0 < α < 1), or even
lack of stationarity (α ≥ 1). Failing to account for it can significantly bias SHO parameter
estimates. Fortunately, 1/f noise can be readily dealt with by adding a correction term to
the SHO model (3.15), which becomes

S(f, k, f0, Q,Aw, Af, α) = Aw +
Af

fα
+

kBT/(k · πf0Q)[
(f/f0)2 − 1

]2
+
[
f/(f0Q)

]2 . (3.16)
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Model (3.16) is used to calibrate the SHO AFM parameters.

In addition to the first eigenmode near 33.5 kHz, the AFM data contain higher eigen-
modes arising from the flexural oscillations of the cantilever beam (Sader, 1998). The first
of these higher eigenmodes is displayed in Figure 3.6c.

It is essentially important to calibrate the higher eigenmodes for many bimodal and
multifrequency AFM imaging techniques (e.g., Martinez et al., 2008; García and Proksch,
2013; Herruzo et al., 2014; Labuda et al., 2016b). We could do this by fitting separate
SHO models to each successive eigenmode. However, as the peak amplitude of these higher
modes approaches the noise floor, the accuracy of separate SHO estimators rapidly dete-
riorates. An alternative avenue is to combine SHO models on the basis of hydrodynamic
principles (van Eysden and Sader, 2006; Clark et al., 2010) and other scaling laws (Labuda
et al., 2016a) which we do not pursue here.

Figure 3.7 displays the periodogram of the AFM data over the frequency range used
for parameter estimation (Nband = 200000 periodogram frequencies). The data were fit
with the two-stage estimator for the MLE method and for the NLS and LP methods with
bin size B = 100, for two special cases of the SHO + noise model (3.16). The first fixes
Af = 0, i.e., SHO + pure white noise, and the second fixes Aw = 0, i.e., SHO + pure 1/f
noise. We refer to these models as SHOW and SHOF, respectively. Indeed, fitting the
full model (3.16) to the data in Figure 3.7 resulted in very large standard errors for Aw,
Af, and α, suggesting a lack of parameter identifiability. For more detailed analysis of the
effects caused by both white noise and 1/f noise, please refer to Lysy et al. (2022).

Figure 3.7 displays SHOW and SHOF models fit with the various methods (missing
is the SHOW MLE estimator which failed to converge). The SHOW model fits the data
considerably worse than SHOF. Out of the SHOF estimators, the fit of NLS is somewhat
worse than that of LP and MLE, which are virtually indistinguishable from one another.
This is because the NLS estimator penalizes the distance between empirical and fitted
PSD on the regular scale, whereas Figure 3.7 plots these on the log scale. Therefore, visual
differences at the tails of the plot are downweighted by NLS relative to differences near the
peak (around 33.5 kHz). In contrast, the LP estimator penalizes differences on the log scale,
thus weighting them uniformly on the visual scale of Figure 3.7. For further discussion
about the estimation and noise contamination effects on the standard error estimation,
please refer to Lysy et al. (2022, Section 5.1).

The estimation results above were obtained with a bin size of B = 100, for which the
NLS and LP estimators are two orders of magnitude faster than the MLE. To investigate the
impact of bin size, Figure 3.8a plots parameter estimates for the NLS and LP methods for
values of B = 10 to 1000. The behavior of NLS is considerably more erratic, presumably
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Figure 3.7: Periodogram (averaged by bins of size B = 100) and the fitted SHOW and
SHOF models using NLS, LP and MLE estimators (not shown is SHOW - MLE which
failed to converge). The large spikes indicate frequencies at which there is electronic noise
contamination.

due to small changes in the bin end points having larger impact on S(f̄m,θ) than on its
logarithm. A similar pattern is seen for standard errors in Figure 3.8b. The NLS parameter
estimates and standard errors appear to be negatively correlated, resulting in fluctuation
of the coefficient of variation (CV) in Figure 3.8c by a factor of two. In contrast, the effect
of bin size on the LP standard error and CV is imperceptible.

3.6 Conclusion

We laid the theoretical foundations for the asymptotic properties of the Whittle MLE and
LP estimators for HTP data upon which Lysy et al. (2022)’s work relies. Our theoretical
results may help shed some time on this relatively new direction of time series analysis.

In addition, we introduced two numerical studies to evaluate the theoretical properties
under various situations, including (1) simulated SHO model with white noise measurement
error; (2) simulated SHO model with periodic electronic noise; (3) real world AFM data
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Figure 3.8: NLS, LP, and MLE estimators for bin size B = 10 to 1000. (a) Parameter
estimates. (b) Standard errors. (c) Coefficient of variation (CV).

fitted by SHO model with noise term. From the numerical results, we can see that the
Whittle MLE and the LP estimators are indeed bandlimited optimal as suggested by
Theorem 3.3.1 and Theorem 3.4.1, respectively. In particular, the LP estimator may be
more robust, and in most cases can achieve a level of statistical efficiency comparable to the
MLE at a small fraction of computational costs. This advantage is largely due to the data
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compression by binning of periodogram ordinates before the estimation. This is the key
ingredient of our successful two-stage noise removal method proposed in the work of Lysy
et al. (2022). A potential direction of new research may be to employ adaptive bin size in
the data compression, depending on the local shape of spectral density, or to propose some
other more effective data reduction techniques.

Moreover, the numerical studies provide great examples of performing parameter infer-
ence (in particular spectral estimation) given the massive amount of (possibly noisy) data
generated from an underlying GLE model. However, the SHO model is just a degenerate
GLE with the memory kernel being a Dirac delta function. For a general GLE with non-
trivial memory kernel and nonlinear potential force term, the convolution term will make
statistical inference much more difficult, as we shall discuss in Chapter 4.
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Chapter 4

Quasi-Markovian Approximation of the
Generalized Langevin Equation

4.1 Introduction

Recall the GLE from Chapter 2:

Ẍ(t) = −U ′(X(t))−
∫ t

0

K(t− s)Ẋ(s)ds+ F (t), (4.1)

where we have assumed for simplicity that the particle mass m = 1, and where the force
ACF CF (t) = β−1K(t), with β = 1/(kBT ) being a constant assumed to be known (T is the
temperature preset in an experiment). In this Chapter, we are interested in parametrizing
the potential energy Uϕ(x) and memory kernel Kη(t) by unknown parameters θ = (ϕ,η)
and estimate these using discrete observations of the GLE X = (X0, . . . , XN), where
Xn = X(n∆t) for n = 1, . . . , N .

4.1.1 Statistical Challenges

However, there are two main challenges.

First, analytically the easy solutions to GLEs have largely been restricted to the linear
case where the potential is harmonic, i.e. U(x) = 1

2
κx2. However, linear GLEs can only

be useful for systems near equilibrium. In a nonlinear system (“nonlinear” here means the
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potential energy contains higher powers than quadratic), the application of linear GLE is
limited. For example, it cannot be used to treat nonlinear transport processes (Zwanzig,
2001, Chapter 9). Due to the complex nature of nonlinear problems, solving nonlinear
GLEs analytically is difficult, let alone obtaining its analytic likelihood function, which
impedes the likelihood-based inference.

Second, the convolution term
∫ t
0
K(t−s)Ẋ(s)ds reveals that the trajectory X(t) is non-

Markovian since at time t it depends on the entire past trajectory. Therefore, numerically,
we still lack a proper and general way to approximate the exact GLE. By “proper”, we
mean if we have a theoretical autocovariance structure or spectral density, we would like
to fully recover the covariance information either in the time domain or in the spectral
domain (via the Fourier transform) by using the discretized GLE. By “general”, we mean
the discretization method should be suitable for a general class of or hopefully any nonlinear
GLEs. If this could be done, it would provide a framework for fast parameter fitting of
GLE and thus propel the development of many single-particle experiments.

A promising approach to GLE inference is that certain GLE models can be recast as
stochastic differential equations (SDEs). We say that a d-dimensional stochastic process
X(t) = (X1(t), . . . , Xd(t)) is an SDE when it satisfies the differential equation (Oksendal,
2013)

dX(t) = Λ(X(t))dt+Σ(X(t))1/2dB(t), (4.2)

with some stochastic noise driven by Brownian motion B(t) where Λ(X) is a d-dimensional
drift function and Σ(X) is a d×d positive-definite diffusion matrix. As for modeling GLEs
using discrete observations, if the memory kernel K(t) is a sum of exponential functions
(Fricks et al., 2009; McKinley et al., 2009), then we can characterize the GLE by adding
a finite number of auxiliary variables latent variables. That is, we have the following
quasi-Markovian approximation of the GLE (qmGLE).

Theorem 4.1.1 (Pavliotis, 2014, Proposition 8.1). Consider the GLE (4.1) for which the
memory kernel K(t) may be written as

K(t) = ⟨e−Atλ,λ⟩,

where λ ∈ Rd and A ∈ Rd×d is a positive definite matrix. Then the law of the GLE process
X(t) in (4.1) is identical to that arising from the system of SDEs

dX(t) = V (t)dt

dV (t) = −U ′
ϕ(X(t))dt+ ⟨λ, z(t)⟩dt

dz(t) = − (V (t)λ+Az(t)) dt+ΣdB(t),
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where z(t) ∈ Rd×1, z(0) ∼ N (0, β−2I) (β > 0) and the diffusion matrix Σ ∈ Rd×d satisfies

ΣΣ† = β−2(A+A†)

where † denotes the conjugate transpose, and B(t) is d-dimensional Brownian motion.

The above quasi-Markovian scheme (or a similar one) was first proposed by theoretical
physicists and mathematicians, for example Eckmann et al. (1999); Kupferman (2004), and
later was carefully studied from a mathematician’s perspective by Ottobre and Pavliotis
(2010). However, the main focus was on the solution or infinitesimal generator, the ergodic
properties and some other analytic properties instead of the parameter inference.

In contrast to GLEs, there is an enormous amount of studies on likelihood-based param-
eter inference for the SDE with (full or partial observations). One direction is to consider
estimators alternative to the MLE, for example indirect inference (Gourieroux et al., 1993),
efficient methods of moments (Gallant and Long, 1997), estimating functions (Bibby et al.,
2004), and higher-order Taylor approximations to the intractable likelihood function (Aït-
Sahalia, 2002, 2008). However, arguably the most widely-used approach is Bayesian data
augmentation via an Euler–Maruyama numerical discretization scheme (or simply Euler
scheme, as explained later in Section 4.2), for which sampling from the joint posterior
distribution of parameters and latent variables is achieved by using a variety of Markov
chain Monte Carlo (MCMC) methods (e.g., Elerian et al., 2001; Eraker, 2001; Roberts and
Stramer, 2001; Golightly and Wilkinson, 2008; Kou et al., 2012; Whitaker et al., 2017).

In the context of the data augmentation approach, the complete data is generated
from a so-called state-space model (defined in Section 4.2.1), for which sampling from the
latent variables can be done efficiently using a particle filter (Andrieu et al., 2010). The
simplest particle filter is the so-called bootstrap filter (Gordon et al., 1993) which proposes
latent variables from their forward distribution. As the bootstrap particle filter works very
poorly for SDE problems, a bridge proposal developed by Durham and Gallant (2002)
specifically for SDEs has been successfully used instead (e.g., Chib et al., 2004; Golightly
and Wilkinson, 2008; Whitaker et al., 2017; Picchini and Forman, 2019; Botha et al., 2021).
However, the qmGLE is a hypoelliptic diffusion (Ottobre and Pavliotis, 2010), for which
using the Euler discretization for parameter inference must be done with care (Pokern
et al., 2009; Ditlevsen and Samson, 2019). In particular, it precludes a direct application
of the SDE bridge proposal, as we shall show in Section 4.3.2.
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4.1.2 Our Contribution

In this Chapter, we propose to use a non-degenerate discretization scheme for the qmGLE
via the Itô-Taylor (IT) expansion presented in Pokern et al. (2009). These authors show
that the IT scheme produces biased estimates of SDE drift parameters when used in a
Gibbs sampler which alternately updates parameters and latent variables conditioned on
each other and the observed data. However, we argue in Section 4.3.4 that this problem
does not affect MCMC (or other inference methods) based on particle filters which in-
tegrates the latent variables out of the problem, rather than sampling from them along
with the parameters. A different discretization scheme for hypoelliptic diffusions is given
by Ditlevsen and Samson (2019), which ostensibly does not break down in the Gibbs sam-
pling scheme described above. However, our IT scheme is much simpler, and indeed the
main contribution of this chapter is to extend the SDE bridge proposal of Durham and
Gallant (2002), originally developed for the Euler scheme, to the IT scheme as well. We
believe this will lead to an efficient particle filtering method for the qmGLE and for hypoel-
liptic diffusions in general. That being said, the work in this Chapter is merely conceptual,
as implementation of the proposed particle filter is the subject of future work.

4.1.3 Outline

The remainder of this chapter is organized as follows. In Section 4.2 we introduce our model
settings and present the particle filter algorithm along with the bridge proposal tailored
to SDEs. In Section 4.3 we demonstrate why this approach breaks down for the qmGLE.
Then, we introduce the modified discretization scheme and build the corresponding bridge
proposal for general particle filters. Concluding remarks are offered in Section 4.4.

4.2 SDE Inference with Particle Filters

Before we discuss the parameter inference for the qmGLE, let us introduce some basic
knowledge of particle filters and SDEs.

Consider the SDE (4.2) in the context of parameter inference,

dX(t) = Λθ(X(t))dt+Σθ(X(t))1/2dB(t) ,

where Λθ and Σθ now depend on some unknown parameters θ to be estimated from the
data. In many scientific experiments, X(t) is measured with error at times tn = n∆t such
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that the observed data is Y0:N = (Y0, . . . ,YN) with

Yn
ind∼ g(Yn |Xn,θ),

where Xn = X(tn). Assume that the initial value of the SDE at time t0 = 0 has the prior
distribution X0 ∼ π(X0 | θ). Then the likelihood function is given by

L(θ | Y0:N) =

∫
p (Y0:N ,X0:N |θ) dX0:N

=

∫ [
π(X0 | θ) ·

N∏
n=0

g(Yn |Xn,θ) ·
N∏
n=1

p(Xn |Xn−1,θ)

]
dX0:N .

(4.3)

However, this expression requires the SDE transition density p(Xn | Xn−1,θ), which is
rarely available in closed form. Instead, the likelihood function is often approximated by the
so-called Euler–Maruyama discretization method (Maruyama, 1955; Pedersen, 1995a,b).
Namely, for m ≥ 1, let X

(m)
n denote the value of the SDE at time n∆t/m, such that

X
(m)
mn = Xn = X(tn). As m→∞, ∆t/m→ 0, the normal approximation

X(m)
n ∼ N (X

(m)
n−1 +Λθ(X

(m)
n−1)∆t/m,Σθ(X

(m)
n−1)∆t/m) (4.4)

becomes increasingly accurate (Kloeden and Platen, 1999), at the expense of greater com-
putational effort. Thus, the Euler approximation of resolution m (Kou et al., 2012) to the
likelihood function is

L̂m(θ | Y0:N) =

∫ [
π(X

(m)
0 | θ) ·

N∏
n=0

g(Yn |X(m)
nm ,θ) ·

Nm∏
n=1

φ(X(m)
n |X(m)

n−1,θ)

]
dX

(m)
0:Nm,

where ϕ(X
(m)
n | X(m)

n−1,θ) is the PDF of the normal distribution in (4.4), and we have
L̂m(θ | Y0:N)→ L(θ | Y0:N) as m→∞ (Pedersen, 1995b, Theorem 4).

4.2.1 State-Space Model

The above SDEs can be treated under a general model framework known as state-space
models (e.g., Murphy, 2012, Chapter 18). A general state-space model with static param-
eters θ ∈ Θ ⊂ Rd consists of a hidden state process {Sn}n≥0 and an observation process
{Yn}n≥0, which can be illustrated by Figure 4.1.
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πθ(·) S0 · · · Sn · · · SN

θ

Y0 · · · Yn · · · YN

Figure 4.1: Illustration of the state-space model.

The hidden state process is characterized by its initial state density S0 ∼ πθ(·) and
state transition density is assumed to be Markovian

p(Sn+1 | S0:n,θ) = fθ(Sn+1 | Sn), n ≥ 0

where S0:n = S0, . . . ,Sn. The state process {Sn}n≥0 is observed, not directly, but through
another process {Yn}n≥0. The observation Yn is assumed to be conditionally independent
given Sn and its marginal probability density is given by

p(Yn | Y1:n−1,S0:n,θ) = p(Yn | Sn,θ) = gθ(Yn | Sn), n ≥ 1.

When θ is known and the current time is T = N∆t, Bayesian inference relies on the
posterior density pθ(S0:n | Y0:n) ∝ pθ(S0:n,Y0:n) where the joint likelihood can be written
as

p(S0:N ,Y0:N | θ) = π(S0 | θ)
N∏
n=1

fθ(Sn | S0:n−1)
N∏
n=0

gθ(Yn | Sn)

If θ is unknown, we ascribe a prior density π(θ) to it. Then the joint density is

p(θ,S0:N ,Y0:N) ∝ p(S0:N ,Y0:N | θ)π(θ).

Alternatively, under a hierarchical sampling framework, the SSM can be expressed as

S0 ∼ π(S0 | θ)
Sn ∼ fθ(Sn | Sn−1)

Yn ∼ gθ(Sn)

66



In our SDE problem, at time n, the observation is still Yn, while the hidden state is

Sn = X
(m)
(n−1)m+1:nm

The prior on S0 = (S
(m)
−m+1, . . . ,S

(m)
0 ), is given by

S
(m)
0 ∼ π(S

(m)
0 | θ),

S(m)
n = 0, −m+ 1 ≤ n < 0.

In other words, we use the SSM prior for X
(m)
0 , and set the dummy variables X

(m)
n = 0

for n = −m+ 1, . . . ,−1.
The task of Bayesian inference is to condition this joint distribution on some particular

data observations, Y0:N to obtain the posterior distribution p(S0:N ,θ | Y0:N), which can be
written as

p(S0:N ,θ | Y0:N) = p(θ | Y0:N) · p(S0:N | θ,Y0:N).

To obtain the first factor p(θ | Y0:N) is parameter estimation, while to get the second
factor p(S0:N | θ,Y0:N) conditioning on some θ drawn from the first is state estimation
or filtering problem (Murray, 2013). For non-linear non-Gaussian SSMs, p(θ,S0:N ,Y0:N)
does not have closed form expressions, rendering analytic inference difficult in practice.
Therefore, it is necessary for us to resort to approximations for which particle filters are
designed.

4.2.2 Particle Filters

The particle filter is used to construct an efficient Monte Carlo approximation of the in-
tractable likelihood function (4.3) by sampling Bayesian posterior distributions recursively,
which is a particularly effective method to deal with the SSM.

There are numerous variants of particle filters, a standard algorithm of particle filter
is given by Algorithm 4.1. For a complete description under the coherent framework of
sequential Monte Carlo (Liu, 2004; Robert and Casella, 2004), please refer to Doucet et al.
(2001, 2009); Johansen (2009).

Suppose we set J particles for our problem, then we initialize the particle filter by
sampling J random variables from our prior distribution π(S0 | θ) and assigning each an
equal weight 1/J . These random variables are referred to as particles. The particle filter
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algorithm runs sequentially as new observations are coming in through three main steps:
propagation, weighting and resampling.

(i) Propagation: Suppose at the end of step n−1 we have J particles S̄1
n−1, . . . , S̄

J
n−1 (the

“bar” notation will be justified momentarily). Each particle is advanced to the next
observation time n according to a proposal distribution Sj

n ∼ q(Sn | S̄j
n−1,Yn,θ).

(2) Weighting: Each particle is weighted according to the likelihood of the new observa-
tion, i.e., the incremental weight for particle j is calculated as

wjn =
gθ(Yn | Sj

n)fθ(S
j
n | S̄j

n−1)

q(Sj
n | Yn, S̄j

n−1,θ)
. (4.5)

There are many ways to define the weight by using different proposal distributions,
as we shall see in Section 4.2.3 and Section 4.3.5.

(ii) Resampling: We sample the new particles S1
n, . . . ,S

J
n with replacement with probabil-

ity proportional to wjn to obtain the at the end of step n the set of particles S̄1
n, . . . S̄

J
n .

Simply discarding particles does not work. Instead, we usually follow some well-
designed resampling mechanisms, one of which is to draw the number of offsprings of
the current particle (known as the parent particle) from a multinomial distribution
such that parent particles with larger weights tend to produce more equally-weighted
new offsprings to move forward to the next observation time/generation whereas the
one with small weights tend to be eliminated. This strategy is designed to overcome
the well-known particle degeneracy problem that the particle weights {wjn}Jj=1 tend
to be more and more skewed and concentrated such that eventually only one particle
has non-zero weight (Doucet et al., 2009).

In fact, in the current literature, there are two equivalent ways of describing the multi-
nomial resampling mechanism. One is to sample a number of offsprings for each parent par-
ticle from a multinomial distribution according to their particle weights. Let (O1

n, . . . , O
J
n)

be the offspring vector at time n, it is drawn from a multinomial distribution, i.e.

(O1
n, . . . , O

J
n) ∼ Multinomial(J ; w̄1

n, . . . , w̄
J
n)

IP(O1
n = x1, . . . , O

J
n = xJ) =

J !

x1! . . . xJ !

J∏
j=1

(w̄jn)
xj ,

J∑
j=1

xj = J.
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Algorithm 4.1 Particle filter.
1: At time n = 0
2: for each particle j in 1 : J do
3: Initialize particle Sj

0 ∼ q0(S0 | θ).
4: Initialize weight wj0 ← π(Sj

0 | θ)/q0(Sj
0 | θ).

5: end for
6:
7: for n = 1, . . . , N do
8: Normalize weights w̄jn−1 = wjn−1/

∑J
k=1w

k
n−1.

9: for each particle j in 1 : J do
10: Sample ancestral index Ajn ∼ Categorical

{
w̄kn−1

}J
k=1

.

11: Propagate particle Sj
n ∼ q(Sn | S̄Aj

n
n−1,Yn,θ).

12: Weight wjn ← gθ(Yn | Sj
n)fθ(S

j
n | S̄Aj

n
n−1)/q(S

j
n | S̄Aj

n
n−1,Yn,θ).

13: end for
14: end for
15: Return marginal likelihood: L̂(θ | Y0:N)←

∏N
n=0

(
1
J

∑J
j=1w

j
n

)
.

Another way is to sample the ancestor index Ajn of particle j at step n as shown in
Algorithm 4.1. Let (A1

n, . . . , A
J
n) be the vector of ancestor indices, then it follows the

categorical distribution (with J categories) defined as follows

Ajn
iid∼ Categorical(w̄1

n−1, . . . , w̄
J
n−1), j = 1, . . . , J

IP(Ajn = k) = w̄kn−1, k ∈ {1, . . . , J}

For more different resampling strategies, please refer to Doucet et al. (2009) and also Hol
et al. (2006); Kuptametee and Aunsri (2022).

In the Bayesian context, Algorithm 4.1 can be used to estimate the posterior parameter
distribution p(θ | Y0:N) via the particle filter approximation

p̂(θ | Y0:N) ∝ L̂(θ | Y0:N) · π(θ). (4.6)

The (approximate) posterior (4.6) can be sampled from using the family of particle marginal
Metropolis-Hastings (PMMH) algorithms proposed in Andrieu et al. (2010). With minor
modifications, Algorithm 4.1 can also be used to return a draw from p(S0:N | θ,Y0:N),
which could in turn be used in a Gibbs sampler which alternates between draws from
p(S0:N | θ,Y0:N) and p(θ | S0:N ,Y0:N). However, for hypoelliptic diffusions this so-called
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particle Gibbs sampler (Andrieu et al., 2010) must be implemented with extreme care to
approximate the posterior distribution correctly (Pokern et al., 2009). We shall return to
this point in Section 4.3.4.

4.2.3 SDE Bridge Proposal

We now return to the SDE inference problem described at the beginning of section 4.2,
and assume henceforth that we have a normal measurement model

Yn
ind∼ N (ASn,Ω) (4.7)

In this setting, inference for noise-free SDEs can be achieved by setting Ω = 0 or for
numerical stability Ω = σ2

ϵI for some small constant σϵ > 0.

The particle filter described by Algorithm 4.1 requires us to specify a proposal distri-
bution in (4.5). If we set qθ(Sj

n | Yn,SAj
n

n−1) = fθ(S
j
n | SAj

n
n−1) which is the forward transition

density of the hidden states, then wjn = gθ(Yn | Sj
n), which gives us the bootstrap particle

filter.

The bootstrap filter is widely used for many applications and easy to implement, but it
works poorly when there is little noise in the measurement model Yn ∼ gθ(Yn | Sn) since
the incremental weights would then be calculated according to a deterministic model. For
this reason, a proposal tailored to SDEs has been developed by Durham and Gallant (2002);
Chib et al. (2004); Golightly and Wilkinson (2008).

π(·) X
(3)
−2 X

(3)
−1 X

(3)
0

Y0

X
(3)
1 X

(3)
2 X

(3)
3

Y1

X
(3)
4 · · ·

· · ·

S0 = X
(3)
−2:0 S1 = X

(3)
1:3

Figure 4.2: Illustration of the bridge proposal with resolution m = 3.

The idea of the bridge proposal goes as follows. When we are at time tn = (n − 1)∆t

for n ≥ 1 and want to move forward, we need a proposal distribution to sample X
(m)
(n−1)m+1
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which is one of the intermediate particles unobserved. Given the information obtained
up to time tn−1 = (n − 1)∆t and the fact that when t = n∆t, we must have X(t) =

X
(m)
nm and Y (t) = Yn, we would like to find the conditional distribution of X

(m)
(n−1)m+1

given X
(m)
0:(n−1)m (and the prior initialized X(m)

−m+1, . . . , X
(m)
−1 ) with the required ending point(

Yn,X
(m)
nm

)
at time n∆t, which is the idea behind our bridge proposal. Then we can

recursively sample X
(m)
(n−1)m+k for 0 < k ≤ m. In this way, Yn is the observation that

corresponds to state variables Sn = X
(m)
(n−1)m+1:nm under the framework of SSMs. Figure

4.2 illustrates this idea with m = 3 as an example. As long as our SDEs are driven
by Brownian motions, the random noise within the small time interval ∆t/m follows a
normal distribution. Therefore, the diffusion bridge is analytically tractable. For normal
distributions, we have the following result (proved in Appendix C.2).

Lemma 4.2.1. Suppose that we have

W ∼ N (µW ,ΣW )

X |W ∼ N (W + µX|W ,ΣX|W )

Y |X,W ∼ N (AX,Ω).

thenWX
Y

 ∼ N
 µW

µW + µX|W
µY

 ,
 ΣW ΣW ΣWA′

ΣW ΣW +ΣX|W (ΣW +ΣX|W )A′

AΣW A(ΣW +ΣX|W ) ΣY

 , (4.8)

where µY = A[µW + µX|W ] and ΣY = A(ΣW +ΣX|W )A′ +Ω, such that

W | Y ∼ N
(
µW +ΣWA′Σ−1

Y (Y − µY ), ΣW −ΣWA′Σ−1
Y AΣW

)
. (4.9)

The bridge proposal for the state variable St then proceeds recursively as follows:

(i) Without loss of generality, assume we are at time tn = ∆t, i.e. n = 1, and that
for fixed 0 < k ≤ m the proposal values until X(m)

(n−1)m+k = X
(m)
k are given. Now

suppose we wish to specify the proposal distribution for X(m)
k+1 given our observation

Y (tn) = Y1.

(ii) Approximate X(t) as a Brownian motion with constant drift for t ∈ ( k
m
∆t,∆t):

dX(t) = Λkdt+Σ
1/2
k dB(t),
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where Λk = Λθ(X
(m)
k ) and Σk = Σθ(X

(m)
k ). This means that for any k

m
∆t ≤ s ≤

s+ u ≤ ∆t we have

X(s+ u) |X(s) ∼ N (X(s) + uΛk, uΣk),

To obtain the proposal for X(m)
k+1, we apply the formula to (W ,X,Y ) = (X

(m)
k+1,X

(m)
m ,Y1),

for which we have

X
(m)
k+1 ∼ N

(
X(m)

n +
∆t

m
Λk,

∆t

m
Σk

)
X(m)

m |X(m)
k+1 ∼ N

(
X

(m)
k+1 + (m− k − 1)

∆t

m
Λk, (m− k − 1)

∆t

m
Σk

)
Y1 |X(m)

m ,X
(m)
k+1 ∼ N

(
AX(m)

m , Ω
)
,

such that in the formula (4.9) we have

µW = X
(m)
k +Λk

∆t

m
, ΣW =

∆t

m
Σk,

µY = A

[
X

(m)
k + (m− k − 1)

∆t

m
Λk

]
, ΣY = (m− k − 1)

∆t

m
AΣkA

′ +Ω.

4.3 Parameter Estimation of the Quasi-Markovian GLE

Now we are ready to focus on the parameter inference for the qmGLE.

4.3.1 Reparameterization

Clearly there is an identifiability issue if we try to estimate the parameter λ,A (and
implicitly Σ) given by Theorem 4.1.1. The identifiability issue motivates us to assume
that A is symmetric such that we can diagonalize A = PDP† where P ∈ Rd×d is an
orthogonal matrix, i.e. PP† = P†P = I and D ∈ Rd×d is a diagonal matrix with diagonal
components ρ = {ρ1, . . . , ρd}. We notice that

K(t) = ⟨e−Atλ,λ⟩ = ⟨Pe−DtP†λ,λ⟩ =
d∑
i=1

λ2i e
−ρit
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where we used the orthogonality of P . Since ΣΣ† = 2β−1A, and the eigenvalues ρi,
i = 1, . . . , d are all positive (since A is assumed to be positive definite), we can further
require Σ =

√
2A/β =

√
2/βPD 1

2P†. With these restrictions, we can eliminate the
identifiability issue, then the original SDEs become

dX(t) = V (t)dt ,

dV (t) = −U ′
ϕ(X(t))dt+ ⟨λ, z(t)⟩dt ,

dz(t) = −
(
V (t)λ+ PDP†z(t)

)
dt+

√
2/βPD 1

2P†dB(t) ,

Now apply an orthogonal transformation P† onto the third equation, i.e. let

Z(t) = P†z(t)

and accordingly,

µ = P†λ,

B̃(t) = P†B(t),

we have
dZ(t) = − (V (t)µ+DZ(t)) dt+D 1

2dB̃(t).

Since ⟨λ, z(t)⟩ = ∑d
i=1 λizi(t) = ⟨P†λ,P†Z(t)⟩ = ∑d

i=1 µiZi(t), and (multidimensional)
Brownian motion is invariant under orthogonal transformation, i.e. B̃(t) is again a d-
dimensional standard Brownian motion (each component is a one-dimensional Brownian
motion and different components are independent), the original SDE can be expressed as

dX(t) = V (t)dt ,

dV (t) = −U ′
ϕ(X(t))dt+

d∑
i=1

µiZi(t)dt ,

dZi(t) = − (V (t)µi + ρiZi(t)) dt+
√

2ρi/βdB̃i(t) , i = 1, . . . , d.

Therefore, if we can estimate the parameters θ = (µ,ρ,ϕ) from the above SDE, we can
recover our original GLE and the memory kernel K(t) = ⟨e−DtP†λ,P†λ⟩ =∑d

i=1 µ
2
i e

−ρit.
Note that d is predetermined in experiments.
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4.3.2 Degenerate Euler Scheme

In order to perform simulation, a natural approach is to apply an Euler–Maruyama scheme
to discretize the SDE. We wish to simulate date at time intervals of ∆t by sampling at
an internal frequency ∆tm = ∆t/m for m > 0 using a simple procedure to be described
below, and keeping only every m-th observation. In other words, let X(m)

n , n = 0, 1, . . . be
the value of X(t) at time t = n∆tm such that Xn = X

(m)
mn . Then the Euler scheme for the

qmGLE is

X
(m)
n+1 −X(m)

n = V (m)
n ∆t/m ,

V
(m)
n+1 − V (m)

n = −U ′
ϕ(X

(m)
n )∆t/m+

d∑
i=1

µiZ
(m)
i,n ∆t/m ,

Z
(m)
i,n+1 − Z(m)

i,n = −
(
V (m)
n µi + ρiZ

(m)
i,n

)
∆t/m+

√
2ρi/β∆B̃

(m)
i,n

where ∆B̃m
i,n = B̃

(m)
i,n+1 − B̃(m)

i,n
iid∼ N (0,∆t/m), i = 1, . . . , d.

The Euler discretized qmGLE can be treated as an SSM. At time tn = n∆t, the hidden
state vector is

Sn = (X
(m)
m(n−1)+1:mn, V

(m)
m(n−1)+1:mn,Z

(m)
m(n−1)+1:mn)

where Z
(m)
t = (Z

(m)
1,t , . . . , Z

(m)
d,t ). It is clear that Sn only depends on the last state Sn−1

and thus is Markovian. At each observation time, there are d+2 number of state variables
whereas the randomness only comes from d independent Brownian motions. Denote {Yn =

X
(m)
mn } as the observation sequence, then the measurement model (4.7) becomes

Yn ∼ N
(
X(m)
mn , σ

2
ϵ

)
(4.10)

which is just a special case of Lemma 4.2.1 with A = [ 1 0
0 0 ] and Ω = σ2

ϵA.

Then we can see that it would be meaningless to directly apply the bridge proposal
under the degenerate Euler scheme. Note that the system of SDEs becomes

Snm+1 − Snm =

 V
(m)
mn

−U ′
ϕ(X

(m)
mn ) + µ′Z

(m)
mn

−V (m)
mn µ− ρZ

(m)
mn

 ∆t

m
+

1 0 0
0 1 0

0 0
√
2ρ
β

1d×d

 0
0

B̃
(m)
nm

 .

If we blindly apply the bridge proposal formula (4.9), the result degenerates to (4.10) with
σ = 0, which is equivalent to the bootstrap particle filter. The intuition behind is indeed
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simple in that the d-dimensional Brownian motion (randomness) is essentially independent
of the “deterministic” variables of dimension 2, resulting in failure of constructing a mean-
ingful diffusion bridge. However, there is a deep root behind the degeneracy problem, as
we shall discuss next.

4.3.3 Hypoelliptic Diffusions

A deeper reason behind the failure of the Euler scheme lies in the fact that qmGLE belongs
to a class of hypoelliptic diffusion processes where a smooth density solution exists (Hör-
mander, 1961), but the diffusion matrix is not of full rank (Pokern et al., 2009; Ditlevsen
and Samson, 2019). In such cases, the ergodicity of the (degenerate) Euler discretiza-
tion scheme may fail since the Lyapunov condition given in Mattingly et al. (2002) is not
satisfied.

Moreover, for SDEs with partial observations, under the degenerate Euler scheme, the
unobserved components (e.g. V (t)) are directly computed via the time differentiation from
the observed coordinates (e.g. X(t)) in order to be compatible with the model, which leads
to estimating missing paths with incorrect quadratic variations.

From an abstract mathematical point of view, the generator of the qmGLE solution is
actually a degenerate second-order hypoelliptic differential operator (Ottobre et al., 2012)
which can be written in Hömander’s “sum of squares” form (Hörmander, 1967). This
hypoelliptic structure leads to the failure of estimation based on the degenerate Euler
discretization scheme as we previously pointed out. Without modifying the Euler scheme,
even the bridge proposal tailored to SDEs would certainly fail. We are then motivated to
propose a non-degenerate discretization scheme by propagating the noise from the “rough”
components Z(t) to the “smooth” components X(t), V (t), which we shall provide in the
next section.
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4.3.4 Modified Discretization Scheme

For our convenience of the following exposition, let us restate the qmGLE of interest for
parameter inference,

dX(t) = V (t)dt,

dV (t) = −U ′
ϕ(X(t))dt+

d∑
i=1

µiZi(t)dt,

dZi(t) = − (µiV (t) + ρiZi(t)) dt+ σidB̃i(t)

(4.11)

where σi =
√
2ρi/β. Moreover, let

Z(t) = (Z1(t), . . . , Zd(t))

and
W (t) = (X(t), V (t),Z(t)).

To propagate the randomness to the full qmGLE model, we design a modified Euler
discretization scheme by using the q-times integrated Wiener process (Schober et al., 2019)
with q = 2.

When tn = n∆t, let Xn = X(tn), Vn = V (tn), Zn = Z(tn), ∆Xn(s) = X(tn+s)−X(tn)
for s ∈ R, and similarly for ∆Vn(s), ∆B̃i,n(s), ∆Wn(s). Then for small s ≥ 0, the SDE
(4.11) may be approximated on the time interval t ∈ (tn, tn + s) by

∆Xn(s) =

∫ s

0

(Vn +∆Vn(h)) dh

∆Vn(s) = −U ′
ϕ(Xn)s+

d∑
i=1

µi

∫ s

0

(Zi,n +∆Zi,n(h)) dh

∆Zi,n(s) = − (µiVn + ρiZi,n) s+ σi∆B̃i,n(s), i = 1, . . . , d.
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Let U (j)
i,n (s) for j ∈ {0, 1, 2} be defined as

U
(2)
i,n (s) = σi∆B̃i,n(s),

U
(1)
i,n (s) =

∫ s

0

U
(2)
i,n (h)dh,

U
(0)
i,n (s) =

∫ s

0

U
(1)
i,n (h)dh

such that U (j)
i,n (s) is the j-th order derivative of U (0)

i,n (s) at time s.

Let U
(j)
n (t) = (U

(j)
1,n(t), . . . , U

(j)
d,n(t)) and consider the 3d-dimensional process

Un(t) = (U (0)
n (t),U (1)

n (t),U (2)
n (t)).

Then upon letting Ai,n = µiVn + ρiZi,n and An = (A1,n, . . . , Ad,n), we have

∆Wn(s) = λ(Wn, s) + Z̃n(s),

where each of the three terms above is a (d+ 2)-dimensional process with

λ(Wn, s) =

Vn − 1
2
U ′
ϕ(Xn)s

2 + µ′ (1
2
Zns

2 − 1
6
Ans

3
)

−U ′
ϕ(Xn)s+ µ′ (Zns− 1

2
Ans

2
)

−Ans

 , Z̃n(s) =

µ′ 0 0
0 µ′ 0
0 0 1d×d

Un(s).

Note that Un(s) is a Markov process, with Un(0) = 0 and

Un(s+ h) | Un(s) ∼ N
{
(R(h)⊗ 1d×d)Un(s),Σ(h)⊗ diag(σ2)

}
,

where ⊗ is the Kronecker matrix product, and

R(h) =

1 h 1
2
h2

0 1 h
0 0 1

 , Σ(h) =

 1
20
h5 1

8
h4 1

6
h3

1
8
h4 1

3
h3 1

2
h2

1
6
h3 1

2
h2 h

 ,
Note Σ(h) can be derived using (Schober et al., 2019, Eq (10) for q = 2). In Appendix
C.1, we also give a clear and direct derivation of this covariance matrix without referring
to the aforementioned result (which is a more general one for our purposes).

77



It follows that Z̃n(s) is also a Markov process with Z̃n(0) = 0 and

Z̃n(s+ h) | Z̃n(s) ∼ N
(
R̃(h)Z̃n(s), Σ̃(h)

)
,

where

R̃(h) =

1 h 1
2
h2µ′

0 1 hµ′

0 0 1d×d

 , Σ̃(h) =

 1
20
γh5 1

8
γh4 1

6
h3µ′ diag(σ2)

1
8
γh4 1

3
γh3 1

2
h2µ′ diag(σ2)

1
6
h3 diag(σ2)µ 1

2
h2 diag(σ2)µ h diag(σ2)

 ,
and where γ =

∑d
i=1 µ

2
iσ

2
i . Then we have the following algorithm to simulate W0, . . . ,WN ,

(i) Fix the value of W0, or draw it from its stationary distribution.

(ii) Given Wn, generate Wn+1 via

Wn+1 = Wn + λ(Wn,∆t) + Z̃n(∆t),

where Z̃n(∆t)
iid∼ N (0, Σ̃(∆t)).

Essentially speaking, this propagation of noise is equivalent to adding the first non-
zero Brownian noise terms arising in the Itô–Taylor (IT) expansion (Kloeden and Platen,
1999, e.g. Chapter 5, p. 182) of the “smooth” components X(t) and V (t) in W (t), which is
similar to the idea suggested by Pokern et al. (2009), leading to the exact covariance matrix
obtained from the integrated Wiener process (IWP). The modified discretization scheme
is then in agreement with the truncated Itô–Taylor expansion up to error terms of order
O(∆t1.5) in the rows that correspond to Z(t), resulting in a weak order 1.5 convergence
scheme (Kloeden and Platen, 1999).

Pokern et al. (2009) showed that the IT scheme obtained above can be used to estimate
the diffusion coefficients consistently, as well as to infer the unobserved “rough” compo-
nents of the path. However, it produces a bias of order O(∆t) in estimates of SDE drift
parameters when used in a Gibbs sampler which alternately updates parameters and latent
variables conditioned on each other and the observed data. This result warns us that we
should be very careful about applying the parameter inference method even with a non-
degenerate discretization scheme. They also showed that the simple Euler scheme cannot
be used to estimate the diffusion coefficients consistently. This complements a result of
Roberts and Stramer (2001) that Gibbs samplers for regular SDEs have arbitrarily poor
mixing time in the diffusion parameters as the resolution number m increases.

78



However, it is important to note that these negative results do not imply that the IT
(or Euler) scheme is in and of itself invalid. Indeed, Kou et al. (2012) prove that the Euler
scheme converges in distribution to the true posterior p(θ | Y0:N) as m→∞. It seems that
the proof can be adapted for hypoelliptic diffusions with the IT (or Euler) scheme though
we have not pursued this here. The point is that it is not the discretization scheme which
is at fault, but rather the algorithm used to sample from it. The failures of the IT scheme
for hypoelliptic diffusions are demonstrated only for the Gibbs sampler which alternates
between parameter and latent variable updates. It is our hope that the PMMH algorithms
which operate on the marginal posterior p̂(θ | Y0:N) directly, i.e., which integrate out
the latent variables for each value of θ, would not suffer for the estimation bias reported
by Pokern et al. (2009). Ditlevsen and Samson (2019) proposed an order 1.5 strong IT
approximation scheme to solve the issue of estimation bias for the drift parameters using
the non-degenerate scheme in Pokern et al. (2009). However, their scheme applies only to
one-dimensional smooth variables, whereas we have bothX(t) and V (t). More importantly,
their scheme is more complicated than ours, such that Ditlevsen and Samson (2019) have
to integrate out the latent variables using a bootstrap particle filter. In contrast, the
simplicity of our scheme allows us to extend the bridge proposal of Durham and Gallant
(2002) to the IT setting. This is the heart of the novel contribution of this Chapter, which
we develop in the following Section.

4.3.5 Particle Filtering with Bridge Proposal

For resolution number m ≥ 1, let W
(m)
n denote the value of the SDE at time tn = n∆t,

such that W
(m)
mn = Wn = W (tn). Then we establish the SSM with hidden states

{Sn = W
(m)
(n−1)m+1:nm}n≥1

and observations {Yn}n≥1.

A bridge proposal for Sn is constructed as follows (0 ≤ k ≤ m− 1):

(i) Without loss of generality, suppose n = 1, we have W (m)
(n−1)m+k = W

(m)
k = W (k∆t/m)

is given, and we wish to draw the proposal for W (m)
k+1 = W ((k + 1)∆t/m).

(ii) For 0 ≤ s ≤ (m − k)∆t/m, let Wk(s) = W (k∆t/m + s). Then consider the
approximation

W (k∆t/m+ s) = µk(s) + Z̃k(s),
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where µk(s) = W
(m)
k + λ(W

(m)
k , s) and Z̃k(s) is a Markov process as defined above.

Under this approximation we have the model

W
(m)
k+1 |W

(m)
k ∼ N (µk(∆t/m), Σ̃(∆t/m))

W (m)
m |W (m)

k+1 ,W
(m)
k ∼ N (µk(∆t) + R̃(∆tk)(W

(m)
k+1 − µk(

∆t

m
)), Σ̃(∆tk))

Y1 |W (m)
m ,W

(m)
k+1 ,W

(m)
k ∼ N

(
AW (m)

m ,Ω
)
,

where ∆tk = (m − k − 1)∆t/m. We may now apply Lemma 4.2.1 and formulas for
conditional distributions of the multivariate normal to sample

W
(m)
k+1 ∼ p(W

(m)
k+1 |W

(m)
k ,Y1),

namely
W

(m)
k+1 |W

(m)
k ,Y1 ∼ N (λk+1,Ωk+1).

In fact, we can derive the joint distribution of (W (m)
k+1 ,Y1) as[

W
(m)
k+1

Y1

]
|W (m)

k ∼ N
([

µk(∆t/m)
0

]
,

[
Σ̃(∆t

m
) Σ̃(∆t

m
)R̃(∆tk)

′A′

AR̃(∆tk)Σ̃(∆t
m
)′ Πm,k

])
.

where Πm,k = AR̃(∆tk)Σ̃(∆t
m
)R̃(∆tk)

′A′ + AΣ̃(∆tk)A
′ + Ω. Note Πm,k is the sum of

three symmetric, positive definite matrices, and thus is invertible. Then by applying the
formula for the conditional distribution of a multivariate normal distribution, we get find
the formulae for λk+1 and Ωk+1

λk+1 = µk(∆t/m) + Σ̃(∆t/m)R̃(∆tk)
′A′Π−1

m,kY1

Ωk+1 = Σ̃(∆t/m)− Σ̃(∆t/m)R̃(∆tk)
′A′Π−1

m,kAR̃(∆tk)Σ̃(∆t/m)′

A general result regarding the joint distribution of (W (m)
m ,W

(m)
k+1 ,Y1) and the condi-

tional distribution (W
(m)
m |W (m)

k+1 ,Y1) is given in Appendix C.3. We can now embed this
bridge proposal into the particle filter described in Algorithm 4.1.
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4.4 Concluding Remarks

In order to at least partially solve the parameter inference problem for the general nonlinear
GLE, we favored a type of quasi-Markovian scheme (denoted as qmGLE) to convert the
non-Markovian GLE to a Markovian system of SDEs with the same solution process (Pavli-
otis, 2014; Ottobre and Pavliotis, 2010). Based on the qmGLE, we analyzed the limitations
of default particle filter techniques (e.g. bootstrap particle filter) and carefully derived the
bridge proposal for particle filters. Furthermore, we revealed that the failure lies in the de-
generate Euler scheme such that the bridge proposal is essentially as bad as the bootstrap
filter due to a lack of randomness, which is an intrinsic problem for hypoelliptic SDEs.
Then we were motivated to propose a modified scheme based on the integrated Wiener
process to propagate randomness into the full qmGLE system. By applying the particle
filter with the bridge proposal, we present a promising method to perform particle filtering
and parameter inference. We have discussed parameter estimation conceptually in Sec-
tion 4.2.2. The implementation of a careful designed estimation algorithm and extensive
numerical verification will be the subject of future work.

Our proposed method avoids the degeneracy caused by hypoelliptic diffusions. The
non-degenerate discretization scheme with data augmentation is guaranteed to converge in
distribution to the true posterior, as shown by Kou et al. (2012). However, a badly designed
parameter inference method could easily ruin this. That basically explains some reasons
behind the failure of the Gibbs sampler used by Pokern et al. (2009) and the success of the
particle filter method proposed by Ditlevsen and Samson (2019), aside from their different
discretization schemes, for the parameter estimation of hypoelliptic SDEs. We believe our
proposed method, i.e. the particle filter with bridge proposal built upon a non-degenerate
Itô-Taylor approximation scheme for the qmGLE can avoid the parameter estimation issue
as long as a well-designed inferential algorithm is implemented such that the parameter
estimation is not intertwined with the updating of latent variables. Some promising meth-
ods are available in the current literature, e.g. either the particle MCMC (Andrieu et al.,
2010) or simulated maximum likelihood (e.g. Cappé and Moulines, 2005; Poyiadjis et al.,
2011; Corenflos et al., 2021). But the implementation of parameter estimation with careful
numerical checks will be left for future research.

We realized there is another way to simulate the diffusion process, using the exact al-
gorithm (EA) proposed and studied by Beskos and Roberts (2005); Beskos et al. (2006a,b,
2009) and Fearnhead et al. (2008). However, the EA method requires the diffusion pro-
cess to have some good analytic properties. In contrast, we still prefer a non-degenerate
discretization scheme which allows us to build more advanced sampling mechanism for
Bayesian parameter estimation.
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One last thing to note is that in our parameterization, we have assumed A to be
symmetric such that it can be easily diagonalized. In general, it may not be true. For
a general positive definite A, a better way to overcome the identifiability issue may be
needed. But this will lead us to a challenging field of memory kernel approximation for
the GLE, which will also be the subject of future work, as discussed in Chapter 5.
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Chapter 5

Conclusion and Future Work

In Chapter 2, we established a representation theorem which reveals the fundamental con-
nections between the GLE and any continuous weakly stationary process. This result
greatly helps and facilitates the process of statistical modeling based on complex data
generated from an underlying GLE dynamics, which was illustrated by the example of
parametric spectral density estimation for the HTP data in Chapter 3. Moreover, we also
proved in Chapter 3 the theoretical high-frequency asymptotics of three main statistical
estimators of interest, the Whittle-type MLE, LP estimator, and NLS estimator, laying
the foundation for a very efficient and robust noise removal procedure proposed by Lysy
et al. (2022). Finally, in Chapter 4 we made an attempt with thorough theoretical con-
sideration to solve the inference problem for the nonlinear (and also non-Markovian) GLE
with extensive applications in more complex thermodynamic environment. By designing
a non-degenerate discretization scheme with additional randomness introduced from the
integrated Wiener process, we propose a particle filter technique with a bridge proposal to
fit the quasi-Markovian SDE approximation of the GLE. We emphasize the critical point
that the failure of designing a suitable inferential algorithm would easily destroy the con-
vergence of the discretization scheme (or the data-generating model). To properly deal
with the parameter estimation for the hypoelliptic SDEs, we suggest performing the task
solely in the parameter space without sampling problematic latent variables along the way.
Particle filter based methods, which can be used to integrate latent variables, are promising
for this purpose.

However, there are still some very interesting and promising topics left unsolved or for
future research.

For the fundamental theorem we established in Chapter 2, it is likely that there is
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a non-trivial extension to the continuous increment stationary process. But to prove the
conjecture in a rigorous mathematical language (mainly based on unbounded operators and
semigroup theory) is not easy, especially in the abstract infinite dimensional Hamiltonian
Hilbert space. That being said, this direction is also very promising in that once proved
completely, it would certainly give much deeper insights to our understanding of complex
thermodynamics and its relationship with various stochastic processes in statistics.

For asymptotic properties of likelihood-based estimators under HTP data, a theoreti-
cally intriguing topic may be the case where the sampling frequency fs and the number of
sample size N can approach infinity simultaneously. Even though we have already argued
that from an experimental perspective, this case may be of no practical interest, at least in
scientific experiments. But mathematically, there is certainly a huge gap between the high-
frequency (and even high-dimensional at the same time) asymptotics and the traditional
large sample asymptotics in time series, which may be worth filling.

Finally, for the nonlinear GLE, an efficient and general implementation of our proposed
method is the subject of future work. As for the methodology per se, we actually assumed
that the matrix A in the memory kernel γ(t) = ⟨e−Atλ,λ⟩ is symmetric and thus easily
diagonalizable. Otherwise, we would certainly face some identifiability issues. A long-
lasting research interest in the realm of GLEs is about the memory kernel approximation.
Due to the mathematical intricacy caused by the convolution integral in the GLE, this task
is non-trivial. Over the years, many techniques have been proposed to address this problem,
either numerically or analytically. In summary, there are two main directions. The first one
is data-driven methods, i.e., to recover the memory kernel based on data. For example, Lei
et al. (2016) developed rational function approximation using Laplace transform; Brennan
and Venturi (2018) designed a conditional expectation technique. The second direction
is to approximate the memory kernel from first-principles based on the internal nonlinear
structure without using simulation. A classic and well-known example is the continued-
fraction expansion proposed by Mori (1965a), or using recurrence relations (Lee, 1982a,b).
For further discussions on this, please refer to Zhu and Lei (2021) and the references therein.
This topic remains to be the subject of future work.

Overall, better statistical models and inference methods are indispensable in nanoscopic
systems for us to verify, investigate and understand the hidden dynamics of individual
molecules or nanoparticles from enormous amount of noisy observations, as scientists zoom
in on the intrinsically stochastic world. In retrospect of what Richard Feynman said over
sixty years ago, the same is so true for statistics today. This thesis only serves as a
small step forward to fill some theoretical gaps in this realm, hoping we or other research
colleagues could make a further leap in the near future.
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Appendix A

Appendix for Chapter 2

In this Appendix, there are three main sections. Section A.1 presents some basic con-
cepts related to self-adjoint operators and then introduce the functional calculus as well
as the spectral theorems. Section A.2 shows in detail some other examples of Hamiltonian
systems. Section A.3 gives detailed proofs of all the results in the paper.

A.1 Self-Adjoint Operators

In this section, we present some important concepts related to self-adjoint operators that
are crucial for readers to understand the mathematical tools applied in our construction
of Hamiltonians and later proofs. These materials in this section are adapted from classic
references Hille and Phillips (1957); Rudin (1973); Reed and Simon (1981); Yosida (1995);
Engel and Nagel (2000); Lax (2002); Hall (2013). Some properties are given directly or
stated with only succinct proof. For the remainder of this section, we will work with a
complex separable Hilbert space H , which can be finite or infinite.

Definition A.1.1 (Adjoint operator). Let A be a linear (possibly unbounded) operator
defined on a dense subspace dom(A) ⊆ H . The adjoint of A is an operator A† whose
domain dom(A†) consists of all vectors v ∈ H for which there is a vector z ∈ H such
that

⟨Au, v⟩ = ⟨u, z⟩ (A.1)

holds for all u ∈ dom(A). For such v, z ∈H we write A†v = z.
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The reason behind our focus on a subspace D is that if A is defined everywhere on H
and satisfies (A.1), then it can be shown that A must be bounded due to the closed graph
theorem. Thus, unbounded linear operators can only be defined on a subspace of H .

Usually the subspace dom(A) is assumed to be dense. This assumption is motivated
by the fact that the denseness of the domain is necessary and sufficient for the existence
of the adjoint operator A†. Since u 7→ ⟨Au, v⟩ is a continuous linear map on the domain
dom(A) of A which can be extended to the whole space H by the Hahn-Banach theorem,
the Riesz theorem tells us that there is a unique w ∈H satisfying

⟨Au, v⟩ = ⟨u,w⟩, ∀u ∈ dom(A)

where w is uniquely determined by v if and only if the linear map u 7→ ⟨Au, v⟩ is densely
defined (which is equivalent to A being densely defined). Finally, we can set A†v = w to
define A†. The upshot is that as long as dom(A) is dense, for any given v, A†v is unique
if exists.

Definition A.1.2. For a linear operator A on H , the set of values

σ(A) = {z ∈ C : (zI −A) has a bounded inverse}

is called the spectrum of A.

Definition A.1.3. An operator A is called self-adjoint if dom(A†) = dom(A) and A† = A,
and skew-adjoint if dom(A†) = A† and A† = −A.

It turns out that if A is self-adjoint, then σ(A) ⊆ R (Hall, 2013, Theorem 9.17).
More generally, self-adjoint and skew-adjoint operators admit some degree of theoretical
tractability via the so-called Spectral Theorem which we introduce momentarily. By way
of motivation we first present a consequence of this result.

Theorem A.1.1 (Functional Calculus, Hall, 2013, Definition 10.5). Let A be a self-adjoint
operator on H . Then for any measurable function f : σ(A)→ C, there exists a unique op-
erator f(A) such that for any x ∈H , there exists a unique finite measure µx (independent
of f) with µx(R \ (σ(A)) = 0 such that

⟨f(A)x, x⟩ =
∫
R

f(λ)dµx(λ), (A.2)

with
dom(f(A)) =

{
x ∈H :

∫
R

|f(λ)|µx(λ) <∞
}
.
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A few consequences of the functional calculus are:

(i) Addition and multiplication operations on regular functions extend directly to their
operator versions, i.e., (f + g)(A) = f(A) + g(A) and (fg)(A) = f(A)g(A).

(ii) For given f(A), its adjoint f(A)† is such that

⟨f(A)†x, x⟩ = ⟨x, f(A)x⟩ = ⟨f(A)x, x⟩

for any x ∈ dom(f(A)). On the other hand, (A.2) implies that

⟨f(A)x, x⟩ =
∫
R

f(λ)dµx(λ),

such that f(A)† = f(A).

(iii) The operator L = iA is skew-adjoint, and the operator etL = eitA defined by func-
tional calculus precisely agrees with the corresponding C0-semigroup defined by Def-
inition 2.2.1.

A.1.1 Spectral Theorem: Direct Integral Form

For our purposes we shall require the spectral theorem in two equivalent forms. The first of
these hinges on the concept of a direct integral Hilbert space (Hall, 2013, Definition 7.18).

Suppose we have a partition of the real line R = ⨿∞
n=0Sn, and consider the family of

Hilbert spaces {Hλ, λ ∈ R} such that

Hλ =

{
Cn, λ ∈ Sn, n > 0

ℓ2, λ ∈ S0, n = 0,

where ℓ2 is the Hilbert space of square-summable (complex) infinite sequences. Let ⟨·, ·⟩λ
and | · |λ denote respectively the inner product and norm on Hλ.

Now, let µ be a σ-finite countably additive measure on R, and consider functions s(·)
defined on R such that:

(i) s(λ) ∈Hλ.
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(ii) s(λ) is square-integrable with respect to µ:∫
R

|s(λ)|2λdµ(λ) =
∞∑
n=0

∫
Sn

|s(λ)|2ndµ(λ) <∞.

The set of such functions forms a (complex, separable, finite or infinite) Hilbert space
called a direct integral which we denote by H ⊕{⨿∞

n=0Sn, µ}, on which the inner product
is defined as

⟨s, v⟩ =
∫
R

⟨s(λ), v(λ)⟩λdµ(λ) =
∞∑
n=0

∫
Sn

⟨s(λ), v(λ)⟩ndµ(λ).

Direct integrals provide the fundamental tools to define the spectral decomposition of
a self-adjoint operator A:
Theorem A.1.2 (Hall, 2013, Theorem 10.9). Let A be a self-adjoint operator on H . Then
H is isomorphic to a direct integral H ⊕{⨿∞

n=0Sn, µ} with µ(R \ σ(A)) = 0 on which A is
a multiplication operator:

A : s(λ)→ λs(λ).

Moreover, the functional calculus on the direct integral is given by

f(A) : s(λ)→ f(λ)s(λ),

with
dom(f(A)) =

{
s(λ) :

∫
R

|f(λ)s(λ)|2λdµ(λ) <∞
}

The direct integral H ⊕{⨿∞
n=0Sn, µ} in Theorem A.1.2 is not unique. However, if

H ⊕{⨿∞
n=0S

(1)
n , µ1} and H ⊕{⨿∞

n=0S
(2)
n , µ2} are both candidates for the result of Theo-

rem A.1.2, then S
(1)
n = S

(2)
n and µ1 and µ2 are absolutely continuous with respect to each

other (Hall, 2013, Proposition 7.22).

A.1.2 Spectral Theorem: Projection-Valued Measure Form

The second form of the spectral theorem requires the following definition.
Definition A.1.4. Let H be a complex separable Hilbert space and B(R) the Borel sets
on the real line. A function µ from B(R) to the bounded linear operators on H is called
a projection-valued measure if it satisfies the following:
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(i) For each E ∈ B(R), µ(E) is an orthogonal projection on a closed subspace VE ⊆H .
That is, we have µ(E)x = x for x ∈ VE and µ(E)x = 0 for x ∈ V ⊥

E , the orthogonal
complement of VE.

(ii) µ(∅) = 0 and µ(R) = I.

(iii) For disjoint sets E1, E2, . . . ∈ B(R), for all v ∈HC we have

µ
(
∪∞
j=1Ej

)
v =

∞∑
j=1

µ(Ej)v.

(iv) For all E,F ∈ B(R), we have µ(E ∩ F ) = µ(E)µ(F ).

If µ is a projection-valued measure and ϕ ∈H , then

µϕ,ϕ : B(R)→ R+, µϕ,ϕ(E) = ⟨ϕ, µ(E)ϕ⟩

is a positive finite measure (Hall, 2013, Proposition 7.11). This can be generalized to the
following lemma:

Lemma A.1.1. If µ is a projection-valued measure and ψ, ϕ ∈H , then

µψ,ϕ : B(R)→ C, µψ,ϕ(E) = ⟨ψ, µ(E)ϕ⟩

is a complex measure.

Proof. By direct calculation note that

µψ,ϕ =
1

2
[µψ+ϕ,ψ+ϕ − (µψ,ψ + µϕ,ϕ)]−

i

2
[µψ+iϕ,ψ+iϕ − (µψ,ψ + µiϕ,iϕ)] ,

where each of the terms above is a positive finite measure, such that the result follows from
the definition of a complex measure.

Thus for measurable functions f : R→ C we can define operators µ(f) =
∫
R
f(λ)dµ(λ)

on H via
⟨ψ, µ(f)ϕ⟩ =

∫
R

f(λ)dµψ,ϕ(λ), ψ, ϕ ∈H .

We are now ready to present the spectral theorem in terms of projection-valued mea-
sures:
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Theorem A.1.3 (Hall, 2013, Theorem 10.4). Let A be a self-adjoint operator on H . Then
there exists a unique projection-valued measure µA with µA(R \ σ(A)) = 0 such that

A =

∫
R

λdµA(λ).

Moreover, the functional calculus is obtained via

f(A) =
∫
σ(A)

f(λ)dµA(λ),

with
dom(f(A)) =

{
ϕ ∈H :

∫
σ(A)

|f(λ)|dµAϕ,ϕ <∞
}
.

A.2 ACF Representation with Hamiltonians of Interest

For the following examples we introduce the notion of Sobolev spaces.

Definition A.2.1. Let u(x) and v(x) be locally integrable function on R. Then v(x) is
called the k-th weak derivative of u(x) if∫

u(x)
dk

dxk
ϕ(x)dx = (−1)k

∫
v(x)ϕ(x)dx

for all smooth functions ϕ(x) with compact support.

Weak derivatives generalize regular derivatives in that the two coincide when the latter
exists, and the former also obeys the formula for integration by parts.

Definition A.2.2. The Sobolev space W k,p consists of the subset of functions f ∈ Lp such
that f and its weak derivatives of order up to k are all in Lp.

The Sobolev space W k,p is a Banach space with respect to the norm

∥f∥k,p =
k∑
i=0

(∫
R

|f (i)(x)|pdx
)1/p

.
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The Sobolev spaces Hk = W k,2 are Hilbert spaces with inner product

⟨u, v⟩ =
k∑
i=0

∫
R

u(i)(x)v(i)(x)dx.

A.2.1 Wave Equation Hamiltonian

Let us consider the heat-bath Hamiltonian given in Pavliotis (2014). The infinite-dimensional
system is characterized by the one-dimensional wave equation ∂2t q = ∂2xq where q = q(x, t)
is the position and p = p(x, t) = ∂tq is the conjugate momentum. The Hamiltonian is
given by

H(Γ) = 1

2

∫
R

(
|p|2 + |∂xq|2

)
dx.

The resulting Hamiltonian equations of motion are just the wave equations,

∂tq =
δH
δp

=
∂H
∂p
− ∂

∂x

∂H
∂(∂xp)

= p, (A.3)

∂tp = −δH
δq

= −∂H
∂q

+
∂

∂x

∂H
∂(∂xq)

= ∂2xq. (A.4)

For Γ = (q, p), the Hamiltonian can be written as

H(Γ) = 1

2
∥Γ∥2

The corresponding Hilbert space HE is equipped with an inner product as follows

⟨Γ1,Γ2⟩ =
∫
R

(
∂xq1∂xq2 + p1p2

)
dx.

Define an operator A as

A =

[
0 1
∂2x 0

]
.

Then the Hamiltonian equations of motion (A.3) and (A.4) can be expressed as

∂tΓ = A Γ

for Γ = (q, p). It is an ODE in terms of t which has the solution Γt = eA tΓ0.
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Consider an observable Xt = ⟨f,Γt⟩ in the dual space of HE where f = (α, β) ∈ HE.
Since A is skew adjoint, we have

Xt = ⟨f,Γt⟩ = ⟨e−A tf,Γ0⟩

where e−tA is a strong continuous one-parameter unitary group. Thus,

⟨Xu, Xu+t⟩H ′ = ⟨e−A uf, e−A (u+t)f⟩ = ⟨eA tf, f⟩

is in fact an ACF of a Gaussian process. In the following subsection, we can explicitly
establish the construction.

The d’Alembert solution is not as useful as the Fourier solution. Instead, we can turn
to the Fourier solution of the wave equation

∂2

∂x2
q(x, t) =

∂2

∂t2
q(x, t). (A.5)

Let q(x, 0) = f(x) and ∂
∂t
q(x, 0) = g(x), by taking the Fourier transform (w.r.t. x) of (A.5)

and recalling that differentiation w.r.t. t commutes with the Fourier transform, we obtain

−4π2|ξ|2q̂(ξ, t) = ∂2

∂t2
q̂(ξ, t) (A.6)

where q̂(ξ, t) = F{q(x, t)}. For each ξ, (A.6) is an ODE in t whose solution is given by

q̂(ξ, t) = C1(ξ) cos(2π|ξ|t) + C2(ξ) sin(2π|ξ|t) (A.7)

where C1(ξ) and C2(ξ) are constants determined by the initial conditions

F{q(x, 0)} = q̂(ξ, 0) = f̂(ξ) and F
{
∂

∂t
q(x, 0)

}
=

∂

∂t
q̂(ξ, 0) = ĝ(ξ)

By setting t = 0 in (A.7), we find

C1(ξ) = f̂(ξ) and 2π|ξ|C2(ξ) = ĝ(ξ).

Thus, the solution to (A.5) is given by

q(x, t) =

∫
R

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πixξdξ.
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The covariance of a stationary random variable can be written as (suppose here f =
(q, p) ∈HE)

⟨Xu, Xu+t⟩ = ⟨e−A uf, e−A (u+t)f⟩ = ⟨eA tf, f⟩

=
1

2

∫
R

(
∂xq(x, t)∂xq(x, 0) + p(x, t)p(x, 0)

)
dx.

By the Plancherel’s theorem, we have∫
∂xq(x, t)∂xq(x, 0)dx =

∫
R

[
2π|ξ|f̂(ξ) cos(2π|ξ|t) + ĝ(ξ) sin(2π|ξ|t)

]
2π|ξ|f̂(ξ)dξ∫

p(x, t)p(x, 0)dx =

∫
R

[
−2π|ξ|f̂(ξ) sin(2π|ξ|t) + ĝ(ξ) cos(2π|ξ|t)

]
ĝ(ξ)dξ

Let a = 2π|ξ|f̂(ξ), b = ĝ(ξ) and θ = 2π|ξ|, we have

⟨Xu, Xu+t⟩H ′ =
1

2

∫
R

(a2 + b2) cos(θt)dξ =
1

2

∫
R

(
4π2ξ2|f̂(ξ)|2 + |ĝ(ξ)|2

)
cos(2π|ξ|t)dξ.

Thus, we can connect the inner product with the autocovariance (or equivalently the PSD)
of any given continuous and stationary process as we previously did.

A.2.2 The Klein–Gordon Hamiltonian

Let us consider the Klein–Gordon Hamiltonian (e.g. Goldstein et al., 2002, Section 13.6)

H(q, p) = 1

2

∫
R

(
p2 + (∇q)2 +m2q2

)
dx

where q = q(x, t), p = p(x, t), m ∈ R and the corresponding inner product can be defined
as

⟨Γ1,Γ2⟩ =
∫
R

(
pp̄+ (∇q) · (∇q) +m2qq̄

)
dx, Γi = (qi, pi), i = 1, 2.
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The Hamiltonian equations of motion can be calculated using Poisson brackets (or func-
tional derivatives)

q̇ = ∂tq =
δH
δp

= {q,H} = p

ṗ = ∂tp = −δH
δq

= {p,H} = ∇2q−m2q

which gives us the famous Klein–Gordan equation(
∂2

∂t2
−∇2 +m2

)
q = 0.

Now, let us apply the Fourier transform trick again. We have the Klein–Gordan equation
in the frequency domain as follows

∂2

∂t2
q̂(ξ, t) = −

(
4π2|ξ|2 +m2

)
q̂(ξ, t)

which is a second-order homogeneous ODE in t for each fixed ξ with the solution written
as

q̂(ξ, t) = C1(ξ) cos(θt) + C2(ξ) sin(θt)

where θ =
√

4π2|ξ|2 +m2 and C1(ξ) = f̂(ξ), C2(ξ) = ĝ(ξ)/θ determined by the initial
conditions

q̂(ξ, 0) = f̂(ξ) and
∂

∂t
q̂(ξ, 0) = ĝ(ξ)

where q̂(ξ, t) = F{q(x, t)}. Therefore, the solution to the Klein–Gordan equation in the
time domain can be written as the inverse Fourier transform

q(x, t) =

∫
R

[
f̂(ξ) cos(θt) + ĝ(ξ)

sin(θt)

θ

]
e2πixξdξ.

The inner product between two observables can be written as

⟨Xu, Xu+t⟩H ′ = ⟨e−A uf, e−A (u+t)f⟩ = ⟨eA tf, f⟩ f = (q, p) ∈H

=
1

2

∫
R

(
p(x, t)p(x, 0) +∇q(x, t)∇q(x, 0) +m2q(x, t)q(x, 0)

)
dx.
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By the Plancherel’s theorem, we have∫
R

p(x, t)p(x, 0)dx =

∫
R

(
−θf̂(ξ) sin(θt) + ĝ(ξ) cos(θt)

)
ĝ(ξ)dξ∫

R

∇q(x, t)∇q(x, 0)dx = 4π2|ξ|2
∫
R

(
f̂(ξ) cos(θt) + ĝ(ξ)

sin(θt)

θ

)
f̂(ξ)dξ∫

R

m2q(x, t)q(x, 0)dx = m2

∫
R

(
f̂(ξ) cos(θt) + ĝ(ξ)

sin(θt)

θ

)
f̂(ξ)dξ

Plug the above results into the inner product expression and notice that θ =
√
4π2|ξ|2 +m2,

we get

⟨Xu, Xu+t⟩H ′ =
1

2

∫
R

[(
4π2|ξ|2 +m2

)
|f̂(ξ)|2 + |ĝ(ξ)|2

]
cos (θt) dξ

which corresponds to the Fourier transform of the PSD of a stationary process.

A.3 Proofs of Technical Results

A.3.1 Proof of Proposition 2.2.1

Proof. First, let Φ(t) = etL, we have

|C(t)− C(0)| = |⟨X0, (Φ(t)− I)X0⟩| ≤ ∥Φ(t)− I)∥∥X0∥2 → 0

as t → 0 since ∥X0∥ is just a constant and Φ(t) is strongly continuous at t = 0. Then by
using the group property, we have the fact that Φ(−t) = Φ(t)−1 = Φ(t)†, we can show the
positive definiteness,∑

C(ti − tj)ziz̄j =
∑
⟨Φ(ti − tj)f, f⟩ziz̄j =

∑
⟨Φ(tj)−1Φ(ti)f, f⟩ziz̄j

=
∑
⟨Φ(ti)f,Φ(tj)f⟩ziz̄j = ⟨

∑
ziΦ(ti)f, zjΦ(tj)f⟩

= ∥
∑

ziΦ(ti)f∥2 ≥ 0.

Finally, it is indeed (conjugate) symmetric

C(t) = ⟨Φ(−t)X0, X0⟩ = ⟨X0,Φ(−t)X0⟩ = C(−t).

115



But since all the ACFs we are discussing are essentially real-valued functions, this just lead
to the time symmetry of an ACF.

A.3.2 Proof of Theorem 2.3.1

Proof. Since L is a skew-adjoint operator on HC , iL is self-adjoint. Using the direct
integral version of the spectral theorem (Theorem A.1.2), HC is isometrically isomorphic
to a direct integral H ⊕ = H ⊕{⨿∞

n=0Sn, µ} under which we have

f(L) = f(−i · (iL)) : s(λ) 7→ f(−iλ).s(λ)

Thus, for X ∈H ′ we have

⟨e−tLX,X⟩ =
∫
R

eitλ⟨s(λ), s(λ)⟩λdµ(λ) =
∫
R

eitλ|s(λ)|2λdµ(λ),

where s(λ) is the element of H ⊕ identified with X ∈H ′ via Theorem A.1.2. Let us now
consider the measure ν for which the Radon–Nikodym derivative with respect to µ is given
by dν(λ)/dµ(λ) = |s(λ)|2λ. Due to the square-integrability assumption on s(λ), ν is a finite
positive measure for which we have

⟨e−tLX,X⟩ =
∫
R

eitλdν(λ),

which shows that ⟨e−tLX,X⟩ is an ACF.

Conversely, suppose that C(t) is an ACF with spectral decomposition

C(t) =
∫
R

eitλdν(λ),

and that ν is absolutely continuous with respect to µ, such that we have the Radon–
Nikodym derivative dν(λ)/dµ(λ) = a(λ) ≥ 0. Now consider the function

s(λ) = (a(λ)1/2, 0, . . .).

It then follows that

C(t) =
∫
R

eitλ|s(λ)|2λdµ(λ) =
∫
R

eitλa(λ)dµ(λ),
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which completes the proof.

A.3.3 Proof of Theorem 2.4.1

We first introduce the characterization of continuous stationary processes introduced by Itô
(1954).

Definition A.3.1. Let µ be a non-negative finite measure on B(R), the Borel sets on the
real line. A random measure M is a function from B(R) to the complex-valued random
variables such that for any E,F ∈ B(R) we have

cov(M (E),M (F )) = µ(E ∩ F ).

As a consequence of Definition A.3.1, we also get

∥M (E)∥2 = µ(E), E ∈ B(R),

M (E1) ⊥M (E2) if E1 ∩ E2 = ∅, E1, E2 ∈ B(R),

M (
∞∑
n=1

En) =
∞∑
n=0

M (En) for disjoint sets E1, E2, . . . ∈ B(R).

Thus for f ∈ L2
µ(R) we can define random variables of the form

M (f) =

∫
R

f(λ)dM (λ)

by Lebesgue integration. That is, for simple functions f(x) =
∑n

i=1 ci1(x ∈ Ei) we have

M (f) =
n∑
i=1

ciM (Ei),

and for arbitrary f ∈ L2
µ(R), M (f) is the mean square limit of M (fn), where the fn are

simple functions converging in mean square to f .

As a consequence, we have

cov(M (f1),M (f2)) =

∫
R

f1(λ)f2(λ)dµ(λ).
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Ito’s characterization of continuous stationary processes is then as follows:

Theorem A.3.1 (Itô, 1954, Theorem 4.1). Let Xt be a continuous stationary process with
mean zero and ACF

cov(Xt, X0) =

∫
eitλdµ(λ). (A.8)

Then there is a unique M (λ) with measure µ such that

Xt =

∫
R

eitλdM (λ). (A.9)

Conversely, any random measure M (λ) with respect to µ defines a continuous stationary
process Xt with ACF given by (A.8).

This motivates us to construct such a random measure in the context of Hamiltonian
systems as given in Section 2.2. To realize this, we use the projection-valued measure form
of the spectral theorem (Theorem A.1.3) to obtain the unique projection-valued measure
µL for which the functional calculus is given by

f(L) =
∫
R

f(−iλ)dµL(λ).

(Note that µL is actually µiL in the statement of Theorem A.1.3 since it is iL which is
self-adjoint.)

Lemma A.3.1. For ψ, ϕ ∈H the function µψ,ϕ : B(R) 7→ C defined by

µψ,ϕ(E) = ⟨µL(E)ψ, ϕ⟩.

is a complex measure, and for a measurable function f we have

⟨
∫
R

f(λ)dµL(λ)ψ, ϕ⟩ =
∫
R

f(λ)dµψ,ϕ(λ).

Proof. When ϕ = ψ the result is given by Hall (2013), Proposition 7.11. Otherwise, a
direct calculation shows that

µψ,ϕ =
1

2
[µψ+ϕ,ψ+ϕ − µψ,ψ − µϕ,ϕ]−

i

2
[µψ+iϕ,ψ+iϕ − µψ,ψ − µiϕ,iϕ] ,

and a similar calculation holds for ⟨
∫
R
f(λ)dµL(λ)ψ, ϕ⟩.
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Now consider the Hamiltonian system {H , ω(·, ·),L} embedded in the complex Hilbert
space HC on which L is skew-adjoint. For the remainder of the proof we shall only refer
to HC , and thus for easy of notation let us denote it by H . Thus, let X ∈ H ′ be an
observable of the system. Let {Xt, t ≥ 0} denote the trajectory of X. Then

⟨Xt, X0⟩ = ⟨e−tLX,X⟩ = ⟨
∫
eitλdµL(λ)X,X⟩

=

∫
eitλdµX,X(λ)

and similarly

Xt(Γ) =

∫
eitλdµX,Γ(λ).

Given a random measure M on µX,X , the idea now is to construct a probability distribution
p(Γ) for Γ in such a way that µX,Γ = M . In this manner, {Xt(Γ) : t ≥ 0,Γ ∼ p(Γ)} is the
(mean-zero) continuous stationary process characterized by M and µ = µX,X in (A.8) and
(A.9) of Theorem A.3.1.

Theorem A.3.2. Let X ∈ H ′ and M be a random measure on µX,X . Then there exists
a vector space H ∗ ⊋ H , a bilinear map ⟨·, ·⟩∗ : H ×H ∗, and a probability distribution
p(Γ) on H ∗ with the following properties:

(i) The bilinear form ⟨·, ·⟩∗ is an extension of the inner product ⟨·, ·⟩ on H , i.e., for any
ϕ,Γ ∈H we have ⟨ϕ,Γ⟩∗ = ⟨ϕ,Γ⟩.

(ii) For any ϕ ∈H the random variable

Z(ϕ) = Z(ϕ; Γ) = ⟨ϕ,Γ⟩∗, Γ ∼ p(Γ)

is well defined.

(iii) For E ∈ B(R),
Z(µL(E)X) = M (E).

The proof closely follows the construction of Gaussian measures on infinite-dimensional
separable Hilbert spaces (Gross, 1967). As therein, the probability distribution p(Γ) is
such that Pr(Γ ∈H ) = 0. However, the extension of the inner product ⟨·, ·⟩ from H ×H
to the bilinear operator ⟨·, ·⟩∗ on H ∗×H is all that is required to construct the stochastic
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process Xt, or more generally, the stochastic process {Z(ϕ) : ϕ ∈ H }. Finally, note that
for Γ ∈H ,

Z(µL(E)X; Γ) = ⟨µL(E)X,Γ⟩∗ = ⟨µL(E)X,Γ⟩ = µX,Γ(E),

which completes the proof of Theorem 2.4.1.

Proof. Let µ = µX,X , and for any f ∈ L2
µ(R) define

v(f) = µL(f)X,

such that

⟨v(f1), v(f2)⟩ = ⟨µL(f1)X,µL(f2)X⟩
= ⟨X,µL(f1)µL(f2)X⟩

= ⟨X,µL(f1f2)X⟩ =
∫
f1(λ)f2(λ)dµ(λ).

Therefore, if {fn}∞n=1 is an orthonormal basis for L2
µ(R)

1, then {vn}∞n=1 is a set of orthonor-
mal vectors in H . Let V = span {vn : n ≥ 1} and V ⊥ = {v ∈ H : ⟨v, v′⟩ = 0 for all v′ ∈
H } be the orthogonal complement of V . Then V ⊥ is also a Hilbert subspace with or-
thonormal basis {vn}0n=−α, where α − 1 ∈ {0,N,∞} is the cardinality of W . Thus, any
element ϕ ∈H can be uniquely expressed as

ϕ =
∞∑

n=−α

anvn,

where the coefficients an ∈ C are such that
∑∞

n=−α |an|2 < ∞. Indeed, this construction
provides an isomorphism between H and the square-summable complex sequences ℓ2.

Let us now define random variables {Xn}∞n=−α such that Xn = M (fn) for n ≥ 1 and
independently Xn

iid∼ N (0, 1) for n ≤ 0. By construction, the Xn have mean zero, variance
one and are uncorrelated with each other. Moreover, for ϕ ∈H let {an(ϕ)}∞n=−α denote the
corresponding element of ℓ2 defined by the isomorphism above, and consider the random

1 Since L2(R) is separable, {fn}∞n=1 is a finite or countably infinite collection of elements in L2(R) such
that their linear combinations are dense in L2(R). This can be extended to L2(Rd) (Stein and Shakarchi,
2005, Theorem 1.3 in Chapter 4).

120



variable

ZN(ϕ) =
N∑

n=−α

an(ϕ)Xn.

Then for M < N we have

IE(ZN(ϕ)− ZM(ϕ))2 =
N∑

n=M+1

|an(ϕ)|2,

which shows that Z1(ϕ), Z2(ϕ), . . . is a Cauchy sequence, and thus converges in the Hilbert
space consisting of all random variables with finite second moment. In other words, for
any ϕ ∈H we have a well-defined random variable

Z(ϕ) =
∞∑

n=−α

an(ϕ)Xn.

Indeed, identifying H ∗ with the support of the random sequences {Xn}∞n=−α, and a specific
Γ ∈H ∗ with a specific instance of the sequence {Xn(Γ)}∞n=−α, by defining

⟨ϕ,Γ⟩∗ =
∞∑

n=−α

an(ϕ)Xn(Γ)

we have proved parts (i) and (ii).

To prove part (iii), for f ∈ L2
µ(R) let

Z(f) = Z(µL(f)X).

Then for fn in the orthonormal basis {fn}∞n=1 of L2
µ(R), by construction we have Z(fn) =

M (fn). For arbitrary f =
∑∞

n=1 anfn ∈ L2
µ(R), let Sn =

∑n
k=1 akfk. Then by linearity of

both Z(f) and M (f) we have Z(Sn) = M (Sn). Finally, for M ≤ N we have

|Z(SN)− Z(SM)|2 = |M (SN)−M (SM)|2 =
∫
|SN(λ)− SM(λ)|2dµ(λ)

which shows that Z(Sn) = M (Sn) is a Cauchy sequence, and thus both converge in mean
square to the same random variable. That each converges to Z(f) = M (f) is obtained by
an identical argument. We now have the proof of (iii) by setting f(λ) = 1(λ ∈ E).
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A.3.4 Proof of Proposition 2.5.1

Proof. Decompose the Hilbert space H as the direct sum of a closed subspace G and its
orthogonal complement G⊥, i.e. H = G

⊕
G⊥, for any x ∈ H , x = y + z where y ∈ G,

z ∈ G⊥. The projection operator P : H → G, then since ⟨y1, z2⟩ = ⟨y2, z1⟩ = 0,

⟨Px1, x2⟩ = ⟨y1, y2 + z2⟩ = ⟨y1, y2⟩ = ⟨y1 + z1, y2⟩ = ⟨x1,Px2⟩

which implies P = P∗. It is obvious dom(P) = dom(P∗), therefore, P is self-adjoint.
Similarly, Q is also self-adjoint.

A.3.5 Proof of Proposition 2.5.2

Proof. For any x ∈H and if Px ̸= 0, by the Cauchy–Schwartz inequality, we have

∥Px∥ = ⟨Px,Px⟩∥Px∥ =
⟨Px,P2x⟩
∥Px∥ =

⟨x,Px⟩
∥Px∥ ≤ ∥x∥

which implies that ∥P∥ ≤ 1. For nonzero P , i.e. P ̸= 0, then ∃x ∈ H such that Px ̸= 0,
and ∥P(Px)∥ = ∥Px∥ implies ∥P∥ ≥ 1. Combing the two results gives us ∥P∥ = 1 if it is
nonzero.

Similarly, PL is also bounded, i.e.

∥PLx∥
∥x∥ =

∥⟨Lx,A⟩⟨A,A⟩−1A∥
∥x∥ =

|⟨x,LA⟩| · ∥A∥
∥A∥2∥x∥ ≤ ∥x∥∥LA∥ · ∥A∥∥A∥2∥x∥ =

∥LA∥
∥A∥

which is just a constant.

A.3.6 Proof of the Zwanzig Operator Identity

Proof. Let A and B be two unbounded operators (we do not require A and B commute
with each other), and assume that A, −A, B, and A + B are well-defined generators of
strongly continuous semigroups. Let us define

K(t) = e−Ate(A+B)t, dom(K) = dom(A) ∩ dom(B). (A.10)
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Applying the product rule to take the derivative (w.r.t. t), we have (notice that A and
e−At commute) for x ∈ dom(A) ∩ dom(B),

d
dt
K(t)x = −Ae−Ate(A+B)tx+ e−At(A+ B)e(A+B)tx = e−AtB · e(A+B)tx.

Using the definition (A.10) of K(t) to replace e(A+B)t gives us

d
dt
K(t)x = e−AtBeAtK(t)x. (A.11)

By the semigroup property, we know that e−At and e(A+B)t are both continuous in t (since
A + B is also self-adjoint or skew-adjoint) such that K(t) must be continuous in t, and
that K(0) = I. Taking the integration of (A.11) yields

K(t)x = Ix+
∫ t

0

e−AsBeAsK(s)xds.

Applying eAt from left on both sides and then using the definition (A.10) of K(t), we
get

e(A+B)tx = eAtx+

∫ t

0

eA(t−s)Be(A+B)sxds.

By setting A = L and B = −PL, we have A+ B = (I − P)L and dom(L) ∩ dom(PL) =
dom(L). For any x ∈ dom(L) and Lx ∈ dom(L)

e(I−P)Ltx = eLtx−
∫ t

0

eL(t−s)PLe(I−P)Lsxds.

Rearranging the above equation (moving the integral term to the LHS) gives us (2.12).

Remark A.3.1. It should be noted that for the proof to be valid B can be unbounded as
long as A + B can generate a strongly continuous semigroup and dom(A) ∩ dom(B) is
nonempty. Another proof based on the bounded perturbation theorem (i.e., B is assumed
to be bounded, then A+ B is consequently a well-defined generator of a strong continuous
semigroup) is implied by Corollary III.1.7 in Engel and Nagel (2000).
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A.3.7 Proof of Proposition 2.5.3

Proof. Let Q = I − P , we have already shown that P and Q are self-adjoint. Since L is
skew-adjoint, we have

⟨PLx, y⟩ = ⟨Lx,Py⟩ = ⟨x,−LPy⟩
which implies that (PL)∗ = −LP . Additionally, we have dom(PL) = dom(−LP) =
dom(L). Similarly, (QL)∗ = −LQ. By the property of semigroups we have (etQL)∗ =
e−tLQ.

Now consider the autocorrelation of the random force F (t).

According to (2.16), we have

⟨F (t), F (t+ u)⟩ = ⟨etQLQLB(0), e(t+u)QLQLB(0)⟩
= ⟨etQLQLB(0), etQLeuQLQLB(0)⟩ (since tQL and uQL commute)
= ⟨e−tLQetQLQLB(0), euQLQLB(0)⟩

where e−tLQetQL ̸= e−tLQ+tQL since −tLQ and tQL do not commute.

Since etLQ and etQL are bounded, by the dominated convergence theorem we can take
the time derivative of ⟨F (t), F (t + u)⟩ inside the inner product (i.e., to interchange the
derivative and the integral), by the product rule we get

d
dt
⟨F (t), F (t+ u)⟩ = ⟨ d

dt

(
e−tLQetQLQLB(0)

)
, euQLQLB(0)⟩

= ⟨
(
−LQe−tLQetQL + e−tLQQLetQL)QLB(0), euQLQLB(0)⟩

= ⟨e−tLQ(QL− LQ)etQLQLB(0), euQLQLB(0)⟩
= ⟨e−tLQ(QL− LQ)QLetQLB(0), euQLQLB(0)⟩
= ⟨e−tLQ(QLQL− LQL)etQLB(0), euQLQLB(0)⟩
= ⟨e−tLQ(QLQL− LQL)etQLB(0), QLeuQLB(0)⟩
= ⟨−LQe−tLQ(QLQL− LQL)etQLB(0), euQLB(0)⟩
= ⟨−e−tLQLQ(QLQL− LQL)etQLB(0), euQLB(0)⟩
= ⟨−e−tLQ(LQLQL− LQLQL)etQLB(0), euQLB(0)⟩ = 0

which implies that

d
dt
⟨F (t), F (t+ u)⟩ = 0 =⇒ ⟨F (t), F (t+ u)⟩ = ⟨F (0), F (u)⟩ = ⟨QLB(0), euQLQLB(0)⟩
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That is, the function t 7→ ⟨F (t), F (t + u)⟩ is independent of t. We can then denote
CF (t) = ⟨F (s), F (s + t)⟩. To see it is a valid ACF, we still need to verify its positive
semi-definiteness and symmetry.

According to Proposition 2.2.1, it immediately follows that CF (t) is positive definite.
To check its (conjugate) symmetry, we need to show CF (t) = CF (−t). Indeed,

CF (−t) = ⟨QLB(0), e−tQLQLB(0)⟩ = ⟨e−tQLQLB(0), QLB(0)⟩
= ⟨e−tLQQLB(0), QLB(0)⟩ = ⟨QLB(0), etQLQLB(0)⟩ = CF (t).

A.3.8 Proof of Lemma 2.6.1

Proof. If

C(t) = ⟨etLX,X⟩ =
∫
R

eitλdν(λ)

is the autocorrelation of a k-times continuously differentiable stationary process, then by Itô
(1954), Theorem 5.2 we have ∫

R

λ2mdν(λ) <∞.

for m = 0, . . . , k.

On the other hand, using the direct integral version of the spectral theorem (Theo-
rem A.1.2), the embedding Hilbert space HC is isometric to H ⊕{⨿∞

n=0Sn, µ}, wherein
f(L) : s(λ) 7→ f(−iλ)s(λ). Furthermore, in the proof of Theorem 2.3.1 (Appendix A.3.2)
we showed that the element s(λ) ∈ H ⊕{⨿∞

n=0Sn, µ} corresponding to X is such that
dν(λ)/dµ(λ) = |s(λ)|2λ. Thus we have∫

R

λ2mdν(λ) =

∫
R

λ2m|s(λ)|2λdµ(λ)

=

∫
R

|λms(λ)|2λdµ(λ) <∞,

which by Theorem A.1.2 shows that s(λ) ∈ dom(Lm) for m = 0, . . . , k.
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A.3.9 Some Calculations for the Acceleration Form GLE

Given A = [X, Ẋ] and B = Ẋ where X is the displacement of interest and Ẋ = LX is the
velocity, Ẍ = LẊ is the acceleration rate. We have

Ω =
(
⟨LẊ,X⟩, ⟨LẊ, Ẋ⟩

)(⟨X,X⟩ ⟨X, Ẋ⟩
⟨Ẋ,X⟩ ⟨Ẋ, Ẋ⟩

)−1

=
(
⟨Ẍ,X⟩, 0

)(⟨X,X⟩−1 0

0 ⟨Ẋ, Ẋ⟩−1

)
=
(

⟨Ẍ,X⟩
⟨X,X⟩ , 0

)
,

ΩA†(t) =
(

⟨Ẍ,X⟩
⟨X,X⟩ , 0

)(X(t)

Ẋ(t)

)
=
⟨Ẍ,X⟩
⟨X,X⟩X(t) = −⟨Ẋ, Ẋ⟩⟨X,X⟩X(t),

F (0) = (I − P)LẊ = Ẍ −ΩA†(0) = Ẍ +
⟨Ẋ, Ẋ⟩
⟨X,X⟩X,

⟨F (0), F (t)⟩ = ⟨Ẍ, F (t)⟩+ ⟨Ẋ, Ẋ⟩⟨X,X⟩ ⟨X,F (t)⟩ = ⟨Ẍ, F (t)⟩ since F (t) ⊥ col(A) ,

K(t) =
(
⟨F (t),LX⟩, ⟨F (t),LẊ⟩

)(⟨X,X⟩−1 0

0 ⟨Ẋ, Ẋ⟩−1

)
=
(
0, ⟨F (t),Ẍ⟩

⟨Ẋ,Ẋ⟩

)
since ⟨F (t), Ẋ⟩ = 0,

K(s)A†(t− s) =
(
0, ⟨F (s),Ẍ⟩

⟨Ẋ,Ẋ⟩

)(X(t− s)
Ẋ(t− s)

)
=
⟨F (s), Ẍ⟩
⟨Ẋ, Ẋ⟩

Ẋ(t− s) = ⟨F (s), F (0)⟩
⟨Ẋ, Ẋ⟩

Ẋ(t− s)

where we used the property that L is skew-adjoint such that ⟨A,LA⟩ = −⟨LA,A⟩ = 0.

Similarly as what we did in Appendix A.3.7, we can also verify that C(t) = ⟨F (0), F (t)⟩
is symmetric and positive semi-definite.

Notice that Q ⊥ col(A(0)) by the definition of P , we have

F (t) = QLetQLB ⊥ col(A(0)) ⇐⇒ ⟨F (t),A(0)⟩ = 0.

We can see this for any 1 ≤ j ≤ d,

⟨F (t),Aj(0)⟩ = ⟨et(I−P)L(I − P)LB(0), Aj(0)⟩ = ⟨etQLQLB(0), Aj(0)⟩
= ⟨QLetQLB(0), Aj(0)⟩
= ⟨LetQLB(0), QAj(0)⟩ = 0

where we applied the property that QL and etQL commute
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As a consequence, F (t) is along the direction of Q, then if follows that QF (t) = F (t).
This can also be proved as follows

QF (t) = (I − P)F (t) = F (t)− PF (t) = F (t)− ⟨F (t),A(0)⟩Σ−1
A(0)A

†(0) = F (t).

A.3.10 Proof of Lemma 2.6.2

Proof. Using the projection-valued measure form of the spectral theorem (Theorem A.1.3),

⟨e−tLψ, ϕ⟩ =
∫
R

eitλdµψ,ϕ(λ),

where µψ,ϕ(E) = ⟨µiL(E)ψ, ϕ⟩ and µiL is the projection-valued measure associated with
the self-adjoint iL. The desired result follows from interchange of integral and derivative,
which itself follows since ψ ∈ dom(L) implies that

⟨e−tLLψ, ϕ⟩ =
∫
R

eitλ(−iλ)dµψ,ϕ(λ),

hence d
dt
eitλ = eitλ(−iλ) is integrable with respect to µψ,ϕ.

A.3.11 Laplace Transforms of Observables and Correlation Func-
tions

Consider in general an observable A(t) ∈H ′ with the associated an element f ∈H , i.e.,
by the Riesz representation,

A(Γt) = ⟨f,Γt⟩ = ⟨f, etLΓ⟩ = ⟨e−tLf,Γ⟩

where Γt = eLtΓ, Γ = (q, p) ∈ H and L is the Liouville operator determined by the
Hamiltonian. The Laplace transform L{·} of A is well-defined as

Ǎ(z)(Γ) = L{A(Γt)} =
∫ ∞

0

e−zt⟨f,Γt⟩dt =
∫ ∞

0

e−zt⟨e−tLf,Γ⟩dt

since e−tL is a unitary (semi-)group, ∥e−tL∥ = 1 such that for any fixed Γ,

∥A(Γt)∥ =
∣∣⟨e−tLf,Γ⟩∣∣ ≤ ∥f∥∥Γ∥ <∞.
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Moreover, since CA(t) = ⟨A(u),A(u + t)⟩ = ⟨f, e−tLf⟩, the Laplace transform of this is
well-defined for ℜ(z) > 0 and given by

ČA(z) = L{CA(t)} =
∫ ∞

0

e−zt⟨f, e−tLf⟩dt

where
∣∣e−zt⟨f, e−tLf⟩∣∣ ≤ e−ℜ(z)t∥f∥2 which guarantees the decay of the Laplace transform.

If we consider another observable B(t) ∈ H associated with g ∈ H , the cross-
correlation CAB = ⟨A(t),B(s)⟩ = ⟨e−tLf, e−sLg⟩ also has a valid Laplace transform, i.e.

ČAB(z) = L{CAB} =
∫ ∞

0

e−zt⟨e−tLf, e−sLg⟩dt

where
∣∣e−zt⟨e−tLf, e−sLg⟩∣∣ ≤ e−ℜ(z)t∥f∥∥g∥ by the Cauchy–Schwartz inequality.

When we assume A(t) is twice continuously differentiable, we have A(t) ∈ dom(L)
and LA(t) ∈ dom(L). Then it immediately follows that ĊA(t) = ⟨A(u), Ȧ(u + t)⟩ and
C̈A(t) = ⟨A(u), Ä(u+ t)⟩ have valid Laplace transforms.

Note that since L{ĊX(t)} = zČX(z)−CX(0) is the Fourier transform of e−atĊX(t)1(t >
0) ∈ L1(R) for ℜ(z) = a > 0, by the Riemann-Lebesgue lemma we have

lim
|z|→∞

L{ĊX(t)} = 0 =⇒ lim
|z|→∞

zČX(z) = CX(0)

If L{ĊX(t)} = zČX(z)−CX(0) = 0 for ℜ{z} > 0, we would have ČX(z) = CX(0)/z which
implies the inverse Laplace transform CX(t) = CX(0). This is certainly a contradiction.
For ℜ{z} > 0, (2.21) will always be valid such that Ǩ(z) is an analytic function in its
ROC.

A.3.12 A Useful Lemma About the Time Derivatives of ACFs

Let us show a useful property about the time differentiation of the (twice differentiable)
autocovariance function (ACF) of a stationary process.

Lemma A.3.2. For any stationary process X(t) with twice continuously differentiable
autocovariance function C(t− s) = ⟨X(t), X(s)⟩, we have

⟨Ẋ(t), X(s)⟩ = Ċ(t− s), ⟨X(t), Ẋ(s)⟩ = −Ċ(t− s), ⟨Ẋ(t), Ẋ(s)⟩ = −C̈(t− s).
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Proof.

⟨Ẋ(t), X(s)⟩ = ⟨ lim
∆t→0

X(t)−X(t−∆t)

∆t
, X(s)⟩

= lim
∆t→0

1

∆t
[⟨X(t), X(s)⟩ − ⟨X(t−∆t), X(s)⟩]

= lim
∆t→0

1

∆t
[C(t− s)− C(t− s−∆t)]

=
d

dτ
C(τ)|τ=t−s ≜ Ċ(t− s).

where we can verify the interchange of limit and the inner product by the continuity of
inner products using the Cauchy–Schwarz inequality. Similarly,

⟨X(t), Ẋ(s)⟩ = ⟨X(t), lim
∆s→0

X(s)−X(s−∆s)

∆s
⟩

= lim
∆s→0

1

∆s
[⟨X(t), X(s)⟩ − ⟨X(t), X(s−∆s)⟩]

= lim
∆s→0

1

∆s
[C(t− s)− C(t− s+∆t)]

= − lim
∆s→0

1

∆s
[C(t− s+∆s)− C(t− s)]

= − d

dτ
C(τ)|τ=t−s ≜ −Ċ(t− s).

Immediately, we have ⟨Ẋ(t), Ẋ(s)⟩ = −C̈(t− s).

Remark A.3.2. If we define C(t − s) = ⟨X(s), X(t)⟩, then we have the same result with
a different formulation

⟨Ẋ(t), X(s)⟩ = −Ċ(s− t), ⟨X(t), Ẋ(s)⟩ = Ċ(s− t), ⟨Ẋ(t), Ẋ(s)⟩ = −C̈(s− t).

Since C(t) is an even function such that Ċ(t) is an odd function and C̈(t) is again even, we
further have −Ċ(s− t) = Ċ(t− s), Ċ(s− t) = −Ċ(t− s) and −C̈(s− t) = −C̈(t− s), which
coincides with the result of Lemma A.3.2.
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A.3.13 Hardy Space and the Boundary Value of the Laplace Trans-
form

Let z = a + 2πiω where a is a positive constant. Consider an ACF C(t) ∈ L2(R), given
1(t) as the Heaviside function, 1(t)C(t) ∈ L2(R+), then the Laplace transform

Č(z) = Č(a+ 2πiω) =

∫ ∞

0

e−(at+2πiωt)C(t)dt =
∫ ∞

0

e−2πiωt
(
e−atC(t)

)
dt

=

∫ ∞

−∞
e−2πiωt

(
e−at1(t)C(t)

)
dt = F{e−at1(t)C(t)}(ω)

(A.12)

is in the Hardy space H 2(C) satisfying (Stein and Shakarchi, 2005, pp. 213-221)

(i) Č(z) is an analytic function in the right half-plane ℜ{z} = a > 0;

(ii) By Plancherel’s theorem, it can be shown

sup
a>0

∫ ∞

−∞

∣∣Č(a+ 2πiω)
∣∣2 da <∞;

(iii) Č(2πiω) = lima→0+ Č(a + 2πiω) = F{1(t)C(t)}(ω) in either the L2(R) sense or in
the pointwise (a.e. for every ω) sense. (The proof of a.e. convergence requires the
result of L2(R) convergence together with Poisson integral representation to carry
out approximations in L2(R).)

Similarly, for z̄ = a − 2πiω, we also have (note C(t) is an even function on R, i.e.
C(t) = C(−t))

Č(z̄) =
∫ ∞

0

e−z̄tC(t)dt =
∫ ∞

0

e2πiωe−atC(t)dt =
∫ 0

−∞
e−2πiω

(
eatC(t)

)
dt

=

∫ ∞

−∞
e−2πiω

(
eat(1− 1(t))C(t)

)
dt

is in the Hardy space H 2(C) with the limit Č(−2πiω) = lima→0+ Č(a − 2πiω) = F{(1 −
1(t))C(t)}(ω).
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Then we can establish

F{C(t)}(ω) =
∫ ∞

0

e−2πiωtC(t)dt+
∫ 0

−∞
e−2πiωtC(t)dt = Č(2πiω) + Č(−2πiω)

= 2 · ℜ{Č(2πiω)}.
(A.13)

A.3.14 Technical Derivations of the Fourier Formulas

(i) First we show how to calculate the PSD S(ω) of X(t) given the memory kernel C(t).
Rearrange (2.21), we have

Č(z) = C(0)(Č(z) + z)

zČ(z) + z2 + θ

Č(−z) = C(0)(Č(−z)− z)
−zČ(−z) + (−z)2 + θ

.

By adding the above two equations together we have

Č(z) + Č(−z) = C(0)θ(Č(z) + Č(−z))|zČ(z) + z2 + θ|2

where we have used the property that C(−z) is the complex conjugate of C(z) since C(t) is
a real function. Let z = 2πiω, we have

S(ω) = F{C(t)} = Č(2πiω) + Č(−2πiω) = C(0)θF{C(t)}
|2πiωČ(2πiω) + κ/m− 4π2ω2|2

=
kBT/m · F{C(t)}

|2πiωF{1(t)C(t)}+ κ/m− 4π2ω2|2

=
kBT · F{K(t)}

|2πiωF{1(t) ·K(t)}+ κ− 4π2ω2m|2

=
kBT ·K(ω)

|2πiωK̂(ω) + κ− 4π2ω2m|2

which is exactly the Fourier transformed GLE equation. Note that θC(0) = kBT/m and
K(t) = mC(t) is the memory kernel in the GLE when we take mass m as an explicit
coefficient. We denote K(ω) = F{K(t)} and K̂(ω) = F{1(t) ·K(t)}.
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(ii) Now we show the recipe to calculate the memory kernel (in the frequency domain)
given the PSD of X(t) based on the Laplace transform relation (2.21). Let z = 2πiω and
z = −2πiω, respectively, in (2.21), we have

Č(2πiω) = (4π2ω2 − θ)Č(2πiω) + 2πiωC(0)
2πiωČ(2πiω)− C(0) (A.14)

Č(−2πiω) = (4π2ω2 − θ)Č(−2πiω)− 2πiωC(0)
−2πiωČ(−2πiω)− C(0) .

Adding the two equations together gives us

F{C(t)} = Č(2πiω) + Č(−2πiω) = θC(0)F{C(t)}
|2πiωČ(2πiω)− C(0)|2

which gives

F{K(t)} = F{mC(t)} = kBTF{C(t)}
|2πiωF{1(t)C(t)} − var(X(0))|2 (A.15)

where K(t) = mC(t), θC(0) = kBT/m and F{1(t)C(t)} = Č(2πiω).

(iii) We can show an alternative way to get the same result based on a time-dependent
Hamiltonian and maximum entropy distribution of the stationary system. If we define

ψ̂−1(ω) = κ− 4π2ω2m+ 2πiωK̂(ω), (A.16)

then it follows that

kBT

πω
ℑ
{

1

ψ̂(ω)

}
=
kBT

πω
· ℑ{κ− 4π2ω2m+ 2πiωK̂(ω)}

=
kBT

πω
· (2πω) · ℜ{K̂(ω)}

= kBT · 2ℜ{Ǩ(2πiω)} = kBT ·K(ω) (by (A.13))

which gives

K(ω) = F{K(t)} = 1

πω
ℑ
{

1

ψ̂(ω)

}
. (A.17)

Notice that K̂(ω) = F{1(t) ·K(t)} = Ǩ(2πiω) according to (A.12). Based on (A.14),
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we further have

Ǩ(2πiω) = mČ(2πiω) = (4π2ω2m− κ)Č(2πiω) + 2πiωmC(0)
2πiωČ(2πiω)− C(0)

=
(4π2ω2m−κ)

2πiω
· 2πiωČ(2πiω) + 2πiωmC(0)

2πiωČ(2πiω)− C(0)

=
(4π2ω2m−κ)

2πiω
·
[
2πiωČ(2πiω)− C(0) + C(0)

]
+ 2πiωmC(0)

2πiωČ(2πiω)− C(0)

=
(4π2ω2m− κ)

2πiω
+

[
(4π2ω2m− κ)

2πiω
+ 2πiωm

] C(0)
2πiωČ(2πiω)− C(0)

=
(4π2ω2m− κ)

2πiω
− κ

2πiω
· C(0)
2πiωČ(2πiω)− C(0)

which gives us (note κC(0) = kBT )

2πiωǨ(2πiω) = (4π2ω2m− κ)− kBT ·
1

2πiωČ(2πiω)− C(0) .

According to the definition (A.16) of ψ̂−1(ω), we have

ψ̂−1(ω) = κ− 4π2ω2m+ 2πiωK̂(ω)

= −kBT ·
1

2πiωČ(2πiω)− C(0)
(A.18)

which implies that

ψ̂(ω) = − 1

kBT

(
2πiωČ(2πiω)− C(0)

)
.

It then follows that ψ̂(ω) is indeed the Laplace transform of a well-defined function in the
time domain, i.e.,

ψ̂(ω) = − 1

kBT
· L{Ċ(t)}

∣∣∣
z=2πiω

= L{ψ(t)}
∣∣∣
z=2πiω

where ψ(t) = − 1
kBT
Ċ(t).

We can also establish the result in terms of the Fourier transform of ψ(t). Notice that
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Ċ(t) is an odd function (so is ψ(t)), we can obtain

F{ψ(t)} = ψ̂(ω)− ψ̂(−ω) = − 1

kBT
·
[
L{Ċ(t)}

∣∣∣
z=2πiω

− L{Ċ(t)}
∣∣∣
z=−2πiω

]
= − 1

kBT
· F{Ċ(t)} = − 1

kBT
· 2πiωS(ω).

(A.19)

As we argued in (A.12), ψ̂(ω) can be computed as

ψ̂(ω) = L{ψ(t)}
∣∣∣
z=2πiω

= F{1(t) · ψ(t)}. (A.20)

This result proves the following claim

Proposition A.3.1. ψ̂(ω) = ϕ̂AA(ω) where by definition ϕAA(t) = − 1
kBT

ĊA(t) and ϕ̂AA(ω) =
F{1(t)ϕAA(t)}.

It is worth noting that the above relation (in terms of the Laplace transform) is not a
special case just for z = 2πiω. In general, if we define

ψ̂−1(z) = κ+ z2m+ zǨ(z).

We still have
zǨ(z) = −(z2m+ κ)− κC(0) · 1

zČ(z)− C(0)
which gives us

ψ̂−1(z) = −kBT ·
1

zČ(z)− C(0) .

However, to make connections between the Laplace transform and the Fourier transform,
we have to take z = 2πiω and z = −2πiω.

(iv) We have two versions of the same result, one is given by (A.15) whereas the other
is given by (A.17), (A.19) and (A.20), both of which are derived from (2.21) and by making
use of (A.12) and (A.13) with z = ±2πiω. To see they are really the same, it is easier to
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derive (A.15) from (A.17) and (A.18), i.e.

K(ω) = F{K(t)} = 1

πω
ℑ
{

1

ψ̂(ω)

}

=
1

πω
ℑ
{
−kBT ·

1

2πiωČ(2πiω)− C(0)

}
= − 1

πω
· kBT

|2πiωČ(2πiω)− C(0)|2 · ℑ
{
−2πiωČ(−2πiω)− C(0)

}
= − 1

πω
· kBT

|2πiωČ(2πiω)− C(0)|2 · (−2πω)ℜ{Č(−2πiω)}

=
kBT · 2ℜ{Č(−2πiω)}
|2πiωČ(2πiω)− C(0)|2

=
kBT · S(ω)

|2πiωČ(2πiω)− C(0)|2

where we noticed that C(t) is a real, even function and therefore Č(−2πiω) is the complex
conjugate of Č(2πiω) and S(ω) = F{C(t)} = 2ℜ{Č(2πiω)} = 2ℜ{Č(−2πiω)} by (A.13).

Remark A.3.3. The formula given by (A.15) is more straightforward based on our previous
derivation whereas the set of formulas given by (A.17), (A.19) and (A.20) is more artfully
constructive and reveals some fundamental structure not directly seen from our projection
derivation approach. Now, all the pieces from both perspectives are coherently connected
and essentially the same.
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Appendix B

Appendix for Chapter 3

B.1 Useful Lemmas

Let us first prove a useful argument used implicitly by Dahlhaus (1989) in his proof of
Theorem 2.1.

Lemma B.1.1. Suppose we have a sequence of possibly random objective functions {ℓn(θ)}∞n=1

and a target function ℓ(θ), and define

θ̂n = argmin
θ∈Θ

ℓn(θ), θ0 = argmin
θ∈Θ

ℓ(θ),

where Θ is a compact parameter space. Then if

lim
n→∞

sup
θ∈Θ
|ℓn(θ)− ℓ(θ)| = 0,

we have limn→∞ θ̂n = θ0 as well.

Proof. Since ℓn(θ) is minimized by θ̂n and ℓ(θ) is minimized by θ0,

ℓn(θ̂n) ≤ ℓn(θ0) =⇒ ℓn(θ̂n)− ℓ(θ0) ≤ ℓn(θ0)− ℓ(θ0)

ℓ(θ0) ≤ ℓ(θ̂n) =⇒ ℓ(θ0)− ℓn(θ̂n) ≤ ℓ(θ̂n)− ℓn(θ̂n)
=⇒ −

(
ℓ(θ̂n)− ℓn(θ̂n)

)
≤ ℓn(θ̂n)− ℓ(θ0) ≤ ℓn(θ0)− ℓ(θ0).
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Therefore, ∣∣∣ℓn(θ̂n)− ℓ(θ0)
∣∣∣ ≤ max

{∣∣∣ℓ(θ̂n)− ℓn(θ̂n)∣∣∣ , |ℓn(θ0)− ℓ(θ0)|
}

≤ sup
θ∈Θ
|ℓn(θ)− ℓ(θ)| → 0

as n→∞. By the triangle inequality, we further have∣∣∣ℓ(θ̂n)− ℓ(θ0)
∣∣∣ = ∣∣∣ℓ(θ̂n)− ℓn(θ̂n) + ℓn(θ̂n)− ℓ(θ0)

∣∣∣
≤
∣∣∣ℓ(θ̂n)− ℓn(θ̂n)∣∣∣+ ∣∣∣ℓn(θ̂n)− ℓ(θ0)

∣∣∣
≤ 2 sup

θ∈Θ
|ℓn(θ)− ℓ(θ)| → 0

as n→∞, such that limn→∞ θ̂n = θ0 as well.

We now establish a uniform bound on |Sfs(f)−S(f)|, a crucial ingredient in the proof
of our main results.

Lemma B.1.2. Suppose that S(f) = O(1/|f |1+δ) as |f | → ∞ for δ > 0. Then there exists
f0 such that for fs > 2f0,

0 ≤ Sfs(f)− S(f) ≤M

[
1

(fs − |f |)1+δ
+

1

δfs(fs − |f |)δ
]
≤M

[
1

(fs/2)1+δ
+

1

δfs(fs/2)δ

]
for any |f | < fs/2. Consequently, we have limfs→∞ sup|f |<fs |Sfs(f)− S(f)| = 0.

Proof. To establish the upper bound, by the tail assumption S(f) = O(1/|f |1+δ) as |f | →
∞, we have S(f ± nfs) ≤ 1

2
M/|f ± nfs|1+δ for |f ± nfs| > f0, which is the case for any

|f | < fs/2 as long as fs/2 > f0. Thus,

0 ≤ Sfs(f)− S(f) =
∞∑
n=1

S(f − nfs) + S(f + nfs)

≤ M

2

∞∑
n=1

1

(nfs − f)1+δ
+

1

(nfs + f)1+δ

137



for any |f | < fs/2. By the integral convergence test we have

∞∑
n=1

1

(nfs − f)1+δ
≤ 1

(fs − f)1+δ
+

∫ ∞

1

1

(xfs − f)1+δ
dx

=
1

(fs − f)1+δ
+

1

δfs(fs − f)δ

≤ 1

(fs − |f |)1+δ
+

1

δfs(fs − |f |)δ
,

and similarly

∞∑
n=1

1

(nfs + f)1+δ
≤ 1

(fs + f)1+δ
+

1

δfs(fs + f)δ

≤ 1

(fs − |f |)1+δ
+

1

δfs(fs − |f |)δ
,

which completes the proof.

Remark B.1.1. If S(f) is continuous and strictly positive in R and S(f) ∼ C|f |−2d(θ),
as f → 0 for −1

2
< d(θ) < 1

2
, then there exists f0 such that for fs > 2f0,

0 <
Sfs(f)
S(f) − 1 ≤M/C

[ |f |−2d

(fs − |f |)1+δ
+

|f |−2d

δfs(fs − |f |)δ
]
< M ′ |f |−2d

(fs − |f |)1+δ
, |f | → 0.

Thus, for arbitrarily small ϵ > 0,∫ fmax

0

(Sfs(f)
S(f) − 1

)
df < M ′

[∫ ϵ

0

f−2d

(fs − 1)1+δ1
df +

∫ fmax

ϵ

1/S(f)
(fs − |f |)1+δ1

df

]
=M ′

[
1

(fs − 1)1+δ1
· 1

(1− 2d)
f 1−2d

∣∣∣∣1
0

+
1

(fs − fmax)1+δ1

∫ fmax

ϵ

1

S(f)df
]

→ 0

as fs →∞, for any fixed fmax > 0, −1
2
< d = d(θ) < 1

2
, δ1, δ2 > 0.

Similarly, by using the fact log(1 + x) ≤ x for all x > −1, we can also obtain∫ fmax

0

(
log
Sfs(f)
S(f)

)2

df → 0
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as fs →∞.

Moreover, for short memory (d = 0) and long memory (0 < d < 1
2
) processes, since

|f |−2d ≤ 1 as |f | → 0, we further have

lim
fs→∞

sup
|f |<fmax

Sfs(f)
S(f) = 1.

B.1.1 Technical Details in Remark 3.3.1

If S(f,θ) = O(1/|f |1+δ(θ)) as |f | → ∞, for the CARFIMA(p,H, q) model with p = q and
H being unknown, we have

Ifmax :=
1

4fmax

∫ fmax

−fmax

(
∂
∂θ

logS(f,θ0)
) (

∂
∂θ

logS(f,θ0)
)′
df

=
1

4fmax

∫ fmax

−fmax

(
φ′(H)2

φ(H)2
− 4

φ′(H)

φ(H)
log |f |+ 4(log |f |)2

)
df

=
1

2

φ′(H)2

φ(H)2
− 1

fmax

φ′(H)

φ(H)

∫ fmax

−fmax

log |f | df +
1

fmax

∫ fmax

−fmax

(log |f |)2 df

=
1

2

φ′(H)

φ(H)
− 2

φ′(H)

φ(H)
(log(fmax)− 1) + 2

[
(log fmax)

2 − 2 logF + 2
]

∼ 2(log fmax)
2 →∞

as fmax →∞. In such a case, the asymptotic variance of our bandlimited estimator cannot
be arbitrarily close to that of the full Whittle estimator given by Dahlhaus (1989), since
the amount of information accumulated can never converge.

If we set the CARFIMA model with p = q with H being known while σ is the only
unknown parameter, i.e. S(f, σ) ∼ σ · φ(H)|f |1−2H . Thus, we can set a large enough
bandwidth fmax such that

Ifmax →
1

4fmax

∫ fmax

−fmax

(
∂
∂θ

logSfs(f,θ0)
) (

∂
∂θ

logSfs(f,θ0)
)′

df (as fs →∞)

→ 1

4π

∫ π

−π

(
∂
∂θ

logSfs(x,θ)
) (

∂
∂θ

logSfs(x,θ)
)′

dx (as fmax →∞)

which is the information matrix of the full Whittle estimator given by Dahlhaus (1989).

139



B.2 Proofs of Theorems

B.2.1 Proof of Theorem 3.3.2

Proof. (i) Under Assumptions 3.3.3 – 3.3.5, by Lemma 1 of Fox and Taqqu (1986) we have

lim
N→∞

sup
θ∈Θ
| ∂
∂θ
ℓN(θ)− ∂

∂θ
ℓ0(θ)| = 0. (B.1)

Note that ∂
∂θ
ℓ0(θ0) = 0 is easily established by passing the derivative under the integral

sign (Assumption 3.3.2), such that limN→∞ θN → θ0 by Lemma B.1.1. Moreover, Since
for N > N0, θ̂N is in a convex compact neighborhood of θ0, by the mean value theorem
for N > N0 we have

∂
∂θ
ℓN(θ̂N) =

∂
∂θ
ℓN(θ0) +

∂2

∂θ∂θ′ ℓN(θ̂c)(θ̂N − θ0)

=⇒
√
N(θ̂N − θ0) = [ ∂2

∂θ∂θ′ ℓN(θ̂c)]
−1 ·
√
N [− ∂

∂θ
ℓN(θ0)],

where θ̂c = cθ̂N + (1− c)θ0 for 0 < c < 1, and the second line holds since by construction
∂
∂θ
ℓN(θ̂N) = 0. Since (B.1) implies that IE[ ∂

∂θ
ℓN(θ0)] → ∂

∂θ
ℓ0(θ0) = 0, by Proposition 1

of Fox and Taqqu (1986), we have
√
N
(
− ∂
∂θ
ℓN(θ0)− 0

) d→ N (0,B),

and since |θ̂c − θ0| ≤ |θ̂N − θ0|, by Lemma 1 of Fox and Taqqu (1986) we have

lim
N→∞

∂2

∂θ∂θ′ ℓN(θ̂c) =
∂2

∂θ∂θ′ ℓ0(θ0) = A,

such that
√
N(θ̂N − θ0)→ [ ∂2

∂θ∂θ′ ℓN(θ0)]
−1 ·
√
N [− ∂

∂θ
ℓN(θ0)]

d→ N
(
0, A−1BA−1

)
.
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B.2.2 Proof of Theorem 3.3.1

Proof. Let us consider for bounded frequencies |f | ≤ fmax

ℓ†0(θ) =
1

4fmax

∫ fmax

−fmax

logS(f,θ) + S(f,θ0)

S(f,θ) df,

ℓfs0 (θ) =
1

4fmax

∫ fmax

−fmax

logS(f,θ) + Sfs(f,θ0)

S(f,θ) df.

By Assumption 3.3.2, we may interchange integral and derivatives to obtain ∂
∂θ
ℓ†0(θ0) = 0,

which implies that θ0 = argminθ ℓ
†
0(θ).

Let θfs = argminθ ℓ
fs
0 (θ) and

θ̂W = argmin
θ

1

4fmax

∫ fmax

−fmax

logS(f,θ) + IN(f)

S(f,θ)df

such that by Theorem 3.3.2 we have limN→∞ θ̂W = θfs . Moreover, for fixed fmax we have∣∣∣ℓfs0 (θ)− ℓ†0(θ)
∣∣∣ = 1

4fmax

∫ fmax

−fmax

∣∣∣∣Sfs(f,θ0)− S(f,θ0)

S(f,θ)

∣∣∣∣ df → 0

by noting the compactness of Θ to apply Remark B.1.1 following Lemma B.1.2 globally
for all θ ∈ Θ. By Lemma B.1.1 it now follows that limfs→∞ θfs = θ0.

As for the asymptotic covariance, by Theorem 3.3.2 as N →∞ we have
√
N
(
θ̂W − θfs

)
d→ N

(
0, A−1

fs
BfsA

−1
fs

)
,
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where Afs = Afs(θfs), Bfs = Bfs(θfs), and

Afs =
∂2

∂θ∂θ′ ℓ
fs
0 (θfs)

=
1

4fmax

∫ fmax

−fmax

(
1− Sfs(f,θ0)

S(f,θ)

) ∂2

∂θ∂θ′S(f,θ)
S(f,θ) df

− 1

4fmax

∫ fmax

−fmax

(
1− 2Sfs(f,θ0)

S(f,θ)

)
C(f,θ)df,

Bfs(θ) =
1

4fmax

∫ fmax

−fmax

(
∂
∂θ

logS(f,θ)−1
) (

∂
∂θ

logS(f,θ)−1
)′ Sfs(f,θ)2df

=
1

4fmax

∫ fmax

−fmax

(Sfs(f,θ0)

S(f,θ)

)2

·C(f,θ)df

C(f,θ) =
(
∂
∂θ

logS(f,θ0)
) (

∂
∂θ

logS(f,θ0)
)′
.

By Lemma B.1.2 and dominated convergence, for any θ ∈ Θ we have limfs→∞ Afs(θ) =
A(θ) and limfs→∞Bfs(θ) = B(θ), where

A(θ) =
1

4fmax

∫ fmax

−fmax

(
1− S(f,θ0)

S(f,θ)

) ∂2

∂θ∂θ′S(f,θ)
S(f,θ) df

− 1

4fmax

∫ fmax

−fmax

(
1− 2S(f,θ0)

S(f,θ)

)
C(f,θ)df,

BBfs(θ) =
1

4fmax

∫ fmax

−fmax

(S(f,θ0)

S(f,θ)

)2

·C(f,θ)df.

Since limfs→∞ θfs = θ0, it follows that limfs→∞Afs(θ) = A(θ0) and limfs→∞Bfs(θ) =
B(θ0). Straightforward algebraic manipulation show that A(θ0) = B(θ0) = Ifmax , where

Ifmax =
1

4fmax

∫ fmax

−fmax

(
∂
∂θ

logS(f,θ0)
) (

∂
∂θ

logS(f,θ0)
)′
df.

Therefore, limfs→∞A−1
fs
BfsA

−1
fs

= Ifmax , which completes the proof.

142



B.2.3 Summary of the Main Results in Moulines and Soulier (1999)

Our later proof relies heavily on Theorem 2 and Theorem 3 of Moulines and Soulier (1999)
which we summarize here.

Assumption B.2.1. B0 Suppose Sfs(f) =
∣∣1− eif ∣∣−2d S⋆fs(f) where −1

2
< d < 1

2
and

S⋆fs(f,θ) is a 2π-periodic positive continuous function, differentiable on [−fs/2, fs/2]\{0},
and there exists a finite constant C⋆ such that ∀f ∈ [−fs/2, fs/2] \ {0},∣∣∣∣ ddf S⋆fs(f)

∣∣∣∣ ≤ C⋆

|f | .

Theorem B.2.1 (Moulines and Soulier, 1999). If X0, X1, . . . is a stationary Gaussian
process and B.2.1 holds, then for all 1 ≤ m ≤ NB we have

Zm = log Ȳm = logSfs(f̄m) + ηN,m + rN,m,

where XN,m = exp(ηN,m + CB) = W ′
N,mWN,m, each WN,m = (W

(1)
N,m, . . . ,W

(2B)
N,m ) is a 2B-

dimensional vector of i.i.d. standard Gaussian random variables, and

sup
1≤i,j≤2B

| cor(W (i)
N,k,W

(j)
N,m)| ≤ c1 log(m)k−|d|m|d|−1, 1 ≤ k < m ≤ NB,

|rN,m| < cd log(1 +m)/m.

Moreover, for two nondecreasing integer sequences {vN}N≥0 and {wN}N≥0 such that 1 ≤
vN ≤ wN ≤ NB. Let βN,m be a triangular array of nonidentically vanishing real numbers,
and define

SN =

wN∑
m=vN

βN,mηN,m s2N =

wN∑
m=vN

β2
N,m,

aN =

wN∑
m=vN

|βN,m| , bN = max
vN≤m≤wN

|βN,m| .

Then if (i) limN→∞ bN/sN → 0 and (ii) limN→∞
aN log(N)
sNvN

= 0, we have the central limit
theorem

s−1
N SN

d→ N (0, ψ′(B)) ,

where ψ′(·) is the derivative of the digamma function ψ(·).
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Among other things, it follows from Theorem B.2.1 that XN,m ∼ χ2
(2m) and are asymp-

totically independent, from which follows Proposition 1.

B.2.4 Proof of Theorem 3.4.2

Proof. The proof of strong consistency is a straightforward application of Jennrich (1969),
Theorem 6, which we omit for brevity. The proof of asymptotic normality leverages The-
orem 2 and Theorem 3 of Moulines and Soulier (1999) (hereby Theorem B.2.1 above).

By an identical argument to the one in the proof of Theorem 3.3.2, for N > N0 we have

∂
∂θ
QN(θ̂N) =

∂
∂θ
QN(θ0) +

∂2

∂θ∂θ′QN(θ̂c) ·
(
θ̂N − θ0

)
=⇒

√
N(θ̂N − θ) =

[
∂2

∂θ∂θ′QN(θ̂c)
]−1

·
√
N
(
− ∂
∂θ
QN(θ0)

)
,

where θ̂c = cθ̂N +(1− c)θ0 for 0 < c < 1. The proof will be complete upon (i) establishing
a central limit theorem for −

√
N ∂

∂θ
QN(θ0) and (ii) showing that limN→∞

∂2

∂θ∂θ′QN(θ̂c) =
2I(θ0)−A(θ0).

The Limit of −
√
N ∂

∂θ
QN(θ0)

Note that

−
√
N ∂

∂θ
QN(θ0) =

√
N · 1

NB

NB∑
m=1

(
log Ȳm − CB − log g(f̄m,θ0)

)
· ∂
∂θ

log g(f̄m,θ0)

=
√
N · 1

NB

NB∑
m=1

∂
∂θ

log g(f̄m,θ0) · eN,m,
(B.2)

where by Theorem B.2.1 we have

eN,m = log Ȳm − CB − log g(f̄m,θ0)

= log Ȳm − CB − logSfs(f̄m) + logSfs(f̄m)− log g(f̄m,θ0)

= ηN,m + rN,m + logSfs(f̄m)− log g(f̄m,θ0).
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Using the notation of Theorem B.2.1, let

βN,m =
1√
NB

∂
∂θ

log g(f̄m,θ0), vN = ⌈fminN
δ
B/fs⌉, wN = NB,

where 1
2
< δ < 1 and fmin > 0 is a constant. It follows that the lower frequency bound

vNfs/N = fminN
δ
B/N → 0 as N → ∞. We shall obtain the desired result by establishing

a central limit theorem for
∑wN

m=vN
βN,mηN,m and show that the remaining terms in (B.2)

are negligible as N →∞. Thus,

s2N =

wN∑
m=vN

β2
N,m =

1

fs
· fs
NB

wN∑
m=vN

[
∂
∂θ

log g(f̄m,θ0)
] [

∂
∂θ

log g(f̄m,θ0)
]′

→ 1

fs

∫ fs

0

[ ∂
∂θ

log g(f,θ0)][
∂
∂θ

log g(f,θ0)]
′ df = 2I(θ0) <∞

as N →∞. Moreover, Assumptions 3.3.3, 3.3.4 and 3.4.3 imply that

bN = max
vN≤m≤wN

|βN,m|

≤ C1
1√
NB

∣∣ ∂
∂θ

log g(fsN
δ−1/(2B)δ,θ0)

∣∣
= C1

1√
NB

∣∣ ∂
∂θ
g−1(fsN

δ−1/(2B)δ,θ0) · g(fsN δ−1/(2B)δ,θ0)
∣∣

≤ 1√
NB

C1C
2
∣∣c(fs, B, δ)N δ−1

∣∣−α−β
= O

(
1

N
1
2
−(1−δ)(α+β)

)
→ 0

as N →∞ (where C and C1 are some constants), such that limN→∞ bN/sN = 0. Similarly,
by assumption 3.3.4 and 3.4.3 we have

aN =

√
NB

fs
· fs
NB

wN∑
m=vN

∣∣ ∂
∂θ

log g(f̄m,θ0)
∣∣ = O(√NB),

such that
0 < lim

N→∞

aN logN

sNvN
≤ lim

N→∞
C2N

1
2
−δ logN = 0.
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Thus, by the central limit theorem in Theorem B.2.1 we have

√
N ·

(
1

NB

wN∑
m=vN

∂
∂θ

log(g(f̄m,θ0)) · ηN,m
)

d→ N (0, 4Bψ′(B)I(θ0)) .

Now let us decompose

NB∑
m=1

βN,meN,m =

(
SN +

vN−1∑
m=1

βN,mηN,m

)

+

NB∑
m=1

βN,mrN,m +

NB∑
m=1

βN,m
(
logSfs(f̄m)− log g(f̄m,θ0)

)
.

To establish our central limit theorem for
∑NB

m=1 βN,meN,m, we need to show that SN is the
dominant part. So first, we note that

NB∑
m=1

βN,mrN,m ≤
C√
NB

NB∑
m=1

cd log(1 +m)

m

≤ C√
NB

(
log(2) +

∫ NB

2

log(1 + x)

x
dx

)
(by the integral test)

≤ C√
NB

(
log(2) +

∫ N0

2

log(1 + x)

x
dx+

∫ NB

N0

xϵ

x
dx

)
= O

(
1√
NB

∫ NB

N0

xϵ−1dx

)
→ 0

as NB → ∞, where we used the fact that f(x) = log(1 + x)/x is a positive, decreasing
function for x > 0, C is some constant changing from step to step, and ϵ ∈ (0, 1

2
), N0 ≥ 2
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is a constant integer such that log(1 + x) < xϵ when x > N0. Moreover,

NB∑
m=1

βN,m
[
logSfs(f̄m)− log g(f̄m,θ0)

]
=

1√
NB

NB∑
m=1

∂
∂θ

log(g(f̄m,θ0)) ·
[
logSfs(f̄m)− log g(f̄m,θ0)

]
=

NB√
NBfs

· fs
NB

NB∑
m=1

∂
∂θ

log(g(f̄m,θ0)) ·
[
logSfs(f̄m)− log g(f̄m,θ0)

]
=

√
NB

fs
·
NB∑
m=1

∂
∂θ

log(g(f̄m,θ0)) ·
[
logSfs(f̄m)− log g(f̄m,θ0)

]
∆fm

∼
√
NB

fs
· O(1/NB)→ 0

as NB → ∞, where the last step is because the Riemann sum converges to its limit
∂
∂θ
D(θ0) = 0 with a rate faster than

√
NB (e.g., Chui, 1971, Theorem 1). Finally,

IE (
∑vN

m=1 βN,mηN,m)
2
= o(1) since by the regularity assumptions on g(f,θ) and Theo-

rem B.2.1,

IE

(
vN∑
m=1

βN,mηN,m

)2

= O (vN/NB) = o(1).

The Limit of ∂2

∂θ∂θ′QN(θc)

Note that

∂2

∂θ∂θ′QN(θ0) =
1

NB

NB∑
m=1

(
∂
∂θ

log g(f̄m,θ0)
) (

∂
∂θ

log g(f̄m,θ0)
)′

− 1

NB

NB∑
m=1

(
ηN,m + rN,m + logSfs(f̄m)− log g(f̄m,θ0)

)
∂2

∂θ∂θ′ log g(f̄m,θ0),
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Under the regularity conditions and by Theorem B.2.1, similarly we can show as NB →∞
that

1

NB

NB∑
m=1

(
∂
∂θ

log g(f̄m,θ0)
) (

∂
∂θ

log g(f̄m,θ0)
)′ → 2 I(θ0)

1

NB

NB∑
m=1

(ηN,m + rN,m)
∂2

∂θ∂θ′ log g(f̄m,θ0)→ 0

1

NB

NB∑
m=1

(
logSfs(f̄m)− log g(f̄m,θ0)

)
∂2

∂θ∂θ′ log g(f̄m,θ0)→ A(θ0)

where

A(θ0) =
1

fs

∫ fs

0

(logSfs(f)− log g(f,θ0))
∂2

∂θ∂θ′ log g(f,θ0)df.

Thus, limN→∞
∂2

∂θ∂θ′QN(θ0) = 2I(θ0) −A(θ0). Finally, since limN→∞ θ̂c = θ0 and QN(θ)

is continuous about θ0, we obtain the desired limit limN→∞QN(θ̂c) = 2I(θ0) − A(θ0),
which completes the proof of Theorem 3.4.2.

B.2.5 Proof of Theorem 3.4.1

Proof. Let

D†
0(θ) =

1

fmax

∫ fmax

0

(logS(f,θ)− logS(f,θ0))
2 ,

Dfs
0 (θ) =

1

fmax

∫ fmax

0

(logS(f,θ)− logSfs(f,θ0))
2 .

Then by Assumption 3.3.2 we may pass the derivative under the integral sign, such that
∂
∂θ
D†

0(θ0) = 0, which implies that θ0 = argminD†
0(θ). Moreover, by setting vN =

⌈fminN
δ
B/fs⌉ and wN = ⌊fmaxNB/fs⌋ for some constant frequencies 0 < fmin ≤ fmax,

we can apply the same proof of Theorem 3.4.2 with g(f,θ) = S(f,θ) to show a central
limit theorem for

wN∑
m=1

βN,meN,m.
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We find that limN→∞ θ̂LP = θfs , where θfs = argminθD
fs
0 (θ), and with corresponding

asymptotic variance terms

I(θfs) =
1

2fmax

∫ fmax

0

[ ∂
∂θ

logS(f,θfs)][ ∂∂θ logS(f,θfs)]′df

A(θfs) =
1

fmax

∫ fmax

0

(logSfs(f,θ0)− logS(f,θfs)) ∂2

∂θ∂θ′ logS(f,θfs)df.

Moreover,∣∣∣∣√D†
0(θ)−

√
Dfs

0 (θ)

∣∣∣∣ ≤
√

1

fmax

∫ fmax

0

(logSfs(f,θ)− logS(f,θ))2 df

=

√
1

fmax

∫ fmax

0

(
log
Sfs(f,θ)
S(f,θ)

)2

df → 0

as fs → 0, which follows from Remark B.1.1. Therefore, as a consequence of Lemma B.1.1
we have limfs→∞ θfs = θ0. Similarly, by repeated application of Remark B.1.1 we find that
limfs→0A(θfs) = 0, and limfs→0 I(θfs) = Ifmax as defined by (3.8).
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Appendix C

Appendix for Chapter 4

C.1 Covariance Structure of q-times Integrated Wiener
Process

Generally, let W (q)(t) be the q-times integrated Wiener process, we have for 0 ≤ t1 ≤ t2

W (1)(t2) = W (1)(t1) +

∫ t2

t1

W (s)ds

= W (1)(t1) + [sW (s)]

∣∣∣∣t2
t1

−
∫ t2

t1

sdW (s) (by Itô’s lemma)

= W (1)(t1) +W (t1)(t2 − t1) + t2

∫ t2

t1

dW (s)−
∫ t2

t1

sdW (s)

= W (1)(t1) +W (t1)(t2 − t1) +
∫ t2

t1

(t2 − s)dW (s)

Iteratively, we can derive the general formula

W (q)(t2) =

q∑
k=0

W (q−k)(t1)
(t2 − t1)k

k!
+

∫ t2

t1

(t2 − s)q
q!

dW (s).
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The covariance of the increments ∆W (i) = W (i)(t2) −W (i)(t1) and ∆W (j) = W (j)(t2) −
W (j)(t1) (0 ≤ i, j ≤ q) is given by

Cov(∆W (i),∆W (j)) = IE

[∫ t2

t1

∫ t2

t1

(t2 − s)i(t2 − r)j
i!j!

dW (s)dW (r)

]
=

∫ t2

t1

(t2 − τ)i(t2 − τ)j
i!j!

dτ (by Itô’s isometry)

=
(t2 − t1)i+j+1

(i+ j + 1)i!j!

where we implicitly used the fact that

IE

[∫
f(ω, t)dW (t)

]
= 0

for all f such that IE
[∫
f 2(ω, t)dt

]
<∞ since W (t) is a martingale.

Also note that for the integrated Wiener increment process, using Itô’s lemma we can
easily derive ∫ t2

t1

(W (s)−W (t1)) ds =

∫ t2

t1

(t2 − s)dW (s)

which contributes the same stochastic integral as the integrated Wiener process. Therefore,
we can construct the covariance structure for q = 2, i.e. we obtain a multivariate normal
random vector Wn = (∆W

(2)
n ,∆W

(1)
n ,∆Wn)

Wn ∼ N (0,Σ) , Σ =


(∆t)5

20
(∆t)4

8
(∆t)3

6
(∆t)4

8
(∆t)3

3
(∆t)2

2
(∆t)3

6
(∆t)2

2
∆t


as desired.

C.2 Proof of Lemma 4.2.1

Proof of (4.8). It is clear to see that p(W,X, Y ) is a multivariate normal so it suffices to
find its mean and variance. To that end, let ZW ,ZX ,ZY be independent vectors of i.i.d.
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normal random variables of size corresponding to the dimensions of W ,X,Y then we have

W = µW +Σ
1/2
W ZW

X = W + µX|W +Σ
1/2
X|WZX

= µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX

Y = AX +Σ
1/2
Y ZY

= A[µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY

= A[µW + µX|W ] +A[Σ
1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY .

The following steps will be computing the covariance between each of the variables using
the equations derived above

cov(W ,X) = cov(µW +Σ
1/2
W ZW ,µW + µX|W +Σ

1/2
W ZW +Σ

1/2
X|WZX)

= cov(Σ
1/2
W ZW ,Σ

1/2
W ZW +Σ

1/2
X|WZX)

= ΣW

cov(W ,Y ) = cov
(
µW +Σ

1/2
W ZW ,A[µW + µX|W ] +A[Σ

1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY

)
= cov

(
Σ

1/2
W ZW ,A[Σ

1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY

)
= ΣWA′

cov(X,Y ) = cov
(
µW + µX|W +Σ

1/2
W ZW +Σ

1/2
X|WZX ,A[µW + µX|W ]+

A[Σ
1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY

)
= cov

(
Σ

1/2
W ZW +Σ

1/2
X|WZX ,A[Σ

1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY

)
= (ΣW +ΣX|W )A′.
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Similarly, we have the variance of each variable

var(W ) = var(µW +Σ
1/2
W ZW )

= ΣW

var(X) = var(µW + µX|W +Σ
1/2
W ZW +Σ

1/2
X|WZX)

= ΣW +ΣX|W

var(Y ) = var(A[µW + µX|W ] +A[Σ
1/2
W ZW +Σ

1/2
X|WZX ] +Ω1/2ZY )

= A(ΣW +ΣX|W )A′ +Ω.

Proof of (4.9). Given the joint distribution from (2), we can directly apply the formula for
the conditional distribution of a multivariate normal to obtain p(W |Y ) ∼ N (µW |Y ,ΣW |Y ).
In this context we have

µW |Y = µW +ΣWA′Σ−1
Y (Y − µY )

ΣW |Y = ΣW −ΣWA′Σ−1
Y AΣW

which completes the final formulation.

C.3 A General Derivation of the Result in Section 4.3.5

Proposition C.3.1. Let W (t) be a d-dimensional continuous-time Gaussian process with
E[W (t)] = µ(t) such that W (t) − µ(t) is a homogeneous Markov process, i.e., we have
matrix valued functions Σ̃(t) and R̃(t) such that

W (t+ h) | {W (s) : s ≤ t} ∼ N
(
µ(t+ h) + R̃(h)(W (t)− µ(t)), Σ̃(h)

)
.

Consider time points t0 < t1 < t2, and suppose that

Y |W (t0),W (t1),W (t2) ∼ N (AW (t2),Ω).

Then we can find the joint distribution p(W (t2),W (t1),Y | W0) and the conditional
distribution p(W (t1) |W (t0),Y ) both of which are multivariate normal.

Remark C.3.1. In Section 4.3.5, we actually have a special case where W (t2) = W
(m)
m ,

W (t1) = W
(m)
k+1 and W (t0) = W

(m)
k .
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Proof. Let W̃ (t) = W (t)− µ(t), and let Wi = W (ti), W̃i = W̃ (ti), etc. First, we derive
the joint distribution p(W̃1, W̃2,Y | W̃0) from the following factorization

W̃1 | W̃0 ∼ N (R̃1W̃0, Σ̃1)

W̃2 | W̃1, W̃0 ∼ N (R̃2W̃1, Σ̃2)

Y | W̃2, W̃1, W̃0 ∼ N (AW̃2 + β,Ω),

where Σ̃i = Σ̃(ti − ti−1), R̃i = R̃(ti − ti−1), and β = Aµ(t2).

We know that p(W̃1, W̃2,Y | W̃0) is multivariate normal, so we just need to find
its mean and variance. To do this, note that we can sample from p(W̃1, W̃2,Y | W̃0)
by first generating Z0,Z1,Z2 as independent vectors of i.i.d. normal random variables of
compatible dimension, then setting

W̃1 = R̃1W̃0 +L1Z0

W̃2 = R̃2W̃1 +L2Z1

= R̃2(R̃1W̃0 +L1Z0) +L2Z1

Y = AW̃2 + β +Ω1/2Z2

= A(R̃2(R̃1W̃0 +L1Z0) +L2Z1) + β +Ω1/2Z2,

where Li is the lower Cholesky factor of Σ̃i = LiL
′
i. Thus, we may calculate

cov
(
W̃1, W̃2 | W̃0

)
= cov

(
R̃1W̃0 +L1Z0, R̃2(R̃1W̃0 +L1Z0) +L2Z1

)
= cov

(
L1Z0, R̃2L1Z0 +L2Z1

)
= L1 cov (Z0,Z0)L

′
1R̃

′
2 +L1 cov (Z0,Z1)L

′
2

= Σ̃1R̃
′
2.

The rest can be calculated similarly

cov(W̃1,Y | W̃0) = cov
(
R̃1W̃0 +L1Z0, A(R̃2(R̃1W̃0 +L1Z0) +L2Z1) + β +Ω1/2Z2

)
= cov

(
L1Z0, AR̃2L1Z0 +AL2Z1 +Ω1/2Z2

)
= L1 cov (Z0,Z0)L

′
1R̃

′
2A

′ + 0

= Σ̃1R̃
′
2A

′.
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cov(W̃2,Y | W̃0) = cov
(
R̃2W̃1 +L2Z1, A(R̃2(R̃1W̃0 +L1Z0) +L2Z1) + β +Ω

1
2Z2

)
= cov

(
R̃2L1Z0 +L2Z1, AR̃2L1Z0 +AL2Z1 +Ω1/2Z2

)
= R̃2L1 cov(Z0,Z0)L

′
1R̃

′
2A

′ +L2 cov(Z1,Z1)L
′
2A

′

= R̃2Σ̃1R̃
′
2A

′ + Σ̃2A
′.

Once we have the joint distribution p(W̃1, W̃2,Y | W̃0), we can use the formula for the
conditional distribution of a multivariate normal to obtain p(W̃1 | W̃0,Y ), and then
p(W1 |W0,Y ). The joint distribution of p(W̃1 | W̃0,Y ) is given by

W̃1

W̃2

Y

|W̃0∼N




R̃1W̃0

R̃2R̃1W̃0

AR̃2R̃1W̃0 + β

,


Σ̃1 Σ̃1R̃
′
2 Σ̃1R̃

′
2A

′

R̃2Σ̃1 R̃2Σ̃1R̃
′
2 + Σ̃2 R̃2Σ̃1R̃

′
2A

′ + Σ̃2A
′

AR̃2Σ̃1 AR̃2Σ̃1R̃
′
2 +AΣ̃2 AR̃2Σ̃1R̃

′
2A

′ +AΣ̃2A
′ +Ω


,

and[
W1

Y

]
|W0 ∼ N

([
R̃1(W0 − µ(t0)) + µ(t1)

AR̃2R̃1W0

]
,

[
Σ̃1 Σ̃1R̃

′
2A

′

AR̃2Σ̃
′
1 AR̃2Σ̃1R̃

′
2A

′ +AΣ̃2A
′ +Ω

])
.
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