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Abstract

We present Falcon, network-integrated scheduler for micro-scale services. Falcon fol-

lows a centralized scheduler design to achieve high scheduling efficiency and leverages

modern programmable switches to lower the scheduling latency and increase the schedul-

ing throughput. Falcon supports multiple scheduling policies such as FIFO, and data

locality aware policies. Our empirical evaluation shows that Falcon reduces scheduling

latency by 120 times and increases the scheduling throughput by 100 times compared to

state-of-the-art schedulers.
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1 Introduction

Online data-intensive services [2, 3] such as e-commerce, social networking, object detec-

tion [4], algorithmic smart trading [5, 6, 7, 8], and low-latency web services [9] are expected

to provide a scalable and interactive services. To meet these requirements, these systems

are required to support high throughput and low-tail latency in the range of microseconds

[10]. Meeting this requirement is specially challenging for online data-intensive applica-

tions which fan out requests to tens of cores. In these applications, the response time is

dominated by the slowest task [9].

Traditional data-processing frameworks [11, 12] use centralized scheduler designs. In

this design, a central scheduler monitors the cluster nodes and schedules tasks on the next

available node. Although this approach makes accurate scheduling decisions using complete

cluster information, it cannot support real-time workloads on large clusters because this

requires the processing of thousands of status reports and making hundreds of thousands

of scheduling decisions per second. For instance, Firmament, a state-of-the-art centralized

scheduler, can only support a cluster of up to 100 nodes when running real-time analytics

[13], and Spark’s scheduler does not support sub-second tasks [12]. Chen et al. [14]

characterized the scheduling overhead in modern low-latency data analytics and found

that scheduling overheads account for nearly 60% of total execution time. Finally, our

evaluation (§7.2) shows that even an optimized centralized scheduler can only support

clusters with up to 100 nodes when running latency-sensitive tasks.

To overcome these limitations, a number of data analytics frameworks have explored
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a distributed scheduling design [15, 16, 17, 18]. Unfortunately, this approach has two

disadvantages. First, it has high overhead because it uses tens of nodes for scheduling;

for instance, Sparrow [17] uses 10% of the cluster nodes to run schedulers. Second, this

approach leads to suboptimal scheduling decisions leading to higher tail latency. To avoid

the overhead of coordinating tens of schedulers, some frameworks use probing, whereby

in which each scheduler probes a fraction of cluster nodes and schedules the next task on

the first node that becomes free in this subset [17, 18]. Alternatively, Apollo [15] uses a

centralized metadata service that periodically monitors the cluster nodes. Unfortunately,

the information is often stale and lead to multiple schedulers swarming over the same

set of nodes, leading to higher tail latency. Furthermore, probing overhead increases the

scheduling overhead.

We present Falcon, a novel scheduler design for low-latency data analytics workloads.

Falcon makes accurate scheduling decisions and can support clusters with thousands of

nodes. To make precise scheduling decisions Falcon follows a centralized scheduling ap-

proach. To improve the scheduling performance and support large clusters Falcon acceler-

ates the scheduler by leveraging modern programmable switches [19, 20].

Modern programmable switches [19, 20, 21] can process billions of packets per second.

This means these switches are able to handle scheduling workloads on large clusters while

acting as a centralized scheduler. However, using these programmable switches to build

complex systems is challenging due to their restrictive pipeline-based programming model,

limited computational power, and restrictive memory access model. Simple implemen-

tations such as a simple circular queue can be challenging, because their basic methods

usually access the queue twice: at the start to determine if the queue has any items or not,

and a second time to increase or decrease the queue’s size. This is a clear violation of one

of the switch’s restrictions where a packet can only access a memory unit once.
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A critical part of Falcon’s design is our novel P4 circular queue, which supports task

addition and removal at line-rate speeds. This circular task queue also supports the addi-

tion of lists of entries (§4.2). despite these switch’s limited capabilities Falcon’s is able to

support a FIFO scheduling policy as well as a data locality-aware scheduling policy.

Two recent projects explored building a switch-based schedulers for microsecond scale

tasks [22, 23]. These two approaches are optimized for single request RPCs and do not read-

ily support data analytics frameworks with micro-batch interface. Furthermore, R2P2 has

a high tail latency due to high recirculation overhead and head-of-line blocking. Racksched

can not scale beyond tens of servers limited by how many operations it can fit in a Tofino

stage, Racksched also relies on a secondary inter-server scheduler to schedule requests to

the desired core.

Our prototype evaluation on a cluster with a Barefoot Tofino switch [20] using synthetic

and real-world workloads shows the significant benefits of this approach. Our evaluation

with real and synthetic benchmark shows that the 99 percentile of Falcon scheduling delay is

around 5 µs, at least 120× lower than state of the art scheduler. Falcon can support clusters

of millions of executors, orders of magnitude higher than the state-of-the-art centralized

and decentralized schedulers. Finally, we demonstrate Falcon’s locality scheduling policy.

The rest of the paper is organized as follows. We present the related background in

Chapter 2. We discuss Falcon ’s design in Chapters 3 and 4, then detail its approach for

supporting locality (Chapter 5). We discuss the details of our implementation in Chapter

6. In Chapter 7, we present our evaluation. We survey related work in Chapter 8 and

conclude in Chapter 9.
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2 Motivation and Background

2.1 Real-Time Analytics

Online data-intensive analytics aim to complete tasks in hundreds of microseconds. Appli-

cations such as traffic analysis [24], financial analytics [5], smart-grid monitoring [25, 26],

and IoT analytics for defense [27] and agriculture [28] have stringent timing requirements.

For instance, lowering the latency of financial analytics by even a millisecond can boost

earnings by a hundred million dollars a year [8]. Finally, real-time applications such as

rapid object detection [4, 29] and augmented reality applications [9] require analyzing

sensors and video data in real time.

Data analytics frameworks need to handle hundreds of thousands or even millions of

scheduling decisions per second with tail latency of a few microseconds to be able to run

these applications with clusters sized around a few hundreds of nodes.

2.2 Overview of Scheduling Paradigms

Generally, data-processing frameworks use a micro-batch scheduling model [12]. Jobs are

submitted with m independent tasks. These tasks can be executed in parallel by executors.

A job is complete when all tasks have completed their execution on executors in the cluster.

Centralized Scheduler Design. A single scheduler that utilizes knowledge and status of

the cluster to make accurate scheduling decisions. However, this design is unable to support

real-time analytics even on small clusters. Firmament [13] is a centralized scheduler that
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Figure 1: Sparrow’s scheduling timeline Figure 2: Falcon’s scheduling timeline

models the workload into a graph with tasks linked to their assigned executor. Firmament

maps these tasks into their appropriate executors using a min-cost max-flow solver. Every

time a new job is submitted the calculated graph needs to be updated by running the

graph solver to generate a new graph with the new tasks included. Gog et al. [13] report

that Firmament is unable to scale to more than 100 nodes (each running 12 executor cores)

with real-time workloads, even with their highly optimized solver implementation.

Apache Spark [12] is also a centralized scheduler. Our analysis and that of the authors

of Sparrow [17] show that Spark is incapable of running tasks with service time below 1.5

seconds. This is because Spark suffers from infinite queuing with low service times.

Distributed Scheduler Design. Modern distributed schedulers [15, 17, 18] address

large-scale clusters support by deploying multiple schedulers. Distributed schedulers make

decisions with partial or stale cluster information, that way they avoid the heavy overhead
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of communication and coordination between multiple schedulers. For instance, Sparrow

[17], a state-of-the-art distributed scheduler, schedules an m tasks job by probing 2m

randomly executors(Figure 1). The probes are queued on the executors. When an executor

is free, it dequeues a probe and requests a task from the scheduler to execute. Then, the

scheduler would forward a task to be executed to the executor. Sparrow uses this technique

to offset the partial knowledge of cluster utilization. Hopper [18] adopts a similar technique.

Due to probing only a fraction of the nodes scheduling decisions are not optimal, and more

overhead is added to the scheduling delay.

Apollo [15] is a distributed scheduler that employs a central resource-monitoring service.

Schedulers in the cluster communicate with the resource-monitoring service to update

their view of the cluster nodes and their status. The resource-monitoring service does not

coordinate the information between schedulers well. Which leads to multiple schedulers

forwarding tasks to the same nodes, achieving suboptimal scheduling decisions.

Switch-Based Schedulers. R2P2 [22] implements join-bounded-shortest-queue(JBSQ)

in which it aims to schedule the next task on the executor with the shortest queue. To

implement this approach in P4, R2P2 maintains an array of counters at the switch to keep

track of the queue size of each executor. When a client sends a new RPC call, R2P2 will

recirculate the request until it finds an executor with empty queue. If no such executor

is found, it will recirculate the request over the array looking for an executor with one

task or less, and so forth. This approach suffers from excessive re-circulation, head of line

blocking, and leads to lower cluster utilization. Our evaluation shows that when a cluster

is 90% utilized, 45% of the processed packets are recircualtion packets. Furthermore, our

evaluation shows when the cluster is lightly loaded, R2P2 uses less than 50% of the cluster

resource, negatively affecting scheduling tale latency.

Racksched [23] performs inter-server scheduling by forwarding requests to the server
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with the least load, the request is then scheduled on the appropriate worker on that server

using another intra-server scheduler. Racksched supports request affinity by mapping re-

quest IDs to the scheduled server in a ReqTable, when any remaining packet from a request

is sent Racksched checks the ReqTable to forward them to the same selected server. Due

to the nature of their scheduling algorithm Racksched does not scale the number of servers

well. Racksched needs to select the server with the minimum load and can only compute

a limited number of load minimums per stage, needing more stages the more servers are

available. To avoid head-of-lines blocking Racksched samples k servers before computing

the minimum queue using a tree-based mechanism and scheduling the request to the server

with the shortest queue.

2.3 Programmable Switches

Programmable switches, such as Barefoot’s Tofino [19, 20] and Broadcom’s Trident 3 [30],

are network-programmable ASICs which help with implementing custom packet processing

pipeline that can run at line speed.
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(a) Switch data plane.

(b) Pipeline for implementing in-networking

scheduling

Figure 3: Switch data plane

Figure 3a illustrates the basic data plane architecture of modern programmable

switches. A packet first goes through the ingress pipeline, then the traffic manager handles

the packet and forwards it to the egress pipeline, it is then processed by the egress pipeline

before it is finally emitted.

Each pipeline is composed of multiple stages (Figure 3b). with each stage, a packet or

metadata fields match with one or more tables. The appropriate action is then executed.

Each stage has its own resources, this includes tables and memory registers. Data can be

shared between stages using packet headers and small per-packet metadata (a few hundred

bytes in size) that is propagated with the packet as it goes through the pipeline (Figure

3b). Packet processing can be viewed as a graph of match-action stages.

Programmers use domain-specific programming languages such as P4 [31, 32] to imple-

ment their custom packet processing protocols, actions and tables, and define their custom

packet headers.

8



Challenges. Modern ASICs are restricted due to their need to process packets at line

speed. They are limited by (1) Number of stages per pipeline, (2) number of memory

accesses per stage, (3) number of tables and register per stage, (4) the size of data that

can be read/written per packet per stage, and (5) the size of meta data per packet. In

addition, modern ASICs lack support for loops or recursion.

The ASICs limiting memory model is particularly challenging to overcome when im-

plementing an in-network scheduler. A register is the only way to store data that can be

accessed between packets, but it can only be accessed once per stage using a single oper-

ation. This operation can be either a read, a write, a simple arithmetic operation (e.g.,

read and increment or read and set), or a simple logical operation.
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3 Falcon Overview

Figure 4: Falcon’s Architecture

Falcon is a centralized scheduler running on a programmable switch. Falcon places tasks

on free executors in the cluster with low overheads. We identify a process executing work

assigned to it by the scheduler as an executor. Multiple executor processes are launched

on a single node. The number of executors running on a node is usually limited by the

number of logical cores available on that node. Figure 4 shows the basic architecture of

Falcon consisting of clients, executors, and a centralized programmable switch.

3.1 Falcon Client

Falcon client batches a number of independent tasks and forwards it to the scheduler as a

job for submission, this is similar to how Spark [12] and Sparrow [17] group and submit

their tasks. The client can also be referred to as the data-processing framework. In this
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paper, we use the terms client and data-processing framework interchangeably. Following

the current structure of data processing frameworks, a group of independent tasks able to

run in parallel is known as a job. Clients manage these tasks’ data dependencies between

different jobs [11, 12, 17]. Clients are responsible for tracking and resubmitting any failed

or lost tasks [12, 17].

3.2 Executors

Figure 2 shows Falcon’s scheduling timeline. Executors request new tasks from the sched-

uler whenever an executor is free. This way the scheduler only schedules tasks on free ex-

ecutors eliminating any head-of-line blocking. Making it easier to achieve our low-latency

requirement. The executor reports back to the scheduler when it completes its assigned

task, which is then forwarded to the client informing it of the completion.

If no tasks are available on the scheduler, the scheduler sends an invalid task back to

the executor. The executor would then resubmit its request after a configurable amount

of time.

3.3 Programmable Switch

A programmable switch [19, 20] hosts our Falcon in-network implementation. The sched-

uler stores tasks it receives from our clients (Figure 4) in a circular queue before an executor

is free and requests a task to run. This task queue stores all the information needed to

link the tasks to their client. The scheduler chooses and forwards tasks to the executors

when they are free and request them. The tasks are chosen based on different requirements

depending on the policy the scheduler is running (i.e., FIFO, or locality).

Implementing such simple scheduling design on a programmable switch is difficult due
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to the various limitations of modern programmable switches.

3.4 Deployment Approach

Similar to previous projects which make use of programmable switches and their capabili-

ties [33, 34, 35, 36] our network controller reroutes all job-submission packets through the

single programmable switch that runs our Falcon scheduler. These packets are rerouted

by installing forwarding rules to direct them to the switch. It’s possible that this approach

will forward packets through a longer path than traditional forwarding, but the increase

in latency is minimal. Li et al. [34] report that for 88% of cases, using this method results

in no additional request latency, while the 99th percentile show added latency less than 5

µs.

3.5 Fault Tolerance

The scheduler maintains a soft state. We address switch failures by replacing it with

another switch to run the scheduling algorithm. The clients track any tasks lost during

this failure and resubmit them to the new switch. This is similar to other frameworks

[11, 12, 17] where the client times out for failed tasks and reissues a job submission with

these tasks.

This means the client or executor will also resend lost job-submission packets or task-

completion packets. This may result in tasks being executed multiple times. This does

not affect correctness due to tasks being idempotent [11], but has a small effect on cluster

utilization efficiency and latencies.
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4 Falcon Design

We first present the base design for Falcon’s scheduler with a FIFO scheduling policy, then

extend this design with data locality-ware (§5) scheduling.

4.1 Network Protocol

Figure 5: Falcon’s job submission packet.

Falcon uses UDP to employ an application-layer protocol embedded in the L4 payload.

Other systems that use programmable switches [33, 34, 35] also use UDP to lower latencies.

Falcon presents two new packet headers: job submission packet, which is used to send

task batches as jobs to the scheduler, and a retrieve task packet that is used to request

tasks from the scheduler and send tasks to executors. We detail these headers next and

use the next subsections to discuss our design.

Figure 5 shows the job submission packet structure:

• OP: This field indicates that this packet is a job submission request.
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• UID: A unique user identifier.

• JID: A per client unique job ID. The <UID, JID>are used as unique identifier for

each job.

• #TASKS: The number of tasks in the job. This is used by the scheduler to parse

through this packet and store all the tasks.

• TASK INFO: metadata for each task in the job submission packet.

The task information (TASK INFO) contains:

• TID: A per job unique task identifier. The tuple <UID, JID, TID>is a used as a unique

identifier for each task.

• TDESC: This decides what type of task to run, and any parameters needed for its

execution.

• TLOC: data locality information. TLOC lists the nodes id and rack id of nodes holding

task’s data.

The scheduler uses a retrieve task packet to place a task and send it to an executor.

The retrieve task packet includes client information and TASK INFO of the task being

retrieved.

4.2 Scheduler Design

Falcon uses the switch registers as a circular queue to store tasks. The following is stored

in each queue entry: TASK INFO, client IP, and client port, and an is valid field to

14



indicate if this task was already scheduled or not. The circular queue has two 32-bit

pointers: add ptr and retrieve ptr. The retrieve ptr points to the first valid task in

the queue and the add ptr points to next empty entry in the queue where a new task is

to be stored.

Each pointer comprises two parts: <round num, index>. The index indicates which

entry in the queue this pointer points to. The round num counts how many times the

pointer went through the whole queue. This field is used to solve special cases when the

queue is full or empty.

We subtract retrieve ptr from add ptr to calculate if the queue is full or empty. If

the result is zero, then we have an empty queue. If the subtractions result is equal or

larger than the queue size, then we have a full queue. If the difference is negative, then the

retrieve ptr is larger than add ptr and we need to fix these pointers. We discuss this

below.

When implementing a simple circular queue, to insert a new task, we check if the queue

has space by subtracting the retrieve ptr from add ptr. If the queue has space, we insert

the new task in the queue and increment the add ptr. However, implementing such design

on current programmable switches is not possible. This is because add ptr is accessed

twice; once when determining if the queue is full and the second is when it increments.

Dequeuing a task faces a similar problem.

Because a packet is limited to only one access for each memory unit, Falcon uses an

atomic read and increment() operation on add ptr to read and increment it in one access.

Falcon then adds the new task into the queue if it is not full. Using this atomic operation

increments the add ptr even if the queue is full. Falcon uses the same atomic operation to

increment retrieve ptr when dequeuing a task even if the queue is empty. In these cases,
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we need to fix the pointers. We achieve that by using another packet so we can access

these pointers again. This is later explained in section 4.5.

4.3 Handling Job Submission

The client generates and populates a job submission packet (Figure 5), then sends it to

the scheduler for submission. The scheduler stores the tasks in the queue.

Inserting tasks into the circular queue can be challenging since programmable switches

lack support for any type of loops or recursion and the queue can only be accessed once

per packet. Falcon solves this problem by first checking how many tasks are in the packet

by reading the #TASKS field. If there are any tasks, Falcon first extracts the first task from

the list of TASK INFO, and then enqueues the task into the queue while incrementing the

add ptr.

Enqueuing Multiple Tasks. To enqueue all the tasks in the TASK INFO field (Figure

5), Falcon uses packet recirculation (i.e., emitting a packet from egress to ingress through

a special port and processing it as if it is a new packet). The scheduler extracts the first

task from the job submission packet, decrements the #TASKS field, then emits the packet

through the recirculation port. Falcon repeats this process until the #TASKS field reaches

zero.

Handling a Full Queue. With each task in a job submission packet, Falcon calls

read and increment(add ptr). Falcon then checks the difference between add ptr and

retrieve ptr to check if the queue is full and inserts the task if it is not full. If the queue

is full, Falcon generates an error packet and forwards it to the client. This packet details

which tasks were not submitted, meaning they are not in the queue. The client resubmits

these tasks later using another job submission packet.
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4.4 Handling Task Retrieval

Whenever an executor is free it requests a task from the scheduler. This helps avoid

head-of-line blocking. The executor requests a task by sending a retrieve task packet

to Falcon. The scheduler executes read and increment(retrieve ptr) upon receiving a

retrieve task packet, then it dequeues and reads a task from the queue. The scheduler

then checks the task’s is valid flag. If the flag is true, then the scheduler forwards the

task to the executor to run and sets the is valid flag to false (This can be done in only one

access by using read and set(is valid, false)). Alternatively, if the is valid flag is

false then the queue is empty. The scheduler then sends a no-op task back to the executor

and the executor would wait a configurable amount of time before requesting a task again.

4.5 Pointer Correction

Falcon calls read and increment(add ptr) on every job submission packet before check-

ing if the queue is full or not. If the queue is full, then the add ptr value is incorrect and

it needs to be fixed. In this case, the scheduler generates and recirculates a repair packet

to fix the add ptr value. Since Falcon is running on a pipelined model, we need to avoid

generating multiple repair packets. Falcon uses a Boolean flag (is repairing add ptr) to

determine whether any repair packet is recirculating to reset the add ptr, this way only

one repair packet is generated.

Similarly, the scheduler calls read and increment(retrieve ptr) on every retrieve

task operation before checking if the task is valid or not. If the task is invalid (meaning

the queue is empty), then the retrieve ptr is incorrect and needs to be reset. We fix

this pointer when we receive the next job submission packet. Upon receiving the next

job submission packet the scheduler enqueues the first task into the queue. Falcon then
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determines if the retrieve ptr is incorrect and needs fixing (i.e., This is done by checking

if the retrieve ptr is ahead of the add ptr). If the retrieve ptr is incorrect, Falcon

recirculates a packet to set the retrieve ptr to point to the newly added task. Similar

to the way we fix the add ptr, we make use of the is repairing retrieve ptr Boolean

to recirculate only one repair packet.

18



5 Locality-Aware Scheduling

We adopt locality aware scheduling semantics of Spark [12]. Falcon support multiple levels

of locality. Each task is tagged with node ids that hold the task’s data. The scheduler

tries to place the task on one of those nodes. After a few attempts, if all the nodes holding

task’s data are not free, the scheduler will try to place the task on a node in the same

rack as the nodes holding the data. If that is not successful, the task is placed on any

node in the cluster. Similar to current frameworks, clients tag tasks with data location

information.

Similar to Spark, Falcon maintains a skip counter that counts the number of times

a task is considered for scheduling. This additional field is stored in the task queue (Sec-

tion 4.1). Falcon has two configuration parameters: node limit and rack limit. If the

skip counter is larger than node limit the task will be considered for scheduling on the

nodes in the same rack as the nodes holding its data. If the skip counter is larger than

rack limit the task will be scheduled on the next available worker regardless of data

locality.

Job submission. Clients use the TLOC field in the TASK-INFO (Section 4.1) to specify

nodes holding tasks’ data. The job submission packets is processed as described in Section

4.3.

Task retrieval. When processing a task retrieval request, the scheduler retrieves a

task from the queue as described in Section 4.4. The scheduler then checks the TLOC field

of the task, if the task is local to the worker, the task is scheduled at the worker, else, the
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task’s skip count is incremented.

If the retrieved task is not local to that worker and skip count is smaller than

node limit, Falcon reinserts it back into the queue and picks up the next task in the queue.

To do this we switch the retrieved task TASK INFO with the next valid task TASK INFO.

Swapping a Task. We recirculate our populated swap task packet. The swap task

packet contains these fields: TASK INFO which contains info of the retrieved task; SWAP IDX,

this contains the index of the next task in the queue; EXEC ID, this contains the ID of the

executor; the IP address and port of the executor; and the current retrieve ptr value.

When a swap task packet arrives at the switch, the scheduler swaps the task in the

packet with the task in the queue at the index SWAP IDX field from the swap packet. the

scheduler does not increment the retrieve ptr when processing swap task packets.

If the swapped task has data local on the executor specified in EXEC ID, the task is

forwarded back to the executor. Otherwise, the scheduler increments the skip counter of

the task and the SWAP IDX field in the swap task packet. the scheduler then recirculates

this swap task packet and recirculates this packet.

The scheduler repeats this swapping process until a task’s TLOC field matches the

EXEC ID field or the swap task packet traverses the whole queue. The scheduler checks if

the SWAP IDX is ahead of the add ptr, this means that the swap packet traversed the whole

queue and could not find a task to run on the executor. The scheduler then enqueues the

task in the swap task packet back into the queue before sending an invalid task to the

executor. The executor, upon receiving an invalid task, would send a new retrieve task

packet after a short timeout period.

The swap task packet contains the value of the retrieve ptr before swapping. When

the retrieve ptr on the packet does not match the current retrieve ptr, the sched-
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uler swaps the task in the packet with the task pointed at by the current retrieve ptr

rather than the task at index SWAP IDX. This is done because other retrieve packets have

incremented the retrieve ptr and now the SWAP IDX points towards an invalid task.

Skip counter. Every task in the queue starts with a strict locality requirement where

they are only scheduled on preferred nodes. But if a task is skipped enough times to

where its skip counter reachs a preconfigured node limit then the locality requirement

is loosened. Tasks that reach the node locality limit can now be scheduled on nodes

that occupy the same rack as the preferred node. If a task is still not scheduled and its

skip counter reaches a rack limit then this task can be assigned to any node in the

cluster and is scheduled to the first worker that requests a task.Both the node limit and

the rack limit are configurable.
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6 Implementation

We implemented our Falcon workers, clients, and software server using C++. Our Falcon

scheduling algorithms were implemented using P4 [31, 32] to run on our Barefoot Tofino

switch [20]. Our P4 implementation has 1500 lines of code. We adopt the same job

submission model as Sparrow [17]. Our C++ client submits jobs every fixed interval.

This interval and other task information for the submitted jobs can be changed to target

different types of workloads.

We use an early Tofino switch model. The Tofino programmable switch has limited

capabilities. Newer models of the Barefoot Tofino switch has more memory and stages

[19]. Our Falcon prototype uses a task queue that can fit 128k tasks, This is due to the

switch’s limited capabilities. We divide our 32 bit queue pointers into a round num which

is represented by the 15 MSB, and an index for the 17 LSB. After doing some rough

calculations, We suspect that the new generation of switches can have queues the size of

about one million tasks.

6.1 DPDK

We implemented our workers, clients, and software server on top of DPDK [37] instead of

cpp raw sockets. First we tried using ANS[38] a DPDK Native Accelerated Network Stack

before moving to using a pure DPDK solution.

DPDK ANS. First we tried using ANS for our implementation. ANS does not support

blocking for its sockets, so we moved to an epoll based solution. This ANS based solution
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achieved around 325k task throughput per second with 60 threads while our previous cpp

sockets implementation capped out at 700k task throughput per second with 60 threads.

To try and fix our DPDK ANS solution we :

• Increased the number of available cores for ANS and our ANS based code.

• Increased the size and number of memory channels.

• Increased the number of hugepages and buffer sizes.

• Isolated cores that are running ANS and our ANS based applications.

• Increased the TXs and RXs batch sizes.

• Pad thread counters.

None of the above solutions worked, so we moved our implementation directly to DPDK

after ANS failed to perform better than cpp sockets with our cluster configuration. We

can not inspect ANS as it is not open source.

Pure DPDK. We have implemented our workers, clients, and software server using

DPDK in 2500 lines of code. Every thread is run on a separate logical core and each have

their own TX and RX queues. We bind each of our RX queues to a specific port then we

direct incoming packets to the appropriate port using rte flow api. We also make use of

the rte ring api in our software server for a lock-less ring implementation.

6.2 Simulation

We started from the Sparrow simulator code base [17] and built an event- based simulator

for Falcon. We used our simulator to evaluate Falcon’s performance at scale since we do
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not have access to a cluster with Tofino switch that can stress our P4 Falcon scheduler

implementation.

Th simulator processes events from a priority queue where events are sorted based on

their start time. After an event is processed the simulator generates the next event and

calculates its start time by adding the appropriate delays to the previous event’s end time.

We added Executor and Scheduler limits to the simulator to more accurately simulate high

throughput scenarios.
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7 Evaluation

We perform our experiments and compare Falcon’s performance against the performance

of state-of-the-art schedulers.

Testbed. We use our cluster of 13 nodes to run our experiments. Each node has 48GB

of RAM, an Intel Xeon Silver 10-core CPU, and a 100 Gbps Mellanox MT27800 Connectx-

5 NIC. We use an Edgecore Wedge switch with a Barefoot Tofino ASIC [20] to connect

these nodes. Depending on the experiment, the switch runs either a simple forwarding

program or a scheduler’s P4 implementation. 10 of our cluster nodes are used as worker

nodes, while the remaining are used for running schedulers or clients.

Alternatives. We run our experiments on the following schedulers.

• Sparrow. Sparrow [17] Samples a number of executors to find a free executors to

place tasks one. We evaluated Sparrow’s implementation [39] and found that it is not

implemented efficiently because of their use of Java and RPCs. We re-implemented

Sparrow using C++. Our Sparrow C++ implementation supports up to 25 times

more throughput and achieves 2 times lower scheduling overhead than the original

Sparrow.For our experiments, we use our Sparrow C++ implementation.

• Falcon. We use our Falcon P4 implementation.

• Falcon-Server. We use our Falcon C++ implementation which we run on one of

our nodes. This implementation is a highly optimized centralized scheduler running

our Falcon scheduling algorithm.
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• R2P2. We use R2P2 P4 implementation. We use an executor queue size of 3 as

suggested by the original paper [22].

Other Schedulers. We run our experiments on Spark [12] and found that Spark

could not handle tasks that have sub-second service times; this is similar to Sparrow’s [17]

findings. Spark achieves a scheduling delay of 3 seconds with 50% cluster load. When

going over the 50% load, Spark experiences infinite queuing and is not able to keep up

with the workload. Considering our workloads mainly consist of micro-second tasks, We

do not include Spark’s delays in our figures. We run similar experiments on Firmament

[13] using their open-source implementation. This implementation could not schedule and

run tasks with service time lower than 1 second. Nevertheless, Gog et al. [13] note that

Firmament is unable to support more than 1200 executors (running on 100 nodes) when

using tasks with a service time of 5 ms. This is a scheduling throughput of roughly 240k

request per second.

Workload. We use a synthetic benchmark as well traces from a Google cluster to

compare Falcon to the alternatives. In all our experiments, we report the average of 10

runs. The standard deviation in all our experiments was under 5%.

7.1 Scheduling Latency

We compare the performance on Falcon to the state-of-the-art alternatives with a suit of

synthetic benchmarks. We generate tasks with fixed execution time of 100 µs , 250 µs,

500 µs, bimodal (50% 100 µs and 50% 500 µs), trimodal (33.3% 100 µs, 33.3% 250 µs,

and 33.3% 500 µs). We also experimented with execution times that follow an exponential

distribution with a mean that follows the execution times presented above. We present

the result with the exponential distribution with a mean execution time of 250 µs. The
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evaluation with the exponential distribution of task execution time achieved comparable

result to fixed execution times.

Figure 6: 99th Percentile scheduling delays with 500 µs tasks. Note the log scale on y axis.

Figure 6 shows the throughput and 99th percentile of the scheduling delay of six al-

ternatives. We compare Falcon with DPDK (Falcon DPDK P4 in 6) to five alternatives:

a C++ implementation running on a single server of Falcon using DPDK (Falcon DPDK

Server) and POSIX sockets (Falcon Raw socket Server), R2P2 using DPDK (R2P2 DPDK

P4), and Sparrow deployed with a single scheudler (One Sched Sparrow) and two sched-

ulers (Two Sched Sparrow) built using POSIX sockets. The experiments use a synthetic

workload with 500 µs CPU-intensive tasks. Every executor performs floating point integer

calculations for the service time of the task.
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Figure 6 shows that Falcon significantly lowers the scheduling overhead compared to

all other systems with a 20 µs tail latency, 120 times lower latency than that of the next

alternative. We note that the tail latency increases with over 250 thousands tasks per

second (tps). This is because the cluster utilization is over 90% and the tasks experience

queuing delays. Nevertheless, even at high cluster utilization Falcon achieves 30 times

lower latency than the closest alternative. We note that systems that use POSIX sockets

can not support more than 160 thousand tps and achieve 100,000 times higher tail latency

compared to Falcon. We note that Falcon C++ implementation achieves 1.7 times lower

latency than a single Sparrow scheduler and a comparable performance to two Sparrow

scheduler. Sparrow experiences higher latencies because of their reservation policy adding

additional overhead, and because its implementation can not handle tasks with service

times lower than 1 ms. Sparrow also might not schedule tasks to the ideal node as it

probes part of the cluster for each task. These alternatives could not run workloads with

lower execution times, consequently we do not present their results in the rest of the figures.
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(a) 100 µs service time. (b) 250 µs service time.

(c) 500 µs service time. (d) Bimodal workload.

(e) Trimodal workload. (f) Exp. workload.

Figure 7: 99th percentile of the scheduling delay. Note the log scale y axis.
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Figure 7 shows the 99th of the scheduling delay with the suit of synthetic benchmarks.

Falcon consistently achieves 4.7 - 20 µs scheduling delay, and achieves up to 1.4 Mtps

scheduling throughput. We note that with 1.4 Mtps the cluster utization was 90%. R2P2

has 100 to 190 µs scheduling delay and can support up to 1.1 Mtps. At high loads R2P2

scheduling delay can reach 36 ms (Figure 7.a). R2P2 experiences higher latencies than

Falcon due to its heavy reliance on recirculation while Falcon only recirculates on job

submissions.

7.2 Scheduling Throughput

Figure 8: Scheduling throughput

To measure the throughput of the scheduler, we generated a synthetic workload composed

of zero service time tasks. This means executors request and receive a task, instantly finish

it, and then request another one. We stress the schedulers by increasing the number of

executors, which increases the number of requests. For measuring Sparrow’s throughput,
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we skip the probing and sampling step from their protocol. This favours Sparrow as it

eliminates the probing step’s overhead. This means Sparrow’s results are closer to its

upper limit in terms of performance.

Figure 8 shows the scheduling throughput when scaling up the number of executors.

Falcon ’s performance improves linearly with additional executors. Falcon achieves 58 Mtps

throughput with 208 executors. Unfortunately, we could not stress Falcon by deploying

more executors on our cluster. The switch can support up to 4.7 billion packets per second

according to its data sheet. This means to measure Falcon’s throughput limit, we need

to generate a workload substantially greater than what our executors can generate. We

evaluate Falcon ’s performance at a larger scale through simulation in §7.3. We note that

all other systems do not scale well. Among the server -based schedulers, Falcon-Server has

the highest throughput of 1.1 Mtps. Sparrow throughput is the lowest at 500 Ktps for a

single Sparrow scheduler and 900 Ktps for two schedulers.

7.3 Falcon at Scale

Unfortunately, we could not stress the Falcon scheduler with our cluster. To evaluate

Falcon ’s performance at scale, we resort to simulation. We started from the Sparrow

simulator code base [39] and built an event-based simulator for Falcon. Our simulator

receives the peak scheduler throughput as input and uses it to simulate scenarios with

varying executor counts and task durations. For Sparrow, we set the scheduling throughput

to 500 K decisions per second per scheduler. This is the throughput measured by profiling

the Sparrow scheduler on our cluster. For Falcon, our switch data sheet states that the

switch can process 4.7 billion packets per second [20]. We use this limit in our simulator.
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(a) Simulator validation. The lines for Fal-

con and Falcon simulation overlap. The dif-

ference between the two is less than 5%.

(b) Falcon’s throughput at scale with 500 µs

tasks.

Figure 9: Simulator validation and Falcon’s throughput simulation.

Simulator Validation. To validate the simulator, we compare the scheduling through-

put of our simulator and the real execution of the cluster when running jobs with 500 µs

tasks. Figure 9a compares the scheduling throughput of the real execution to the simula-

tion run for Falcon. The figure shows that the simulator is highly accurate in computing

the scheduling throughput of Falcon. In the worst case, the simulation results are only 5%

different from the real workload at high loads. We also validated the simulator results with

no-op tasks and observed similar results.

Simulation of Large Clusters. We used the simulator to evaluate Falcon ’s ability

to support large clusters when running 500 µs tasks. Figure 9b shows the throughput of
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Falcon on clusters with millions of executors. The figure shows that at its peak scheduling

throughput, Falcon can support clusters with 2.3 million executors. Note that these execu-

tors usually represent logical cores. If we assume every physical core supports two logical

cores, our results indicate that Falcon can scale to a cluster with over a million cores.

7.4 Performance with Real Workload

We evaluate the scheduler performance using Google cluster traces [40]. The Google traces

include information for tasks running on a 12,500-node cluster at Google over a month.

To run this trace on our 12-node cluster, we use an approach similar to Firmament’s [13].

We accelerate a uniform sample from the Google trace to generate a trace that can finish

executing on our cluster in 3 minutes. We vary the sampling rate according to the number

of executors. The generated trace for this experiment has a median task service time of 5

ms.

(a) CPU-intesive workload (b) Sleep workload

Figure 10: Scheduling latency CDF. X-axes are in log-scale.
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Figure 10a shows the CDF of total scheduling delays for multiple scheduling alterna-

tives running CPU-intensive Google trace tasks. Executors perform floating point integer

operations for the service time of these tasks. Using this workload, we can run 16 executors

per worker on our 11 worker nodes for a total of 176 executors. Looking at Figure 10a

we see that Falcon achieves 40 times lower scheduling delays than the next alternative.

Falcon achieves a median scheduling delay of 0.04 ms, while a single Sparrow scheduler

achieves 1.6 ms median scheduling delay. We explain later in section 7.5 the reason for

difference in performance. Both of our Falcon implementations show comparable results.

This is because our server implementation is lightweight and highly optimized. Falcon

and Falcon-Server experience scheduling delays that are dominated by network delays as a

result of the get task() operation. Falcon and Falcon-Server achieve latencies of over 5 ms

at the 95th percentile due to bursty nature of the workload, where hundreds of tasks that

share the same submission time experience long queueing delays. We detail this further

using a breakdown of the scheduling overhead in the next section.

To achieve higher throughput, we switch our executors to sleep rather than running

floating point operations for the service time of the tasks. This way we can launch more

executors. We launch 200 executors per worker on our 11 worker nodes for a total of 2200

executors. Figure 10b shows the CDF of total scheduling delays for different schedulers run-

ning the sleep-based Google trace tasks. Falcon achieves at least 100 times lower scheduling

delays than the next alternative. Falcon reaches a median delay of 0.14 ms, while other

scheduling alternatives achieve over 14 ms of median scheduling delays. Our Falcon-server

implementation performs poorly compared to other alternatives; a single Sparrow sched-

uler achieves a median of 40 ms while Falcon-server’s median is 370 ms. This is because

Sparrow executors request tasks only when they are probed, while Falcon-Server executors

keep polling the scheduler for tasks. Falcon executors re-send their get task request after
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waiting 50 µs when receiving a no-op task. This 50 µs wait time works for Falcon but

strains our Falcon-Server implementation.

7.5 Scheduling Overhead Breakdown

We time each step of the scheduling protocol to better understand the reason for the

difference in performance between the different systems. The protocols steps are shown

in Figures 1 and 2. Figure 11 plots the CDF breakdown of scheduling overhead for the

experiment in Figure 10a. This experiment uses floating point integer operations Google

trace tasks on a 176-executor cluster.

Figure 10a shows Falcon with 40 times lower median scheduling delays than the next

alternative and 13 times lower at the 90th percentile. Both Falcon and Sparrow achieve

similar latency at the 95th percentile. This is because of the bursty nature of the trace,

where hundreds of tasks share the same submission time. These tasks are queued for a

longer time waiting for the next free executor.
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(a) Falcon breakdown (b) Sparrow breakdown

Figure 11: Scheduling overhead breakdown. Note that the x-axis is in a different scale in

(a) and (b).

Looking at Figure 11a we see that Falcon’s queueing delay dominates its total schedul-

ing delay. 90% of Falcon ’s get task() delays are equal to the network round trip time.

Figure 11b shows that 37% of Sparrow’s scheduling delay consists of reservation delay (The

delay for the probing step in their protocol), while the rest is credited to get task() delays

and queueing delays. Looking at Sparrow’s implementation we found that it employs dif-

ferent threads for receiving tasks and for scheduling them. The threads communicate with

each other using a shared queue that is accessed using a global lock. Sparrow’s executors

also employ different threads for processing and running tasks. These threads also com-

municate with each other using a shared queue that is accessed using a global lock. This

implementation of Sparrow and the resulting thread contention adds to the get task() and

reservation delays.
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7.6 Locality-Aware Scheduling

To test our locality-based scheduling we desinged an experiments that emulates a mutli-rack

deployment. We divided our 10 worker nodes into 3 racks. Each node runs 16 executors.We

set the round trip time for intra rack communication to 20 µs and inter rack RTT to 100

µs [41]. We run a CPU-intensive synthetic locality aware workload with 100 µs tasks. The

processed data is not replicated and is evenly partitioned across the nodes. Consequently,

each task has it data local on one node in the cluster.

Figure 12: End to end latency CDF for 3:9 locality limits vs FIFO.

We run this workload with different configurations of node locality limit and

rack locality limit. Figure 12 shows the CDF of the scheduling delay with a

node locality limit of 3 and a rack locality limit of 9. This configuration sched-

ules 27.66% of the workload on their preferred nodes, 38.82% of tasks on the same rack as
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their preferred node, and the rest were on another rack. Our FIFO design placed 10.03%

of tasks on their preferred node, 24.05% on the same rack, and the last 65.94% on a dif-

ferent rack. We experiments with other values for these two limits and noticed that in all

configurations at least 49% of tasks are scheduled on the target node or rack.

Figure 12 shows the total end to end delay CDF of tasks scheduled using our locality

aware scheduler vs our FIFO scheduler. We note that FIFO has median latency of 203.87

µs while Falcon locality has a median latency of 31.35 µs. Falcon locality performs 2x

better at the 66th percentile, after that FIFO achieves lower latencies due to incurring the

same locality overhead as Falcon locality without the need to recirculate packets.
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8 Related Work

Hybrid Scheduling. Hawk [16] and Mercury [42] propose a hybrid paradigm involving

centralized scheduling for long-running jobs and decentralized scheduling for low-latency

jobs. However, they suffer the same drawbacks as their decentralized counterparts when

scheduling real-time tasks.

Streaming Systems. Numerous systems [43, 44] have been designed to tackle sub-

second tasks in the streaming environment. However, they do not target tasks in a parallel

compute environment and do not target tasks in the microsecond range.

Network-Accelerated Systems. Many recent projects have used programmable

switches to accelerate consensus protocols [33, 34, 45, 46] and implement in-network caching

[47], DNN training and inferencing [48], and in-network aggregation operations [49]. Jump-

Gate [50] proposed offloading some data analytics functions to the switch. It did not inves-

tigate supporting in-network scheduling. R2P2 [22] proposes a scheduling approach that

leverages programmable switches. However, it only supports JBSQ scheduling and does

not support a locality aware policy.

Low-Latency. Several projects have explored operating system and network stack op-

timizations for low latency workloads. These efforts include using kernel-bypass techniques

[51, 52, 37] and efficient core reallocation mechanisms [53]. These efforts are orthogonal to

ours as we explore a scheduler architecture that can support real-time analytics on large

clusters.
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9 Concluding Remarks

We present Falcon, a centralized in-network scheduler that can assign tasks to the next

available executor at line-rate and scale to process billions of requests per second. Our

evaluation shows that Falcon can reduce scheduling overheads by an order of magnitude

and achieve significantly higher throughput when compared to current state-of-the-art low-

latency schedulers. Furthermore, our evaluation shows that a single switch can save tens of

nodes in the cluster that would run schedulers under the distributed scheduling approach.

Falcon demonstrates that despite their strict programming and memory model, modern

programmable switches can be leveraged to implement complex scheduling policies.
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