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Abstract

Memory management takes a sequence of program generated allocation/deallocation requests
and attempts to satisfy them within a fixed-sized block of memory while minimizing the total
amount of memory used. A general-purpose dynamic-allocation algorithm cannot anticipate
future allocation requests so its output is rarely optimal. However, memory allocators do take
advantage of regularities in allocation patterns for typical programs to produce excellent results,
both in time and space (similar to LRU paging). In general, allocators use a number of similar
techniques, each optimizing specific allocation patterns. Nevertheless, memory allocators are a
series of compromises, occasionally with some static or dynamic tuning parameters to optimize
specific program-request patterns.

The goal of this thesis is to build a low-latency memory allocator for both kernel and user
multi-threaded systems, which is competitive with the best current memory allocators, while
extending the feature set of existing and new allocator routines. A new llheap memory-allocator
is created that achieves all of these goals, while maintaining and managing sticky allocation
properties for zero-filled and aligned allocations without a performance loss. Hence, it becomes
possible to use realloc frequently as a safe operation, rather than just occasionally, because it
preserves sticky properties when enlarging storage requests. Furthermore, the ability to query
sticky properties and information allows programmers to write safer programs, as it is possible to
dynamically match allocation styles from unknown library routines that return allocations. The C
allocation API is also extended with resize, advanced realloc, aalloc, amemalign, and cmemalign

so programmers do not make mistakes writing theses useful allocation operations. llheap is
embedded into the µC++ and C

A

runtime systems, both of which have user-level threading. The
ability to use C

A

’s advanced type-system (and possibly C++’s too) to combine advanced memory
operations into one allocation routine using named arguments shows how far the allocation API
can be pushed, which increases safety and greatly simplifies programmer’s use of dynamic allo-
cation.

The llheap allocator also provides comprehensive statistics for all allocation operations, which
are invaluable in understanding and debugging a program’s dynamic behaviour. No other memory
allocator examined in the thesis provides such comprehensive statistics gathering. As well, llheap
provides a debugging mode where allocations are checked with internal pre/post conditions and
invariants. It is extremely useful, especially for students. While not as powerful as the valgrind

interpreter, a large number of allocations mistakes are detected. Finally, contention-free statistics
gathering and debugging have a low enough cost to be used in production code.

A micro-benchmark test-suite is started for comparing allocators, rather than relying on a
suite of arbitrary programs. It has been an interesting challenge. These micro-benchmarks
have adjustment knobs to simulate allocation patterns hard-coded into arbitrary test programs.
Existing memory allocators, glibc, dlmalloc, hoard, jemalloc, ptmalloc3, rpmalloc, tbmalloc, and
the new allocator llheap are all compared using the new micro-benchmark test-suite.
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Chapter 1

Introduction

Memory management takes a sequence of program generated allocation/deallocation requests
and attempts to satisfy them within a fixed-sized block of memory while minimizing the total
amount of memory used. A general-purpose dynamic-allocation algorithm cannot anticipate
future allocation requests so its output is rarely optimal. However, memory allocators do take
advantage of regularities in allocation patterns for typical programs to produce excellent results,
both in time and space (similar to LRU paging). In general, allocators use a number of similar
techniques, each optimizing specific allocation patterns. Nevertheless, memory allocators are a
series of compromises, occasionally with some static or dynamic tuning parameters to optimize
specific program-request patterns.

1.1 Memory Structure

Figure 1.1 shows the typical layout of a program’s address space divided into the following zones
(right to left): static code/data, dynamic allocation, dynamic code/data, and stack, with free
memory surrounding the dynamic code/data [39]. Static code and data are placed into memory
at load time from the executable and are fixed-sized at runtime. Dynamic-allocation memory
starts empty and grows/shrinks as the program dynamically creates/deletes variables with inde-
pendent lifetime. The programming-language’s runtime manages this area, where management
complexity is a function of the mechanism for deleting variables. Dynamic code/data memory is
managed by the dynamic loader for libraries loaded at runtime, which is complex especially in
a multi-threaded program [21]. However, changes to the dynamic code/data space are typically
infrequent, many occurring at program startup, and are largely outside of a program’s control.
Stack memory is managed by the program call-mechanism using a simple LIFO technique, which
works well for sequential programs. For multi-threaded programs (and coroutines), a new stack is
created for each thread; these thread stacks are commonly created in dynamic-allocation memory.
This thesis focuses on management of the dynamic-allocation memory.

high address low address

Data
Code and

Static
Stack

Memory Memory

Free

Data
Code and
Dynamic Free

Allocation

Dynamic

Figure 1.1: Program Address Space Divided into Zones
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1.2 Dynamic Memory-Management

Modern programming languages manage dynamic-allocation memory in different ways. Some
languages, such as Lisp [42], Java [17], Haskell [22], Go [18], provide explicit allocation but
implicit deallocation of data through garbage collection [46]. In general, garbage collection
supports memory compaction, where dynamic (live) data is moved during runtime to better
utilize space. However, moving data requires finding pointers to it and updating them to reflect
new data locations. Programming languages such as C [26], C++ [11], and Rust [38] provide
the programmer with explicit allocation and deallocation of data. These languages cannot find
and subsequently move live data because pointers can be created to any storage zone, including
internal components of allocated objects, and may contain temporary invalid values generated by
pointer arithmetic. Attempts have been made to perform quasi garbage collection in C/C++ [6],
but it is a compromise. This thesis only examines dynamic memory-management with explicit

deallocation. While garbage collection and compaction are not part this work, many of the work’s
results are applicable to the allocation phase in any memory-management approach.

Most programs use a general-purpose allocator, often the one provided implicitly by the
programming-language’s runtime. When this allocator proves inadequate, programmers often
write specialize allocators for specific needs. C and C++ allow easy replacement of the default
memory allocator with an alternative specialized or general-purpose memory-allocator. Jikes
RVM MMTk [5] provides a similar generalization for the Java virtual machine. However,
high-performance memory-allocators for kernel and user multi-threaded programs are still being
designed and improved. For this reason, several alternative general-purpose allocators have been
written for C/C++ with the goal of scaling in a multi-threaded program [2, 33, 40, 13]. This thesis
examines the design of high-performance allocators for use by kernel and user multi-threaded
applications written in C/C++.

1.3 Contributions

This work provides the following contributions in the area of concurrent dynamic allocation:

1. Implementation of a new stand-alone concurrent low-latency memory-allocator (≈1,200 lines
of code) for C/C++ programs using kernel threads (1:1 threading), and specialized versions of
the allocator for the programming languages µC++ and C

A

using user-level threads running
over multiple kernel threads (M:N threading).

2. Extend the standard C heap functionality by preserving with each allocation:

• its request size plus the amount allocated,
• whether an allocation is zero fill,
• and allocation alignment.

3. Use the preserved zero fill and alignment as sticky properties for realloc to zero-fill and align
when storage is extended or copied. Without this extension, it is unsafe to realloc storage
initially allocated with zero-fill/alignment as these properties are not preserved when copying.
This silent generation of a problem is unintuitive to programmers and difficult to locate
because it is transient.

2



4. Provide additional heap operations to complete programmer expectation with respect to
accessing different allocation properties.

• resize( oaddr, size ) re-purpose an old allocation for a new type without preserving fill or
alignment.

• resize( oaddr, alignment, size ) re-purpose an old allocation with new alignment but
without preserving fill.

• realloc( oaddr, alignment, size ) same as realloc but adding or changing alignment.

• aalloc( dim, elemSize ) same as calloc except memory is not zero filled.

• amemalign( alignment, dim, elemSize ) same as aalloc with memory alignment.

• cmemalign( alignment, dim, elemSize ) same as calloc with memory alignment.

5. Provide additional heap wrapper functions in C

A

creating a more usable set of allocation
operations and properties.

6. Provide additional query operations to access information about an allocation:

• malloc_alignment( addr ) returns the alignment of the allocation pointed-to by addr. If the
allocation is not aligned or addr is the NULL, the minimal alignment is returned.

• malloc_zero_fill( addr ) returns a boolean result indicating if the memory pointed-to by
addr is allocated with zero fill, e.g., by calloc/cmemalign.

• malloc_size( addr ) returns the size of the memory allocation pointed-to by addr.

• malloc_usable_size( addr ) returns the usable (total) size of the memory pointed-to
by addr, i.e., the bin size containing the allocation, where malloc_size( addr ) ≤

malloc_usable_size( addr ).

7. Provide complete, fast, and contention-free allocation statistics to help understand allocation
behaviour:

• malloc_stats() print memory-allocation statistics on the file-descriptor set by
malloc_stats_fd.

• malloc_info( options, stream ) print memory-allocation statistics as an XML string on the
specified file-descriptor set by malloc_stats_fd.

• malloc_stats_fd( fd ) set file-descriptor number for printing memory-allocation statistics
(default STDERR_FILENO). This file descriptor is used implicitly by malloc_stats and
malloc_info.

8. Provide extensive runtime checks to validate allocation operations and identify the amount of
unfreed storage at program termination.

9. Build 4 different versions of the allocator:

• static or dynamic linking

• statistic/debugging (testing) or no statistic/debugging (performance)

A program may link to any of these 4 versions of the allocator often without recompilation.
(It is possible to separate statistics and debugging, giving 8 different versions.)

10. A micro-benchmark test-suite for comparing allocators rather than relying on a suite of
arbitrary programs. These micro-benchmarks have adjustment knobs to simulate allocation
patterns hard-coded into arbitrary test programs

3



Chapter 2

Background1

A program dynamically allocates and deallocates the storage for a variable, referred to as an
object, through calls such as malloc and free in C, and new and delete in C++. Space for
each allocated object comes from the dynamic-allocation zone. A memory allocator contains
a complex data-structure and code that manages the layout of objects in the dynamic-allocation
zone. The management goals are to make allocation/deallocation operations as fast as possible
while densely packing objects to make efficient use of memory. Objects in C/C++ cannot be
moved to aid the packing process, only adjacent free storage can be coalesced into larger free
areas. The allocator grows or shrinks the dynamic-allocation zone to obtain storage for objects
and reduce memory usage via operating-system calls, such as mmap or sbrk in UNIX.

2.1 Allocator Components

Figure 2.1 shows the two important data components for a memory allocator, management and
storage, collectively called the heap. The management data is a data structure located at a known
memory address and contains all information necessary to manage the storage data. The manage-
ment data starts with fixed-sized information in the static-data memory that references compo-
nents in the dynamic-allocation memory. The storage data is composed of allocated and freed
objects, and reserved memory. Allocated objects (light grey) are variable sized, and are allocated
and maintained by the program; i.e., only the memory allocator knows the location of allocated
storage, not the program. Freed objects (white) represent memory deallocated by the program,
which are linked into one or more lists facilitating easy location of new allocations. Often the
free list is chained internally so it does not consume additional storage, i.e., the link fields are
placed at known locations in the unused memory blocks. Reserved memory (dark grey) is one or
more blocks of memory obtained from the operating system but not yet allocated to the program;
if there are multiple reserved blocks, they are also chained together, usually internally.

In some allocator designs, allocated and freed objects have additional management data
embedded within them. Figure 2.2 shows an allocated object with a header, trailer, and alignment
padding and spacing around the object. The header contains information about the object, e.g.,
size, type, etc. The trailer may be used to simplify an allocation implementation, e.g., coalescing,
and/or for security purposes to mark the end of an object. An object may be preceded by padding

1Part of this chapter draws from similar background work in [45] with many updates.
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to ensure proper alignment. Some algorithms quantize allocation requests into distinct sizes,
called buckets, resulting in additional spacing after objects less than the quantized value. (Note,
the buckets are often organized as an array of ascending bucket sizes for fast searching, e.g.,
binary search, and the array is stored in the heap management-area, where each bucket is a top
point to the freed objects of that size.) When padding and spacing are necessary, neither can
be used to satisfy a future allocation request while the current allocation exists. A free object
also contains management data, e.g., size, chaining, etc. The amount of management data for a
free node defines the minimum allocation size, e.g., if 16 bytes are needed for a free-list node,
any allocation request less than 16 bytes must be rounded up, otherwise the free list cannot use
internal chaining. The information in an allocated or freed object is overwritten when it transi-
tions from allocated to freed and vice-versa by new management information and possibly data.

2.2 Single-Threaded Memory-Allocator

A single-threaded memory-allocator does not run any threads itself, but is used by a single-
threaded program. Because the memory allocator is only executed by a single thread, concur-
rency issues do not exist. The primary issues in designing a single-threaded memory-allocator
are fragmentation and locality.

2.2.1 Fragmentation

Fragmentation is memory requested from the operating system but not used by the program;
hence, allocated objects are not fragmentation. Figure 2.3 shows fragmentation is divided into
two forms: internal or external.

Internal fragmentation is memory space that is allocated to the program, but is not intended to
be accessed by the program, such as headers, trailers, padding, and spacing around an allocated
object. This memory is typically used by the allocator for management purposes or required
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by the architecture for correctness, e.g., alignment. Internal fragmentation is problematic when
management space is a significant proportion of an allocated object. For example, if internal
fragmentation is as large as the object being managed, then the memory usage for that object is
doubled. An allocator should strive to keep internal management information to a minimum.

External fragmentation is all memory space reserved from the operating system but not allo-
cated to the program [47, 31, 41], which includes all external management data, freed objects,
and reserved memory. This memory is problematic in two ways: heap blowup and highly frag-
mented memory. Heap blowup occurs when memory freed by the program is not reused for
future allocations leading to potentially unbounded external fragmentation growth [2]. Heap
blowup can occur due to allocator policies that are too restrictive in reusing freed memory and/or
no coalescing of free storage. Memory can become highly fragmented after multiple allocations
and deallocations of objects. Figure 2.4 shows an example of how a small block of memory frag-
ments as objects are allocated and deallocated over time. Blocks of free memory become smaller
and non-contiguous making them less useful in serving allocation requests. Memory is highly
fragmented when most free blocks are unusable because of their sizes. For example, Figure 2.5(a)
and Figure 2.5(b) have the same quantity of external fragmentation, but Figure 2.5(b) is highly
fragmented. If there is a request to allocate a large object, Figure 2.5(a) is more likely to be able
to satisfy it with existing free memory, while Figure 2.5(b) likely has to request more memory
from the operating system.

6



For a single-threaded memory allocator, three basic approaches for controlling fragmentation
are identified [25]. The first approach is a sequential-fit algorithm with one list of free objects
that is searched for a block large enough to fit a requested object size. Different search poli-
cies determine the free object selected, e.g., the first free object large enough or closest to the
requested size. Any storage larger than the request can become spacing after the object or be
split into a smaller free object. The cost of the search depends on the shape and quality of the
free list, e.g., a linear versus a binary-tree free-list, a sorted versus unsorted free-list.

The second approach is a segregated or binning algorithm with a set of lists for different
sized freed objects. When an object is allocated, the requested size is rounded up to the nearest
bin-size, often leading to spacing after the object. A binning algorithm is fast at finding free
memory of the appropriate size and allocating it, since the first free object on the free list is used.
The fewer bin-sizes, the fewer lists need to be searched and maintained; however, the bin sizes
are less likely to closely fit the requested object size, leading to more internal fragmentation. The
more bin sizes, the longer the search and the less likely free objects are to be reused, leading to
more external fragmentation and potentially heap blowup. A variation of the binning algorithm
allows objects to be allocated to the requested size, but when an object is freed, it is placed on
the free list of the next smallest or equal bin-size. For example, with bin sizes of 8 and 16 bytes,
a request for 12 bytes allocates only 12 bytes, but when the object is freed, it is placed on the 8-
byte bin-list. For subsequent requests, the bin free-lists contain objects of different sizes, ranging
from one bin-size to the next (8-16 in this example), and a sequential-fit algorithm may be used
to find an object large enough for the requested size on the associated bin list.

The third approach is splitting and coalescing algorithms. When an object is allocated, if
there are no free objects of the requested size, a larger free object may be split into two smaller
objects to satisfy the allocation request without obtaining more memory from the operating
system. For example, in the buddy system, a block of free memory is split into two equal
chunks, one of those chunks is again split into two equal chunks, and so on until a block just
large enough to fit the requested object is created. When an object is deallocated it is coalesced
with the objects immediately before and after it in memory, if they are free, turning them into one
larger object. Coalescing can be done eagerly at each deallocation or lazily when an allocation
cannot be fulfilled. In all cases, coalescing increases allocation latency, hence some alloca-
tions can cause unbounded delays during coalescing. While coalescing does not reduce external
fragmentation, the coalesced blocks improve fragmentation quality so future allocations are less
likely to cause heap blowup. Splitting and coalescing can be used with other algorithms to avoid
highly fragmented memory.

2.2.2 Locality

The principle of locality recognizes that programs tend to reference a small set of data, called
a working set, for a certain period of time, where a working set is composed of temporal and
spatial accesses [7]. Temporal clustering implies a group of objects are accessed repeatedly
within a short time period, while spatial clustering implies a group of objects physically close
together (nearby addresses) are accessed repeatedly within a short time period. Temporal locality
commonly occurs during an iterative computation with a fixed set of disjoint variables, while
spatial locality commonly occurs when traversing an array.
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Hardware takes advantage of temporal and spatial locality through multiple levels of caching,
i.e., memory hierarchy. When an object is accessed, the memory physically located around the
object is also cached with the expectation that the current and nearby objects will be referenced
within a short period of time. For example, entire cache lines are transferred between memory
and cache and entire virtual-memory pages are transferred between disk and memory. A program
exhibiting good locality has better performance due to fewer cache misses and page faults2.

Temporal locality is largely controlled by how a program accesses its variables [12]. Never-
theless, a memory allocator can have some indirect influence on temporal locality and largely
dictates spatial locality. For temporal locality, an allocator can return storage for new alloca-
tions that was just freed as these memory locations are still warm in the memory hierarchy.
For spatial locality, an allocator can place objects used together close together in memory, so
the working set of the program fits into the fewest possible cache lines and pages. However,
usage patterns are different for every program as is the underlying hardware memory architec-
ture; hence, no general-purpose memory-allocator can provide ideal locality for every program
on every computer.

There are a number of ways a memory allocator can degrade locality by increasing the
working set. For example, a memory allocator may access multiple free objects before finding
one to satisfy an allocation request, e.g., sequential-fit algorithm. If there are a (large) number
of objects accessed in very different areas of memory, the allocator may perturb the program’s
memory hierarchy causing multiple cache or page misses [19]. Another way locality can be
degraded is by spatially separating related data. For example, in a binning allocator, objects of
different sizes are allocated from different bins that may be located in different pages of memory.

2.3 Multi-Threaded Memory-Allocator

A multi-threaded memory-allocator does not run any threads itself, but is used by a multi-
threaded program. In addition to single-threaded design issues of fragmentation and locality,
a multi-threaded allocator is simultaneously accessed by multiple threads, and hence, must deal
with concurrency issues such as mutual exclusion, false sharing, and additional forms of heap
blowup.

2.3.1 Mutual Exclusion

Mutual exclusion provides sequential access to the shared management data of the heap. There
are two performance issues for mutual exclusion. First is the overhead necessary to perform (at
least) a hardware atomic operation every time a shared resource is accessed. Second is when
multiple threads contend for a shared resource simultaneously, and hence, some threads must
wait until the resource is released. Contention can be reduced in a number of ways:

• using multiple fine-grained locks versus a single lock, spreading the contention across a
number of locks;

2With the advent of large RAM memory, paging is becoming less of an issue in modern programming.
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• using trylock and generating new storage if the lock is busy, yielding a classic space versus
time tradeoff;

• using one of the many lock-free approaches for reducing contention on basic data-structure
operations [37].

However, all of these approaches have degenerate cases where program contention is high, which
occurs outside of the allocator.

2.3.2 False Sharing

False sharing is a dynamic phenomenon leading to cache thrashing. When two or more threads
on separate CPUs simultaneously change different objects sharing a cache line, the change inval-
idates the other thread’s associated cache, even though these threads may be uninterested in
the other modified object. False sharing can occur in three different ways: program induced,
allocator-induced active, and allocator-induced passive; a memory allocator can only affect the
latter two.

Program-induced false-sharing occurs when one thread passes an object sharing a cache line
to another thread, and both threads modify the respective objects. Figure 2.6(a) shows when
Thread1 passes Object2 to Thread2, a false-sharing situation forms when Thread1 modifies
Object1 and Thread2 modifies Object2. Changes to Object1 invalidate CPU2’s cache line, and
changes to Object2 invalidate CPU1’s cache line.

Allocator-induced active false-sharing occurs when objects are allocated within the same
cache line but to different threads. For example, in Figure 2.6(b), each thread allocates an object
and loads a cache-line of memory into its associated cache. Again, changes to Object1 invalidate
CPU2’s cache line, and changes to Object2 invalidate CPU1’s cache line.

Allocator-induced passive false-sharing is another form of allocator-induced false-sharing
caused by program-induced false-sharing. When an object in a program-induced false-sharing
situation is deallocated, a future allocation of that object may cause passive false-sharing. For
example, in Figure 2.6(c), Thread1 passes Object2 to Thread2, and Thread2 subsequently deal-
locates Object2. Allocator-induced passive false-sharing occurs when Object2 is reallocated to
Thread2 while Thread1 is still using Object1.

2.3.3 Heap Blowup

In a multi-threaded program, heap blowup can occur when memory freed by one thread is inac-
cessible to other threads due to the allocation strategy. Specific examples are presented in later
sections.
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Figure 2.6: False Sharing

2.4 Multi-Threaded Memory-Allocator Features

The following features are used in the construction of multi-threaded memory-allocators:

1. multiple heaps

a) with or without a global heap
b) with or without ownership

2. object containers

a) with or without ownership
b) fixed or variable sized
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Figure 2.7: Multiple Heaps, Thread:Heap Relationship

c) global or local free-lists

3. hybrid private/public heap
4. allocation buffer
5. lock-free operations

The first feature, multiple heaps, pertains to different kinds of heaps. The second feature, object
containers, pertains to the organization of objects within the storage area. The remaining features
apply to different parts of the allocator design or implementation.

2.5 Multiple Heaps

A multi-threaded allocator has potentially multiple threads and heaps. The multiple threads
cause complexity, and multiple heaps are a mechanism for dealing with the complexity. The
spectrum ranges from multiple threads using a single heap, denoted as T:1 (see Figure 2.7(a)),
to multiple threads sharing multiple heaps, denoted as T:H (see Figure 2.7(b)), to one thread per
heap, denoted as 1:1 (see Figure 2.7(c)), which is almost back to a single-threaded allocator.

T:1 model where all threads allocate and deallocate objects from one heap. Memory is
obtained from the freed objects, or reserved memory in the heap, or from the operating system
(OS); the heap may also return freed memory to the operating system. The arrows indicate the
direction memory conceptually moves for each kind of operation: allocation moves memory
along the path from the heap/operating-system to the user application, while deallocation moves
memory along the path from the application back to the heap/operating-system. To safely handle
concurrency, a single heap uses locking to provide mutual exclusion. Whether using a single
lock for all heap operations or fine-grained locking for different operations, a single heap may be
a significant source of contention for programs with a large amount of memory allocation.

T:H model where each thread allocates storage from several heaps depending on certain
criteria, with the goal of reducing contention by spreading allocations/deallocations across the
heaps. The decision on when to create a new heap and which heap a thread allocates from
depends on the allocator design. The performance goal is to reduce the ratio of heaps to threads.
In general, locking is required, since more than one thread may concurrently access a heap during
its lifetime, but contention is reduced because fewer threads access a specific heap.

For example, multiple heaps are managed in a pool, starting with a single or a fixed number
of heaps that increase/decrease depending on contention/space issues. At creation, a thread is
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associated with a heap from the pool. In some implementations of this model, when the thread
attempts an allocation and its associated heap is locked (contention), it scans for an unlocked
heap in the pool. If an unlocked heap is found, the thread changes its association and uses that
heap. If all heaps are locked, the thread may create a new heap, use it, and then place the new
heap into the pool; or the thread can block waiting for a heap to become available. While the
heap-pool approach often minimizes the number of extant heaps, the worse case can result in
more heaps than threads; e.g., if the number of threads is large at startup with many allocations
creating a large number of heaps and then the number of threads reduces.

Threads using multiple heaps need to determine the specific heap to access for an alloca-
tion/deallocation, i.e., association of thread to heap. A number of techniques are used to estab-
lish this association. The simplest approach is for each thread to have a pointer to its associated
heap (or to administrative information that points to the heap), and this pointer changes if the
association changes. For threading systems with thread-local storage, the heap pointer is created
using this mechanism; otherwise, the heap routines must simulate thread-local storage using
approaches like hashing the thread’s stack-pointer or thread-id to find its associated heap.

The storage management for multiple heaps is more complex than for a single heap (see
Figure 2.1, p. 5). Figure 2.8 illustrates the general storage layout for multiple heaps. Allocated
and free objects are labelled by the thread or heap they are associated with. (Links between free
objects are removed for simplicity.) The management information in the static zone must be
able to locate all heaps in the dynamic zone. The management information for the heaps must
reside in the dynamic-allocation zone if there are a variable number. Each heap in the dynamic
zone is composed of a list of free objects and a pointer to its reserved memory. An alternative
implementation is for all heaps to share one reserved memory, which requires a separate lock for
the reserved storage to ensure mutual exclusion when acquiring new memory. Because multiple
threads can allocate/free/reallocate adjacent storage, all forms of false sharing may occur. Other
storage-management options are to use mmap to set aside (large) areas of virtual memory for each
heap and suballocate each heap’s storage within that area, pushing part of the storage manage-
ment complexity back to the operating system.

Multiple heaps increase external fragmentation as the ratio of heaps to threads increases,
which can lead to heap blowup. The external fragmentation experienced by a program with a
single heap is now multiplied by the number of heaps, since each heap manages its own free
storage and allocates its own reserved memory. Additionally, objects freed by one heap cannot
be reused by other threads without increasing the cost of the memory operations, except indi-
rectly by returning free memory to the operating system, which can be expensive. Depending
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on how the operating system provides dynamic storage to an application, returning storage may
be difficult or impossible, e.g., the contiguous sbrk area in Unix. In the worst case, a program
in which objects are allocated from one heap but deallocated to another heap means these freed
objects are never reused.

Adding a global heap (G) attempts to reduce the cost of obtaining/returning memory among
heaps (sharing) by buffering storage within the application address-space. Now, each heap
obtains and returns storage to/from the global heap rather than the operating system. Storage
is obtained from the global heap only when a heap allocation cannot be fulfilled, and returned to
the global heap when a heap’s free memory exceeds some threshold. Similarly, the global heap
buffers this memory, obtaining and returning storage to/from the operating system as necessary.
The global heap does not have its own thread and makes no internal allocation requests; instead,
it uses the application thread, which called one of the multiple heaps and then the global heap,
to perform operations. Hence, the worst-case cost of a memory operation includes all these
steps. With respect to heap blowup, the global heap provides an indirect mechanism to move
free memory among heaps, which usually has a much lower cost than interacting with the oper-
ating system to achieve the same goal and is independent of the mechanism used by the operating
system to present dynamic memory to an address space.

However, since any thread may indirectly perform a memory operation on the global heap, it
is a shared resource that requires locking. A single lock can be used to protect the global heap or
fine-grained locking can be used to reduce contention. In general, the cost is minimal since the
majority of memory operations are completed without the use of the global heap.

1:1 model (thread heaps) where each thread has its own heap eliminating most contention and
locking because threads seldom access another thread’s heap (see ownership in Section 2.5.2).
An additional benefit of thread heaps is improved locality due to better memory layout. As each
thread only allocates from its heap, all objects for a thread are consolidated in the storage area
for that heap, better utilizing each CPUs cache and accessing fewer pages. In contrast, the T:H
model spreads each thread’s objects over a larger area in different heaps. Thread heaps can also
eliminate allocator-induced active false-sharing, if memory is acquired so it does not overlap at
crucial boundaries with memory for another thread’s heap. For example, assume page boundaries
coincide with cache line boundaries, if a thread heap always acquires pages of memory then no
two threads share a page or cache line unless pointers are passed among them. Hence, allocator-
induced active false-sharing in Figure 2.6(b), p. 10 cannot occur because the memory for thread
heaps never overlaps.

When a thread terminates, there are two options for handling its thread heap. First is to free
all objects in the thread heap to the global heap and destroy the thread heap. Second is to place
the thread heap on a list of available heaps and reuse it for a new thread in the future. Destroying
the thread heap immediately may reduce external fragmentation sooner, since all free objects are
freed to the global heap and may be reused by other threads. Alternatively, reusing thread heaps
may improve performance if the inheriting thread makes similar allocation requests as the thread
that previously held the thread heap because any unfreed storage is immediately accessible.
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2.5.1 User-Level Threading

It is possible to use any of the heap models with user-level (M:N) threading. However, an impor-
tant goal of user-level threading is for fast operations (creation/termination/context-switching)
by not interacting with the operating system, which allows the ability to create large numbers
of high-performance interacting threads (> 10,000). It is difficult to retain this goal, if the user-
threading model is directly involved with the heap model. Figure 2.9 shows that virtually all
user-level threading systems use whatever kernel-level heap-model is provided by the language
runtime. Hence, a user thread allocates/deallocates from/to the heap of the kernel thread on
which it is currently executing.

Adopting this model results in a subtle problem with shared heaps. With kernel threading,
an operation that is started by a kernel thread is always completed by that thread. For example,
if a kernel thread starts an allocation/deallocation on a shared heap, it always completes that
operation with that heap even if preempted, i.e., any locking correctness associated with the
shared heap is preserved across preemption.

However, this correctness property is not preserved for user-level threading. A user thread
can start an allocation/deallocation on one kernel thread, be preempted (time slice), and continue
running on a different kernel thread to complete the operation [10]. When the user thread
continues on the new kernel thread, it may have pointers into the previous kernel-thread’s heap
and hold locks associated with it. To get the same kernel-thread safety, time slicing must be
disabled/enabled around these operations, so the user thread cannot jump to another kernel
thread. However, eagerly disabling/enabling time-slicing on the allocation/deallocation fast path
is expensive, because preemption does not happen that frequently. Instead, techniques exist to
lazily detect this case in the interrupt handler, abort the preemption, and return to the opera-
tion so it can complete atomically. Occasionally ignoring a preemption should be benign, but a
persistent lack of preemption can result in both short and long term starvation.

2.5.2 Ownership

Ownership defines which heap an object is returned-to on deallocation. If a thread returns an
object to the heap it was originally allocated from, a heap has ownership of its objects. Alter-
natively, a thread can return an object to the heap it is currently associated with, which can be
any heap accessible during a thread’s lifetime. Figure 2.10 shows an example of multiple heaps
(minus the global heap) with and without ownership. Again, the arrows indicate the direction
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Figure 2.11: Multiple-Heap Storage with Ownership

memory conceptually moves for each kind of operation. For the 1:1 thread:heap relationship,
a thread only allocates from its own heap, and without ownership, a thread only frees objects
to its own heap, which means the heap is private to its owner thread and does not require any
locking, called a private heap. For the T:1/T:H models with or without ownership or the 1:1
model with ownership, a thread may free objects to different heaps, which makes each heap
publicly accessible to all threads, called a public heap.

Figure 2.11 shows the effect of ownership on storage layout. (For simplicity, assume the
heaps all use the same size of reserves storage.) In contrast to Figure 2.8, p. 12, each reserved
area used by a heap only contains free storage for that particular heap because threads must return
free objects back to the owner heap. Again, because multiple threads can allocate/free/reallocate
adjacent storage in the same heap, all forms of false sharing may occur. The exception is for the
1:1 model if reserved memory does not overlap a cache-line because all allocated storage within
a used area is associated with a single thread. In this case, there is no allocator-induced active
false-sharing (see Figure 2.6(b), p. 10) because two adjacent allocated objects used by different
threads cannot share a cache-line. As well, there is no allocator-induced passive false-sharing
(see Figure 2.6(b), p. 10) because two adjacent allocated objects used by different threads cannot
occur because free objects are returned to the owner heap.

The main advantage of ownership is preventing heap blowup by returning storage for reuse by
the owner heap. Ownership prevents the classical problem where one thread performs allocations
from one heap, passes the object to another thread, and the receiving thread deallocates the object
to another heap, hence draining the initial heap of storage. As well, allocator-induced passive
false-sharing is eliminated because returning an object to its owner heap means it can never be
allocated to another thread. For example, in Figure 2.6(c), p. 10, the deallocation by Thread2
returns Object2 back to Thread1’s heap; hence a subsequent allocation by Thread2 cannot return
this storage. The disadvantage of ownership is deallocating to another thread’s heap so heaps are
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no longer private and require locks to provide safe concurrent access.

Object ownership can be immediate or delayed, meaning free objects may be batched on a
separate free list either by the returning or receiving thread. While the returning thread can batch
objects, batching across multiple heaps is complex and there is no obvious time when to push
back to the owner heap. It is better for returning threads to immediately return to the receiving
thread’s batch list as the receiving thread has better knowledge when to incorporate the batch list
into its free pool. Batching leverages the fact that most allocation patterns use the contention-free
fast-path, so locking on the batch list is rare for both the returning and receiving threads.

It is possible for heaps to steal objects rather than return them and then reallocate these objects
again when storage runs out on a heap. However, stealing can result in passive false-sharing. For
example, in Figure 2.6(c), p. 10, Object2 may be deallocated to Thread2’s heap initially. If
Thread2 reallocates Object2 before it is returned to its owner heap, then passive false-sharing
may occur.

2.6 Object Containers

Bracketing every allocation with headers/trailers can result in significant internal fragmentation,
as shown in Figure 2.12(a). Especially if the headers contain redundant management information,
then storing that information is a waste of storage, e.g., object size may be the same for many
objects because programs only allocate a small set of object sizes. As well, it can result in
poor cache usage, since only a portion of the cache line is holding useful information from
the program’s perspective. Spatial locality can also be negatively affected leading to poor cache
locality [12]: while the header and object are together in memory, they are generally not accessed
together; e.g., the object is accessed by the program when it is allocated, while the header is
accessed by the allocator when the object is free.

An alternative approach factors common header/trailer information to a separate location in
memory and organizes associated free storage into blocks called object containers (superblocks

in [2]), as in Figure 2.12(b). The header for the container holds information necessary for all
objects in the container; a trailer may also be used at the end of the container. Similar to the
approach described for thread heaps in Section 2.5, p. 11, if container boundaries do not overlap
with memory of another container at crucial boundaries and all objects in a container are allo-
cated to the same thread, allocator-induced active false-sharing is avoided.

The difficulty with object containers lies in finding the object header/trailer given only the
object address, since that is normally the only information passed to the deallocation operation.
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One way to do this is to start containers on aligned addresses in memory, then truncate the
lower bits of the object address to obtain the header address (or round up and subtract the trailer
size to obtain the trailer address). For example, if an object at address 0xFC28 EF08 is freed
and containers are aligned on 64 KB (0x0001 0000) addresses, then the container header is at
0xFC28 0000.

Normally, a container has homogeneous objects of fixed size, with fixed information in the
header that applies to all container objects (e.g., object size and ownership). This approach
greatly reduces internal fragmentation since far fewer headers are required, and potentially
increases spatial locality as a cache line or page holds more objects since the objects are closer
together due to the lack of headers. However, although similar objects are close spatially within
the same container, different sized objects are further apart in separate containers. Depending
on the program, this may or may not improve locality. If the program uses several objects from
a small number of containers in its working set, then locality is improved since fewer cache
lines and pages are required. If the program uses many containers, there is poor locality, as both
caching and paging increase. Another drawback is that external fragmentation may be increased
since containers reserve space for objects that may never be allocated by the program, i.e., there
are often multiple containers for each size only partially full. However, external fragmentation
can be reduced by using small containers.

Containers with heterogeneous objects implies different headers describing them, which
complicates the problem of locating a specific header solely by an address. A couple of solu-
tions can be used to implement containers with heterogeneous objects. However, the problem
with allowing objects of different sizes is that the number of objects, and therefore headers, in
a single container is unpredictable. One solution allocates headers at one end of the container,
while allocating objects from the other end of the container; when the headers meet the objects,
the container is full. Freed objects cannot be split or coalesced since this causes the number of
headers to change. The difficulty in this strategy remains in finding the header for a specific
object; in general, a search is necessary to find the object’s header among the container headers.
A second solution combines the use of container headers and individual object headers. Each
object header stores the object’s heterogeneous information, such as its size, while the container
header stores the homogeneous information, such as the owner when using ownership. This
approach allows containers to hold different types of objects, but does not completely separate
headers from objects. The benefit of the container in this case is to reduce some redundant
information that is factored into the container header.

In summary, object containers trade off internal fragmentation for external fragmentation by
isolating common administration information to remove/reduce internal fragmentation, but at the
cost of external fragmentation as some portion of a container may not be used and this portion
is unusable for other kinds of allocations. A consequence of this tradeoff is its effect on spatial
locality, which can produce positive or negative results depending on program access-patterns.

2.6.1 Container Ownership

Without ownership, objects in a container are deallocated to the heap currently associated with
the thread that frees the object. Thus, different objects in a container may be on different heap
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Figure 2.13: Free-list Structure with Container Ownership

free-lists (see Figure 2.13(a)). With ownership, all objects in a container belong to the same heap
(see Figure 2.13(b)), so ownership of an object is determined by the container owner. If multiple
threads can allocate/free/reallocate adjacent storage in the same heap, all forms of false sharing
may occur. Only with the 1:1 model and ownership is active and passive false-sharing avoided
(see Section 2.5.2, p. 14). Passive false-sharing may still occur, if delayed ownership is used.
Finally, a completely free container can become reserved storage and be reset to allocate objects
of a new size or freed to the global heap.

When a container changes ownership, the ownership of all objects within it change as well.
Moving a container involves moving all objects on the heap’s free-list in that container to the new
owner. This approach can reduce contention for the global heap, since each request for objects
from the global heap returns a container rather than individual objects.

Additional restrictions may be applied to the movement of containers to prevent active false-
sharing. For example, in Figure 2.14(a), a container being used by Thread1 changes owner-
ship, through the global heap. In Figure 2.14(b), when Thread2 allocates an object from the
newly acquired container it is actively false-sharing even though no objects are passed among
threads. Note, once the object is freed by Thread1, no more false sharing can occur until the
container changes ownership again. To prevent this form of false sharing, container movement
may be restricted to when all objects in the container are free. One implementation approach
that increases the freedom to return a free container to the operating system involves allocating
containers using a call like mmap, which allows memory at an arbitrary address to be returned
versus only storage at the end of the contiguous sbrk area, again pushing storage management
complexity back to the operating system.

Using containers with ownership increases external fragmentation since a new container for
a requested object size must be allocated separately for each thread requesting it. In Figure 2.15,
using object ownership allocates 80% more space than without ownership.
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Figure 2.15: External Fragmentation with Container Ownership

2.6.2 Container Size

One way to control the external fragmentation caused by allocating a large container for a small
number of requested objects is to vary the size of the container. As described earlier, container
boundaries need to be aligned on addresses that are a power of two to allow easy location of the
header (by truncating lower bits). Aligning containers in this manner also determines the size of
the container. However, the size of the container has different implications for the allocator.

The larger the container, the fewer containers are needed, and hence, the fewer headers need
to be maintained in memory, improving both internal fragmentation and potentially performance.
However, with more objects in a container, there may be more objects that are unallocated,
increasing external fragmentation. With smaller containers, not only are there more containers,
but a second new problem arises where objects are larger than the container. In general, large
objects, e.g., greater than 64 KB, are allocated directly from the operating system and are returned
immediately to the operating system to reduce long-term external fragmentation. If the container
size is small, e.g., 1 KB, then a 1.5 KB object is treated as a large object, which is likely to be
inappropriate. Ideally, it is best to use smaller containers for smaller objects, and larger containers
for medium objects, which leads to the issue of locating the container header.

In order to find the container header when using different sized containers, a super container
is used (see Figure 2.16). The super container spans several containers, contains a header with
information for finding each container header, and starts on an aligned address. Super-container
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headers are found using the same method used to find container headers by dropping the lower
bits of an object address. The containers within a super container may be different sizes or all
the same size. If the containers in the super container are different sizes, then the super-container
header must be searched to determine the specific container for an object given its address. If all
containers in the super container are the same size, e.g., 16KB, then a specific container header
can be found by a simple calculation. The free space at the end of a super container is used to
allocate new containers.

Minimal internal and external fragmentation is achieved by having as few containers as
possible, each being as full as possible. It is also possible to achieve additional benefit by using
larger containers for popular small sizes, as it reduces the number of containers with associated
headers. However, this approach assumes it is possible for an allocator to determine in advance
which sizes are popular. Keeping statistics on requested sizes allows the allocator to make a
dynamic decision about which sizes are popular. For example, after receiving a number of allo-
cation requests for a particular size, that size is considered a popular request size and larger
containers are allocated for that size. If the decision is incorrect, larger containers than necessary
are allocated that remain mostly unused. A programmer may be able to inform the allocator
about popular object sizes, using a mechanism like mallopt, in order to select an appropriate
container size for each object size.

2.6.3 Container Free-Lists

The container header allows an alternate approach for managing the heap’s free-list. Rather than
maintain a global free-list throughout the heap (see Figure 2.17(a)), the containers are linked
through their headers and only the local free objects within a container are linked together
(see Figure 2.17(b)). Note, maintaining free lists within a container assumes all free objects
in the container are associated with the same heap; thus, this approach only applies to containers
with ownership.

This alternate free-list approach can greatly reduce the complexity of moving all freed objects
belonging to a container to another heap. To move a container using a global free-list, as in
Figure 2.17(a), the free list is first searched to find all objects within the container. Each object
is then removed from the free list and linked together to form a local free-list for the move to
the new heap. With local free-lists in containers, as in Figure 2.17(b), the container is simply
removed from one heap’s free list and placed on the new heap’s free list. Thus, when using local
free-lists, the operation of moving containers is reduced from O(N) to O(1). However, there is
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the additional storage cost in the header, which increases the header size, and therefore internal
fragmentation.

When all objects in the container are the same size, a single free-list is sufficient. However,
when objects in the container are different size, the header needs a free list for each size class
when using a binning allocation algorithm, which can be a significant increase in the container-
header size. The alternative is to use a different allocation algorithm with a single free-list, such
as a sequential-fit allocation-algorithm.

2.6.4 Hybrid Private/Public Heap

Section 2.5.2, p. 14 discusses advantages and disadvantages of public heaps (T:H model and
with ownership) and private heaps (thread heaps with ownership). For thread heaps with owner-
ship, it is possible to combine these approaches into a hybrid approach with both private and
public heaps (see Figure 2.18). The main goal of the hybrid approach is to eliminate locking on
thread-local allocation/deallocation, while providing ownership to prevent heap blowup. In the
hybrid approach, a thread first allocates from its private heap and second from its public heap if
no free memory exists in the private heap. Similarly, a thread first deallocates an object to its
private heap, and second to the public heap. Both private and public heaps can allocate/deal-
locate to/from the global heap if there is no free memory or excess free memory, although an
implementation may choose to funnel all interaction with the global heap through one of the
heaps. Note, deallocation from the private to the public (dashed line) is unlikely because there
is no obvious advantages unless the public heap provides the only interface to the global heap.
Finally, when a thread frees an object it does not own, the object is either freed immediately to
its owner’s public heap or put in the freeing thread’s private heap for delayed ownership, which
allows the freeing thread to temporarily reuse an object before returning it to its owner or batch
objects for an owner heap into a single return.

As mentioned, an implementation may have only one heap interact with the global heap,
so the other heap can be simplified. For example, if only the private heap interacts with the
global heap, the public heap can be reduced to a lock-protected free-list of objects deallocated by
other threads due to ownership, called a remote free-list. To avoid heap blowup, the private heap
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allocates from the remote free-list when it reaches some threshold or it has no free storage. Since
the remote free-list is occasionally cleared during an allocation, this adds to that cost. Clearing
the remote free-list is O(1) if the list can simply be added to the end of the private-heap’s free-list,
or O(N) if some action must be performed for each freed object.

If only the public heap interacts with other threads and the global heap, the private heap can
handle thread-local allocations and deallocations without locking. In this scenario, the private
heap must deallocate storage after reaching a certain threshold to the public heap (and then
eventually to the global heap from the public heap) or heap blowup can occur. If the public heap
does the major management, the private heap can be simplified to provide high-performance
thread-local allocations and deallocations.

The main disadvantage of each thread having both a private and public heap is the complexity
of managing two heaps and their interactions in an allocator. Interestingly, heap implementations
often focus on either a private or public heap, giving the impression a single versus a hybrid
approach is being used. In many case, the hybrid approach is actually being used, but the simpler
heap is just folded into the complex heap, even though the operations logically belong in separate
heaps. For example, a remote free-list is actually a simple public-heap, but may be implemented
as an integral component of the complex private-heap in an allocator, masking the presence of a
hybrid approach.

2.7 Allocation Buffer

An allocation buffer is reserved memory (see Section 2.1, p. 4) not yet allocated to the program,
and is used for allocating objects when the free list is empty. That is, rather than requesting
new storage for a single object, an entire buffer is requested from which multiple objects are
allocated later. Any heap may use an allocation buffer, resulting in allocation from the buffer
before requesting objects (containers) from the global heap or operating system, respectively.
The allocation buffer reduces contention and the number of global/operating-system calls. For
coalescing, a buffer is split into smaller objects by allocations, and recomposed into larger buffer
areas during deallocations.
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Allocation buffers are useful initially when there are no freed objects in a heap because many
allocations usually occur when a thread starts (simple bump allocation). Furthermore, to prevent
heap blowup, objects should be reused before allocating a new allocation buffer. Thus, allocation
buffers are often allocated more frequently at program/thread start, and then allocations often
diminish.

Using an allocation buffer with a thread heap avoids active false-sharing, since all objects
in the allocation buffer are allocated to the same thread. For example, if all objects sharing a
cache line come from the same allocation buffer, then these objects are allocated to the same
thread, avoiding active false-sharing. Active false-sharing may still occur if objects are freed to
the global heap and reused by another heap.

Allocation buffers may increase external fragmentation, since some memory in the alloca-
tion buffer may never be allocated. A smaller allocation buffer reduces the amount of external
fragmentation, but increases the number of calls to the global heap or operating system. The
allocation buffer also slightly increases internal fragmentation, since a pointer is necessary to
locate the next free object in the buffer.

The unused part of a container, neither allocated or freed, is an allocation buffer. For example,
when a container is created, rather than placing all objects within the container on the free list,
the objects form an allocation buffer and are allocated from the buffer as allocation requests are
made. This lazy method of constructing objects is beneficial in terms of paging and caching.
For example, although an entire container, possibly spanning several pages, is allocated from the
operating system, only a small part of the container is used in the working set of the allocator,
reducing the number of pages and cache lines that are brought into higher levels of cache.

2.8 Lock-Free Operations

A lock-free algorithm guarantees safe concurrent-access to a data structure, so that at least one
thread makes progress, but an individual thread has no execution bound and may starve [20,
pp. 745–746]. (A wait-free algorithm puts a bound on the number of steps any thread takes to
complete an operation to prevent starvation.) Lock-free operations can be used in an allocator to
reduce or eliminate the use of locks. While locks and lock-free data-structures often have equal
performance, lock-free has the advantage of not holding a lock across preemption so other threads
can continue to make progress. With respect to the heap, these situations are unlikely unless all
threads make extremely high use of dynamic-memory allocation, which can be an indication of
poor design. Nevertheless, lock-free algorithms can reduce the number of context switches, since
a thread does not yield/block while waiting for a lock; on the other hand, a thread may busy-wait
for an unbounded period holding a processor. Finally, lock-free implementations have greater
complexity and hardware dependency. Lock-free algorithms can be applied most easily to simple
free-lists, e.g., remote free-list, to allow lock-free insertion and removal from the head of a stack.
Implementing lock-free operations for more complex data-structures (queue [44]/deque [43]) is
correspondingly more complex. Michael [32] and Gidenstam et al. [14] have created lock-free
variations of the Hoard allocator.
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Chapter 3

Allocator

This chapter presents a new stand-alone concurrent low-latency memory-allocator (≈1,200
lines of code), called llheap (low-latency heap), for C/C++ programs using kernel threads (1:1
threading), and specialized versions of the allocator for the programming languages µC++ and
C

A

using user-level threads running over multiple kernel threads (M:N threading). The new
allocator fulfills the GNU C Library allocator API [16].

3.1 llheap

The primary design objective for llheap is low-latency across all allocator calls independent of
application access-patterns and/or number of threads, i.e., very seldom does the allocator have
a delay during an allocator call. (Large allocations requiring initialization, e.g., zero fill, and/or
copying are not covered by the low-latency objective.) A direct consequence of this objective
is very simple or no storage coalescing; hence, llheap’s design is willing to use more storage to
lower latency. This objective is apropos because systems research and industrial applications are
striving for low latency and computers have huge amounts of RAM memory. Finally, llheap’s
performance should be comparable with the current best allocators (see performance comparison
in Chapter 5, p. 54).

3.2 Design Choices

llheap’s design was reviewed and changed multiple times throughout the thesis. Some of the
rejected designs are discussed because they show the path to the final design (see discussion in
Section 2.5, p. 11). Note, a few simple tests for a design choice were compared with the current
best allocators to determine the viability of a design.

3.2.1 Allocation Fastpath

These designs look at the allocation/free fastpath, i.e., when an allocation can immediately return
free storage or returned storage is not coalesced.
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T:1 model Figure 3.1 shows one heap accessed by multiple kernel threads (KTs) using a bucket
array, where smaller bucket sizes are shared among N KTs. This design leverages the fact that
usually the allocation requests are less than 1024 bytes and there are only a few different request
sizes. When KTs ≤ N, the common bucket sizes are uncontented; when KTs > N, the free
buckets are contented and latency increases significantly. In all cases, a KT must acquire/re-
lease a lock, contented or uncontented, along the fast allocation path because a bucket is shared.
Therefore, while threads are contending for a small number of buckets sizes, the buckets are
distributed among them to reduce contention, which lowers latency; however, picking N is work-
load specific.

Problems:

• Need to know when a KT is created/destroyed to assign/unassign a shared bucket-number
from the memory allocator.

• When no thread is assigned a bucket number, its free storage is unavailable.

• All KTs contend for the global-pool lock for initial allocations, before free-lists get populated.

Tests showed having locks along the allocation fast-path produced a significant increase in allo-
cation costs and any contention among KTs produces a significant spike in latency.

T:H model Figure 3.2 shows a fixed number of heaps (N), each a local free pool, where the
heaps are sharded (distributed) across the KTs. A KT can point directly to its assigned heap or
indirectly through the corresponding heap bucket. When KT ≤ N, the heaps might be uncon-
tented; when KTs > N, the heaps are contented. In all cases, a KT must acquire/release a lock,
contented or uncontented along the fast allocation path because a heap is shared. By increasing
N, this approach reduces contention but increases storage (time versus space); however, picking
N is workload specific.

Problems:

• Need to know when a KT is created/destroyed to assign/unassign a heap from the memory
allocator.

• When no thread is assigned to a heap, its free storage is unavailable.

• Ownership issues arise (see Section 2.5.2, p. 14).
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• All KTs contend for the local/global-pool lock for initial allocations, before free-lists get
populated.

Tests showed having locks along the allocation fast-path produced a significant increase in allo-
cation costs and any contention among KTs produces a significant spike in latency.

T:H model, H = number of CPUs This design is the T:H model but H is set to the number
of CPUs on the computer or the number restricted to an application, e.g., via taskset. (See
Figure 3.2 but with a heap bucket per CPU.) Hence, each CPU logically has its own private
heap and local pool. A memory operation is serviced from the heap associated with the CPU
executing the operation. This approach removes fastpath locking and contention, regardless of
the number of KTs mapped across the CPUs, because only one KT is running on each CPU at a
time (modulo operations on the global pool and ownership). This approach is essentially an M:N
approach where M is the number if KTs and N is the number of CPUs.

Problems:

• Need to know when a CPU is added/removed from the taskset.

• Need a fast way to determine the CPU a KT is executing on to access the appropriate heap.

• Need to prevent preemption during a dynamic memory operation because of the serially-

reusable problem.

A sequence of code that is guaranteed to run to completion before being invoked
to accept another input is called serially-reusable code. [23]

If a KT is preempted during an allocation operation, the operating system can schedule
another KT on the same CPU, which can begin an allocation operation before the previous
operation associated with this CPU has completed, invalidating heap correctness. Note, the
serially-reusable problem can occur in sequential programs with preemption, if the signal
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handler calls the preempted function, unless the function is serially reusable. Essentially, the
serially-reusable problem is a race condition on an unprotected critical section, where the
operating system is providing the second thread via the signal handler.

Library librseq [8] was used to perform a fast determination of the CPU and to ensure all
memory operations complete on one CPU using librseq’s restartable sequences, which restart
the critical section after undoing its writes, if the critical section is preempted.

Tests showed that librseq can determine the particular CPU quickly but setting up the restartable
critical-section along the allocation fast-path produced a significant increase in allocation costs.
Also, the number of undoable writes in librseq is limited and restartable sequences cannot deal
with user-level thread (UT) migration across KTs. For example, UT1 is executing a memory
operation by KT1 on CPU1 and a time-slice preemption occurs. The signal handler context
switches UT1 onto the user-level ready-queue and starts running UT2 on KT1, which immediately
calls a memory operation. Since KT1 is still executing on CPU1, librseq takes no action because it
assumes KT1 is still executing the same critical section. Then UT1 is scheduled onto KT2 by the
user-level scheduler, and its memory operation continues in parallel with UT2 using references
into the heap associated with CPU1, which corrupts CPU1’s heap. If librseq had an rseq_abort

which:

1. Marked the current restartable critical-section as cancelled so it restarts when attempting
to commit.

2. Do nothing if there is no current restartable critical section in progress.

Then rseq_abort could be called on the backside of a user-level context-switching. A feature
similar to this idea might exist for hardware transactional-memory. A significant effort was
made to make this approach work but its complexity, lack of robustness, and performance costs
resulted in its rejection.

1:1 model This design is the T:H model with T = H, where there is one thread-local heap
for each KT. (See Figure 3.2 but with a heap bucket per KT and no bucket or local-pool lock.)
Hence, immediately after a KT starts, its heap is created and just before a KT terminates, its heap
is (logically) deleted. Heaps are uncontended for a KTs memory operations as every KT has its
own thread-local heap, modulo operations on the global pool and ownership.

Problems:

• Need to know when a KT starts/terminates to create/delete its heap.
It is possible to leverage constructors/destructors for thread-local objects to get a general
handle on when a KT starts/terminates.

• There is a classic memory-reclamation problem for ownership because storage passed to
another thread can be returned to a terminated heap.
The classic solution only deletes a heap after all referents are returned, which is complex. The
cheap alternative is for heaps to persist for program duration to handle outstanding referent
frees. If old referents return storage to a terminated heap, it is handled in the same way as an
active heap. To prevent heap blowup, terminated heaps can be reused by new KTs, where a
reused heap may be populated with free storage from a prior KT (external fragmentation). In
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most cases, heap blowup is not a problem because programs have a small allocation set-size,
so the free storage from a prior KT is apropos for a new KT.

• There can be significant external fragmentation as the number of KTs increases.
In many concurrent applications, good performance is achieved with the number of KTs
proportional to the number of CPUs. Since the number of CPUs is relatively small, and a
heap is also relatively small, ≈10K bytes (not including any associated freed storage), the
worst-case external fragmentation is still small compared to the RAM available on large
servers with many CPUs.

• There is the same serially-reusable problem with UTs migrating across KTs.

Tests showed this design produced the closest performance match with the best current allocators,
and code inspection showed most of these allocators use different variations of this approach.

The conclusion from this design exercise is: any atomic fence, atomic instruction (lock free), or
lock along the allocation fastpath produces significant slowdown. For the T:1 and T:H models,
locking must exist along the allocation fastpath because the buckets or heaps might be shared
by multiple threads, even when KTs ≤ N. For the T:H=CPU and 1:1 models, locking is elim-
inated along the allocation fastpath. However, T:H=CPU has poor operating-system support to
determine the CPU id (heap id) and prevent the serially-reusable problem for KTs. More oper-
ating system support is required to make this model viable, but there is still the serially-reusable
problem with user-level threading. So the 1:1 model had no atomic actions along the fastpath and
no special operating-system support requirements. The 1:1 model still has the serially-reusable
problem with user-level threading, which is addressed in Section 3.5, p. 36, and the greatest
potential for heap blowup for certain allocation patterns.

3.2.2 Allocation Latency

A primary goal of llheap is low latency. Two forms of latency are internal and external. Internal
latency is the time to perform an allocation, while external latency is time to obtain/return storage
from/to the operating system. Ideally latency is O(1) with a small constant.

To obtain O(1) internal latency means no searching on the allocation fastpath and largely
prohibits coalescing, which leads to external fragmentation. The mitigating factor is that most
programs have well behaved allocation patterns, where the majority of allocation operations can
be O(1), and heap blowup does not occur without coalescing (although the allocation footprint
may be slightly larger).

To obtain O(1) external latency means obtaining one large storage area from the operating
system and subdividing it across all program allocations, which requires a good guess at the
program storage high-watermark and potential large external fragmentation. Excluding real-
time operating-systems, operating-system operations are unbounded, and hence some external
latency is unavoidable. The mitigating factor is that operating-system calls can often be reduced
if a programmer has a sense of the storage high-watermark and the allocator is capable of using
this information (see malloc_expansion page 42). Furthermore, while operating-system calls are
unbounded, many are now reasonably fast, so their latency is tolerable and infrequent.
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3.3 llheap Structure

Figure 3.3 shows the design of llheap, which uses the following features:

• 1:1 multiple-heap model to minimize the fastpath,

• can be built with or without heap ownership,

• headers per allocation versus containers,

• no coalescing to minimize latency,

• global heap memory (pool) obtained from the operating system using mmap to create and
reuse heaps needed by threads,

• local reserved memory (pool) per heap obtained from global pool,

• global reserved memory (pool) obtained from the operating system using sbrk call,

• optional fast-lookup table for converting allocation requests into bucket sizes,

• optional statistic-counters table for accumulating counts of allocation operations.

llheap starts by creating an array of N global heaps from storage obtained using mmap, where
N is the number of computer cores, that persists for program duration. There is a global bump-
pointer to the next free heap in the array. When this array is exhausted, another array of heaps
is allocated. There is a global top pointer for a intrusive linked-list to chain free heaps from
terminated threads. When statistics are turned on, there is a global top pointer for a intrusive
linked-list to chain all the heaps, which is traversed to accumulate statistics counters across
heaps using malloc_stats.

When a KT starts, a heap is allocated from the current array for exclusive use by the KT.
When a KT terminates, its heap is chained onto the heap free-list for reuse by a new KT, which
prevents unbounded growth of number of heaps. The free heaps are stored on stack so hot storage
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is reused first. Preserving all heaps, created during the program lifetime, solves the storage
lifetime problem when ownership is used. This approach wastes storage if a large number of
KTs are created/terminated at program start and then the program continues sequentially. llheap
can be configured with object ownership, where an object is freed to the heap from which it is
allocated, or object no-ownership, where an object is freed to the KT’s current heap.

Each heap uses segregated free-buckets that have free objects distributed across 91 different
sizes from 16 to 4M. All objects in a bucket are of the same size. The number of buckets used is
determined dynamically depending on the crossover point from sbrk to mmap allocation using
mallopt( M_MMAP_THRESHOLD ), i.e., small objects managed by the program and large objects
managed by the operating system. Each free bucket of a specific size has the following two lists:

• A free stack used solely by the KT heap-owner, so push/pop operations do not require
locking. The free objects are a stack so hot storage is reused first.

• For ownership, a shared away-stack for KTs to return storage allocated by other KTs, so
push/pop operations require locking. When the free stack is empty, the entire ownership
stack is removed and becomes the head of the corresponding free stack.

Algorithm 1 shows the allocation outline for an object of size S. First, the allocation is
divided into small (sbrk) or large (mmap). For large allocations, the storage is mapped directly
from the operating system. For small allocations, S is quantized into a bucket size. Quantizing
is performed using a binary search over the ordered bucket array. An optional optimization is
fast lookup O(1) for sizes < 64K from a 64K array of type char, where each element has an
index to the corresponding bucket. The char type restricts the number of bucket sizes to 256.
For S > 64K, a binary search is used. Then, the allocation storage is obtained from the following
locations (in order), with increasing latency.

1. bucket’s free stack,
2. bucket’s away stack,
3. heap’s local pool
4. global pool
5. operating system (sbrk)

Algorithm 2 shows the de-allocation (free) outline for an object at address A with ownership.
First, the address is divided into small (sbrk) or large (mmap). For large allocations, the storage
is unmapped back to the operating system. For small allocations, the bucket associated with the
request size is retrieved. If the bucket is local to the thread, the allocation is pushed onto the
thread’s associated bucket. If the bucket is not local to the thread, the allocation is pushed onto
the owning thread’s associated away stack.

Algorithm 3 shows the de-allocation (free) outline for an object at address A without owner-
ship. The algorithm is the same as for ownership except if the bucket is not local to the thread.
Then the corresponding bucket of the owner thread is computed for the deallocating thread, and
the allocation is pushed onto the deallocating thread’s bucket.

Finally, the llheap design funnels all allocation/deallocation operations through the malloc

and free routines, which are the only routines to directly access and manage the internal data
structures of the heap. Other allocation operations, e.g., calloc, memalign, and realloc, are
composed of calls to malloc and possibly free, and may manipulate header information after
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Algorithm 1 Dynamic object allocation of size S

1: O← NULL
2: if S >= mmap-threshhold then

3: O← allocate dynamic memory using system call mmap with size S
4: else

5: B← smallest free-bucket ≥ S

6: if B’s free-list is empty then

7: if B’s away-list is empty then

8: if heap’s allocation buffer < S then

9: get allocation from global pool (which might call sbrk)
10: end if

11: O← bump allocate an object of size S from allocation buffer
12: else

13: merge B’s away-list into free-list

14: O← pop an object from B’s free-list
15: end if

16: else

17: O← pop an object from B’s free-list
18: end if

19: O’s owner← B
20: end if

21: return O

Algorithm 2 Dynamic object free at address A with object ownership
1: if A mapped allocation then

2: return A’s dynamic memory to system using system call munmap

3: else

4: B← O’s owner

5: if B is thread-local heap’s bucket then

6: push A to B’s free-list
7: else

8: push A to B’s away-list
9: end if

10: end if

Algorithm 3 Dynamic object free at address A without object ownership
1: if A mapped allocation then

2: return A’s dynamic memory to system using system call munmap

3: else

4: B← O’s owner

5: if B is thread-local heap’s bucket then

6: push A to B’s free-list
7: else

8: C← thread local heap’s bucket with same size as B

9: push A to C’s free-list
10: end if

11: end if
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storage is allocated. This design simplifies heap-management code during development and
maintenance.

3.3.1 Alignment

Most dynamic memory allocations have a minimum storage alignment for the contained
object(s). Often the minimum memory alignment, M, is the bus width (32 or 64-bit) or the largest
register (double, long double) or largest atomic instruction (DCAS) or vector data (MMMX). In
general, the minimum storage alignment is 8/16-byte boundary on 32/64-bit computers. For
consistency, the object header is normally aligned at this same boundary. Larger alignments
must be a power of 2, such as page alignment (4/8K). Any alignment request, N,≤ the minimum
alignment is handled as a normal allocation with minimal alignment.

For alignments greater than the minimum, the obvious approach for aligning to address A is:
compute the next address that is a multiple of N after the current end of the heap, E, plus room
for the header before A and the size of the allocation after A, moving the end of the heap to E’.

E′E

object unused· · · heap

A(P)

headerfree

H (multiple of N)

The storage between E and H is chained onto the appropriate free list for future allocations. The
same approach is used for sufficiently large free blocks, where E is the start of the free block,
and any unused storage before H or after the allocated object becomes free storage. In this
approach, the aligned address A is the same as the allocated storage address P, i.e., P = A for
all allocation routines, which simplifies deallocation. However, if there are a large number of
aligned requests, this approach leads to memory fragmentation from the small free areas around
the aligned object. As well, it does not work for large allocations, where many memory allocators
switch from program sbrk to operating-system mmap. The reason is that mmap only starts on
a page boundary, and it is difficult to reuse the storage before the alignment boundary for other
requests. Finally, this approach is incompatible with allocator designs that funnel allocation
requests through malloc as it directly manipulates management information within the allocator
to optimize the space/time of a request.

Instead, llheap alignment is accomplished by making a pessimistic allocation request for
sufficient storage to ensure that both the alignment and size request are satisfied, e.g.:

header

H P(min. alignment M)

object

sizeinternal fragmentation

unused

A(multiple of N)

The amount of storage necessary is alignment M + size, which ensures there is an address, A,
after the storage returned from malloc, P, that is a multiple of alignment followed by sufficient
storage for the data object. The approach is pessimistic because if P already has the correct
alignment N, the initial allocation has already requested sufficient space to move to the next

32



multiple of N. For this special case, there is alignment M bytes of unused storage after the data
object, which subsequently can be used by realloc.

Note, the address returned is A, which is subsequently returned to free. However, to correctly
free the allocated object, the value P must be computable, since that is the value generated by
malloc and returned within memalign. Hence, there must be a mechanism to detect when P 6= A

and how to compute P from A.

The llheap approach uses two headers: the original header associated with a memory alloca-
tion from malloc, and a fake header within this storage before the alignment boundary A, which
is returned from memalign, e.g.:

internal fragmentation

object

size

H P(min. alignment M) A(multiple of N)
header
fakeoffset

header
normal

Since malloc has a minimum alignment of M, P 6= A only holds for alignments greater than
M. When P 6= A, the minimum distance between P and A is M bytes, due to the pessimistic
storage-allocation. Therefore, there is always room for an M-byte fake header before A.

The fake header must supply an indicator to distinguish it from a normal header and the
location of address P generated by malloc. This information is encoded as an offset from A to
P and the initialize alignment (discussed in Section 3.3.2). To distinguish a fake header from a
normal header, the least-significant bit of the alignment is used because the offset participates in
multiple calculations, while the alignment is just remembered data.

offsetalignment 1

alignment (fake header)

4/8-bytes 4/8-bytes

3.3.2 realloc and Sticky Properties

The allocation routine realloc provides a memory-management pattern for shrinking/enlarging
an existing allocation, while maintaining some or all of the object data, rather than performing
the following steps manually.

realloc pattern manually

T * naddr = realloc( oaddr, newSize ); T * naddr = (T *)malloc( newSize ); // new storage

memcpy( naddr, addr, oldSize ); // copy old bytes

free( addr ); // free old storage

addr = naddr; // change pointer

The realloc pattern leverages available storage at the end of an allocation due to bucket sizes,
possibly eliminating a new allocation and copying. This pattern is not used enough to reduce
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bucket pointer

mapped size

next free block

union request size

4/8-bytes4/8-bytes

0/1

0/1 0/1

mapped allocation
zero filled
alignment (fake header)

Figure 3.4: llheap Normal Header

storage management costs. In fact, if oaddr is nullptr, realloc does a malloc, so even the initial
malloc can be a realloc for consistency in the allocation pattern.

The hidden problem for this pattern is the effect of zero fill and alignment with respect to
reallocation. Are these properties transient or persistent (“sticky”)? For example, when memory
is initially allocated by calloc or memalign with zero fill or alignment properties, respectively,
what happens when those allocations are given to realloc to change size? That is, if realloc logi-
cally extends storage into unused bucket space or allocates new storage to satisfy a size change,
are initial allocation properties preserved? Currently, allocation properties are not preserved, so
subsequent use of realloc storage may cause inefficient execution or errors due to lack of zero fill
or alignment. This silent problem is unintuitive to programmers and difficult to locate because
it is transient. To prevent these problems, llheap preserves initial allocation properties for the
lifetime of an allocation and the semantics of realloc are augmented to preserve these properties,
with additional query routines. This change makes the realloc pattern efficient and safe.

3.3.3 Header

To preserve allocation properties requires storing additional information with an allocation, The
best available option is the header, where Figure 3.4 shows the llheap storage layout. The header
has two data field sized appropriately for 32/64-bit alignment requirements. The first field is a
union of three values:

bucket pointer is for allocated storage and points back to the bucket associated with this storage
requests (see Figure 3.3, p. 29 for the fields accessible in a bucket).

mapped size is for mapped storage and is the storage size for use in unmapping.

next free block is for free storage and is an intrusive pointer chaining same-size free blocks
onto a bucket’s free stack.

The second field remembers the request size versus the allocation (bucket) size, e.g., request 42
bytes which is rounded up to 64 bytes. Since programmers think in request sizes rather than
allocation sizes, the request size allows better generation of statistics or errors and also helps in
memory management.

The low-order 3-bits of the first field are unused for any stored values as these values are
16-byte aligned by default, whereas the second field may use all of its bits. The 3 unused bits are
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Heap statistics: (storage request / allocation)

malloc >0 calls 2,766; 0 calls 2,064; storage 12,715 / 13,367 bytes

aalloc >0 calls 0; 0 calls 0; storage 0 / 0 bytes

calloc >0 calls 6; 0 calls 0; storage 1,008 / 1,104 bytes

memalign >0 calls 0; 0 calls 0; storage 0 / 0 bytes

amemalign >0 calls 0; 0 calls 0; storage 0 / 0 bytes

cmemalign >0 calls 0; 0 calls 0; storage 0 / 0 bytes

resize >0 calls 0; 0 calls 0; storage 0 / 0 bytes

realloc >0 calls 0; 0 calls 0; storage 0 / 0 bytes

free !null calls 2,766; null calls 4,064; storage 12,715 / 13,367 bytes

away pulls 0; pushes 0; storage 0 / 0 bytes

sbrk calls 1; storage 10,485,760 bytes

mmap calls 10,000; storage 10,000 / 10,035 bytes

munmap calls 10,000; storage 10,000 / 10,035 bytes

threads started 4; exited 3

heaps new 4; reused 0

Figure 3.5: Statistics Output

used to represent mapped allocation, zero filled, and alignment, respectively. Note, the alignment
bit is not used in the normal header and the zero-filled/mapped bits are not used in the fake header.
This implementation allows a fast test if any of the lower 3-bits are on (& and compare). If no bits
are on, it implies a basic allocation, which is handled quickly; otherwise, the bits are analysed
and appropriate actions are taken for the complex cases. Since most allocations are basic, they
will take significantly less time as the memory operations will be done along the allocation and
free fastpath.

3.4 Statistics and Debugging

llheap can be built to accumulate fast and largely contention-free allocation statistics to help
understand allocation behaviour. Incrementing statistic counters must appear on the allocation
fastpath. As noted, any atomic operation along the fastpath produces a significant increase in
allocation costs. To make statistics performant enough for use on running systems, each heap
has its own set of statistic counters, so heap operations do not require atomic operations.

To locate all statistic counters, heaps are linked together in statistics mode, and this list is
locked and traversed to sum all counters across heaps. Note, the list is locked to prevent errors
traversing an active list; the statistics counters are not locked and can flicker during accumula-
tion. Figure 3.5 shows an example of statistics output, which covers all allocation operations
and information about deallocating storage not owned by a thread. No other memory allocator
studied provides as comprehensive statistical information. Finally, these statistics were invalu-
able during the development of this thesis for debugging and verifying correctness and should be
equally valuable to application developers.

llheap can also be built with debug checking, which inserts many asserts along all allocation
paths. These assertions detect incorrect allocation usage, like double frees, unfreed storage, or
memory corruptions because internal values (like header fields) are overwritten. These checks
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are best effort as opposed to complete allocation checking as in valgrind. Nevertheless, the checks
detect many allocation problems. There is an unfortunate problem in detecting unfreed storage
because some library routines assume their allocations have life-time duration, and hence, do
not free their storage. For example, printf allocates a 1024-byte buffer on the first call and never
deletes this buffer. To prevent a false positive for unfreed storage, it is possible to specify an
amount of storage that is never freed (see malloc_unfreed page 42), and it is subtracted from the
total allocate/free difference. Determining the amount of never-freed storage is annoying, but
once done, any warnings of unfreed storage are application related.

Tests indicate only a 30% performance decrease when statistics and debugging are enabled,
and the latency cost for accumulating statistic is mitigated by limited calls, often only one at the
end of the program.

3.5 User-level Threading Support

The serially-reusable problem (see page 26) occurs for kernel threads in the “T:H model, H =
number of CPUs” model and for user threads in the “1:1” model, where llheap uses the “1:1”
model. The solution is to prevent interrupts that can result in a CPU or KT change during
operations that are logically critical sections such as starting a memory operation on one KT and
completing it on another. Locking these critical sections negates any attempt for a quick fastpath
and results in high contention. For user-level threading, the serially-reusable problem appears
with time slicing for preemptable scheduling, as the signal handler context switches to another
user-level thread. Without time slicing, a user thread performing a long computation can prevent
the execution of (starve) other threads. To prevent starvation for a memory-allocation-intensive
thread, i.e., the time slice always triggers in an allocation critical-section for one thread so the
thread never gets time sliced, a thread-local rollforward flag is set in the signal handler when it
aborts a time slice. The rollforward flag is tested at the end of each allocation funnel routine (see
page 30), and if set, it is reset and a volunteer yield (context switch) is performed to allow other
threads to execute.

llheap uses two techniques to detect when execution is in an allocation operation or routine
called from allocation operation, to abort any time slice during this period. On the slowpath when
executing expensive operations, like sbrk or mmap, interrupts are disabled/enabled by setting
kernel-thread-local flags so the signal handler aborts immediately. On the fastpath, disabling/en-
abling interrupts is too expensive as accessing kernel-thread-local storage can be expensive and
not user-thread-safe. For example, the ARM processor stores the thread-local pointer in a copro-
cessor register that cannot perform atomic base-displacement addressing. Hence, there is a
window between loading the kernel-thread-local pointer from the coprocessor register into a
normal register and adding the displacement when a time slice can move a thread.

The fast technique (with lower run time cost) is to define a special code section and places
all non-interruptible routines in this section. The linker places all code in this section into a
contiguous block of memory, but the order of routines within the block is unspecified. Then, the
signal handler compares the program counter at the point of interrupt with the the start and end
address of the non-interruptible section, and aborts if executing within this section and sets the
rollforward flag. This technique is fragile because any calls in the non-interruptible code outside
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of the non-interruptible section (like sbrk) must be bracketed with disable/enable interrupts and
these calls must be along the slowpath. Hence, for correctness, this approach requires inspection
of generated assembler code for routines placed in the non-interruptible section. This issue is
mitigated by the llheap funnel design so only funnel routines and a few statistics routines are
placed in the non-interruptible section and their assembler code examined. These techniques
are used in both the µC++ and C

A

versions of llheap as both of these systems have user-level
threading.

3.6 Bootstrapping

There are problems bootstrapping a memory allocator.

1. Programs can be statically or dynamically linked.

2. The order in which the linker schedules startup code is poorly supported so it cannot be
controlled entirely.

3. Knowing a KT’s start and end independently from the KT code is difficult.

For static linking, the allocator is loaded with the program. Hence, allocation calls immedi-
ately invoke the allocator operation defined by the loaded allocation library and there is only one
memory allocator used in the program. This approach allows allocator substitution by placing an
allocation library before any other in the linked/load path.

Allocator substitution is similar for dynamic linking, but the problem is that the dynamic
loader starts first and needs to perform dynamic allocations before the substitution allocator is
loaded. As a result, the dynamic loader uses a default allocator until the substitution allocator is
loaded, after which all allocation operations are handled by the substitution allocator, including
from the dynamic loader. Hence, some part of the sbrk area may be used by the default allocator
and statistics about allocation operations cannot be correct. Furthermore, dynamic linking goes
through trampolines, so there is an additional cost along the allocator fastpath for all allocation
operations. Testing showed up to a 5% performance decrease with dynamic linking as compared
to static linking, even when using tls_model("initial exec") so the dynamic loader can obtain
tighter binding.

All allocator libraries need to perform startup code to initialize data structures, such as the
heap array for llheap. The problem is getting initialization done before the first allocator call.
However, there does not seem to be mechanism to tell either the static or dynamic loader to first
perform initialization code before any calls to a loaded library. Also, initialization code of other
libraries and the run-time environment may call memory allocation routines such as malloc. This
compounds the situation as there is no mechanism to tell either the static or dynamic loader to
first perform the initialization code of the memory allocator before any other initialization that
may involve a dynamic memory allocation call. As a result, calls to allocation routines occur
without initialization. To deal with this problem, it is necessary to put a conditional initialization
check along the allocation fastpath to trigger initialization (singleton pattern).

Two other important execution points are program startup and termination, which include
prologue or epilogue code to bootstrap a program, which programmers are unaware of. For
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example, dynamic-memory allocations before/after the application starts should not be consid-
ered in statistics because the application does not make these calls. llheap establishes these two
points using routines:

__attribute__(( constructor( 100 ) )) static void startup( void ) {

// clear statistic counters

// reset allocUnfreed counter

}

__attribute__(( destructor( 100 ) )) static void shutdown( void ) {

// sum allocUnfreed for all heaps

// subtract global unfreed storage

// if allocUnfreed > 0 then print warning message

}

which use global constructor/destructor priority 100, where the linker calls these routines at
program prologue/epilogue in increasing/decreasing order of priority. Application programs may
only use global constructor/destructor priorities greater than 100. Hence, startup is called after
the program prologue but before the application starts, and shutdown is called after the program
terminates but before the program epilogue. By resetting counters in startup, prologue alloca-
tions are ignored, and checking unfreed storage in shutdown checks only application memory
management, ignoring the program epilogue.

While startup/shutdown apply to the program KT, a concurrent program creates additional
KTs that do not trigger these routines. However, it is essential for the allocator to know when
each KT is started/terminated. One approach is to create a thread-local object with a construc-
t/destructor, which is triggered after a new KT starts and before it terminates, respectively.

struct ThreadManager {

volatile bool pgm_thread;

ThreadManager() {} // unusable
∼ThreadManager() { if ( pgm_thread ) heapManagerDtor(); }

};

static thread_local ThreadManager threadManager;

Unfortunately, thread-local variables are created lazily, i.e., on the first dereference of
threadManager, which then triggers its constructor. Therefore, the constructor is useless for
knowing when a KT starts because the KT must reference it, and the allocator does not control
the application KT. Fortunately, the singleton pattern needed for initializing the program KT also
triggers KT allocator initialization, which can then reference pgm_thread to call threadManager’s
constructor, otherwise its destructor is not called. Now when a KT terminates, ∼ThreadManager

is called to chain it onto the global-heap free-stack, where pgm_thread is set to true only for
the program KT. The conditional destructor call prevents closing down the program heap, which
must remain available because epilogue code may free more storage.

Finally, there is a recursive problem when the singleton pattern dereferences pgm_thread to
initialize the thread-local object, because its initialization calls atExit, which immediately calls
malloc to obtain storage. This recursion is handled with another thread-local flag to prevent
double initialization. A similar problem exists when the KT terminates and calls member
∼ThreadManager, because immediately afterwards, the terminating KT calls free to deallocate
the storage obtained from the atExit. In the meantime, the terminated heap has been put on the
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global-heap free-stack, and may be active by a new KT, so the atExit free is handled as a free to
another heap and put onto the away list using locking.

For user threading systems, the KTs are controlled by the runtime, and hence, start/end
pointers are known and interact directly with the llheap allocator for µC++ and C

A

, which elimi-
nates or simplifies several of these problems. The following API was created to provide interac-
tion between the language runtime and the allocator.

void startThread(); // KT starts

void finishThread(); // KT ends

void startup(); // when application code starts

void shutdown(); // when application code ends

bool traceHeap(); // enable allocation/free printing for debugging

bool traceHeapOn(); // start printing allocation/free calls

bool traceHeapOff(); // stop printing allocation/free calls

This kind of API is necessary to allow concurrent runtime systems to interact with different
memory allocators in a consistent way.

3.7 Added Features and Methods

The C dynamic-allocation API (see Figure 3.6) is neither orthogonal nor complete. For example,

• It is possible to zero fill or align an allocation but not both.

• It is only possible to zero fill an array allocation.

• It is not possible to resize a memory allocation without data copying.

• realloc does not preserve initial allocation properties.

As a result, programmers must provide these options, which is error prone, resulting in blaming
the entire programming language for a poor dynamic-allocation API. Furthermore, newer
programming languages have better type systems that can provide safer and more powerful APIs
for memory allocation.

The following presents design and API changes for C, C++ (µC++), and C

A

, all of which are
implemented in llheap.

3.7.1 Out of Memory

Most allocators use nullptr to indicate an allocation failure, specifically out of memory; hence
the need to return an alternate value for a zero-sized allocation. A different approach allowed by
C API is to abort a program when out of memory and return nullptr for a zero-sized allocation.
In theory, notifying the programmer of memory failure allows recovery; in practice, it is almost
impossible to gracefully recover when out of memory. Hence, the cheaper approach of returning
nullptr for a zero-sized allocation is chosen because no pseudo allocation is necessary.
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void * malloc( size_t size );

void * calloc( size_t nmemb, size_t size );

void * realloc( void * ptr, size_t size );

void * reallocarray( void * ptr, size_t nmemb, size_t size );

void free( void * ptr );

void * memalign( size_t alignment, size_t size );

void * aligned_alloc( size_t alignment, size_t size );

int posix_memalign( void ** memptr, size_t alignment, size_t size );

void * valloc( size_t size );

void * pvalloc( size_t size );

struct mallinfo mallinfo( void );

int mallopt( int param, int val );

int malloc_trim( size_t pad );

size_t malloc_usable_size( void * ptr );

void malloc_stats( void );

int malloc_info( int options, FILE * fp );

Figure 3.6: C Dynamic-Allocation API

3.7.2 C Interface

For C, it is possible to increase functionality and orthogonality of the dynamic-memory API to
make allocation better for programmers.

For existing C allocation routines:

• calloc sets the sticky zero-fill property.

• memalign, aligned_alloc, posix_memalign, valloc and pvalloc set the sticky alignment prop-
erty.

• realloc and reallocarray preserve sticky properties.

The C dynamic-memory API is extended with the following routines:

void * aalloc( size_t dim, size_t elemSize ) extends calloc for allocating a dynamic array of
objects without calculating the total size of array explicitly but without zero-filling the memory.
aalloc is significantly faster than calloc, which is the only alternative given by the standard
memory-allocation routines.

Usage aalloc takes two parameters.

• dim: number of array objects

• elemSize: size of array object

It returns the address of the dynamic array or NULL if either dim or elemSize are zero.

void * resize( void * oaddr, size_t size ) extends realloc for resizing an existing allocation
without copying previous data into the new allocation or preserving sticky properties. resize

is significantly faster than realloc, which is the only alternative.
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Usage resize takes two parameters.

• oaddr: address to be resized

• size: new allocation size (smaller or larger than previous)

It returns the address of the old or new storage with the specified new size or NULL if size is zero.

void * amemalign( size_t alignment, size_t dim, size_t elemSize ) extends aalloc and memalign

for allocating an aligned dynamic array of objects. Sets sticky alignment property.

Usage amemalign takes three parameters.

• alignment: alignment requirement

• dim: number of array objects

• elemSize: size of array object

It returns the address of the aligned dynamic-array or NULL if either dim or elemSize are zero.

void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) extends amemalign with
zero fill and has the same usage as amemalign. Sets sticky zero-fill and alignment property. It
returns the address of the aligned, zero-filled dynamic-array or NULL if either dim or elemSize

are zero.

size_t malloc_alignment( void * addr ) returns the alignment of the dynamic object for use in
aligning similar allocations.

Usage malloc_alignment takes one parameter.

• addr: address of an allocated object.

It returns the alignment of the given object, where objects not allocated with alignment return
the minimal allocation alignment.

bool malloc_zero_fill( void * addr ) returns true if the object has the zero-fill sticky property for
use in zero filling similar allocations.

Usage malloc_zero_fill takes one parameters.

• addr: address of an allocated object.

It returns true if the zero-fill sticky property is set and false otherwise.

size_t malloc_size( void * addr ) returns the request size of the dynamic object (updated when
an object is resized) for use in similar allocations. See also malloc_usable_size.

Usage malloc_size takes one parameters.

• addr: address of an allocated object.

It returns the request size or zero if addr is NULL.
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int malloc_stats_fd( int fd ) changes the file descriptor where malloc_stats writes statistics
(default stdout).

Usage malloc_stats_fd takes one parameters.

• fd: file descriptor.

It returns the previous file descriptor.

size_t malloc_expansion() set the amount (bytes) to extend the heap when there is insufficient
free storage to service an allocation request. It returns the heap extension size used throughout a
program when requesting more memory from the system using sbrk system-call, i.e., called once
at heap initialization.

size_t malloc_mmap_start() set the crossover between allocations occurring in the sbrk area or
separately mapped. It returns the crossover point used throughout a program, i.e., called once at
heap initialization.

size_t malloc_unfreed() amount subtracted to adjust for unfreed program storage (debug only).
It returns the new subtraction amount and called by malloc_stats.

3.7.3 C++ Interface

The following extensions take advantage of overload polymorphism in the C++ type-system.

void * resize( void * oaddr, size_t nalign, size_t size ) extends resize with an alignment re-
quirement.

Usage takes three parameters.

• oaddr: address to be resized

• nalign: alignment requirement

• size: new allocation size (smaller or larger than previous)

It returns the address of the old or new storage with the specified new size and alignment, or
NULL if size is zero.

void * realloc( void * oaddr, size_t nalign, size_t size ) extends realloc with an alignment re-
quirement and has the same usage as aligned resize.

3.7.4 C

A

Interface

The following extensions take advantage of overload polymorphism in the C

A

type-system. The
key safety advantage of the C

A

type system is using the return type to select overloads; hence, a
polymorphic routine knows the returned type and its size. This capability is used to remove the
object size parameter and correctly cast the return storage to match the result type. For example,
the following is the C

A

wrapper for C malloc:
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T * malloc( void );

T * aalloc( size_t dim );

T * calloc( size_t dim );

T * resize( T * ptr, size_t size );

T * realloc( T * ptr, size_t size );

T * memalign( size_t align );

T * amemalign( size_t align, size_t dim );

T * cmemalign( size_t align, size_t dim );

T * aligned_alloc( size_t align );

int posix_memalign( T ** ptr, size_t align );

T * valloc( void );

T * pvalloc( void );

Figure 3.7: C

A

C-Style Dynamic-Allocation API

forall( T & | sized(T) ) {

T * malloc( void ) {

if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation

else return (T *)memalign( _Alignof(T), sizeof(T) ); // C allocation

} // malloc

and is used as follows:
int * i = malloc();

double * d = malloc();

struct Spinlock { ... } __attribute__(( aligned(128) ));

Spinlock * sl = malloc();

where each malloc call provides the return type as T, which is used with sizeof, _Alignof, and
casting the storage to the correct type. This interface removes many of the common allocation
errors in C programs. Figure 3.7 show the C

A

wrappers for the equivalent C/C++ allocation
routines with same semantic behaviour.

In addition to the C

A

C-style allocator interface, a new allocator interface is provided to
further increase orthogonality and usability of dynamic-memory allocation. This interface helps
programmers in three ways.

• naming: C

A

regular and ttype polymorphism (ttype polymorphism in C

A

is similar to C++
variadic templates) is used to encapsulate a wide range of allocation functionality into a single
routine name, so programmers do not have to remember multiple routine names for different
kinds of dynamic allocations.

• named arguments: individual allocation properties are specified using postfix function call,
so the programmers do not have to remember parameter positions in allocation calls.

• object size: like the C

A

’s C-interface, programmers do not have to specify object size or cast
allocation results.

Note, postfix function call is an alternative call syntax, using backtick ‘, where the argument
appears before the function name, e.g.,

duration ?‘h( int h ); // ? denote the position of the function operand

43



duration ?‘m( int m );

duration ?‘s( int s );

duration dur = 3‘h + 42‘m + 17‘s;

T * alloc( ... ) or T * alloc( size_t dim, ... ) is overloaded with a variable number of specific allo-
cation operations, or an integer dimension parameter followed by a variable number of specific
allocation operations. These allocation operations can be passed as named arguments when
calling the alloc routine. A call without parameters returns a dynamically allocated object of
type T (malloc). A call with only the dimension (dim) parameter returns a dynamically allocated
array of objects of type T (aalloc). The variable number of arguments consist of allocation prop-
erties, which can be combined to produce different kinds of allocations. The only restriction is
for properties realloc and resize, which cannot be combined.

The allocation property functions are:

T_align ?‘align( size_t alignment ) to align the allocation. The alignment parameter must be ≥
the default alignment (libAlign() in C

A

) and a power of two, e.g.:
int * i0 = alloc( 4096‘align ); sout | i0 | nl;

int * i1 = alloc( 3, 4096‘align ); sout | i1; for (i; 3 ) sout | &i1[i]; sout | nl;

0x555555572000

0x555555574000 0x555555574000 0x555555574004 0x555555574008

returns a dynamic object and object array aligned on a 4096-byte boundary.

S_fill(T) ?‘fill ( /* various types */ ) to initialize storage. There are three ways to fill storage:

1. A char fills each byte of each object.

2. An object of the returned type fills each object.

3. An object array pointer fills some or all of the corresponding object array.

For example:

1 int * i0 = alloc( 0n‘fill ); sout | *i0 | nl; // disambiguate 0

2 int * i1 = alloc( 5‘fill ); sout | *i1 | nl;

3 int * i2 = alloc( ’\xfe’‘fill ); sout | hex( *i2 ) | nl;

4 int * i3 = alloc( 5, 5‘fill ); for ( i; 5 ) sout | i3[i]; sout | nl;

5 int * i4 = alloc( 5, 0xdeadbeefN‘fill ); for ( i; 5 ) sout | hex( i4[i] ); sout | nl;

6 int * i5 = alloc( 5, i3‘fill ); for ( i; 5 ) sout | i5[i]; sout | nl;

7 int * i6 = alloc( 5, [i3, 3]‘fill ); for ( i; 5 ) sout | i6[i]; sout | nl;

1 0

2 5

3 0xfefefefe

4 5 5 5 5 5

5 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef

6 5 5 5 5 5

7 5 5 5 555819298 555819298 // two undefined values

Examples 1 to 3 fill an object with a value or characters. Examples 4 to 7 fill an array of objects
with values, another array, or part of an array.

44



S_resize(T) ?‘resize( void * oaddr ) used to resize, realign, and fill, where the old object data
is not copied to the new object. The old object type may be different from the new object type,
since the values are not used. For example:

1 int * i = alloc( 5‘fill ); sout | i | *i;

2 i = alloc( i‘resize, 256‘align, 7‘fill ); sout | i | *i;

3 double * d = alloc( i‘resize, 4096‘align, 13.5‘fill ); sout | d | *d;

1 0x55555556d5c0 5

2 0x555555570000 7

3 0x555555571000 13.5

Examples 2 to 3 change the alignment, fill, and size for the initial storage of i.

1 int * ia = alloc( 5, 5‘fill ); for ( i; 5 ) sout | ia[i]; sout | nl;

2 ia = alloc( 10, ia‘resize, 7‘fill ); for ( i; 10 ) sout | ia[i]; sout | nl;

3 sout | ia; ia = alloc( 5, ia‘resize, 512‘align, 13‘fill ); sout | ia; for ( i; 5 ) sout | ia[i]; sout | nl;;

4 ia = alloc( 3, ia‘resize, 4096‘align, 2‘fill ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i]; sout | nl;

1 5 5 5 5 5

2 7 7 7 7 7 7 7 7 7 7

3 0x55555556d560 0x555555571a00 13 13 13 13 13

4 0x555555572000 0x555555572000 2 0x555555572004 2 0x555555572008 2

Examples 2 to 4 change the array size, alignment and fill for the initial storage of ia.

S_realloc(T) ?‘realloc( T * a )) used to resize, realign, and fill, where the old object data is
copied to the new object. The old object type must be the same as the new object type, since the
value is used. Note, for fill, only the extra space after copying the data from the old object is filled
with the given parameter. For example:

1 int * i = alloc( 5‘fill ); sout | i | *i;

2 i = alloc( i‘realloc, 256‘align ); sout | i | *i;
3 i = alloc( i‘realloc, 4096‘align, 13‘fill ); sout | i | *i;

1 0x55555556d5c0 5

2 0x555555570000 5

3 0x555555571000 5

Examples 2 to 3 change the alignment for the initial storage of i. The 13‘fill in example 3 does
nothing because no extra space is added.
1 int * ia = alloc( 5, 5‘fill ); for ( i; 5 ) sout | ia[i]; sout | nl;

2 ia = alloc( 10, ia‘realloc, 7‘fill ); for ( i; 10 ) sout | ia[i]; sout | nl;

3 sout | ia; ia = alloc( 1, ia‘realloc, 512‘align, 13‘fill ); sout | ia; for ( i; 1 ) sout | ia[i]; sout | nl;;

4 ia = alloc( 3, ia‘realloc, 4096‘align, 2‘fill ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i]; sout | nl;

1 5 5 5 5 5

2 5 5 5 5 5 7 7 7 7 7

3 0x55555556c560 0x555555570a00 5

4 0x555555571000 0x555555571000 5 0x555555571004 2 0x555555571008 2

Examples 2 to 4 change the array size, alignment and fill for the initial storage of ia. The 13‘fill

in example 3 does nothing because no extra space is added.

These C

A

allocation features are used extensively in the development of the C

A

runtime.
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Chapter 4

Benchmarks

There are two basic approaches for evaluating computer software: benchmarks and micro-
benchmarks.

Benchmarks are a suite of application programs (SPEC CPU/WEB) that are exercised in a
common way (inputs) to find differences among underlying software implementations asso-
ciated with an application (compiler, memory allocator, web server, etc.). The applications
are supposed to represent common execution patterns that need to perform well with respect
to an underlying software implementation. Benchmarks are often criticized for having over-
lapping patterns, insufficient patterns, or extraneous code that masks patterns.

Micro-Benchmarks attempt to extract the common execution patterns associated with an appli-
cation and run the pattern independently. This approach removes any masking from extra-
neous application code, allows execution pattern to be very precise, and provides an oppor-
tunity for the execution pattern to have multiple independent tuning adjustments (knobs).
Micro-benchmarks are often criticized for inadequately representing real-world applications.

While some crucial software components have standard benchmarks, no standard bench-
mark exists for testing and comparing memory allocators. In the past, an assortment of appli-
cations have been used for benchmarking allocators [9, 2, 3, 4]: P2C, GS, Espresso/Espresso-
2, CFRAC/CFRAC-2, GMake, GCC, Perl/Perl-2, Gawk/Gawk-2, XPDF/XPDF-2, ROBOOP,
Lindsay. As well, an assortment of micro-benchmark have been used for benchmarking alloca-
tors [27, 2, 40]: threadtest, shbench, Larson, consume, false sharing. Many of these benchmark
applications and micro-benchmarks are old and may not reflect current application allocation
patterns.

This thesis designs and examines a new set of micro-benchmarks for memory allocators that
test a variety of allocation patterns, each with multiple tuning parameters. The aim of the micro-
benchmark suite is to create a set of programs that can evaluate a memory allocator based on
the key performance metrics such as speed, memory overhead, and cache performance. These
programs give details of an allocator’s memory overhead and speed under certain allocation
patterns. The allocation patterns are configurable (adjustment knobs) to observe an allocator’s
performance across a spectrum allocation patterns, which is seldom possible with benchmark
programs. Each micro-benchmark program has multiple control knobs specified by command-
line arguments.

46



The new micro-benchmark suite measures performance by allocating dynamic objects and
measuring specific metrics. An allocator’s speed is benchmarked in different ways, as are issues
like false sharing.

4.1 Prior Multi-Threaded Micro-Benchmarks

Modern memory allocators, such as llheap, must handle multi-threaded programs at the KT and
UT level. The following multi-threaded micro-benchmarks are presented to give a sense of prior
work [2] at the KT level. None of the prior work addresses multi-threading at the UT level.

4.1.1 threadtest

This benchmark stresses the ability of the allocator to handle different threads allocating and
deallocating independently. There is no interaction among threads, i.e., no object sharing. Each
thread repeatedly allocates 100,000 8-byte objects then deallocates them in the order they were
allocated. The execution time of the benchmark evaluates its efficiency.

4.1.2 shbench

This benchmark is similar to threadtest but each thread randomly allocate and free a number
of random-sized objects. It is a stress test that also uses runtime to determine efficiency of the
allocator.

4.1.3 Larson

This benchmark simulates a server environment. Multiple threads are created where each thread
allocates and frees a number of random-sized objects within a size range. Before the thread
terminates, it passes its array of 10,000 objects to a new child thread to continue the process.
The number of thread generations varies depending on the thread speed. It calculates memory
operations per second as an indicator of the memory allocator’s performance.

4.2 New Multi-Threaded Micro-Benchmarks

The following new benchmarks were created to assess multi-threaded programs at the KT and UT
level. For generating random values, two generators are supported: uniform [30] and fisher [29].

4.2.1 Churn Benchmark

The churn benchmark measures the runtime speed of an allocator in a multi-threaded scenario,
where each thread extensively allocates and frees dynamic memory. Only malloc and free are
used to eliminate any extra cost, such as memcpy in calloc or realloc. Churn simulates a memory
intensive program and can be tuned to create different scenarios.
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Main Thread

create worker threads

note time T1

...

note time T2

churn_speed = (T2 T1)

Worker Thread

initialize variables

...

for ( N )

R = random spot in array

free R

allocate new object at R

Figure 4.1: Churn Benchmark

Figure 4.1 shows the pseudo code for the churn micro-benchmark. This benchmark creates a
buffer with M spots and an allocation in each spot, and then starts K threads. Each thread picks a
random spot in M, frees the object currently at that spot, and allocates a new object for that spot.
Each thread repeats this cycle N times. The main thread measures the total time taken for the
whole benchmark and that time is used to evaluate the memory allocator’s performance.

The adjustment knobs for churn are:

thread: number of threads (K).
spots: number of spots for churn (M).
obj: number of objects per thread (N).
max: maximum object size.
min: minimum object size.
step: object size increment.
distro: object size distribution

4.2.2 Cache Thrash

The cache-thrash micro-benchmark measures allocator-induced active false-sharing as illustrated
in Section 2.3.2, p. 9. If memory is allocated for multiple threads on the same cache line, this
can significantly slow down program performance. When threads share a cache line, frequent
reads/writes to their cache-line object causes cache misses, which cause escalating delays as
cache distance increases.

Cache thrash tries to create a scenario that leads to false sharing, if the underlying memory
allocator is allocating dynamic memory to multiple threads on the same cache lines. Ideally,
a memory allocator should distance the dynamic memory region of one thread from another.
Having multiple threads allocating small objects simultaneously can cause a memory allocator
to allocate objects on the same cache line, if its not distancing the memory among different
threads.
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Object1 Object2

Thread1CPU1

Cache

Object1 Object2

1. alloc

Thread2CPU2

Object1 Object2

Cache

Memory

4. modify3. alloc2. modify

Main Thread

create worker threads

...

signal workers to allocate

...

signal workers to free

...

Worker Thread1
warm up memory in chunks of 16 bytes

...

For N

malloc an object

read/write the object M times

free the object

...

Worker Thread2
// same as Worker Thread1

Figure 4.2: Allocator-Induced Active False-Sharing Benchmark

Figure 4.2 shows the pseudo code for the cache-thrash micro-benchmark. First, it creates K
worker threads. Each worker thread allocates an object and intensively reads/writes it for M times
to possible invalidate cache lines that may interfere with other threads sharing the same cache
line. Each thread repeats this for N times. The main thread measures the total time taken for all
worker threads to complete. Worker threads sharing cache lines with each other are expected to
take longer.

The adjustment knobs for cache access scenarios are:

thread: number of threads (K).
iterations: iterations of cache benchmark (N).
cacheRW: repetitions of reads/writes to object (M).
size: object size.

4.2.3 Cache Scratch

The cache-scratch micro-benchmark measures allocator-induced passive false-sharing as illus-
trated in Section 2.3.2, p. 9. As with cache thrash, if memory is allocated for multiple threads
on the same cache line, this can significantly slow down program performance. In this scenario,
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the false sharing is being caused by the memory allocator although it is started by the program
sharing an object.

Cache scratch tries to create a scenario that leads to false sharing and should make the
memory allocator preserve the program-induced false sharing, if it does not return a freed object
to its owner thread and, instead, re-uses it instantly. An allocator using object ownership, as
described in section Section 2.5.2, p. 14, is less susceptible to allocator-induced passive false-
sharing. If the object is returned to the thread that owns it, then the new object that the thread
gets is less likely to be on the same cache line.

Figure 4.3 shows the pseudo code for the cache-scratch micro-benchmark. First, it allocates
K dynamic objects together, one for each of the K worker threads, possibly causing memory
allocator to allocate these objects on the same cache line. Then it create K worker threads and
passes an object from the K allocated objects to each of the K threads. Each worker thread frees
the object passed by the main thread. Then, it allocates an object and reads/writes it repetitively
for M times possibly causing frequent cache invalidations. Each worker repeats this N times.

Each thread allocating an object after freeing the original object passed by the main thread
should cause the memory allocator to return the same object that was initially allocated by the
main thread if the allocator did not return the initial object back to its owner (main thread).
Then, intensive read/write on the shared cache line by multiple threads should slow down worker
threads due to to high cache invalidations and misses. Main thread measures the total time taken
for all the workers to complete.

Similar to benchmark cache thrash in section Section 4.2.2, p. 48, different cache access
scenarios can be created using the following command-line arguments.

threads: number of threads (K).
iterations: iterations of cache benchmark (N).
cacheRW: repetitions of reads/writes to object (M).
size: object size.

4.2.4 Speed Micro-Benchmark

The speed benchmark measures the runtime speed of individual and sequences of memory allo-
cation routines:

1. malloc
2. realloc
3. free
4. calloc
5. malloc-free
6. realloc-free
7. calloc-free
8. malloc-realloc
9. calloc-realloc

10. malloc-realloc-free
11. calloc-realloc-free
12. malloc-realloc-free-calloc
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Object1 Object2

Thread1CPU1

Cache

Object1 Object2

Thread2CPU2

Object1 Object2

Cache

6. modify

Memory

1. alloc 3. modify
5. alloc

4. dealloc

2. pass Object2 reference

Main Thread

malloc N objects for each worker thread

create worker threads and pass N objects to each worker

...

signal workers to allocate

...

signal workers to free

...

Worker Thread1
warmup memory in chunks of 16 bytes

...

free the object passed by the Main Thread

For N

malloc new object

read/write the object M times

free the object

...

Worker Thread2
// same as Worker Thread1

Figure 4.3: Program-Induced Passive False-Sharing Benchmark

Figure 4.4 shows the pseudo code for the speed micro-benchmark. Each routine in the chain
is called for N objects and then those allocated objects are used when calling the next routine in
the allocation chain. This tests the latency of the memory allocator when multiple routines are
chained together, e.g., the call sequence malloc-realloc-free-calloc gives a complete picture of
the major allocation routines when combined together. For each chain, the time is recorded to
visualize performance of a memory allocator against each chain.

The adjustment knobs for memory usage are:

max: maximum object size.
min: minimum object size.
step: object size increment.
distro: object size distribution.
objects: number of objects per thread.
workers: number of worker threads.
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Main Thread

create worker threads

foreach ( allocation chain )

note time T1

...

note time T2

chain_speed = (T2 T1) / number of worker threads * N )

Worker Thread

initialize variables

...

foreach ( routine in allocation chain )

call routine N times

Figure 4.4: Speed Benchmark

Main Thread

print memory snapshot

create producer threads

Producer Thread (K)

set free start

create consumer threads

for ( N )

allocate memory

print memory snapshot

Consumer Thread (M)

wait while ( allocations < free start )

for ( N )

free memory

print memory snapshot

Figure 4.5: Memory Footprint Micro-Benchmark

4.2.5 Memory Micro-Benchmark

The memory micro-benchmark measures the memory overhead of an allocator. It allocates a
number of dynamic objects and reads /proc/self/proc/maps to get the total memory requested
by the allocator from the OS. It calculates the memory overhead by computing the difference
between the memory the allocator requests from the OS and the memory that the program allo-
cates. This micro-benchmark is like Larson and stresses the ability of an allocator to deal with
object sharing.

Figure 4.5 shows the pseudo code for the memory micro-benchmark. It creates a producer-
consumer scenario with K producer threads and each producer has M consumer threads. A
producer has a separate buffer for each consumer and allocates N objects of random sizes
following a configurable distribution for each consumer. A consumer frees these objects. After
every memory operation, program memory usage is recorded throughout the runtime. This data
is used to visualize the memory usage and consumption for the program.

The global adjustment knobs for this micro-benchmark are:
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producer (K): sets the number of producer threads.
consumer (M): sets number of consumers threads for each producer.
round: sets production and consumption round size.

The adjustment knobs for object allocation are:

max: maximum object size.
min: minimum object size.
step: object size increment.
distro: object size distribution.
objects (N): number of objects per thread.
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Chapter 5

Performance

This chapter uses the micro-benchmarks from Chapter 4, p. 46 to test a number of current
memory allocators, including llheap. The goal is to see if llheap is competitive with the currently
popular memory allocators.

5.1 Machine Specification

The performance experiments were run on two different multi-core architectures (x64 and ARM)
to determine if there is consistency across platforms:

• Algol Huawei ARM TaiShan 2280 V2 Kunpeng 920, 24-core socket × 4, 2.6 GHz, GCC
version 9.4.0

• Nasus AMD EPYC 7662, 64-core socket × 2, 2.0 GHz, GCC version 9.3.0

5.2 Existing Memory Allocators

With dynamic allocation being an important feature of C, there are many stand-alone memory
allocators that have been designed for different purposes. For this thesis, 7 of the most popular
and widely used memory allocators were selected for comparison, along with llheap.

llheap (llh) is the thread-safe allocator from Chapter 3, p. 24
Version: 1.0 Configuration: Compiled with dynamic linking, but without statistics or debug-
ging.
Compilation command: make

glibc (glc) [34] is the default glibc thread-safe allocator.
Version: Ubuntu GLIBC 2.31-0ubuntu9.7 2.31
Configuration: Compiled by Ubuntu 20.04.
Compilation command: N/A
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dlmalloc (dl) [28] is a thread-safe allocator that is single threaded and single heap. It maintains
free-lists of different sizes to store freed dynamic memory.
Version: 2.8.6
Configuration: Compiled with preprocessor USE_LOCKS.
Compilation command: gcc g3 O3 Wall Wextra fno builtin malloc fno builtin calloc

fno builtin realloc fno builtin free fPIC shared DUSE_LOCKS o libdlmalloc.so malloc 2.8.6.c

hoard (hrd) [1] is a thread-safe allocator that is multi-threaded and uses a heap layer frame-
work. It has per-thread heaps that have thread-local free-lists, and a global shared heap.
Version: 3.13
Configuration: Compiled with hoard’s default configurations and Makefile.
Compilation command: make all

jemalloc (je) [36] is a thread-safe allocator that uses multiple arenas. Each thread is assigned
an arena. Each arena has chunks that contain contagious memory regions of same size. An arena
has multiple chunks that contain regions of multiple sizes.
Version: 5.2.1
Configuration: Compiled with jemalloc’s default configurations and Makefile.
Compilation command: autogen.sh; configure; make; make install

ptmalloc3 (pt3) [15] is a modification of dlmalloc. It is a thread-safe multi-threaded memory
allocator that uses multiple heaps. ptmalloc3 heap has similar design to dlmalloc’s heap.
Version: 1.8
Configuration: Compiled with ptmalloc3’s Makefile using option “linux-shared”.
Compilation command: make linux shared

rpmalloc (rp) [24] is a thread-safe allocator that is multi-threaded and uses per-thread heap.
Each heap has multiple size-classes and each size-class contains memory regions of the relevant
size.
Version: 1.4.1
Configuration: Compiled with rpmalloc’s default configurations and ninja build system.
Compilation command: python3 configure.py; ninja

tbb malloc (tbb) [35] is a thread-safe allocator that is multi-threaded and uses a private heap
for each thread. Each private-heap has multiple bins of different sizes. Each bin contains free
regions of the same size.
Version: intel tbb 2020 update 2, tbb_interface_version == 11102
Configuration: Compiled with tbbmalloc’s default configurations and Makefile.
Compilation command: make

5.3 Experiments

Each micro-benchmark is configured and run with each of the allocators, The less time an allo-
cator takes to complete a benchmark the better so lower in the graphs is better, except for the
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Memory micro-benchmark graphs. All graphs use log scale on the Y-axis, except for the Memory
micro-benchmark (see Section 5.3.5, p. 74).

5.3.1 Churn Micro-Benchmark

Churn tests allocators for speed under intensive dynamic memory usage (see Section 4.2.1, p. 47).
This experiment was run with following configurations:

thread: 1, 2, 4, 8, 16, 32, 48
spots: 16
obj: 100,000
max: 500
min: 50
step: 50
distro: fisher

Figure 5.1 shows the results for algol and nasus. The X-axis shows the number of threads; the
Y-axis shows the total experiment time. Each allocator’s performance for each thread is shown
in different colors.

Assessment All allocators did well in this micro-benchmark, except for dl on the ARM. dl’s is
the slowest, indicating some small bottleneck with respect to the other allocators. je is the fastest,
with only a small benefit over the other allocators.

5.3.2 Cache Thrash

Thrash tests memory allocators for active false sharing (see Section 4.2.2, p. 48). This experiment
was run with following configurations:

threads: 1, 2, 4, 8, 16, 32, 48
iterations: 1,000
cacheRW: 1,000,000
size: 1

Figure 5.2, p. 58 shows the results for algol and nasus. The X-axis shows the number of
threads; the Y-axis shows the total experiment time. Each allocator’s performance for each thread
is shown in different colors.

Assessment All allocators did well in this micro-benchmark, except for dl and pt3. dl uses a
single heap for all threads so it is understandable that it generates so much active false-sharing.
Requests from different threads are dealt with sequentially by the single heap (using a single
lock), which can allocate objects to different threads on the same cache line. pt3 uses the T:H
model, so multiple threads can use one heap, but the active false-sharing is less than dl. The rest
of the memory allocators generate little or no active false-sharing.
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(a) Algol

(b) Nasus

Figure 5.1: Churn
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(a) Algol

(b) Nasus

Figure 5.2: Cache Thrash
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5.3.3 Cache Scratch

Scratch tests memory allocators for program-induced allocator-preserved passive false-sharing
(see Section 4.2.3, p. 49). This experiment was run with following configurations:

threads: 1, 2, 4, 8, 16, 32, 48
iterations: 1,000
cacheRW: 1,000,000
size: 1

Figure 5.3 shows the results for algol and nasus. The X-axis shows the number of threads; the
Y-axis shows the total experiment time. Each allocator’s performance for each thread is shown
in different colors.

Assessment This micro-benchmark divides the allocators into two groups. First is the high-
performer group: llh, je, and rp. These memory allocators generate little or no passive false-
sharing and their performance difference is negligible. Second is the low-performer group, which
includes the rest of the memory allocators. These memory allocators have significant program-
induced passive false-sharing, where hrd’s is the worst performing allocator. All of the allocators
in this group are sharing heaps among threads at some level.

Interestingly, allocators such as hrd and glc performed well in micro-benchmark cache thrash
(see Section 5.3.2, p. 56), but, these allocators are among the low performers in the cache scratch.
It suggests these allocators do not actively produce false-sharing, but preserve program-induced
passive false sharing.

5.3.4 Speed Micro-Benchmark

Speed tests memory allocators for runtime latency (see Section 4.2.4, p. 50). This experiment
was run with following configurations:

max: 500
min: 50
step: 50
distro: fisher
objects: 100,000
workers: 1, 2, 4, 8, 16, 32, 48

Figures 5.4 to 5.15, pp. 62–73 show 12 figures, one figure for each chain of the speed bench-
mark. The X-axis shows the number of threads; the Y-axis shows the total experiment time. Each
allocator’s performance for each thread is shown in different colors.

• Figure 5.4, p. 62 shows results for chain: malloc

• Figure 5.5, p. 63 shows results for chain: realloc

• Figure 5.6, p. 64 shows results for chain: free

• Figure 5.7, p. 65 shows results for chain: calloc
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Figure 5.3: Cache Scratch
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• Figure 5.8, p. 66 shows results for chain: malloc-free

• Figure 5.9, p. 67 shows results for chain: realloc-free

• Figure 5.10, p. 68 shows results for chain: calloc-free

• Figure 5.11, p. 69 shows results for chain: malloc-realloc

• Figure 5.12, p. 70 shows results for chain: calloc-realloc

• Figure 5.13, p. 71 shows results for chain: malloc-realloc-free

• Figure 5.14, p. 72 shows results for chain: calloc-realloc-free

• Figure 5.15, p. 73 shows results for chain: malloc-realloc-free-calloc

Assessment This micro-benchmark divides the allocators into two groups: with and without
calloc. calloc uses memset to set the allocated memory to zero, which dominates the cost of
the allocation chain (large performance increase) and levels performance across the allocators.
But the difference among the allocators in a calloc chain still gives an idea of their relative
performance.

All allocators did well in this micro-benchmark across all allocation chains, except for dl, pt3,
and hrd. Again, the low-performing allocators are sharing heaps among threads, so the contention
causes performance increases with increasing numbers of threads. Furthermore, chains with free

can trigger coalescing, which slows the fast path. The high-performing allocators all illustrate
low latency across the allocation chains, i.e., there are no performance spikes as the chain lengths,
that might be caused by contention and/or coalescing. Low latency is important for applications
that are sensitive to unknown execution delays.
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Figure 5.4: Speed benchmark chain: malloc
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Figure 5.5: Speed benchmark chain: realloc
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Figure 5.6: Speed benchmark chain: free
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Figure 5.7: Speed benchmark chain: calloc
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Figure 5.8: Speed benchmark chain: malloc-free
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Figure 5.9: Speed benchmark chain: realloc-free
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Figure 5.10: Speed benchmark chain: calloc-free
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Figure 5.11: Speed benchmark chain: malloc-realloc
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Figure 5.12: Speed benchmark chain: calloc-realloc
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Figure 5.13: Speed benchmark chain: malloc-realloc-free
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Figure 5.14: Speed benchmark chain: calloc-realloc-free
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Figure 5.15: Speed benchmark chain: malloc-calloc-realloc-free
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5.3.5 Memory Micro-Benchmark

This experiment is run with the following two configurations for each allocator. The difference
between the two configurations is the number of producers and consumers. Configuration 1 has
one producer and one consumer, and configuration 2 has 4 producers, where each producer has
4 consumers.

Configuration 1:

producer (K): 1
consumer (M): 1
round: 100,000
max: 500
min: 50
step: 50
distro: fisher
objects (N): 100,000

Configuration 2:

producer (K): 4
consumer (M): 4
round: 100,000
max: 500
min: 50
step: 50
distro: fisher
objects (N): 100,000

Figures 5.16 to 5.31, pp. 76–91 show 16 figures, two figures for each of the 8 allocators,
one for each configuration. Each figure has 2 graphs, one for each experiment environment.
Each graph has following 5 subgraphs that show memory usage and statistics throughout the
micro-benchmark’s lifetime.

• current_req_mem(B) shows the amount of dynamic memory requested and currently in-use
of the benchmark.

• heap* shows the memory requested by the program (allocator) from the system that lies in
the heap (sbrk) area.

• mmap_so* shows the memory requested by the program (allocator) from the system that lies
in the mmap area.

• mmap* shows the memory requested by the program (allocator or shared libraries) from the
system that lies in the mmap area.

• total_dynamic shows the total usage of dynamic memory by the benchmark program, which
is a sum of heap, mmap, and mmap_so.

* These statistics are gathered by monitoring a process’s /proc/self/maps file.

The X-axis shows the time when the memory information is polled. The Y-axis shows the
memory usage in bytes.
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For this experiment, the difference between the memory requested by the benchmark
(current_req_mem(B)) and the memory that the process has received from system (heap, mmap)
should be minimum. This difference is the memory overhead caused by the allocator and shows
the level of fragmentation in the allocator.

Assessment First, the differences in the shape of the curves between architectures (top ARM,
bottom x64) is small, where the differences are in the amount of memory used. Hence, it is
possible to focus on either the top or bottom graph.

Second, the heap curve is 0 for four memory allocators: hrd, je, pt3, and rp, indicating these
memory allocators only use mmap to get memory from the system and ignore the sbrk area.

The total dynamic memory is higher for hrd and tbb than the other allocators. The main
reason is the use of superblocks (see Section 2.6, p. 16) containing objects of the same size.
These superblocks are maintained throughout the life of the program.

pt3 is the only memory allocator where the total dynamic memory goes down in the second
half of the program lifetime when the memory is freed by the benchmark program. It makes pt3
the only memory allocator that gives memory back to the operating system as it is freed by the
program.
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Figure 5.16: Memory benchmark results with Configuration-1 for llh memory allocator

76



(a) Algol

(b) Nasus

Figure 5.17: Memory benchmark results with Configuration-1 for dl memory allocator
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Figure 5.18: Memory benchmark results with Configuration-1 for glibc memory allocator
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Figure 5.19: Memory benchmark results with Configuration-1 for hoard memory allocator
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Figure 5.20: Memory benchmark results with Configuration-1 for je memory allocator
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Figure 5.21: Memory benchmark results with Configuration-1 for pt3 memory allocator
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Figure 5.22: Memory benchmark results with Configuration-1 for rp memory allocator
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Figure 5.23: Memory benchmark results with Configuration-1 for tbb memory allocator

83



(a) Algol

(b) Nasus

Figure 5.24: Memory benchmark results with Configuration-2 for llh memory allocator
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Figure 5.25: Memory benchmark results with Configuration-2 for dl memory allocator
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Figure 5.26: Memory benchmark results with Configuration-2 for glibc memory allocator
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Figure 5.27: Memory benchmark results with Configuration-2 for hoard memory allocator
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Figure 5.28: Memory benchmark results with Configuration-2 for je memory allocator
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Figure 5.29: Memory benchmark results with Configuration-2 for pt3 memory allocator
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Figure 5.30: Memory benchmark results with Configuration-2 for rp memory allocator
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Figure 5.31: Memory benchmark results with Configuration-2 for tbb memory allocator
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Chapter 6

Conclusion

The goal of this thesis was to build a low-latency (or high bandwidth) memory allocator for
both KT and UT multi-threading systems that is competitive with the best current memory allo-
cators while extending the feature set of existing and new allocator routines. The new llheap
memory-allocator achieves all of these goals, while maintaining and managing sticky allocation
information without a performance loss. Hence, it becomes possible to use realloc frequently as
a safe operation, rather than just occasionally. Furthermore, the ability to query sticky properties
and information allows programmers to write safer programs, as it is possible to dynamically
match allocation styles from unknown library routines that return allocations.

Extending the C allocation API with resize, advanced realloc, aalloc, amemalign, and
cmemalign means programmers do not have to do these useful allocation operations themselves.
The ability to use C

A

’s advanced type-system (and possibly C++’s too) to have one allocation
routine with completely orthogonal sticky properties shows how far the allocation API can be
pushed, which increases safety and greatly simplifies programmer’s use of dynamic allocation.

Providing comprehensive statistics for all allocation operations is invaluable in understanding
and debugging a program’s dynamic behaviour. No other memory allocator provides such
comprehensive statistics gathering. This capability was used extensively during the develop-
ment of llheap to verify its behaviour. As well, providing a debugging mode where allocations
are checked, along with internal pre/post conditions and invariants, is extremely useful, espe-
cially for students. While not as powerful as the valgrind interpreter, a large number of allocation
mistakes are detected. Finally, contention-free statistics gathering and debugging have a low
enough cost to be used in production code.

The ability to compile llheap with static/dynamic linking and optional statistics/debugging
provides programers with multiple mechanisms to balance performance and safety. These allo-
cator versions are easy to use because they can be linked to an application without recompilation.

Starting a micro-benchmark test-suite for comparing allocators, rather than relying on a suite
of arbitrary programs, has been an interesting challenge. The current micro-benchmarks allow
some understanding of allocator implementation properties without actually looking at the imple-
mentation. For example, the memory micro-benchmark quickly identified how several of the
allocators work at the global level. It was not possible to show how the micro-benchmarks
adjustment knobs were used to tune to an interesting test point. Many graphs were created and
discarded until a few were selected for the thesis.
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6.1 Future Work

A careful walk-though of the allocator fastpath should yield additional optimizations for a slight
performance gain. In particular, analysing the implementation of rpmalloc, which is often the
fastest allocator,

The micro-benchmark project requires more testing and analysis. Additional allocation
patterns are needed to extract meaningful information about allocators, and within allocation
patterns, what are the most useful tuning knobs. Also, identifying ways to visualize the results
of the micro-benchmarks is a work in progress.

After llheap is made available on GitHub, interacting with its users to locate problems and
improvements will make llbench a more robust memory allocator. As well, feedback from the
µC++ and C

A

projects, which have adopted llheap for their memory allocator, will provide addi-
tional information.
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