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Abstract

Training large neural networks requires a large amount of time. To speed up the
process, distributed training is often used. One of the largest bottlenecks in distributed
training is communicating gradients across different nodes [34]. Different gradient compres-
sion techniques have been proposed to alleviate the communication bottleneck, including
topK gradient sparsification, which truncates the gradient to the top K components before
sending it to other nodes [1].

Some authors have adopted topK gradient sparsification to the parameter-server frame-
work by applying topK compression in both the worker-to-server and server-to-worker di-
rection, as opposed to only the worker-to-server direction [22, 31, 35]. Current intuition
and analysis suggest that adding extra compression degrades the convergence of the model
[20, 31, 35]. We provide a simple counterexample where iterating with bidirectional topK

SGD allows better convergence than iterating with unidirectional topK SGD. We explain
this example with the theoretical framework developed by Alistarh et al., remove a critical
assumption the authors’ made in their non-convex convergence analysis of topK sparsifi-
cation, and show that bidirectional topK SGD can achieve the same convergence bound
as unidirectional topK SGD with assumptions that are potentially easier to satisfy [3].
We experimentally evaluate unidirectional topK SGD against bidirectional topK SGD and
show that under careful tuning, models trained with bidirectional topK SGD will perform
just as well as models trained with unidirectional topK SGD. Finally, we provide empir-
ical evidence that the amount of communication saved by adding server-to-worker topK

compression is almost linear to the number of workers.
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Chapter 1

Introduction

In this chapter we introduce the communication bottleneck associated with the paralleliza-
tion of gradient descent, some background of the topK gradient compression technique
we use to alleviate the bottleneck, and the main concept. We finish this chapter with an
outline of the thesis.

1.1 Motivation

Deep neural networks trained on large datasets are known to achieve state-of-the-art per-
formance in accuracy. However, the large size of the models and datasets severely impact
the training time of the model. To decrease the training time, distributed machine training
techniques are often used, which in recent years have involved scaling stochastic gradient
descent (SGD) to multiple processes [13, 5].

The standard way to scale SGD on multiple processes is through data parallelism
where the training set is split across n different processes [13]. Each node will calculate
a stochastic gradient from their allocated data independently and in parallel. The nodes
then communicate the gradient with each other before updating model parameters.

Communication between nodes is one of the largest bottleneck in distributed machine
learning [34]. Most efforts in increasing the performance speed of distributed learning
comes from reducing this bottleneck. Types of methods to reduce the communication
bottleneck include: 1) rearranging the topology of the nodes [24, 26], 2) reducing the size
of the message that needs to be communicated [3, 2, 6], and 3) reducing the frequency of
communication between nodes [17].
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Two types of topologies used in distributed training are centralized (i.e. parameter-
server framework) and decentralized (i.e. all-reduce) which are further discussed in Chap-
ter 3. Decentralized frameworks were developed to overcome the limitations of having a
server bottleneck. However there has been a resurgence of interest in the parameter-server
framework in recent years [32, 18].

One of the most well-studied compression technique is sparsification, which focuses
on reducing communication between worker nodes by sending only a sparse subset of the
gradient [5, 34]. The most popular of these methods is topK gradient sparsification, which
truncates the gradient to the largest K components by magnitude [10, 34]. TopK gradient
sparsification was originally only used during the worker-to-server (uplink) communication
of the parameter-server framework [22], since the gradient sent by the server is sparse if
the number of participating workers is low.

Due to increased number of workers used in distributed training, Sattler et al. recom-
mended adding topK gradient sparsification during server-to-worker (downlink) communi-
cation as well, and reported that sparsifying the gradients in both uplink and downlink
communication (bidirectional) reduces the final accuracy by at most 3% compared to only
using uplink [22]. Theoretical frameworks from Tang et al. and Zheng et al. have been de-
veloped to analyze the convergence of bidirectionally compressed error compensated SGD,
which can be used to analyze bidirectional topK gradient sparsification [31, 35]. However,
these studies suggest that adding downlink sparsification will degrade the convergence of
the model [20, 31, 35]. In our thesis, we provide a simple example where bidirectional
topK SGD has better convergence than unidirectional topK SGD, provide an intuition to
why this happens, and construct a convergence bound that captures this intuition. We
show that under the theoretical framework provided by Alistarh et al. [3], bidirectional
sparsification can potentially achieve a tighter convergence bound than unidirectional spar-
sification. Finally, we show that through careful tuning bidirectional topK sparsification
can perform as well as unidirectional topK sparsification.

The main motivation of our work is to give the reader a better understanding why
bidirectional topK SGD can converge as well as, if not better, than unidirectional topK

SGD.

1.2 Thesis Outline

Chapter 2 will discuss gradient parallelization in more detail, define the optimization prob-
lem and stochastic gradient descent, and provide an introduction to non-convex analysis.
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Chapter 3 will define biased and unbiased compression, briefly mention how error feed-
back framework is used in biased compression, and provide more background on gradient
compression techniques, such as gradient quantization and gradient sparsification. Finally,
we will discuss current research in unidirectional and bidirectional topK SGD.

In Chapter 4 we will provide an example where bidirectional topK SGD outperforms
unidirectional topK SGD, and provide some reasoning to why this happens.

The non-convex convergence analysis of bidirectional and unidirectional topK SGD and
a comparison between both is provided in Chapter 5.

In Chapter 6, we describe the experiment setup, and compare the convergence of bidi-
rectional and unidirectional topK SGD on multiple models, datasets and number of workers.
The constants from our convergence bound in Chapter 5 are measured and shown in this
section as well.

Finally, we conclude the thesis in Chapter 7 by summarizing our contributions, includ-
ing, 1) an example where bidirectional topK SGD has better convergence than unidirec-
tional topK SGD, 2) a non-convex analysis of bidirectional topK SGD with a potentially
tighter convergence bound than unidirectional topK SGD, 3) detailed experiment results
that show that bidirectional topK SGD can perform as well as unidirectional topK SGD,
and 4) an estimate of the compression factor achieved by downlink sparsification based on
empirical evidence.
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Chapter 2

Preliminaries

2.1 Optimization Problem Statement

For this chapter, we describe the optimization framework, following Bottou et al. [9].
When training a neural network, we are concerned in finding a prediction function H.
Assume that H has a fixed form and is parametrized by a real vector w ∈ Rd. Our goal is
to find a parameter for H such that it minimizes losses from incorrect predictions.

For some H(x;w) : Rdx × Rd → Rdy , where x is an input sample, consider the family
of prediction functions:

H = {H(·;w) : w ∈ Rd}.

Assume a given loss function L(ŷ, y) : Rdy × Rdy → R, where ŷ is the predicted label and
y is the actual label, and a set of input-output samples {xi, yi}ni=1. A deep neural network
aims to minimize the objective function F : Rd → R defined by

F (w) =
1

n

n∑
i=1

L(H(xi;w), yi). (2.1)

Similar to Bottou et al. [9], we use a simplified notation for the loss of our prediction
function on a randomly chosen sample (xi, yi)

L(H(xi;w), yi) = f(w, ξ[i]), (2.2)

where ξ is a random variable representing a sample, and {ξ[i]}ni=1 are realizations of ξ
corresponding to the sample set {(xi, yi)}ni=1.
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We rewrite the objective function in (2.1) as

F (w) =
1

n

n∑
i=1

f(w, ξ[i]). (2.3)

2.2 Stochastic Gradient Descent

In this section, we continue to describe the framework used to analyze stochastic gradient
methods provided by Bottou et al. [9]. We want to minimize our objective function
F : Rd → R. If we have access to the stochastic gradients ∇f(w, ξ), we can approach this
problem by the following iterative process given a w0 ∈ Rd with

wt+1 = wt − αt∇f(wt, ξ[it]), (2.4)

where αt > 0 is the step size and ξ[it] corresponds to sample (xit , yit) from the sample set
{(xi, yi)i∈S} and {it} is a sequence chosen randomly from {1, ..., n} with replacement. The
sequence {wt} is not deterministic after fixing w0 and αt, and is dependent on the sequence
{it}.

We might want to consider more than one sample in each SGD iteration. Define ξt,i to
be the realization of the i-th sample at iteration t, and m to be the number of samples to
consider in each SGD iteration. We have

wt+1 = wt −
αt

m

m∑
i=1

∇f(wt, ξt,i). (2.5)

For simplicity define

g(wt, ξt) =
1

m

m∑
i=1

∇f(wt, ξt,i), (2.6)

where {ξt}t≥0 are independent and identically distributed random variables (iid).

The algorithm for SGD is described in Algorithm 1. To hide non-essential implementa-
tion details, we assume that the stochastic gradient can be obtained by querying an oracle
and that there is an automatic mechanism to generate the learning rate αt. Specifically,
the stochastic gradient oracle will hide the process of: 1) realizing the random variable
ξt and 2) computing the stochastic gradient g(wt, ξt) given an iterate wt ∈ Rd and the
realization of ξt.
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Algorithm 1: Stochastic Gradient Descent

Input: Stochastic Gradient Oracle g(·, ·), learning rate sequence {αt}t≥0

1 Initialize w0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 wt←wt−1 − αt−1g(wt−1, ξt−1);
4 t = t+ 1;

5 end

2.3 Data Parallelism

Data parallelism splits the data across N different nodes. Every node updates a model with
stochastic gradients calculated from local data. There are two types of data parallelism:
synchronous data parallelism and asynchronous data parallelism. In synchronous data
parallelism, the local parameter vector wt is kept consistent across all nodes. This requires
a locking mechanism to keep all nodes in step with each other [13]. In synchronous data
parallelism, we want to minimize the weighted average of N different functions across N
nodes:

min
w∈Rd

F (w) ≜
N∑
q=1

pqF
q(w), (2.7)

and the update step for synchronous data parallelism with N nodes is described in

wt = wt−1 − αt

N∑
q=1

pqg
q(wt−1, ξ

q
t−1). (2.8)

The probability vector (p0, . . . , pN) is used to assign weighting to the gradients contributed
by different nodes. The probability vector is usually defined by the number of samples
each node uses to calculate the their stochastic gradient. For example, assume there are
2 workers, and the workers choose n1 and n2 samples with replacement respectively, with
n1 + n2 = n. Then

F (w) =
1

n

n∑
i=1

f(w, ξ[i])

=
n1

n

(
1

n1

n1∑
i=1

f 1(w, ξ[i])

)
+

n2

n

(
1

n2

n2∑
i=1

f 2(w, ξ[i])

)
= p1F

1(w) + p2F
2(w).

(2.9)
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Usually the gradients have equal weighting and the values in the probability vector is 1/N .

The downside of synchronous data parallelism is that computational resources are not
fully utilized. The nodes are idle when waiting to receive gradients, and the waiting time
increases as the number of nodes increases as well [13]. One way to reduce the waiting
time is to remove the lock, and this is done through asynchronous data parallelism. Nodes
will pull model parameters from a model stored on the central server and commit gradients
asynchronously to central server. The committed gradients are stored in a First-In-First-
Out queue on a central server [13].

The problem with asynchronous distributed training is that we are committing old
gradients to the central server. Instead of iterating with

wt = wt−1 − αtg(wt−1, ξt−1), (2.10)

to update the central parameter, we are iterating with

wt = wt−1 − αtg(wt−1−τ , ξt−1−τ ), (2.11)

where τ is the delay from the timestep the worker pulls the central parameter vector to
the timestep the worker commits the gradient to the central server. The downside of
asynchronous distributed training is that when τ is large, the stochastic sequence {wt}
may no longer converge to the optimal value. Some implementations of asynchronous
distributed training may involve throwing out the gradient without updating the central
server if the delay is too large [13].

2.4 Model Parallelism

Data parallelism is often mentioned with model parallelism. While model parallelism is
not within the scope of this thesis, we will briefly mention it here to contrast it with data
parallelism, and how it can be used together with it.

In model parallelism, a single model is split across multiple nodes. The speed-up of
model parallelism depends on the model structure. Because of layer interdependence, for-
ward and backward propagation in neural networks are sequential operations [5]. Hence
it is difficult to achieve effective parallelization with model parallelism. Sometimes model
parallelism is used together with data parallelism with a technique called parameter shard-
ing [1]. In this setup, each N nodes in the network acts as both a client and a server. The
model is split across the servers, and each server is responsible for 1/N of the parameters.
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The client has a copy of all parameters, and pulls updates from each server. This keeps
the bandwidth per node constant, since each node communicates with each of the other
nodes for 1/N of the parameters [1].

2.5 Parameter-Server Framework

Parameter-server framework is a common and well-studied topology used in data paral-
lelism. The data is distributed over nodes called workers. Another node, called the server,
is used to coordinate the workers. The workers will calculate gradients from local data and
send it to the server to be aggregated. The server will then send the aggregated gradients
back to the workers, which will then update the model stored locally [13]. We describe the
parameter-server framework in Algorithm 2. Each SEND operation has a matching RECV
operation, and both operations block until the send and receive has been completed.

Many parameter-server frameworks fail to use network bandwidth effectively [32]. If
one server is used, it will likely become a networking bottleneck [24]. One way to allevi-
ate this bottleneck is to use parameter sharding and split the parameters across multiple
servers [24]. However, it becomes difficult to identify the right ratio of servers to workers.
Too many servers can saturate the network and too little servers can cause communica-
tion bottlenecks [24]. This caused engineers to move away from parameter-server based
distributed learning to all-reduce based learning, though there has been a resurgence of
interest in the parameter-server framework recently [32, 22].

Algorithm 2: SGD Worker Side (Worker q)

Input: Stochastic Gradient Oracle gq(·, ·), learning rate sequence {αt}t≥0

1 Initialize w0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 SEND(gq(wt−1, ξ

q
t−1), server);

4 RECV(gt, server);
5 wt←wt−1 − αt−1gt;
6 t = t+ 1;

7 end
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Algorithm 3: SGD Server Side

Input: probablity vector (p0, . . . , pN)
1 Initialize t = 1;
2 while t ≥ 1 do
3 for every worker q do
4 RECV(gq(xt−1, ξ

q
t−1), q);

5 end

6 gt ←
∑N

q=1 pqg
q(xt−1, ξ

q
t−1);

7 for every worker q do
8 SEND(gt, q);
9 end

10 t = t+ 1

11 end

2.6 All-Reduce

In all-reduce based distributed training, the workers directly communicate with each other.
All-reduce uses Message Passing Interface (MPI) standard to reduce arrays from all nodes
to one array and to send the combined array back to all nodes [24]. We describe the
all-reduce algorithm with N nodes in Algorithm 4.

Algorithm 4: SGD All-Reduce (worker q)

Input: Stochastic Gradient Oracle gq(·, ·), learning rate sequence {αt}t≥0,
probability vector (p0, ..pN)

1 Initialize w0 ∈ Rd;
2 while t ≥ 1 do
3 BROADCAST(pqg

q(wt−1, ξ
q
t−1), SUM);

4 wt←wt−1 + αt

∑N
q=1 pqg

q(wt−1, ξ
q
t−1);

5 end

BROADCAST is a two part operation: 1) worker q sends its stochastic gradient to
all other nodes, and 2) waits to receive a stochastic gradient from all other nodes before
adding it to SUM. The BROADCAST operation needs a lock to block progression until all
nodes have received all gradients from other nodes.

An example of a distributed framework that can perform all-reduce is Horovod, which
uses a ring topology. Experimental results by Sergeev and Balso show that ring all-reduce
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can use GPU resources more efficiently than the parameter-server framework [24].

However, we point out that all-reduce is not efficient when there is a large number of
unreliable machines. An example of this is Federated Learning, which aims to train models
on data stored in mobile devices such as personal phones and tablets [22]. These devices
are frequently offline and have slow and expensive communication. It is impractical to set
up a network that allows participating mobile devices to use MPI all-reduce. Instead, it is
easier to have these devices communicate with a central server [18, 22].

Additionally, the recent advancements in cloud networking technologies have also seen a
resurgence of parameter-server approach in distributed training. Amazon developed a novel
communication library Herring, which uses a parameter-server topology and demonstrated
that it can be twice as fast as all-reduce based methods with gradient reduction [32].

2.7 Non-Convex Analysis

We round off the introduction with a discussion of how to analyze the convergence rate of
a gradient descent method in the non-convex setting.

To establish convergence guarantees for optimizing a non-convex function F : Rd → R,
we can make assumptions similar to the following [3, 14].

Assumption 2.1 (Existence of a lower bound). There exists some constant F ∗ such
that F (w) ≥ F ∗ for all w ∈ Rd.

This assumption is necessary to ensure there is a minimum value to find.

Assumption 2.2 (Lipschitz continuous gradient). F is continuously differentiable and
the gradient ∇F : Rd → Rd is Lipschitz continuous with constant L > 0, i.e.

∥∇F (w)−∇F (v)∥2 ≤ L∥w − v∥2 ∀w, v ∈ Rd. (2.12)

Assumption 2.2 is useful in showing that gradient based optimization converges. Changing
the parameter vector from w to v will not cause an arbitrary change from ∇F (w) to ∇F (v)
[9]. From Assumption 2.2, we can get

F (w) ≤ F (v) + ⟨∇F (v), w − v⟩+ 1

2
L∥w − v∥22 ∀w, v ∈ Rd. (2.13)
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Assumption 2.3 (First and second moment). The objective function and Algorithm
1 satisfy the following:

E[g(w, ξt)] = ∇F (w) ∀w ∈ Rd,∀t ∈ N,

and

E[∥g(w, ξt)∥22] ≤M ∀w ∈ Rd, ∀t ∈ N.

Generally for a gradient descent method with non-convex objective, we want to show
under Assumption 2.1, 2.2 and 2.3,

min
t∈{1...T}

E[∥∇F (wt)∥22]
T→∞−−−→ 0, (2.14)

where E[·] here is the expectation taken with respect to the joint distribution of all random
variables {ξ0, ξ1, ..., ξt−1} [3]. Some strategies involve showing

lim
T→∞

E

[
1∑T

t=1 αt

T∑
t=1

αt∥∇F (wt)∥22

]
= 0, (2.15)

where {αt} is a diminishing stepsize sequence [9, 3].

2.8 Non-Convex Analysis of Distributed SGD

For distributed SGD, we want to minimize the weighted average of N objective functions
across N nodes:

min
w∈Rd

F (w) ≜
N∑
q=1

pqF
q(w),

so we make corresponding adjustments to Assumption 2.3, similar to [3].

Assumption 2.4 (First and second moment). The objective function and Algorithm
4 satisfy the following:

E[
N∑
q=1

pqg
q(w, ξqt )] =

N∑
q=1

pq∇F q(w) ∀w ∈ Rd,∀t ∈ N, (2.16)
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and

E[∥
N∑
q=1

pqg
q(w, ξqt )∥22] ≤M ∀w ∈ Rd, ∀t ∈ N. (2.17)

where E[·] is taken with respect to the joint distribution of {ξ1t , ξ2t , ..., ξNt }.

The following theorem for the convergence of distributed SGD is easily adapted from
existing analysis [9, 14].

Theorem 2.1. Under Assumptions 2.1, 2.2, and 2.4, running (2.8) for T iterations gives
us

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
1∑T

t=0 αt

(F (w0)− F ∗) +
LM

2

∑T
t=0 α

2
t∑T

t=0 αt

. (2.18)

Proof. Starting with (2.13), and denote Eξt [·] to be the expectation taken with respect to
the joint distribution of {ξ1t , ξ2t , ..., ξNt } given random variables before time t, we have

Eξt [F (wt+1)] ≤ F (wt) + ⟨∇F (wt),Eξt [wt+1 − wt]⟩+
L

2
Eξt [∥wt+1 − wt∥22]

= F (wt)− αt⟨∇F (wt),Eξt [
N∑
i=1

pqg(wt, ξ
q
t )]⟩+

Lαt
2

2
Eξt [∥

N∑
i=1

pqg(wt, ξ
q
t )∥22]

≤ F (wt)− αt⟨∇F (wt),∇F (wt)⟩+
Lαt

2M

2

≤ F (wt)− αt∥∇F (wt)∥22 +
Lαt

2M

2
.

(2.19)

Taking expectation with respect to the joint distribution of all random variables, we get

E[F (wt+1)] ≤ E[F (wt)]− αtE[∥∇F (wt)∥22] +
Lαt

2M

2
. (2.20)

Telescoping and rearranging, we have

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
T∑
t=0

(
E[F (wt)]− E[F (wt+1)] +

Lα2
tM

2

)
.
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or

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
1∑T

t=0 αt

(F (w0)− F ∗) +
LM

2

∑T
t=0 α

2
t∑T

t=0 αt

, (2.21)

as desired.

In order for the upper bound in (2.21) to converge to 0, we need

∞∑
t=0

αt =∞ and
∞∑
t=0

α2
t<∞, (2.22)

so we can choose αt =
1

(t+1)θ
, where 1

2
< θ ≤ 1.
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Chapter 3

Related Work

3.1 Gradient Compression

We can reduce the communication time of data parallelism through gradient compression.
Sending and receiving gradients between nodes is the most costly operation in a distributed
setting, and reducing the amount of information that needs to be sent will alleviate the
communication bottleneck [34].

Gradient compression is typically divided into biased compression and unbiased com-
pression. We use the definition provided by Beznosikov et al. [7].

Let ζ ≥ 1, a compressor C(·) is unbiased if

E[C(w)] = w E[∥C(w)∥22] ≤ ζ∥w∥22 ∀w ∈ Rd. (3.1)

A compressor C(·) is biased if there exists γ ∈ (0, 1) such that

E[∥C(w)− w∥22] ≤ (1− γ)∥w∥22 ∀w ∈ Rd. (3.2)

We briefly mention that there are two other definitions of biased compression [7]. The
type that satisfies (3.2) is the one we will use for the rest of the thesis. If C(w) = 0 ∈ Rd

then no information is left after compression, and γ = 0. If C(w) = w then there is
no compression, and γ = 1. Intuitively, the inequality implies that a γ-fraction of x is
preserved in the compression.
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The expectation in (3.1) and (3.2) is taken with respect to the randomness in the
compression operation. To illustrate this, we use an example provided by Beznosikov et
al. [7]. The unbiased random sparsification compression operator (randK) is defined by

C(w) :=
d

K

∑
i∈S

wiei, (3.3)

where S is a subset of {1, . . . , d} with cardinality K chosen uniformly at random, and
e1, .., ed are standard unit basis vectors in Rd. The values outputted by the random sparsi-
fication operator are measured with respect to a probability distribution, which allows us
to take the expectation in (3.1). For some compressors, the output value is deterministic
given an input, and we can remove the expectation in (3.1) and (3.2). Experiment results
show biased compressors often outperform their unbiased counterparts, and provide better
testing accuracy and training loss [7].

Naively using biased gradient compression may cause the algorithm to not generalize or
converge. Some sort of correction mechanism is needed to ensure the original gradient is not
forgotten [14]. An example of such a mechanism is the error-feedback framework described
in Algorithm 5. Here, the node accumulates the difference between the compressed gradient
and the actual gradient, then adds the accumulated value into the gradient in the next
iteration.

Algorithm 5: Compressed SGD with Error Feedback (without distributed com-
munication for simplicity)

Input: Stochastic Gradient Oracle g(·, ·), compressor C(·), learning rate sequence
{αt}t≥0

1 Initialize w0 ∈ Rd; ϵ0 = 0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 pt ← αt−1g(wt−1, ξt−1) + ϵt−1;
4 wt ← wt−1 − C(pt);
5 ϵt ← pt − C(pt);
6 t = t+ 1;

7 end

3.2 Gradient Quantization

Quantization applies lossy compression by mapping each gradient component to a smaller
set of values [5]. The most drastic quantization compression proposed is 1-bit quantization,
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which was proposed by Seide et al. and Strom et al. [23, 30]. Seide et al. suggests
using a quantization threshold of 0: positive values are encoded as 1 and negative values
as 0 [23]. Convergence for 1-bit quantization using 0 as a threshold was developed by
Bernstein et al. [6], though unlike Seide et al., they did not consider using an error
feedback framework. The authors call the method signSGD. Kamireddy et al. later show
that signSGD without error feedback generalizes poorly to certain optimization problems,
and develop convergence theory for signSGD with error feedback [14]. We also mention
that Alistarh et al. introduce an unbiased stochastic compression scheme called Quantized
SGD, and describes the relationship between bits compressed and convergence time [2].

One problem with gradient quantizaton is that its compression is limited by the pre-
cision of the floating point representation of the gradient component, since 1-bit is the
smallest representation of each component. Quantization can only compress gradients
represented by 32-bit floating point values to 1/32 of its original size [10]. Because of
this, Sattler et al. describes 1-bit quantization as “weak” compression [22]. To compress
gradients further, we look at gradient sparsification.

3.3 Gradient Sparsification

The intuition behind gradient sparsification is that neural network gradients are sparse.
There is a large number of parameters in a model that do not necessarily change after each
update, and only part of the gradient is needed to achieve convergence [5]. Sparsification
has been shown to achieve compression rates up to [0.01, 0.001] without loss in accuracy
[10]. Other results have shown that sparsification is able to achieve 54× speedup for 80
nodes [5].

3.4 TopK Sparsification

TopK gradient sparsification truncates the gradient to its topK components, sorted by order
of increasing magnitude. The nodes communicate this truncated sparse gradient instead
of the full gradient [5]. Generally, in topK sparsification, updates are delayed and not
discarded. The error from the truncation is accumulated in an error term and added to
the gradient before truncation. However, it is important to note that not every update in
topK sparsificiation is guaranteed to be applied [3]. A small update can be delayed forever.
TopK sparsification is well studied in literature [34].

16



Alistarh et al. and Stich et al. analyze the convergence rate of topK sparsification, and
show that the scheme converges at the same rate as vanilla SGD under certain settings
[3, 29]. Rengli et al. builds a communication library which extends MPI to support sparse
communication [21]. Shi et al. describes how to implement topK sparsification with all-
reduce in a tree topology to reduce the communication complexity even further [26, 27].

Finally, we note that in practice, there are two key disadvantages to topK sparsification:
1) overhead in finding the top K values in a gradient is a costly operation, since we need to
sort the values in tensor , and 2) topK sparsification needs to encode and send the position
of each of its non-zero gradient component [10]. These two reasons can make randK more
attractive than topK : randK eliminates the need to sort, and if all workers generates the
positions of the non-zero gradient components with the same seed, there is no need to
communicate the position with each other [10]. However, randK is shown to introduce
large compression errors [19]. There has been multiple studies to approximate the topK

operator: Shi et al. and Lin et al. introduces methods to estimate a threshold to estimate
which gradient components to keep [25, 16]. Ozfatura et al. introduces a sparsification
technique that sends a mask to all workers specifying the location of gradient components
to keep, with each worker sending a few gradient components that are not part of the mask
[19]. However, topK sparsification is still the most common sparsification technique studied
in distributed learning [10]. The version of the topK sparsification algorithm implemented
in the parameter server framework is described in Algorithms 6 and 7.

Algorithm 6: TopK SGD Worker Side (Worker q)

Input: Stochastic Gradient Oracle gq(·; ·), learning rate sequence {αt}t≥0

1 Initialize w0 ∈ Rd; ϵq0 = 0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 aqt←ϵqt−1 + αt−1g

q(wt−1, ξ
q
t−1);

4 ϵqt←aqt − TopK(a
q
t );

5 SEND(TopK(a
q
t ), server);

6 RECV(gt, server);
7 wt←wt−1 − gt;
8 t = t+ 1;

9 end
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Algorithm 7: TopK SGD Server Side

Input: probability vector (p0, . . . , pN)
1 Initialize t = 1;
2 while t ≥ 1 do
3 for every worker q do
4 RECV(TopK(a

q
t ), q);

5 end

6 gt←
∑N

q=1 pqTopK(a
q
t );

7 for every client q do
8 SEND(gt, q);
9 end

10 t = t+ 1;

11 end

3.5 Bidirectional TopK Sparsification

Early uses of topK sparsification did not consider compressing the gradient in the server-
to-worker direction, since the sum of gradients received by the server is already a sparse
gradient if the number of participating workers is small. However, as the number of workers
in the network has increased over the years, it has become important to consider the
downlink compression [5, 22]. We describe bidirectional compression in Algorithms 8 and
9.

Bidirectional sparsification has been used in the Federated Learning setting. Sattler et
al. evaluated communication protocols for Federated Learning, and suggested adding topK

sparsification in the server-to-worker direction [22]. They reported that using bidirectional
topK sparsification did not destabilize the training as much as using bidirectional signSGD.

Beyond applications in Federated Learning, theoretical frameworks to evaluate the con-
vergence rate of bidirectional biased compression techniques with error-feedback framework
have been developed in [31, 35]. As far as we know, Tang et al. is the first to have developed
convergence analysis for bidirectional error feedback SGD compatible with any compres-
sion technique, and admits the same convergence rate as SGD under certain assumptions
[31]. Zheng et al. developed a similar theoretical framework to Tang et al. independently
[35]. The convergence bound in [31, 35] is discussed later in Section 5.5.

Existing work on bidirectional compression frameworks claim that adding server-to-
worker compression degrades the model performance [20], while other analysis show a worse
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convergence bound [31, 35]. However, we claim that bidirectional topK sparsification can
potentially have better convergence than unidirectional topK sparsification, which to the
best of our knowledge is not captured by previous analysis. We motivate this with an
example that shows when bidirectional topK SGD can converge closer to the optimum
value than unidirectional topK SGD at the start of the next chapter.

Algorithm 8: TopK Bidirectional SGD Worker Side (Worker q)

Input: Stochastic Gradient Oracle gq(·; ·), learning rate sequence {αt}t≥0

1 Initialize w0 ∈ Rd; ϵq0 = 0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 aqt←ϵqt−1 + αt−1g

q(wt−1, ξ
q
t−1);

4 ϵqt←aqt − TopK(a
q
t );

5 SEND(TopK(a
q
t ), server);

6 RECV(TopK(gt), server);
7 wt←wt−1 − TopK(gt);
8 t = t+ 1;

9 end

Algorithm 9: TopK Bidirectional SGD Server Side

Input: probability vector (p0, . . . , pN)
1 Initialize δ0 = 0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 for every worker q do
4 RECV(TopK(a

q
t ), q);

5 end

6 gt←
∑N

q=1 pqTopK(a
q
t ) + δt−1;

7 δt←gt − TopK(gt);
8 for every client q do
9 SEND(TopK(gt), q);

10 end
11 t = t+ 1;

12 end
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Chapter 4

Motivating Example of Bidirectional
TopK Outperforming Unidirectional
TopK

In this chapter we study a simple case where bidirectional topK SGD can outperform
unidirectional topK SGD, give reasoning to why this happens, and introduce an assumption
that can capture this reason.

4.1 Problem Setup

Consider solving the distributed problem with 3 workers

min
w∈R100

F (w) ≜
1

3

3∑
q=1

F q(w),

where

F 1(w) ≜
1

2
(w − 1⃗)T (w − 1⃗),

F 2(w) ≜
1

2
(w − 5⃗)T (w − 5⃗),

F 3(w) ≜
1

2
(w − 1⃗0)T (w − 1⃗0).
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The minimum value of F (w) is 6100
9
, when w = 1⃗6

3
. We initialize w0 ∈ R100 generated

from N (20, 1) with random seed 10, and run bidirectional topK SGD from Algorithms 8
and 9, where each update step is

wt = wt−1 − TopK(δt−1 +
1

3

3∑
q=1

TopK(ϵ
q
t−1 + αt−1∇F q(wt−1))),

topK SGD with uplink compression from Algorithms 6 and 7, where each update step is

wt = wt−1 −
1

3

3∑
q=1

TopK(ϵ
q
t−1 + αt−1∇F q(wt−1)),

and topK SGD with downlink compression from Algorithms 10 and 11, where each update
step is

wt = wt−1 − TopK(δt−1 + αt−1
1

3

3∑
q=1

∇F q(wt−1)).

Each SGD algorithm is run for 1000 iterations on step size α = 0.01 and K = 1, and
F (wt) is plotted after each iteration in Figure 4.1. Some initial iterations are removed so
F (wt) is close to the minimum value F ∗.

200 400 600 800 1000
Iteration

680

700

720

740

760

780

800

820

F(
w)

unidirectional (uplink)
unidirectional (downlink)
bidirectional
F *

Figure 4.1: Convergence of unidirectional vs bidirectional topK SGD run with K = 1 and
α = 0.01.
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Algorithm 10: TopK Unidirectional (Downlink) SGD Worker Side (Worker q)

Input: Stochastic Gradient Oracle gq(·; ·), learning rate sequence {αt}t≥0

1 Initialize w0; t = 1;
2 while t ≥ 1 do
3 SEND(αt−1g

q(wt−1, ξ
q
t−1));

4 RECV(TopK(gt), server);
5 wt←wt−1 − TopK(gt);
6 t = t+ 1;

7 end

Algorithm 11: TopK Unidirectional (Downlink) SGD Server Side

Input: probability vector (p0, . . . , pN)
1 Initialize δ0 = 0 ∈ Rd; t = 1;
2 while t ≥ 1 do
3 for every worker q do
4 RECV(αt−1g

q(wt−1, ξ
q
t−1), q);

5 end

6 gt←
∑N

q=1 pqαt−1g
q(wt−1, ξ

q
t−1) + δt−1;

7 δt←gt − TopK(gt);
8 for every client q do
9 SEND(TopK(gt), q);

10 end
11 t = t+ 1;

12 end

4.2 Discussion

Both unidirectional (uplink) and bidirectional topK SGD oscillates periodically at a dis-
tance away from the optimal value. However, bidirectional topK SGD converges closer to
the F ∗ than unidirectional uplink topK SGD, which is counter-intuitive, since we should
be losing information by adding downlink compression.

We provide an explanation of this by observing the gradients from each worker in
unidirectional topK SGD at t = 210. aqt from each worker q in line 3 of Algorithm 6 is
shown in Figure 4.2. We note that the non-zero components from the sum of topK updates,∑3

i=1TopK(a
q
t ), shown in Figure 4.3 is very different from the corresponding components in
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the sum of updates,
∑3

i=1 a
q
t , shown in Figure 4.4. This happens because the components

from worker 1 and worker 3 have opposite signs. If the largest gradient component from
workers 1 and 3 do not have the same index, then

∑3
i=1 TopK(a

q
t ) will be far from

∑3
i=1 a

q
t .

In our example, the norm of the difference between the full update and unidirectional
(uplink) update step is greater than the norm of the difference between the full and the
bidirectional update. Specifically, for unidirectional (uplink) topK SGD, at t = 210,

∥
3∑

q=1

aqt −
3∑

q=1

TopK(a
q
t )∥2 = 21.80,

while

∥
3∑

q=1

aqt − TopK(
3∑

q=1

TopK(a
q
t ))∥2 = 21.54,

showing that adding downlink topK sparsification brings the update closer to the uncom-
pressed update. While applying downlink compression causes the gradient to lose informa-
tion, it is also causing the gradient to lose “bad” information. This motivates us to split
the error into 2 parts for unidirectional topK SGD,

∥
N∑
q=1

pqa
q
t −

N∑
q=1

pqTopK(a
q
t )∥2

≤ ∥
N∑
q=1

pqa
q
t − TopK(

N∑
q=1

pqa
q
t )∥2 + ∥TopK(

N∑
q=1

pqa
q
t )−

N∑
q=1

pqTopK(a
q
t )∥2,

(4.1)

and

∥δt−1 +
N∑
q=1

pqa
q
t − TopK(δt−1 +

N∑
q=1

pqTopK(a
q
t ))∥2

≤ ∥δt−1 +
N∑
q=1

pqa
q
t − TopK(δt−1 +

N∑
q=1

pqa
q
t )∥2+

∥TopK(δt−1 +
N∑
q=1

pqa
q
t )− TopK(δt−1 +

N∑
q=1

pqTopK(a
q
t ))∥2,

(4.2)

for bidirectional topK SGD.
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One benefit of the new representation is that it has nice physical meaning. The first
norm is the error inherent to the compressor and can be bounded by γ-approximate
compressor defined in (3.2), and the second norm is the error that comes from the dis-
tributed system, which occurs when the gradients from the local workers are not repre-
sentative of the global gradient. Plotting ∥TopK(

∑N
q=1 pqa

q
t ) −

∑N
q=1 pqTopK(a

q
t )∥2 and

∥TopK(δt−1+
∑N

q=1 pqa
q
t )−TopK(δt−1+

∑N
q=1 pqTopK(a

q
t ))∥2 in Figure 4.5 for bidirectional

and unidirectional downlink topK SGD, we see that adding a downlink topK compressor
to unidirectional topK SGD can generally reduce the distributed error after t = 200.

Alistarh et al. consider ∥TopK(
∑N

q=1 pqa
q
t ) −

∑N
q=1 pqTopK(a

q
t )∥2 in their analysis of

unidirectional topK SGD, though they divide this value by ∥
∑N

q=1 pqg
q(wt−1, ξ

q
t−1))∥2 [3].

This is present in their analysis as an assumption we describe later in Chapter 5. The
authors explain this as a bound on the variance of the local gradients with respect to the
global variance. They give an example to illustrate this: consider an instance with two
nodes, dimension 2, and K = 1. Assume that node 1 has gradient vector (−1001, 500),
and node 2 has gradient vector (1001, 500). Applying the top1 of the sum of gradients
gives (0, 1000). However, applying the sum of top1 results in (0, 0), which is not desirable.
Assumption 5.6 in Chapter 5 limits the variability at the local nodes [3]. We can easily use
this example for the bidirectional case. Applying top1 to the sum of top1 gradients will
give us (0, 0), which gives us the same problem.

We also mention that iterating with topK SGD with downlink compression causes the
{wt} sequence to converge to the correct value in our example, since the exact weights are
fixed point, showing that TopK(δt−1 +

∑N
q=1 a

q
t ) could be a good benchmark for measuring

how well an update step will perform. We will use this observation in our analysis in the
next section.
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Figure 4.2: aqt from each worker at t = 210 for unidirectional topK SGD.
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Figure 4.3:
∑N

q=1TopK(a
q
t ) at t = 210 for unidirectional topK SGD.
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Figure 4.4:
∑N

q=1 a
q
t at t = 210 for unidirectional topK SGD. Orange gradient components

corresponds to the non-zero gradient gradient components in Figure 4.3.
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Figure 4.5: Average ∥TopK(
∑N

q=1 pqa
q
t ) −

∑N
q=1TopK(pqa

q
t )∥2 values every 10 itera-

tions for unidirectional topK SGD and average ∥TopK(δt−1 +
∑N

q=1 pqa
q
t ) − TopK(δt−1 +∑N

q=1TopK(pqa
q
t ))∥2 values every 10 iterations for bidirectional topK SGD.
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Chapter 5

Bidirectional TopK Convergence
Analysis

We want to minimize the weighted average of N different functions across N nodes:

min
w∈Rd

F (w) ≜
N∑
q=1

pqF
q(w).

5.1 Assumptions

Before we focus on the non-convex convergence of Algorithms 8 and 9, we make the fol-
lowing assumptions, most of which we have discussed in Section 2.7 and Section 3.1.

Assumption 5.1 (Existence of lower bound). There exists some constant F ∗ such that
F (w) ≥ F ∗ for all w ∈ Rd.

Assumption 5.2 (Biased compressor guarantee). Since the TopK compressor is de-
terministic, we remove the expectation present in (3.1). There exists some γ ∈ (0, 1) such
that

∥TopK(w)− w∥22 ≤ (1− γ)∥w∥22 ∀w ∈ Rd. (5.1)

We mention that we can always find a γ value to satisfy this assumption for topK , since
we know

∥TopK(w)− w∥22 ≤
d−K

d
∥w∥22, (5.2)
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where d is the dimension of the gradient. We know γ ∈ [K
d
, 1], and γ = 1 when K = d.

Assumption 5.3 (Lipschitz continuous gradient). F is continuously differentiable and
the gradient ∇F : Rd → Rd is Lipschitz continuous with constant L > 0, i.e.

∥∇F (w)−∇F (v)∥2 ≤ L∥w − v∥2 ∀w, v ∈ Rd.

Assumption 5.4 (First and second moment). The objective function and Algorithm
8 and 9 satisfy the following:

E[
N∑
q=1

pqg
q(w, ξqt )] =

N∑
q=1

pq∇F q(w) ∀w ∈ Rd,∀t ∈ N. (5.3)

and

E[∥
N∑
q=1

pqg
q(w, ξqt )∥22] ≤M ∀w ∈ Rd, ∀t ∈ N. (5.4)

where E[·] is taken with respect to the joint distribution of {ξ1t , ξ2t , ..., ξNt }.

Assumption 5.5. Given a sequence of iterates {wt}, there exists ρ > 0 such that

∥TopK(δt−1 +
N∑
q=1

pqa
q
t )−TopK(δt−1 +

N∑
q=1

TopK(pqa
q
t ))∥2

≤ ρ∥αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)∥2 ∀t ∈ N.

Assumption 5.5 is similar to the assumption made by Alistarh et al [3], which is dis-
cussed in Section 4.2. It’s role is to bound the gap between the topK of the gradient sum
and the bidirectional topK SGD update step, as opposed to the gap between the topK of
the gradient sum and the unidirectional topK SGD update step.

5.2 Concept and Intuition

Our proof of non-convex convergence for bidirectional topK SGD is similar to the proof
for unidirectional topK SGD provided by Alistarh et al [3]. The proof follows the same
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intuition used by convergence proofs of gradient descent methods with the error feedback
framework [3, 14].

We consider an error-corrected sequence,

w̃t = wt −
N∑
q=1

pqϵ
q
t − δt, (5.5)

where w̃t is the parameter vector after adjusting the error term stored on all workers and
server. To get the non-convex convergence bound, we apply the standard proof of SGD to
w̃t, and show that w̃t ≈ wt and ∇F (w̃t) ≈ ∇F (wt).

5.3 Convergence Analysis

In this section, we analyze the convergence of the stochastic sequence {wt}t≥0 in Algorithm
8 and 9 in the non-convex setting. We follow the proof structure created by Alistarh et al
[3].

Lemma 5.1. Let {w̃t}t≥0 be defined in 5.5, and {wt}t≥0, {αt}t≥0, and pi for 1 ≤ i ≤ N be
defined in Algorithm 8 and 9. Then

w̃t = w̃t−1 − αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1). (5.6)
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Proof. We have

w̃t = wt − δt −
N∑
q=1

pqϵ
q
t

= wt−1 − TopK(gt)− δt −
N∑
q=1

pqϵ
q
t

= wt−1 − gt −
N∑
q=1

pqϵ
q
t

= wt−1 − δt−1 −
N∑
q=1

pqTopK(a
q
t )−

N∑
q=1

pqϵ
q
t

= wt−1 − δt−1 −
N∑
q=1

pqa
q
t

= w̃t−1 +
N∑
q=1

pqϵ
q
t−1 + δt−1 − δt−1 −

N∑
q=1

pqa
q
t

= w̃t−1 − αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1).

(5.7)

Lemma 5.2. Let {wt}t≥0 be defined by Algorithm 8 and 9, and {w̃t}t≥0 be defined by (5.5).
Under Assumptions 5.2 and 5.5, we have

∥wt − w̃t∥2 ≤
1

λ
(
√
1− γ + ρ)2

1

1− γ

t∑
i=1

((1 + λ)(1− γ))i∥w̃t−i+1 − w̃t−i∥22, (5.8)

where one can choose the constant λ ∈ (0, γ
1−γ

).

Proof. Applying Lemma 5.1 and the iterative relation of sequence {wt}t≥0 defined in Al-
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gorithms 8 and 9, we get:

∥wt − w̃t∥2 = ∥wt−1 − w̃t−1 + αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)−

TopK(
N∑
q=1

pqTopK(a
q
t ) + δt−1)∥2

= ∥δt−1 +
N∑
q=1

pqϵ
q
t−1 + αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)−

TopK(
N∑
q=1

pqTopK(a
q
t ) + δt−1)∥2

≤ ∥δt−1 +
N∑
q=1

pqa
q
t − TopK(δt−1 +

N∑
q=1

pqa
q
t )∥2+

∥TopK(δt−1 +
N∑
q=1

pqa
q
t )− TopK(δt−1 +

N∑
q=1

TopK(pqa
q
t ))∥2.

(5.9)

From Assumption 5.2, we have

∥δt−1 +
N∑
q=1

pqa
q
t − TopK(δt−1 +

N∑
q=1

pqa
q
t )∥2 ≤

√
1− γ∥δt−1 +

N∑
q=1

pqa
q
t∥2. (5.10)

From Assumption 5.5, we have

∥TopK(δt−1 +
N∑
q=1

pqa
q
t )−TopK(δt−1 +

N∑
q=1

TopK(pqa
q
t ))∥2

≤ ρ∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2.

(5.11)
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Combining (5.10) and (5.11) with (5.9), we get

∥wt − w̃t∥2 ≤
√

1− γ∥δt−1 +
N∑
q=1

pqa
q
t∥2 + ρ∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2

≤
√
1− γ∥δt−1 +

N∑
q=1

pqϵ
q
t−1∥2+

(
√
1− γ + ρ)∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2

≤
√
1− γ∥wt−1 − w̃t−1∥2 + (

√
1− γ + ρ)∥w̃t − w̃t−1∥2,

(5.12)

where the final inequality in (5.12) is from Lemma 5.1 and the definition of the error-
corrected sequence w̃t given in (5.5). Taking the square, we get

∥wt − w̃t∥22 = (
√
1− γ∥wt−1 − w̃t−1∥2 + (

√
1− γ + ρ)∥w̃t − w̃t−1∥2)2

≤ (1 + λ)(1− γ)∥wt−1 − w̃t−1∥22+

(1 +
1

λ
)(
√

1− γ + ρ)2∥w̃t − w̃t−1∥22,
(5.13)

which holds for any λ > 0. For reasons that will become clear later, we choose λ ∈ (0, γ
1−γ

).

Iterating downwards on (5.13) gives

∥w̃t − wt∥22 ≤
t∑

i=1

((1 + λ)(1− γ))i−1(1 +
1

λ
)(
√

1− γ + ρ)2∥w̃t−i+1 − w̃t−i∥22

=
1

λ
(
√

1− γ + ρ)2
1

1− γ

t∑
i=1

((1 + λ)(1− γ))i∥w̃t−i+1 − w̃t−i∥22

(5.14)

Lemma 5.3. Under the same setting as Lemma 5.2 as well as Assumption 5.4, assume
that

1

1− γ

t∑
i=1

((1 + λ)(1− γ))i
α2
t−i

αt

≤ D,

for some constant λ > 0 and D > 0. Then

E[∥wt − w̃t∥22] ≤
M

λ
(
√
1− γ + ρ)2αtD.
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Proof. Using Lemma 5.1 and Assumption 5.4, for t ∈ N,

E[∥w̃t − w̃t−1∥22] ≤ α2
t−1E[∥

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)∥22]

≤ α2
t−1M.

(5.15)

Take expectation to the inequality in Lemma 5.2 and combine with (5.15):

E[∥wt − w̃t∥22] ≤
1

λ
(
√

1− γ + ρ)2
1

1− γ

t∑
i=1

((1 + λ)(1− γ))iE[∥w̃t−i+1 − w̃t−i∥22]

≤ 1

λ
(
√

1− γ + ρ)2αt
1

1− γ

t∑
i=1

((1 + λ)(1− γ))iM
α2
t−i

αt

≤ M

λ
(
√

1− γ + ρ)2αtD.

(5.16)

Theorem 5.4. Under Assumptions 5.1, 5.2, 5.3, 5.4, and 5.5, if a learning rate sequence
{αt}t≥0 and constant λ ∈ (0, 1−γ

γ
) is chosen such that ∀t > 0 there exists constant D > 0

with
1

1− γ

t∑
i=1

((1 + λ)(1− γ))i
α2
t−i

αt

≤ D, (5.17)

then running Algorithm 8 and 9 for T iterations will give

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
2∑T

t=0 αt

(F (w0)− F ∗)

+

(
LM +

L2MD(
√
1− γ + ρ)2

λ

) ∑T
t=0 α

2
t∑T

t=0 αt

.

(5.18)

Proof. Denote Eξt [·] to be the expectation taken with respect to the joint distribution of
{ξ1t , ξ2t ..., ξNt } given all random variables before time t. Starting with Assumption 5.3 and
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taking Eξt [·] on both sides of the inequality, we get

Eξt [F (w̃t+1)] ≤ F (w̃t) + ⟨∇F (w̃t),Eξt [w̃t+1 − w̃t]⟩+
L

2
Eξt [∥w̃t+1 − w̃t∥22]

= F (w̃t)− αt⟨∇F (w̃t),Eξt [
N∑
i=1

pqg(wt, ξ
q
t )]⟩+

Lαt
2

2
Eξt [∥

N∑
i=1

pqg(wt, ξ
q
t )∥22]

≤ F (w̃t)− αt⟨∇F (w̃t),∇F (wt)⟩+
Lαt

2M

2

≤ F (w̃t)− αt⟨∇F (wt),∇F (wt)⟩+
Lαt

2M

2
+

αt⟨∇F (wt)−∇F (w̃t),∇F (wt)⟩

≤ F (w̃t)− αt∥∇F (wt)∥22 +
Lαt

2M

2
+

αt

2
∥∇F (wt)∥22 +

αt

2
∥∇F (wt)−∇F (w̃t)∥22

≤ F (w̃t)−
αt

2
∥∇F (wt)∥22 +

Lαt
2M

2
+

αtL
2

2
∥wt − w̃t∥22.

(5.19)

Taking expectation with respect to the joint distribution of all random variables on
both sides of the inequality, we get

E[F (w̃t+1)] ≤ E[F (w̃t)]−
αt

2
E[∥∇F (wt)∥22] +

Lαt
2M

2
+

αtL
2

2
E[∥wt − w̃t∥22]. (5.20)

Applying Lemma 5.3,

E[F (w̃t+1)] ≤ E[F (w̃t)]−
αt

2
E[∥∇F (wt)∥22] +

Lα2
tM

2
+

α2
tL

2

2

M

λ
(
√

1− γ + ρ)2D.

Telescoping and rearranging, we get

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
T∑
t=0

2(E[F (w̃t)]− E[F (w̃t+1)]) + Lα2
tM+

α2
tL

2MD(
√
1− γ + ρ)2

λ
,
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or

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
2∑T

t=0 αt

(F (w0)− F ∗)

+

(
LM +

L2MD(
√
1− γ + ρ)2

λ

) ∑T
t=0 α

2
t∑T

t=0 αt

,

(5.21)

as desired.

In order for the upper bound in (5.21) to converge to zero we need
∑∞

t=1 αt = ∞ and∑∞
t=1 α

2
t < ∞. We can choose the stepsize sequence αt =

1
(t+1)θ

, 1
2
< θ ≤ 1. Finally, we

need to check if the sequence can satisfy (5.17).

We can ensure (5.17) is bounded by requiring (1 + λ)(1 − γ) < 1. λ must be chosen
so that λ ∈ (0, γ

1−γ
). We can always find a λ that satisfies the inequality, since γ ∈ (0, 1)

from Assumption 5.2. It is then easy to see that (5.17) is satisfied, since the exponential
term dominates the polynomial term. We include a derivation of an upper bound of D in
(5.17) in Appendix A.

5.4 Non-Convex Convergence of Unidirectional TopK

Sparsification

In this section, we provide the proof of convergence for unidirectional topK sparsification
described in Algorithm 6 and 7. Our proof of convergence for unidirectional convergence
follows the non-convex proof provided by Alistarh et al. closely, with some adjustments to
remove their limitation that K > 1

2
d, where d is the size of the gradient [3].

We use Assumption 5.1, 5.2, 5.3, and 5.4 for our non-convex analysis of unidirectional
topK sparsification. However, instead of Assumption 5.5, we have

Assumption 5.6. Given a sequence of iterates {wt}, there exists ρ > 0 such that

∥TopK(
N∑
q=1

pqa
q
t )−

N∑
q=1

TopK(pqa
q
t ))∥2 ≤ ρ∥αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)∥2 ∀t ∈ N. (5.22)

Similar to bidirectional topK , we consider an error-corrected sequence w̃t.

w̃t = wt −
N∑
q=1

pqϵ
q
t . (5.23)
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Lemma 5.5. Let {w̃t}t≥0 be defined in 5.23, and {wt}t≥0, {αt}t≥0, and pi for 1 ≤ i ≤ N
be defined in Algorithm 6 and 7. Then

w̃t = w̃t−1 − αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1). (5.24)

Proof. We have

w̃t = wt −
N∑
q=1

pqϵ
q
t

= wt−1 −
N∑
q=1

pqTopK(a
q
t )−

N∑
q=1

pqϵ
q
t

= wt−1 −
N∑
q=1

pqa
q
t

= w̃t−1 − αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1).

(5.25)

Lemma 5.6. Let {wt}t≥0 be defined by Algorithm 6 and 7, let {w̃t}t≥0 be defined by 5.23
and define a constant λ > 0. Under Assumptions 5.2 and 5.6

∥wt − w̃t∥2 ≤
√

1− γ∥wt−1 − w̃t−1∥2 + (
√
1− γ + ρ)∥w̃t − w̃t−1∥2. (5.26)

Proof. Applying Lemma 5.1 and the iterative relation of sequence {wt}t≥0 defined in Al-
gorithm 8 and 9 we get:

∥wt − w̃t∥2 = ∥wt−1 − w̃t−1 + αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)−

N∑
q=1

pqTopK(a
q
t )∥2

= ∥
N∑
q=1

pqϵ
q
t−1 + αt−1

N∑
q=1

pqg
q(wt−1, ξ

q
t−1)−

N∑
q=1

pqTopK(a
q
t )∥2

≤ ∥
N∑
q=1

pqa
q
t − TopK(

N∑
q=1

pqa
q
t )∥2+

∥TopK(
N∑
q=1

pqa
q
t )−

N∑
q=1

pqTopK(a
q
t )∥2.

(5.27)
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From Assumption 5.2, we have

∥
N∑
q=1

pqa
q
t − TopK(

N∑
q=1

pqa
q
t )∥2 ≤

√
1− γ∥

N∑
q=1

pqa
q
t∥2. (5.28)

And from Assumption 5.6, we have

∥TopK(
N∑
q=1

pqa
q
t )− TopK(

N∑
q=1

TopK(pqa
q
t ))∥2 ≤ ρ∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2. (5.29)

Combining 5.28 and 5.29 with 5.27, we get

∥wt − w̃t∥2 ≤
√
1− γ∥

N∑
q=1

pqa
q
t∥2 + ρ∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2

≤
√
1− γ∥

N∑
q=1

pqϵ
q
t−1∥2 + (

√
1− γ + ρ)∥αt−1

N∑
q=1

pqg(wt−1, ξ
q
t−1)∥2

≤
√
1− γ∥wt−1 − w̃t−1∥2 + (

√
1− γ + ρ)∥w̃t − w̃t−1∥2.

(5.30)

as desired.

We note that (5.12) and (5.26) are the same. From this point, the proof for unidi-
rectional non-convex convergence is the same as the proof for bidirectional non-convex
convergence. Following the convergence analysis of Section 5.3, we get the following result.

Theorem 5.7. Under Assumptions 5.1, 5.2, 5.3, 5.4, and 5.6, if a learning rate sequence
{αt}t≥0 and constant λ ∈ (0, 1−γ

γ
) is chosen such that ∀t > 0 there exists constant D > 0

with
1

1− γ

t∑
i=1

((1 + λ)(1− γ))i
α2
t−i

αt

≤ D, (5.31)

then running Algorithm 6 and 7 for T iterations gives

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
2∑T

t=0 αt

(F (w0)− F ∗)

+

(
LM +

L2MD(
√
1− γ + ρ)2

λ

) ∑T
t=0 α

2
t∑T

t=0 αt

.

(5.32)
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5.5 Discussion

We remark that after changing Assumption 5.6 to Assumption 5.5, bidirectional topK SGD
has the same convergence bound as unidirectional topK SGD. If we choose the step size to
be αt =

1
(t+1)1/2+ϵ , where ϵ is an arbitrarily small number, the bound in Theorem 5.4 and

Theorem 5.7 will approach 0 at O(1/
√
T ). Both have the same asymptotic convergence rate

as SGD. We briefly comment that there is a slight mistake in the convergence analysis of
Alistarh et al., and the ρ value in Assumption 5.6 should not be dampened by the number
of workers [3]. We compare the performance of bidirectional to unidirectional topK SGD
in Chapter 6, and estimate the values of the constants in their convergence bound.

We briefly mention the convergence bounds provided by Tang et al. and Zheng et al.
[31, 35], which are

c1√
NT

+
c2

T
2
3

+
c3
T
,

where c1, c2 and c3 are positive constants. The analysis provided in [31, 35] is non-
asymptotic: the authors fix an iterate T , then choose a stepsize. Tang et al. only provide
analysis for constant stepsize [31], and the algorithm for bidirectional compression with
decreasing stepsize described by Zheng et al. is different from Algorithms 8 and 9: they
rescale the accumulated error term ϵqt and δt by αt−1/αt every iteration [35]. We also note
that the value bounded by [35] is

1∑T−1
k=0 αk(3− 2Lαk)

T−1∑
t=0

αt(3− 2Lαt)E[∥F (wt)∥22],

which is non-standard.

The main advantage of our bidirectional topK analysis is that it shows that bidirectional
topK SGD can perform as well as, if not better than, unidirectional topK SGD. We also
comment that the analysis for bidirectional topK can be applied to other bidirectional
compression algorithms with error feedback, and can give the reader an intuition of how
to choose a downlink compressor C2 given uplink compressor C1. Specifically, we want to
choose a compressor C2 such that,

∥C1(δt−1 +
N∑
q=1

gq(wt−1, ξ
q
t−1) + ϵqt−1)−

C2(δt−1 +
N∑
q=1

pqC1(ϵ
q
t−1 + αt−1g

q(wt−1, ξ
q
t−1)))∥2 ≈ 0.

(5.33)
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We can use this method to evaluate potential hybrid strategies, where C2 is different
from C1. (5.33) can help us gain a better understanding of which downlink compressors
can be used with an uplink compressor.

39



Chapter 6

Experiment Results

This chapter describes the setup of experiments, the results, and some discussion towards
their implication.

6.1 Testing Framework

The testing framework used to evaluate bidirectional topK SGD against unidirectional topK

SGD is written with the PyTorch library. To circumvent the difficulty of acquiring a large
number of workers to test on, we build on Jadhav’s GitHub repository Federated-Learning-
PyTorch [4]. The framework simulates distributed training on a single machine. It does
this by instantiating a number of models locally, dividing the dataset among the models,
training the model on the divided dataset, and synchronizing models at appropriate times.
Specifically, we use Jadhav’s method of assigning data to workers as well as their general
idea behind synchronizing parameters across local models [4].

Our main contributions to the repository are as follows: 1) sparsifying gradients in both
the uplink and downlink direction, 2) adding error feedback memory terms, 3) synchroniz-
ing after each batch instead of after each epoch.
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6.2 Differences Between Theoretical and Experiment

Setup

We mention experiment settings that are not reflected in the theory presented in Chapter
5. The first is that the data chosen in each epoch is sampled without replacement using
a technique called random reshuffling (RR) [8]. For our convergence analysis, this means
that the variables ξ are not iid across time t and across workers. As far as we know, this
difference is common in gradient compression research [3, 6, 14, 31, 35], as RR has been
shown to converge faster than SGD on many experiments, but the convergence property
of SGD is more well understood [9].

Another difference is the choice of step size. In our analysis, the stepsize is decreased
in each iteration or batch. In practice, the stepsize for topK sparsification is decayed after
a fixed number of epochs or kept constant. Tang et al trains bidirectional topK SGD for
320 epochs on a learning rate of 0.1 for the first 160 epochs and a learning rate of 0.01 for
the second 160 epochs [31]. Sattler et al uses a constant learning rate to train their models
with bidirectional topK sparsification [22]. For our experiments the learning rates are kept
constant.

6.3 Experiment Setup

Experiments are run on MNIST [11] and Fashion-MNIST [33] datasets with multilayer per-
ceptrons and convolution neural networks with 20, 50 and 100 workers. We randomly split
the 60000 elements of the training set into equal size sets and assign each to a worker. The
models are trained with SGD, unidirectional topK SGD, and bidirectional topK SGD and
evaluated on a test set of 10000. We set the minibatch size to 10 for all models regardless
of number of workers participating, and train the models for 100 epochs. The learning rate
for SGD, unidirectional topK SGD, and bidirectional topK SGD is tuned separately from
0.01 to 0.25 with step increase of 0.01, unlike previous bidirectional compression experi-
ments, which use the same learning rate [22, 31]. We include the optimum learning rate of
all models in Table B.1. There are models where the optimum learning rate differs dras-
tically when run with unidirectional topK and bidirectional topK SGD, such as the MLP
model trained on the MNIST dataset and the CNN model trained on the Fashion-MNIST
dataset. This suggests, contrary to Sattler et al ’s suggestion [22], that it may be unfair to
compare unidirectional and bidirectional topK SGD under the same learning rate.

We also perform experiments on a VGG19 network [28] trained on the CIFAR10 [15]
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dataset with 20 workers for SGD, unidirectional topK SGD, and bidirectional topK SGD.
These models are trained with batch size 100 for 200 epochs. We tune the learning rate of
the VGG19 network trained with SGD on learning rates 0.01, 0.02, 0.05 and 0.1, and use
the same learning rate for unidirectional and bidirectional topK SGD.

For all models we choose K ≈ 0.001d for the TopK operator, where d is the size of the
gradient. Due to PyTorch specifics, we calculate K in the following manner,

K = d− ⌊(1− 0.001)d⌋ ,

and we include the gradient size and the corresponding K value of each model we tested
on in Table 6.1.

Dataset Model d K

MNIST
MLP 50890 51

CNN 1199882 1200

Fashion-MNIST
MLP 242762 243

CNN 29034 30

CIFAR10 VGG19 20040522 20041

Table 6.1: Model and gradient size used in experiments. The K value for the uplink and
downlink compressor are the same for bidirectional topK SGD.

6.4 Unidirectional vs Bidirectional Training Loss and

Test Accuracy

We compare the results of unidirectional and bidirectional compression in this section.
With careful tuning, both unidirectional and bidirectional topK SGD achieve the same
test accuracy as SGD. We include the results for the Fashion-MNIST MLP network in
Figure 6.1 and 6.2, and the results for the CIFAR10 VGG19 network in Figure 6.3 and 6.4.
The figures for the rest of the models are located in Appendix C.1. The results show that
bidirectional topK SGD and unidirectional topK SGD can achieve similar test accuracy
and train loss in the same number of epochs. We also mention that bidirectional topK

SGD and unidirectional topK SGD can achieve similar testing accuracy and training loss
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to vanilla SGD, with the exception of the VGG19 model trained on CIFAR10 dataset. We
see in Figure 6.3 that the final testing accuracy of the VGG19 model trained on CIFAR10
with compressed SGD methods is slightly lower than the final testing accuracy of the model
trained with SGD. However, we mention that the training loss are approximately the same
in Figure 6.4.
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Figure 6.1: Comparison of testing accuracy for MLP model trained on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size
10. Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure 6.2: Comparison of training loss for MLP model trained on Fashion-MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure 6.3: Comparison of testing accuracy for VGG19 model trained on CIFAR10 data for
unidirectional topK , bidirectional topK and vanilla SGD on 20 workers. Trained on batch
size 100. Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure 6.4: Comparison of training loss for VGG19 model trained on CIFAR10 data for
unidirectional topK , bidirectional topK and vanilla SGD on 20 workers. Trained on batch
size 100. Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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6.5 Compression Rate of Downlink TopK Sparsifica-

tion

Unlike uplink compression, the number of bits saved from downlink compression is related
to the number of participating workers. For example, if N workers contributed sparse gra-
dients of size Kuplink, then the gradient sent back by the server after aggregation is a sparse
gradient with size at most KuplinkN .1 Applying topK sparsification in the downlink will
compress the gradient to at most Kdownlink/(KuplinkN) of its size. If Kdownlink = Kuplink,
downlink topK sparsification compresses the gradient to almost 1/N of its size. If the
indices of the gradient components contributed by different workers overlap, then the com-
pression factor is greater thanKdownlink/(KuplinkN). We measure the percentage of non-zero
indices in the sum of gradients from the workers, which we show in Figure 6.5 and 6.6, and
Appendix C.3. For all experiments, we see that the percentage approaches KuplinkN/d as
the number of iterations increase, showing that the compression rate of the downlink topK

compressor is almost as large as possible.

Using our findings, the time it takes to transfer a gradient from worker-to-server then
server-to-worker for unidirectional compression is

α1 + 2Kuplinkβ1 + α2 + 2NKuplinkβ2, (6.1)

and the time it takes to transfer a message in bidirectional compression is

α1 + 2Kuplinkβ1 + α2 + 2Kdownlinkβ2, (6.2)

where α1 is the latency of a message transfer between worker-to-server, α2 is latency of
a message transfer from server-to-worker, β1 is the uplink transfer time for a 32-bit float,
and β2 is the downlink transfer time for a 32-bit float.

We need to double the communication time between nodes since the system needs to
communicate the indices of the non-zero elements of the gradient in addition to the value
of each gradient component.

1In this section, the size of the gradient refers to the number of non-zero components in the gradient,
not the magnitude of the gradient.
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Figure 6.5: Percent of non-zero indices after aggregating sparse gradients from workers.
Trained on a MLP network using Fashion-MNIST dataset. Kuplink = Kdownlink ≈ 0.001d.
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Figure 6.6: Percent of non-zero indices after aggregating sparse gradients from workers.
Trained on a VGG19 network using CIFAR10 dataset. Kuplink = Kdownlink ≈ 0.001d.
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6.6 Behaviour of Constants in Convergence Analysis

In this section, we estimate the constants ρ and γ from the convergence bound of unidi-
rectional and bidirectional topK SGD in Theorem 5.4 and Theorem 5.7. For SGD with
bidirectional sparsification, using the notation from Algorithms 8 and 9, we record the
sequences {ρ̂t}, {1− γ̂downward

t }, and {1− γ̂uplink
t } for each batch, where

ρ̂t =
∥TopK(δt−1 +

∑N
q=1 pqa

q
t )− TopK(δt−1 +

∑N
q=1TopK(pqa

q
t ))∥2

∥αt−1

∑N
q=1 pqg

q(wt−1, ξ
q
t−1)∥2

, (6.3)

1− γ̂downlink
t =

∥TopK(δt−1 +
∑N

q=1TopK(pqa
q
t ))− δt−1 −

∑N
q=1TopK(pqa

q
t )∥2

∥δt−1 +
∑N

q=1TopK(pqa
q
t )∥2

, (6.4)

and

1− γ̂uplink
t = max

{
∥TopK(pqa

q
t )− pqa

q
t∥

∥pqaqt∥
: 1 ≤ q ≤ N

}
. (6.5)

For SGD with unidirectional sparsification, using notation from Algorithms 6 and 7,
we record the sequences {ρ̂t}, {1− γ̂uplink

t } for each minibatch, where

ρ̂t =
∥TopK(

∑N
q=1 pqa

q
t )−

∑N
q=1TopK(pqa

q
t ))∥2

∥αt−1

∑N
q=1 pqg

q(wt−1, ξ
q
t−1)∥2

, (6.6)

and

1− γ̂uplink
t = max

{
∥TopK(pqa

q
t )− pqa

q
t∥

∥pqaqt∥
: 1 ≤ q ≤ N

}
. (6.7)

We estimate the constants γ and ρ from the maximum of these sequence of values.
Comparisons of ρ̂t values for unidirectional and bidirectional topK SGD are shown in
Figure 6.7 and 6.9, and Appendix C.2. The maximum value of the sequence {ρ̂t} is
recorded in Table D.1. We see that the ρ̂t value for bidirectional topK SGD is consistently
smaller than ρ̂t value for unidirectional topK SGD across all experiments. We plot the
numerator and denominator of ρ̂t from (6.3) and (6.6) separately in Figure 6.8 and 6.10, and
Appendix C.2. We observe the minimum ∥αt−1

∑N
q=1 pqg

q(wt−1, ξ
q
t−1)∥2 value in each epoch

is approximately the same for unidirectional and bidirectional topK SGD. The difference
comes from the numerator, showing that adding downlink topK compressor can reduce the
distributed error defined in (4.1).

We plot the the sequence {1 − γ̂downlink
t }, and {1 − γ̂uplink

t } in Figure 6.11 and 6.12,
and Appendix C.4. For bidirectional compression, when Kdownlink = Kuplink, the maximum

48



{1− γ̂downlink
t } value in each epoch is consistently smaller than the maximum {1− γ̂uplink

t }
value in each epoch, and the sequence {1 − γ̂uplink

t } is similar for both unidirectional and
bidirectional compression. This implies that the γ constants in the convergence bound of
Theorem 5.4 and 5.7 are approximately equal.

The smaller ρ̂ values and similar γ̂ values suggest that the convergence bound of bidirec-
tional topK SGD can potentially be tighter than the convergence bound of unidirectional
topK SGD.
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Figure 6.7: Largest ρ̂ value in each epoch of a MLP model trained with unidirectional and
bidirectional topK SGD on Fashion-MNIST dataset. Batch size 10.
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Figure 6.8: Results from training MLP model on Fashion-MNIST data. Left side graphs are
the largest ∥TopK(

∑N
q=1 pqa

q
t )−

∑N
q=1TopK(pqa

q
t )∥2 value in each epoch for unidirectional

topK SGD and the largest TopK(δt−1 +
∑N

q=1 pqa
q
t ) − TopK(δt−1 +

∑N
q=1 TopK(pqa

q
t ))∥2

value in each epoch for bidirectional topK SGD. Right side graphs are the smallest
∥αt−1

∑N
q=1 pqg

q(wt−1, ξ
q
t−1)∥2 value in each epoch.
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Figure 6.9: Largest ρ̂ value in each epoch of a VGG19 model trained with unidirectional
and bidirectional topK SGD on CIFAR10 dataset with batch size 100.
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Figure 6.10: Results from training VGG19 model on CIFAR10 data. Left side graphs are
the largest ∥TopK(

∑N
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topK SGD and the largest TopK(δt−1 +
∑N
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q
t ) − TopK(δt−1 +
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q=1 TopK(pqa

q
t ))∥2

value in each epoch for bidirectional topK SGD. Right side graphs are the smallest
∥αt−1

∑N
q=1 pqg

q(wt−1, ξ
q
t−1)∥2 value in each epoch.
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Figure 6.11: Largest 1− γ̂ value in each epoch of a MLP model trained with unidirectional
and bidirectional topK SGD on Fashion-MNIST dataset.
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Figure 6.12: Largest 1−γ̂ value in each epoch of a VGG19 model trained with unidirectional
and bidirectional topK SGD on CIFAR10 dataset with batch size 100.
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Chapter 7

Conclusion

This thesis studies bidirectional topK SGD in distributed learning. We started in Chapter
2, where we provide some background into SGD and distributed learning. In Chapter 3
we discuss gradient compression techniques, and give a brief introduction to current re-
search in unidirectional and bidirectional topK sparsification. In Chapter 4 we introduce
an example where bidirectional topK sparsification outperforms unidirectional topK spar-
sification and give some justification to why this is the case. We then use this justification
to build our non-convex convergence analysis in Chapter 5. Finally, in Chapter 6, we pro-
vide experiment results showing that bidirectional topK SGD can perform just as well as
unidirectional topK SGD in different settings, give the reader an estimate of some of the
constants in the upper bound of the convergence rate, and estimate the compression factor
achieved by the downlink topK compressor.

7.1 Contributions

In our thesis, we provide a non-convex convergence analysis for bidirectional topK SGD
that can potentially have a tighter convergence bound than unidirectional topK SGD. We
justify that our analysis is needed by giving an example where bidirectional topK SGD
has better convergence than unidirectional topK SGD. We also modify Alistarh et al.’s
non-convex analysis of unidirectional topK SGD so that it works for K < 1

2
d, where d is

the size of the gradient [3].

We provide detailed testing across different models, datasets, and number of workers at
state-of-the-art sparsification levels [10] to show that bidirectional topK SGD can converge
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as well as unidirectional topK SGD. We comment that for optimum performance, the
learning rate for unidirectional and bidirectional topK SGD need to be tuned separately,
which is not done by some of the representative works of bidirectional compression [22, 31].
We also provide empirical evidence that the communication saved by the downlink topK

compressor is almost linear to the number of workers when K << d.

7.2 Future Work

In Chapter 4, we discuss that we want to minimize our distributed error ∥TopK(δt−1 +∑N
q=1 a

q
t ) − TopK(δt−1 + TopK(

∑N
q=1 a

q
t ))∥2. Therefore instead of sending the topK val-

ues from each worker, we could try to predict the indices of the non-zero components of
TopK(δt−1 +

∑N
q=1 a

q
t ), and send those gradient components instead. We mention that

Ozfatura et al. designed an algorithm to estimate the most significant components in a
model by exploiting the idea that the positions of the topK components are correlated over
time, though the main focus of their research is to reduce the overhead in the encoding
and transmission of model information instead of improving convergence [19].

Another natural step would be to try to extend our results for bidirectional topK SGD
to the Federated Learning setting, where the data allocated to each worker is non-iid, and
only a fraction of the workers is capable of updating the central model at a given time [18].
While we include some preliminary experiments with non-iid data in Appendix C.5, we
still need to extend our testing to partial participation of workers. However, we note that
it is difficult for models to converge to high accuracy when the number of participating
workers is low [22], and the tradeoff between faster training time and further loss in testing
accuracy should be seriously considered before applying gradient compression techniques.
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Biased Compression for Distributed Learning. arXiv preprint arXiv:2002.12410, 2020.
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Appendix A

Non-Convex Analysis

A.1 Upper Bound on Constant D

In this section, we derive an upper bound on the constant D in (5.17).

Lemma A.1. Let 0 < β < 1, and θ ≥ 0. For t ≥ 1, there exists a constant D such that
for any t,

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
≤ D.

Proof. When t = 1,

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
= 2β.

When t = 2,

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
= β3θ + β2(

3

4
)θ.

We need to check if the condition holds for t ≥ 3. To show this, letm = t+1−⌈
√
t+ 1⌉.
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Note that m ≥
√
t+ 1 for t ≥ 3.

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
=

m∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
+

t∑
i=m

βi (t+ 1)θ

(t− i+ 1)2θ

≤
m∑
i=1

βi +
t∑

i=m

βm(t+ 1)θ

≤ 1− βm+1

1− β
+ βm(t+ 1)θ(t−m+ 1)

≤ 1− β
√
t+1+1

1− β
+ β

√
t+1(t+ 1)θ⌈

√
t+ 1⌉

≤ 1− β
√
t+1+1

1− β
+ β

√
t+1(t+ 1)θ+1.

We have

β
√
t+1(t+ 1)θ+1 < max

{
β24θ+1, β

2(θ+1)
ln β

(
2θ + 2

ln β

)2(θ+1)
}
,

from checking the endpoints and stationary points of β
√
t+1(t+ 1)θ+1. We also know

1− β
√
t+1+1

1− β
<

1

1− β
,

from taking t→∞. So, for t ≥ 3

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
≤ 1

1− β
+max

{
β24θ+1, β

2(θ+1)
ln β

(
2θ + 2

ln β

)2(θ+1)
}
.

For all t ≥ 1, we have

t∑
i=1

βi (t+ 1)θ

(t− i+ 1)2θ
≤ max

{
2β, β3θ + β2

(
3

4

)θ

,

1

1− β
+max

{
β24θ+1, β

2(θ+1)
ln β

(
2θ + 2

ln β

)2(θ+1)
}}

.
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The next result immediately follows from Theorem 5.4 and Lemma A.1.

Corollary A.1.1. Under Assumptions 5.1, 5.2, 5.3, 5.4, and 5.5, if Algorithm 8 and 9 is
run with learning rate sequence αt =

1
(t+1)1/2+ϵ for T iterations, we get

1∑T
t=0 αt

T∑
t=0

αtE[∥∇F (wt)∥22] ≤
2∑T

t=0 αt

(F (w0)− F ∗)

+

(
LM +

L2MD(
√
1− γ + ρ)2

λ

) ∑T
t=0 α

2
t∑T

t=0 αt

.

(A.1)

with λ ∈ (0, 1−γ
γ
) and D = 1

1−γ
max

{
2β, β3θ+β2

(
3
4

)θ
,max

{
β24θ+1, β

2(θ+1)
ln β

(
2θ+2
lnβ

)2(θ+1)
}}

,

where β = (1 + λ)(1− γ) and θ = 1/2 + ϵ.
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Appendix B

Learning Rates

.

Dataset Model Workers unidirectional lr bidirectional lr SGD lr

Fashion-MNIST

MLP

20 0.08 0.08 0.06
50 0.13 0.12 0.07
100 0.22 0.22 0.08

CNN

20 0.09 0.08 0.06
50 0.12 0.11 0.07
100 0.14 0.2 0.08

MNIST

MLP

20 0.06 0.09 0.03
50 0.17 0.18 0.1
100 0.17 0.24 0.1

CNN

20 0.08 0.09 0.05
50 0.14 0.16 0.07
100 0.09 0.16 0.07

CIFAR10 VGG19 20 0.05 0.05 0.05

Table B.1: Learning rate chosen for all models.
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Appendix C

Experimental Figures

C.1 Testing Accuracy and Training Loss
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Figure C.1: Comparison of testing accuracy from training CNN model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size
10. Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.2: Comparison of training loss from training CNN model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size
10. Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.3: Comparison of testing accuracy from training MLP model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.4: Comparison of training loss from training MLP model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.5: Comparison of testing accuracy from training CNN model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.6: Comparison of training loss from training CNN model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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C.2 ρ̂ Values

C.2.1 Fashion-MNIST CNN Model
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Figure C.7: Comparison of ρ̂ values from training CNN model on Fashion-MNIST data for
unidirectional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.8: Results from training CNN model on Fashion-MNIST data. Left side graphs
are the largest ∥TopK(

∑N
q=1 pqa

q
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q=1 TopK(pqa
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t )∥2 values in each epoch for unidirec-
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values in each epoch for bidirectional topK SGD. Right side graphs are the smallest
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t−1)∥2 value in each epoch.
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C.2.2 MNIST MLP Model
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Figure C.9: Comparison of ρ̂ values from MLP Model trained on MNIST data for unidirec-
tional topK and bidirectional topK . Models trained on batch size 10. Kdownlink = Kuplink ≈
0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.10: Results from training MLP model on MNIST data. Left side graphs are
the largest ∥TopK(

∑N
q=1 pqa

q
t )−

∑N
q=1 TopK(pqa
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t )∥2 values in each epoch for unidirectional

topK SGD and the largest TopK(δt−1 +
∑N
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C.2.3 MNIST CNN Model
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Figure C.11: Comparison of ρ̂ values from CNN Model trained on MNIST data for uni-
directional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional.
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Figure C.12: Results from training CNN model on MNIST data. Left side graphs are
the largest ∥TopK(

∑N
q=1 pqa

q
t )−

∑N
q=1 TopK(pqa
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t )∥2 values in each epoch for unidirectional

topK SGD and the largest TopK(δt−1 +
∑N

q=1 pqa
q
t ) − TopK(δt−1 +
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C.3 Percent of Non-Zero Indices in Gradient After

Server Aggregation
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Figure C.13: Percent of non-zero indices after aggregating sparse gradients from workers.
Trained on a CNN Model using Fashion-MNIST dataset. Kuplink = Kdownlink ≈ 0.001d.
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Figure C.14: Percent of non-zero indices after aggregating sparse gradients from workers.
Trained on a MLP Model using MNIST dataset. Kuplink = Kdownlink ≈ 0.001d.
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Figure C.15: Percent of non-zero indices after aggregating sparse gradients from workers.
Trained on a CNN Model using MNIST dataset. Kuplink = Kdownlink ≈ 0.001d.

C.4 1− γ̂ Values
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Figure C.16: Largest 1− γ̂ value in each epoch of a CNN model trained with unidirectional
and bidirectional topK SGD on a Fashion-MNIST dataset.
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Figure C.17: Largest 1− γ̂ value in each epoch of a MLP model trained with unidirectional
and bidirectional topK SGD on a MNIST dataset.
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Figure C.18: Largest 1− γ̂ value in each epoch of a CNN model trained with unidirectional
and bidirectional topK SGD on a MNIST dataset.
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C.5 Test Results on Non-IID Data Distribution

In this section, we briefly discuss testing on non-iid datasets. We use the experimental
setup proposed by McMahan et al. [18] and implemented by [4]. Data is sorted by digit
labels, then divided into 200 shards of 300 data points with the same label. Each shard is
assigned to a random worker. Since the experiments are run with 100 workers, and MNIST
and Fashion-MNIST each have 60000 data points, each worker has 2 shards with 300 data
points. We plot the test accuracy, training loss and ρ̂ values in the following subsections,
and make the same observation of ρ̂ as in the experiments with iid data distribution.
Adding downlink compressor appears to decrease the value of ρ̂. We also note that ρ̂
appears to be larger for non-iid experiments than iid experiments. This makes sense, as we
would expect the updates committed by each individual worker to be less representative
of the global update in the non-iid case than in the iid case.

C.5.1 Fashion-MNIST MLP Model
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Figure C.19: Comparison of testing accuracy from training MLP model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.20: Comparison of training loss from training MLP model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.21: Comparison of ρ̂ values from training MLP model on Fashion-MNIST data for
unidirectional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset is non-iid.
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C.5.2 Fahsion-MNIST CNN Model

0 20 40 60 80 100
Epoch

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

unidirectional
bidirectional
sgd

Figure C.22: Comparison of testing accuracy from training CNN model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.23: Comparison of training loss from training CNN model on Fashion-MNIST
data for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.24: Comparison of ρ̂ values from training CNN model on Fashion-MNIST data for
unidirectional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset is non-iid.
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C.5.3 MNIST MLP Model
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Figure C.25: Comparison of testing accuracy from training MLP model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.26: Comparison of training loss from training MLP model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.27: Comparison of ρ̂ values from training MLP model on MNIST data for uni-
directional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset is non-iid.
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C.5.4 MNIST CNN Model
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Figure C.28: Comparison of testing accuracy from training CNN model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.29: Comparison of training loss from training CNN model on MNIST data
for unidirectional topK , bidirectional topK and vanilla SGD. Trained on batch size 10.
Kdownlink = Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset
is non-iid.
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Figure C.30: Comparison of ρ̂ values from training MLP model on MNIST data for uni-
directional topK and bidirectional topK . Models trained on batch size 10. Kdownlink =
Kuplink ≈ 0.001d for bidirectional. Kuplink ≈ 0.001d for unidirectional. Dataset is non-iid.
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Appendix D

Convergence Bound Constants

.

Dataset Model Workers ρ̂unidirectional ρ̂bidirectional

Fashion-MNIST

MLP

20 21.78 0.60

50 5.86 0.14

100 6.65 0.08

CNN

20 15.35 0.92

50 7.48 0.24

100 9.05 0.18

MNIST

MLP

20 16.03 0.95

50 9.72 0.28

100 13.90 0.15

CNN

20 306.19 33.60

50 24.26 1.09

100 6.14 0.09

CIFAR10 VGG19 20 4.16 0.21

Table D.1: Maximum ρ̂ value of trained models across all epochs.
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