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ABSTRACT 

 

Background: Despite the presence of robust global public health surveillance mechanisms, the 

COVID-19 pandemic devastated the world and exposed the weakness of the public healthcare 

systems. Public health surveillance has improved in recent years as technology evolved to enable 

the mining of diverse data sources, for example, electronic medical records, social media, to 

monitor diseases and risk factors. However, the current state of the public health surveillance 

system depends on traditional (e.g., Canadian Community Health Survey (CCHS), Canadian 

Health Measures Survey (CHMS)) and modern data sources (e.g., Health insurance registry, 

Physician billing claims database). While improvement was observed over the past few years, 

there is still a room for improving the current systems with NextGen data sources (e.g., social 

media data, Internet of Things data), improved analytical mechanism, reporting, and 

dissemination of the results to drive improved policymaking at the national and provincial level. 

With that context, data generated from modern technologies like the Internet of Things (IoT) 

have demonstrated the potential to bridge the gap and be relevant for public health surveillance. 

This study explores IoT technologies as potential data sources for public health surveillance and 

assesses their feasibility with a proof of concept. The objectives of this thesis are to use data 

from IoT technologies, in this case, a smart thermostat with remote sensors that collect real-time 

data without additional burden on the users, to measure some of the critical population-level 

health indicators for Canada and its provinces.  

Methods: This exploratory research thesis utilizes an innovative data source (ecobee) and cloud-

based analytical infrastructure (Microsoft Azure). The research started with a pilot study to 

assess the feasibility and validity of ecobee smart thermostat-generated movement sensor data to 

calculate population-level indicators for physical activity, sedentary behaviour, and sleep 
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parameters for Canada. In the pilot study, eight participants gathered step counts using a 

commercially available Fitbit wearable as well as sensor activation data from ecobee smart 

thermostats.  

In the second part of the study, a perspective article analyzes the feasibility and utility of IoT 

data for public health surveillance. In the third part of this study, data from ecobee smart 

thermostats from the “Donate your Data” program was used to compare the behavioural changes 

during the COVID-19 pandemic in four provinces of Canada. In the fourth part of the study, data 

from the “Donate your Data” program was used in conjunction with Google residential mobility 

data to assess the impact of the work-from-home policy on micro and macro mobility across four 

provinces of Canada. The study's final part discusses how IoT data can be utilized to improve 

policy-level decisions and their impact on daily living, with a focus on situations similar to the 

COVID-19 pandemic.  

Results: The Spearman correlation coefficient of the step counts from Fitbit and the number of 

sensors activated was 0.8 (range 0.78-0.90; n=3292) with statistically significant at P < .001 

level. The pilot study shows that ecobee sensors data have the potential to generate the 

population-level health indicators. The indicators generated from IoT data for Canada, Physical 

Activity, Sleep, and Sedentary Behaviours (PASS) were consistent with values from the PASS 

indicators developed by the Public Health Agency of Canada.  

Following the pilot study, the perspective paper analyzed the possible use of the IoT data from 

nine critical dimensions: simplicity, flexibility, data quality, acceptability, sensitivity, positive 

predictive value, representativeness, timeliness, and stability. This paper also described the 

potential advantages, disadvantages and use cases of IoT data for individual and population-level 
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health indicators. The results from the pilot study and the viewpoint paper show that IoT can 

become a future data source to complement traditional public health surveillance systems.  

The third part of the study shows a significant change in behaviour in Canada after the COVID-

19 pandemic and work-from-home, stay at home and other policy changes. The sleep habits 

(average bedtime, wake-up time, sleep duration), average in-house and out-of-the-house duration 

has been calculated for the four major provinces of Canada (Ontario, Quebec, Alberta, and 

British Columbia). Compared to pre-pandemic time, the average sleep duration and time spent 

inside the house has been increased significantly whereas bedtime, and wake-up-time got 

delayed, and average time spent out-of-the-house decreased significantly during COVID-19 

pandemic. 

The result of the fourth study shows that the in-house mobility (micro-mobility) has been 

increased after the pandemic related policy changes (e.g., stay-at-home orders, work-from-home 

policy, emergency declaration). The results were consistent with findings from the Google 

residential mobility data published by Google. The Pearson correlation coefficient between these 

datasets was 0.7 (range 0.68-0.8) with statistically significant at P <.001 level. The time-series 

data analysis for ecobee and google residential mobility data highlights the substantial 

similarities. The potential strength of IoT data has been demonstrated in the chapter in terms of 

anomaly detection.  

Discussion and Conclusion: This research's findings demonstrate that IoT data, in this case, 

smart thermostats with remote motion sensors, is a viable option to measure population-level 

health indicators. The impact of the population-level behavioural changes due to the COVID-19 

pandemic might be sustained even after policy relaxation and significantly affects physical and 

mental health. These innovative datasets can strengthen the existing public health surveillance 
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mechanism by providing timely and diverse data to public health officials. These additional data 

sources can offer surveillance systems with near-real-time health indicators and potentially 

measure short- and long-term impact policy changes. 
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Chapter 1 Introduction  
 

1.1 Public Health and Public Health Surveillance  
 

Public health helps protect and improve people's health and their communities by preventing 

health hazards, injury and disability by keeping the associated risk factors at bay and promoting 

factors that enhance the quality of life and human health at the population level [1–3]. Over the last 

five decades, demographic [4] and epidemiological transitions [5,6] led to changes in the global 

disease scenario and the causal patterns of death, as well as trends in morbidity and mortality [7]. 

As technology progressed, along with shifting demographic patterns where the proportion of 

elderly are more than the proportion of children, and epidemiological trends, where there is a 

triple burden of diseases with existing infectious diseases, growing non-communicable diseases 

and the problem of multimorbidity, there is a need for near real-time data that provides insights 

to enable proactive planning and intervention initiatives [8,9]. In current public health systems, 

surveillance's role in acquiring data is of utmost importance, as better data comprehensiveness 

will lead to early identification of anomalies and better preparedness to handle this [9]. 

Traditional public health surveillance methods mainly rely on self-reported data, where health 

institutions or agents in the community are responsible for every step of the data journey. This 

multistep process starts with collecting data, followed by the entry and curation of the data. 

Sometimes, the process of handling this data is entirely manual and involves digitizing hard 

copies of documents, and there is a chance of a reduction of data quality. This process ends with 

data analysis and dissemination of the findings through reports and publications [10]. Public 

health surveillance aims to help public health officials understand present situations and prevent 

future disease burdens [11]. 
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1.2 Technological Evolution in Public Health Surveillance  
 

As a result of technological evolution, public health surveillance methods have also evolved [12]. 

Public health surveillance has modernized its processes by utilizing technological innovations, 

driven by the digitization of outdated paper-based record systems [13]. Monitoring emerging 

public health threats requires the active use of electronic surveillance systems. Controlling 

obesity can be supported by digital eHealth technology, for example, a multi-faceted monitoring 

system of lifestyle behaviours, including food consumption and its patterns; physical activity; 

fitness and sedentariness; biological, socio-cultural, environmental determinants (e.g., alcohol 

consumption and smoking as an adolescent) [14]. Other ways eHealth technologies might be 

applied in public health surveillance influenza prevention using data from social media [15–17] or 

getting population-level health parameters using data from the wearables [18–20].  Surveillance 

systems provide public health officials with descriptive information about challenges related to 

public health issues across the three essential dimensions: when, where, and who is affected [21].  

1.3 Big Data and IoT as a Potential Data Source for Public Health Surveillance  
 

The ubiquitous growth of technology helped simplify human life by reducing physical labour 

and saving time [22]. Novel technologies also aid in quantifying several vital parameters in day-

to-day life, which were unimaginable in the past [23]. During this process, large volumes of data 

are being generated (colloquially termed "big data"), which have the potential to answer complex 

human community-related questions, for example, outbreak identification, management, 

investigation and risk communication [24]. The Internet of Things (IoT) is a new technological 

innovation through which any physical device can be connected to the internet, and 

communication between different devices is possible in real-time. Such technology helped 

generate vast volumes of data from which numerous kinds of insights can be investigated, for 
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example, change in human behaviour due to lifestyle change [25]. These have the potential to be 

used as a data source for public health surveillance, as they provide direct insights into health 

behaviours [26].  

1.4 Motivation 
 

The motivation of this thesis is to explore the use of novel data types to understand population 

health in Canada, aiming at improving the current public health surveillance systems in Canada. 

As part of this process, I explore the feasibility and validity of a population-level monitoring 

platform using real-world data from IoT. Towards these objectives, I have studied the use of 

population-level analytics while addressing the challenges of current surveillance systems (e.g., 

delay in the monitoring, lack of real-time information, missing data, recall bias) using novel data 

sources for supporting public health surveillance.  

1.5 Thesis Structure 
 

This thesis is organized into nine chapters, including this introductory chapter. Chapter 2 

presents the literature review related to my area of research. Chapter 3 provides the rationale 

behind this study with specific research questions, goals, and objectives. Chapter 4 explains the 

methodology, along with a figure describing the thesis. Chapter 5 presents a proof of concept of 

my work, which was published in JMIR mHealth and uHealth [27]. Chapter 6 corresponds to a 

perspective paper describing a NextGen Public Health Surveillance System using IoT data, 

published in Frontiers in Public Health with a special section of Digital Public Health [28]. 

Chapter 7 presents one of the applications of IoT data for behavioural monitoring in Canada, 

focusing on understanding the pandemic's impact on time spent in and out-of-the-house and 

sleep health through a comparison of before and during the COVID-19 pandemic. Chapter 8 

elaborates on the second application of IoT data for population-level human mobility 
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measurement and use for public health compared with Google mobility data. Chapter 9 explores 

policy-level discussions related to the use of IoT and alternative data sources for supporting 

public health practice, the conclusion and summary of this thesis are provided. 
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Chapter 2 Literature Review  
 

This literature review focuses on the current evidence available in the domains of public health 

and health informatics, intending to represent the existing state of evidence on "public health 

surveillance" from a health informatics perspective. The following keywords were used in 

isolation and in different combinations, for this literature review: "population health", "public 

health", "surveillance", "monitoring", "risk factors", "physical activity", "sleep", "sedentary 

behaviour", "health informatics", "big data", "machine learning"," deep learning", and 

"artificial intelligence", "human mobility". The search was conducted on the following 

databases: PubMed, ScienceDirect, Scopus, and Google Scholar. The literature review is limited 

to articles published in the last two decades, although important articles from historical journal 

publications were included.  

2.1 Public Health  

Though the history of "Public Health" can be extended to the 14th century, formally the concept 

of the scientific study of epidemiology-based public health started in the 19th century when the 

father of epidemiology, John Snow, linked the spread of infectious disease cholera with the 

drinking of contaminated water [29]. Public health addresses "society's interest in assuring 

conditions in which people can be healthy," as presented by the Institute of Medicine (US) 

Committee for the study of the future of public health in 1988  [30,31]. In 1920, Winslow defined 

public health as "the science and art of preventing disease, prolonging life, and promoting health 

through the organized efforts and informed choices of society, organizations, public and private, 

communities, and individuals" [32]. Today, public health is defined by a change in scope, the 

evolution of social systems, and emerging diseases [33]. In the case of infectious diseases, public 

health might as well be defined as "a record of successful redefining of the unacceptable" [34]. 
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New microorganisms like swine flu caused by H1N1 strain of the influenza virus, COVID-19 

disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bioterrorism 

and similar epidemic infectious diseases [35,36] significantly impact health and mortality. As the 

health landscape shifts, there is also a transition in its definition [10]. 

Moreover, infectious diseases, chronic diseases and their impact on healthy wellbeing and 

lifestyle are becoming a focus of contemporary public health research [35]. The determinants of 

the global burden of disease can be multifold [37]. Of them, environmental and behavioural 

factors influence people's health significantly [38]. Globally, there will be an increase in the share 

of the elderly population (sixty and above), which will eventually lead to more composite health 

challenges related to ageing [4,7,36]. This change in age structure, inequity in the distribution of 

resources and utilization of healthcare services will redefine a country's disease burden [39]. This 

epidemiological transition can cause a double disease burden, leading to a high volume of 

morbidity and mortality worldwide [38].  

2.1.1 Conceptual Framework for Public Health  

Figure 1 describes the conceptual framework for public health developed by the Canadian Public 

Health Association in 2017 to understand the underlying principles that support current public 

health practice, including but not limited to data sources, structure and implementation of the 

process [29]. Public health addresses the underlying health determinants with its roots in social 

justice, attention to human rights and equity, and evidence-informed policy and practice. This 

framework emphasizes health promotion and population-level surveillance as the cornerstone to 

prevent diseases, injury, disabilities, and mortality. This field is a result of a multidisciplinary 

approach. With increasing demand, the role, purpose, and scope of the profession are changing. 

Utilizing a cyclic path, five distinct components strengthen the foundation of public health, 
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namely, strong backing by evidence, risk assessment, policy, program, and evaluation, 

respectively. Among the components mentioned above, research and surveillance mechanisms 

generate evidence to start the cycle.  

 
 

Figure 1. Conceptual framework of public health: image extracted from a Canadian Public 

Health Association report [29].  

 

The public health profession relies on the robustness, accuracy, and validity of evidence with a 

scientific mind [40]. At the same time, the validity of existing evidence is strongly related to the 

research environment. Quantitative, qualitative, mixed-method research, surveillance, 

epidemiology, and community consultation generate evidence that makes up the framework's 

base. The interaction between each of the components is strong and interdependent. That means 

surveillance can be conducted to inform research, and research can be used to focus and 
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strengthen surveillance activities. Overall, the consolidation of those components helps to 

improve population-based health issues within the general domains of communicable and non-

communicable diseases. The research component is dependent on population characteristics, 

needs, values and preferences, and professional expertise [29]. 

2.2 Public Health Surveillance  

Within the public health system, the role of surveillance is critical [41]. Surveillance of different 

diseases and their risk factors are amongst the most significant components of the public health 

surveillance system. Public health surveillance has a long history, which began around 3180 BC 

in Egypt, with the first recorded epidemic [10]. In his article "The Past, Present, and Future of 

Public Health Surveillance," Choi summarized learning experiences from a review of historical 

perspectives in the past 5,000 years up to the existing surveillance systems and suggested much-

required modification for future mechanisms [10]. The World Health Organization (WHO) 

defined public health surveillance as "the continuous, systematic collection, analysis and 

interpretation of health-related data needed for the planning, implementation, and evaluation of 

public health practice" [42]. Surveillance systems provide us with descriptive information about 

health problems focusing on three key dimensions - when, where and who [21].  

Historically, public health surveillance started with identifying the causes of infectious diseases, 

focusing mainly on epidemics and endemics [10]. With time, public health surveillance has 

changed its definition and scope [12,41]. Several new methodologies (e.g., telephone-based data 

collection [43], digital data collection methods [44]), technologies (e.g., smartphones, mobile apps, 

information technologies), and data sources (e.g., web searches, social media, sensors [45]) are 

being used to make surveillance systems more effective, efficient and timely. The technology 
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used for public health surveillance has changed the process of data collection, analysis, and 

interpretation [12,13,44,46,47].  

As the world witnessed an epidemiological transition in the last two decades [5], global disease 

scenarios, patterns in causes of deaths, and trends in morbidity and mortality were also changing 

[48]. Health is a complex construct, and it depends on multiple indicators [49], including biological, 

environmental, and social determinants of health. The broader scope of social determinants of 

health includes individual-level demographics; socioeconomic (e.g., education, occupation) 

factors as well as environmental (e.g., neighborhood, air quality, infrastructure quality) factors; 

and factors associated with the healthcare system, like accessibility or affordability [50]. Often, 

determinants of health also include genetics [51,52], drug use, alcohol consumption [53], and 

smoking [54].  

Healthcare accessibility, for example, has been demonstrated to be affected by race, ethnicity, 

language, disability, mobility, distance to healthcare services, and the number of healthcare 

providers present in an area [55]. Health determinants and health outcomes are either directly or 

indirectly related, making it difficult to measure the influence of any single determinant on an 

outcome [56,57], which often directs researchers to a multilevel analysis [58]. Therefore, to monitor 

emerging health threats, the application of information and technology is necessary to collect a 

wide range of data from a larger population [59,60].  

2.2.1 Conceptual Framework for Public Health Surveillance  

 

The Center for Disease Control and Prevention (CDC), in 2012, illustrated the sources of 

information that can be used to provide an understanding of the health situation of a community 

[11]. As it is possible to see in Figures 2 and 3, a multidisciplinary strategy including public health 

surveillance is a critical component of this process. A conceptual framework for public health 
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data feeds is a step to enhance understanding of population health and health risks associated 

with it. This data feed depends on a variety of inputs, including "public health surveillance," 

"research studies," "health surveys," "registries of vital events like births and deaths," "medical 

and laboratory information systems," "environmental monitoring systems," "censuses," and 

"other data" resources. However, a conceptual framework for public health surveillance 

examines several similar data systems. 

 
 

Figure 2. Various data feeds to support health situation awareness: image extracted from Centers 

for Disease Control and Prevention (CDC) [61]. 

 

 
 

Figure 3. Conceptual framework of public health surveillance: image extracted from Centers for 

Disease Control and Prevention (CDC) [61]. 
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As the modern public health surveillance mechanism captures multiple data sources, the last 

component, "Other data resources," still ignites the need for alternative data sources to 

complement the existing mechanism.  

2.2.2 Population-Level Monitoring and Health Indicators  

 

Aggregate health indicators help us by providing insights into population-level health indicators 

[62]. The population-level analysis helps policymakers bring new policies to bear on the problem 

of burgeoning chronic diseases. It not only helps to reduce the disease prevalence but also 

reduces the cost associated with it. As limited resources exist for healthcare services, the most 

effective and efficient policy has the potential to prevent disease and its complications which can 

dramatically improve the healthcare system. Identifying and monitoring risk factors for chronic 

diseases are essential for prevention [63]. According to the "World Health Report 2010," the 

significant risk factors for chronic diseases include: "tobacco use," "harmful use of alcohol," 

"raised blood pressure (or hypertension), " "physical inactivity," "increased cholesterol," 

"overweight/obesity," "unhealthy diet and elevated blood glucose [64,65]." Individual-level risk 

factors can be classified as follows: "Background risk factors (e.g., age, sex, level of education, 

and genetic composition)," "Behavioural risk factors (e.g., tobacco use, unhealthy diet, and 

physical inactivity)," and "Intermediate risk factors (e.g., elevated blood lipids, diabetes, high 

blood pressure, and overweight/obesity)."  

2.3 The Role of Population-Level Monitoring in Pandemics 
 

The literal meaning of the word "Pandemic" is "all people" and usually refers to a widespread 

epidemic of infectious disease throughout a country or a group of continents at the same time 

[66,67]. For WHO to declare a level six pandemic alert, the highest level alert related to a 

pandemic, there must be the disease's continued transmission in at least two regions 
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simultaneously [66]. Historically, Spanish influenza in 1918-1920 was the biggest recorded 

pandemic in history [68]. With each pandemic in place, there was debate upon preventing such 

large-scale loss of human life using the latest available technologies and scientific methods. 

Public health monitoring or surveillance systems is in place to prevent, reduce the loss of human 

lives and protect them from such recurring pandemics. Despite the development of technologies, 

researchers were not able to eliminate the possibility of pandemics. Within this context, the 

current pandemic due to COVID-19 (2019-2021) is eye-opening for our contemporary society 

[69].  

2.3.1 COVID-19 Pandemic as a Case Study and its Impact on Society 

 

A new virus named SARS-CoV-2 was first observed in December 2019 in Wuhan, China, with 

unexplained pneumonia-like symptoms, which was named COVID-19. The cause of this new 

virus is thought to be associated with civets, bats and pangolins [70]. In the past, a similar kind of 

viral diseases  emerged, named Severe acute respiratory syndrome (SARS) in 2002 and the 

Middle East respiratory syndrome (MERS) in 2013 [70]. However, after epidemiological and 

epizootic investigations, involvement of these creatures in diseases transmission has not been 

validated, and the possibility of an intermediate host remains elusive [70]. Since then, the 

causative virus has been isolated, sequenced, and was a positive-stranded RNA virus belonging 

to the Coronaviridae family, which was entirely new for humans [70]. Specifically, this virus can 

transmit from human to human and has a spectrum of severity that spans from asymptomatic to 

mild illness. The other extreme is severe diseased state and death [70]. Within three months, the 

disease spread to nearly all the continents and countries across the globe and on May 11, 2020, 

WHO declared it a pandemic [71]. Since then, COVID-19 has affected more than 1.8 billion 

people across the globe, and nearly four million deaths have been reported till July 2021 [72].  
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The effect of the COVID-19 pandemic is not limited to acute illness and deaths. However, it has 

also transcended into changes in household behaviours, including reduced physical activity and 

increased sedentary behaviour [73] due to policy-related changes such as introducing work-from-

home culture and shutdown of community activities. Performing physical activity (PA) at home 

during the pandemic is associated with fewer mental health issues [73,74]. To maintain PA routines 

during COVID-19, motivation and self-interest might be vital to overcome pandemic-related 

barriers [75].  

In August 2020, in its report of public health surveillance for COVID-19, WHO emphasized the 

role of digital technology and rapid reporting, contact tracing and data management to support 

and strengthen the existing surveillance capacity of national systems [76].   

2.4 Traditional Data Sources for Public Health Surveillance 

In 1968, WHO listed ten essential data sources for public health surveillance [77] and regarded 

data sources as the backbone of surveillance systems. The list includes mortality data, morbidity 

data case reporting, epidemic reporting, laboratory reporting, individual case reports, epidemic 

field investigation, household surveys, animal reservoir and vector distribution studies, 

demographic data, and environmental data. Besides these data sources, other new sources of data 

are being added to broaden the scope of public health surveillance such as [77]: "hospital and 

medical care statistics," "general practitioners," "public health laboratory reports," "diseases 

registries," "drug and biologics utilization and sales data," "absenteeism from school or work," 

"health and general population surveys" and "newspaper and news broadcasting reports." 

Interestingly, along with this traditional health and health-related data sources, modern health 

informatics has also been exploring innovative data sources like the internet [78], web searches 

[79], social media (Facebook [80], Twitter [81], and Reddit [82]) for health-related problem-solving. 
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2.5 Challenges with Existing Data Sources for Public Health Surveillance 

A gap exists despite using several self-reported and alternative data sources for chronic diseases 

and their risk factors [83,84]. The critical challenges within existing data sources are the need for 

enormous resources and funding [85], the extensive time gap between data collection and report 

writing, the ability to accurately measure the impact of any policy level changes or even short 

interventions at the individual level [85]. These data sources are not real-time, and the granularity 

is low [85]. Self-reporting methods often result in recall bias and the potential for variation from 

actual reality or "the truth" [86].  

Public health organizations sometimes depend on information obtained via questionnaire-based 

self-reported surveys, including online surveys, in-person or telephonic interviews, or direct 

measurements [87]. The usability and benefits of data collected via these methods can be impacted 

by declining response rates, recall bias, delays between data collection and reporting, and rising 

data collection costs [86,87]. Broadly, the gap within public health surveillance can be divided into 

indicator gaps and data gaps [88], but they are interdependent. Indicator gaps show that we do not 

have enough data to build comprehensive indicators for health [88] and data gaps represent there 

is room available for the addition of newer datasets, including data from alternative sources.  

2.5.1 Need for Alternative Data Sources for Public Health Surveillance 

 

The recent development and uptake of information technologies, computer science, the internet, 

smartphones, and social media by a large share of the population create large volumes of data 

[89]. Using these datasets, researchers attempt to build and analyze potential health indicators, as 

done by Dalton in 2017 for monitoring Google Flu [90], Gomide in 2011 to measure 

epidemiological indicators for dengue [91]. Wearables are another potential data source. Fitness 

tracker data (i.e., Fitbit, Garmin) can be used for tracking steps, heart rate, and sleep, which have 
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been previously used in public health where Naghmeh Rezaei, 2021 used Fitbits for population-

level studies [20] and Lisa J. Meltzer, 2015 and Dao PD, 2017 used Actigraphs [92,93]. 

The benefits of these alternative data sources are high granularity [94], the auto-generated and 

objective (non-self-reported) nature of the data [95], having high validity [96–99], minimal effort 

[100], and near real-time access to the generated data [9,101–104]. Mobile apps are the ultimate source 

of big data for physical activity and sedentary behaviour monitoring, and this data source has 

been previously used in public health [105]. 

The disadvantages of these data sources are access, quality of the data, source of the data, 

volume of the data, skills essential to handle the volume and types of data and interoperability 

within different data sources to name a few [28].  

2.6 The Growing role of Technology in Public Health Surveillance  

In traditional public health surveillance systems, large amounts of human resources are used to 

manually collect data from individuals, households, institutions, and communities [41]. Usually, 

the collected data is compiled manually and is analyzed using various statistical tools [59,106,107]. 

With improvements in science and technology, the process of surveillance has continuously 

evolved from a traditional model to a more technology-dependent strategy [10]. The range of 

transformation is witnessed at the level of sample size calculations [52,108]and goes up to report 

writing and disseminating information to a broader audience [109,110]. Data collection, entry, and 

analysis became computerized, report preparation became automated, and data visualization 

techniques became more sophisticated through upgraded software and technologies, making 

knowledge translation easy and timely in public health surveillance [10]. The latest trend is to use 

data collected from the daily activities of individuals using mobile devices and sensors, with 

minimal disturbance to an individual's daily routine. These large data sources help to assess the 
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population for health indicators in near real-time [24,44]. Evidence highlights how data collected 

from the IoT has been utilized to monitor epidemics [111] and critical determinants of infectious 

diseases such as water pollution [112].  

Key advantages of this evolution are listed below [113]: 

1. Reduction of human effort and time, where computers replace human actions associated 

with data collection, entry, and cleaning. 

2. Latency or time-gap between data collection and report writing has been minimized. 

3. Interpretation of the data and results has been improved with new analysis methods and 

visualization techniques. 

4. Dissemination of the findings to a broader public in a short time frame.  

5. Reduction of human error throughout the whole process. 

At international and global levels, several countries have tried different mechanisms to monitor 

communicable and chronic diseases. Within the last century, several developed [114–116] and 

developing countries [117,118] collected information on the design and process of building disease-

specific risk factor registries. Additionally, several surveillance systems established the role of 

clinical, epidemiological, and policy-related information on public health.  Extensive data has 

been collected and made available to the policymakers with attention to an increase in disease 

burden. Technological and methodological improvement in surveillance systems [44], coupled 

with an emphasis on cost-effective public health solutions, results in the effective 

implementation of evidence-based solutions. Integrating data sources from different entities to 

provide comprehensive solutions is essential as health is a complex phenomenon both at 

individual and population levels. The use of a "primary key" or "unique individual level 

identifier" provides a means for linking different digitized databases and files to bring together 
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tailored data in the form of patient demographics, medical history, clinical treatment, and 

outcomes, which has significantly facilitated the design and application of population-based 

surveillance studies [24]. Several developing countries are either currently utilizing or considering 

using a unique patient health identifier [119].  

A case of technology-based health indicators monitoring system has been described below to 

elaborate on the technological and methodological transitions happening in Canada's public 

health surveillance system. 

2.6.1 Technology-based Health Indicator Monitoring in Canada 

 

Over the last five decades, chronic disease surveillance methods have evolved along with 

Canada's newest and latest technology [120]. In 1969 the first event-based "National Cancer 

Incidence Reporting System" was created [114], followed by the beginning of the patient-oriented 

"Canadian Cancer Registry" after 23 years, in 1992 [114]. Similarly, for diabetes, in the year 

1999, the Government of Canada committed to developing a pan Canadian Diabetes Strategy 

[121]. After almost a decade, in 2009, the "Canadian Chronic Diseases Surveillance System 

(CCDSS)" was initiated, which is a collaborative network of all provincial and territorial 

surveillance systems for a group of chronic diseases supported by the Public Health Agency of 

Canada (PHAC) [122]. PHAC is the body that coordinates the whole process of data collection, 

analysis, and the preparation of reports that help policy makers formulate policies for almost 

twenty life-threatening chronic diseases broadly divided into cardiovascular diseases, chronic 

respiratory diseases, mental illnesses, diabetes, musculoskeletal disorders, neurological 

conditions, and their risk factors, in Canada [123]. This database focuses on capturing nationally 

comparable data for incidence, prevalence, mortality, complications, comorbidities, and health 

service utilization (rate of hospitalization, surgery, and other interventions) [124].  
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Presently, in Canada, the surveillance system for chronic diseases is based on secondary data 

sources, such as health insurance, administrative databases, and pharmacy databases [120]. The 

surveillance system includes diabetes, hypertension, cardiovascular diseases, cancer, and 

respiratory diseases. The system aims to provide early warnings, impact assessment, policy 

development, policy evaluation, risk assessment, generation of hypotheses for research, 

recognizing trends, and informing policy and programs for those specific diseases at the federal 

and provincial levels [125].  

Within CCDSS, data processing has four major steps, as described in Figure 4. In the first step, 

PHAC request data from the provinces and territories of Canada and in return, the provinces and 

territories collect the required information from administrative health databases using data 

processing software provided by PHAC to the technical and science committee members. The 

Technical Committee, comprised of representatives from PHAC and the province/territories 

(P/Ts), is responsible for overseeing the implementation of the analytic process within each P/T. 

The members of this Committee participate in the design, development, and operation of SAS 

analytic code. The Committee also makes recommendations to PHAC on how to maintain and 

improve the system and interpret the results. The Science Committee, which is comprised of P/T 

representatives and scientific experts from academia, reviews feasibility studies, reviews and 

approves methods for constructing chronic disease case definitions and other measures required 

for ongoing surveillance (e.g., measures of comorbid conditions, health service use and costs), 

and provides oversight for issues of data quality, and priorities and opportunities for validation 

activities. 

In the second step, the provinces and territories apply definitions to the administrative data to 

identify chronic disease cases. The data are reconciled internally and with other data sources to 
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ensure consistency and accuracy of the information. In the third step, the output from the "case 

definitions" is processed by incorporating it into registries, including one record per person per 

fiscal year for each province and territory. In the final step, each province and territories submit 

aggregate information compiled from PHAC registries. PHAC analyzes the aggregate data and 

prepares national and province, and territories data products [125]. 

 

Figure 4. The existing data processing framework of the Canadian Chronic Disease Surveillance 

System: image extracted from Lix et al. 2018 [120]. 

Canadian chronic disease indicators are also pan-Canadian resources to understand the burden of 

chronic diseases and their associated determinants (also known as "risk factors") [126]. 

Determinants of chronic diseases have been grouped into "social and environmental 

determinants," "maternal and child health risk factors," "behavioural risk and protective factors," 

"risk conditions," "disease prevention practices," and "health outcomes/status" [126]. Within 

behavioural, risk and protective factors, the following indicators are listed: "24-hour movement, 

Physical activity, sedentary behaviour, sleep, nutrition, chronic stress, alcohol use, smoking, 

drug use, and the percentage of the population having at least one of four primary chronic 

disease risk factors: tobacco smoking, physical inactivity, unhealthy eating, harmful alcohol use 

in the population aged 20 years and more" [126]. 
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The existing data sources for these chronic diseases include self-reported surveys, administrative 

data sources from health insurance registries, hospitalization databases, physician billing claims 

databases, and a prescription drug database. The various data sources for behavioural risk factors 

include [127]: Canadian Community Health Survey (CCHS) [128]; Canadian Community Health 

Survey Rapid Response (CCHS RR) [129]; Canadian Health Measures Survey (CHMS) [130]; 

Health Behaviours in School-aged Children (HBSC) [131]; Health Behaviours in School-aged 

Children Administrator Survey (HBSC-Admin) [127]; Physical Activity Monitor (PAM) [132].  

2.6.2 Gap in the Existing Public Health Surveillance Systems 

 

Despite using modern surveillance systems in Canada, no process to collect real-time 

information about risk factors for chronic diseases exists. The current data does not match 

population-level indicators for chronic disease surveillance due to differences in periods for data 

collection [88], which results in systems that miss prevention opportunities. The United States 

implemented the Behavioural Risk Factor Surveillance System (BRFSS) system [43] to collect 

data about behavioural risk factors, which have a high impact on the development of chronic 

diseases. Unfortunately, there is no comparative work that has been done in Canada. As 

mentioned on the BRFSS website, Canada has sought technical assistance from BRFSS to 

develop a similar surveillance system [133]. Similarly, there is enormous potential in adding 

environmental health surveillance data within the chronic disease surveillance system to 

complement and enhance the preventive strategy, which is currently missing from the Canadian 

surveillance systems [124]. 

The CCDSS has data-related challenges such as heterogeneity in an administrative database 

across provinces and territories, impacting the estimates' quality and accuracy. Nonetheless, 
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CCDSS relies on a minimum dataset common to all provinces, which may not always satisfy 

ideal data requirements [84].  

2.7 Digital Public Health Surveillance Systems 
 

There is a strong need for digital public health surveillance systems that can embrace the broad 

domain of big data and newer analytics mechanisms [134].  

2.7.1 Big Data  

Big data is defined as any dataset having fundamental characteristics of the "5V's," namely 

volume, variety, veracity, velocity, and value [89,135], as mentioned in Figure 5. Other authors add 

variability, visualization, venue, vocabulary, vagueness [136], viscosity, volatility, viability, 

validity [137] to the list above.  There are several approaches to collecting, storing, processing, and 

analyzing big data. Big data includes traditional and semi-structured data from numerous 

resources such as social media sites, email, documents, sensory data, and millions of web pages 

[138]. The giant social networking sites like Facebook and Twitter produce data on the scale of 

terabytes per day [139], and this amount of data is difficult to handle using existing systems.  
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Figure 5. Characteristics of big data. 

This data is different in its characteristics; it can be raw, structured, semi-structured, and even 

unstructured [140,141]. When the data does not fit any specific relational tables or data models, it is 

called unstructured data, and this kind of data is the fastest-growing data across all other types. 

Examples of unstructured data types include images, sensors, telemetry, video, documents, log 

files, and email. Semi-structured data is between these two opposite ends, having a partial 

component of the structured data and the other component remaining unstructured [140]. Loading 

and maintaining this amount of data is challenging, especially with the increase in social media 

usage, which is generally triggered by specific events like federal elections, natural calamities, or 

even during epidemics or endemics [142]. The term "big data" is a misnomer, as it points out only 
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the size of the data without directing attention to its other properties. Figure 6 describes the 

standard big data architecture and its various components. 

 

Figure 6. Standard big data architecture. 

There is increasing interest in using big data technology to improve data collection and 

processing in healthcare, including electronic health records, IoT-like sensors, and even mobile 

health apps [143]. Figure 6 describes the process between big data generation and the application 

of artificial intelligence to derive meaning from this data. In 2011, the McKinsey Global Institute 

issued the report "Big Data: The Next Frontier for Innovation, Competition, and Productivity," 

the report notes that big data has the potential to transform five key domains, including public 

health and health care [144].  
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2.7.2 Internet of Things (IoT) as a Unique Data Source  

 

IoT is a new technological innovation through which any real-world device can be connected to 

the internet, and communication between different devices is possible in real-time [145]. With 

increasing frequency and the ubiquitous presence of sensors, there is increasing potential in data 

generation. Each device has a unique address that can be tracked and is connected to several 

other devices to achieve a common objective [146]. 

Kevin Ashton devised the term "Internet of Things" in 1999 for the supply chain management 

domain [147]. However, within the last few years, the definition of IoT has been broadened to 

include various purposes, including energy, smart cities, agriculture, transport, and healthcare 

[148]. Although the definition of 'Things' has changed with time and improvements to technology, 

the ultimate objective of making a computer sense information without the help of human 

intervention remains the same. This inclusion of sensors and other products has revolutionized 

the existing infrastructure and accelerated data collection from the environment [148]. Wireless 

technologies like Wi-Fi, Bluetooth, RFID, ZigBee, and high-speed internet services are 

transforming every domain in the world, including healthcare [148]. Connectivity among people, 

machines, and organizations scaled up after cost reduction and increased manufacturing and 

availability of these devices worldwide [148].  

With the ubiquitous growth of technologies, the number of connected devices exceeded the 

number of human beings globally in 2011. As of 2019, more than nine billion interconnected 

devices exist, and it is expected to reach 24 billion by 2020. According to the Groupe Spéciale 

Mobile Association (GSMA) [149], this amounts to $1.3 trillion revenue opportunities for mobile 

network operators alone across all areas such as health, automotive, transportation, and consumer 

electronics. The users range from individual to international level organizations addressing 
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complex and multidimensional issues [150]. Figure 7 describes the domains where IoT has been 

used.  

  

Figure 7. Internet of Things schematic showing the end-users and application areas: image 

extracted from Fernández-Caramés et al. 2020 [151]. 

2.8 Application of IoT Data for Public Health 
 

Data from the IoTs can provide insights into different domains of public health [152–163]. The use 

of many wearables and fitness trackers generates a considerable volume of data, and the value of 

a single data source is multiplied when fused with other data sources [103,164–166]. When these 

innovative data sources and analyses are shared on social media platforms, the value of the 

integration is further augmented [167]. The range of applications of IoT data is vast, for example, 

elderly care, clinical medical environment, protection of natural resources and many others as 

listed within these reviews of the application of IoT data for different domains [101,159,168]. IoT is 

rapidly becoming the next generation of data sources in public health surveillance [161]. This 
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thesis focuses on two critical uses of IoT data: behavioural monitoring and population-level 

mobility data. 

2.8.1 Population-Level Behavioral Monitoring with Special Emphasis on Sleep, Physical 

Activity and Sedentary Behaviour 

 

Population-level behavioural monitoring of risk factors for chronic diseases has its own 

importance in public health. Within behavioural monitoring, physical activity, sleep, and 

sedentary behaviour have been emphasized in the scientific literature. Physical activity is one of 

the key indicators associated with quality of life and chronic diseases [169,170]. Similarly, sleep 

deprivation, which directly correlates with chronic diseases [171], is a significant behavioural risk 

factor. The prevalence of sleep issues is widespread, and sleep duration has decreased across all 

age groups [172]. Another new risk factor recently added to the group of behavioural factors in 

sedentary behaviour [173]. The PHAC combined this group of indicators (Physical Activity, Sleep, 

and Sedentary behaviour) into the PASS indicators framework [127]. The WHO recently 

published a guideline for PASS for children below five years of age [174,175]. Measuring these 

critical health indicators at the population level is challenging, and technological solutions can 

provide real-time updates on these health indicators use. The use of modern data sources incl, 

using IoT, has been tested in different countries [52,108,176–178], but each of them has its own 

strengths and challenges.  

2.8.1.1 Significance of PASS Indicators on Life Course Perspective 

The average duration of sleep, physical activity, and sedentary behaviour have changed in 

Canada within the last decade. In 2012, Bin et al. concluded that average sleep duration was 

reduced in Canada by approximately 20 minutes from 1986 to 1998 [179]. In contrast, another 

study in 2017 indicated that average sleep duration increased from 8.1 hours in 1998 to 8.3 hours 

in 2010, where average screen time (one of the proxy indicators for sedentary behaviour) 
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increased from 140 min in 1998 to 154 min in 2010 [180]. Sleep duration and screen time were 

positively associated in both periods. The percentage of people sleeping for less than six hours 

reduced by one percent from 9.6 % to 8.6% in 2010 [180]. However, within the last decade 

increase in screen time has not influenced the overall duration of sleep.  

 

Figure 8. Risk and protective factors for chronic diseases in Canada- life course approach: image 

extracted from a report of Public Health Agency of Canada [181].  

As per the PHAC "Centre for Chronic Disease Prevention strategic plan 2016-2019", sleep, 

physical activity, and sedentary behaviours are the critical indicators that are essential for the 

prevention of a range of chronic diseases for almost all stages of life [181] (Figure 8).   

2.8.2 Population-Level Mobility Measurement 

 

Human mobility data is a modern way to measure population-level activity in society [182–184]. 

This data can be broadly divided into macro and micro measurements based on the length, 

duration, and type of travel. 
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 2.8.2.1 Macro-Mobility Measurement 

 

Human macro mobility is defined as any long-distance travel, including travelling with vehicles 

[183,185,186]. Measurement of this kind of mobility at the population level depends on the type of 

route, surface, air, and water. Some of the critical sources for this data are flight traffic 

information, road transportation data and waterways movement information. With restrictions 

due to the COVID-19 pandemic, all three modes of transportation have been reduced  

significantly [187].  

2.8.2.2 Micro-Mobility Measurement   

 

Micro-level human mobility restricted to in-house movement is often ignored as a non-

significant source of physical activity, recently emphasized by the PHAC. As per evidence, the 

exercise of any intensity has an impact on human health [127]. The daily household-related 

activity comes under the "light to moderate" level of physical activity [127]. The increasing use of 

GPS technology in smartphones, wearables, and smart home sensors has increased the generation 

of micro-mobility data. There is a significant potential for using this type of data for informing 

public health [183,188,189].  

2.9 Data Analysis Frameworks   

 
Many statistical methods have been developed to analyze the health-related data to identify 

unusual patterns in data series that may result from disease outbreaks [190]. In recent days, newer 

surveillance systems include datasets that monitor several variables and events of interest [191–

193]. As the volume of surveillance data increases, innovative statistical methods are pursued to 

address multivariate surveillance scenarios [193,194]. Public health surveillance depends on data 

from several sources, and statistical analysis and methods are essential to generate value from the 
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data. The key indicators from public health data are incidence, prevalence, rate ratio, risk ratio, 

odds ratio and the association between different variables [21].  

Statistical analysis can be (1) descriptive, (2) inferential analysis and (3) predictive or forecasting 

and modelling. Within descriptive statistics, data aggregation is done using central tendency, 

dispersions, and variations [195]. The data aggregation can be based on the three fundamental 

principles of public health surveillance - place, person, and time- factors [195]. Within inferential 

statistics, a random sample of data is taken from a population to describe and make inferences 

about the hypothesis[191]. The critical difference between descriptive and inferential analysis is 

that descriptive statistics use the data to describe the population through numerical calculations, 

graphs, or tables. In contrast, inferential statistics make inferences and predictions about a 

population based on a sample of data taken from the population in question [44,195,196]. Predictive 

forecasting or model building focuses on determining the causation or associations and 

forecasting future trends [197–200].  

The critical algorithms for public health surveillance are outbreak detection, situational 

awareness, and trend estimation for different health conditions and risk factors [44,195,200] .  

The temporal component of the analysis can be extended by using the time series model [201]. A 

Time Series data is a sequential set of data points, measured typically over successive times [201]. 

Time-series data analysis explores trend, seasonality, cyclic and irregular characteristics and 

provides meaningful insights [201,202].  

A trend is defined as the "general tendency of a time series to increase, decrease or stagnate 

over a long period" [202]. Seasonal variation is the component that explains "fluctuations within a 

year during the season, usually caused by climate and weather conditions, customs, traditional 

habits, etc." [202]. Cyclic variation is the component that describes "the medium-term changes 
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caused by circumstances, which repeat in cycles" [202]. The duration of a cycle extends over a 

more extended period. Irregular or random variations in a time series result from "unpredictable 

influences, which are not regular and also do not repeat in a particular pattern." These 

variations are due to extraordinary events like a pandemic, war, strike, earthquake, flood, 

revolution, etc. [202].  

Time series data for public health has been utilized for model building [203], and time series 

forecasting methods have been accepted in other research fields, such as infectious disease 

surveillance [203–207]. Statistical models used for time-series data in public health surveillance are 

classified into univariate statistical methods, including statistical process control inspired models 

[208–210], smoothing models [196,197,211], regression methods such as generalized linear models [212], 

autoregressive models [213], moving average models, ARMA, ARIMA [214–216], SARIMA [217–219] 

models respectively. The advanced analytics methods include Bayesian models [199,220], Markov 

models [221], and multivariate analysis, including principal component analysis, multivariate 

cumulative sum, parallel surveillance and ensemble approach [17,222]. Recently the use of artificial 

intelligence models such as machine learning [219] and deep learning methods have also been 

used with time series data for building health surveillance models. The detail about these 

methods and models are mentioned in Appendix 1. Most surveillance data exhibit strong time 

trends, cyclic patterns, and other time-dependent effects depending on the aggregation method 

and underlying population behaviours and environmental factors.  

Besides time-series data analysis methods described in Appendix-1, interrupted time series (ITS) 

analysis can be used where data are measured at multiple time points, i.e., before and after the 

introduction of an intervention to investigate the impact of that intervention [223]. ITS designs are 

used to examine the effects of any public health policy interventions when a randomized 
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controlled trial is not feasible [223]. Also, it can be used to evaluate the effects of policies and 

population-level interventions retrospectively using administrative databases [223]. One of the 

advantages of ITS design is that it can account for the pre-intervention trend in estimating the 

effect of the intervention [224]. Confounders may play a role both before and after interventions, 

therefore this must be addressed in the model [224]. Understanding non-linear correlations 

requires discretely graphing exposure and outcome across time before undertaking time series 

regression analysis [223]. Temporal confounders, such as seasonality and long-term trends, are 

regularly found and can lead to confounding bias [224]. Time-varying confounders, both measured 

and unmeasured, are also responsible for causing bias in exposure-outcome relationships [224].  

In the case for epidemiological questions related to short-term variation for exposure, a 

generalized additive model (e.g., log-linear semi-parametric) can be used for regression 

modeling [225]. Explicit parameters and non-parametric functions can be employed as explanatory 

variables and model smoothers in this type of model. However, this model fit is ideal, since 

outcome values are discrete counts of total number events (e.g., mortality, disease) at a specified 

time point [225].  

Artificial intelligence is growing in all domains, including health systems and public health [138]. 

In the case of public health surveillance, most published research projects utilize social media 

data as a source of big data, applying machine learning algorithms for model development. 

Examples of studies related to epidemiological indicators for infectious diseases like the 

influenza [16] and dengue [91] and other risk factors for health like physical activity [226,227] have 

been successfully described in the literature using machine learning and deep learning.  

Human activity recognition is another required field where typical machine learning and deep 

learning algorithms have been applied to big datasets. Obinikpo and Kantarci, 2018, conducted a 
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feasibility study on integrating sensory data generated from different sources and presented 

insights on the aggregation of heterogeneous datasets with minimal missing data values for 

future use and found that sensory data generated from wearables are less vulnerable to missing 

data [228]. In 2017, Willets et al. showed that physical activity and sleep behaviours could be 

classified with 87 % accuracy using data from wrist-worn activity monitors and balanced random 

forests with hidden Markov models [108]. Trained models can be used to generalize to population-

level indicators. The authors also analyzed the seasonal and gender-based variations of physical 

activity and sleep [108]. We should redefine a typical epidemiological study where machine 

learning, deep learning, big data, and integration of various data sources have been implemented. 

Those innovative ideas will be helpful only when the study design is based on some specific 

theoretical framework augmented with questions related to population health [229].  

Machine learning approaches for finding similarities and differences in a set of data or 

documents include clustering and classification methods [230]. These methods can be used to 

group products in a catalogue, identify cohorts of similar clients, or group documents by topic or 

theme [230]. Although both methods have certain similarities, the difference is that classification 

assigns things to human-labeled classes, whereas clustering identifies similarities between 

objects and groups them according to common traits that distinguish them from other groups of 

objects. The groups are known as clusters. The clustering doesn't require an existing labelled 

data set, but it still seeks to identify groupings and differences in the data. This is called 

unsupervised learning, as opposed to classification (with labels), which is referred to as 

supervised learning. Clustering can be done in several ways. Each approach is best suited for a 

specific data distribution [230]. A brief description of four common approaches follows. 
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• Centroid-based clustering organizes the data into non-hierarchical clusters. K-means is 

the most widely used centroid-based clustering algorithm. Centroid-based algorithms are 

efficient but sensitive to initial conditions and outliers.  

• Density-based clustering connects areas of high density into clusters. This allows for 

arbitrary-shaped distributions as long as dense areas can be connected. These algorithms 

have difficulty with data of varying densities and high dimensions. Further, by design, 

these algorithms do not assign outliers to clusters. 

• Hierarchical clustering creates a tree of clusters. Hierarchical clustering, not surprisingly, 

is well suited to hierarchical data, such as taxonomies. 

• Distribution-based clustering approach assumes data is composed of distributions, such 

as Gaussian distributions [231]. As distance from the distribution's center increases, the 

probability that a point belongs to the distribution decreases. 
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Chapter 3 Study Rationale and Objectives  
 

3.1 Rationale of the Study 
 

Public health surveillance systems for communicable, non-communicable diseases and their risk 

factors use real-time data collection and analysis mechanisms under global and national systems 

[84]. In Canada, the prevalence of non-communicable diseases is increasing, and so are the risk 

factors. The lifestyles of Canadians are also changing rapidly, and consequently, so are 

behavioural indicators. As indicated in the literature review in the previous chapter, among 

different preventable behavioural risk factors, sleep [232–235], physical (in)activity [236] and even 

sedentary behaviour [237] are critical determinants for health, the impact of which can be short or 

long term. The public health surveillance system uses indicators like behavioural risk factors to 

identify, track and mitigate the root cause of the problem. New indicators, data sources and 

infrastructure for reinforced analytics to capture behavioural and environmental risk factors for 

public health monitoring are slowly evolving. For policymakers to build policy [238–240] to 

promote healthy behaviours at a population level, like physical activity or sleep, the existing 

indicators may be misleading as data is outdated and sparse [241–243]. Existing datasets are not 

current, and data collection methods include self-reporting and the use of technology to supply 

data from activity monitors. Activity monitoring is one of the modern ways to measure physical 

activity levels. As a best-case scenario of the public health surveillance system, the USA started 

collecting data for these indicators in 1984, routinely using behavioural risk factor surveys. In 

2011, the data collection process changed to telephonic mode to monitor the trends and patterns 

at the population level [43].  

In Canada, however, despite several existing small-scale studies that successfully use 

nontraditional datasets to address timeliness and quality gaps, efforts by the Public Health 
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Agency of Canada (PHAC) to build a system capable of using these nontraditional datasets to 

monitor health determinants in mainstream public health surveillance systems have emerged  

[244]. For a developed country like Canada, where the technology for health is readily available, 

those gaps can be filled using nontraditional data collection methods such as social media and 

IoT data, including sensors from smart homes. 

The use of smart wearable devices for health monitoring is increasing in Canada [245,246] and 

globally [247]. Fitbit [248], Garmin [249], and other fitness trackers [250,251] are used by individuals 

trying to monitor their health. Similarly, mobile apps are also producing vast amounts of data 

that can be used to monitor indicators such as physical activity [252,253] and sleep [254] at the 

population level.  

Other potential data sources for public health surveillance are smart homes, IoT, and Active 

Assisted Living systems [255]. These have been used for public health surveillance, as 

demonstrated by Costa in 2014 for medical diagnostics and intervention [256] and Dalton in 2017 

for influenza tracking [90].  

“ecobee” is a Canadian smart thermostat manufacturer invested in using their data for research 

applications [257]. Smart thermostats are wireless internet-connected devices with a ubiquitous 

presence across most provinces and territories in Canada. ecobee operates a program called 

"Donate your Data" [258], in which any ecobee user can share their anonymized smart thermostat 

data for research purposes by consenting within the app [259,260]. Also, through existing web 

Application Programming Interface (API), which is a software intermediary that allows two 

applications to talk to each other, it is possible to extract pre-consented data from many devices 

in the community in real-time [257]. These devices are equipped with remote sensors that can 

monitor room usage through infrared sensors [261], which present an excellent opportunity for in-
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house  activity and sleep monitoring, as demonstrated by other authors in the field, using infrared 

sensors on a smaller scale [262]. However, this type of data has never been used at such a large 

scale for public health surveillance. This thesis explored the use of these alternative data sources 

for sleep, physical activity, and sedentary behaviour monitoring in Canada using IoT technology.  

3.2 Overarching Goal  
 

The goal of this thesis is to help drive the use of novel data sources in public health, ultimately 

providing agencies as the PHAC and the CDC with supporting evidence of the benefits of IoT 

data for public health research. The results of this research will help policymakers improve 

programs and help identify the short-term impact of interventions or policy changes. 

Through the use of IoT data collected from ecobee thermostats, this project aims to identify how 

the amount of physical activity and sleep changes over time.  

3.3 Objectives of the Research and Research Questions 
 

The objectives and the associated research questions of this thesis were to: 

O.1 – Identify the association between wearable data and smart thermostat data through a pilot 

study. 

RQ1 – What is the association between step data collected by wearable devices and 

motion sensors activation data from smart thermostat?  

O.2 – Evaluate whether the "Donate your Data" (DYD) dataset from ecobee is a possible source 

of data to measure population-level health indicators for in-house physical activity, sleep patterns 

and sedentary behaviour (PASS). 

RQ2 – What is the viability of using sensor-based data from the "Donate your Data" 

(DYD) program to measure in-house physical activity, sleep patterns and sedentary 

behaviour (PASS) at the population level? 
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O.3 – Demonstrate the use of data from the Donate your Data (DYD) program, from ecobee, to 

measure the impact of work-from-home policy during the COVID-19 pandemic for behavioural 

indicators in Canada as a part of population-level health surveillance programs. 

RQ3 – Did the work-from-home policy during the pandemic affected behavioural 

indicators, such as sleep habits, in-house and the out of home stay duration in Canada? 

RQ4 – Do data generated from ecobee smart thermostats have the capacity to measure the 

impact of the work-from-home policy in Canada? 

RQ5- Assuming a difference in sleep, in-house and out of home duration at the household 

level, are the observed changes also observed within weekdays, week by week and month 

by month? 

O.5 – Use data from Internet of Things (IoT) to monitor population-level micro-mobility and 

compare it with macro-mobility data. 

RQ6 – Is there any association between Google residential mobility data and ecobee 

Donate your Data? 

RQ7 – Do the data collected by ecobee Donate your Data support the exploration of the 

variability in population-level in-house mobility through the progression of the 

pandemic?  

RQ8 – Is it possible to detect and elicit anomalous behavioural data at the population 

level, helping identify deviations from stay-at-home policies? 
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Chapter 4 Organization of the Thesis  
 

 

The research work for this thesis has been divided into four major components, as described in 

Figure 9. The first part of my research project is presented in Chapter 5 and involves a pilot 

study in which I evaluated the feasibility of using smart thermostat IoT data as a data source for 

health indicators. I have utilized data from the "Donate your Data" program from ecobee, 

combined with primary data collected from participants using wearables to assess the feasibility 

of developing population-level indicators for Canadians' physical activity, sleep, and sedentary 

behaviours. This study established proof that data from IoT could be utilized for population-level 

health indicators, which has been published in the Journal of Medical Internet Research mHealth 

and uHealth [27].  

The second part of this project, presented in Chapter 6, corresponds to a viewpoint paper 

discussing the use of the Internet of Things (IoT) as a NextGen data source for public health 

surveillance. This chapter describes the potential advantages and disadvantages of a modern data 

source to establish the foundations for potentially implementing IoT as a public health data 

source in public health surveillance systems. This chapter has been published as a perspective 

paper in Frontiers in Public Health [28].  

The third part of the thesis explores the use of IoT data for two applications: (1) comparing 

population-level behavioural indicators in Canada before and during the COVID-19 pandemic in 

Chapter 7, followed by (2) a population-level mobility data assessment in Chapter 8 with 

particular emphasis on four major provinces, Ontario (ON), Quebec (QC), British Columbia 

(BC) and Alberta (AB).  

My research's fourth and final component Chapter 9 examines policy-level analysis and 

discusses using this potential data source for public health research and action.  
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Figure 9. Research work for this thesis. 
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Chapter 5 A New Approach to PASS Indicators: Are Data from IoT Technologies 

Informative?  
 

5.1 Preamble  

This chapter presents a modified version of a published manuscript presenting the result form the 

pilot study to assess the use of data generated from the IoT technologies for public health 

surveillance, including additional analysis and discussions. The manuscript was published in the 

JMIR mHealth and uHealth journal, on November 20, 2020 [27]. The manuscript provided the 

foundational results, based on which the chapter 6, 7 and 8 developed. 

Citation: Sahu KS, Oetomo A, Morita PP. Enabling remote patient monitoring through the use 

of smart thermostat data in Canada: exploratory study. JMIR mHealth and uHealth. 2020 Nov 

20;8(11):e21016. 

5.2 Introduction  

In 2017, the MaRS Discovery District, in association with the Public Health Agency of Canada 

(PHAC) and the Canadian Institute of Health Research (CIHR), hosted a challenge to explore 

novel mechanisms for monitoring healthy behaviour indicators. Alternatives to traditional 

survey-based systems were to optimize public health surveillance systems in Canada [244]. 

As per the description on their website, "MaRS Discovery District is a not-for-profit corporation 

and innovation hub in Toronto, Ontario, Canada, dedicated to driving economic and social 

prosperity by harnessing the full potential of innovation. MaRS works with entrepreneurs and 

investors to launch and grow companies with broad economic and societal impact. It convenes 

governments and industry stakeholders to enable widespread adoption in complex markets and 

systems" [263]. PHAC was created in 2004 to improve public health capacity and respond 

effectively to public health issues in Canada [264]. PHAC focuses on preventing diseases (both 

chronic and infectious), preventing injuries, and responding to public health emergencies and 

http://www.phac-aspc.gc.ca/index-eng.php
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infectious disease outbreaks [264]. PHAC also promotes good physical and mental health across 

communities in Canada based on scientific evidence and informed decision-making [264]. The 

CIHR is the Canadian federal funding agency for health research with a mission to create new 

scientific knowledge and enable its translation into improved health, more effective health 

services and products, and a strengthened healthcare system for Canadians [265].  

Through this competition, organizations looked for researchers to propose and test creative new 

types of data and data sources that can be used to measure indicators of the following at the 

population level: 

1. Physical activity (number of steps); 

2. Sleep (average number of hours of sleep per night); 

3. Sedentary behaviour (average number of hours per day spent sedentary). 

These indicators are called PASS [127] (Physical Activity, Sedentary Behaviour and Sleep), which 

are extracted from the Canadian Health Measures Survey (CHMS) [266], the Canadian 

Community Housing Survey (CCHS) [128], the General Social Survey [128], and the Physical 

Activity Monitor (PAM) [267]. These methods use in-person interviews, telephone surveys, and 

monitoring using an Actical accelerometer (Philips Respironics) for one week [268].  

Innovative technologies and data sources, including IoT, mobile health applications, social 

networking, and other online data sources, offer an opportunity for public health organizations at 

different levels to access and integrate a more varied range of data into public health surveillance 

[44]. These datasets can overcome the limitations of current methods of self-reported data 

collection [8] . They can increase the granularity, diversity and range of data used as part of the 

analysis process, while also reducing the time lag between data collection and analysis through 
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continuous sampling, near-real-time reporting, augmenting the ability to explore and address 

new areas of public health [44]. 

In this part of the thesis, existing technology such as smart Wi-Fi thermostats (ecobee), 

associated remote thermostat sensors (ecobee), as well as fitness trackers (Fitbit) have been used 

to evaluate the feasibility of implementing quick, real-time, and more efficient health behaviour 

data collection. The thermostat sensors were initially designed to monitor motion in the house to 

maintain a comfortable temperature in the rooms in use. The remote sensors can detect motion in 

the house and provide real-time, continuous assessment of the patterns of movement between 

rooms, which can be used to understand health behaviours such as physical activity at home, 

sleep quality, sleep duration, and sedentary behaviour. This solution can collect granular health 

behaviour data 24 hours, seven days a week, 365 days a year, without in-person follow-up. 

Additionally, the project (1) has the capacity to enable long term, longitudinal data to be 

collected directly within a home setting; (2) it is not dependent on having a physical device 

carried by study participants; (3) leverages existing technologies already present at home; (4) 

streamlines health officials' access to data, improving decision making, and policy development 

by providing real-time data instead of outdated data.  

5.2.1 Study Objectives  

 

The goal was to find innovative data types, sources, and methodologies to measure population-

level health indicators for Canada's sleep, physical activity, and sedentary behaviour. The 

objective of this study was to: 

1. Find the association between ecobee sensor data and step counting data collected using a 

Fitbit. 
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2. Analyze population-level indicators for an average duration of in-house physical activity, 

sedentary behaviour and sleep in Canada using data from the “Donate your Data” 

program from ecobee.  

5.3 Methodology 
 

This is an exploratory study where I have utilized two data sources, one primary and one 

secondary, for exploring the abovementioned research questions. In this section, I present the 

details of the study and more information about the different types of data used.  

First, primary data was collected through a pilot study, including data from eight participants. 

The secondary data source consisted of data collected by ecobee through a data-sharing program 

known as "Donate your Data” [258].  

Data were extracted, cleaned, loaded, and analyzed to get the evidence that ecobee sensor data is 

associated with Fitbit and has validity and feasibility for further analysis. Both the data sources 

and the process of data cleaning, loading, and analysis have been described in detail below.  

5.3.1 Pilot Study 

In order to explore the relationship between ecobee sensor activation, motion in the house, and 

sleep patterns, a pilot study (n = 8) using participants from the University of Waterloo was 

conducted between September 2017 and December 2017. In the pilot study, we have illustrated 

the potential of using a smaller number of households and the data that can be collected by 

leveraging sensors and fitness trackers together to create an algorithm that can be utilized to 

monitor healthy behaviour at a population level using more extensive datasets.  

Eight subjects were recruited for this study (five females and three males), with ages ranging 

from 25-41 years (six graduate students and two full-time employees, all affiliated with the 

University of Waterloo and residing in the city of Waterloo).  
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Throughout the data collection period, the homes were occupied by a single resident wearing a 

fitness tracker. Data was collected from the ecobee thermostat (and remote sensors) and a Fitbit 

Zip [248]. Fitbit Zip collects step data from the participants at a minute level; Yangjian et al., in 

2016, validated the technology by comparing it with other similar devices [97]. Fitbit Zip has been 

used for monitoring physical activity, and a high positive correlation was found with the 

actigraphs instrument, the gold standard for measuring physical activity [269]. Each house was 

equipped with an ecobee thermostat and had between five and twenty-nine remote sensors 

installed, depending on the size of the house. Participants wore a Fitbit for about one week to 

collect step-tracking data in tandem with ecobee’s sensor data. Layouts of the homes were 

obtained, the location of the sensors identified, and we ensured that the sensors had fully covered 

the house. Additional information about the homes and participant metadata was recorded. 

Spearman’s correlation coefficients test was performed to validate the feasibility of the data and 

check whether the utilizing the sensor data is a valid method to substitute for fitness trackers for 

these indicators [270].  

Ethics approval for this study was obtained from the University of Waterloo Office of Research 

Ethics (#31377).  

5.3.2 ecobee “Donate your Data” Program 

Canada has a yearly average temperature range of -1 to +1 ℃, with more than 100 days below 0 

℃ annually [271]. As such, the use of thermostats is ubiquitous across Canada [272]. Thermostats 

are used to control room temperature, 92% of the households in Canada had at least one 

thermostat in the house in 2019, and 61% of thermostats in Canada are programmable (where the 

individual can set the temperature for a specific period) [272]. Heating consumes a significant 

amount of energy, and to solve this problem; companies started engineering smart thermostats. 
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Smart thermostats use presence/movement sensors to save energy and maintain the household 

temperature by reporting the presence or absence of a person within a specific physical location 

in the house. ecobee [257] and Nest [273] are the two smart thermostat companies with the highest 

market share for smart thermostats.  

The primary advantage of the ecobee dataset is the granularity of the data (i.e., five-minute 

intervals), where the remote sensor data provides information about the physical presence of 

individuals throughout the house, which can be used to explore movement of the individual in 

the house. This data is highly significant as it can provide rich insights into in-home behaviour, 

while not requiring any additional effort to collect the data. Above all, ecobee is ready to share 

this data for research. ecobee has a program known as "Donate your Data" [258], where 

participants consent to share their anonymized data (without identification or demographic 

information) with researchers. Access to this data creates the potential to address some critical 

public health research questions, as I will explore on this thesis.  

The "Donate your Data" dataset has two components: metadata (Appendix 2 and 3) and 

thermostat data files (Appendix 4 and 5). Metadata includes self-reported information about the 

location of the house (country, province, and city), the size of the house, the number of floors, 

the age of the house, the number of sensors, and the number of individuals living in the 

household. This data is self-reported by the user and completing the fields optional. The 

thermostat data files include the date and time stamps, external and internal temperatures at 5-

minute interval levels, and information about room occupancy (measured through an infrared 

presence sensor) in binary format (0 for no presence and 1 for presence). The thermostat data 

files are collected automatically, compiling the data generated by the sensors. While the "Donate 

your Data" program is provided as a data export in .csv files, ecobee offers an open API for 
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additional integration options. Ecobee users enrolled in the DYD program are distributed across 

almost all the provinces and territories of Canada (see Table 1).  

5.3.2.1 ecobee Data Ecosystem 

Passive infrared (PIR) sensors are used detect room occupancy, where the thermostat acts as the 

gateway to relay information to ecobee's cloud server. Each sensor reports its status every five 

minutes, which results in a longitudinal time series with 288 data points generated per day per 

household for each sensor. Through the DYD program, ecobee shares this data with researchers 

via multiple .csv files. 

The dataset has 48 months of data from 111,297 households across the globe, out of which 

around 94% (106246) are in North America, with 14077 households specifically in Canada. The 

distribution at the province and territory level in Canada is described in Table 1.  

Table 1. Distribution of sample size across provinces of Canada. 

Country Province No. of households  

Canada 

N=14077 

Alberta 4407 

British Columbia 492 

Manitoba 275 

New Brunswick 43 

Newfoundland and Labrador 24 

Northwest Territories 5 

Nova Scotia 60 

Ontario 7734 

Prince Edward Island 7 

Quebec 767 

Saskatchewan 260 

Yukon 3 

 

The DYD data was loaded into a MySQL database. Data cleaning and preprocessing have been 

completed using Python scripts to prepare the data for analysis. The second phase of this 

initiative focused on using the algorithms developed in the proof of concept on a larger dataset 

secured with ecobee (DYD) [258], providing evidence of the scalability of our platform. 
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Data from 7,888 households in the USA and 1,302 in Canada were used in this study after data 

curation, where 556 single occupant homes in the USA and 70 in Canada were included to 

analyze individual-level indicators. The dataset contained data from January 2015 to March 

2017. 

Table 2 describes the variables generated for this study. Each new column and the associated 

indicator were created based on pre-defined criteria. For example, an away label was created 

when the number of sensors activated was "0" consecutively for at least 24 hours as zero sensors 

activated means there was no movement within that household, representing an absence of all 

individuals during that period. Anything other than zero represents that somebody was at home 

during that time. If one or more individual is at home, then the labels are either sleep, active, or 

sedentary. Two sub-labels were created for sleep: true sleep and disturbed sleep. For sleep, I 

have selected the time window from 10:00 pm to 8:00 am, as a previous study in the Canadian 

population shows more than 50% started sleeping around 10:00 pm and wake up between 7:00 

am to 8:00 am on a typical day [274]. If the participant is at home, then depending on the time 

window and the total number of sensors activated within a period of five minutes, the label can 

be defined as true sleep, disturbed sleep, sedentary or physically active behaviour as described in 

Table 2.  

Table 2. Definition of each indicator for the study. 

Indicators Time 

Window 

Total Sensors 

Active 

Other  

True sleep True 0  

Disturbed sleep True > 0  

Physically active False >= 3  

Sedentary 

behaviour 

False <= 2  

Away  False 0  Consecutively for at least 24 

hours 

Home  False NA If not away  
Note: Time window for sleep chosen as 10 pm to 8 am, NA- not applicable 



48 

 

After labelling all data for each timestamp for the complete dataset, descriptive analysis has been 

done at the national level, followed by stratified analysis at the provincial level.  

The metadata has geolocation information, naming the city and has the timestamp for each event 

that occurred. I have generated several new variables, such as time of the day and type of day, 

which can help examine human behaviour at a more detailed level. As the movement pattern and 

average duration of in-house physical activity, sleep, and sedentary behaviour may be associated 

with location, time of day, and type of day, the dataset provided by ecobee was augmented to 

determine the significance of these factors. The following additional variables defined according 

to the algorithms described above were added: 

• Home/away 

• True sleep/disturbed sleep 

• Active/sedentary 

• City 

• Province 

• Country 

• Period of day (morning/afternoon/night/evening) 

• Weekdays or weekends.  

 

Statistical analysis was performed on the data included mean, standard deviation, and standard 

error for the “amount of time” for away, true sleep, disturbed sleep, active and sedentary 

behaviour at the national level. The results were also stratified into households with a single 

individual, households with multiple individuals, and then according to province.  

This study has attempted to replicate PASS [127] indicators, improve the data collection process, 

and develop new indicators for all three categories: sleep, physical activity, and sedentary 

behaviour. Our proposed method will measure the number of hours of night-time sleep using 

real-time quantitative data. In contrast, the existing systems use self-reported measures, where 

participants respond to a survey with the response rounded to the nearest half-hour [275]. When 

analyzing data from our pilot study, looking for correlations between the data collected through 
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Fitbits and the number of activated sensors in the house, we have applied the Spearman’s 

correlation test.  

5.4 Results  

5.4.1 Pilot Study 

 

The results of the Spearman correlation coefficient between the total number of sensors activated 

in the ecobee thermostat and the number of steps tracked by the fitness tracker (Fitbit) was r = 

0.78, N = 3292, P <.001. This statistically significant test indicates a strong positive correlation 

between ecobee’s sensor activation, and the number of steps taken by the participants, providing 

evidence of the potential for using this data as PHAC indicators of physical activity. Figure 10 

visualizes the correlation between data from Fitbit and ecobee at the individual level.  

 

Figure 10. Scatterplot between number of steps from Fitbit with the number of sensors activated 

in ecobee. 

Table 3 describes the Spearman's correlation coefficients [276], stratified by participants (eight 

participants) involved in the pilot study. The coefficients range from 0.79 to 0.91 and were all 

statistically significant.  
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Table 3. Individual-level correlation coefficients between the number of steps from Fitbit with 

the number of sensors activated in ecobee. 

Participant id Spearman correlation (rho)  

1 0.79 

2 0.91 

3 0.80 

4 0.81 

5 0.84 

6 0.84 

7 0.79 

8 0.79 

 

Figure 11 represents the association between steps measured through Fitbit and the number of 

sensors activated on the ecobee thermostat at the same time for the same individual. Whenever 

the steps were taken were zero, the number of sensors activated was either zero or one, which 

signifies that the person was sleeping or busy with some sedentary activity. 

 

 

Figure 11. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by all participants. 
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In contrast, when the number of sensors activated was more than zero, more steps were taken, 

representing a certain amount of physical activity. This pattern is consistent throughout the data 

as shown in the Figures 12-19. 

 

 

Figure 12. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 1. 

 

 

Figure 13. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 2. 
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Figure 14. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 3. 

 

 

 

Figure 15. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 4. 
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Figure 16. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 5. 

 

 

 

Figure 17. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 6. 
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Figure 18. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 7. 

 

 

 

Figure 19. Association between steps data from a. Fitbit (upper) and b. sensor data from ecobee 

(lower), by participant 8. 
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Figure 20 combines data from Fitbit and ecobee to visualize the duration of sleep in a household 

with two individuals. Fitbit collects data at the individual level, whereas ecobee data is at the 

household level. Sleep labels from ecobee and Fitbit are highly similar, as seen by the colour-

coded lines; Subjects 1 and 2 undertook similar activities around the same period.  

 

Figure 20. Visualizing sleep from Fitbit and ecobee data. 

 

5.4.2 Population-Level Analysis 

 

Results from the national level descriptive analysis of physical activity, sleep, and sedentary 

behaviour is described in Table 4. The individual level’s average sleep duration was 7.89±0.17 

hours, and the household average was 7.71±0.18 hours. Similarly, the average duration of in-

house physical activity for single individuals in Canada was found to be around 85±13 minutes 

per day. 

In this study, the in-house physical activity indicator is a proxy. It is based on movement 

detected by ecobee’s sensors in five-minute intervals. The current physical activity indicator 

from PASS is a self-reported, conscious measure for exercise reported for intervals of at least 10 

minutes, rounded to the nearest half-hour [277]. 

The sedentary behaviour indicator designates a quantitative measure derived from ecobee’s data. 

It is based on participants being home during the day with less than two sensors activated in a 5-
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minute interval. The number of sensors represents the amount of activity in the house. When 

participants move around the house, they trigger different sensors in different rooms. According 

to our pilot study, individuals triggering a low number of sensors correspond to individuals with 

lower in-house physical activity. The equivalent PASS indicator is self-reported, consisting of 

hours rounded to the nearest half-hour. For example, our algorithm treats cleaning the house and 

moving between rooms as active minutes and only handles periods where the resident is static at 

home (e.g., in front of the TV or working in the office) as sedentary, which provides a more 

granular monitoring mechanism for sedentary behaviour. 

Table 4. List of indicators and their values for sleep, physical activity, and sedentary behaviour 

in Canada. 

 Indicators UbiLab$ PASS# Comments 

 Individual 

N=70 

Household 

N=888 

Individual  

Sleep 

Night-time amount 

of sleep (hours) 

7.89±0.17 7.71±0.18 7.2  

Disturbed sleep 

(hours) 

2.10±0.17 2.28±0.18 Non-

existing 

New indicator that is not 

currently available as part of 

the PASS indicators. 

Physical activity 

Physical activity in 

the home (mins per 

day) 

85.2±13 146.4±20 24.1  

Sedentary behaviour 

Sedentary time 

amount (hours) 

4.44±47 5.75±34 9.6 Distinct interpretation of 

sedentary behaviour 

Out of home 

Away period 

(hours) 

8.12±0.57 5.80±41 Non-

existing 

New indicator that is not 

currently available as part of 

the PASS indicators. 
$Ubiquitous Health technology lab at the University of Waterloo # Physical Activity, Sedentary 

Behaviour and Sleep, Values in the table are Average ± SD, i.e., standard deviation. 
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Additionally, the developed algorithms can measure the amount of disturbed sleep during the 

night. A similar indicator of nocturnal environmental noise is currently in development by PHAC 

and could help to explain interrupted sleep [277]. However, sleep interruptions due to medical 

conditions (sleep apnea), sleepwalking, or bathroom trips will not be captured in PASS but are 

captured by ecobee's sensors and our algorithms. 

In addition to national-level health indicators, time trend analysis found that the average duration 

of an individual's sleep has declined within the last three years while the average duration of 

sedentary behaviour and in-house physical activity increases. Figure 21 demonstrates time trend 

analysis of sleep, physical activity, and sedentary Behaviour for Canadian households from 2015 

to 2017. 

 

Figure 21. Time trend analysis for sleep, physical activity, and sedentary behaviour for Canadian 

households. 

When exploring the province-level stratification, the result showed significant variation between 

provinces. Figure 22 visualizes the provincial breakdown of average sleep duration in Canada 

from 2015 to 2017. 
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Figure 22. Distribution of average duration of sleep stratified by provinces and territories of 

Canada. 

5.5 Discussion  
 
With the rapidly increasing integration of technological advancements in diverse domains such 

as retail and commercial sectors, its unification with the medical sector can pave new horizons to 

improve the quality of existing healthcare systems [278]. For instance, a new field known as 

mobile health (mHealth) gained increasing attention with the introduction of smartphones and 

various mobile apps. The use of mHealth can enable users to track their vital health indicators 

like heart rate, respiratory rate, blood pressure, etc., and can prevent them from getting 

predisposed to certain chronic diseases [279]. These smart devices also uplift the current medical 

care delivery by enabling the patients to connect with physicians remotely and improve their 

quality of life [280]. 

Smart home technologies are currently expanding into the realm of AI-based virtual assistants, 

such as Amazon Echo [281], Apple’s Siri [282], and Google Home/Nest [283]. In the past, it was not 

possible to think of technologies that could monitor indoor temperatures using smart devices.  

However, with the advancements in smart home technologies, this has become a reality. As an 

added benefit, these data collection systems are based on zero effort technology (ZET) [100], and 
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the data gets collected unobtrusively in real-time. These devices have become more compact and 

affordable with rapidly evolving technology, providing seamless data collection for health 

monitoring. 

In this context, this study has aimed to leverage existing smart home technology-based data 

sources to generate population-level health care indicators. Although raw data are difficult to 

interpret, artificial intelligence (AI) algorithms can be employed to draw meaningful insights 

from large volumes of data. This analyzed information can be disseminated to end-users using 

the interactive web-based dashboard, displaying the user's health data in a textual, auditory, and 

visual manner. These interactive platforms are accessible and cater to the need of users with 

diverse health backgrounds. Moreover, users can learn about their day-to-day activity patterns 

and general health behaviours, as well as compare their behaviours with those of their peers or 

the population average. As an added benefit, these systems provide insights about their health 

status and recommendations that will improve their health indicators, enhancing users' 

experience. 

In 2017, an estimated 100,000 Canadian households had ecobee thermostats installed in their 

residences, with even more users in the United States of America, and this number is only 

expected to increase. With incentives from the provincial government, such as the Ontario Green 

Fund [284], smart home technology witnessed an increasing interest. Such initiatives would help 

diversify the sample population and broaden the socio-demographics of the study population 

while simultaneously reducing the issue of sample bias. This would, in turn, benefit the 

policymakers to strategize their future plans in the health care sector.  

This study is a proof-of-concept demonstrating the feasibility of using alternative data sources 

for developing population-level health indicators. Time series data from a large population 



60 

 

collected without additional effort and from non-health-related sources have been used to 

develop alternative PASS indicators. From this study, the Spearman Correlation Coefficient 

between Fitbit and ecobee data sources proves that the association was statistically significant 

and positively correlated. An increase in the number of steps resulted in a larger number of 

sensors being activated, which was consistent throughout the different houses included in the 

study. As previous studies have demonstrated, Fitbit is a reliable source for measuring physical 

activity [97,269,285]. This study has provided evidence that the same can be observed in ecobee 

data. The DYD dataset can be a potential source of information for measuring population-level 

health indicators. Further analysis of the DYD dataset shows that the average sleep duration at 

the individual level was 7.89 hours and 7.72 hours at the household level, which is very similar 

to the results of PHAC's published values for Canadians [277]. The real-time monitoring of 

population health behaviours that do not interfere with the day-to-day activities of individuals 

that own smart thermostats, which proves to be an important aspect of this study.  

5.5.1 Limitations 

 
This study has several limitations that constrain the capabilities of the data collected and possible 

health behaviour insights. While data granularity is high (data sampled every five minutes) when 

compared to traditional public health surveillance data, a higher level of granularity would be 

needed for a system focused on monitoring individual health behaviours. Additionally, while the 

sensors can track human movements, differentiating between individuals in a multi-occupant 

household still remains a challenge. In future studies, this limitation could be addressed with the 

use of additional on-body sensors to distinguish between the occupants of a household. This 

study also suffers from sampling biases, where the users of these smart home technologies 
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belong to middle-to-higher socio-economic status, as well as not including smaller or remote 

communities within Canada. 

5.6 Conclusion  
 

There is a lot of potential for RPM to expand and leverage commercial technologies. This study 

is just one example where technology can be used to bring innovative solutions for real use in the 

realm of health care, especially as it allows the use of technologies that are zero effort and have 

more than one added benefit. Technologies such as these will be able to advance the fields of 

RPM and public health surveillance. 

5.7 Contributions to the PhD Thesis 
 

This work was published in 2020 and that this served as the foundation for the rest of my thesis. 

The result of this study motivated me for writing a perspective paper to provide theoretical 

foundation to my work. The chapter 6 describes the importance of the NextGen data source for 

public health surveillance. Also, the result this study leads to two broader use cases utilizing a 

similar data source as standalone and in integration with Google mobility data for micromobility 

assessment at the residential area. Those two use cases are going to be described in chapter 7 and 

8 respectively.  
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Chapter 6 NextGen Public Health Surveillance and the Internet of Things (IoT)  
 

6.1 Preamble  
 

In this chapter, I present a published manuscript presenting a viewpoint related to the use of IoT 

technologies for public health surveillance. The manuscript was published in the journal of 

Frontiers in Public Health, in December 2021 [28]. The manuscript provides an overview of use of 

alternative modern data sources for public health surveillance with special emphasis on IoT 

based big data.  The manuscript will provide a framework for the development of the rest of the 

thesis. 

Citation: Sahu KS, Majowicz SE, Dubin JA, Morita PP. NextGen Public Health Surveillance and 

the Internet of Things (IoT). Frontiers in Public Health. 2021 Dec 3:1976. 

 

6.2 Abstract 
 

Recent advances in technology have led to the rise of new-age data sources (e.g., Internet of 

Things (IoT), wearables, social media, and mobile health). IoT is becoming ubiquitous, and data 

generation is accelerating globally. Other health research domains have used IoT as a data 

source, but its potential has not been thoroughly explored and utilized systematically in public 

health surveillance. This chapter summarizes the existing literature on the use of IoT as a data 

source for surveillance. It presents the shortcomings of current data sources and how NextGen 

data sources, including the large-scale applications of IoT, can meet the needs of surveillance. 

The opportunities and challenges of using these modern data sources in public health 

surveillance are also explored. These IoT data ecosystems are being generated with minimal 

effort by the device users and benefit from high granularity, objectivity, and validity. Advances 

in computing are now bringing IoT-based surveillance into the realm of possibility. The potential 

advantages of IoT data include high-frequency, high volume, zero effort data collection methods, 
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with a potential to have syndromic surveillance. In contrast, the critical challenges to mainstream 

this data source within surveillance systems are the huge volume and variety of data, fusing data 

from multiple devices to produce a unified result, and the lack of multidisciplinary professionals 

to understand the domain and analyze the domain data accordingly.  

6.3 Introduction 

The function of public health systems is to understand and respond to health trends affecting 

populations [10]. This is achieved through public health surveillance, that is, the ongoing 

collection and analysis of population health indicators. Traditional surveillance data collection 

can be cumbersome, expensive, and slow, often relying on paper-based and digitally extracted 

data sources. Social media and crowdsourcing are data sources that can be leveraged for 

surveillance data [286,287]. Sources like Twitter, Facebook, Google, and Reddit have been 

successfully used to explore behaviour and health outcomes [80]. These are now being accepted as 

potential data sources across several health domains [288].  

Another promising data source is the increasing number of devices (e.g., smart home monitors, 

wearables) and the technology to interconnect them. Internet of Things (IoT) technologies have 

become mainstream within communities and individual households [289]. Wearables and sensors 

can track personalized parameters of healthy living, including sleep, physical activity, and 

sedentary behaviour [290]. These devices can provide insights into population health, disease 

management, and active assisted living services [291,292]. IoT data has several advantages over 

traditional surveillance data: high volume and frequency of data collection, data triangulation, 

real-time availability, and minimal acquisition effort.   

Existing literature discusses the potential use of the IoT data sources for different purposes 

within multiple domains including healthcare. Among healthcare domain, area specific 
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application can be seen for pediatric, geriatrics, chronic disease supervision, private health and 

fitness management [293,294], but no single study exists to put together the views to utilize the IoT 

data with specific emphasis on public health surveillance. This chapter summarizes the existing 

literature on the use of IoT as a data source for surveillance. We discuss the shortcomings of 

current data sources and how IoT can meet the needs of surveillance. Challenges facing the 

large-scale application of IoT data to surveillance are also explored.    

6.3.1 Public Health Surveillance and Challenges with Existing Data Sources  

 

Public health recommendations focus on the social determinants of health and health equity [295]. 

Surveillance is the process by which ongoing health data are collected, analyzed, and reported, 

and it is critical to informing public health services. In 1968, the World Health Organization 

listed ten essential data sources for surveillance [77] (Figure 23: Traditional data sources) that at 

the time relied on paper-based data collection and manual data entry. Surveillance capability has 

evolved enormously alongside advances in technology. It now includes digital data extracted 

from several sources (Figure 23: Modern data sources), offering reduced processing time, fewer 

errors, and reduced lag between data collection and its use.      

The above said, surveillance data are still often obtained from questionnaire-based surveys 

(online surveys, in-person or telephone-based interviews [87], and such data collection requires 

enormous resources and funding [85,86]. Data quality can be compromised by declining response 

rates [87], recall bias [296], and low granularity of the data [200] as in the traditional data collection 

system, there is a limited number of subjects provide their inputs. Without complete and 

comprehensive information, the value of the data reduced. For example, fewer subjects with a 

smaller n, really only impacts the precision of the estimates that come from surveillance. To 

further explain, the system might not get very precise incidence estimates, which may or may not 
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be a problem depending on the goal of the system. The bigger issue with declining response rates 

is that they usually do not happen at random, meaning there is a less representative set of results. 

This is an issue if the factors that lead to making it into surveillance also relate to the issue you 

are trying to measure with the surveillance system. Current data used for the surveillance have 

challenges like missing data, under-reporting, inconsistencies, invalid data, illegible handwriting, 

non-standardization of vocabulary, measurement error, and inappropriate fields [297]. Traditional 

data sources used in surveillance are often delayed. For example, at least one year is required for 

getting a Canadian Community Health Survey (CCHS) update. "Public Health Ontario" in 

Canada affirms interdependent gaps within surveillance, insufficient data to build comprehensive 

health indicators [88], and an absence of existing mechanisms to capture some of healthcare's vital 

components.     

Current surveillance relies on both prospective and retrospective data collection, analysis, and 

reporting [9]. The current pandemic has highlighted the essential need for real-time public health 

surveillance to improve the evidence-based decision-making process [298]. Our evolving 

knowledge about chronic diseases, their risk factors, and management also demands the 

modernization of surveillance [9]. Real-time responses to emerging public health threats require 

real-time and systematic data collection.   

6.4 Next-Generation Data Sources for Public Health Surveillance 
 

Researchers have attempted to build and analyze health indicators using innovative data sources 

[94,299,300]. They are exploring the use of smartphones [301], online searches [302], social media [288], 

wearables [303], ambient sensors [304], electronic health records (EHRs) [94,305], medical-

administrative records [94], and pharmacy sales [299] to broaden the scope of surveillance.  
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As a source of surveillance data, information technologies are potentially advantageous because 

their near-universal uptake by a significant portion of the population creates vast quantities and 

varieties of data [200]. For example, wearable data from six billion nights has been used to 

understand sleep duration, quality, and change in pattern with time [18,306]. Effective use of big 

data for surveillance requires innovative analytical methods such as data integration [303] and data 

visualization [299,307,308]. Big data analytics is becoming mainstream in public health, integrating 

knowledge and skills from health informatics and biostatistics [309].  

6.5 The Internet of Things as a Novel Data Source 
 

The Internet of Things (IoT) is a technological innovation through which devices can 

communicate with each other in real-time through an internet connection [310]. For example, 

several household devices are interconnected to achieve a common objective, such as monitoring 

temperature or motion [310]. Integrated devices can include different sensors, mobile phones, 

mobile applications, wearable devices, and Radio-Frequency Identification (RFID) tags [310].  
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Figure 23. Conceptual framework of NextGen public health surveillance with traditional, 

modern, and NextGen data sources. Traditional and modern data sources extracted from Declich 

S, Carter AO 1994 [77]. 

IoT devices have accelerated data collection [45,292]. Connectivity among people, machines, and 

organizations increases as device availability and affordability improve [200]. This increase in 

connectivity is because of the ease of use of the devices, user-friendly designs, and internet 

speed. These parameters reduced the time gap within communication, broaden the scope of 

communication by providing different choice, be it audio visual, text, or hybrid of multiple 

methods. People can interact with the machines and vice versa, which was not possible earlier 

due to lack of technological progress. In 2011, the number of interconnected devices overtook 

the actual number of people globally [150]. The potential for data generation is exponential [45]. As 
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the IoT data has already been successfully used in multiple setups to monitor individual health 

outcomes and report on environmental conditions, some of the best use cases has been described 

below. 

6.5.1 Use of IoT Data to Support Individual Health Outcomes 

 

The management of chronic conditions has traditionally relied on patients interacting with their 

healthcare providers in person. However, patients spend most of their time outside the clinic. IoT 

monitoring provides an opportunity to collect real-time health information between patient-

healthcare provider interactions.  

Smart devices, such as wristbands, with IoT technology have been developed to measure 

individual physiological data, including physical activity [290,311], sedentary time [25], oxygen 

saturation [312–314], heart rhythm [312,313], muscle tremors [315], spinal posture [316], brainwaves [317], 

sleep [153], diet [318,319], electrodermal activity monitoring for sympathetic response [25] and oral 

health care [320]. With regards to specialized medical care, IoT technology has been used to cater 

to the need of cardiovascular [87], cardiopulmonary  [87] and ophthalmology [321]. With regards to 

different categories of populations, IoT has been used to help to monitor indicators related to 

women’s health [322], including pregnancy [323], soldiers at the country borders [154], nursing care 

at the hospitals [324], the elderly population in the long-term-care homes [325], persons with 

neurological conditions at the rehabilitation center [316], and also for persons with respiratory 

complaints including asthma [163]. 

IoT devices have a multipurpose use within the healthcare field, such as their capabilities can 

range from providing prenatal care to rehabilitation to monitoring seniors or athletes. IoT devices 

have successfully provided real-time health information on maternal and fetal health between 

regular appointments [326]. By monitoring vital signs using sensors, IoT platforms have been 
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designed to provide people with diabetes with feedback and notifications to mitigate the risk of 

complications [152,327,328]. Additionally, wearable devices have been used to detect falls and 

changes in behavioural activity for seniors living independently [329–332]. Monitoring systems 

have also been developed to evaluate sports rehabilitation [333–336]. IoT can support individual 

outcomes by allowing patients to manage their health outside of the clinical setting. 

6.5.2 Use of IoT Data to Monitor Environmental Conditions 

 

The IoT can also monitor environmental conditions in areas where we live, work, and play. 

Monitoring air purification in hospital settings plays a role in mitigating hospital-related 

infections [337]. Monitoring air quality is already used to quantify climate change impact [338] and 

has the potential to help mitigate its impact in the future [339]. IoT has been employed to monitor 

hospital circulating air volume, ozone concentration, temperature, humidity, and leaked 

ultraviolet intensity [337]. Preventive behaviour like hand washing can also be monitored [340]. 

Indicators of healthy out-of-the-house environments, such as water pollution and air quality, 

have been another target of IoT health research [163,341].  

6.6 The Internet of Things in Public Health Surveillance 
 

IoT data has been successfully used in other health domains but has not yet been fully used in 

public health. In response to the pandemic, the 2020 Riyadh Declaration made several 

recommendations to address the shortcomings in global public health response systems [342]. The 

Declaration prioritized the need for scalable and sustainable digital health technologies and the 

adoption of health intelligence [342]. There is a growing interest in using IoT data for building 

public health indicators at various levels [343–345].  

6.6.1 Advantages of IoT in Public Health Surveillance 
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IoT data have the potential to overcome shortcomings of current surveillance. IoT data sources 

provide high-frequency data with greater usability, and much of the device infrastructure for 

surveillance is already in place (i.e., smartphones, wearable technologies, internet access). 

Currently, worldwide more than three billion smartphone users [346], 722 million users of several 

kinds of wearable devices [347], and more than 1.2 billion smart-home connected devices exist 

[348]. IoT data benefits from essential features like high granularity [200], objectivity [303], and 

validity [44]. These “user-generated data ecosystems” are being generated with minimal effort by 

the device users and researchers. To date, the monetary cost to participants and researchers is 

low, suggesting that public health monitoring costs would likewise be minimal [349,350]. Finally, 

IoT enables near real-time data collection [103]. This can significantly reduce the time gap 

between health events, data collection, reporting, and intervention.  

Here we have assessed IoT's current attributes using the framework for evaluating public health 

surveillance by Groseclose and colleagues [351], which outlines nine features of surveillance 

systems to consider (Table 5). As summarized in the table, the major advantages of IoT data 

sources appear to be high-frequency data collection, the potential to have syndromic 

surveillance, zero effort data collection method, high volume, and variety of data. The major 

disadvantages appear to be lack of representativeness within a single data source, private players’ 

involvement as the data owner, the need for a high technological system to store, clean, and 

analyze the data, and interoperability. In addition to the above points, data privacy concerns of 

users are a potential disadvantage of acceptance of this technology from the user point of view 

[344]. 
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Table 5. Analysis of IoT as a data source for public health surveillance, using Groseclose et al.'s 

2010# framework for evaluating public health surveillance. 

Attributes (Definition) Features of IoT Data  

Simplicity 

"The system's structure 

and ease of operation. 

The system should be as 

simple as possible." [351]  
 

• The manufacturer often provides data collection/extraction from users 

without complex interactions using the Application Programming Interface 

(APIs). 

• Easy access to the data, which is often collected by passive sensors, 

minimizes the burden for the user. 

• IoT systems rapidly generate large volumes of data in real-time, creating 

challenges associated with managing, hosting, and analyzing big data. 

• Diverse types of data are generated: numeric, images, text, or audio. 

• Collects vast amounts of data from the same individual, often supporting 

longitudinal analysis. 

Flexibility 

"Ability to adapt to changing 

information needs or 

technological operating 

conditions with little additional 

time, personnel, or allocated 

funds." [351] 

• Application Programming Interfaces (APIs) make it easy to adapt to the 

technology to the end-users being used, type of data, type of database, 

storage, and security requirements.  

• New IoT data sources that use APIs can easily be integrated into systems, 

affording changes in a data structure as technologies evolve. 

• Changes in case definition can be updated in algorithms rather than 

requiring changes to data collected since systems can access the raw data.  

• The system can be automated to generate alert systems without manual 

effort, which can help public health officials identify potential signals for 

future outbreaks early. 

Data quality 

"Completeness and validity of 

the data recorded in the 

system." [351] 

• IoT data often suffers from missing, inaccurate, and incomplete data. 

• Wearable sensors that require participants to recharge and remember to 

interact with the device often have larger volumes of missing data. 

• Ambient sensors often generate continuous and complete datasets as they 

are always connected, powered on, and streaming. 

• Technology development is leading to improved data quality across all IoT 

sensors. 

Acceptability 

"Willingness of persons and 

organizations to participate in 

the system." [351] 

• IoT technologies are pervasive, and in the community, a part of the 

population is already using those technologies to generate data. 

• IoT adoption has been accelerating in the last decade and is predicted to be 

much higher in the near future. 

• Recent advancements in technology used "skin interfaced sensors" not only 

to monitor physical activities and vital signs but also keep track of molecular 

biomarkers of the human body [352] 

• Users need to agree to share their data, as it has already been collected. 

Sensitivity 

"At the level of case reporting: 

the proportion of cases of a 

disease or event detected by the 

system. Ability to detect 

outbreaks over time and 

evaluation of surveillance 

system." [351] 

• IoT sensors, in most cases, do not focus on the detection of specific 

diseases such as COVID-19 or influenza but rather on symptoms like fever, 

abnormal heart rate, or change in gait pattern. 

• IoT technology is ideal for supporting syndromic surveillance by collecting 

data about healthy behaviours and health variables in real-time.  

• IoT technology will collect data often indirectly associated with health and 

health risk behaviours (e.g., in-house motion data to quantify sleep patterns, 

phone mobility data used to quantify response to COVID-10 policies). 

• IoT will provide extensive participant data with a higher likelihood of the 

presence of events.  

• The longitudinal nature of the data can detect future anomalies using 

Artificial Intelligence models within the healthcare sector and send alerts to 
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policymakers. The longitudinal and continuity nature of the data will 

provide richer insights into population behaviours, which increases the 

likelihood of getting the events of interest.  

Positive predictive value 

"The proportion of reported 

cases that actually have the 

event under surveillance." [351] 

• The proportion of the presence of IoT within the community is increasing 

and predicting the true positive cases will be easier using IoT data by 

identifying early alerts. 

• Detecting specific diseases is possible, as technologies such as lab on a chip 
[353,354] allow for the real-time detection of pathogens and contaminants. 

• Positive predictive value seems to be in a disadvantageous position with the 

current IoT data environment, but this might change in the future.  

Representativeness 

"Ability to accurately describe 

the occurrence of a health-

related event over time and 

distribution of the population 

by place and person." [351] 

• A large number of participants can provide access to data that were not 

represented in the traditional data collection method.  

• IoT technologies are ubiquitous, highly pervasive, and are generating data 

24/7. 

• Data mining from sensors already owned by the population generates a 

biased sample, with data from the wealthier and more physically active part 

of the population. 

• Studies can supplement biased samples by deploying targeted studies to 

collect data from under-represented subgroups of the population. 

Timeliness 

"Reflects the speed between 

steps in a system." [351] 

• Data is often collected at high frequencies, often affording access to data in 

the near real-time.  

• An increase in the data's granularity and the longitudinal nature of the data 

can provide richer insights, for instance, faster alerts of anomalies for 

specific health issues and support the creation of innovative indicators. 

• In the near future, the IoT data source may become helpful to identify future 

pandemic and climate-related emergencies. Immediate assessment of the 

impact of policy changes (for example, "work-from-home" during the 

pandemic) can be possible using IoT data.  

• Improvement from traditional data sources where data collection often 

happens once yearly or less frequently. 

Stability 

"Ability to rely on the system 

for availability and to collect, 

manage and provide data 

without failure. Ability to be 

operational when needed." [351] 

• Private cloud systems can provide the necessary data security and maintain 

the users' privacy. 

• Redundant, always available, more stable public health surveillance 

platforms/systems can be built using private cloud solutions, having the 

capacity to collect uninterrupted data without failure. IoT manufacturers and 

IoT data custodians can deliver such redundant and stable systems for their 

consumers' everyday use.  

• The disadvantage of these IoT data manufacturers is ever-changing 

company environment (for example, corporate and big private entities) 

might not provide a stable source of data. The alternative source of data 

should be listed as a backup plan to support and strengthen when required.  
#Groseclose SL, German RR, Nsubuga P. "Evaluating Public Health Surveillance," in Principles & Practice of 

Public Health Surveillance (Oxford University Press). doi:10.1093/acprof:oso/9780195372922.003.0008 

 

6.6.2 Challenges to using IoT in Public Health Surveillance 

 

The challenge now is how to access and analyze the data being gathered. Some IoT companies 

create sharable, research-oriented data sources, such as "donate your data" from ecobee, a smart 
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thermostat company in Canada [355]. ecobee's smart home products include motion and 

temperature sensors, and research teams have access to longitudinal data from thousands of 

households with a data granularity of five-minute intervals.  

Other IoT companies publish studies from their own smart devices using artificial intelligence 

algorithms for population-level measurements. For example, Fitbit wearables recorded sleep data 

from over six billion nights of its customers' sleep [18], the most prominent sleep dataset ever 

collected. Similarly, Oura Health used IoT data gathered from their Oura ring, a wearable sensor 

that tracks key signals from the human body (sleep, heart rate, skin temperature, physical 

activity), delivering critical insights to help an individual harness their body's potential daily and 

also to monitor vital health indicators [356].    

Another hurdle is the ability to fuse data from multiple devices to produce a unified result. 

Several research projects have focused on making IoT data fusion viable in the real world by 

designing computing infrastructure and data fusion techniques [103,357]. Real-time IoT analysis 

from multiple health monitoring devices may overwhelm current computational capabilities, 

such as using multiple devices to monitor each football player's physiological indicators during a 

game [358]. A distributed computational framework to handle complex computational needs was 

developed by Higinio et al. for health surveillance [358]. The use of each smart devices' 

computing capabilities effectively shared advanced health monitoring applications [358].  

Regarding technical challenges related to IoT, some of the critical issues are energy 

optimization, hardware compatibility, security, and data connectivity [359]. A recent study by 

Iwendi et al. in 2020 shows that there are certain highly specialized algorithm such as a “hybrid 

meta-heuristic algorithm” has the potential to optimize the energy consumption of the sensors 

related to wireless sensor networks [359].   
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Aberration detection identifies unusual incidents or information trends with possible significance 

to clinical or public health [219]. Methods for detecting such aberrations have also evolved 

significantly. Current modelling methods can now analyze individual surveillance data collected 

from different sources and integrate multiple covariates [360]. The algorithms used for signal 

recognition have improved over the last decade and are now better equipped to utilize advanced 

informatics to capture surveillance data aberrations [360] accurately.  

In 2018, Faverjon C. and Berezowski J. elaborated on IoT data's utility for aberration detection 

[360,361]. Two studies have shown that user data from wearables (Fitbit and the Oura ring) could 

detect early signs of COVID-19 infection [19,102,362–364]. Evidence shows the risk of 

hospitalization related to COVID-19 can be calculated from self-reported symptoms and 

predictive physiological signs by combining different health and behavioural data from 

consumer wearable devices; this may help identify pathological changes weeks before 

observation using traditional epidemiological monitoring [102,362]. As described in the study using 

Fitbit wearable, it has the potential to detect almost half of COVID-19 positive cases 24 hours 

before participants reported the onset of symptoms with 70 percent specificity [19]. Besides joint 

effort by multiple countries to develop vaccines and potential drugs to prevent and treat COVID-

19, skin-integrated and skin interfaced sensors, positioned at optimal locations of the body, might 

address the ongoing and critical need for objective, continuous, and sensitive tools to detect 

COVID-19 symptoms early in the general population [352,363]. A research study highlighted a 

practical approach for managing epidemics using digital technologies with a roadmap to a rapid 

and universal diagnostic method for the population level detection of several respiratory 

infections in advance of symptoms [364]. These anomalies could predict future outbreaks [360] and 

prevent the spread of infectious diseases [365].  
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6.7 NextGen Public Health Surveillance  
 

The COVID-19 pandemic has revealed a need to strengthen our public health surveillance and 

response systems. With the availability of public data and advances in collection and analysis, 

there is an opportunity to strengthen existing surveillance systems by harnessing complementary 

data sources like IoT-based data [302].  

Figure 23 describes the NextGen surveillance systems' conceptual framework. The first layer 

describes the sources of public health data. The second layer represents the data architecture. 

Once the data integration process is completed, data manipulation and analysis can be possible 

using statistics, machine learning, and deep learning algorithms. This process will help discover 

new public health indicators and advance our understanding of existing disease risk factors.   

6.8 Conclusion 
 

Current public health surveillance systems have unique challenges in getting the relevant data at 

the right time and utilizing those data sources for policy-level decision-making. There is a 

considerable volume of non-traditional data being self-generated by the public through their 

ubiquitous use of smart devices. Public health has the potential to utilize the real-time, 

longitudinal data collected through the Internet of Things (IoT) necessary for health surveillance. 

Advances in computing are now bringing IoT-based surveillance into the realm of possibility. 

The advantages of IoT data include high-frequency, high volume, zero effort data collection 

method, with a potential to have syndromic surveillance.  
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6.12 NextGen data and Equity, Diversity, and Inclusiveness  

Equity is defined as the removal of systemic barriers and biases enabling all individuals to have 

equal opportunity to access and benefit from the program. To achieve this, everyone involved in 

the research ecosystem must get a thorough awareness of the systemic challenges that persons 

from underrepresented groups (e.g., women, persons with disabilities, Indigenous Peoples, 

racialized minorities, individuals from the LGBTQ2+ community) face and implement effective 

strategies to overcome them [366].  

Diversity is defined as differences in race, colour, place of origin, religion, immigrant and 

newcomer status, ethnic origin, ability, sex, sexual orientation, gender identity, gender 

expression and age. To achieve quality in research and training, a diversity of perspectives and 

life experiences is important [367]. 

Inclusion is defined as the practice of ensuring that all individuals are valued and respected for 

their contributions and are equally supported. To achieve research and training excellence, it is 

essential to ensure that all team members are integrated and supported [367]. The NextGen data 

revolution presents an exciting frontier to expand public health research, broadening the scope of 

research and increasing the precision of answers. Despite these advances, scientists must be 

vigilant against also advancing potential harms toward marginalized communities. Paul Wesson 

and colleagues, in 2022, provided examples in which NextGen data or big data applications have 

(unintentionally) disseminated discriminatory practices, while also highlighting opportunities for 
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big data applications to advance equity in public health [366]. The study mentioned big data is 

framed in the context of the five Vs (volume, velocity, veracity, variety, and value), and the 

authors of the study proposed a sixth V, virtuosity, which incorporates equity and justice 

frameworks. The authors present analytic approaches for improving equity using social 

computational big data, fairness in machine learning algorithms, medical claims data, and data 

augmentation as examples, emphasizing the biassing influence of data absenteeism and 

positionality, and concluding with recommendations for incorporating an equity lens into big 

data research [366].  

6.12 Contributions to the PhD Thesis 
 

This publication provides the base for the theoretical understanding about use of non-traditional 

data sources for the public health surveillance. IoT based big data have the required 

characteristics as described in the literature to be eligible for public health surveillance.  

Ethics approval for this study was not applicable, because this chapter does not contain any 

studies with human or animal subjects. 
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Chapter 7 Measuring the Impact of Stay-at-Home Policies in Canada During the 

COVID-19 Pandemic 
 

7.1 Introduction  
 

7.1.1 Background  

 

The World Health Organization (WHO) declared the outbreak of coronavirus as a global 

pandemic on March 11, 2020 [71]. None of the countries worldwide were prepared to handle an 

epidemic of this scale. Most countries witnessed phased lockdowns [110] and total shutdown, 

drastically impacting their economy [368]. Additionally, this resulted in several new additions to 

hygiene standards [369] such as physical distancing, frequent handwashing [370], use of hand 

sanitizers, use of face masks [371], reduced social activities and gatherings as preventive measures 

to curb the spread of COVID-19 [372].  

Apparently, lockdown emerged as an essential tool by the governments to reduce the spread of 

COVID-19. Taking into account, the implications of the Government guidelines such as work-

from-home protocols for several companies and online schooling, these measures had likely have 

repercussions on adults, children, and youth population [373–375].  

Maintaining a physically active lifestyle with the right balance of exercise and rest is crucial for 

achieving an overall positive state of health, well-being, thereby improving the quality of life of 

the population irrespective of age, sex, and other sociodemographic indicators [376,377].  

Despite several public health measures that attempt to encourage physical activity, it has been 

found that people of all ages choose sedentary behaviour over an active lifestyle [73,378–380].  

However, the pandemic has limited physical activities, making it more difficult to achieve the 

recommended physical activity targets [381]. Moreover, sleep durations and patterns were also 

affected during the pandemic restrictions [373,378,381,382] for different age groups. Scientific studies 

suggest that sleep, sedentary behaviour, and physical activity are associated with a broad 
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spectrum of chronic diseases including diabetes, hypertension, cancer, or mental health problems 

[383]. Interestingly, a recent study shows that even mild physical activity of daily routine has a 

positive effect on health [74].  

7.1.2 24-Hour Movement Guideline and PASS indicator  

Canada developed a 24-Hour Movement Guideline in 2020, for all ages, laying guidance on the 

ideal amount of physical activity, sedentary behaviour, and sleep for an individual in a day (see 

Figure 24) [384]. This guideline has the potential to capture movement across different times, 

environments, and effects of the season. Though the procedure is developed with a crucial 

ambitious aspect of health, it is challenging to get the required data to measure its impact. This 

framework requires real-time data collection from a broader range of people [385], which is 

feasible using data generated from wearables and IoT.  

 

Figure 24. Canada’s first 24-hour movement guideline for adults: image extracted from a report 

of Canadian Society for Exercise Physiology [384]. 

Canada’s Public Health Agency developed the PASS (Physical Activity, Sedentary Behaviour 

and Sleep) indicator framework to monitor and measure the population health for the 24-hour 
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movement guideline [384]. Within the PASS framework regular collection and reporting of these 

indicators provide insight into the changes in population-level behaviour and other associated 

factors that directly or indirectly influence them [127]. A systematic review published in 2018 by 

Valerie et al. concluded that despite having several objective physical activity measurement 

tools, it is still underutilized in the real world, which would have addressed the challenges of 

comprehensive and consistent collecting, reporting, and analyzing of physical activity metrics 

[386]. At the global policy level, the World Health Assembly in 2018 agreed on a global target to 

decrease physical inactivity by 15% by 2030 and align with the Sustainable Development Goals 

[387,388]. The action plan includes ensuring regular surveillance and physical activity monitoring 

[387,388] to achieve this ambitious goal.  

7.1.3 Public Health Surveillance and the Use of Technology   

 

Zero-effort technologies are critical in the digital world, and the future of public health 

surveillance depends on this [100]. Datasets like the ecobee “Donate your Data” program could be 

integrated with other technologies, datasets, and public health agencies strategies to tackle public 

health surveillance challenges and improve upon barriers related to traditional data collection 

methods. For example, when a Remote Sensor (RS) is placed in a household, it can provide 

insights on occupancy [389] and indicate different household activities, such as physical activity 

and sleep [390] . The use of RS addresses the challenges of participants’ declining engagement, 

low response rates in surveys and focus groups, and technical barriers to the wearable technology 

[386]. When an RS is placed in a household, it behaves as a passive data capturing device wherein 

the individuals remain engaged in their day-to-day activities and their mobility data is collected. 

In this way,  the recall bias also gets eliminated which occurs frequently when the participants 

need to quantify the amount of sleep and durations of physical activities on a daily basis [386].   
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Motion data can provide insights into the amount of sleep in the household by using the absence 

of movement as a proxy indicator of sleep intervals [390]. The lack of activation of motion sensors 

represents several outcomes depending on context. When there is a brief period of inactivity 

between two active periods with a regular pattern, it might represent sleep activity. A sustained 

period of inactive sensor shows either the absence of human individuals at the household due to 

vacation or out of the house for other reasons [27,391]. 

7.1.4 Objectives 

 

This study’s primary goal is to contrast population behaviours before and during the COVID-19 

pandemic using household-level data collected via smart thermostats. As previously discussed, 

policies in Canada have been implemented to minimize the population’s exposure to COVID-19. 

This study aims to understand household and population-level behaviours, generating insights 

about how the pandemic has affected the population’s lifestyle.  

The objectives of this study are to: 

(a) Identify household occupancy patterns and variations caused by the COVID-19 

pandemic, using the motion and thermostat sensor time-series data from ecobee, and 

(b) Determine the impact of policy-level changes during the COVID-19 pandemic such 

as lockdowns, on household behaviours like sleep parameters (bedtime, wake up time, 

sleep duration), and time spent in-house and out-of-the-house.  

7.2 Methods 

This is an exploratory study using data from smart thermostats from four provinces in Canada to 

measure the changes in lifestyle patterns before and during the COVID-19 pandemic.  

Ethics approval for this study was obtained from the University of Waterloo Office of Research 

Ethics (#31377).  
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7.2.1 Dataset  

 

“Donate your Data” is a program from ecobee, a smart thermostat company in Toronto, Canada. 

The company shares anonymized data from smart thermostat users across the globe for research 

purposes. Details about the “Donate your Data” program have been explained in Section 5.2.2.  

7.2.2 Data Processing, Cleaning, and Analysis 

 

The “Donate your Data” program has two main data tables: metadata and thermostat data. 

Ecobee shared this data with researchers through Google’s BigQuery platform, which is part of 

the Google Cloud Platform (GCP). The data was transferred from GCP to a Microsoft Azure 

Gen2 storage space for cleaning and analysis. This approach was preferred due to the secure 

research environment hosted by the University of Waterloo in Microsoft Azure. As illustrated in 

Figure 25, the data analysis process leveraged multiple cloud platforms, data analysis software 

and techniques. Both Python and R programming languages were used to make the process 

smooth and effective. Time series data wrangling is easier with Python and handling a dataset of 

seven terabytes requires extensive parallel computing infrastructure. Databricks is a flexible and 

scalable service within Microsoft Azure where an enormous volume of data can be managed 

effectively through scalable computational nodes. 

file:///C:/Users/Kirti/AppData/Roaming/Microsoft/Word/Donate%23_5.2.2_ecobee_
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Figure 25. Framework to understand data processing, cleaning, and analysis process for this 

research. 

  

As described in previous studies, the thermostat data was aggregated from five-minute to 30-

minute intervals [389,392]. Similarly, data aggregation for sensor activation has been done at the 

population level per day to compare the before and during the COVID-19 pandemic. Another 

study from our research team that I was part of used the following methodology to calculate 

behavioural indicators [393]. The study has been published on the JMIR mHealth and uHealth. I 

have leveraged this algorithm in my thesis, expanding the household level analysis to a 

population level analysis. Based on the time stamp and number of sensors activated, our scripts 

calculated sleep time, wake up time, sleep duration, time spent in-house, and away time at the 

household and population level. The text below is a direct extraction from our publication, where 

I describe the algorithm used. 
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"The sum of activation of all the sensors for every 30 minutes interval demonstrates the activity 

in that period. Every 5 minutes of positive activation is given a score of 1. For a 30-minute 

interval, positive activity was defined as a score greater than or equal to 4 (one sensor active for 

4x5 minute interval (20 minutes) or four sensors each active for five minutes). Sums falling 

below this threshold were considered noise. A binary vector presents a daily record with 48-time 

slots" [390]. "To assess the different sleep parameters, each day has been divided into two parts: 

(1) 12:00 am until 12:00 pm and (2) 12:00 pm to 12:00 am. For every two consecutive days (day 

0 and day 1), a sleep cycle was defined as the second part of day 0 combined with the first part 

of day one (Figure 26).  

 

Figure 26. Sleep cycle and division of the day. 

 

The sleep cycle records were segmented into clusters for each household using the Gaussian 

mixture model. The regular pattern in each cluster was identified by the probability of sensor 

activation in each time slot (counted as positive motion). For each cluster, the sleep time, wake-

up time, and sleep duration of the regular pattern were assessed by hypothesizing that the 

deactivation (sleep time) occurs before activation (wake-up time). The earliest deactivation 
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(sleep time) can start from 8:00 pm. The longest interval between two consecutive deactivation 

and activation times (from 8:00 pm till 12:00 pm) can identify sleep time, wake-up time, and 

sleep duration.  The overall results for each household are defined by the weighted average of 

the results from all the clusters by considering the cluster weight as: (wi=number of days in 

cluster i total number of days). In addition to sleep parameters, we identified the average time 

spent at home. The 24-hour daily household records were segmented into different clusters. The 

regular pattern of each cluster identified the duration of activation. The overall result was 

defined by the weighted average from all the clusters. For each household, we replicated the 

analysis for the different time scales of the season, weekday, and seasonal weekday as explained 

below and compared each scale's impact on sleep parameters and time spent at home. The data 

of each parameter is divided into different time scale subsets. First, the descriptive statistics are 

identified [391]."  

7.2.3 Population Selection  

 

The world's second-largest country (by total area), Canada, has ten provinces and three 

territories, extending from the Atlantic to the Pacific and northward into the Arctic Ocean. The 

population of Canada is more than 38 million as of 2021 [394], and the distribution of the 

population is not uniform across the provinces, as shown in Table 6. I have selected four 

provinces, Ontario, Alberta, Quebec, and British Columbia, as around 86% of the Canadian 

population resides within these provinces, as per the Statistics Canada report published in 2021 

[394].  
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Table 6. Population of Canada and provinces for the years 2020 and 2021, along with the 

corresponding share of the Canadian population. 

Geography  2020 2021  Share (%) 

Canada 37,979,854 38,131,104 100% 

Ontario 14,723,497 14,789,778 38.8% 

Quebec 8,572,054 8,585,523 22.5% 

British Columbia 5,142,404 5,174,724 13.6% 

Alberta 4,417,006 4,444,277 11.7% 

Manitoba 1,378,818 1,382,904 3.6% 

Saskatchewan 1,179,618 1,179,906 3.1% 

Nova Scotia 977,043 982,326 2.6% 

New Brunswick 781,024 783,721 2.1% 

Newfoundland and Labrador 522,994 520,286 1.4% 

Prince Edward Island 159,249 160,536 0.4% 

Northwest Territories 45,201 44,991 0.1% 

Yukon 41,980 42,596 0.1% 

Nunavut 38,966 39,536 0.1% 

 

Source: [394] Statistics Canada. Table 17-10-0009-01 Population estimates, quarterly. 

7.2.4 Data Analysis Methods 

 

The thermostat data from the DYD has been divided into two distinct phases based on the 

declaration of the COVID-19 pandemic at the national level in Canada on March 18, 2021. Any 

data before that time has been considered before the COVID-19 pandemic, and data points after 

that time point are assessed as during the COVID-19 pandemic. The starting point for the before 

COVID-19 data was January 1, 2017, and the endpoint was March 18, 2020. The start date for 

"during COVID-19 data" was March 19, 2020, and the end date was March 18, 2021. This 

period was selected as it compasses one year of data. 

I have started the data analysis using data visualization techniques to capture 24-hour household 

behaviour and household-level trends. The 24-hour household activity includes sleep, sedentary 

behaviour, and physical activity. Visual analysis of the data for selected households has been 

performed to identify and understand the pattern. I also explored the changes in population 
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behaviour with time during the pandemic. The behavioural health indicators for this study 

include sleep-time (time period where no activity was observed for at least a period of an hour at 

night), wake-up time (time period when the first activation of the sensor was observed after a 

prolonged period of inactivity, i.e., after sleep-time), out-of-the-house time (time period where 

no activity was observed for at least a period of an hour in the day), and time spent in-house 

(time period when the sensor gets activated due to various activities performed by individuals 

while in home). 

Descriptive (mean and standard deviations) and inferential statistics for the selected indicators 

have been calculated. Paired t-test has been used to determine the test of significance for the 

average difference in sleep duration, out-of-the-house stay duration, and in-house stay duration. 

A positive difference between during and before the COVID-19 pandemic for any indicator 

represents more time spent for that indicator, whereas a negative value represents less time spent. 

A P-value lower than 0.05 is considered statistically significant.  

7.3 Results 
 

The findings show significant changes at the household and population level for the selected 

indicators due to pandemic-related policy changes. During the COVID-19 pandemic, people 

stayed at home for extended periods, and the time away from home was significantly reduced. A 

year-by-year, month-by-month heatmap visualization shows changes in patterns, intensity, and 

duration.  

7.3.1 Visual Interpretation from Heatmaps 

 

The heatmap from five typical households from the “Donate your Data” program have been 

presented below for the years 2019 and 2020 (before and during the pandemic), as well as the 

month of March 2020 (more granular visualization) to explore the interpretable difference in 
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patterns between before and during the COVID-19 pandemic restrictions. The plot's x-axis 

represents a day, and the y-axis represents a time window of 30 minutes intervals. The lighter the 

colour, the higher is the sensor activation (more sensors activated in the house during that 

period), and the darker is the colour, the lower is the activation (fewer sensors activated in the 

house during that period) represented in these Figures 27-31. 

7.3.1.1 Year-level Visual Inspection Through Heatmaps (2019 and 2020) 

 

As shown in Figures 27-31, in 2019, the number of sensors activated for each time interval is 

lesser than in the year 2020.  Notably, there is an evident change in the sensor activation 

immediately after the declaration of the COVID-19 pandemic at the global and national levels. 

The household-level activity increased dramatically after the declaration of work-from-home 

policy and stay-at-home order in March 2020. The typical amount of time spent in an office on 

any given day was replaced by spending the equivalent time at home.  

Of the five households, two were from Ontario, and one each from Alberta, Quebec, and British 

Columbia. The number of individuals within these five households ranges from two to four, and 

the number of remote sensors ranges from six to eleven. The intensity of the sensor activation 

depends on the number of people residing within a household, whereas the number of sensors 

describes the high probability of capturing any activity within the household.  

For Household 1 and 3, as there were more than two individuals within the households, even 

before the pandemic, the intensity of sensors activation was higher than Household 2 and 4 with 

two individuals.  

Characteristic features of Household 1: The heat map in Figure 27 depicts the mobility activity 

of the household located in the province of British Columbia, with four members and nine 

remote sensors installed. In Figure 27a, it is evident that the weekdays had less mobility 
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compared to weekdays. This can be ascribed to the reason that people go to work on weekdays 

out of their homes which contribute to out-of-the-house time. However, on weekends, the 

residents stay mostly at home, thus increasing the in-house times. This pattern was observed till 

March 2020 as shown in Figure 27b. Since the declaration of COVID-19 pandemic in March 

2020, numerous regulatory changes such as lockdowns and work-from-home policy led to a 

significant increase in the in-house mobility of individuals, irrespective of the days of the week, 

because of more in-house time.  
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Figure 27. Annual heatmap of a single household sensor activation comparison between a) 2019 

and b) 2020 during the pandemic for Household 1. 

Characteristic features of Household 2: The heat map in Figure 28 depicts the mobility activity 

of the household located in the province of Ontario, with two members and six remote sensors 
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installed. Compared to Household 1, there is an overall reduction of mobility before and during 

the COVID-19 pandemic as the number of residents was less. However, the mobility patterns 

were like those in Figure 27.  

 

 
Figure 28. Annual heatmap of a single household sensor activation comparison between a) 2019 

and b) 2020 during the pandemic for household 2. 
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Characteristic features of Household 3: The heat map in Figure 29 depicts the mobility activity 

of the household located in the province of Ontario, with three members and nine remote sensors 

installed. Compared to households 1 and 2, the overall in-house mobility is significantly high 

before and after the COVID-19 pandemic. Additionally, there is no difference in the patterns for 

weekdays and weekends which can be ascribed to the reason that not all members were going out 

of home even before the pandemic started.  
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Figure 29. Annual heatmap of a single household sensor activation comparison between a) 2019 

and b)2020 during the pandemic for household 3. 

 



94 

 

Characteristic features of Household 4: The heat map in figure 30 depicts the mobility activity of 

the household located in the province of Quebec, with two members and eleven remote sensors 

installed. The mobility patterns in this household are like those in household 2. Strikingly, zero 

activity periods for a few days observed in June 2019 and September 2019 may be attributed to 

either vacation time or some other activities related to residents spending time out-of-the-house. 
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Figure 30. Annual heatmap of a single household sensor activation comparison between a) 2019 

and b) 2020 during the pandemic for household 4. 
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Characteristic features of Household 5: The heat map in Figure 31 depicts the mobility activity 

of the household located in the province of Alberta, with two members and six remote sensors 

installed. Strikingly, as evident from the graph, strict wake-up routines were followed throughout 

the year. 
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Figure 31. Annual heatmap of a single household sensor activation comparison between a) 2019 

and b) 2020 during the pandemic for household 5. 

These figures show the difference in sensor activation, which can be a proxy indicator to 

measure time spent in-house and out of the home, as well as sleep parameters of each observed 
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household. Upon compilation, this data has the potential to provide population-level insights. 

This would be the first time that such indicators are created based on IoT data, for a larger 

population. 

7.3.1.2 Month-Level Visual Inspection Through Heatmaps (March 2020) 

 

The same data from the five households for the month of March 2020 has been visualized below. 

Figures 32-36 illustrate the day-level changes in the activation of the sensors during March 2020, 

depicting the impact of “stay-at-home” order following COVID-19 pandemic declaration. As 

observed from the heatmaps, the intensity of sensors activation is consistent till March 15, 2020, 

however, following this date, the intensity of sensors activation changed. Owing to the daylight 

savings in Canada from March 8, 2020, the data of sensors activation for an hour is missing as 

represented by the cells colored in white.  

Figure 32 shows the changes in Household 1 during March 2020. It is evident that before 

declaration of the COVID-19 pandemic, the weekdays had less mobility compared to weekends. 

This can be ascribed to the reason that people go to work on weekdays out of their homes which 

contribute to out-of-the-house time. However, on weekends, the residents stay mostly at home, 

thus increasing the in-house times. This pattern was observed till mid-March 2020, followed by 

increase in mobility irrespective of days of the week.  
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Figure 32. Heatmap of the activity in the Household 1 for March 2020. 

Figure 33 shows the changes in Household 2 during March 2020, and like Figure 32, before the 

declaration of COVID-19 pandemic, weekdays had less mobility compared to weekdays. This 

pattern was observed till the third week of March 2020, followed by increase in mobility 

irrespective of days of the week. 

 

 
Figure 33. Heatmap of the activity in the Household 2 for March 2020. 
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Figure 34 shows the changes in Household 3 during March 2020, and the pattern of sensor 

activation was very different from Households 1 and 2. Even before the declaration of COVID-

19 pandemic, the weekdays and weekends had nearly similar mobilities. Following COVID-19 

pandemic declaration, the sensors activation increased drastically, indicating higher in-house 

mobility. 

 
Figure 34. Heatmap of the activity in the Household 3 for March 2020. 

Figure 35 shows the changes in Household 4 during March 2020. Before the declaration of 

COVID-19 pandemic, there was a unique pattern of away time such that there was no sensor 

activation observed for two days followed by one day higher sensor activation. Following 

COVID-19 pandemic declaration, there was an increase in in-house mobility irrespective of days 

of the week. 
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Figure 35. Heatmap of the activity in the Household 4 for March 2020. 

 

Figure 36 shows the changes in Household 5 during March 2020. Strikingly, the weekdays and 

weekends had nearly similar in-house mobilities before and after the declaration of COVID-19 

pandemic. 

 

 
Figure 36. Heatmap of the activity in the household 5 for March 2020. 
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7.3.2 Weekday level analysis of the motion sensors activation (2019 and 2020) through Box plot  

 

As observed from stratification and aggregation of the data into weekdays and weekends, during 

the pandemic, there was an overall increase in the total number of sensors activated for all the 

days of the week which is statistically significant at P<.001 level. Moreover, the difference 

between sensors activation on weekdays and weekends also reduced as shown in Table 7 and 

Figure 37.   

Table 7. Comparison of sensor activation before and during the COVID-19 pandemic for Canada. 

 Before  

Mean±SD 

During  

Mean±SD 

Mean 

Difference  

95% CI T value 

Monday 0.267±0.043 0.313±0.0523 0.046*** 0.036-0.055 9.6173 

Tuesday 0.259±0.0424  0.310±0.0517 0.051*** 0.042-0.060 10.912 

Wednesday 0.255±0.0432 0.310±0.0522 0.055*** 0.046-0.064 11.653 

Thursday 0.256±0.0404 0.309±0.0522 0.053*** 0.044-0.062 11.547 

Friday 0.264±0.0427 0.308±0.0536 0.044*** 0.035-0.053 9.2417 

Saturday 0.286±0.0487 0.312±0.0565 0.026*** 0.016-0.037 5.1105 

Sunday 0.289±0.0475 0.314±0.0564 0.025*** 0.014-0.034 4.763 

Total  0.268±0.046 0.311±0.054 0.043*** 0.039-0.046 23.04 

*** Statistically significant at P<.001 level, SD-Standard deviation. CI- Confidence interval 
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Figure 37. Comparison of total sensor activation between weekdays variation a) before and b) 

during the COVID-19 pandemic. 
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7.3.3 Month and Weekday-level analysis of the motion sensors activation (2019 and 2020) 

through Box plot  

 

Similarly, re-stratifying and aggregating the data into months and weekdays in Figure 38a and b 

illustrate that before the COVID 19 pandemic, the total number of sensors activation was lower 

in 2019 for all the months except April. In contrast, during 2020, the increase in sensor activation 

is consistent for all the months after March. 

As shown on the Figure 38a, in 2019, the months of February and March had a wide range of 

mobility on days of the weeks followed by a regular pattern of sensor activation. In contrast 

Figure 38b shows, in 2020, the sensor activation increased drastically in April which slowly 

reduced till the month of September and subsequently the sensor activation increased till 

December. This “U” shaped pattern in 2020 attributes to the COVID-19 pandemic declaration 

and stay at home policy, followed by waves of positive cases. The low variability within the days 

of the week during March 2020 to December 2020 might be because of almost similar pattern of 

sensor activation across several households.   
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Figure 38. Comparison of total sensor activation among months and weekdays a) before and b) 

during the COVID-19 pandemic. 
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7.3.4 Comparison of population-level behavioural indicators before and during COVID-19 

pandemic  

 

Further analysis of the sensor activation at the population level in terms of behavioural change is 

presented in Tables 8 and 9. There is a statistically significant difference in average sleep 

duration, time spent in-house and out-of-the-house before and during the COVID-19 pandemic 

in Canada.  

Before the pandemic, the average sleep duration was 8.7 ± 2.72 hours (Mean ± SD) whereas, 

during the pandemic, it was 9.2 ± 2.72 hours. The difference in average sleep duration was 30 

minutes which was statistically significant at P<.001 level. The difference was more accentuated 

on Thursday, than on Friday and Saturday, as shown in Table 7. When stratified by weekdays the 

average sleep duration before the pandemic and during the pandemic on Thursday was 8.6±2.69 

hours and 9.4± 2.76 hours, respectively.   

For time spent in-house, there is a statistically significant increase in duration of 2.2 hours. 

Before the pandemic, households in Canada spent 5.1 ± 2.72 hours in-house whereas it increased 

to 7.3± 2.72 hours during the pandemic.  

Before the pandemic, weekdays had less in-house time when compared to Saturdays and 

Sundays. For instance, people spent 5.0± 2.78 hours on average in-house on a typical Friday and 

it increased to 5.7± 2.70 hours on Saturday. However, during the pandemic time, the difference 

between the time spent in-house on weekdays was reduced.  

There is a difference of 2.7 hours before and during the pandemic for time spent out-of-the-

houses, which was statistically significant at the P<.001 level. Before the pandemic, the time 

spent out-of-the-houses was 10.2 ± 2.72 hours for weekdays whereas the average time spent out-

of-the-houses was 7.5 ± 2.72 hours.  During the pandemic, the difference of average time spent 

out-of-the-house between weekdays and weekends was reduced.  
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The change in sleep duration was further explored. The time to go to bed and wake up time were 

calculated. During the COVID-19 pandemic, the average difference for bedtime has minimally 

changed on the weekdays. The average bedtime from 11:15 pm changed to 11:13 pm during the 

pandemic. However, the change in average wake-up time was found to be increased by 51 

minutes. Before the pandemic, the average wake-up time was 5:47 am whereas it changed to 

6:38 am during the pandemic in Canada.  

These results show an overall change in household behavioural patterns, sleep habits, time spent 

in-house, and time spent out-of-the-houses, which could be attributed to the policy changes 

implemented to curb the spread of COVID-19.  

Table 8. Comparison of sleep, in-house and out-of-the-house stay duration before and during the 

COVID-19 pandemic for Canada. 

 Before the Pandemic During the Pandemic Mean Difference  

(During-Before) 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(minutes) 

In-

house 

time  

(hours) 

Out-of-

the-

house 
time  

(hours) 

Monday 

8.6±2.69 5.1±2.69 10.3±2.69 9.1±2.70 7.4±2.71 7.5±2.71 

30 *** 2.3 *** -2.8 

*** 

Tuesday 

8.6±2.68 4.9±2.68 10.6±2.68 9.1±2.71 7.4±2.72 7.5±2.72 

30 *** 2.5 *** -3.1 

*** 

Wednesday 

8.6±2.65 4.7±2.65 10.8±2.65 9.1±2.71 7.5±2.71 7.4±2.71 

30 *** 2.8 *** -3.4 

*** 

Thursday 

8.6±2.69 4.8±2.69 10.6±2.69 9.4±2.76 7.0±2.76 7.5±2.76 

48 *** 2.2 *** -3.1 

*** 

Friday 

9.0±2.78 5.0±2.78 9.9±2.78 9.3±2.75 6.9±2.75 7.8±2.75 

18 *** 1.9 *** -2.1 

*** 

Saturday 

8.9±2.84 5.8±2.85 9.3±2.85 9.2±2.68 7.4±2.68 7.4±2.68 

18 *** 1.6 *** -1.9 

*** 

Sunday 

8.6±2.70 5.7±2.70 9.7±2.71 9.1±2.72 7.4±2.72 7.5±2.72 

30 *** 1.7 *** -2.2 

*** 

Total  

8.7±2.72 5.1±2.72 10.2±2.72 9.2±2.72 7.3±2.72 7.5±2.72 

30 *** 2.2 *** -2.7 

*** 

*** Statistically significant at P<.001 level, SD-Standard deviation. 
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Table 9. Comparison of sleep timing before and during the COVID-19 pandemic for Canada. 

 Before Pandemic During Pandemic 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Monday 11:10:03 ± 3.59 05:32:56 ± 0.50 11:09:34 ± 5.49 06:29:56 ± 0.59 
Tuesday 11:09:30 ± 4.03 05:34:05 ± 0.49 11:08:09 ± 5.47 06:27:22 ± 1.00 
Wednesday 11:12:31± 3.55 05:25:40 ± 0.47 11:09:25 ± 5.47 06:26:27 ± 0.58 
Thursday 11:13:50 ± 4.00 05:36:41 ± 0.47 11:13:11 ± 6.26 07:32:41 ± 0.58 
Friday 11:27:31± 4.29 06:20:05 ± 0.49 11:23:18 ± 5.50 06:38:34 ± 0.56 
Saturday 11:22:52 ± 4.32 06:29:14 ± 0.55 11:23:02 ± 5.44 06:25:17 ± 0.57 
Sunday 11:10:09 ± 4.03 05:39:27 ± 0.52 11:09:54 ± 5.46 06:28:30 ± 0.58 
Total  11:15:05 ± 1.34 05:47:51 ± 0.19 11:13:45 ± 2.13 06:38:23 ± 0.22 

SE-Standard error. 

 

7.3.5 Province Specific Findings   

 

Table 10 represents the sample distribution of the households from four selected provinces 

across Canada. In this study, the province of Ontario comprises more than half of the households, 

followed by Alberta. Findings from data analysis of each province are explained below to 

understand the dynamics and association with province-specific policy implications.  Our 

household selection criteria included a minimum of 200 days of data available on the dataset. 

Table 10. Number of households selected for each of the provinces. 

 Number of houses on the 

DYD dataset 

Number of houses 

included in this study  

The proportion of 

data by province 

with national level  

Canada 21690 7930  

Ontario 10968 4495 57% 

Alberta 8046 2535 32% 

British Columbia  698 345 4% 

Quebec  1112 555 7% 

 

7.3.5.1 Ontario 

 

The results from the analysis for households in Ontario show that there was a statistically 

significant difference in average sleep duration, time spent in-house and out-of-the-house before 

and during the COVID-19 pandemic (Tables 11 and 12).  
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The average sleep duration before the pandemic was 9.2 ± 2.86 hours (Mean ± SD) whereas 

during the pandemic it was 9.4±2.73 hours. The difference in average sleep duration was 12 

minutes which was statistically significant at P<.001 level. The difference was more accentuated 

on the weekdays than on the weekends, as shown in Figure 39. When stratified by weekdays, 

before the pandemic, the difference of sleep duration was higher between a typical Thursday 

(8.9±2.91 hours) and Friday (9.7± 2.73 hours) whereas during the pandemic, the difference was 

larger for Wednesday (9.3±2.73 hours) and Thursday (9.7± 2.74 hours).  

For time spent in-house, there is a statistically significant duration of 2.5 hours observed before 

and during the pandemic for Ontario. Before the pandemic, households in Ontario spent 4.9± 

3.71 hours in-house whereas it increased to 7.4±4.67 hours during the pandemic. Before the 

pandemic, weekdays had less in-house time than Saturdays and Sundays within a week. For 

instance, people spent 4.8±3.61 hours in-house on Friday and 5.5±3.92 hours on Saturday. 

However, during the pandemic, the difference between the time spent in-house on weekdays was 

reduced.  

There is a statistically significant duration of 2.8 hours for time spent out-of-the-houses before 

and during the pandemic. Before the pandemic, time spent out-of-the-houses on weekdays was 

nearly 10 hours. The out-of-the-houses duration on Friday reduced to 9.5 ±3.67 hours compared 

to 10.5 ±3.98 hours on Thursday. During the pandemic, the average out-of-the-house time 

difference between weekdays and weekends was reduced.  

The increased sleep duration was further explored. The times for going to bed and waking up 

were calculated. During the COVID-19 pandemic, the average difference for bedtime has 

minimally changed on the weekdays, whereas the average for Friday is 11.27 pm and for 

Saturday is 11.24 pm, respectively.  
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These results show an overall change in Ontario of household behavioural patterns, sleep habits, 

time spent in-house, and time spent out-of-the-houses, which were likely caused by the policies 

implemented to curb the spread of COVID-19.  

Table 11. Comparison of sleep indicators and in-house stay duration before and during the 

COVID-19 pandemic for Ontario. 

 Before Pandemic During Pandemic Mean Difference  

(During-Before) 

 
Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-house 
time  

(hours) 

 

Mean±SD 

Sleep 

duration 

(minutes) 

In-

house 

time  

(hours) 

Out-

of-the-

house 
time  

(hours) 

Monday 

8.9±2.86 4.7±3.65 10.4±4.02 9.3±2.73 7.5±4.76 7.1±4.22 

30 *** 2.8 *** -2.3 

*** 

Tuesday 

8.9±2.87 4.7±3.61 10.4±3.98 9.3±2.76 7.5±4.76 7.1±4.17 

30 *** 2.8 *** -2.3 

*** 

Wednesday 

8.9±2.84 4.6±3.58 10.5±3.96 9.3±2.73 7.7±4.77 7.1±4.24 

30 *** 3.1 *** -3.4 

*** 

Thursday 

8.9±2.91 4.6±3.56 10.5±3.98 9.7±2.74 7.2±4.64 7.1±4.25 

48 *** 2.6 *** -3.4 

*** 

Friday 

9.7±2.73 4.8±3.61 9.5±3.67 9.5±2.75 7.0±4.48 7.4±3.95 

-12 *** 2.2 *** -2.1 

*** 

Saturday 

9.7±2.81 5.5±3.92 8.8±3.93 9.5±2.64 7.4±4.59 7.1±3.94 

-12 *** 1.9 *** -1.7 

*** 

Sunday 

9.1±2.83 5.4±3.96 9.6±4.19 9.3±2.72 7.5±4.63 7.2±4.06 

12 *** 2.1 *** -2.4 

*** 

Total  

9.2±2.86 4.9±3.71 10.0±4.01 9.4±2.73 7.4±4.67 7.2±4.12 

12 *** 2.5 *** -2.8 

*** 

*** Statistically significant at P<.001 level, SD- Standard deviation. 

 

  

Table 12. Comparison of sleep timing before and during the COVID-19 pandemic for Ontario. 

 Before Pandemic During Pandemic 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Monday 11:00:58±7.21 05:57:08±1.17 11:00:15 ± 8.23 06:51:12±1.21 
Tuesday 11:01:26±7.30 06:08:28±1.18 10:59:27 ± 8.23 06:54:27±1.20 
Wednesday 11:02:38±7.13 05:48:44±1.16 11:00:53 ± 8.20 06:49:07±1.21 
Thursday 11:07:11±7.22 06:05:12±1.17 11:06:22 ± 9.14 08:05:19±1.17 
Friday 11:27:34±8.22 07:00:29±1.15 11:17:45 ± 8.25 06:59:56±1.19 
Saturday 11:24:45±8.26 07:04:27±1.23 11:17:02 ± 8.15 06:40:15±1.19 
Sunday 11:05:04±7.34 06:09:41±1.18 11:00:31 ± 8.21 06:48:51±1.20 
Total  11:09:36±2.54 06:18:14±0.29 11:05:59 ± 3.12 07:01:18±0.30 

SE- Standard error. 
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Figure 39. Comparison of average behavioural indicators a) sleep duration, b) in-house duration 

c) out-of-the-house duration for the province of Ontario before and during COVID-19 pandemic. 
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7.3.5.2 Quebec 

 

The results from the analysis for households in Quebec show that there is a statistically 

significant difference in average sleep duration, time spent in-house and out-of-the-house before 

and during the COVID-19 pandemic (Tables 13 and 14).  

The average sleep duration before the pandemic was 9.5 ± 2.75 hours (Mean ± SD) whereas 

during the pandemic it was 9.6±2.54 hours. The difference in average sleep duration was 6 

minutes which was statistically significant at P<.001 level. The difference was more accentuated 

on the weekdays than on the weekends, as shown in Figure 40. When stratified by weekdays, 

before the pandemic, the difference of sleep duration was higher between a typical Thursday 

(9.1±2.77 hours) and Friday 10.1± 2.67 hours) whereas during the pandemic, the difference was 

larger for Wednesday (9.5±2.55 hours) and Thursday (9.8± 2.64 hours).  

For time spent in-house, there is a statistically significant duration of 2.9 hours observed before 

and during the pandemic for Quebec. Before the pandemic, households in Quebec spent 5.2± 

3.48 hours in-house whereas it increased to 8.1±4.47 hours during the pandemic. Before the 

pandemic, weekdays had less in-house time than Saturdays and Sundays within a week. For 

instance, people spent 4.8±3.61 hours in-house on Friday and 5.5±3.92 hours on Saturday. 

However, during the pandemic, the difference between the time spent in-house on weekdays was 

reduced.  

There is a statistically significant duration of 2.9 hours for time spent out-of-the-houses before 

and during the pandemic. Before the pandemic, time spent out-of-the-houses on weekdays was 

nearly 10 hours. The out-of-the-houses duration on Friday reduced to 8.9 ±3.59 hours compared 

to 10.2 ±3.81 hours on Thursday. During the pandemic, the average out-of-the-house time 

difference between weekdays and weekends was reduced.  
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The increased time spent for the sleep duration was further explored. The time to go to bed and 

wake up was calculated. During the COVID-19 pandemic, the average difference for bedtime 

has minimally changed on the weekdays, whereas the average for Friday is 11:25 pm and 

Saturday is 11:18 pm, respectively.  

These results show an overall change in Quebec of household behavioural patterns, sleep habits, 

time spent in-house, and time spent out-of-the-houses, which were likely caused by the policies 

implemented to curb the spread of COVID-19.  

Table 13. Comparison of sleep indicators and in-house stay duration before and during the 

COVID-19 pandemic for Quebec. 

 Before Pandemic During Pandemic Mean Difference  

(During-Before) 

 
Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-house 
time  

(hours) 

 

Mean±SD 

Sleep 

duration 

(minutes) 

In-

house 

time  

(hours) 

Out-

of-the-

house 
time  

(hours) 

Monday 

9.2±2.69 4.9±3.34 9.8±3.67 9.4±2.67 8.2±4.57 6.3±4.36 

12 *** 3.3 *** -3.5 

*** 

Tuesday 

9.1±2.68 4.9±3.32 9.9±3.74 9.5±2.54 8.2±4.55 6.3±4.05 

24 *** 3.2 *** -3.6 

*** 

Wednesday 

9.2±2.73 4.8±3.19 10.0±3.67 9.5±2.55 8.3±4.58 6.2±4.13 

18 *** 3.5 *** -3.8 

*** 

Thursday 

9.1±2.77 4.7±3.32 10.2±3.81 9.8±2.64 7.8±4.51 6.4±4.16 

42 *** 3.1 *** -3.8 

*** 

Friday 

10.1±2.67 5.0±3.44 8.9±3.59 9.8±2.36 7.8±4.39 6.5±3.90 

-18 *** 2.8 *** -2.4 

*** 

Saturday 

10.1±2.89 6.1±3.76 7.8±3.99 9.7±2.53 8.3±4.19 6.0±3.85 

-24 *** 2.2 *** -1.8 

*** 

Sunday 

9.4±2.65 5.9±3.73 8.7±3.92 9.6±2.42 8.3±4.45 6.1±3.99 

12 *** 2.4 *** -2.6 

*** 

Total  

9.5±2.75 5.2±3.48 9.4±3.85 9.6±2.54 8.1±4.47 6.3±4.0Six 

6 *** 2.9 *** -2.1 

*** 

*** Statistically significant at P<.001 level, SD-Standard deviation. 
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Table 14. Comparison of sleep timing before and during the COVID-19 pandemic for Quebec. 

 Before Pandemic During Pandemic 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Monday 10:48:59 ± 22.14 06:05:08 ± 3.19 10:50:32 ± 24.51 07:29:05 ± 3.12 
Tuesday 10:45:02 ± 22.43 06:18:15 ± 3.28 10:50:14 ± 25.0 07:22:44 ± 3.14 
Wednesday 10:50:48 ± 21.53 05:58:54 ± 3.17 10:52:17 ± 24.53 07:27:23 ± 3.04 
Thursday 10:53:16 ± 21.31 05:52:06 ± 3.27 10:56:42 ± 26.41 08:46:27 ± 3.07 
Friday 11:25:34 ± 24.49 07:13:36 ± 2.53 11:12:41 ± 24.44 07:15:56 ± 3.03 
Saturday 11:18:25 ± 26.37 08:46:55 ± 4.07 11:14:52 ± 24.12 06:57:43 ± 3.01 
Sunday 10:53:36 ± 23.45 06:43:32 ± 3.23 10:54:15 ± 24.52 06:43:32 ± 2.52 
Total  10:58:58 ± 8.52 06:41:03 ± 1.19 10:58:41 ± 9.28 07:31:47 ± 1.10 

SE- Standard error. 
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Figure 40. Comparison of average behavioural indicators a) sleep duration, b) in-house duration 

c) out-of-the-house duration for the province of Quebec before and during COVID-19 pandemic. 
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7.3.5.3 Alberta 
 

The results from the analysis of households in Alberta show that there was a statistically 

significant difference in average sleep duration, time spent in-house and out-of-the-house before 

and during the COVID-19 pandemic (Tables 15 and 16).  

The average sleep duration before the pandemic was 8.3 ± 2.57 hours (Mean ± SD) whereas 

during the pandemic it was 8.8±2.70 hours. The difference in average sleep duration was 30 

minutes which was statistically significant at P<.001 level. The difference was more accentuated 

on the weekdays than on the weekends, as shown in Figure 41. When stratified by weekdays, 

before the pandemic, the difference of sleep duration was higher between a typical Thursday 

(8.3±48 hours) and Friday 8.5± 2.69 hours) whereas during the pandemic, the difference was 

higher on Wednesday (8.9±2.68 hours) and Thursday (9.1± 2.76 hours).  

For time spent in-house, there is a statistically significant duration of 2.2 hours observed before 

and during the pandemic for Alberta. Before the pandemic, households in Alberta spent 5.3± 

3.66 hours in-house whereas it increased to 6.8±4.55 hours during the pandemic. Before the 

pandemic, weekdays had less in-house time than Saturdays and Sundays within a week. For 

instance, people spent 5.3± 3.66 hours in-house on Friday and 6.8±4.55 hours on Saturday. 

However, during the pandemic time, the difference between the time spent in-house on 

weekdays was reduced.  

There is a statistically significant duration of 2.7 hours for time spent out-of-the-houses before 

and during the pandemic. Before the pandemic, time spent out-of-the-houses on weekdays was 

10.4±3.61 hours whereas the out-of-the-houses duration during the pandemic reduced to 

8.3±4.16 hours. During the pandemic, the average out-of-the-house time difference between 

weekdays and weekends was reduced.  
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During the COVID-19 pandemic, the average difference in bedtime has minimally changed on 

weekdays, whereas the average for Friday is 11:27 pm and Saturday is 11:21 pm, respectively.  

These results show an overall change in Alberta in household behavioural patterns, sleep habits, 

time spent in-house, and time spent out-of-the-houses, which were likely caused by the policies 

implemented to curb the spread of COVID-19.  

Table 15. Comparison of sleep indicators and in-house stay duration before and during the 

COVID-19 pandemic for Alberta. 

 Before Pandemic During Pandemic Mean Difference  

(During-Before) 

 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

 

Mean±SD 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

 

Mean±SD 

Sleep 

duration 

(minutes) 

In-

house 

time  

(hours) 

Out-

of-the-

house 
time  

(hours) 

Monday 8.3±2.53 5.3±3.67 10.4±3.61 8.8±2.64 7.0±4.62 8.2±4.20 30 *** 2.3 *** -2.8 *** 

Tuesday 
8.3±2.50 5.0±3.51 

10.7±3.51 
8.8±2.64 6.9±4.60 8.3±4.25 

30 *** 2.5 *** -3.1 *** 

Wednesday 
8.3±2.47 4.7±3.32 

11.0±3.42 
8.9±2.68 7.0±4.64 8.1±4.17 

30 *** 2.8 *** -3.4 *** 

Thursday 
8.3±2.48 4.9±3.44 

10.8±3.42 
9.1±2.76 6.5±4.50 8.4±4.28 

48 *** 2.2 *** -3.1 *** 

Friday 
8.5±2.69 5.2±3.59 

10.3±3.56 
8.9±2.72 6.4±4.36 8.7±3.96 

18 *** 1.9 *** -2.1 *** 

Saturday 
8.4±2.73 5.9±3.89 

9.7±3.73 
8.9±2.71 6.9±4.52 8.1±3.94 

18 *** 1.6 *** -1.9 *** 

Sunday 
8.2±2.55 5.9±3.97 

9.9±3.82 
8.8±2.75 6.9±4.56 8.3±4.26 

30 *** 1.7 *** -2.2 *** 

Total  
8.3±2.57 5.3±3.66 

10.4±3.61 
8.8±2.70 6.8±4.55 8.3±4.16 

30 *** 2.2 *** -2.7 *** 

*** Statistically significant at P<.001 level, SD-Standard deviation. 

 

Table 16. Comparison of sleep timing before and during the COVID-19 pandemic for Alberta. 

 Before Pandemic During Pandemic 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Monday 11:17:01 ± 4.47 05:14:23 ± 1.09 11:25:46 ± 8.50 06:03:23 ± 1.41 
Tuesday 11:16:02 ± 4.46 05:07:13 ± 1.08 11:20:36 ± 8.35 05:40:11 ± 1.43 
Wednesday 11:19:56 ± 4.40 05:05:51 ± 1.05 11:22:40 ± 8.46 06:01:34 ± 1.38 
Thursday 11:19:01 ± 4.47 05:15:57 ± 1.05 11:18:58 ± 9.57 07:03:38 ± 1.45 
Friday 11:27:22 ± 5.20 05:51:19 ± 1.09 11:28:35 ± 8.55 06:26:33 ± 1.34 
Saturday 11:21:53 ± 5.21 05:55:23 ± 1.18 11:27:05 ± 8.54 06:21:13 ± 1.37 
Sunday 11:14:27 ± 4.42 05:12:34 ± 1.14 11:17:54 ± 8.43 06:12:53 ± 1.42 

Total  11:19:20 ± 1.51 05:23:04 ± 0.26 11:23:04 ± 3.23 06:15:31 ± 0.38 

SE- Standard error. 
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Figure 41. Comparison of average behavioural indicators a) sleep duration, b) in-house duration 

c) out-of-the-house duration for the province of Alberta before and during COVID-19 pandemic. 
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7.3.5.4 British Columbia 

 

The results from the analysis for households in British Columbia show that there is a statistically 

significant difference in average sleep duration, time spent in-house and out-of-the-house before 

and during the COVID-19 pandemic (Tables 17 and 18).  

The average sleep duration before and during the pandemic were remained same as 7.8 ± 2.47 

hours (Mean ± SD). When stratified by weekdays, before the pandemic, the difference of sleep 

duration was higher between a typical Thursday by 18 minutes whereas on Sunday the change in 

average sleep was -12 minutes.   

For time spent in-house, there is a statistically significant duration of 2.2 hours observed before 

and during the pandemic for British Columbia. Before the pandemic, households in British 

Columbia spent 5.8± 4.21 hours in-house whereas it increased to 8.0±4.77 hours during the 

pandemic. Before the pandemic, weekdays had less in-house time than Saturdays and Sundays 

within a week. For instance, people spent 5.9±4.28 hours in-house on Friday and 6.1±4.31 hours 

on Saturday. However, during the pandemic, the difference between the time spent in-house on 

weekdays was reduced.  

There is a statistically significant duration of 2.2 hours for time spent out-of-the-houses before 

and during the pandemic. Before the pandemic, time spent out-of-the-houses on weekdays was 

10.4±3.73 hours, whereas during the pandemic the average out-of-the-house duration stands at 

8.2±3.86 hours. During the pandemic, the average out-of-the-house time difference between 

weekdays and weekends was reduced.  

The time to go to bed and wake up was calculated and compared for the days of the week. 

During the COVID-19 pandemic, the average difference for bedtime has minimally changed on 

the weekdays. 
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These results show an overall change in British Columbia in household behavioural patterns, 

sleep habits, time spent in-house, and time spent out-of-the-houses, which were likely caused by 

the policies implemented to curb the spread of COVID-19.  

Table 17. Comparison of sleep indicators and in-house stay duration before and during the 

COVID-19 pandemic for British Columbia. 

 Before Pandemic During Pandemic Mean Difference  

(During-Before) 

 
Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(hours) 

 
 
Mean±SD 

In-house 

time  

(hours) 

 

 

Mean±SD 

Out-of-

the-

house 
time  

(hours) 

Mean±SD 

Sleep 

duration 

(minutes) 

In-

house 

time  

(hours) 

Out-of-

the-

house 
time  

(hours) 

Monday 

7.7±2.35 5.6±4.13 10.7±3.67 7.8±2.44 8.2±4.94 8.0±3.87 

6 *** 2.6 *** -2.7 

*** 

Tuesday 

7.7±2.35 5.7±4.11 10.6±3.63 7.7±2.46 8.2±4.81 8.0±3.91 

0 2.5 *** -2.6 

*** 

Wednesday 

7.7±2.35 5.6±4.19 10.7±3.80 7.8±2.35 8.3±4.73 7.9±3.75 

6 *** 2.7 *** -2.6 

*** 

Thursday 

7.7±2.24 5.7±4.18 10.6±3.60 8.0±2.45 7.7±4.87 8.3±4.06 

18 *** 2.0 *** -2.3 

*** 

Friday 

7.8±2.61 5.9±4.28 10.3±3.84 7.8±2.55 7.4±4.63 8.8±3.85 

0 1.5 *** -1.5 

*** 

Saturday 

7.8±2.72 6.1±4.31 10.0±3.76 7.8±2.47 8.0±4.68 8.2±3.64 

0 1.6 *** -1.9 

*** 

Sunday 

8.0±2.64 6.0±4.29 10.1±3.76 7.8±2.49 8.0±4.70 8.1±3.89 

-12 *** 2.0 *** -2.0 

*** 

Total  

7.8±2.47 5.8±4.21 10.4±3.73 7.8±2.46 8.0±4.77 8.2±3.86 

0 2.2 *** -2.2 

*** 

*** Statistically significant at P<.001 level, SD-Standard deviation. 

 

Table 18. Comparison of sleep timing before and during the COVID-19 pandemic for British 

Columbia. 

 Before Pandemic During Pandemic 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Bedtime 

(pm.) 
Mean±SE 

Wake-up time 

(am.) 
Mean±SE 

Monday 11:35:17 ± 15.09 05:04:41 ± 5.34 11:48:21 ± 15.23 05:05:14 ± 3.52 
Tuesday 11:35:50 ± 14.37 05:03:18 ± 4.44 11:38:19 ± 16.30 05:26:26 ± 4.33 
Wednesday 11:42:03 ± 16.33 05:30:10 ± 3.55 11:42:12 ± 15.32 05:09:07 ± 4.06 
Thursday 11:39:45 ± 15.56 05:18:51 ± 4.13 11:44:24 ± 17.06 05:13:21 ± 3.43 
Friday 11:32:48 ± 17.16 05:18:05 ± 5.10 11:43:41 ± 17.13 05:34:36 ± 3.27 
Saturday 11:24:58 ± 20.45 06:02:38 ± 6.49 11:43:05 ± 16.03 05:13:01 ± 3.52 
Sunday 11:23:38 ± 19.25 05:39:00 ± 6.16 11:50:04 ± 17.12 05:37:07 ± 3.46 
Total  11:33:32 ± 6.30 05:25:06 ± 2.00 11:44:19 ± 6.12 05:19:50 ± 1.28 

SE- Standard error. 
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Figure 42. Comparison of average behavioural indicators a) sleep duration, b) in-house duration 

c) out-of-the-house duration for the province of British Columbia before and during COVID-19 

pandemic. 
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7.4 Discussion  
 

The findings from this study unravel the changes in behaviour at population level across four 

provinces of Canada before and during the COVID-19 pandemic. The stay-at-home order and 

work-from-home policies required people to stay in-house for extended periods compared to pre-

COVID-19 period. IoT data supports intelligent monitoring of policy-related changes, which can 

be quickly conducted in a short period requiring less resources. This complete data analysis was 

performed by one researcher with the support of a software developer, which included the 

analysis of data from 12,252 households across Canada. 

Several national sleep foundations recommend that the amount of sleep for adults should range 

between 7-9 hours [395]. Our results show that Ontario, Quebec, and Alberta are better positioned 

than British Columbia for this parameter. During COVID-19, average sleep duration has 

increased in Canadian provinces, which is accordance to the findings from other countries like 

Spain [378], the United States [20] and Singapore [381]. Similar to other studies, this study also 

shows the difference in sleep duration, and sleep patterns vary between weekdays and weekends 

[381]. Although this study measures important sleep parameters at population level, there remains 

other unexplored features of healthy sleep to be monitored, like sleep quality. A study completed 

in 2020 in Canada using a questionnaire-based survey, shows that sleep duration minimally 

reduced in the initial phase of the pandemic and that the quality of sleep deteriorated [373].  

The result of my study shows that the wake-up time changed by around 30 minutes later, and the 

finding is similar to another study done in 2021 by Robillard et al.[373].  Changes in physical 

activity, sedentary behaviour and social behaviour occurred soon after the COVID-19 pandemic 

were declared, and some of these changes differed among those with low and high anxiety [396].  
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Similarly, another study in Italy in 2021 shows that sleep quality dropped during the COVID-19 

pandemic [374]. These changes in the sleep cycle impact the physical and mental health of 

individuals [397]. Therefore, sleep is a major risk factor for multiple chronic diseases, and lack of 

sleep has both long-and short-term consequences such as premature mortality [383,397].  

Along with sleep duration, the time spent out-of-the-houses is also a critical factor to maintain 

good health [398,399]. The time spent out-of-the-houses is not only related to the sleep quality and 

duration [400] but also stimulates the activation of vitamin-D amount in our body, deficiency of 

which is a potential risk factor for bone and joint health [401,402]. On the other hand, less out-of-

the-house time can be related to increased in-house time. More in-house time leads to increase in 

sedentary behaviour which has several consequences in different age groups [74,379,403]. For 

example, in children, risk of multiple childhood chronic conditions arises such as childhood 

obesity, asthma, attention deficit hyperactivity disorders (ADHD). This can lead to long term 

health effects like, pulmonary, cardiovascular, and mental health problems in adulthood [398]. 

Richard Louv in 2005 coined the term “nature deficit disorder” wherein he delineates that the 

time of children spent out-of-the-houses is replaced by electronic media and demanding school 

schedules [398]. Additionally, the effect of increased sedentary behaviour has negative physical 

and mental health consequences for adults and aging populations [379,404]. With the prevalence of 

low behavioural public health indicators, i.e., time spent out-of-the-houses and sleep duration 

[405], situations like COVID-19 pandemic jeopardize a healthy lifestyle.  

In Canada, the prevalence of chronic disease is increasing [64,125,406] and a careful assessment of 

risk factors of various chronic diseases is essential for predicting the future trends [64]. Recent 

studies highlight the variability in data collection methods ranging from traditional survey-based 

methods, wearable-based methods to actigraphy [178,407,408]. Reports suggest a range of 
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applications and technology systems for smart infrastructures and developing 'pandemic-proof' 

smart communities [409].  Moreover, a cloud-enabled pervasive IoT implementation framework 

can be adapted and expanded alongside scientific solutions [409]. The use of consumer-based 

activity trackers and smartphone-based passive sensing [410] has gained increased recognition as a 

tool for monitoring physical activity and behavioural indicators in free-life conditions in 

epidemiological studies during the COVID-19 pandemic [411].  

The COVID-19 pandemic has impacted society at various levels. Early identification of the 

effects of changes caused by this pandemic in real-time may help us save lives and reduce the 

duration of required social isolation. With more people being restricted to stay within their 

houses and everything being transitioned to virtual platforms, these changes directly, or 

indirectly affected mental health and sleep patterns. Notably, our study is unique due to the 

granularity of data used, presence of a large sample size, simplicity of data collection, and 

flexibility of the dataset. 

This new data collection method enables the process to be continuous and allows increased 

access to households and participants, contributing to the specific condition or data being 

monitored. With minimal effort, we can answer relevant population health related questions. 

In terms of public health surveillance, the near real-time monitoring of these health risk 

behaviours can help monitor risk factors and build preventive strategies to reduce the impact that 

precede long-term complications from chronic diseases. 

This will also bolster the foundations to build systems to monitor health indicators in near real-

time for the critical risk factors for chronic diseases such as diabetes, hypertension, obesity, 

mental health problems, and cancer[28]. In the long run, it will aid in monitoring and reducing the 

rising illness burden by quickly measuring the impact of any policy-related changes at the 
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population level. Leveraging such technology will significantly reduce user burden while 

enabling remote monitoring, data collection, thus, reducing the research associated costs. 

The study's shortcoming was that no adjustment for multiple testing was done in the analysis, 

and there's always the possibility that some parameter significance is due to random sampling 

and multiple testing, thus more research is needed to see if these findings are generalizable and 

replicable. 

7.5 Conclusion  
 

Measurement of behavioural risk factors is an essential domain of public health. Pandemics like 

the COVID-19 have an impact on behavioural indicators, including sleep. Data from IoT 

technologies have the potential to answer some of the critical questions related to the assessment 

of policy changes at population level. This study shows the application of smart thermostat-based 

data, collected from a large number of residents in Canada, to measure sleep duration, sleep time, 

wake-up time, time spent in and out of the house, for different provinces, during and before the 

COVID-19 pandemic. 

7.6 Innovation  
 

This research is innovative for its (i) population-level comparison of household behaviours, (ii) 

using novel data source(s) for monitoring healthy behaviours, (iii) measuring new indicators, (iv) 

using novel tools/solutions to capture data. The methods proposed here will enable access to 

much larger sample size and increase the generalizability of the results. 
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Chapter 8 IoT-based Mobility Analysis During a Pandemic 
 

8.1 Introduction  
 

8.1.1 Background 

 

Human mobility data can prove to be an effective tool to unravel and comprehend the 

complexities of the world and its communities [183], as for example, providing insights to identify 

the difference in human behaviour [381] and spread of COVID-19 cases along with the pattern of 

mortality [412,413]. The collection, extraction, and timely analysis of human mobility data can 

deepen our understanding in health and other different domains. Human mobility data can be 

classified and obtained at individual [414,415] and population-level [416]. Strikingly, population-

level human mobility studies hold the potential to identify several public health and social 

domain-related issues. The domain of research covers rapid urbanization across the globe, 

change in lifestyle factors (for example, less physical activity, more sedentary time, and change 

in sleep pattern), spreading of infectious diseases, the impact of air pollution, effect of climate 

change on the migration patterns of the population across continents or countries. 

The first human mobility studies were completed in the United States of America in 2006, based 

on data from cell phone calls and proximity from the cellphone towers [417]. Similarly, another 

research group utilized crowdsourcing techniques to collect population-level human mobility 

data [182]. In the contemporary world, numerous technological advancements have changed the 

way data is collected. Currently, there are several methods to gather population-level human 

mobility data at the global, national, provincial, city, or zip code level granularity. Figure 43 

shows technological innovations in tracking human and animal mobilities from the year 1900 to 

2020 [186]. In the early 20th century, primitive technologies such as bird markings and small radio 

transmitters were used to track animal mobility. However, with technological advancements in 
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the early 21st century, communication devices such as smartphones and wearables served as easy 

means of collecting mobility data. With the passage of time, a sharp increase in the number of 

such devices led to high volumes of data generation, thus contributing to big data. This will, in 

turn, help to identify and validate human mobility behaviours.  Different parameters such as 

geolocation and distance travelled can help us classify the type of human mobility data. 

However, to date, human mobility data has not been much utilized by the public health domain. 

 

Figure 43. Journey of human and animal tracking technologies with a timeline: image extracted 

from Meekan et al. 2017 [186]. 
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Since the World Health Organization (WHO) declared COVID-19 as an international public 

health emergency in late January 2020 and subsequently declared it as a pandemic on March 11, 

2020, many countries attempted to curb its spread. [418]. Various interventions like social 

distancing, self-isolation, and personal protective equipment as face masks and face shields have 

been widely used to limit the spread of coronavirus at community level and protect vulnerable 

groups [419,420]. In the early stages of the pandemic, the decrease recorded in people's mobility in 

various digital data sources was closely related to the reduction in the incidence of COVID-19 

[412,414,419,421–426]. Most countries sought to implement strict social distancing norms to avoid an 

overwhelming burden on the healthcare institutions.  

There is evidence that automatic movement measures are closely related to the spread of the 

COVID-19 virus in various countries over time [419]. Considering COVID-19 pandemic as a case 

study to understand the use of human mobility data in public health, it can be inferred that such 

data sources are essential and demand further exploration.  As highly granular real-time data 

becomes more readily available, future epidemiological analyses can be supported by such data. 

Since such population-level vital indicators can be obtained in real-time, mobility data may 

become an essential forecasting tool. Research involving human mobility tracking data has 

benefited from the technological advancements such as smartphones and wearable technology 

(smartwatches and activity trackers) [427]. These innovations have produced a wealth of easily 

accessible human activity-related health data such as heart rate, time spent in exercise, sleep, and 

mobile georeferenced data. The use of mobile phones, satellite data or information of flight 

traffic is used for macro measurement of human mobility or as a proxy [188,198]. These large data 

sets, equivalent to "big data" in volumes, are now being analyzed to describe human movement 

patterns, characteristics (such as sleep, stress, and activity), as well as interactions with levels of 
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detail, immediacy, and unprecedented precision. Furthermore, this type of research is first of its 

kind to characterize human movement patterns on a global scale and can be attributed to big data 

analysis.  

Data obtained from various sources such as smartphones with GPS tracking technologies, texts 

or photos via photo-sharing platforms like Twitter and Flickr, geolocation-enabled internet posts, 

public transport cards, and credit card transactions now provide direct access to human location, 

trajectories, opinions, and interactions [428]. These high-resolution datasets allow researchers to 

develop and verify models of human movement on different spatial scales. Although the domain 

of human movement research is relatively new compared to research on animal movement, it has 

significantly gained the attention of researchers as evident from the large number of publications 

[427]. 

8.1.1.1 Population and Facts About Google Map users and ecobee smart thermostat users 

 

Google Map users: Google Maps is the most popular navigation app in the US and Canada. The 

app surpassed 23 million downloads in 2020. Google Maps has 154.4 million monthly users. In 

2018, 67% of all mapping app users relied on Google Maps. Google Maps users contribute 20+ 

million pieces of information per day. 5 million unique miles of road in Street View, in 3,000+ 

cities across 45 countries. 20+ petabytes of aerial and Street View imagery combined--the 

equivalent of 266 years of HD video. Live traffic data in more than 50 countries and more than 

600 major cities. Driving directions for 194 countries, spanning 27.9 million miles of road. 

Schedules for more than one million public transit stops worldwide. Local information for more 

than 80 million places around the world. There are more than one billion monthly active users of 

Google Maps services. More than 50% of global Google Maps usage is mobile.  
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Ecobee users: More than 90% of Canadian households have thermostats, with the majority 

opting for programmable thermostats. Smart thermostats, often known as IoT devices, are a type 

of programmable thermostat that may be connected to the internet. The ecobee comes in second 

place after Nest in terms of smart thermostat market share in Canada. ecobee has a program 

called DYD, which has a million users, hence the sample size is roughly 172,000+ households 

across Canada.  

Distribution of the Android based smart phone across Canada is widespread and hence the 

Google map users. When compared to Google, ecobee users are more likely to be younger, tech-

savvy individuals and homes with high-speed internet access. 

8.1.2 Population selection  

 

This study also analyzed data from the four selected provinces: Ontario, Alberta, Quebec, and 

British Columbia. These four provinces constitute approximately 86% of the Canadian 

population, as per the Statistics Canada report published in 2021 [394].  

8.1.3 Google mobility report 

 

As global scientific communities including public health officials of various countries respond to 

COVID-19 pandemic, there is still an ongoing interest to analyze population-level mobility data. 

With a massive user network of Google Maps, Google has furnished systematic and anonymized 

information, owing to its significance in making critical decisions to fight COVID-19. The 

reports show movement trends over time by geographic area across different categories such as 

retail and recreation, grocery and drug stores, parks, transit stations, workplaces and residences 

[429]. The information has been passively generated, collected, and now is being made available 

to researchers and policymakers through Google's open source: 'COVID-19 Community 

Mobility Reports' [429]. 
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8.1.4 ecobee Donate your Data  

 

In-house mobility has never been captured on a population-level scale before. Herein, I 

developed a framework to infer the relationship between micro and macro mobilities captured by 

two distinct data sources at population level. The rationale of this study is to explore, understand 

and use IoT-based mobility data from ecobee smart thermostats of Canadian households.  

This study aimed to find the association between the gold standard mobility data from "Google 

Mobility Reports" and the Smart thermostat-based data from ecobee. Reportedly, Google’s 

published the data for mobility across the globe has geolocation information at multiple levels of 

granularity such as, country, province, and region (for example Region of Waterloo which 

includes three major cities namely Waterloo, Kitchener, and Cambridge), while ecobee's “Donate 

your Data” program has the geolocation information available with a different level of 

granularity such as country, province, and city at most granular level (for example city of 

Waterloo). 

8.1.5 Objectives  

 

To assess the suitability of IoT-based ecobee smart thermostat data compared to Google mobility 

data from selected four provinces of Canada for population level mobility. Furthermore, we 

explored the seasonality diagnostics patterns in terms of day-by-day, week-by-week, and month-

by-month analysis from both the datasets. Next, we sought to find the anomaly detection 

capacity of both datasets. 

8.2 Methods 
 

This study used Google’s residential mobility data and ecobee’s mobility data curated from 

“Donate your Data” for one year (February 15, 2020, to February 14, 2021) to find out the 
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association between them. The date range is selected based on the Google’s Mobility Report 

publication dates and I explored one year of data.  

Ethics approval for this study was obtained from the University of Waterloo Office of Research 

Ethics (#31377).  

8.2.1 Data Analysis Platforms and Software  

ecobee’s mobility data preparation from “Donate your Data” was done using Azure Databricks 

and Jupyter notebook using python [430]. Azure Databricks is a data analytics platform optimized 

for Microsoft Azure cloud services platform [431] whereas Jupyter Notebook is an open-source 

web application that allows you to create and share documents that contain live code, equations, 

visualizations, and narrative text. The use of Jupyter notebook includes data cleaning and 

transformation, numerical simulation, statistical modelling, data visualization, machine learning, 

and complex statistical analysis [432]. Data cleaning, analysis and visualization was done in R 

studio [433] version 1.4.1106 with R software[434], version 4.0.5 and data analysis packages 

Tidyverse [435] and timetk [436]. 

8.2.2 Data Sources and Preparation 

8.2.2.1 Google Mobility Report 

The Google Mobility data [429] is a unique dataset at global level to quantify human mobility. The 

process of collection of this data initiates from the users accessing their Google accounts in 

different continents. This utilizes satellite-dependent geolocation service, popularly known as 

Google Maps.  

This service helps the community travel, calculate time to commute and find alternative 

pathways. During the COVID-19 pandemic, Google released the data for the first time to help 

researchers guide and measure mobility-related changes. Accuracy of the location and 
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categorization of places varies from region to region. These data points record the total number 

of visits to specific destinations visited by individuals, as described in Table 18. Google manages 

these aggregated and anonymized records of users who have turned on the location history 

setting of Google accounts on their phones and agreed to share this information. These datasets, 

therefore, may not be representative of the entire population. Additionally, Google has not yet 

effectively disclosed its precise calculations of these mobility data points publicly. Daily values 

are compiled across individuals who have enabled their location history and are available for 

each province in Canada from February 15, 2020 onwards [429].  

8.2.2.1.1 Definition of categories of type of place 

Table 19. Google mobility data categories and their description as described on the website [429]. 

Category Definition  

"Grocery & 

pharmacy" 

 

"Mobility trends for places like grocery markets, food warehouses, 

farmers markets, specialty food shops, drug stores, and pharmacies." 

"Parks"  

 

"Mobility trends for places like local parks, national parks, public 

beaches, marinas, dog parks, plazas, and public gardens." 

"Transit stations" 

 

"Mobility trends for places like public transport hubs such as subway, 

bus, and train stations" 

"Retail & 

recreation" 

 

"Mobility trends for places like restaurants, cafes, shopping centers, 

theme parks, museums, libraries, and movie theatres." 

"Residential" 

 

"Mobility trends for places of residence." 

"Workplaces" 

 

"Mobility trends for places of work." 

 

Out of these six categories, we lay emphasis on residential data for this study as ecobee data 

comes from the household environment and is categorized under the residential category itself.  

8.2.2.1.2 Google Data Preparation Protocol as a Reference  

Google Maps use aggregated and anonymized data to indicate frequently visited hours of a 

location to calculate changes in mobility [429]. Daily changes are compared to the baseline value 
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for that particular day of the week. The baseline is the median of the corresponding days in five 

weeks from January 3 to February 6, 2020 [429]. The data set is trending over several months, 

with the latest data being represented by the data collected about 2-3 days before the current day 

because it takes between two to three days to create the data set. The data included in the 

calculation depends on preferences, connectivity and whether the users meet privacy thresholds. 

If data quality and privacy thresholds are not met, that data point is ignored. The Google 

Mobility report has data useful to measure social distancing efforts and access to essential 

services. The data for Google to calculate these insights is based on data from only the users who 

have opted for location history in their Google Accounts which makes up their sample. As with 

all samples, this may or may not represent the correct behaviour of a wider population. Each 

value of one day is the rate of change in the social mobility category relative to the baseline, 

showing how the length of visits and stays to various destinations have changed since the 

pandemic began. However, Google has not released social mobility data from earlier years. A 

visual inspection is helpful to evaluate whether trends in social mobility correspond with 

intuition [429].  

8.2.2.2 ecobee Mobility Data 

ecobee provides researchers with anonymized data from 179,000 households for a period of 

nearly five years (June 2016 to July 2021). The dataset includes a metadata table with 

characteristics of the house and Heating, ventilation, and air conditioning system, along with 

sensor data on a separate table. 

8.2.2.2.1 Data Wrangling Process of ecobee Mobility Data 

The Donate your Data dataset supplied by ecobee is hosted in Google BigQuery. As our data 

analytics platform is in Azure Databricks, the first step was to transfer the data from Google’s 
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Big Query to the Microsoft Azure platform. Once data transfer was completed, the azure storage 

blob was mounted to the data bricks account. Using pyspark, I loaded the complete thermostat 

dataset and metadata of size nearly seven terabytes to my environment. I created four subsets of 

the households from four provinces of Canada. Each of the subsets has Identifier, DateTime and 

lists of sensors activation. The granularity of the data was five minutes. As the data's time zone 

did not match geolocation, this was cleaned as described below in detail.  

8.2.2.2.1.1 Time Zone Conversion 

As the timestamp of the DYD dataset was in UTC format, I converted the time zones in the 

dataset by locating time zone information from the geolocation of the households in the 

metadata. Canada and its provinces have different time zones, and Figure 44 describes the 

distribution of time zones across Canada [437].  

I worked on the time zone conversion process with two different approaches. I started with a 

Python-based automated time zone finder using location information. Though we could extract 

the time zone name from the location, unfortunately, the output quality was not satisfactory, 

leading to manual correction of the time zones.  
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Figure 44. Time zone map of Canada and its provinces: image extracted from time-time.net. [437] 

 

In contrast to the automated time zone extraction technique, the manual method was more 

efficient. The findings were, in the province of Ontario, six cities have different time zone than 

EST; namely, Drayton, Kenora, Kenora-Unorganized, Mitchell, Red Lake, Sioux Lookout cities 

(1% of the DYD dataset for Ontario) have central time zone and the remaining cities fall in the 

eastern time. The same exercise was repeated for Quebec, and it was found that all the cities 

belong to . For Alberta, all the cities have the same time zone, that is, mountain standard time, 

and for British Columbia, 28 households were from different time zones and were excluded from 

the analysis. Once cleaned for the time zone, the Date Time had been changed. Subsequently, 

time-series data analysis was performed on the adjusted data on the households included in the 

study. These numbers are presented in Table 20. 
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Table 20. Number of households selected for the analysis by province. 

 N, before time 

zone cleaning 

N After time 

zone cleaning  

Excluded no of 

households for 

time zone diff 

The proportion 

of household 

data by 

province (%) 

Canada 21690 21690  
Ontario 7145 7134 11 33 
Alberta 3989 3989 0 18 
British Columbia  449 421 28 3 
Quebec  708 708 0 2 

 

8.2.2.2.1.2 Mobility Data Preparation from ecobee Sensors  

Using the ecobee mobility data, a baseline value was created as per the Google data preparation 

method to make the data comparable. The sum of all sensor statuses was calculated to find the 

total number of sensors activated within each timestamp. Aggregation of daily movement at the 

province-level has been calculated by averaging the total number of sensors activated within that 

province for 24 hours. A table was created containing dates and the average number of sensors 

activated by date, which was saved as a CSV file. R studio and R platform were used for further 

data analysis. 

8.2.2.3 COVID-19 Policy-Related Timeline and Data 

The Canadian Government has a dedicated platform to share COVID-19 related information 

regularly[438]. I have extracted the data for Canada for the period and, as per requirement, 

selected specific indicators such as the daily number of confirmed COVID-19 cases across 

Canada, numbers of deaths and timeline of policy changes for Canada and its provinces. To 

understand the timeline of events in Canada due to the COVID-19 pandemic, I have also 

extracted the dates and policy level changes from the government platform, as described in the 

Appendix-6. 
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8.2.2.3.1 Timeline of COVID-19 for Canada and Provinces  

Several policy-level decisions to curb the spread of the COVID-19 pandemic were implemented 

in Canada and its provinces. As health is considered a provincial matter in Canada, the provincial 

government can independently implement policies [439], while the federal government retains 

some control over the nation-wide policy implementation in case of public health emergencies 

[440]. Therefore, the policy implementation timelines for federal and provincial levels were 

monitored. Policies related to case management includes contact tracing and self-isolation, 

closure and openings of academic organizations, non-essential services, and recreation facilities.  

The Government of Canada recommended the implementation of work from home on March 10, 

2020. Similarly, other policy-level decisions like implementing telemedicine or remote patient 

monitoring; policy related to the health workforce; mandatory mask use; an emergency 

declaration based on active cases, R-value and death counts; travel restrictions and mass 

vaccination strategies [438].  

In addition to the abovementioned policies, some provinces implemented health education 

through health promotion campaigns to improve awareness and understanding of COVID-19. 

Temporary closure of non-essential health services, delay in elective medical procedures, 

restricting visitors' access to the health facilities, restricting the number of people in social 

gatherings, implementing pandemic response plans, phase and alert level changes, and the 

purchase and distribution of vaccines, were among the significant decisions taken to fight 

COVID-19[438].  
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8.2.3 Data Analysis Methodology  

 

8.2.3.1 Visual Analysis  

 

Once data from both the sources was ready for all four provinces, a visual inspection was carried 

out to determine the pattern and association. The time series plot was generated using Google 

residential and ecobee mobility data for each province. The statistical significance of the 

association was found using Pearson’s correlation and Spearman’s correlation [441]. Pearson’s 

correlation measures how two continuous signals co-exist over time and sets the linear 

relationship from 0 (uncorrelated) to 1 (fully correlated) with a linear relationship of -1, 

indicating a negative correlation [441]. When using Pearson’s correlation, there are two things to 

consider: a) presence of outliers can distort the correlation estimation results, and b) the data 

distribution should be uniform across the data range [441]. In general, correlation is a 

measurement of global synchronization [441]. Correlation does not provide information about the 

direction between the two signals such as which signal follows the other [442].  

8.2.3.2 Seasonal Analysis  

 

When looking at time-series data, seasonality is the fluctuation that occur at specific regular 

intervals of time which is always less than a year, such as weekly, monthly, and/or quarterly [443]. 

For some time-series data, it is observed that the series has a seasonal effect, and it is easy to find 

the season period (e.g., 4 for quarterly data, 12 for monthly data). Seasonality can be visually 

identified by a pattern that repeats all k elements in the series. Seasonality can be caused by 

various factors, including weather, vacations and holidays, and regular repetition of a specific 

event at the chronological level, mainly composed of rule-predictable patterns [443]. To determine 

the seasonality of the data, we ran a seasonal diagnostic test using the timetk [436] package in R, 
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which was specially designed to analyze time-series data. Separate initiatives were implemented 

to understand the daily, weekly, and monthly seasonality.  

One-way ANOVA was performed to check for statistical significance between various season 

categories [444]. The “timetk” package uses a unique feature called anomaly detection and plotting 

to find anomalies in data [436]. Visual inspection of these anomalous dates can show the impact of 

each country’s actual policy change dates and explore the significance of this kind of analysis in 

the future.  

8.2.3.3 Anomaly Diagnostics 

 

Anomaly Diagnostics is a wrapper around group anomaly detection visualization, implementing 

a two-step process for detecting outliers in a time series [436]. It helps automate the collection of 

features for time series seasonal analysis. Internal calculations are performed to discover the 

subrange of features to incorporate the logic: the minimum feature is selected based on the 

median difference from the continuous timestamp. 

8.2.3.3.1 Seasonal and trend decomposition using Loess (STL)  

 

The first step is to conduct a seasonal removal using seasonal and trend decomposition using 

Loess (STL) method [436,445,446]. There are three components of the time series data, seasonality, 

trend, and the remainder. The decomposition separates the seasonality and trend components 

from the observed values and places the remainder to detect anomalies. The user can control two 

parameters, frequency, and trend. Frequency adjusts the seasonality component removed from 

the observed value. Trends adjust which graph views are used. Both user frequency and the trend 

can be specified as a time-based period (e.g., 6 weeks) or a number (e.g., 180) or "automatic." 

This is used to predetermine the frequency and trend according to the scale of the time series 

[436]. 
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8.2.3.3.2 Anomaly Detection  

 

When trend and seasonality components are removed, anomaly detection is performed on the 

remaining data. The anomaly detection method uses inner quartile range (IQR). It takes a 

distribution and uses the 25% and 75% inner quartile range to establish the distribution of the 

remainder. Boundaries are determined by default to a factor of 3X above and below the inner 

quartile range, and any remainders beyond the limits are considered anomalies. The alpha 

parameter adjusts the 3X factor. Default value for the alpha stands at 0.05. Decrease of the alpha 

value increases the IQR factor, that controls the limit. Increasing the alpha will make it easier to 

find outliers. The IQR outlier detection method is used for prediction [436].  

Twitter's anomaly detection package [447] used the same outlier detection method. Both Twitter 

and Forecast have a "time series outlier" method implemented in Business Science's "anomalize" 

package [448]. 

8.3 Results  
 

The data from Google mobility dataset and ecobee "Donate Your Data" program for four 

Canadian provinces was analyzed and the results have been described below.  

Within Google mobility data, mobility for grocery and pharmacy increased over the sample 

period compared to retail and recreational locations. However, from August 2020 onwards, a 

decline in retail and social mobility was observed. Apparently, the mobility movements for work 

and transit are significantly correlated, with both of them increasing over time. The highest data 

value in both variables were observed during the weekends and these values did not decline 

significantly when compared to pre-pandemic values. The sharp rise and fall of social mobility at 

parks refer to summertime activities. Initially, residential mobility was high which then declined 

during the latter part of the sampling period. As ecobee data come from households, it is logical 
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to compare it with residential mobility data. Future analysis will be performed by comparing 

ecobee mobility data to the residential portion of the Google mobility data. 

8.3.1 Association between Google and ecobee mobility data  

The association between Google residential mobility data with ecobee mobility was studied 

across four Canadian provinces. A positive association was evident from the visual inspection 

between Google mobility data for the residential area and ecobee mobility data for all four 

provinces. Figure 45-48 shows the mobility trend from February 2020 to March 2021 for 

Ontario, Alberta, Quebec, and British Columbia.  

8.3.1.1 Ontario 

Figure 45 shows the trends and patterns from raw data of both Google residential mobility and 

ecobee mobility for one year. The repeated cyclic pattern in the Google mobility data 

corresponds to each week. 

 

Figure 45. Association between Google residential mobility and ecobee mobility for the 

province of Ontario, Canada. 
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To represent the change in in-house and out of house behaviour of the residents, Figure 45 

depicts a line plot for Google residential mobility data and ecobee mobility data for one year. 

The plot shows that in-house behaviour started to change from March 11, 2020, when COVID-

19 pandemic was declared whereas there was not much change in the out of house mobility. In 

contrast, in-house and out of house residential mobility drastically increased when a province-

wide emergency was declared in Ontario from March 17, 2020, onwards. On March 25, 2020, 

when work-from-home policy started in Ontario, the overall residential mobility increased. From 

March 2020 to July 2020, the trend declined gradually, and on July 24, 2020, when province-

wide lockdown ended, the pattern remains consistent till September 2020 which can be inferred 

from the plot. With the advent of the second wave of the pandemic, another province-wide 

lockdown was announced on December 26, 2020, which is evident from the increased mobility 

values for Google and ecobee mobility datasets.  

8.3.1.2 Quebec 

 
Figure 46. Association between Google residential mobility and ecobee mobility for the 

province of Quebec, Canada. 
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The line plot for Quebec Figure 46 shows March 13, 2020, when the declaration of public health 

emergency was made, in-house behaviour started changing, whereas out of house mobility has 

not been observed to change much. In contrast, in-house and out-of-the-house mobility increased 

drastically when work-from-home was recommended in Quebec starting on March 16, 2020. On 

top of that, when the work-from-home policy was implemented in Quebec on March 25, 2020, it 

enhanced the overall residential mobility for both datasets. On December 17, 2020, mandatory 

work-from-home policy was implemented in Quebec, resulting in a sudden increase in in-house 

mobility.  

8.3.1.3 Alberta 

 
Figure 47. Association between Google residential mobility and ecobee mobility for the 

province of Alberta, Canada. 

The line plot for Alberta in Figure 47 shows that in-house behaviour started changing on March 

17, 2020, when a public health emergency declaration was made. In contrast, out-of-the-house 

mobility has not been observed to have changed too much. In contrast, in-house and out-of-the-

house residential mobility increased drastically when Alberta's public health emergency ended 
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on June 15, 2020. On top of that, when the public health emergency was declared again in 

Alberta on November 27, 2020, it enhanced residential mobility overall. On December 13, 2020, 

a mandatory work-from-home policy showed a sudden increase in in-house mobility.  

8.3.1.4 British Columbia  

 
Figure 48. Association between Google residential mobility and ecobee mobility for the 

province of British Columbia, Canada. 

The line plot for British Columbia in Figure 48 shows that in-house behaviour started changing 

on March 18, 2020, when the public health emergency declaration was made. In contrast, out-of-

the-house mobility has not been observed to have changed too much. In contrast, in-house and 

out-of-the-house residential mobility increased drastically when work-from-home was 

recommended in British Columbia starting on March 19, 2020. This analysis is limited to Feb 

2020 to March 2021. BC additional policies, but most of them in the end of 2021or early 2022. 

8.3.1.2 Correlation Test Results for Google Residential Mobility and ecobee Mobility  

To understand the statistical significance of the association between Google and ecobee mobility 

data, Table 21 shows the Pearson's and spearman's correlation test results and 95 percent 
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confidence interval. A statistically significant association between the mobility datasets at the 

province level was found within the range of 0.67 to 0.73. 

Table 21. Correlation between google and ecobee mobility data for Ontario, Alberta, Quebec, 

and British Columbia. 

 No of 

households 

Pearson's product-moment 

correlation 

 

Spearman's rank 

correlation 

Correlation 

coefficient 

95 percent 

confidence 

interval 

Ontario 7134 0.73 0.67 0.77 0.75 

Alberta 3989 0.73 0.69 0.78 0.76 

Quebec 708 0.67 0.61 0.73 0.70 

British 

Columbia 

421 0.69 0.64 0.74 0.63 

 

Figure 49 depicts the association between Google residential mobility and ecobee mobility for 

four provinces. The association between these datasets are statistically significant and the trend 

line shows a linear association between both the datasets.  
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Figure 49. Correlation between residential mobility data from ecobee and Google for the 

province of a) Ontario b) Alberta c) Quebec d) British Columbia, Canada. 

 

8.3.2 Seasonal Diagnostics of the Google and ecobee Mobility Data  

 

Seasonal diagnostics of the mobility data for each province have been described below. Seasonal 

diagnostic for the mobility data included three analysis levels: days of the week, month by 

month, and week by week. The same analysis has been replicated for Google and ecobee 

mobility datasets to understand granular findings. 
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8.3.2.1 Days of the Week Variation Analysis 

8.3.2.1.1 Ontario 

 

 
Figure 50. Analysis of the a) Google residential and b) ecobee mobility data among days of a 

week in Ontario.  

  

The boxplot in Figure 50 shows there is a significant difference in behavioural patterns for 

Ontario's Google residential mobility dataset between weekends and weekdays. Strikingly, 

higher mobility was observed on the weekdays compared to weekends. On the contrary, there is 

no significant difference in the mobility patterns between weekdays and weekends for ecobee’s 

mobility data. 
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8.3.2.1.2 Quebec 

 

 

Figure 51. Analysis of the a) Google residential and b) ecobee mobility data among days of a 

week in Quebec. 

 

Google residential mobility dataset for the province of Quebec Figure 51 shows that mobility 

behaviour over the weekends is entirely different from that observed on weekdays. Higher 

mobility on the weekdays out-of-the-house compared to weekends is observed in the plots. In 

agreement with this observation, ecobee mobility data also shows a statistically significant 
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difference between weekdays and weekends during that period. On the weekends, higher stay 

time is there compared to weekdays.   

8.3.2.1.3 Alberta 

 

 
Figure 52. Analysis of the a) Google residential and b) ecobee mobility data among days of a 

week in Alberta. 

 

Google residential mobility dataset for the province of Alberta Figure 52 shows mobility patterns 

over the weekends are entirely different from the behaviour observed on the weekdays. Higher 

mobility on the weekdays on the outside compared to weekends is seen. In contrast, ecobee 
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mobility data shows no statistically significant difference between weekdays and weekends 

during that period.  

8.3.2.1.4 British Columbia  

 

 
Figure 53. Analysis of the a) Google residential and b) ecobee mobility data among days of a 

week in British Columbia. 

Google residential mobility dataset for the province of British Columbia Figure 53 shows that 

behaviour over the weekends is entirely different from that observed on the weekdays. Higher 

mobility on the weekdays on the outside is seen instead of weekends. In contrast, ecobee 
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mobility data shows no statistically significant difference between weekdays and weekends 

during that period.  

Table 22. The ANOVA test compares the day of the week’s impact on Google and ecobee 

mobility for the four provinces of Canada. 

 Google Ecobee 

Province   df Sum of 

squares 

F P-

value 

df Sum of 

squares 

F P-

value 

Ontario C(Weekday) 6 3467 17.86 <.001 6    10 0.458 0.84 

Residual 358 11579   358 1306   

Quebec C(Weekday) 6 2426 9.357 <.001 6 130 2.364 0.03 

Residual 358 15471   358 3278   

Alberta C(Weekday) 6 1456 8.223 <.001 6 22.9 1.123 0.348 

Residual 358 10566   358 1216   

British 

Columbia 

C(Weekday) 6 897 6.955 <.001 6 14.9 0.371 0.897 

Residual 358 7673   358 2404   

 

One-way ANOVA test results (Table 22) show that day of the week has a statistically significant 

impact on out-of-the-house mobility for all four provinces (Google). In contrast, no such trend 

has been found for in-house mobility except Quebec (ecobee).  
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8.3.2.2 Month by Month Variation Analysis 

8.3.2.2.1 Ontario 

 

 
 

Figure 54. Analysis of the a) Google residential and b) ecobee mobility data among months in 

Ontario. 

As shown in Figure 54, Google residential mobility dataset for the province of Ontario shows 

enormous variation in mobility for the months of February and March 2020 which later 

stabilized in April 2020. A higher mobility for April 2020 onwards proves an increase in 
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residential mobility. Interestingly, in contrast to variation observed for weekdays, month by 

month variation patterns are very similar between Google and ecobee mobility data. The 

variability within the datasets specifically for ecobee data reduced drastically from the month of 

April 2020, which may be due to declaration of emergency in the provincial as well as national 

level due to COVID-19 pandemic.  

8.3.2.2.2 Quebec 

 

 
 

Figure 55. Analysis of the a) Google residential and b) ecobee mobility data among months in 

Quebec. 
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As shown in Figure 55, the Google residential mobility dataset for the province of Quebec in 

February and March 2020 has vast variation in mobility, which stabilized in April with a higher 

value than the baseline. Higher mobility for April onwards proved an increase in residential 

mobility compared to other places. Like weekdays variation, month by month pattern was also 

very similar between Google and ecobee mobility data both show a similarity in the mobility 

pattern in terms of the month.  
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8.3.2.2.3 Alberta 

 

 

 

Figure 56. Analysis of the a) Google residential and b) ecobee mobility data among months in 

Alberta. 

Google residential mobility dataset for the province of Alberta shown in Figure 56 shows that 

February and March 2020 have massive variation in mobility, which stabilized in April with a 

higher value than the baseline. Higher mobility for April onwards demonstrated an increase in 
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residential mobility in Alberta compared to other places. In contrast, to weekdays variation 

month by month pattern is very similar to ecobee mobility data shows there is a similarity in the 

mobility pattern in terms of the month. Like Ontario, the variability of the data has been reduced 

in April 2020 compared to February and March 2020.  

8.3.2.2.4 British Columbia  

 

 
 

Figure 57. Analysis of the a) Google residential and b) ecobee mobility data among months in 

British Columbia. 
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As shown in Figure 57, Google residential mobility dataset for the province of British Columbia 

shows that February and March have had enormous variation in mobility, which stabilized in 

April with a higher value than the baseline. Higher mobility trends observed April onwards 

proved an increase in residential mobility compared to other places. In contrast to weekdays 

variation, month by month pattern is very similar between google residential mobility and ecobee 

mobility data.  

One-way ANOVA test results show a statistically significant difference for out-of-the-house and 

in-house mobility for all four provinces illustrated in Table 23, when comparing them month-by-

month. 

Table 23. The ANOVA test compares month by month impact on Google and ecobee mobility 

for the four provinces of Canada. 

 Google Ecobee 

Province   df Sum of 

squares 

F P-value df Sum of 

squares 

F P-value 

Ontario C(Month) 11 6383 23.65 <.0001 11 591.4 26.18 <.0001 

Residual 353 8663   353 724.8   

Quebec C(Month) 11 9541 36.64 <.0001 11 1372 21.61 <.0001 

Residual 353 8357   353 2037   

Alberta C(Month) 11 5923 31.16 <.0001 11 606.4 30.76 <.0001 

Residual 353 6099   353 632.7   

British 

Columbia 

C(Month) 11 4062 28.83 <.0001 11 1047 24.49 <.0001 

Residual 353 4508   353 1372   
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8.3.2.3 Week by Week variation analysis 

8.3.2.3.1 Ontario 

 

 

Figure 58. Analysis of the a) Google residential and b) ecobee mobility data among weeks in 

Ontario. 

Google residential mobility dataset for the province of Ontario in Figure 58 shows that from the 

beginning of February 2020, the initial 5 to 6 weeks were following a similar trend. There is a 
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reduction in mobility levels from the 7th week for both datasets. The beginning few weeks of 

March and April 2020 showcase larger variations in mobility which later stabilized towards the 

end of April. Mobility levels observed since April infers an increase in residential activities. 

Month-by-month variation and week-by-week variation shows both datasets have a similar 

pattern. 
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8.3.2.3.2 Quebec 

 

 

 

Figure 59. Analysis of the a) Google residential and b) ecobee mobility data among weeks in 

Quebec. 

Google residential mobility dataset for the province of Quebec shown in Figure 59 shows that 

from the beginning of February 2020, the initial 5-6 weeks were similar. Changes were observed 

from the seventh week onwards; there is a reduction in the Google residential mobility dataset 
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activity. In contrast, in the ecobee dataset, a lag period of one week before a similar pattern is 

observed. The weeks of March and April 2020 have enormous variations in mobility, which 

stabilized at the end of April with a higher value than the baseline. Higher mobility observed 

from April onwards showed an increase in residential mobility compared to other places. The 

month-by-month variation and the week-by-week pattern also show that the ecobee mobility data 

and Google residential mobility data have similar patterns. 
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8.3.2.3.3 Alberta 

 

 

Figure 60. Analysis of the a) Google residential and b) ecobee mobility data among weeks in 

Alberta. 

Google residential mobility dataset for the province of Alberta shown in Figure 60 shows that 

from the beginning of February 2020, the initial 5-6 weeks were similar. Change is observed 

from the seventh week onwards; there is a reduction in activity level, both on ecobee and Google 

residential mobility data. The weeks of March and April 2020 have larger variations in mobility, 
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which stabilized near the end of April with a higher value than the baseline. Higher mobility 

observed April onwards proved there is an increase in residential mobility compared to other 

places. The month-by-month variation and week-by-week pattern show that ecobee mobility data 

and Google residential mobility data have a similar pattern.  

8.3.2.3.4 British Columbia  

 

 
 

Figure 61. Analysis of the a) Google residential and b) ecobee mobility data among weeks in 

British Columbia. 
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As shown in Figure 61, the Google residential mobility dataset for the province of British 

Columbia shows that from the beginning of February 2020, the initial 5-6 weeks were similar. 

Changes were observed from the seventh week onwards; there was a reduction in activity level 

in both the ecobee dataset and Google residential mobility data. The weeks of March and April 

2020 had massive variations in mobility, which stabilized near the end of April with a higher 

value than the baseline. Higher mobility observed April onwards proved there is an increase in 

residential mobility compared to other places. The month-by-month variation and week-by-week 

pattern also show ecobee mobility and Google residential mobility datasets have a similar 

pattern.  

The results of ANOVA analysis for the week-by-week mobility pattern on ecobee and Google 

residential mobility data for four provinces was described in Table 24. A statistically significant 

difference between weeks was found for both datasets for all four provinces.  

  

Table 24.  The ANOVA test comparing week by week impact on Google and ecobee mobility 

for the four provinces of Canada. 

 Google Ecobee 

Province   df Sum of 

squares 

F P-

value 

df Sum of 

squares 

F P-

value 

Ontario C(Week) 52 10140 12.4 <.0001 52 992.9 18.43 <.0001 

Residual 312 4906   312 323.2   

Quebec C(Week) 52 13582 18.88 <.0001 52 2375 13.79 <.0001 

Residual 312 4316   312 1034   

Alberta C(Week) 52 8961 17.57 <.0001 52 927.3 17.84 <.0001 

Residual 312 3061   312 311.9   

British 

Columbia 

C(Week) 52 6558 19.49 <.0001 52 1675.8 13.53 <.0001 

Residual 311 2012   312 742.9   
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8.3.3 Anomaly Detection  

Anomaly detection is the process of identification of unexpected events, observations that 

significantly distinct from the typical event. Putting unlabeled data as input and the unsupervised 

algorithm detects several points in time (here dates). Anomalies occurs very rarely and related to 

some sort of problem or instances. In this case the findings suggest some policy changes or 

significant change in mobility pattern.  In public health anomalies detection has the capacity to 

identify abnormal events which are of great importance in terms of preventive measures.   

8.3.3.1 Ontario 

An anomaly detection analysis of Google residential data for Ontario shown in Figure 62 shows 

no anomaly within 2020. A similar pattern can be seen in ecobee mobility data.  
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Figure 62. Anomaly detection plot for the province of Ontario a) Google residential data b) ecobee 

mobility data. 

8.3.3.2 Quebec 

The anomaly detection analysis of Google residential data for Quebec Ontario in Figure 63 

shows an anomaly at the beginning period, similar to that of the ecobee data. Notably, this can be 

related with the dates of COVID-19 related policy changes. Moreover, festive periods like 
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Christmas and New Year are the other anomalies captured through Google residential data. 

During these events, abnormal mobility was detected out-of-the-house. However, ecobee could 

not capture these anomalies because of no significant changes in in-house mobility which can be 

attributed to policy restrictions. Interestingly, a similar pattern can be seen for both datasets 

within the last year.   

 

 
 

Figure 63. Anomaly detection plot for the province of Quebec a) Google residential data b) ecobee 

mobility data. 
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8.3.3.3 Alberta 

As shown in Figure 64, Anomaly detection analysis of Google residential data for Alberta shows 

an anomaly at the beginning period, like ecobee data and can be matched with the dates of 

COVID-19 related policy changes. Festive periods like Christmas and New Year are the other 

anomalies captured through Google residential data, and ecobee data shows abnormal mobility 

detected outside and in-house. In addition to those days, ecobee also captured some other 

anomalies where huge variation in mobility in the in-house happened in May and June 2020 

because of phase wise reopening plans.  
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Figure 64. Anomaly detection plot for the province of Alberta a) Google residential data b) 

ecobee mobility data. 

 

8.3.3.4 British Columbia  

An anomaly detection analysis of Google residential data and ecobee data for British Columbia 

shown in Figure 65 shows an anomaly at the beginning period and can be matched with the dates 

of COVID-19 related policy changes. April 10, 2020, marked the beginning of using face mask 

while in the public place and November 11, 2020, social gathering prohibited in the province. 



171 

 

Ecobee data captured the date of reopening in May 2020.  Festive periods like Christmas and 

New Year are the other anomalies captured through Google residential data shows there was 

abnormal mobility detected outside of the home. Ecobee could only capture Christmas as an 

anomaly because of no significant change in in-house mobility due to New Year’s policy 

restrictions. A similar pattern can be seen for both datasets within this last year.  

  

 
 

Figure 65. Anomaly detection plot for the province of British Columbia a) Google residential data b) ecobee mobility data. 
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8.4 Discussion 
 

The main objective of this study was to explore the population-level human mobility data from 

Google map-based reports and “Donate your Data” from IoT sensors. The goal was to explore 

the potential use of in-house mobility data from ecobee sensors as an equivalent indicator to out-

of-the-house Google mobility data. The key findings of this study are that both datasets have a 

lot of similarities. When compared to smartphone-based mobility, IoT-based datasets allow 

researchers to explore micro-level human mobility at home. The association between both 

datasets has been demonstrated to be statistically significant, with a Pearson’s correlation 

coefficient of 0.7.   

The temporal diagnostic analysis illustrates the temporal aspect of human mobility. Temporal 

diagnostic has been explored at multiple levels, exploring days of the week, month-by-month, 

and week-by-week respectively. Anomaly detection analysis provides evidence of the capability 

of both the datasets to find out deviations from the normal pattern. Interestingly, these kinds of 

analyses help to reinforce the existing public health surveillance mechanisms, bolstering our 

pandemic preparedness.   

8.4.1 Micro vs Macro Human Mobility  

Studies have shown that people spend more than 80% of their time in-house, [191] which never 

been fully explored in terms of mobility [183,449]. In-house mobility data have the capacity to 

measure changes in people's behaviour [188,450] but are difficult to obtain due to privacy concerns 

[344,451,452]. Use of smartphones and other wearables is now helping researchers to capture the 

individual movement within the home, which has been termed as micro-mobility [188]. With the 

increasing use of internet technology, the data collected by these smartphones are stored and 

synchronised in real time and being combined with large amounts of geographical data with 
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timestamps [427,428].  This huge volume of the data has a potential to unravel different dimensions 

of human behavior and lifestyle, such as sleep [373,381], physical activity [410], sedentary 

behaviours,[73,378,453] and about the movement pattern [226] with a greater detail and granularity.   

This study shows that there is a statistically significant difference in macro mobility at the 

population level by days of the week, month-by-month and week-by-week analysis, whereas no 

statistical difference found in micro mobility found between weekdays for the three provinces, 

namely Ontario, Alberta, and British Columbia. Findings from Quebec show that the difference 

between micro mobility across different weekdays is statistically significant. These results 

indicate that after the implementation of the work-from-home policy and COVID-19 restrictions, 

the patterns of time spent in-house are almost similar for all days of the week.  

When analysed for month-by-month and week-by-week, the findings are uniform for all the 

provinces. There is a change in mobility pattern between March and April 2020. From May 2020 

to September 2020, there is a decline in macro- and micro-mobility across all provinces. The 

mobility increased from October 2020 to December 2020.   

When analysed for month-by-month and week-by-week, the findings are uniform for all the 

provinces. There is a change in mobility pattern between March and April 2020. From May 2020 

to September 2020, there is a decline in macro and micro mobility across all provinces. The 

mobility increased from October 2020 to December 2020.  

Anomaly detection analysis shows the dates of policy changes and its impact on human mobility 

for Canada and the four provinces. Mobility data analysis captured the dates of emergency 

declaration, re-opening pattern and the effect of special days such as December 25 (Christmas 

day) and January 1 (New year eve).  
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Anomaly detection has its own significance in public health [390,454–457]. Anomaly detection 

algorithms automatically detect inconsistencies in real time and present the results in meaningful, 

interactive way. This can be useful for clinical data to find abnormal pattern in the cardiac health 

[457]. 

8.4.2 Human mobility as a critical indicator for public health 

Individual mobility, an intrinsic property of human behaviour, is a key component in the 

transmission of respiratory infections like COVID-19. Interestingly, smartphones can act as 

sensors to capture information about the geolocations of an individual [458,459]. In situations like 

the COVID-19 pandemic, wherein the prevalence of positive cases were underestimated due to 

problems, such as low testing facilities and unwillingness of people to get them tested, early 

detection and identification using real-time mobility data could have been used to track the 

number of individuals not complying to policy restrictions [458]. 

Micro mobility at the population level can signify how people move around the house with time.  

Micro mobility can be used to quantify the activity levels of the population while simultaneously 

detecting the anomalies within the behaviour. In future, this kind of data source can be 

incorporated with existing public health surveillance mechanisms to capture real-time data about 

in-house mobility. Additionally, mobility data analysis in real-time can provide information 

about the impact of policy changes like work-from-home policy, stay at home order and further 

assess the compliance towards these policies [423,460,461].  The quantification of human mobility 

plays a significant role in both infectious and chronic diseases. For infectious diseases, mobility 

is directly proportional to the rate of spread of the disease whereas dwindling mobility pattern is 

a predisposition to various chronic diseases.  
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For both micro and macro human mobility, it is necessary to capture data from multiple  sources 

and integrate them as per the research needs [462]. Although the "Stay at Home” (SAH) and 

"Work-from-Home” (WFH) strategies are promoted globally, it is still unclear to what extent 

people have changed their attitudes towards them. Since mobility patterns are closely associated 

with routine habits and daily chores, the implementation of such restrictive policies can be 

challenging [187]. 

8.4.2.1 Individual Mobility vs Population Mobility 

 

Based on the theory of protection motivation, the risks perceived by the transportation sector due 

to the COVID-19 pandemic have been studied in the literature [187]. 

The primary psychological model was developed by Ronald Rogers and explains how 

individuals change their attitudes and behaviours when interpreting and responding to fear 

appeals and stress stimuli [187]. Moreover, the Health Belief Model is based upon the perceived 

risk, which is a marker of behavioral change. This, in turn, explains the probability of 

engagement in health-promoting behavior in response to stimuli. [187]. As individual mobilities 

constitutes the overall population mobility, it is crucial to understand the behavioural change due 

to mobility restrictions at the individual level. 

8.4.3 IoT as a Potential Data Source for Human Mobility  

IoT is a modern passive sensing tool that can quantify both macro and micro human mobility. 

Changes in lifestyle influence several health-related indicators such as less sleep durations, 

increase in sedentary behaviours, and slowing down of physical activities. These changes in the 

daily mobility patterns can be captured through motion sensors for further analyses. Reportedly, 

several studies have used Wi-Fi signals, mobile phones as a proxy for sensors, Google maps, 

GPS systems, and even social media-based geotagging of locations to measure human mobility 
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at population levels [463,464]. In this context, thermostat based IoT data can open new 

opportunities for calculating population level mobility indicators. In future, the concept of 

motion sensors can be integrated in smart cities to detect overall human mobility from various 

sources which will, in turn, help to effectively plan and implement different public health 

strategies [463]. Moreover, the data collected with this strategy can also be used for digital 

epidemiological analysis [421].  

8.4.4 Limitations of the study  

 

As 87% of the population reside in four major provinces of Canada that were analysed in this 

study, there might be some other attributes that must be factored in while generalizing the results 

at a nation-wide scale. Moreover, a year of data may not be sufficient to represent the mobility 

patterns of the whole population. Though ecobee mentioned that these smart sensors cannot be 

activated from other stimuli by animals, rapid airflow, or other noises, but it may be difficult to 

completely rule out these probabilities. The absence of demographic information of users 

restricted our analysis by age, gender, and other socio-demographic features. Therefore, in this 

study, we limited our analysis to spatiotemporal dimensions. 

8.5 Conclusion  
 

In summary, population-level human mobility measurement is relatively new to the scientific 

community. This component has not been utilized for public health before the COVID-19 

pandemic at a large scale. This study explores a new dimension of using IoT-based mobility data 

at the population level. Similar results can be obtained using Google-map-based mobility report. 

This kind of data can act as an additional indicator with social determinants of health to 

understand the complex issues in public health. 
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Chapter 9 Conclusion  
 

9.1 Summary of the thesis 
 
This thesis aimed answer eight research questions and they are summarized below. Firstly, I 

explored how researchers and public health officials are using data from Internet of Things (IoT), 

wearables, and mobile health apps for public health surveillance. This thesis found that data 

utilization from various NextGen sources is gradually increasing and is being used in various 

domains of population-level monitoring in small scale-studies. However, these technologies have 

not been applied yet at national or provincial levels.   

Next, I explored how these innovative data sources have been used by Canadian researchers and 

public health officials. Our findings suggest that modern data sources are widely used for the 

prevention of chronic diseases, specifically diabetes, cardiovascular diseases, and cancer. In 

contrast, the use of these datasets for infectious diseases and health monitoring of seniors is still 

low. The study demonstrated that there is potential growth ahead of us in the use of IoT as a tool 

for monitoring infections diseases as COVID-19. 

Our next research question focused on identifying the characteristics of data that can be used as a 

potential source for population-level health indicators in public health. Our analysis shows that 

simplicity, flexibility, sensitivity, validity, high granularity, representativeness, volume, and 

verity of the data are important characteristics of novel data sources in public health.  

Next, I examined the viability of using smart thermostat data (IoT) data, such as data from the 

"Donate your Data” (DYD) program, for measuring health risk behaviours at population level. 

This study found a strong positive association between wearable data and smart thermostat data, 

proving the feasibility of using IoT data for developing health indicators. Our study 
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demonstrated that ecobee's data can be used to calculate health indicators for healthy behaviours 

such as in-house physical activity, sedentary behaviour, and sleep.  

The technical aspects of data wrangling such as preprocessing, data cleaning, and data 

manipulation before using the DYD dataset for public health surveillance are also of relevance. 

Importantly, my study shows that several preprocessing steps are required to make data readily 

usable by researchers and public health officials. These include time zone adjustment, selection 

of households with pre-determined conditions, and conversion of five-minute data to 30-minutes 

to make it more meaningful.  

Next, I identified a potential method to augment the data collected by ecobee to deliver a system 

capable of using smart thermostat data to monitor health-risk behaviours. Near-real-time 

population-level health indicators can be curated from IoT data. Using the COVID-19 pandemic 

as a case study, I have demonstrated how the work-from-home policy significantly impacted 

sleep patterns and in-house and out-of-the-house stay durations of people in Canada (Ontario, 

Quebec, Alberta, and British Columbia). This study suggests that using IoT data for future 

monitoring of behavioural health risk factors can augment the traditional national and provincial 

health survey mechanisms.   

A completely novel public health indicator called "mobility" played a vital role during the 

COVID-19 pandemic. In this thesis, I sought to determine how we can leverage the data 

collected by ecobee to deliver a system that is capable of using smart thermostat data to monitor 

micro-mobility at the population level. The findings from my second study show that data 

collected from ecobee’s smart thermostat has the potential to measure population-level micro-

mobility (in-house movement) and comparable to Google’s residential mobility data.  
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The impact of the stay-at-home order, work-from-home policies, and emergency declaration had 

a significant change in the intensity of in-house and out-of-the-house population-level mobility. 

I believe that this research study will help policymakers to utilize real-time indicators for 

assessing behavioural risk factors including physical activity, sleep, sedentary behaviours, and 

micro-mobility in Canada. This presents a unique way to measure population-level health 

indicators leveraging the use of alternative data sources, i.e., IoTs. The IoTs capture critical 

information from the communities leading to big data generation. Insights from the NextGen 

data sources can influence the policymaking process by providing evidence in near real-time. 

These modern data sources can lead to completeness of the data and fulfil the indicator gap 

within existing public health surveillance systems.  

In summary, it can help us to understand impact of any policy change in a short period of time. A 

multidisciplinary approach is to identify and implement modern technological solutions to public 

health concerns. 

 

9.2 Policy implications 
 

Ideally, a good public policy has the capacity to alter socio-economic, physical, and 

environmental parameters of a community where people live, learn, work, and spend their life. 

These policies have impact on the quality of life of the whole community [465]. The ideation, 

development, and implementation of a public policy often occur in three institutional settings: 

government, public institutions, and workplaces [465]. The development of public policies follows 

specific pathways supported by different theories, of which the four most used theories are: 1) 

Stages Heuristic Model [466] 2) Multiple Streams Framework [467] 3) Advocacy Coalition 

Framework [468], and 4) Punctuated Equilibrium Theory [469,470]. While in the real world the 

mechanisms for policy development can vary from theoretical standpoints, ideally, the process of 
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policy formulation generally involves three steps: 1) defining the problem, 2) using evidence to 

identify solutions and 3) engaging in the political process to influence policy outcomes [465]. 

9.2.1 Lockdown policies and their impact on a country 

Lockdown policies have unique influence on the country’s economy; both in short and long run. 

Each policy has its own merits and demerits [69,471]. For example, prolonged lockdown drastically 

changed the economy in Canada and GDP growth declined by nearly 10%, followed by a “V-

shaped recovery,” as shown in Figure 66 [368]. In June 2020, several provincial and federal 

governments started taking measures to reopen the economy after a closure for more than three 

months. The opening took place stepwise after careful observation of epidemiological data and 

trends of the positive cases, death numbers and rate of hospitalization. 

 

 

Figure 66 Dashboard to show Canadian economic situation during the COVID‑19 pandemic: 

image extracted from Canadian Public Health Association [472]. 

COVID-19 pandemic response and recovery goals in Canada helped minimize morbidity and 

mortality while preventing the social implications of policy changes [472,473]. The Canadian 

government has taken unprecedented steps to respond to the pandemic that affects all dimensions 

of life and routine public health activities including surveillance and epidemiology, guideline 

development, testing, provision of emergency care, border restrictions, quarantine measures, 
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shutting down of schools, private companies, organizations, and others. All these measures had a 

significant impact on the country’s socio-economic features. However, evidence show that these 

efforts were successful in flattening the curve despite the fact that Canadian economy is expected 

to decline in GDP growth and experience an increase in the unemployment rate. The pandemic 

also exposed indicators and barriers in finance and human resource management within the 

national health organization. Most provincial and territorial health funds along with federal funds 

are not designed to provide enough support for prevention, protection, and promotion of public 

health [472]. To prevent this enormous impact on society, it is essential to monitor health and 

associated innovative indicators in real-time at population level. 

9.3 Need of New Generation Monitoring Systems  
 

In Canada, the existing public health monitoring systems for population health are well 

established, but with its own limitations. There is great potential to enrich the data environment 

by including NextGen and big data sources as part of the data available to public health scientists 

in Canada [28]. Several Canadian organizations, including government, ministries, department of 

health, and research organizations, have to address significant gaps in their data infrastructure to 

be able include additional data as part of their ecosystem. The following statement by Canadian 

Institute for Health Information “Better data, better patient outcomes” [474] showcases the 

importance of a more diverse data portfolio, including NextGen data  [28].  

The use of advanced algorithms as artificial intelligence applied to big datasets in public health 

requires the implementation of data ecosystems capable of handling the generation, collection, 

preparation, and integration of these data sources while respecting the data owner’s (e.g., 

research participant, patient, citizen) safety, security and maintaining trust [474]. 
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9.4 Evidence Building with Time as A Critical Factor 
 

The COVID-19 pandemic taught us the value of timely responses [472]. In such a situation, using 

real-time data to predict future anomalies and prepare society to handle them with utmost care is 

essential [9]. Using real-time data generated by millions of users of technologies, including 

mobile phones and the internet is in utmost demand, as it provides us with near-real time 

information on human behaviour and public health [475]. 

9.4.1 Use of Real-Time Data 

 

Mobile technology, wearables, and the internet created an environment where innumerable data 

points are generated from various information sources, which can be directly or indirectly related 

to health [311,476–478]. Variables of interest like steps count [479–482], vital parameters of human 

health [483–485], or geolocation [226] are all part of these diverse data sources. Through the 

integration multiple data sources, researchers can extract a more comprehensive view of 

population health since large, high-frequency, longitudinal datasets are available from 

participants [24,183,228]. The observation of these patterns can help us understand the inherent trend 

of changes within the community. One important source that has been used in other areas of 

policy research includes the use of social media data [78,343,486–488], which has been demonstrated 

to have the potential to detect the outbreak of infectious diseases. 

9.4.2 Use of Time-Sensitive Data  

 

The data generated at one point reduces or loses its value over time. Use of specific time-

sensitive data can create useful insights. Otherwise, the same data would be of no use after a 

certain period. Innovative data integration mechanisms and analysis can add value using these 

data points at the right time.  
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The Canadian Institute for Health Information (CIHI) consulted with health system leaders 

across Canada and reviewed relevant literature to identify practical actions to systematically 

improve the use of these data sources in Canada [489]. These consultations demonstrated that data 

and information contribute towards improving health in innovative ways [489]. A consistent theme 

emerged from this consultation suggests the need to improve the quality and consistency of 

health data governance practices across organizations seeking to share data and realize its 

strategic value [489]. The essential steps to address the existing challenges are reviewing and 

describing the meaning, completeness, and quality of data assets to optimize their use internally 

and by trusted partners [489]. Prioritizing to share data, and algorithms to achieve common goals 

whilst maintaining robust privacy, security controls and harmonizing policies, practices and its 

standards were pragmatic and valuable [489]. Earning and retaining public trust in an important 

step in the establishment of proper data governance mechanisms [489]. 

9.5 Respect for Data 
 

Statistics Canada respects the value of data. As per the mandate of Statistics Canada, each data 

point has three critical features: privacy of the people to whom the data belongs, security of 

information throughout the data lifecycle, and confidentiality of information [490]. Therefore, 

safe, secure, and privacy-preserving data environment needs to be implemented to maintain trust 

in the system. Technological solutions such as distributed ledgers (e.g., Blockchain, Ethereum) 

can help implement a secure ecosystem. [46].  

In summary, policymakers should use the latest available evidence and technology to inform the 

development of new policies [491,492]. The evidence-based policymaking process can save more 

lives, reduce morbidity, and improve the quality of life when compared to the traditional policy 

making process [40,493]. The COVID-19 pandemic helped identify weak points in the existing 
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health system and there is an urgent need to reframe the policies, addressing the problems within 

the health sector [69,494]. Interestingly, Next Gen data sources can influence the policymaking 

process by providing greater insight to near real-time situation of the problem, completeness of 

the data and indicator gap, and understanding impact of any policy change in a short period of 

time [28]. IoT as a unique data source has the potential to generate large volumes of data on a 

short timeframe, compiling critical information directly from communities [28,157]. Proper 

utilization of those ubiquitous datasets with algorithms based on artificial intelligence may fill 

the gaps and predict future outbreaks [289].  

A multidisciplinary approach to this challenge requires expertise from a diverse team, starting 

from a solid epidemiological component, allied with expertise in human health, and a solid 

understanding of the technological solutions used to answer relevant public health questions 

[177,344,495,496]. Recent literature shows that researchers worldwide use Nextgen data sources in 

combination with traditional survey data, to bridge the data gap [28]. Several technologies have 

been used to help public health decision-makers quickly answer specific unique policy gaps for 

infectious and chronic diseases [491]. 

There is a need to incorporate evidence to policymaking process to reduce the impact of future 

pandemics at the scale of COVID-19 and might save numerous lives. Data generated from 

Internet of Things (IoT) has the potential to create evidence and enrich population-level 

monitoring systems, which can be used in evidence-based policy making.  The access to 

NextGen data will benefit the policymakers and increase the efficiency and effectiveness of 

health policy in the future [28]. 
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9.6 Strengths of this Research  

This IoT data serves various advantages such as zero effort for data collection, near real-time 

output, and use of continuously expanding data source. In terms of representativeness, the data is 

well distributed amongst all the provinces and territories of Canada and provide an overall view 

of the community. The key findings of this research can be summarised as follows:  

• NextGen data sources are helpful for public health surveillance 

• Near real-time population level monitoring can be possible using NextGen data sources 

• IoT is crucial within the NextGen data source for real-time data 

• These unique data sources can be used as a standalone component or in conjunction with 

traditional public health surveillance systems 

• The impact of public health policy can be monitored to measure the intended outcomes to 

some of the targeted and proxy indicators 

• ecobee’s data can be helpful to monitor special groups of the population, especially 

vulnerable individuals including persons with locomotor disability, elderly persons living 

alone, pregnant women, persons with multiple chronic diseases including cancer, or 

persons with mental health issues.  

• Importantly, the cost-effectiveness of this technology for the public health system plays a 

critical role in adoption. The use of “user-generated/passive monitoring” can be more 

cost-effective than traditional surveys. This method of data collection, analysis, and 

reporting comes with the benefit of low cost. As mentioned above, the data collected for 

this research comes from the already existing infrastructure; for smart thermostats no 

special efforts are required from the researchers in terms of purchasing sensors, 

deploying them for data collection, and training of data collectors. 
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9.7 Challenges and Limitations 

The challenges faced within this thesis can be broadly divided into technical, data analytics and 

ethics domains. The technical challenges included volume of the data, verity of the data, access 

to data, and structure of the data. For example, ecobee shares its data through the DYD program 

to researchers in different formats and changing database, starting from .csv files to Google 

BigQuery. This, in turn, requires a unique skillset to extract, load, and manipulate datasets along 

with data processing and cleaning before the statistical analyses can be performed. Owing to the 

large volumes of data obtained, advanced computing infrastructure and resources are important 

resources that are needed. 

In terms of data analytics domain, the main challenge is the absence of detailed demographic 

information about the residents. While the data informs about the geographic location, important 

population characteristics like age, sex, education, occupation, marital status, and socio-

economic status are not present in the dataset. Since this dataset was not collected for the 

purpose of monitoring health, there is an absence of data about health conditions, including 

chronic diseases. Notably, the data quality and missing values needs to be considered as there is 

a considerable amount of missing data. The reasons for the missing data in IoT may be attributed 

to power outages, interruptions in the internet connectivity, and other technical and non-technical 

issues.  

Despite the anonymous nature of data, the concerns of privacy, ethics, and security must also be 

factored in. As the data source is a private company, there are concerns whether this data will be 

available in future or not. Various factors such as the relationship between the private company, 

academic research environment, and government policy needs to be considered to ensure 

continuous availability of this data. 
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Additionally, the use of smart thermostats is more commonly observed among individuals with 

higher socio-economic status compared to others. Therefore, the result from this study needs to 

be generalized with some considerations regarding the individuals with low-income 

backgrounds. Furthermore, individuals with higher socio-economic status will have higher 

probability of working from home compared to others and consequently, their chances of 

spending time in-house during the pandemic.  

Additional limitations of this thesis include: (1) the population distribution of ecobee smart 

thermostat users may differ from the general population; (2) as the data collection was restricted 

to in-house movements only, it lacks 24-hour movement data; (3) because the sensors only 

capture the activity as a binary output, they lack the capacity to assess the type of the activity 

being performed by the residents; (4) despite having sensors designed and tuned to capture 

mostly human movement, there is still probability of greater noise or errors in a house with a pet 

than a house without a pet; (5) the absence of demographic information and health information in 

the DYD limits the analysis to broad population level rather than stratified by key demographic 

factors such as age and gender; (6) as there is a time gap between the data generation and 

providing access to the researchers, the analysis are not real time in nature; (7) health indicators 

measured in this thesis were proxies to the real indicators for sleep, physical activity, in-house 

and out-of-the-house mobility pattern; (8) individual level sleep, physical activity, sedentary 

behaviour can only be analyzed using data from households with single individuals, which limits 

the applicability of these results.  

9.8 Future Research Opportunities  
 

In this thesis, I have presented evidence that IoT will be a critical component of the future public 

health surveillance. In the coming years, integrating IoT data within existing public health 
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surveillance system will strengthen the evidence-based monitoring mechanism. Providing real 

time and critical public health insights from the NextGen data sources will help the policy  

makers to improve the existing policy accordingly.  

Adding traditional and modern data sources will help to improve comprehensiveness of the data 

and indicators. With the combination of time, resources, funding, and data from various sources, 

Canada can develop a comprehensive a public health monitoring platform. Integrating these data 

in a secured environment and calculating comprehensive public health indicators will provide 

our public health system with the necessary responsiveness for dealing with future pandemics.  

This kind of research can be extended to study health indicators for specific kind of population 

such as people with one or more chronic conditions, persons with disabilities, other vulnerable 

segments of the population including older adults and people staying alone and so on. 
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Appendices 
 

Appendix-1 Statistical and Advanced Methods for Time Series Data Analysis   
 

Model Examples and Description Advantages and limitations  

Univariate Statistical Methods  

Statistical process control 

(SPC) inspired model 

(C1,C2,C3, CUSUM 

(cumulative sum),W 

algorithm) [208] 

C1 algorithms compute a mean and standard 

deviation using a short sliding interval of 

historical data to adjust time trends, cyclic 

patterns, and other time-dependent effects. 

C2 algorithm adds a two-day guard-band, 

and the C3 algorithm sums values of the test 

statistic over three days in a manner. W 

algorithms add adjustments for weekdays 

and weekends to C-algorithms. 

Cumulative sum (CUSUM)-sequential 

hypothesis test.  
[209,210].  

C1-C3 algorithms were used 

widely in Syndromic surveillance 

systems for early event detection 

because they are easy to compute 

and interpret  

A stationary time series is a 

prerequisite for applying SPC or 

SPC-inspired methods. 

CUSUM and generalized linear 

models (GLM) often outperform 

the C1-C3 methods in early 

outbreak detection performance. 

Univariate prediction only. 

Smoothing Methods  Moving average and exponentially weighted 

moving average methods.  

Splines- to address seasonal effects 

Gaussian kernel smoothing, Quadratic 

kernel smoothing 

Loess smoothing  

 

 

This method can generate 

accurate forecasts and detect 

anomalies. 

Have the capacity to handle trend, 

seasonality, and day of the week 

effect. 

This method cannot incorporate 

covariates. 

Regression method  

Generalized linear models 

(GLM) 

The current observation is a linear function 

of the previous observation with white 

noise. 

Seasonality is usually modelled in a GLM 

or Serfling model using dummy variables or 

trigonometric terms. [212].  

Adaptive GLM- short historical windows as 

a sliding baseline.  

GLM and Serfling's methods are 

commonly used for disease 

surveillance because they 

produce results that are easy to 

interpret, they can model 

temporal and cyclic patterns, and 

they can exploit external 

information 

Outperformed C and W 

algorithms. 

These models can handle 

covariates.  

AR Model The autoregressive model uses the 

dependent relationship between an 

observation and some number of lagged 

observations. There are different modified 

versions of the AR models that have been 

used in the public health literature, such as 

the vector autoregressive model for life 

expectancy, public health spending and 

economic growth in Nigeria in 2013 [213] or 

the Bayesian conditional autoregressive 

model for estimating health effect of air 

pollution in 2014 [497]. 

The benefit of using AR methods 

is autocorrelation function can be 

used to tell if there is a lack of 

randomness.  

It can forecast any recurring 

patterns in the data. 

There must be an autocorrelation 

coefficient that should not be less 

than 0.5 for it to be suitable.  

It can only be used when 

predicting things related to 

economics based on the pre-

existing time.  
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Used when something is 

considerably affected by social 

aspects. 

MA Model  Moving Average Model uses the 

dependency between an observation and a 

residual error from a moving average model 

applied to lagged observations.  

Although it looks like a regression model, 

the difference is that the weight is not 

observable. 

Less prone to a lot of false signals 

Requires maintaining a history of 

different periods for each 

forecasted period. 

Often overlooks complex 

relationships mentioned in the 

data. 

Do not respond to the fluctuation 

that takes place for a reason, for 

example, cycles and seasonal 

impacts. 

ARMA  

Autoregressive Moving 

Average Model 

AR and MA are two widely used linear 

models that work on stationary time series. 

Autoregressive and moving average models 

can be combined to form ARMA models.   

If the available data are 

multivariate and relationships 

between covariates and outcomes 

are non-linear, ARMA methods 

may have poor performance. 

ARIMA [214–216] Auto-

Regressive Integrated 

Moving Average 

I stand for Integrated and differencing raw 

observations to make the time series 

stationary, and I is a preprocessing 

procedure to "stationarize" time series if 

needed. 

One problem in the ARIMA 

model is the lack of seasonality 

SARIMA [217] 

Seasonality adjusted Auto-

Regressive Integrated 

Moving Average 

A seasonal ARIMA model is formed by 

including additional seasonal terms in the 

ARIMA models, denoted as ARIMA (p, d, 

q) (P, D, Q)m, i.e., φ(B m) φ(B) (1 − B m) 

D (1 − B) d Xt = θ(B m) θ(B) wt. where m 

represents the number of observations per 

year.  

The seasonal part of the model consists of 

terms similar to the non-seasonal 

components but involves backshifts of the 

seasonal period [218,219]. 

It can only extract linear 

relationships within the time 

series data [197] 

Failure in forecasting, especially 

if the sequence of time series has 

abnormal changes [498]. 

 

Advanced analytics methods  

Bayesian methods [199,220] PANDA- Population-wide anomaly 

detection and assessment 

MCMC- Markov chain Monte Carlo 

This has the ability to explicitly 

model uncertainty from different 

sources and then propagate the 

uncertainties through to the 

results.  

This method also has the capacity 

to model data from individuals. 

Markov methods HMRF- hidden Markov random field 

HMM- Hidden Markov model  

All the parameters are easy to 

interpret, and the model can be 

adapted easily to different 

epidemiological situations [221]. 

 

Multivariate analysis  PCA-Principal components analysis 

Multivariate CUSUM 

Parallel surveillance 

Ensemble approach 

Data from different sources and 

detect anomalies using the 

integrated data. 

 

Artificial intelligence-based methods  

Machine learning Methods Neural network 

Gradient boosted regression trees 

Better prediction performance 

compared to autoregressive 
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LASSO- Least absolute shrinkage and 

selection operator 

Support vector regression 

models applied to single data 

sources.  

Most ML methods make no 

assumptions about the distribution 

of the data. However, some 

practical limitations remain, 

including the need for a large 

amount of training data, the risk 

of over-fitting, and the need for 

expertise in tuning parameters 

within these models [219].  

Deep Learning Methods  Feedforward neural network (FNN) 

 

 

Better prediction models 

Needs complex computing 

infrastructures  
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Appendix-2 Schema of the Metadata from the Donate your Data by ecobee  
 

 

Schema of Metadata 

Identifier 

Model 

UserID 

Country 

ProvinceState 

City 

Floor_Area__ft2_ 

Number_of_Floors 

Age_of_Home__years_ 

Number_of_Occupants 

installedCoolStages 

installedHeatStages 

allowCompWithAux 

Has_Electric 

Has_a_Heat_Pump 

Auxilliary_Heat_Fuel_Type 

Number_of_Remote_Sensors 

First_Connected 
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Appendix-3 Snapshot of the Metadata from the Donate your Data by ecobee  
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Appendix-4 Schema of the Thermostat data from the Donate your Data by ecobee  
 

 

Field name Type 

date_time TIMESTAMP 

Identifier STRING 

HvacMode STRING 

CalendarEvent STRING 

Climate STRING 

Temperature_ctrl INTEGER 

TemperatureExpectedCool INTEGER 

TemperatureExpectedHeat INTEGER 

Humidity INTEGER 

HumidityExpectedLow INTEGER 

HumidityExpectedHigh INTEGER 

auxHeat1 INTEGER 

auxHeat2 INTEGER 

auxHeat3 INTEGER 

compCool1 INTEGER 

compCool2 INTEGER 

compHeat1 INTEGER 

compHeat2 INTEGER 

fan INTEGER 

SensorTemp000 INTEGER 

SensorOcc000 BOOLEAN 

SensorTemp100 INTEGER 

SensorOcc100 BOOLEAN 

SensorTemp101 INTEGER 

SensorOcc101 BOOLEAN 

SensorTemp102 INTEGER 

SensorOcc102 BOOLEAN 

SensorTemp103 INTEGER 

SensorOcc103 BOOLEAN 

SensorTemp104 INTEGER 

SensorOcc104 BOOLEAN 

SensorTemp105 INTEGER 

SensorOcc105 BOOLEAN 

SensorTemp106 INTEGER 

SensorOcc106 BOOLEAN 

SensorTemp107 INTEGER 

SensorOcc107 BOOLEAN 

SensorTemp108 INTEGER 

SensorOcc108 INTEGER 

SensorTemp109 INTEGER 
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Appendix-5 Snapshot of the Thermostat Data from the Donate your Data by ecobee  
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Appendix-6 Policy change with regards to COVID-19, a) Canada, b) Ontario, c) Alberta 

d) Quebec and e) British Columbia  
 

Source: https://www.cihi.ca/en/covid-19-intervention-timeline-in-canada  

 

a) Canada  

 

 

 

 

 

 

 

 

 

https://www.cihi.ca/en/covid-19-intervention-timeline-in-canada
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b) Ontario 

 

 

 

 

 

 

 

 

 

 



272 

 

c) Alberta 
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d) Quebec 
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e)  British Columbia  

 

 
 


