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Abstract

Bug localization is the process of identifying the source code files associated with a bug
report. This is important because it allows developers to focus their efforts on fixing the
bugs than finding the root cause of bugs in the first place. A number of different techniques
have been developed for bug localization, but recent research has shown that supervised
approaches using historical data are more effective than other methods. In reality, for
the supervised approaches to work, these approaches need high quality and quantity of
label-rich datasets. However, preparing training data for new projects and retraining the
bug localization models can be highly expensive. Additionally, most of the projects do
not have rich historic bug data, as pointed out by Zimmermann et al. This necessitates
cross-project bug localization, which involves using data from one project to extract the
transferable features to localize bugs in a new project. In this thesis, we aim to provide a
bug localization model to locate buggy source code files in a new project without retraining
by leveraging the transfer learning capability of deep learning models.

Deep learning models can be trained once in a label-rich dataset and transferred to a
new dataset. By leveraging deep learning, we propose AdaBL and AdaBL+GL, which can
be trained once and transferred to a new project. The main idea behind AdaBL is to learn
the syntactic and semantic relationship between bug reports and source code separately.
The syntactic patterns are transferable features that exist between cross-projects. We pair
AdaBL with a graph neural network to represent the source code as a graph to improve the
semantic learning capability. We also performed a detailed survey to compile the bug local-
ization research published since 2016 to examine the experimental settings practiced and
the availability of the replication package of deep learning-based bug localization research.
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Chapter 1

Introduction

1.1 Bug Localization

In today’s world, it is hard to find a field that isn’t benefiting from the advancement of
technology. Software development is no exception. With the help of automated techniques,
developers are able to spend less time on tedious and time-consuming tasks, like bug
localization. These techniques are built using either Information Retrieval (IR) based
techniques [67, 59] or using Machine Learning (ML) or Deep Learning (DL) [24, 40, 62].

Ultimately, bug localization is incredibly valuable for developers while debugging. Through
IR or ML/DL-based bug localization, developers are able to reduce the amount of time
spent on locating and fixing bugs – making their jobs easier and faster!. IR-based tech-
niques use a set of keywords related to the bug in order to identify the buggy source code.
Whereas the ML and DL-based techniques use historic bug data, i.e, bug reports along
with associated buggy source code files, to localize the buggy source code for the new bugs.
ML and DL-based techniques can be even more effective than IR-based techniques because
it takes into account the non-linear relationship between a bug report and the source code
files, not just bug report keywords.

1.2 Cross-Project Bug Localization

Recent research [24, 40, 27, 53] applied deep-learning techniques to bug localization, and
the results have been promising. However, there are still some challenges that need to be
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addressed. Most of the research has focused on projects with high-quality and quantity
datasets for modeling as a good dataset is essential for accurate training of models. It is
also important to consider how well these models perform on new datasets (projects) that
may not have comprehensive historic bug data and this method is called cross-project bug
localization.

The software engineering research community is actively researching the subject of
cross-project bug localization. The closest research [24] toward cross-project bug localiza-
tion is by Huo et al. Their goal is to determine if models jointly trained with two projects
(source and target) can extract transferable features from both projects. And then be used
for bug localization in the target project without retraining.

To our knowledge, no one in the software engineering research has looked into pure cross-
project bug localization, in which a model is trained on one project and directly applied
to a new project without retraining for bug localization. We present Adaptive Cross-
Project Bug Localization (AdaBL), a deep transfer model that can be trained with data
from one project and transferred to many others. However, when it comes to transferring
knowledge from one project to another, things can get a bit more complicated. The direct
transfer of learning from high quality and quantity projects brings with it the information
that is exclusive to that project [56]. And this effect is called the negative transfer effect.
By learning project-specific information and programming language similarity separately,
AdaBL avoids the negative transfer effect.

The recent study’s [36] findings in code search show a model trained in one project
can be used on another project for semantic code research without retraining. These
findings were promising and encouraged us to build knowledge transferable models for
cross-project bug localization. We performed the bug localization in three different project
settings: within the project, partial cross-project, and cross-project.

1.3 Source Code is Multi-Faceted

Source code is multi-faceted meaning source code can be represented in more than one
format in the DL models. Some of the current research leverages the multifaceted repre-
sentation of programming language to bridge the semantics between natural language and
the programming language. For example, source code can be represented as sequential
tokens [64, 40], as a dimensional feature [30], as Abstract Syntax Tree (AST) [65] . But
none of the representations can represent the structural relationship that exists between
source code tokens.
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To our knowledge, one has used Data Flow Graph (DFG) to represent source code in the
bug localization. We employ Graph Neural Network (GNN) to learn from the DFG. DFG is
also less complex than traditional hierarchical representation [21] and this property makes
DFG a good input for GNN. In this thesis, for cross-project bug localization, we propose
to combine AdaBL and graph learning to build a two-parallel layer model AdaBL+GL.

1.4 DL-based Bug Localization Literature Survey

We conducted a survey as part of the development of this project, which provides a com-
plete summary of bug localization research utilizing DL approaches over the last six years.
This survey aims to group DL-based bug localization research by dataset settings (within
project, partial cross-project, and cross-project) and replication package availability. Our
goal is to give a bird’s-eye view of dataset settings followed by the state-of-the-art DL bug
localization. And the current state of reproducibility and public access to the research.

1.5 Contributions

The main contributions of this project are,

• Adapting AdaCS in order to build an adaptive model for cross-project bug localiza-
tion

• Employing DFG for source code representation for capturing the semantics of the
source code variables which is essential in understanding the semantics similarity
between bug reports and the source code

• A compilation of DL-based bug localization research with a brid’s-eye-view of dataset
settings followed and replication package availability
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1.6 Research Questions

R1. How do different dataset settings impact the performance of the bug
localization model?

Many different factors can impact the performance of a bug localization model. One
important factor is the dataset setting. In particular, the size and composition of the
training dataset can significantly impact how well the model performs. Another important
factor is the type of bug localization algorithm used. Different algorithms may perform
better or worse depending on the input features, training strategy, .etc.

We will test our proposed models and the benchmark baseline models in three dataset
settings in order to answer this research topic. We observed that models trained in within
project and partial cross-project settings outperform models trained in a cross-project
setting.

R2. Does the performance of ML/DL-based localization for a project vary
depending on the dataset setting?

We will analyze whether the dataset setting impacts the ML/DL-based model performance
in a project. We trained the models under different datasets settings. We discovered that
a different model and dataset setting pair combo performs better for each project. There
is no one-model-fits-all answer to this question.

The thesis is divided into the following chapter. The research papers from the literature
survey are briefly discussed in Chapter 2. The dataset, dataset settings, and metrics used
for training and evaluating the models are described in Chapter 3. The results of our
replication of the benchmark baseline models are discussed in Chapter 4. We introduce
our proposed methodology in Chapter 5. In Chapter 6, we will analyze the results. Analyze
and compare the findings of the better performing model with the worst performing model
in Chapter 7. We list the potential threats to the validity of our results in Chapter 8.
In Chapter 9, we conclude our thesis by summarising our contributions and listing the
potential future works.
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Chapter 2

Related Works

Figure 2.1: ML/DL Bug Localization Model Architecture

Several studies have been published in the software engineering literature in the past,
covering different methods used for bug localization [15, 60, 72, 45]. These surveys pro-
vide a complete evaluation of the literature for bug localization, covering IR and MLDL
techniques. However, none of the surveys looks into the experimental settings, particularly
for DL approaches. As DL approach depends heavily on the data, and the experimental
setting plays a significant role in model performance.

Moreover, most of the surveys were done till 2016, and up to our knowledge, no further
study covers the recent developments in DL-based bug localization. In this survey, our
motivation is to compile the experimental settings, evaluation framework, and replication
availability from the recent bug localization research, particularly in MLDL-based bug
localization research. Table 2.1 and 2.2 shows our complication of DL based bug localization
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research. For this thesis, we consider only DL-based bug localization research that takes
bug reports and source code files as primary input and outputs ranked buggy source code
files, as shown in Figure 2.1.

In this survey, we extracted research published from 2016 to 2021 that used the keywords
“bug,” “localization,” “fault,” “bug localization,” “fault localization,” and “bug report”
from IEEE, Elsevier, Springer, and DL ACM. From 435 research matching the keywords
after card sorting, we identified 17 research on ML/DL-based bug localization. We then
performed a snowballing analysis of the references two levels deep to identify 30 research
papers on bug localization using DL techniques. For this project, we have selected only
file-level DL-based bug localization research papers from 2016, which are listed in Table
2.1.

IR+DL

Lam et al.’s [29] model HyLoc combined IR and DL techniques to great effect, outper-
forming traditional IR-based bug localization models. The experiments conducted by the
researchers showed that IR and DL complemented each other, and together, they per-
formed better than an individual model. The results of Lam et al. [30] showed using a
combination of IR and DL (IR+DL) can lead to better results than relying on a single
model (IR or DL) where they have combined rVSM [75] with DNN.

Similarly, Wang et al. proposed Multi-Dimension Convolutional Neural Network (MD-
CNN) for bug localization [53] that combined IR and DL. The proposal involves extracting
five statistical features from the bug reports and source codes and then applying MD-CNN
to the extracted statistical features. In the research [10] Cheng et al. extract statistical
features from multiple sources such as bug reports, source code, file names, and stack traces
and then apply the deep neural network (DNN) to the statistical features for extracting
the nonlinear relationship.

Source Code as a sequential inputs

Ye et al. [68] explored word embedding in bug localization, specifically the lexical gap
between source code tokens and bug reports. They found that while word embedding does
help to bridge the gap, it also causes lexical mismatch on bug localization. Their findings
provided valuable insights into using word embeddings for briding programming language
and natural language. The word embeddings modeled using project-specific data points
were found to be performed similarly to word embeddings modeled with Wiki corpus [68].
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Table 2.1: List of Recent Researches on DL based File Level Bug Localization

Year Authors Title Method

Partial Cross-Project

2021 Huo et al [24] Deep Transfer Bug Localization DL

Within Project

2021 Miryeganeh et al [40] GloBug: Using global data in Fault Localization IR

2020 Cheng et al [10]
A Similarity Integration Method based Information Retrieval

and Word Embedding in Bug Localization
IR+DL

2020 Yuan et al [71] DependLoc: A Dependency-based Framework For Bug Localization IR+DL

2020 Kim et al [27]
Feature Combination to Alleviate Hubness Problem of Source Code

Representation for Bug Localization
DL

2020 Wang et al [53] Multi-Dimension Convolutional Neural Network for Bug Localization IR+DL

2019 Liu et al [37]
Convolutional Neural Networks-Based Locating Relevant Buggy Code

Files for Bug Reports Affected by Data Imbalance
DL

2019 Liang et al [35]
Deep Learning With Customized Abstract Syntax Tree for Bug

Localization
DL

2019 Xiao et al [64]
Improving bug localization with word embedding and enhanced

convolutional neural networks
DL

2019 Liu et al [38]
Mapping Bug Reports to Relevant Source Code Files Based on the

Vector Space Model and Word Embedding
IR+DL

2018 Xiao et al [62]
Improving Bug Localization with Character-Level Convolutional Neural

Network and Recurrent Neural Network
DL

2018 Xiao et al [63]
Machine translation-based bug localization technique for bridging

lexical gap
IR+DL

2017 Lam et al [30]
Bug Localization with Combination of Deep Learning and Information

Retrieval
DL

2017 Xiao et al [65]
Improving Bug Localization with an Enhanced Convolutional Neural

Network
DL

2016 Ye et al [68]
From word embeddings to document similarities for improved

information retrieval in software engineering
IR+DL
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Table 2.2: List of Recent Researches on DL based Bug Localization
Year Authors Title Method

2021 Cao et al. [7] Automated Query Reformulation for Efficient Search Based on Query
Logs From Stack Overflow

IR+DL

2021 Chen et al. [9] GLIB: towards automated test oracle for graphically-rich applications DL

2021 Su et al. [51] OwlEyes-online: a fully automated platform for detecting and localizing
UI display issues

DL

2020 Liu et al. [39] Owl eyes: spotting UI display issues via visual understanding DL

2019 Li et al. [34] Improving bug detection via context-based code representation learning
and attention-based neural networks

DL

2019 Xia et al. [61] BugIdentifier: An Approach to Identifying Bugs via Log Mining for Ac-
celerating Bug Reporting Stage

DL

2019 Zhang et al. [73] FineLocator: A novel approach to method-level fine-grained bug local-
ization by query expansion

DL

2018 Pérez et al. [47] Fragment retrieval on models for model maintenance: Applying a multi-
objective perspective to an industrial case study

IR+DL

2018 Zhong et al. [74] Mining repair model for exception-related bug IR+DL

2017 Böhme et al. [5] How Developers Debug Software — The DBGBENCH Dataset DL

2017 Chaparro et al. [8] Detecting missing information in bug descriptions DL

2016 Dam et al. [13] DeepSoft: a vision for a deep model of software DL

2016 Gu et al. [20] Deep API learning DL

2016 Wang et al. [55] Automatically learning semantic features for defect prediction DL

2016 Zhang et al. [72] A Literature Review of Research in Bug Resolution: Tasks, Challenges
and Future Directions

DL
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To further bridge the gap between programming language and natural language, Xiao
et al. extend their previous research [65] by introducing character-level embedding and
long short-term memory (LSTM) in [62]. To further reduce the lexical gap and to preserve
the difference between source code tokens and bug report tokens, Xiao et al. in [64]
extended their previous work [65] by using two different vectors representations Sent2Vec
and Word2Vec for representing source codes and bug reports.

Though prior studies modeled word embedding using only project-specific data points,
Miryeganeh et al. proposed Globug [40], in which they use global datasets while training.
Globug combined both the term frequency-inverse document frequency (TFIDF) model
and Doc2Vec [32] model, which utilizes direct and indirect relevance scores to rank buggy
source code files.

Source code tokens extracted from Tree represented as a sequential inputs

Xiao et al., in their work [65] to capture the structural information of the source code,
used Abstract Syntax Tree (AST). They applied TF-IDuF to filer common words from
bug reports. Moreover, Convolution Neural Network (CNN) is used to extract features
from the skip-gram-based vector representation of source code tokens and bug reports.
Liu et al. in [38] to learn surface lexical and semantic similarity between source code
and bug report VSM and word2vec were used, respectively. And to dynamically modify
the weights of the vector representation, authors utilize a part-of-speech (POS) tagger in
the bug report and AST of source code to extract important keywords and class names,
method names from the bug report, and source code, respectively. To further establish
a robust semantic relationship between the bug reports and source code along with the
surface lexical similarity, Liu et al. have extended their previous work [38] by applying
Doc2Vec and Word2Vec for bug reports and Word2Vec for source codes.

Source code as a Tree structure

Liang et al. modeled CAST [35] with the motivation to exploit the hierarchical nature of
source code. Authors utilized TBCNN [43] on AST to learn the underlying hierarchical
relationship between source code tokens. CNN captured the semantic similarity between
the bug report and source code. ASTs are great for capturing the hierarchical relationship
between tokens in a source code file but cannot capture their interrelationship.
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Source code as a Graph

Kim et al., in their recent research [27] present an interesting approach to capturing the
interrelationship between source code tokens. By constructing an AST graph and using
a compositional embedding model [50], they can generate a vector representation for the
graph that accurately reflects the relationships between tokens. Yuan et al., in their re-
search [71] constructed vector representation from class dependency graph using Ant colony
algorithm.

Partial Cross-Project

Previously discussed DL research papers are very effective in bug localization. However,
those DL research requires a lot of data in order to train. In many cases, particularly for
new projects, there is not enough historic bug data [76] available to train a DL model for
bug localization. Huo et al. showed in their work TRANP-CNN [24] that transferable
features can be extracted through joint learning on the source and target projects, and
then the trained model can be applied to the target project without retraining.

There is a lot of research on bug localization, but it has been limited to isolated prob-
lems so far. Individual techniques have been developed to utilize source code structural
information, cross-project bug localization, or IR+DL for improved lexical and semantic
learning. However, no research has yet addressed all these isolated scenarios in bug localiza-
tion. In this project, we propose a model that utilizes source code structural information,
cross-project bug localization, and IR+DL for improved lexical and semantic learning. We
believe that this is the best way to achieve industry standards in bug localization.

Reproducibility and Public Access To The Research

Table 2.3: Replication Package availability of the BL Researches Papers

Year Authors Replication Package
Processed Data

Availability

Data Processing

Script availability

Feature Extraction

Script Availability

Model Training

Script Availability

Trained Model

Availability

2021 Miryeganeh et al
[40]

Globug [41] Yes Yes Yes

2020 Wang et al [53] MD-CNN [18] Yes

To compare the replication package availability and public access to research, we filter
the research papers based on the replication package that is available for download publicly.
Our results, depicted in Table 2.3, show that the replication package is available for only
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two research papers out of sixteen research papers. In which only Miryeganeh et al. [40]
work is fully replicable because of the availability of data processing, feature extraction,
and model training scripts. However, we cannot replicate Wang et al. [53] work due to the
absence of the feature extraction script.

Table 2.3 indicate that the reproducibility of deep learning-based bug localization mod-
els is not high and there is a lack of reproducibility in the bug localization research com-
munity. In order to improve the reproducibility of bug localization research, we urge all
researchers to make their replication packages available to others.
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Chapter 3

Dataset

3.1 Motivation

In this project, we propose that bug localization models could be transferred to a new
project without re-training the models on project-specific data points. Creating a cross-
project bug localization model dataset plays a very important role as the quality of the
dataset determines the DL models learning capability to extract the transferable features
from one project, which can be transferred to new projects. A high-quality cross-project
bug localization model dataset is essential for two reasons:

• it allows us to evaluate how well our DL models are able to learn and generalize
across different projects, and

• it provides us with a training set that we can use to improve our bug localization
models. In this chapter, we will describe how we collected and prepared the data for
our cross-project bug localization research.

3.2 Dataset

Benchmark datasets are important tools for evaluating the effectiveness of bug localization
techniques. It is important to use benchmark datasets that are representative of real-world
applications. In this project, we have used the dataset by Ye et al. [67] which is large

12



Table 3.1: Information on the bug reports in each project
Project Time Range # of Bug Reports # Avg. of Fixed Files
AspectJ Mar/2002-Jan/2014 593 4
Birt Jun/2005-Dec/2013 4,178 2.8

Eclipse Platform UI Oct/2001-Jan/2014 6,495 2.8
JDT Oct/2001-Jan/2014 6,274 2.6
SWT Feb/2002-Jan/2014 4,151 2.1
Tomcat Jul/2002-Jan/2014 1,056 2.4

and representative of real-world scenarios as it is collected from open-source java projects.
This dataset will be useful for benchmarking as it has been used in previous DL-based bug
localization research [71, 64, 63, 65] . Table 3.1 shows the information of the dataset.

• AspectJ is an aspect-oriented programming (AOP) extension to the Java program-
ming language

• Birt provides reporting and business intelligence capabilities

• Eclipse UI includes building blocks of the Eclipse user interface

• JDT is a set of tools that support Java development in Eclipse IDE

• SWT is the core of Eclipse’s native user interface

• Tomcat is an application server written in Java

3.2.1 Dataset settings

Dataset settings are important factors that can affect the performance of DL models. In
this project, we will compare the performance of the proposed model with state-of-the-
art bug localization in three different Dataset settings: within project setting, the partial
cross-project setting, and the cross-project setting. Datapoints are sorted in chronological
order based on the bug report timestamp. This setting has a few benefits:

• It allows using more recent bug reports to test the accuracy of your model, which is
essential since models tend to become less accurate over time as they get ”stale.”
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• It also ensures that the model is trained using older bug reports which helps gener-
alization performance on new bug reports.

Within project setting: In this setting, 80% of the dataset is used for training, 20%
is used for testing, and all bug reports used from training and testing are from only one
project. Using this setting, we can compare the proposed model performance with state-
of-the-models. In addition, using a common setting can help to ensure that results are
comparable and accurate.

Partial cross-project settings: In this setting, the training dataset contains only
20% of the dataset is used from the target project and 80% of data from the label-rich
projects. This setting is followed in the previous research [24]. [24] proposed joint feature
extraction for which at least a few label-rich data is required.

Cross-project settings: Cross-project setting is essential to accurately measure the
performance of bug localization on unseen data from new projects. The training dataset
contains 100% of data from label-rich projects in this setting. And test dataset from the
project not used in training. This is to replicate the real-world scenario where training
from label-rich data and utilizing the model on the new project with little or no data.

3.2.2 Data collection

The dataset by Ye et al. [67] comprises data collected from publicly available open-source
projects. The dataset is compiled by extracting the bug reports from the Bugzilla issue
trackers and the associated source code file from the Git version control systems of the six
open-source projects.The dataset was published and publicly available [1] thanks to the
authors.

3.3 Experiments Setup

We investigate the effectiveness of different bug localization models that are trained and
evaluated on a single cloud instance with 64 GPU RAM, Intel Xeon Processor (8 X 2.10GHz
), and NVIDIA V100 GPU 32Gb.
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3.3.1 Evaluation and Metrics

We evaluated the baseline models and proposed models in all three experiment settings.
To compare the results of all models, we used Top-K, Mean Average Precision (MAP), and
Mean Reciprocal Rank (MRR) as metrics during the evaluation.

3.3.1.1 Top-K

It is the number of bugs reports for which associated buggy source files are located in the
top k source file, sorted based on the similarity. For Top-1, even if just one of the top
results contains a buggy file relevant to the bug report, then we can confidently say that
the bug is indeed located in that file. The Top-1 Ranked is determined by the percentage
of all such found bugs.

3.3.1.2 MRR

The Reciprocal Rank (RR) is an information retrieval metric that estimates the reciprocal
of the first relevant document’s rank. If a relevant document was obtained at rank 1, is
set to 1, if not, it is set to 0.5 if a relevant document was found at rank 2, and so on. This
measure is referred to as the Mean Reciprocal Rank (MRR) when it is averaged across
queries [12]. MRR is often used to measure the performance of the IR model in which just
one relevant document must be located. Bug localization is an IR task where a bug report
is the query and source code files are the search space MRR is predominately used in bug
localization research for evaluation.

3.3.1.3 MAP

MAP is a metric to verify the performance of the IR model that retrieves many relevant
documents for each query. In bug localization, as there exists more than one related source
code file for each bug report, we employ MAP for evaluation. MAP is unlike MRR, which
only considers one retrieved relevant document. MAP considers all the relevant documents
that are retrieved to provide an accurate measure of performance.

3.3.1.4 Wilcoxon signed-rank test

The Wilcoxon signed-rank test [58] is a powerful tool that can be used to measure the
statistical significance of differences between two models. We applied the Wilcoxon signed-
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rank test at a 95% significance to performance metrics such as Top-k, MRR, or MAP, it
can help us determine which model is best.

3.3.1.5 Cliff’s delta (δ)

Table 3.2: Interpretation of Cliff’s delta value [11]

Cliff’s Delta (|δ|) Effectiveness Level
0.000 ≤ |δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.330 Small
0.330 ≤ |δ| < 0.474 Medium
0.474 ≤ |δ| ≤ 1.000 Large

The Cliff’s delta (δ) [11] is then used to interpret these differences. Table 3.2 shows how
different delta values are interpreted. A |δ| value of 0 indicates that there is no difference
between the two models under consideration. In contrast, a |δ| value of 1 means that one
model outperforms the other model across all datasets in terms of Top-K/MAP/MRR.

As mentioned before, top-k, MRR, and MAP are the three metrics we used to evaluate
the performance of our models and benchmark baseline models. In the next chapter, we
will discuss the results of benchmark baseline models replications.
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Chapter 4

Replication of Benchmark Baselines

In this project, we focus on performing cross-project bug localization by combing state-of-
the-art techniques DL and GNN. We compare the performance of our proposed model with
benchmark baseline models such as rVSM [67], DNNLOC [30], and GloBug [40]. When
comparing the efficacy of different models, it is important to use common benchmark
baselines. In order to ensure a fair comparison, we replicated the benchmark baseline
models using the hyperparameters provided by the authors of each model in their respective
research articles.

• rVSM is an altered version of the TFIDF model that considers the source code’s
token length while calculating the similarity between the source code and bug report.

• DNNLOC utilizes DNN to extract the non-linear relationship between source code
and bug reports, encoded as vectors using revised Vector Space Models.

• GloBug proposed training using a global dataset with a DL+IR model and then
using the trained model for bug localization. According to the authors, applying
the DL+IR model to the vector space will aid in capturing semantic and syntactical
similarities between problem reports and source code.

Among these methods, rVSM is a state-of-the-art tIR-based method. Boht DNNLOC
and Globug are state-of-the-art IR+DL method.
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4.1 rVSM

rVSM first creates a combined vocabulary from all the tokens extracted from source code
and bug reports. Then from the combined vocabulary, both inverse document frequency
(IDF) and term frequency-inverse document frequency (TF-IDF) are combined. The rele-
vance of a token is estimated in the IDF by taking into account the frequency of tokens in
the combined vocabulary.

g(# terms ) =
1

1 + e−N.(# terms )

TFIDF is computed for each token of bug reports and source code through the dot product
between each token frequency in that bug report or source code and the frequency count
of that token in the combined vocabulary.

Similarity = cos(br, sc) =
Vbr ∗ Vsc

(∥Vbr∥) ∗ (∥Vsc∥)
Finally, the similarity between both source code and the bug report is calculated through
the dot product between the cosine similarity cos(br, sc) of the bug report and source code
vectors, and the tokens counts in a source code file g(# terms ).

rV SM Score(br, sc) = g(# terms )× cos(br, sc)

Table 4.1: Comparison between rVSM [67] and our replication of rVSM
Dataset Top 1 Top 5 Top 10 MRR MAP

rVSM
Our Replication

of rVSM
rVSM

Our Replication

of rVSM
rVSM

Our Replication

of rVSM
rVSM

Our Replication

of rVSM
rVSM

Our Replication

of rVSM

AspectJ 20.1 17 47.7 42.6 57 55.8 0.32 0.26 0.22 0.23

Birt 11.1 11.5 24.9 33.6 32.1 47 0.18 0.21 0.14 0.2

Eclipse 26.5 10.9 49.3 30.7 60.1 44.2 0.37 0.23 0.31 0.21

JDT 19.1 15.2 40.2 39.7 51.2 54.1 0.3 0.26 0.23 0.24

SWT 19.3 16.1 38.3 44.1 51.1 57.7 0.28 0.28 0.25 0.27

Tomcat 35.5 32.6 61.8 61.4 71.1 76.8 0.48 0.45 0.43 0.42

mean 21.93 17.22 43.7 42.02 53.77 55.93 0.32 0.28 0.26 0.26

p-Value - >0.05 - >0.05 - >0.05 - >0.05 - >0.05

δ - 0.5 - 0.17 - 0 - 0.44 - 0.11

Improved% rVSM - +24.06 - +3.92 - -3.94 - +13.33 - +0.0

Authors trained and evaluated rVSM on the dataset by Ye et al. [67]. Table 4.1 shows
the comparison between our replication of rVSM and the results from the rVSM research

18



paper. From the table, we can observe that our replication and the original rVSM results
are similar (with p-Value > 0.05 and small effect size δ < 0.2) in term of top-5, top-10,
and map. We are using the publicly available implementation [15] for rVSM because the
official replication package for rVSM has not been provided.

4.2 DNNLOC

Based on the feature combinators, Lam et al. [30] proposed DNNLOC based on DNN.
A feature combinator is a module that takes one or more input layers and produces one
or more output layers. More specifically, a feature combinator combines different types
of inputs into a single feature vector which is useful when working with DNN. And in
DNNLOC, using feature combinators, the authors combine six different input features.
The six features extracted from source code and bug reports are the following:

1. Text Similarity: Tokens from both bug reports and source codes are separated using
whitespace and based on the camel case. Then weights for both bug reports and
source codes tokens are computed using TFIDF. Finally, vectors of bug reports and
source codes are used to calculate the text similarity between source codes and bug
reports.

2. Collaborative Filtering: Collaborative Filtering identifies whether a new bug report
is similar to any existing reports. The score is computed by measuring the textual
similarity between a source code file, the new bug report, and the previous bug
reports associated with the source code.

3. Bug Fixing Recency: Scoring is based on the research [26] that claims developers are
more likely to fix recently closed bugs than closed bugs in the past. So for the source
code associated with recently fixed bugs, the bug fixing recency is 1, whereas the
source code files related to older bug reports have a smaller bug fixing recency score.

4. Bug Fixing Frequency: Bug Fixing frequency is the count of all older bug reports in
which a source code file is associated.

5. Class Name Similarity: The cosine similarity between the classes mentioned in the
bug report and those in the source code file is used as the class name similarity score.

6. Relevance Score: Relevance score is computed using DNN based Autoencoder ar-
chitecture for which bug reports and source code tokens are combined and given as
sequential inputs.
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Table 4.2: Comparison between DNNLOC [30] and our replication of DNNLOC
Dataset Top 1 Top 5 Top 10 MRR MAP

DNNLOC
Our Replication

of DNN
DNNLOC

Our Replication

of DNN
DNNLOC

Our Replication

of DNN
DNNLOC

Our Replication

of DNN
DNNLOC

Our Replication

of DNN

AspectJ 47.8 33.2 71.2 51.6 85 56.6 0.52 0.34 0.32 0.26

Birt 25.2 18.7 42.2 33.6 50.9 47.5 0.28 0.21 0.2 0.19

Eclipse 45.8 33.4 70.5 56.7 78.2 68.5 0.51 0.43 0.41 0.4

JDT 40.3 27.8 65 41.9 74.3 56 0.45 0.28 0.34 0.25

SWT 35.2 29.5 69 59 80.3 69.4 0.45 0.41 0.37 0.38

Tomcat 53.9 32.2 72.9 61.1 80.4 76.6 0.6 0.44 0.52 0.42

mean 41.37 29.13 65.13 50.65 74.85 62.43 0.47 0.35 0.36 0.32

p-Value - <0.05 - <0.05 - <0.05 - <0.05 - >0.05

δ - 0.72 - 0.78 - 0.67 - 0.78 - 0.17

Improved% DNNLOC - +34.72 - +25.01 - +18.09 - +29.27 - +11.76

Authors have modeled bug localization as a classification model. They use DNN to
capture the non-linear relationship between the six features extracted from the source
code and bug report pair. Finally, all the features are given as input to the DNN model,
which outputs a score between 0 and 1, based on which we can classify whether the source
code is associated with the bug report or not. Authors used the dataset by Ye et al. [67]
for training and evaluation of DNNLOC.

Because the official replication package for DNNLOC is not published, we are utilizing
the publicly available implementation [15] for DNNLOC. Table 4.2 shows the comparison
between our replication of DNNLOC and the results from the DNNLOC research paper.
The table shows that our replication and the original DNNLOC results are similar for
Birt, Eclipse, and SWT projects. Additionally, both our replication and original DNNLOC
perform similarly at the map (with p-value > 0.05 and small effect size δ < 0.2).

4.3 Globug

Miryeganeh et al. discuss how using a global dataset can improve the learning of textual
similarities in bug localization in their research Globug [40]. In which they utilize the
dataset outside the current project to better learn the text similarities between source
code and bug reports. The authors have proposed a bug localization model which combines
TFIDF and Doc2Vec. First, the authors create global data by combining all the tokens
from the source code. Then from the global data author computes direct relevancy and
indirect relevancy using both TFIDF and Doc2Vec.

Direct Relevancy: The similarity between a bug report and source code file computed
using the TFIDF model trained on the global source code files. For TFIDF computation,
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the term frequency is calculated based on the current project, and IDF is calculated over
the global dataset. Finally, direct relevancy is calculated by computing the cosine similarity
between source code and bug report pair using the TFIDF model.

Indirect Relevancy: The global dataset was used to train the Doc2Vec model. The
Doc2Vec model is then used to compute the cosine similarity between the current project
bug report and the global dataset bug reports. According to the author, because the
Doc2Vec model was trained on a global source code dataset, the bug report vector created
by Doc2Vec links the bug report to the source code file in the current project.

Table 4.3: Comparison between Globug [30] and our replication of Globug

Metric Globug
Our Replication

of Globug
MRR 0.556 0.447
MAP 0.426 0.396

Finally, the direct relevancy and indirect relevancy scores are combined using a weighted
average for generating source code files related to the bug report. The authors have used the
Bench4BL [33] dataset for the training and testing of Globug for bug localization. Table 4.3
shows the comparison between our replication of Globug and the results from the Globug
research paper. We can see from the table that our Globug replication performs almost
identically to the original Globug on the Bench4BL dataset. We suspect the difference in
the MAP and MRR metric in our replication is due to the project version difference. The
Globug authors have not mentioned the specific version for each projects in the Bench4BL
dataset.

We addressed the working of each benchmark baseline model in this chapter, as well
as the results of our replication of the benchmark models. We’ll go over our approach to
addressing cross-project bug localization in detail in the next chapter.

21



Chapter 5

Methodology

Synatactic Patterns

Bug localization
model

rich label
projects

Project  
specific

embedding

fastText
new

project

Training Adaptive cross-project
bug localization model

Adaptive cross-project bug localization
model on new project

Project  
specific

embedding

AdaBL(+GL)

fastText
AdaBL(+GL) Ranked source code

files

New bug report

Figure 5.1: An process overview of the bug localization based on AdaBL(+GL)

In this thesis, we focused on performing cross-project bug localization through an adap-
tive model, which can be trained with data from label-rich projects and transferred to many
other projects. We then evaluated the model against the benchmark models selected from
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the literature survey. The general methodology involves representing source code in the
same vector space as the bug report and then using DL methods to capture the non-linear
relationships between source code and bug reports illustrated in figure 2.1.

We modeled two cross-project bug localization models. First, we built an adaptive
model for cross-project bug localization (AdaBL) adapted from the research [36] in which
we treated both source code and bug reports as sequential input. In the second model, we
treated the source code as a graph. By utilizing the structured information of source code,
we implemented a combined graph learning with the adaptive model for cross-project bug
localization (AdaBL+GL). We wanted to understand the impact of graph learning on bug
localization by doing this.

5.1 Motivation

There are several different approaches to bug localization, but most of them rely on using
ML/DL models trained on data from a specific codebase. The idea is that these models
will be able to learn common patterns between source code and bug reports, and then for
new bug reports, these models can localize where bugs are in the source code. However,
transferring these models from one codebase to another can be very costly and time-
consuming since they often need to be re-trained using data from the new codebase.

Adaptive models offer a potential solution to this problem. These models are able to
adapt themselves automatically based on differences between two codebases – meaning
they don’t need any retraining data or computing power once they have been deployed.
AdaCS [36] is an adaptive model that achieves cross-project knowledge transfer in code
search. AdaCS extracts transferable features through two learning objectives: identifying
syntactic patterns shared by natural language and programming languages and detecting
variations between programming languages across different codebases.

The software engineering community is still divided about whether adaptive strategies
can be used to improve bug localization. In this project, we intend to adapt AdaCS to
build an adaptive bug localization model.

5.2 Adaptive Cross-project Bug Localization

In this section, we present our proposed approach for bug localization, AdaBL, which
can be trained once and then used to automatically adapt to new projects. AdaBL is
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trained in a way that separates the abstract syntactic patterns from the project-specific
lexical meanings. This ensures that the model can be applied to new projects without any
retraining.

5.2.1 Model Architecture and implementation

Figure 5.2 shows the deep model architecture of AdaBL. AdaBL has four parts:

1. Training an unsupervised word embeddings model to capture project-specific words

2. Creating a similarity matching matrix with each of the tokens of the bug report and
source code pair;

3. Extracting syntactic patterns from the similarity matrix using deep neural networks.

4. Predicts the score for each source code file, and then source code files are ranked
based on the scores.

The details of these four parts are introduced in the following sections.

5.2.1.1 Capturing Project-Specific Words

The unsupervised word embedding training methodology was utilized in order to capture
the project-specific words. In particular, we used fastText [4] to leverage the subword
modeling that is capable of learning the representation of rare project-specific words. There
are many word embedding algorithms out there, but we chose fastText over them because
it is more reliable. fastText uses subword information to learn the word vectors, while other
algorithms use classical methods like words appearance context or counting how often they
appear in a corpus. This means that the words ”results” and “result” from fastText will be
more similar to each other than those from other algorithms as they share some parameters
while training. Additionally, because fastText learns using subword information, it is
better at capturing the meaning of words than other algorithms. We modeled a new word
embedding model for both source projects and target projects for training and testing.
The word embedding model can be trained in an unsupervised manner.
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Figure 5.2: AdaBL model architecture

5.2.1.2 Similarity Matrix

The interactions between bug reports and source code tokens are captured using a lexical
similarity matrix. In the matrix, each entry represents the cosine similarity between the
vector representation of bug report and source code token pair. The first rows of the matrix
contain the Inverse Document Frequency (IDF) value of the source code tokens to express
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the specificity.

5.2.1.3 Extracting Syntactic Patterns

Cross-project syntactic patterns are captured using the LSTM model trained on label-rich
bug reports and source code pairs. Additionally, negative samples were included while
training to differentiate between similar and dissimilar bug reports and source code pairs.
When applying the trained model to a new project, the similarity matrix can be passed as
the input for predicting the similarity score.

5.2.1.4 Transferability to New Projects

The syntactic patterns of a project can be transferred from one project to another, making
the application of AdaBL to a new project relatively easy. Only word embeddings need
to be trained on the new project in an unsupervised manner. Then, the lexical similarity
matrix can be constructed for the bug reports, and source code tokens pair with the word
embedding model. Finally, the pretrained AdaBL can be utilized to score the bug report
and source code pair for which the lexical similarity matrix is input. Based on the score,
the source code files can then be ranked.

5.2.2 Hyperparameter Specifications

We developed AdaBL in Python using the PyTorch [44] library, an open-source deep learn-
ing framework. We build AdaBL with a two-layer LSTM with a hidden dimension of 64,
with a drop rate of 5%. The ADAM optimizer with a learning rate of 0.005 and batch size
of 64 was found to produce minimal training loss. We also experimented with different
token sizes for bug reports and source code (128 and 256, 256 and 512, 354 and 768).
Finally, we observed that the training loss is minimized when the token size is set to 354
and 768, respectively, for bug reports and source code tokens.

5.2.3 Model Training

Bug localization is the task of finding the most likely location in a program where a given
bug exists. In AdaBL, we have implemented this as a classification task by comparing a
bug report with the corresponding source code in the vector space and predicting whether
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they are similar. If they are similar, then the predicted results will be 1; if not, then it will
be 0. So the objective AdaBL is to learn similarities between bug reports and source code
pairs in the vector space. The LSTM models are applied to bug reports and source code
interactions matrix to learn the similarities as shown in figure 5.1. The inputs from LSTM
are then fed into DNN for the final prediction which is 1 or 0.

From the figure 5.1, it is evident that AdaBL follows an adaptive bug localization
workflow in order to improve bug localization. The first step is to use unsupervised learning-
based methods to learn the project-specific words meaning for both the training and target
projects. This helps to capture project-specific semantics. Next, we train a model to learn
the general syntactic patterns using the bug report and source code pairs extracted from
source projects. Finally, for bug localization for new bug reports, we use the trained model
to localize on the target project and which then returns the ranked source code file as the
final result.

5.3 Adaptive Cross-project Bug Localization with

Graph Learning

In this section, we present AdaBL+GL in detail. AdaBL+GL can be trained once on label-
rich projects and applied on new projects without retraining. AdaBL+GL as the name
indicates the model architecture has two parallel layers 1. AdaBL 2. Graph Learning (GL).
AdaBL+GL model follows the same training methodology, hyperparameter as AdaBL.
The primary advantage of AdaBL+GL over AdaBL is its ability to encode the structural
information of source code which helps to capture the inter-relationship between source
code entities on top of AdaBL.

5.3.1 Model Architecture and implementation

Figure 5.3 shows the overall architecture of AdaBL+GL. AdaBL+GL solves cross-project
bug localization by combining the features extracted from the data flow graph (DFG) us-
ing GNN, general syntactic patterns, and project-specific semantics through feature com-
binators. The use of the DNN allows for the combination of these features into a single
representation. Both general syntactic patterns and project-specific semantics follow the
same methodology as AdaBL.
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int max(int a, int b) {
    int x = 0;
    if(a > b){
        x = b;
    }else{
        x = a;
    }
    return x;
}

int max(int a1, int b2) {
    int x3 = 04;
    if(a5 > b6){
        x7 = b8;
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Figure 5.3: Procedure to construct DFG from the source code

5.3.1.1 DFG

As software engineering research advances, more efficient ways of representing source code
are being discovered. Data Flow Graph (DFG) is one such method that has been shown
to be particularly useful for deep learning. DFG is a popular technique in software engi-
neering research [3, 21] particularly in DL based research for source code representation.
Representing code as DFG provides crucial semantic information, which can help you un-
derstand the code better. The data flow graph shows how different parts of the code are
related to each other; if two pieces of code share a variable, they will be connected in the
data flow graph.

DFG supports understanding the semantics of code variables better. The semantic un-
derstanding of code variables is essential in bug localization because different programmers
use their naming conventions instead of standard ones. Take e = maxValue − minValue
as an example, the variable e doesn’t follow the convention and semantic understanding is
hard. However using DFG, it can be understood that the value of node e can be derived
as the computation involving nodes maxValue and minValue, i.e., the value of e is derived
from the minValue and maxValue. Another example from Figure 5.3, in which there are
four variables with the same name (x3, x7, x9, and x11) but with distinct semantics. The
graph in the image depicts the relationship between these variables and enables x11 to focus
on x7 and x9 rather than x3.

We leverage the recently proposed DFG extraction methodology [21] from the given
source code. Figure 5.3 depicts the DFG extraction from a source code. First, to under-
stand the dependencies between variables in a source code, we first generated AST using
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tree-sitter [2]. Then we identify variable sequence by traversing the AST and keeping track
of all variable names encountered. The leaves of the tree represent variables. Variables
are the nodes in a DFG graph, and edges represent the dependencies extracted from the
AST for those particular variables. This means that all of the dependency information
for a particular variable is contained within one edge. For example, if x is set to expr,
then edges from all variables in expr to x are added to the graph. Finally, the DFG of a
source code is made up of all variables as nodes and the dependency relation between the
variables as edges. As shown in the figure 5.4, DFG is one of the inputs to AdaBL+GL,
which supports better source code understanding in DL models.

5.3.1.2 Node Embeddings

After constructing DFG where nodes represent the variable of source codes and edges
are all the dependencies for each variable we transform each node into vectors using fast-
Text. fastText is trained in an unsupervised manner on the project’s source code files as
previously mentioned in the section 5.2.1.1.

5.3.1.3 Graph Neutral Network

A GNN is a great way to learn from graphs because it allows for local neighborhood
information to be aggregated and passed on to the next layer. This helps ensure that
features of neighbors are considered when making decisions, which can lead to better
results. There have been a lot of recent developments around the potential of GNNs for
learning graphs effectively.

For AdaBL+GL we have leveraged the recently proposed graph learning method [6]
which has shown promising results in terms of performance on unseen graph structures.
Our AdaBL+GL GNN architecture consists of three key layers: a graph convolutional
layer (GCL), a graph pooling layer (GPL), and a graph readout layer (GRL). The use of
these layers allows for the efficient learning and representation of graphs.GNN is used in
AdaBL+GL to capture the structural inter-relationship between code tokens in DFG. In
Figure 5.4 the GNN module depicts the full pipeline of graph learning in AdaBL+GL.

The first step in this pipeline is to apply a GCL to input DFG which will learn features
at different scales across the entire graph. The next step is to use GPL which will reduce the
number of connections while preserving important information about nodes and the edges
between them. Finally, we apply GRL that will output fixed-length flatten representation
which is then used in combination with AdaBL for ranking buggy source code files.
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GCL

The feature transformation for GCL follows:

f⃗ (l)(v) = σ

f⃗ (l−1)(v) ·W(l)
1 +

∑
ω∈N(v)

f⃗ (l−1)(ω) ·W(l)
2


According to Morris et al.[42], the weight matrices (W1) and (W2) for each node v

and its neighbor N(v) respectively are different. So in the feature transformation f⃗ (l)(v) ∈
R1×d(l) is the output feature of node v in the lthth layer, σ(·) is the activation function
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and d(l) denotes the dimension. The weight matrices of the lthth layer are denoted by
W(l) ∈ Rd(l−1)×d(l) .

GPL

GPL is used to reduce the size of a graph by removing N − ⌈kN⌉ some of its nodes N .
This can be done in several ways, but the most common approach is to use a pooling ratio
k ∈ (0, 1]. This means that for every N node in the original graph, there will be ⌈kN⌉
nodes after applying the pooling layer. The choice of which nodes to drop is done based
on a projection score against a learnable vector p⃗. The projection scores are also utilized
as gating values to allow gradients to flow into p⃗, thus retained nodes with lower scores
will have less feature retention.

The adjacency matrix that represents a graph is denoted by the A. The computation
of pooled graph, (F′,A′), from an input graph, (F,A) by GPL, is defined as:

y⃗ =
Fp⃗

∥p⃗∥
i⃗ = top−k(y⃗, k) F′ = (F⊙ tanh y⃗)⃗i A′ = Ai⃗,⃗i

The L2 norm is a measure of the ”length” or ”size” of a vector and is represented
by ∥ · ∥. It can be computed by taking the sum of the squares of all the elements in a
vector. top−k picking is an algorithm that selects k elements from a given input vector,
based on some criterion. The top−k indices are determined by broadcasting elementwise
multiplication ⊙ followed by indexing i⃗. This operation allows nodes at specific indices to
be selected from an input vector.

GRL

A graph readout layer is added to flatten the characteristics of all nodes in order to provide
a fixed-length representation for the complete graph. We use global average pooling and
global max pooling to strengthen our representation, like in traditional convolutional neural
networks (CNNs). After each GPL, we do both pooling operations, and then we aggregate
all of the results from each operation at each layer.

5.3.1.4 Feature Combinators

AdaBL+GL has two parallel layers, so we use feature combinators to combine the vectors
outputs of each layer. We gather syntactic and semantic interactions from source code and
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bug reports and features from DFG through graph learning, which we then integrate using
DNN. The combined vector is then used to rank potential buggy files

5.3.1.5 Hyperparameter Specifications

We have developed a deep learning model for bug report-source code interaction called
AdaBL+GL. This model was built using the PyTorch [44] and PyTorch Geometric [17]
frameworks, both open-source deep learning libraries. Our model performs best when using
a two-layer LSTM with a hidden dimension of 64 and a drop rate of 5%. Additionally, we
used GNN (graph neural network) for graph learning on DFG (Data Flow Graph). We
combined the graph representation with the features extracted from bug reports and source
code using a DNN. The ADAM optimizer with a batch size of 64 and a learning rate of
0.005 proved to be most effective for minimizing training loss. Finally, we experimented
with different node sizes for the DFG (512, 768, 1024) and found that 75% of all source
code files had 815 nodes in size while 90% had 1420 nodes. Considering these findings and
GPU limitations and training time requirements, we have fixed 1024 nodes for the DFG,
which gives the best performance for our deep learning model.

5.3.1.6 Model Training

The AdaBL+GL architecture is shown in figure 5.4. AdaBL+GL approach follows the
same adaptive bug localization workflow as shown in the figure 5.1. Only the LSTM-
based syntactic features extraction and GNN models are trained once using the label-rich
projects. The inductive nature of the GNN model makes it generalizable to unseen DFG
structures from another project of the same language. AdaBL+GL has been implemented
as a classification task.

This approach has several advantages over traditional approaches. First, only the word
embeddings models need to train in an unsupervised manner. Second, since both LSTM
and GNN models are trained jointly, they learn to work together, leading to improved
accuracy. Third, this approach is modular and can easily be applied to a new project by
training the word vector model in an unsupervised manner.

In this chapter, we discussed AdaBL and AdaBL+GL in detail regarding the architec-
ture, training methodology, and input features. In the next chapter, we will discuss the
results of our experiments in three different dataset settings and analyze the performance
of our models when compared with the benchmark baselines
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Chapter 6

Results

In this section, we will discuss the results of using AdaBL and AdaBL+GL in conjunction
with various bug localization benchmark models in three different project settings: within
project, partial cross-project, and cross-project. The results include Top-K, MRR, and
MAP metrics scores obtained during model evaluation. We used the Wilcoxon signed-rank
and Cliff’s delta, in addition to the three metrics, to quantify the amount of difference
between models.

6.1 R1. How do different dataset settings impact

the performance of the bug localization model?

The first column in table 6.1 and 6.2 training refers to projects that we used for training
the bug localization model. The word mixed in partial cross-project and cross-project
setting includes all other five projects except the project mentioned in the testing dataset
column. The testing column refers to the project from which the Top-K, MRR, and MAP
scores are obtained by applying the training model. For the comparison of AdaBL+GL
with AdaBL and the three benchmark baselines models, both tables 6.1 and 6.2 list the
p-value and Cliff’s Delta.
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6.1.1 Top K baselines

Table 4.1 shows the comparison of Top K across all the benchmark baseline models along
with AdaBL and AdaBL+GL models in all three settings. The columns Top 1, Top 5,
and Top 10 are obtained from evaluating all the models (AdaBL+GL, AdaBL, DNNLOC,
Globug, rVSM) on the testing, which are trained on the training dataset.

We can observe Globug model performs better in all three settings in terms of Top@k
for k=1, 5, 10. For example, Globug successfully locates 43.5% bugs in Eclipse and 40.7%
in SWT in top-1 in the within-project settings. And on average, Globug locates 32.4%
within the project setting, 27.9% in partial cross-project, and 26.5% in cross-project in
terms of top-1. Similarly, Globug is significantly better in all models for top-1, top-5, and
top-10 in all three settings (with p-Value < 0.05 and large effect size with 0.4 < δ < 0.8 )
except for DNNLOC at top-1 (with p-Value > 0.05 and with small effect size δ ≤ 0.15).

AdaBL+GL is observed to perform better than rVSM (with p-Value < 0.05 and with
large effect size δ > 0.7) and AdaBL (with p-Value < 0.05 and with small to medium
effect size 0.2 < δ ≤ 0.55) in all three settings at top-10. Both DNNLOC and Globug
outperform AdaBL+GL in all three settings at top-1 and top-5. In partial cross-project
and cross-project, both AdaBL+GL outperforms DNNLOC and rVSM in all six projects,
with comparable performance in the top-10. For top-1, top-5, and top-10, AdaBL+GL
demonstrates to perform similar to DNNLOC and rVSM (p-Values > 0.05 and at large
effect size in all three settings.

6.1.2 MRR & MAP Baselines

We compare the performance of AdaBL+GL and AdaBL with DNNLOC, GLobug, and
rVSM, in terms of MRR and MAP. Table 4.2 shows the results. We can observe that
AdaBL+GL performs slightly better than AdaBL (with medium effect size δ = 0.38),
DNNLOC (with small effect size δ = 0.16 at MAP), and rVSM (with large effect size δ >
0.4 at both MRR and MAP) on all six datasets in within project setting.

Globug consistently outperforms all models in all three settings at MRR and MAP.
Globug on average, has a higher 0.45 MRR and 0.42 MAP in all three settings. The
improvement of Globug over DNNLOC is more substantial than the improvement over
AdaBL+GL for MRR and MAP in within the project setting.

It is evident that baseline benchmark models outperformed AdaBL+GL and AdaBL
in the partial cross-project and cross-project settings from the result. Overall, Globug
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Table 6.1: Performance comparison (Top@k, k=1,5,10) of three state-of-the-art methods
(DNNLOC, Globug, rVSM)

Dataset Top 1 Top 5 Top 10

Within Project

Training Testing AdaBL+GL AdaBL DNNLOC Globug rVSM AdaBL+GL AdaBL DNNLOC Globug rVSM AdaBL+GL AdaBL DNNLOC Globug rVSM

AspectJ AspectJ 0.231 0.193 0.325 0.3 0.091 0.509 0.452 0.507 0.582 0.227 0.741 0.663 0.571 0.745 0.355

Birt Birt 0.078 0.054 0.182 0.252 0.136 0.262 0.198 0.326 0.53 0.287 0.409 0.369 0.465 0.668 0.367

Eclipse Eclipse 0.3 0.27 0.336 0.273 0.109 0.576 0.493 0.558 0.525 0.235 0.771 0.687 0.679 0.699 0.307

JDT JDT 0.437 0.381 0.293 0.435 0.171 0.748 0.674 0.406 0.733 0.335 0.802 0.77 0.557 0.848 0.421

SWT SWT 0.137 0.119 0.294 0.278 0.174 0.416 0.321 0.584 0.607 0.34 0.646 0.515 0.687 0.731 0.481

Tomcat Tomcat 0.121 0.109 0.323 0.407 0.308 0.242 0.198 0.605 0.692 0.429 0.571 0.397 0.798 0.791 0.538

mean 0.217 0.188 0.292 0.324 0.165 0.459 0.389 0.498 0.612 0.309 0.657 0.567 0.626 0.747 0.412

p-Value Globug >0.05 <0.05 >0.05 - <0.05 >0.05 <0.05 <0.05 - <0.05 >0.05 <0.05 <0.05 - <0.05

δ Globug 0.472 0.722 0 - 0.778 0.556 0.778 0.556 - 1 0.333 0.722 0.611 - 1

Improved% Globug +39.56 +53.12 +10.39 +0.0 +65.03 +28.57 +44.56 +20.54 +0.0 +65.8 +12.82 +27.4 +17.63 +0.0 +57.81

p-Value AdaBL+GL - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 <0.05

δ AdaBL+GL - 0.222 0.444 0.472 0.167 - 0.278 0.167 0.556 0.5 - 0.389 0.194 0.333 0.833

improved% AdaBL+GL +0.0 +14.32 -29.47 -39.56 +27.23 +0.0 +16.51 -8.15 -28.57 +39.06 +0.0 +14.71 +4.83 -12.82 +45.84

Partial Cross-Project

20 % AspectJ+

80% Mixed
AspectJ 0.125 0.106 0.138 0.261 0.16 0.352 0.314 0.302 0.578 0.31 0.587 0.493 0.396 0.701 0.433

20 % Birt+

80% Mixed
Birt 0.097 0.068 0.122 0.23 0.122 0.328 0.241 0.264 0.53 0.266 0.584 0.473 0.352 0.678 0.349

20 % Eclipse+

80% Mixed
Eclipse 0.082 0.055 0.267 0.214 0.18 0.316 0.284 0.399 0.494 0.335 0.578 0.493 0.471 0.651 0.418

20 % JDT+

80% Mixed
JDT 0.231 0.217 0.175 0.362 0.161 0.533 0.485 0.349 0.684 0.322 0.746 0.692 0.427 0.809 0.411

20 % SWT+

80%Mixed
SWT 0.066 0.032 0.321 0.205 0.163 0.286 0.215 0.507 0.483 0.326 0.537 0.484 0.592 0.657 0.448

20 % Tomcat+

80% Mixed
Tomcat 0.074 0.045 0.332 0.401 0.327 0.315 0.296 0.53 0.728 0.507 0.536 0.485 0.619 0.825 0.599

mean 0.112 0.087 0.226 0.279 0.186 0.355 0.306 0.392 0.583 0.344 0.595 0.52 0.476 0.72 0.443

p-Value Globug <0.05 <0.05 >0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05

δ Globug 0.833 0.889 0.333 - 0.778 0.833 0.944 0.75 - 0.889 0.778 0.833 1 - 1

Improved% Globug +85.42 +104.92 +20.99 +0.0 +40.0 +48.61 +62.32 +39.18 +0.0 +51.56 +19.01 +32.26 +40.8 +0.0 +47.64

p-Value

AdaBL+GL
- <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 <0.05

δ AdaBL+GL - 0.444 0.778 0.833 0.667 - 0.611 0.111 0.833 0.111 - 0.722 0.444 0.778 0.722

improved% AdaBL+GL +0.0 +25.13 -67.46 -85.42 -49.66 +0.0 +14.83 -9.91 -48.61 +3.15 +0.0 +13.45 +22.22 -19.01 +29.29

Cross-Project

100% Mixed AspectJ 0.128 0.113 0.129 0.211 0.17 0.39 0.285 0.312 0.552 0.312 0.629 0.573 0.388 0.732 0.426

100% Mixed Birt 0.047 0.033 0.115 0.198 0.115 0.239 0.198 0.245 0.478 0.253 0.491 0.392 0.332 0.641 0.336

100% Mixed Eclipse 0.049 0.029 0.246 0.256 0.196 0.243 0.195 0.381 0.527 0.348 0.498 0.356 0.455 0.703 0.429

100% Mixed JDT 0.159 0.145 0.166 0.365 0.152 0.422 0.389 0.33 0.691 0.306 0.656 0.574 0.413 0.823 0.397

100% Mixed SWT 0.058 0.036 0.281 0.244 0.161 0.26 0.22 0.465 0.556 0.324 0.495 0.414 0.559 0.726 0.441

100% Mixed Tomcat 0.056 0.031 0.335 0.318 0.326 0.249 0.232 0.543 0.601 0.532 0.519 0.465 0.642 0.742 0.614

mean 0.083 0.064 0.212 0.265 0.187 0.3 0.253 0.379 0.568 0.346 0.548 0.462 0.465 0.728 0.44

p-Value Globug <0.05 <0.05 >0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05

δ Globug 1 1 0.333 - 0.722 1 1 0.889 - 0.889 0.944 1 0.944 - 1

Improved% Globug +104.6 +122.19 +22.22 +0.0 +34.51 +61.75 +76.74 +39.92 +0.0 +48.58 +28.21 +44.71 +44.09 +0.0 +49.32

p-Value AdaBL+GL - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05

δ AdaBL+GL - 0.5 0.833 1 0.833 - 0.556 0.444 1 0.389 - 0.556 0.5 0.944 0.778

improved% AdaBL+GL +0.0 +25.85 -87.46 -104.6 -77.04 +0.0 +17.0 -23.27 -61.75 -14.24 +0.0 +17.03 +16.39 -28.21 +21.86
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Table 6.2: Performance comparison (MRR and MAP) with three state-of-the-art methods
(DNNLOC, Globug, rVSM)

Dataset MRR MAP

Training Testing AdaBL+GL AdaBL DNNLOC Globug rVSM AdaBL+GL AdaBL DNNLOC Globug rVSM

Within Project

AspectJ AspectJ 0.443 0.421 0.339 0.459 0.211 0.406 0.372 0.258 0.419 0.209

Birt Birt 0.217 0.194 0.237 0.401 0.236 0.186 0.158 0.203 0.385 0.219

Eclipse Eclipse 0.469 0.447 0.427 0.451 0.232 0.435 0.413 0.405 0.422 0.212

JDT JDT 0.602 0.592 0.381 0.615 0.282 0.584 0.547 0.334 0.593 0.262

SWT SWT 0.319 0.281 0.413 0.441 0.294 0.289 0.257 0.369 0.411 0.285

Tomcat Tomcat 0.251 0.235 0.456 0.558 0.407 0.228 0.192 0.396 0.502 0.365

mean 0.383 0.362 0.376 0.488 0.277 0.355 0.323 0.328 0.455 0.259

p-Value Globug >0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05

δ Globug 0.389 0.556 0.722 - 0.944 0.444 0.611 0.889 - 1

Improved% Globug +24.11 +29.65 +25.93 +0.0 +55.16 +24.69 +33.93 +32.44 +0.0 +54.9

p-Value AdaBL+GL - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05

δ AdaBL+GL - 0.167 0.056 0.389 0.5 - 0.167 0.167 0.444 0.444

improved% AdaBL+GL +0.0 +5.64 +1.84 -24.11 +32.12 +0.0 +9.44 +7.91 -24.69 +31.27

Partial Cross-Project

20 % AspectJ+

80% Mixed
AspectJ 0.299 0.275 0.247 0.419 0.26 0.259 0.244 0.223 0.391 0.227

20 % Birt+

80% Mixed
Birt 0.251 0.224 0.218 0.395 0.219 0.238 0.207 0.199 0.342 0.203

20 % Eclipse+

80% Mixed
Eclipse 0.257 0.235 0.39 0.365 0.319 0.212 0.208 0.367 0.327 0.296

20 % JDT+

80% Mixed
JDT 0.421 0.394 0.282 0.547 0.27 0.402 0.366 0.258 0.505 0.251

20 % SWT+

80% Mixed
SWT 0.247 0.217 0.427 0.359 0.281 0.188 0.151 0.395 0.334 0.272

20 % Tomcat+

80% Mixed
Tomcat 0.256 0.224 0.457 0.558 0.444 0.194 0.181 0.422 0.514 0.413

mean 0.289 0.262 0.337 0.44 0.299 0.249 0.226 0.311 0.402 0.277

p-Value Globug <0.05 <0.05 >0.05 - <0.05 <0.05 <0.05 >0.05 - <0.05

δ Globug 0.778 0.889 0.444 - 0.778 0.778 0.833 0.389 - 0.778

Improved% Globug +41.43 +50.71 +26.51 +0.0 +38.16 +47.0 +56.05 +25.53 +0.0 +36.82

p-Value AdaBL+GL - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05

δ AdaBL+GL - 0.5 0.194 0.778 0.278 - 0.278 0.389 0.778 0.389

improved% AdaBL+GL +0.0 +9.8 -15.34 -41.43 -3.4 +0.0 +9.68 -22.14 -47 -10.65

Cross-Project

100% Mixed AspectJ 0.338 0.288 0.238 0.397 0.263 0.291 0.268 0.217 0.374 0.23

100% Mixed Birt 0.218 0.174 0.205 0.376 0.21 0.154 0.145 0.191 0.352 0.196

100% Mixed Eclipse 0.193 0.162 0.377 0.465 0.339 0.15 0.133 0.349 0.405 0.31

100% Mixed JDT 0.353 0.322 0.273 0.557 0.261 0.314 0.287 0.249 0.537 0.241

100% Mixed SWT 0.211 0.186 0.39 0.415 0.278 0.173 0.147 0.365 0.418 0.27

100% Mixed Tomcat 0.218 0.175 0.462 0.462 0.451 0.169 0.139 0.437 0.449 0.423

mean 0.255 0.218 0.324 0.445 0.3 0.209 0.186 0.301 0.423 0.278

p-Value Globug <0.05 <0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 - <0.05

δ Globug 1 1 0.694 - 0.833 1 1 0.722 - 0.778

Improved% Globug +54.29 +68.48 +31.47 +0.0 +38.93 +67.72 +77.83 +33.7 +0.0 +41.37

p-Value AdaBL+GL - <0.05 >0.05 >0.05 >0.05 - <0.05 >0.05 >0.05 >0.05

δ AdaBL+GL - 0.556 0.5 1 0.333 - 0.556 0.667 1 0.5

improved% AdaBL+GL +0.0 +15.64 -23.83 -54.29 -16.22 +0.0 +11.65 -36.08 -67.72 -28.34
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outperformed both AdaBL+GL and AdaBL and benchmark models DNNLOC and rVSM
in all three settings at MRR and MAP.

6.2 R2. Does the performance of ML/DL-based

localization for a project vary depending on the

dataset setting?

Many different factors can influence the performance of a bug localization model for a
project. The input (word2vec, hand-engineered features), the training strategy used, and
the dataset setting can all impact how well a model performs. The dataset setting can
also affect how well a bug localization model performs. Suppose two models are trained on
different dataset compositions using different input formats and training strategies but then
applied to similar projects. In that case, they may not perform equally well because each
model has learned unique feathers from the training corpus. There is a lack of research on
how dataset settings influence bug localization models in the software engineering research
community. Both tables 4.1 and 4.2 shows the performance of the bug localization model
for each project under different dataset settings.

We observed that all models performed significantly better in terms of top-1, top-5,
top-10, MRR, and MAP within the project setting. Particularly Globug has a better score
at top-1(with p-Value < 0.05 for both partial cross-project and cross-project and with
a large effect size where δ = 0.5) in all six projects in the within project setting. Even
Globug has 0.48 and 0.45 at MRR and MAP, respectively, in the within project setting,
which is better than MRR and MAP in partial cross-project (with p-Value < 0.05 and
medium effect size) and cross-project setting (with p-Value < 0.05 and small effect size).
Birt is the only project that benefited from the partial cross-project setting in AdaBL+GL,
AdaBL, and Globug models in terms of top-5, top-10, MRR, and MAP. Strangely rVSM
is the only model that performed better under the cross-project setting for three projects
(AspectJ, Eclipse, and Tomcat) in terms of top-5, MRR, and MAP. One reason for the
rVSM performance in the cross-project setting is improved textual similarity learned from
the mixed dataset.

In the next chapter, we will analyze why Globug performs consistently better in parietal
cross-project and cross-project settings.
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Chapter 7

Result Analysis

7.1 Motivation

Deep learning models are increasingly being used in NLP, Software Engineering. How-
ever, these models are often opaque and difficult for humans to understand. This lack of
explainability can lead to unintended consequences of incorrect predictions. From the pre-
vious chapter, it is evident that Globug outperformed AdaBL+GL. In order to analyze the
reason behind the prediction of both Globug and AdaBL+GL, we plan to analyze the bug
report and code pair based on four prediction combinations from Globug and AdaBL+GL
at the Top 5 ranked buggy source code files.

• Match - where both Globug and AdaBL+GL have predicted relevant buggy source
code files for the given bug report

• Mismatch - where both models have retrieved irrelevant source code files for the given
bug report

• Match Mismatch - where Globug has predicted the retrieved source code files as
buggy, and the AdaBL+GL has predicted irrelevant source code files.

• Mismatch Match - the predictions are vice versa to Match Mismatch

Table 7.1 shows the percentage of the relevant files predicted as buggy source code at
each project in the Top 5 and also shows the percentage of four prediction combinations.
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Table 7.1: Comparison between Globug & AdaBL+GL predictions at Top 5
Project Setting Dataset Top 5 Globug & AdaBL+GL

Globug AdaBL+GL Match Mismatch
Match &

Mismatch

Mismatch &

Match

Within Project AspectJ 58.33 51.17 28.7 23.15 29.63 18.52

Birt 52.78 26.94 11.55 37.11 41.24 10.1

Eclipse 52.56 58.51 30.23 22.56 22.33 24.88

JDT 73.67 75.22 58.21 12.08 15.46 14.25

SWT 59.74 42.12 22.82 30.06 36.92 10.2

Tomcat 70.33 25.03 14.29 25.27 56.04 4.4

Average 61.24 46.5 27.63 25.04 33.6 13.73

Partial Cross Project AspectJ 59.09 35.62 13.64 29.55 45.45 11.36

Birt 52.67 33.51 16.39 38.4 36.28 8.94

Eclipse 49.71 31.84 12.79 41.16 36.92 9.13

JDT 66.97 53.53 34.18 21.29 32.78 11.74

SWT 47.33 29.11 9.65 44.32 37.67 8.35

Tomcat 69.91 31.74 14.9 25.79 55.01 4.3

Average 57.61 35.89 16.93 33.42 40.69 8.97

Cross Project AspectJ 55.27 39.13 19.17 31.63 36.1 13.1

Birt 47.03 23.99 7.49 46.91 39.54 6.06

Eclipse 52.57 24.81 7.57 42 45 5.43

JDT 68.81 43.05 26.82 23.66 41.99 7.53

SWT 54.16 26.15 9.75 39.53 44.41 6.31

Tomcat 56.65 25.02 10.52 38.63 46.14 4.72

Average 55.75 30.36 13.55 37.06 42.2 7.19
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From the table 7.1 we can observe that for JDT, both Globug and AdaBL+GL have pre-
dicted relevant source code files for more than 70% of bug reports, with 58% of predictions
agreeing with each other under within project setting. From our manual inspection of JDT
bug reports and source code pairs, we observe that most of the bug reports have the source
code information in terms of source snippets, stack trace, or program-related keywords.
We assume that due to the popularity of the JDT and the end-users being developers, the
bug reports have more source code-related information. And the mismatch prediction in
both models is due to the lack of sufficient information. Most of the bug report contains
platform-specific errors and Java programming language-related bugs. For example, bug
264606 is about the “warning to be displayed to the Java variables without ‘this’ keyword.”
And we can also observe that both Globug and AdaBL+GL performance degrades for par-
tial cross-project and cross-project settings. And we assume that this is related to a lack
of project-specific features, as project-specific information is limited in both settings.

From the 7.1, we can observe that AdaBL+GL has consistently performed for Tomcat at
all three settings when compared to Globug. From our manual inspection of the bug report
and the source code pairs, we can conclude that Globug has performed well due to the
availability of abundant natural information and less source code relation information (code
snippets, stack information .etc). We suspect Globug has higher performance because of its
capability to learn the semantic similarity between bug reports and the source code. And
AdaBL+GL failed to capture the relevant source code files because AdaBL+GL encodes
the cosine similarity of each token of bug report and the source code, and we assume by
doing so, most of the semantic features are lost.

Overall the, for the match, both Globug and AdaBL+GL predict the relevant file when
source-related information such as source code snippets, stack trace, .etc available in the
bug reports. Particularly AdaBL+GL predicts the source code files even with subwords,
and Globug fails to rank the source code files. For example, in the bug report 399408 of
AspectJ, the description has the source-related keyword StackMapAdder and AdaBL+GL
managed to rank the relevant source code file based on the subword “stackMap” presence.
The mismatch predictions in both models often occur for the bug report with bugs that can
only be solved using domain knowledge without lacking sufficient information (description
or stack trace) in the bug report. For example, in the bug report 264606 of JDT, the bug is
because of Java compilation. We believe the models need to capture the domain knowledge
to localize the source code associated with such bugs. Both Globug and AdaBL+GL are
not capable of capturing the domain knowledge.

We observe that the AdaBL+GL capability to source code files based on the subword
match and the false syntactic pattern match is the reason for most mismatch predictions.
For example, bug report 260751 from the AspectJ contains the stack trace information,
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but AdaBL+GL failed to predict the relevant files. We believe the subword-based features,
with more feature weightage, lead to incorrect predictions on further manual inspection.
In the case of bug report 260751, the subword “stringIndex” from the description phrase
“java.lang.StringIndexOutOfBoundsException” leads to an incorrect prediction.

From the table 7.1 we can observe that performance of the AdaBL+GL is decreasing
as the domain-specific data points split decreases, i.e., AdaBL+GL performs well on the
within project followed by partial cross-project and finally cross-project. But Globug, in
all three settings, the prediction is consistently better, and we believe this is due to the
input format, which is the entire vector. Based on these observations, we conclude that
the input to the model, which is a similarity matrix, is the cause of the AdaBL+GL’s poor
performance.
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Chapter 8

Threats to Validity

8.1 Internal Validity

Author bias in the experiments is a threat to internal validity. We’ve gone through our
code for bugs and patched those we found. We use the dataset that Ye et al. proposed
in their research [67], and the dataset was previously used in multiple bug localization
research [71, 64, 63, 65] for benchmarking and evaluation purpose. The data has been
collected and compiled from open-source projects by software engineering researchers, so
the data is valid.

We use the Wilcoxon Signed Rank test [58] and Cliff’s Delta (δ) [11] effect size in
each comparison to ensure results are statistically valid. This means that we can be
confident in the conclusions drawn from our study. The Wilcoxon Signed Rank Test is
a non-parametric test used to compare two related samples. The Cliff’s Delta effect size
measures the difference between the two groups.

The effectiveness of ML/DL models is determined by several factors, including archi-
tecture and training features. The proposed AdaBL+GL model has an LSTM layer, uses
fastText for embedding learning, and employs GNN to learn from DFG. Modifying the
model architecture, such as experimenting with state-of-the-art transformers-based em-
beddings, and utilizing other graphs structures for source code representation, can help
increase the model result.
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8.2 Construct Validity

We leveraged existing benchmarks, toolsets, and libraries to prevent implementation biases
for construct validity. We used the replication package made public by the Globug authors,
and we used the implementations for DNNLOC and rVSM that almost match the results.
Also, to ensure that our measures are valid, we employed top-k, MAP, and MRR benchmark
metrics which are previously used in bug localization research [24, 40, 10].

8.3 External Validity

To address the external validity for evaluation, we use the dataset that Ye et al. proposed
in their research [67]. The data is based on bug reports from bug tracking systems from
actual projects (e.g., Tomcat-Java), so it’s accurate. However, it would be beneficial to be
able to apply the findings to a real-world case study to see if they are limited to open-source
systems or may be applied to other situations.

43



Chapter 9

Conclusion

In our thesis, we have constructed a repository of DL-based bug localization research
publications with 31 papers. We have classified bug localization paper based on the dataset
setting (within project, partial cross-project, and cross-project) category. We have grouped
the research based on DL-based source code representation for each category and have
discussed each research strength and weakness. There is a growing need for reproducible
replication packages in research, particularly in bug localization. So We have collected and
compiled the publicly available replication package list for each paper. We have found that
the replication package availability for DL-based bug localization is few. We have discussed
the need for a reproducible replication package, particularly for bug localization research.

Also inspired by Adaptive Deep Code Search (AdaCS) [36] we have developed Adaptive
Bug Localization (AdaBL) for cross-project bug localization. We have demonstrated that a
data flow graph (DFG) can be employed to represent the source code as a graph, and GNN
can be applied to DFG to learn the structural information in the source code. We also
showed that GNN could be generalized to unknown graph structures due to its inductive
nature, which is essential for cross-project bug localization.

Additionally, we have discussed the need for a pure cross-project bug localization tech-
nique in detail. We have evaluated our proposed models and the benchmark-based baselines
in three different dataset settings for comparison purposes. Our experiments show the tra-
ditional model will not perform well in cross-project settings. Our experiment in different
dataset settings helped us identify a hybrid model with a new training strategy that can
consistently perform better in all three settings.

From our survey for replication packages in DL-based bug localization, we have empha-
sized the need for creating reproducible replication packages and the availability of those
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packages to fellow researchers. We hope that more researchers will adopt this practice in
their own work and help make their research available to everyone.

We have also presented new insights and research directions with the goal of mak-
ing cross-project bug localization more efficient and practical. We hope that this would
encourage more researchers to build DL-based bug localization by leveraging the source
code’s structural information and looking into alternate methods for pure cross-project bug
localization.

9.1 Further Work

• As previously mentioned, we suspect features extracted using the source code and bug
reports interaction matrix are not sufficient for the DL model to capture transferable
features.

– We are interested in applying state-of-the-art deep learning architecture such as
transformers [52] instead of LSTM to learn the syntactic patterns and evaluate
the transfer

– We also want to test cross-project by replacing the interaction matrix with state-
of-the-art models like BERT [14] and testing transfer learning capabilities.

• We utilized fastText for node features in the GNN. We wish to look into further ways
to expand the node features in the future, enriching the node features for improving
the AdaBL+GL model capability to capture the inter-related relationships between
the source code tokens.

• We trained and test our only on the dataset by Ye et al. [67] which contains only
the Java projects. We are interested in applying our models to projects from other
languages. To explore the transfer learning capabilities of bug localization between
cross-project and cross-language.
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APPENDIX

Our Tools, Artifacts, Results

Links to our code, tools & and results are as follows:

• GitHub link to AdaBL & AdaBL+GL

• Globug modified scripts integrated with six benchmark dataset

• rVSM and DNNLOC integrated with six benchmark dataset
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