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Abstract 
As water quality issues become an increasingly global concern, public administrators 

are looking for new ways to reduce water pollution from different sources, including 

agricultural runoff. Best management practices are agri-environmental activities, which 

aim to decrease the impact of agricultural activities on the environment as compared to 

conventional management practices. However, the selection of best management 

practices distribution is not without challenges and therefore an optimization model is 

introduced here to support policy and decision-making and minimize nutrients load 

with the limited available resources. Therefore, this research sets out a multi-objective 

optimization model to optimize phosphorus reductions in the Grand River watershed 

and conduct an economic analysis of best management practices and assess their cost-

effectiveness. A set of optimal solutions is generated from the Pareto-optimal front 

within the constraints of two objective functions designed to achieve a reduction in total 

phosphorus load at minimal costs to support decision making and watershed 

management. With maximum retention of total phosphorus, the optimization results 

show that nutrient management plan is the most cost-effective best management 

practice, while manure storage is the least cost-effective best management practice. 

Regarding the minimization of total phosphorus load, none of the single best 

management practices for cover crops, nutrient management plan, and buffer strips 

could achieve a total phosphorus reduction of greater than 20%. According to the 

optimization of best management practices combinations, up to 32% of the total 

phosphorus load can be reduced at a minimum unit cost of $1,328 per hectare per year. 

The combination of cover crops and nutrient management plan is the most 

recommended best management practices for the entire Grand River watershed. In 

order to improve water quality based on existing best management practices, 

implementing a combination of best management practices is a good option for the 

Grand River Conservation Authority. 
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1 Introduction 

1.1 Background 

Water is the source of life, and water quality is closely interlinked with people’s 

daily lives. However, with the increase of industrial plants and population, increasing 

impurities and waste materials are being created, and these have polluted surface waters 

and groundwater aquifers, attracting considerable attention. Water quality is the 

reflection and reaction of water composition to all inputs and processes (Krenkel, 2012). 

If the waters are changed in condition or composition directly or indirectly and become 

unsuitable, or less suitable for the functions or purpose in their natural state due to 

human activity, the World Health Organization (WHO) may evaluate them as polluted 

(WHO, 2004). Human-caused water problems, such as eutrophication, aquatic toxicity, 

and drinking water contamination are occurring around the world. Nutrients, 

particularly nitrogen and phosphorus, have been considered to be significant threats to 

coastal waters health (Andersen et al., 2004). Due to increased human activities, mainly 

from domestic sewage discharges, agriculture and urban development, the nutrient level 

of many different water bodies has been accelerated in the last few decades (Mainstone 

& Parr, 2002).  

Increasing levels of nitrogen and phosphorus degrade aquatic ecosystems and 

change the ecological structure of water bodies (Watson et al., 2016). In addition, water 

quality problems also cause various economic burdens on society such as the increasing 

costs of water treatment and the reduced utility of water to humans. Massive 

cyanobacteria (blue green algae) blooms, which can produce cyanotoxin, could threaten 

human health and cause high economic costs for water treatment facilities (Wolf & 

Klaiber, 2017a). In addition to public health risks, toxin residuals in aquaculture can 

affect the quality of aquatic food, also resulting in regional economic losses (Chislock 

et al., 2013). Other common economic losses associated with eutrophication are losses 

in waterfront properties, commercial fisheries and tourism (Withers et al., 2014). 

Recreational benefits, especially swimming, boating and fishing, are reduced due to 

water quality degradation (Wolf & Klaiber, 2017b). 

Currently, agriculture is considered as a leading driver of water contamination in 

many areas around the world (Krug, 1993; Agrawal, 1999; Daniel et al., 1998; 
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Arheimer et al., 2004; Moss, 2008; Withers et al., 2014). Compared with industrial 

pollution, agricultural water pollution does not have a single point source where 

individual behaviors can be easily measured and monitored. The nutrients such as 

nitrogen and phosphorus are washed out by precipitation from the topsoil and get 

diffused into various water channels and fields. To locate the origin of these nutrients 

is difficult and costly, and this is called a non-point source (NPS) emission problem. 

Intensive agricultural practices, such as tillage, grazing, and extensive usage of 

pesticides and fertilizers, are significant contributors to NPS pollution. Farmers apply 

high nutrients in the form of sludge, chemical fertilizers, and manure through farming 

activities. These nutrients can be washed into aquatic ecosystems, resulting in water 

eutrophication.  

As water quality issues become an increasingly global concern, public 

administrators are looking for new ways to reduce water pollution from different 

sources, including agricultural runoff. Located at the border of the United States and 

Canada, the Great Lakes contain 20% of the world's fresh water and are an invaluable 

resource for the economic and cultural development of their surrounding regions. 

However, eutrophication in the Great Lakes harms local water supplies, limits 

recreational opportunities, and poses a threat to public health (Bejankiwar et al., 2013).  

Since NPS—mainly from agriculture activities—are typically the major sources of 

nutrient pollution reaching water, the International Joint Commission (IJC) identified 

the need to carry out agricultural best management practices (BMPs) to meet reduction 

targets and sustain the Great Lakes ecosystem (IJC, 2014; Scavia et al., 2017). BMPs 

are agri-environmental practices designed to decrease the impact of agricultural 

activities on the environment as compared to conventional management practices. The 

US Environmental Protection Agency (USEPA) defined BMPs as alternative 

management practices to reduce environmental impacts, and a schedule of activities to 

enhance conservation procedures (USEPA, 1998). Agriculture and Agri-Food Canada 

(2018) have also defined BMPs as farming practices designed to minimize their 

negative impacts on the environment. Although BMPs have been implemented around 

the Great Lakes to protect water quality, the effectiveness of BMPs is affected by 

different factors, such as climates change and farmers’ behaviour (Wilson et al., 2018; 

Bosch et al., 2014). To better improve water quality and achieve nutrient reduction 

targets, it is critical to apply optimization models to evaluate the cost-effectiveness of 
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BMPs implementation to support policy implementation and decision-making in the 

Great Lakes. 

1.2 Objectives 

One of the important goals of applying BMPs is to reduce agriculture-caused 

environmental impacts on both ground and surface water quality. On the Canadian side, 

the Grand River is the largest watershed draining into Lake Erie, the most polluted 

Great Lake, accounts for the majority of the total phosphorus loading into the eastern 

basin of Lake Erie (Loomer & Cooke, 2011). The Grand River Conservation Authority 

(GRCA), a water and natural resource management organization that works with 

provincial and federal government, municipalities, and landowners to implement 

programs that improve water quality, maintain water supply, and protect aquatic 

ecosystems, has implemented a variety of BMPs to improve and protect water quality 

in the agricultural landscape of the Grand River watershed (Liu et al., 2015; GRWMP, 

2014). According to the primary agricultural practices, local climate conditions, and 

pollution characteristics, different BMPs suites have been adopted in different 

agricultural areas (Macrae et al., 2021). Examples of BMPs that have been developed 

for Canadian agriculture include, nutrient or fertilizer management, cover crops, buffer 

strips, manure storage, cropland retirement, erosion control structures, no-tillage, and 

livestock restriction (AAFC, 2019). The benefit of focusing on BMPs is that their 

adoption can be easily monitored. 

Although it is easy to monitor the effectiveness of BMPs, the costs are not as easily 

understood. In the Grand River watershed, past research has been done assessing BMPs’ 

effectiveness; however, to my knowledge, no one has measured the economic costs of 

BMPs in this area. In addition to assessing the effectiveness of BMPs, limited 

knowledge on identifying cost-effective solutions for reducing NPS pollution in the 

Grand River watershed is deemed worthy of research. Therefore, this research sets out 

a multi-objective optimization model to optimize phosphorus reductions in the Grand 

River watershed and conduct an economic analysis of BMPs and assess their cost-

effectiveness. The overall objective of this study is to investigate the cost-effectiveness 

of BMPs implementation in the Grand River watershed, as well as to support effective 

decision-making in this area. Additionally, this study aims to answer the following 

questions: 
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i. How cost-effective are BMPs implemented in the Grand River watershed? 

ii. How to make existing BMPs more cost-effective to achieve the nutrient 

reduction target in the Grand River watershed? 

1.3 Thesis Structure 

This thesis first introduces the background and research objectives in Chapter 1. 

Then, Chapter 2 summarizes the literature of past studies on cost-effectiveness analysis 

(CEA) of BMPs and reviews existing studies of BMPs optimization. Chapter 3 

describes the study area, data preparation, and proposed optimization model. The 

optimization results are concluded in the Chapter 4, and conclusions are presented in 

the last chapter. 
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2 Literature Review 

2.1 Description of Best Management Practices 

BMPs are agricultural pollution prevention measures designed to minimize the 

impact of agricultural activities on water bodies without sacrificing economic 

productivity. Numerous BMPs have been implemented across North America. As 

awareness of NPS contamination has grown since the 1960s, the Farm Safety Act of 

1985 mandated BMPs specifically for the treatment of agricultural water contaminants 

in the US (Logan, 1993). Initially, voluntary adoption and nonfunded BMPs—such as 

conservation tillage and livestock waste management—were implemented at the state 

and national level in US but with little effect (Herdendorf, 1983). In 1987, a national 

program was established in Section 319 of the Clean Water Act to fund the 

implementation of BMPs to control NPS pollution (Copeland, 2016). In order to protect 

water quality and soil health, the Government of Canada provides farmers with funds 

to encourage implementing BMPs under the Farm Stewardship Program (Agriculture 

and Agri-Food Canada, 2018). Structural and non-structural BMPs are two types of 

common BMPs (Prokopy et al., 2008). Structural BMPs are permanent and stationary 

BMPs implemented to reduce pollutants discharged into water, such as buffer strips, 

manure storage, and retention pound (USEPA, 2013). Non-structural BMPs incorporate 

existing agricultural landscapes into the practice in order to manage pollutants at the 

source, such as cover crops, nutrient management plan (NMP), and conservation tillage 

(USEPA, 2013). 

In an effort to improve surface and groundwater quality, the GRCA delivered the 

Rural Water Quality Program (RWQP) in 1988 to protect water quality in the Grand 

River watershed. (Liu et al., 2015; GRWMP, 2014). Various BMPs have been 

introduced to minimize the transfer of nutrient in this program, and the government has 

provided financial incentives for BMPs implementation, including an annual incentive 

for individual BMP projects or a grant to cost share a project implementation. The 

benefits of BMPs implementation involve economic expansion, development of 

sustainable agriculture, improved recreational opportunities, and a healthy aquatic 

ecosystem (Sharpley et al., 2006). This research focuses on six types of BMPs: cover 

crops, NMP, buffer strips, manure storage, milkhouse waste management, and livestock 

access restriction. Cover crops aim to reduce watercourse erosion, retain nutrients, and 
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protect soil health, rather than realizing personal cash value by growing crops. Under 

RWQP (2014), farmers who implement cover crop projects can receive a performance 

incentive per acre, up to a maximum of 30 acres per applicant. NMP is a written plan 

to manage nutrients and prevent water contamination from manure and nutrient 

application by addressing nutrient sources and all manure produced on the farm through 

nutrient management software. Up to 50% of the cost-share is available for each project. 

Buffer strips protect water quality by creating permanent vegetative buffers along the 

watercourses to intercept runoff, and applicants receive a 75% cost-share and annual 

performance incentives per acre for up to three years. Manure storage and milkhouse 

waste management are similar BMPs that collect livestock manure and milkhouse 

waste in storage tanks to eliminate the contamination in the water, each project could 

receive a 50% cost-share of implementation. The detailed calculation of each BMP cost 

is described in Chapter 3. 

2.2 Cost-Effectiveness Analysis 

Past research has been done evaluating the effectiveness of BMPs in Canada (e.g., 

Rousseau et al., 2013; Stang et al., 2016; Crossman et al., 2016; Hanief & Laursen, 

2019); nevertheless, limited research has measured the economic costs of BMPs (Yang 

et al., 2013). CEA, as an economic analysis tool, aims to identify the lowest-cost 

measure taken in a water eutrophication region to achieve a specific outcome, typically 

a policy objective. Over the past few decades, various methodologies that integrate 

hydrologic and economic models have been developed to evaluate the cost-

effectiveness of BMPs. A range of methods—such as optimization models (Cools et al., 

2011), regression models (Ripa et al., 2006), linear programming (Fröschl et al., 2008), 

and bio-economic modeling (Semaan et al., 2007)—are applied to assess the costs and 

effects of nutrient abatement policies in cost-effectiveness studies (Balana et al., 2011).  

Different purposes and study areas explain and are responsible for the differences 

and complexity levels of the models employed to evaluate the cost-effectiveness of 

nutrient reduction measures. With regard to optimization models, in most cases, linear 

optimization models are employed. For example, in the Grote Nete River basin in 

Belgium, Cools et al. (2011) applied a simple optimization model to rank nitrogen 

abatement measures. Fröschl et al. (2008) used a linear optimization model to analyze 

the cost-effectiveness of nutrient reduction measures to minimize the nutrient load of 
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water entering the Black Sea. Although linear optimization models are popular in many 

studies because of their ease of use, their inability to incorporate uncertainty and 

nonlinearity is a key drawback. (Balana et al., 2011). Similarly, due to the nonlinear 

nature of costs and effectiveness, nonlinear optimization programming has been widely 

practiced in CEA through integrating economic and simulation models in recent years. 

To better improve nonlinear optimization algorithms in BMPs placement and selection, 

Sebti & Bennis (2016) used simulated annealing (SA), linear programming, and a 

nonlinear genetic algorithm (GA) on a combined sewer. After modification, BMPs 

placement solutions of GA and SA are much cheaper than solutions obtained from 

linear programming. Liu et al. (2016b) applied a nonlinear optimization algorithm 

(AMALGAM) to help decision maker optimally select and implement BMPs in central 

Indiana, USA. The nondominated sorting genetic algorithm (NSGA-II), a widely used 

nonlinear optimization model, combined with a hydrological model, has been applied 

in different countries to evaluate the cost-effectiveness of BMPs. For example, 

Maringanti et al. (2011) used a BMP tool and NSGA-II to evaluate the right 

combination of BMPs to achieve the maximum pollutant reduction at the lowest cost in 

the Wildcat Watershed in north-central Indiana, USA. Zare et al. (2012) applied the 

stormwater management model and NSGA-II to derive a Pareto-optimal front, which 

includes the tradeoff between the minimization of BMPs total costs, runoff quantity 

minimization, and runoff quality maximization in Tehran, Iran. Noor et al. (2017) used 

the SWAT coupled with NSGA-II to analyze cost-effectiveness of BMPs in sediment 

yield reduction in the Mehran watershed, Iran. Geng et al. (2019) combined NSGA-II 

and SWAT to derive the optimal combination of BMPs under the conditions of 

achieving the maximum pollutant reduction and minimum total costs input in Miyun 

Reservior, China.  

In addition to optimization models, other methods have also been used to evaluate 

the BMPs’ cost-effectiveness. To evaluate the impacts of different policies on nitrate 

leaching reduction, Semaan et al. (2007) applied bioeconomic modeling approaches, 

including multi-objective programming models and agronomic simulation models, to 

assess the costs of these measures in southern Italy. Fezzi et al. (2010) examined 

regression models to assess the costs of agricultural practices in water framework 

directive to predict such costs for any known land use pattern area. Ripa et al. (2006) 

combined a field simulation model with a regression model to evaluate phosphorus 

reduction in different areas with and without BMPs implementation in Italy. To explore 
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the conditions for cost minimization, Iho (2004) developed a numerical model to 

provide a cost-effective solution for NPS pollution in southwestern Finland. In 

Denmark, Schou et al. (2000) integrated the agriculture sector by applying geographic 

information system (GIS)-based spatial disaggregation, a partial equilibrium model, 

farm account statistics, and a nitrate loading model and then analyzed nitrogen policies 

according to their effects on nitrate leaching and farmers’ revenue. Dai et al. (2018) 

established a Soil and Water Assessment Tool (SWAT)-based fuzzy credibility chance-

constrained programming model to simulate NPS pollution and optimize BMPs in 

China. Although each of these different methods can analyze the cost-effectiveness of 

abatement policies, a comparison of the different methods used in these studies also 

reveals the methodological limitations of CEA. For example, Balana et al. (2011) 

indicated that most studies only focused on the most cost-effectiveness measures, which 

ignored the co-benefits of the joint measures. Therefore, in real-world research, 

appropriate methodologies and BMPs selection should be improved.  

In Canada, one of the important goals of applying BMPs is to reduce the 

agriculture-caused environmental impacts on both ground and surface water quality; 

therefore, a cost-effectiveness analysis is necessary to evaluate BMPs performance. In 

Southern Manitoba, a multi-objective genetic algorithm (MOGA) was introduced to 

achieve cost-effective BMPs placement (Wu et al., 2018). The findings stated that the 

spatial optimization method of BMPs can achieve a greater reduction result of surface 

water compared with conventional methods, and similar studies can get valuable 

references from the current results. Sebti et al. (2016) used linear optimization 

programming to minimize the total costs of BMPs placement in the Greater Montreal 

region, and the results indicated the feasibility of implementing BMPs at minimal costs 

to achieve the goal of ground water quality control. Shao et al. (2017) created a decision 

support system that integrates a SWAT model, an optimization model, and a farm 

economic model to evaluate the BMPs’ cost-effectiveness in Gully Creek watershed in 

southern Ontario, Canada. In addition to assessing the cost-effectiveness of BMPs, GIS-

based optimization algorithms can also examine the types and distribution of BMPs 

under the corresponding budget constraints and environmental reduction targets. Pyo et 

al. (2017) used a multi-objective NSGA combined with SWAT to minimize total 

phosphorus in Lake Erie; the optimization results showed a preference selection for 

single or a maximum of two BMPs in the given subwatersheds because of the high 

acceptance of these BMPs by stakeholders. To restore lake’s ecological health and 
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model phosphorus reduction targets, Weiss et al. (2018) used a GA to optimize the 

application of BMPs in Lake Simcoe, Ontario. Since the optimization model is 

constrained to be the least costly and most beneficial to phosphorus reduction, an 

optimized spatial BMPs distribution can help conservation authorities select optimal 

BMPs within the watershed. Overall, the application of optimization models to assess 

the cost-effectiveness of BMPs in Canadian watersheds shows good performance and 

provides references to future studies. 

In the Grand River watershed, watershed-scale water quality models are widely 

applied to evaluate the effectiveness of BMPs. Liu et al. (2016) applied a SWAT model 

to assess the potential effects of BMPs in the Grand River watershed and indicated that 

NMP and wetland restoration are more effective in reducing nutrients levels. Based on 

the application of SWAT model, Hanief and Laursen (2019) noted that bank 

stabilization is the most effective BMP to reduce sediments and phosphorus. Aside from 

the SWAT model, Das et al. (2008) used AnnAGNPS to simulate the sediment yield 

and hydrology from NPS pollution in the upper Grand River watershed. Singh et al. 

(2012) applied the CANWET model for hydrologic simulation in the Grand River 

watershed. However, compared with effectiveness analysis, research on cost analysis 

of Grand River basin is limited. Yang et al. (2011) evaluated three BMPs in Fairchild 

Creek, located in the lower Grand River watershed, and concluded that buffer strips are 

the most cost-effective measure. Liu et al. (2013) conducted a multi-objective 

optimization model together with a SWAT model to evaluate buffer strips, conservation 

tillage, and fertilizer reduction in the Fairchild Creek, and the results showed that buffer 

strips constitute the most cost-effective BMP for reducing total phosphorus. However, 

there is no research on the BMPs’ cost-effectiveness in the entire Grand River 

watershed. Accordingly, my research will integrate hydrologic model with economic 

analysis, including a nonlinear optimization model, to evaluate BMPs for future 

decision support. 

2.3 Multi-Objective Optimization Model 

The selection and placement of BMPs are restricted by different factors, including 

cost, climate, land use. (Maringanti et al., 2011). Generally, owing to limited budgets, 

BMP implementation plans need to take maximum pollution reduction and minimal 

financial costs into account. Three optimization techniques can help to attain this goal. 



 10 

 

The first approach assesses the relative pollutant index and costs individually by setting 

a fixed number of scenarios, such as particular land use type (Guo et al., 2008; 

Hundecha & Bardossy, 2004). The comparison between the results of different BMP 

scenarios in a limited number can lead to the final solution. However, since this 

approach is dependent on the managers’ experience, the results are not sufficiently 

accurate, although the approach is straightforward to practice (Qi et al., 2020). 

Therefore, this type of solution may not be cost-effective enough to achieve the 

reduction target in the watershed (Deb et al., 1999). The second technique integrates 

economic factors and environmental goals into one objective function, such as GA 

(Kaini et al., 2012; Qi et al., 2008). GA is an evolutionary-biology-mimicking technique 

to solve nonlinear or non-differentiable optimization problems. A single optimal 

solution can be attained through the combination of the watershed model and 

optimization algorithm. This technique tends to be more objective than the previous 

one while requiring more time, as each simulation requires the necessary model runtime 

for each population (Qi et al., 2020). The last technique conducts a selection across a 

set of solutions by combining a distributed watershed model with a multi-objective 

optimization algorithm, such as MOGA. This method shares similarities with the 

second one, but it operates between conflicting objective functions and provides a series 

of distinct tradeoff between BMPs (Qi et al., 2020). 

The objective of this study is to optimize phosphorus reduction at minimal costs; 

therefore, a MOGA is required to visualize the tradeoff between the two objective 

functions during the optimization process. The nondominated sorting genetic algorithm 

(NSGA-II), as a widely accepted multi-objective optimization model, is well-suited in 

this research to optimize economic costs and hydrologic benefits in BMPs selection and 

placement (Konak et al., 2006; Maringanti et al., 2011). According to Deb et al. (2002), 

NSGA-II is an improvement of the conventional GA that can search a large space of 

objective functions and variables and save more time in model operation. Except for 

the traditional GA procedure of selection, crossover, and mutation, nondominated 

sorting and the elitist principle are two essential features adopted by NSGA-II. Since 

each generation (simulation) has a group of optimal solutions that can be compared 

with the population size, which can enter to the next generation (Maringanti et al., 2009), 

this non-dominant solution is called the elite set. A population of elites has the 

opportunity to be taken to the next generation with and after each generation, a small 

part of the generation will be replaced by individuals from the elite group. Moreover, 
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NSGA-II is one of the most well-accepted optimization techniques that provides an 

optimal tradeoff curve between economic and multiple environmental objectives in 

watershed analysis. Normally, NSGA-II generates the Pareto-optimal front that is 

convex to the origin under the minimization condition. The better the solution generated, 

the closer the front gets toward the origin. In NSGA-II, elitist principles help to realize 

greater convergence (Deb et al., 2002). Although, multi-objective optimization models 

coupled with hydrological models are popular in CEA of BMPs, to my knowledge, 

limited research (Liu et al., 2013) has applied this methodology in the Grand River 

watershed. The optimization results will provide decision-makers with a more intuitive 

analysis to facilitate better decision making. A detailed description of the procedure of 

NSGA-II can be found in Chapter 3. 
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3 Materials and Methodologies 

3.1 Case Study Area 

The Grand River watershed is the largest watershed in south-central Ontario, with 

a drainage area of 6,800 square kilometers (Figure 3-1). As the largest tributary of Lake 

Erie, the Grand River runs 310 kilometers from the Dufferin Highlands to Lake Erie at 

Port Maitland, with an elevation difference of 351 meters (GRWMP, 2013). Because 

the Grand River Basin is located in a landscape formed during the last glacial period, it 

has a high degree of variability in its soils and topography. The watershed includes two 

First Nations territories and 39 municipalities, as well as four major tributaries, 

including the Eramosa River, the Speed River, the Nith River, and the Conestogo River 

Although 90% of the watershed is considered rural, the central portion of the watershed 

is highly urbanized and contains the fastest-growing areas, including the cities of 

Cambridge, Guelph, Kitchener, Waterloo, and Brantford (Loomer & Cooke, 2011). 

According to Irvine (2018), approximately 994,000 people receive drinking water from 

municipal water systems, which is projected to reach 1.44 million by 2024, and there 

are 30 municipal wastewater treatment plants (WWTPs) in the watershed that discharge 

treated effluent into the river.  

With the rapid growth of population and urbanization, the Grand River watershed 

is facing a pressure on the existing water supply and a greater risk of water 

contamination. The growing population requires a reliable quantity and quality water 

supply to support communities and efficient wastewater services to treat wastewater 

discharged into the river without harming the natural environment. It is therefore 

imperative to upgrade municipal wastewater treatment systems and call on people to 

conserve water. In addition, intensive agricultural production and climate change are 

two other major pressures affecting water resources in the watershed (SOWR, 2020). 

Water supply for crop irrigation and livestock production is necessary; however, the 

runoff from the agricultural landscape can cause water quality contamination. 

Meanwhile, climate change affects the amount and timing of precipitation, which in 

turn lead to changes in flow condition. Therefore, it is necessary and urgent to identify 

treatment practices to combat water pollution based on topography, climate, and 

different types of agricultural activities. 
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The Grand River watershed is divided into three distinct areas by 

geomorphological description: the upper till plain, the central gravel moraine, and the 

lower clay plain. The upper till plain is located in the northwestern part of the Grand 

River watershed, with varying terrain and low permeability (LESPRT, 2008). Due to 

the soil type, which is rich in salt and clay, the upper region is poorly drained; as a result, 

artificial drainage is adopted in this area, which makes this area a highly productive 

agricultural area (GRWMP, 2014). The central gravel moraine is located in the 

southwestern part of the watershed and is highly varying in elevation, consisting of a 

series of gravels and moraines (LESPRT, 2008). The soils of some hilly areas are well 

drained and rich and are intensively used for agricultural production (GRWMP, 2013). 

According to the distribution of livestock density and fertilizer use, the upper and 

central regions are the most intensive agricultural production areas, which results in a 

significant portion of the phosphorus load in water bodies (GRWMP, 2013). In addition, 

the central region covers major urbanized areas and WWTPs, which exacerbates water 

degradation in this area (Loomer & Cooke, 2011). For example, wastewater discharges 

from large Kitchener-Waterloo WWTPs account for 70% of the total phosphorus in the 

Figure 3-1 Map of major tributaries in the Grand River watershed. Data Source: GRCA, 2012. 
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upper-central region during the summer low flows (GRWMP, 2013). The lower clay 

plain is located in the southeastern part of the watershed and is characterized by heavy 

clay soils (LESPRT, 2008). Phosphorus transport in the Grand River watershed is 

primarily in the dissolved form from NPS via overland runoff (GRWMP, 2014). Due to 

poor drainage capacity, high levels of runoff from the lower region carry phosphorus-

laden particles from upstream and discharge into Lake Erie. Land use in this region is 

predominately for soybean and corn production and livestock pasture (GRWMP, 2013). 

During high spring flows, agricultural NPS pollution accounts for 90% of the total 

phosphorus load in the entire watershed as a result of snowmelt and heavy rains 

(GRWMP, 2013). According to the Grand River Watershed Management Plan (2019), 

total phosphorus concentration levels are five times higher in the spring than in the 

summer, indicating that agricultural NPS pollution is crucial in the degradation of water 

bodies in the Grand River watershed.  

The Grand River watershed is one of the most productive agricultural zones in 

Canada (GRWMP, 2014). The Grand River is also the largest tributary of Lake Erie, 

and it accounts for 54% of the total phosphorus load in the eastern basin of Lake Erie 

(ECCC & USEPA, 2018). Under the Canada-Ontario Lake Erie Action Plan, a target of 

a further 40% reduction in phosphorus levels (from 2008 levels) target was adopted for 

the central and western basin of Lake Erie (ECCC, 2018). However, with the lack of 

scientific certainty, there are no specific phosphorus load reduction objectives for the 

eastern basin of the Lake Erie and Grand River watershed (SOWR, 2020; ECCC 2018). 

A preventative approach will be taken by the government of Ontario to addressing 

phosphorus loading to the eastern basin of Lake Erie until a target with sufficient 

scientific evidence is established (ECCC, 2018). Eutrophication in the Grand River 

watershed is primarily caused by the growth of aquatic primary producers (e.g., algae 

and plants). Urbanization, point source discharges, and agricultural land use, are the 

three main factors affecting water pollution in the watershed. Agricultural activities are 

the largest contributor to water contamination, as 61% of the land in the watershed is 

used for agricultural production (SOWR, 2020). Agricultural production in the 

watershed can be roughly divided into crop production and livestock production 

(GRWMP, 2014). Farmers apply large amounts of nutrients to the land during their 

farming activities, and these nutrients can be washed into aquatic ecosystems, resulting 

in water eutrophication. Nutrients are necessary for the growth of plants and animals, 

but excessive amounts of nutrients that enter water bodies can damage aquatic 
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ecosystems and change the ecological structure of water bodies (Watson et al., 2016). 

For this reason, agricultural BMPs are the most effective measures to control nutrients 

emissions from the NPS. GRCA continues to promote nutrient management through 

RWQP, and over 6,000 projects have been implemented in the agricultural landscape 

since 1999 (GRWMP, 2019).  

3.2 Data Description 

Data used in this research can be divided into three types: costs of BMPs, 

kilograms of total phosphorus retained on the land, and kilograms of total phosphorus 

load in the watershed. The first two types of data are provided by GRCA, and the last 

type of data is simulated by the SWAT model, which was calibrated and validated over 

a 30-year period by Dr. Rute Pinto of the Ecohydrology Group in the Department of 

Earth and Environmental Sciences at the University of Waterloo. Since precipitation 

and temperature changes over the past 30 years were included in the calibration of 

SWAT, the results of the study also partially capture the effects of climate change on 

hydrologic flow and nutrient runoff in SWAT. Both costs and total phosphorus data of 

BMPs are obtained from RWQP, with data covering 4,234 projects from Aug 1998 to 

Jun 2017, including eight different types of BMPs. The RWQP is funded by municipal 

governments, including Waterloo Region, Guelph, Brantford, Brant County, Oxford 

County, and Wellington County, and is intended to promote BMPs implementation and 

provide financial assistance to farmers for adopting BMPs to improve water quality 

(GRWMP, 2014). This research addresses six types of BMPs in RWQP: cover crops, 

NMP, buffer strips, manure storage, milkhouse waste management, and livestock access 

restriction. Due to the missing information of location and phosphorus retention data of 

BMPs, only data of 1,685 projects are used in this research; the percentage of each type 

of BMP is represented in Figure 3-2. Manure storage, buffer strips, and NMP accounts 

for a similar share, a total of 65%, followed closely by livestock access restriction and 

cover crops. Milkhouse waste management accounts for the smallest share, less that 

10%. 
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In RWQP, the costs of BMPs include the actual costs of projects and the grant paid 

to farmers for specific projects. Grant payments include cost-sharing, which is a partial 

reimbursement for the costs of BMPs implementation, and annual incentive payments, 

which are compensation payments for the annual loss of income due to BMPs 

implementation. The amount of annual phosphorus kept on the land for each BMP is 

calculated by the GRCA, and this amount is also related to the scale of the project 

implementation. Since there is no specific project size for manure storage, milkhouse 

waste management, and livestock access restriction, we assume the same size for each 

type of BMP. For example, we assume that manure and milkhouse waste each comprise 

half of the storage tank; therefore, the size of the project is equivalent to half of the 

storage area, which is 39.05 hectares. For livestock access restriction, the size of each 

project equals the total fence length within the entire watershed (152,000 m) divided by 

the total number of projects (265), multiplied by the minimum distance from the bank 

(3 m) yielding an average size of 0.172 ha per project. The kilograms of total 

phosphorus load in the watershed are simulated by the SWAT model. Due to the data 

limitations, three BMPs scenarios (cover crops, buffer strips, NMP) are selected in the 

SWAT to assess environmental effectiveness. SWAT output includes baseline for total 

phosphorus loading, total phosphorus loading for three single BMPs, and total 

phosphorus loading for four combinations of BMPs. 

Cover Crops
12%

Nutrient 
Management 

Plan
21%

Livestock 
Access 

Restriction
16%

Milkhouse 
Waste 

Management
7%

Manure Storage
23%

Buffer Strips
21%

Figure 3-2 Percentage of each type of BMP 
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3.3 Methodologies 

3.3.1 Cost-Effectiveness Analysis 

According to the Treasury Board of Canada Secretariat (2007), economic analysis 

tools provide guidance and direction to the government in selecting policy instruments. 

CEA aims to identify the lowest-cost measure taken in the Grand River watershed to 

achieve a phosphorus reduction target. It seeks to measure the utilization (cost) and 

outcomes (effectiveness) of two more alternatives to compare the efficiency of resource 

utilization and help determine which BMP is the most appropriate based on the value 

of its effectiveness (Berbel et al., 2011; Bambha & Kim, 2004). Once the costs and 

effectiveness of BMPs have been assessed, important questions for evaluating BMPs, 

such as how to achieve the stated goals with the available funds or whether the goals 

can be achieved at a lower cost, can be answered by CEA (Lescot et al., 2013). This 

paper sets out a multi-objective optimization model to optimize nutrient reductions in 

the Grand River watershed and conduct an economic analysis of BMPs and assess their 

cost-effectiveness. 

3.3.2 NSGA-II Optimization Process 

NSGA-II is selected as a multi-objective optimization model to evaluate cost-

effectiveness of BMPs. The optimization process of NSGA-II (Figure 3-3) is 

summarized below: 

1. Population initialization 

2. Obtain data for two objective functions 

3. Population undergoes a series of procedures, including nondominated 

sorting, crowding distance comparison, and GA process (selection, crossover, and 

mutation). 

4. NSGA-II obtains the Pareto-optimal result for the current generation and 

checks if the fixed maximum generation is exceeded. Repeat the second process if 

the condition is false. 

5. The model terminates with a series of optimized solutions generated under 

two objective functions at the final generation. 
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At the beginning, the GA consists of a population of chromosomes (solutions) 

whose variables are encoded in the form of genes and where each individual carries a 

different chromosome (Knoak et al., 2006). According to the survival of the fittest, for 

a given population size, the initial population of chromosomes is randomly generated 

(Knoak et al., 2006). The objective functions we set in the model are the selection 

condition, and the model starts running at the first generation. The nondominated 

sorting procedure is a ranking process that determines the domination of given solutions 

when evaluating objective functions (Deb et al., 2002). Domination holds when a 

solution is evaluated better than all other solutions with the same rank under the 

objective functions (Ercan & Goodall, 206). The process ends when all other solutions 

in the population have the same ranking, and these individuals are called nondominated 

individuals. A group of optimal solutions that are nondominated in each generation are 

called the elite set, and the individuals from the elite set can replace a portion of the 

population after each generation (Maringanti et al., 2009). The crowding distance is the 

sum of the side lengths of the rectangles in contact with the adjacent solutions in a non-

extreme solution case, and the crowding distance of the extreme solutions is infinite 

(Coello et al., 2005). NSGA-II uses the crowding distance to assure that optimal 

solutions produced in each generation are distributed well along the Pareto-optimal 

front, and the larger the crowding distance, the better the optimal solutions (Maringanti 

et al., 2011). 

In each generation selection process, the available solutions are chosen according 

to the fitness of each individual; the higher the fitness, the greater chance of being 

selected in the mating pool (Maringanti et al., 2009). Then the individuals, which are 

Figure 3-3 The optimization process of NSGA-II 
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in the mating pool perform crossover and mutation. Crossover and mutation are genetic 

manipulations. In crossover, better chromosomes (parents) are joined together to 

produce a new solution (offspring) that is anticipated to inherit good genes (Knoak et 

al., 2006; Deb et al., 2002). According to the crossover procedure, good genes occur 

more often in the population and ultimately result in convergence to an overall good 

solution (Maringanti et al., 2009). The role of mutation is to sustain genetic diversity 

from one generation of solutions to the next generations (Maringanti et al., 2009). As 

in nature, by literately selecting better solutions and using them to create new 

candidates, the solutions improve to adapt to the current optimization problems (Deb et 

al., 2002). After the last generation, the model stops and generates a series of optimized 

solutions under two objective functions. 

3.4 Cost Calculation 

The cost of BMPs we calculated is the partial financial costs, referring to the actual 

expenditures of each BMP paid to farmers in the RWQP, and this financial cost consists 

of two parts: a cost sharing part for the one-off investment cost and implementation 

costs and an annual financial incentive to encourage farmers to adopt the BMP 

(Formula 1). For example, the cost of buffer strips includes not only eligible costs, such 

as material and labor costs for buffer strips, and protection and maintenance costs but 

also incentive payments to landowners to compensate the land taken out of production. 

Besides, farmers who adopt livestock access restrictions could receive a cost-share 

reimbursement varying between 50% to 100% of the total implementation costs.  

Total costs = one-off investment cost + annual financial incentive （1） 

Among a total of eight BMPs, six types of BMPs are selected in this research. 

Table 3-1 includes assumptions for the six BMPs, which were discussed with experts 

from the GRCA. We assume that cover crops are an annual project, and that NMP, 

buffer strips, manure storage, milkhouse waste management, and livestock access 

restriction all occur over a 25-year period. To calculate annuities for one-off investment 

costs of the remaining five BMPs, a discount rate of 3.5% is chosen in accordance with 

HM Treasury Green Book (2020) in this research to make the costs of BMPs 

comparable throughout time, the annual cost of each project is calculated in 2020 

Canadian dollars using the Consumer Price Index published by Statistics Canada from 
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1998 to 2020. Accordingly, the annual total cost of each project is the sum of the annual 

investment cost and the annual incentive payment, expressed in 2020 Canadian dollars.  

Table 3-1 Main assumptions underlying the cost estimations of the BMPs 
Measures Definition Assumptions 

Cover Crops Protect ground by growing conventional crops in 
rotation, instead of for harvest 

Annual project 
Life time 50 years 

Livestock Access 
Restriction 

Restrict livestock access to channels with fencing to 
protect riverbanks and reduce the input of manure 

Life time 25 years 
Project area 0.172 
Discount rate 3.5% 

Manure Storage Preservation of manure runoff and livestock manure 
in concrete buildings or tanks 

Life time 25 years 
Project area 39.05 
Discount rate 3.5% 

Milkhouse Waste Preservation of milkhouse wash water in tanks Life time 25 years 
Project area 39.05 
Discount rate 3.5% 

Nutrient 
Management Plan 

Plans to evaluate fertilizer application rate Life time 25 years 
Discount rate 3.5% 

Buffer Strips At least 3 meters wide permanent vegetation strips 
along one side of waterway 

Life time 25 years 
Discount rate 3.5% 

 

3.5 Objective Functions 

In this research, two types of NSGA-II are operated according to two combinations 

of objective functions—that is, minimization of total costs and maximization of total 

phosphorus retention, or minimization of total costs and minimization of total 

phosphorus loading—depending on the type of total phosphorus data. According to the 

SWAT, the Grand River watershed is delineated into 90 subbasins. These 90 subbasins 

are variables for searching optimal BMPs to satisfy the objective functions. To evaluate 

the cost-effectiveness of BMPs, the operation should first meet the objective function: 

minimization of the total cost of BMPs placement (Formula 2).  

 !"#	%(') = ∑ (+_-! × /!)"
!#$
∑ (/!)"
!#$

 
(2) 

When analyzing total phosphorus retention, -!  is a BMP indicator for the " th 

subbasin with a value of 1 for cover crops, 2 for NMP, 3 for buffer strips, 4 for livestock 

access restriction, 5 for manure storage, 6 for milkhouse waste management, and 0 for 

no BMP. Since three BMPs and their combinations are considered in SWAT, - ranges 

from 0 to 7 for BMPs scenarios considered in SWAT: 1 represents cover crops, 2 

represents NMP, 3 represents buffer strips, 4 represents combinations of cover crops, 

NMP, and buffer strips, 5 represents combinations of cover crops and NMP, 6 
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represents combinations of cover crops and buffer strips, 7 represents combinations of 

NMP and buffer strips, and 0 represents no BMP.  +(-!)is the average cost per unit area 

($/ha/yr) of BMP implementation in the ith subbasin, # is the total number of subbasins, 

which equals 90 in our project. /! is the area size of the "th subbasin (ha). 

Two types of total phosphorus data are selected to use in NSGA-II. One is the total 

phosphorus retained on the land provided by the GRCA, and the other is the total 

phosphorus load generated by SWAT, we obtain two objective functions respectively 

for the total phosphorus data: maximization of total phosphorus retained on land 

(Formula 3) and minimization of total phosphorus load in water bodies (Formula 4).  

 !0-	1(') = ∑ (2_-! × (/!)"
!#$
∑ (/!)"
!#$

 
(3) 

 

 !"#	ℎ(') = ∑ (2_-! × (/!)"
!#$
∑ (/!)"
!#$

 
(4) 

For Formula 3, 2(-!) denotes the total phosphorus retention per unit area (kg/ha/yr) 

for a BMP scenario in the " th subbasin. For Formula 4, 2(-!)  denotes the total 

phosphorus load per unit area (kg/ha/yr) in the "th subbasin. /! is the area size of the 

ith subbasin (ha). 

3.6 Sensitivity Analysis 

Before running NSGA-II, users need to select four GA parameters, namely, 

population size, generations, crossover probability, and mutation probability, by 

themselves to assure the efficiency of the optimization procedure and the accuracy of 

NSGA-II (Hamby, 1995; Maringanti et al., 2011). The population size and number of 

generations affect the number of optimal solutions and the iteration times, generally 

starting from 0 to infinity. Whereas crossover and mutation probabilities are critical for 

selecting the offspring, generally the two sum up to be less than or equal to 1, and hence 

these parameters are important in NSGA-II. Sensitivity analysis is intended to help 

users select the best fitting four GA parameters based according to the database they 

are using to achieve an ideal Pareto-optimal front Pareto-optimal front. The procedure 

of the sensitivity analysis involves changing the GA parameters one by one to assess 

each parameter’s impact on the Pareto-optimal front (Maringanti et al., 2009). The 

default and selected GA parameters are presented in Table 1. Default parameters are 
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selected based on the literature review (Maringanti et al., 2011; Chiang et al., 2014; Qi 

et al., 2020), and sensitivity analysis is performed by the objective functions of total 

BMPs costs of minimization and total phosphorus load minimization. Figure 3-4 

illustrates the Pareto-optimal front according to the changes of GA parameters. Usually, 

the Pareto-optimal front performs better as the number of generations and population 

size increase. However, the computation time is greatly affected by the number of 

generations and population size and can increase from 10 min to 12 h with the 

parameters increase. 

Table 3-2 Selected GA parameters for sensitivity analysis 
Order Population 

Size 
Generations Crossover 

Probability 
Mutation 

Probability 
1 10 100 0.1 0.001 
2 50 500 0.3 0.01 
3 100 1000 0.5 0.03 
4 500 5000 0.7 0.05 
5 1000 10000 0.9 0.1 

Default 100 1000 0.9 0.1 
Optimal 500 5000 0.9 0.01 



 23 

 

 

Figure 3-4 GA parameters selection 
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It is subjective to estimate the goodness of Pareto-optimal front, as the solution 

becomes better with the front approaches to the origin. It is evident from Figure 3-4a 

that as the population size increases from 10 to 500, the Pareto-optimal front 

approached the origin. However, no significant improvement is observed in the front as 

the population increases from 500 to1,000. This can be explained by the fact that some 

individuals in the population size of 1,000 have no chance to converge due to setting a 

fixed number of generations (1,000). Setting a larger number of generations when the 

population size is 1,000 gives better results, but it may significantly increase the 

computation time. The shift of the Pareto-optimal front is influenced by the number of 

generations. Figure 3-4b shows that the larger number of generations, the higher chance 

of obtaining a set of optimal solutions. However, the change in the Pareto-optimal front 

between 5,000 and 10,000 generations is unremarkable. When increasing the crossover 

probability, the shifting pattern of the front is not consistent with the previous 

movement. Figure 3-4c shows that the Pareto-optimal front moves toward the origin 

when the crossover probability increases from 0.1 to 0.5, but when it increases to 0.7, 

the front moves backward and then moves toward the origin again when the crossover 

probability increases to 0.9. In general, an increase in crossover probability implies a 

faster convergence. As for the change in mutation probability, the Pareto-optimal front 

shifts apparently toward the origin in the range from 0.001 to 0.01 (Figure 3-4d). The 

Pareto-optimal front is insensitive to changes of mutation probability from 0.01 to 0.1, 

which implies that an excessive mutation rate cannot lead to better convergence. 

According to the sensitivity analysis and computation time, a population size of 500, 

5,000 number of generations, crossover probability of 0.9 and mutation probability of 

0.01 are chosen in the NSGA-II. 
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4 Results  

4.1 Maximization of Total Phosphorus Retention 

Regarding the total phosphorus data provided by the GRCA, two objective 

functions are considered: minimization of total costs of BMPs (Formula 2) and 

maximization of total phosphorus retention on land with BMPs implementation 

(Formula 3). The aim of NSGA-II is to find the optimal solution to retain the most 

amount of phosphorus on the land at the least cost. The optimization results from 

NSGA-II are expressed in Figure 4-1. The Pareto-optimal fronts for all six BMPs are 

almost linear. The relationship between the effectiveness of BMPs and the cost of BMPs 

is positive: the economic costs increasing as the amount of phosphorus kept on the land 

increases. The Pareto-optimal front divides the entire graph into two parts, with the 

space below the line representing infeasible solutions and the space above the line 

representing feasible solutions subject to the costs and total phosphorus retention. An 

optimal solution is represented at each point of the front, preserving the maximum total 

phosphorus on the land at minimal costs, while also responding to the selected spatial 

distribution of BMP within the watershed. For example, (1, 193) is selected in Figure 

4-1a, which means to achieve a maximum 1 kg/ha of total phosphorus retained on the 

land each year, the cost for cover crops is $193 per hectare.  
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   Figure 4-1 Pareto-optimal front between total costs and total phosphorus retention 
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Figure 4-1(a)–(f) shows that all six Pareto-optimal fronts do not start from the 

origin, which implies the fact that a certain amount of total phosphorus is retained on 

the land during the daily activities without BMPs implementation. With BMPs 

scenarios fully distributed across the Grand River watershed, cover crops can retain a 

maximum of 1.8 kg/ha of total phosphorus on the land at a minimum cost of $881 per 

hectare per year.  NMP can retain up to 17.5 kg/ha of total phosphorus on the land at a 

minimum cost of $17.3 per hectare per year. Concerning buffer strips, a maximum of 

5.35 kg/ha of total phosphorus can be kept on the land; nevertheless, the cost of 

implementing buffer strips is a little higher than the first two, at $4,783 per hectare per 

year. Among all six BMPs, livestock access restrictions can achieve the largest amount 

of total phosphorus retention, which is 58.6 kg/ha, whereas the lowest total cost of 

implementation is $4,132 per hectare per year. Manure storage is one of the most 

expensive BMPs, which can be explained by the expensive construction and 

maintenance costs, retaining up to 7.5 kg/ha of total phosphorus at a minimum cost of 

$35,390 per hectare per year. Milkhouse waste management can retain a maximum of 

5.88 kg/ha of total phosphorus on the land at a minimum cost of $3,740 per hectare per 

year. For a more intuitive comparison of the cost-effectiveness of these BMPs, Table 2 

presents the minimum unit costs of achieving 1 kg/ha of total phosphorus retention.  

 

Table 4-1 Minimum unit cost of retaining 1kg/ha total phosphorus 
BMPs Minimum costs of 1kg/ha phosphorus 

retention(2020C$/ha/yr) 
NMP 0.1 
Livestock access restriction 5 
Milkhouse waste management 116 
Buffer strips 150 
Cover crops 193 
Manure storage 451 
 

According to Table 2, NMP is the most cost-effective BMP, retaining 1 kg/ha of 

total phosphorus on the land at a cost of $0.1 per hectare per year. Livestock access 

restriction are another cost-effective BMP, with a relatively low cost of $5 per hectare 

per year to retain 1 kg/ha of total phosphorus. Along with NMP, milkhouse waste 

management and manure storage are major BMPs to address point source pollution in 

agricultural activities. However, milkhouse waste management is more cost-effective 

than manure storage, which is the least cost-effective among all six BMPs. Buffer strips 

are also a cost-effective BMP compared to cover crops and manure storage, with a cost 
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of $150 per hectare per year to retain 1kg/ha of total phosphorus. The results for cover 

crops are inconsistent with previous findings. Liu et al. (2016a) posit that cover crops 

had an effective total phosphorus reduction ability, which was only concluded through 

the performance of SWAT. In our research, the effectiveness of cover crops is relatively 

small, with a cost of $193 per hectare per year to retain 1 kg/ha total phosphorus. 

However, certain types of cover crops may provide benefits to farmers which may 

offset the cost of growing cover crops and lead to co-benefits. In this research only 

incentive payments are considered in the cost calculation and co-benefits are not 

considered, which may account for the high cost of crop covers in this study. In 

summary, under NSGA-II, NMP is the most cost-effective BMP, and manure storage 

is the least cost-effective BMP. However, according to GRCA guidelines, the NMP is 

only a program to document the application of manure or nutrients by farmers or 

landowners, there are no specific practices for application on farmland, and there is 

considerable uncertainty about the actual cost-effectiveness based on farmers' self-

reported implementation of the plans. Livestock access restrictions perform better than 

buffer strips, milkhouse waste management, and cover crops in terms of total 

phosphorus retention. Cover crops do not perform as cost-effectively as previous 

studies claim. The reason for comparing the unit costs for the first 1 kg/ha/year is that 

relative differences in unit costs do not affect the BMP ranking since the graph is linear, 

meaning that the average unit cost does not vary as more TP is retained on the land; 

therefore, there are no expected economies of scale. Since only single BMP scenarios 

are considered in NSGA-II, more accurate analysis of multiple BMPs scenarios and a 

recommendation of BMPs spatial distribution under phosphorus retention data should 

be conducted in further studies. 

4.2 Minimization of Total Phosphorus Loading 

For the total phosphorus data generated by SWAT, two objective functions are 

considered: minimization of total costs of BMPs (Formula 2) and minimization of total 

phosphorus load under the implementation of BMPs (Formula 4). Four BMPs scenarios 

are evaluated in the NSGA-II with the two objective functions described above: a single 

BMP of cover crops, a single BMP of NMP, a single BMP of buffer strips, and a 

combination of the three BMPs. The optimal results are expressed in Figure 4-2. The 

economic cost increases with less phosphorus load in the water, which means that to 
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reduce more total phosphorus, the government will pay more money. The baseline for 

total phosphorus load generated by SWAT is 0.72 kg/ha. As observed in Figure 4-2, 

BMPs are more cost-effective in achieving a low total phosphorus reduction rate and 

less cost-effective in achieving a high phosphorus reduction rate. According to Figure 

4-2a, cover crops can reduce total phosphorus load at the outlet of the watershed by up 

to 18.6% through full application of the BMPs scenarios across the watershed. The 

points on the Pareto-optimal front represent the optimal solutions for achieving the 

maximum total phosphorus reduction at the lowest costs. For example, if a 10% total 

phosphorus reduction target is chosen, the minimum unit cost to be paid is $98 per year 

based on the NSGA-II results. Compared to cover crops, NMP is much cheaper; 

however, NMP has less reduction capacity than cover crops (Figure 4-2b). The NMP 

evaluation for phosphorus reduction is converted in the SWAT scenario simulation to 

an evaluation of reduced fertilizer application, which included both manure and 

artificial fertilizers, compared to the NMP analysis for minimized phosphorus retention 

(see Brouwer et al., forthcoming for more details). The maximum total phosphorus 

reduction rate of NMP is 12%, with a total cost of $12.4 per hectare per year. Buffer 

strips are the most expensive BMP and reduced total phosphorus the least of the three. 

Buffer strips have a maximum total phosphorus reduction rate of 9% but may have a 

total cost of $534 per hectare per year. 
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  Figure 4-2 Pareto-optimal front between total costs and total phosphorus load
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Figure 4-2c illustrates the NSGA-II optimal results for multiple BMPs and their 

combinations. The Pareto-optimal front yields the optimal solutions—consisting of 

cover crops, NMP, buffer strips, and their combinations—for total phosphorus 

reduction at the outlet of the watershed. The results showed that the combined BMPs 

could achieve 18.6% phosphorus reduction compared to cover crops costing $825 at a 

cost of $106. Compared to NMP only, BMPs combinations can achieve 12% 

phosphorus reduction at a cost of $11, which is $1 cheaper than NMP. Compared to 

buffer strips, BMPs combinations can achieve 9% phosphorus reduction for only $4.5. 

Therefore, the combinations of BMPs are less costly than the three single BMPs 

separately. For all three BMPs and their combinations applied throughout the watershed, 

up to a 32% reduction in total phosphorus can be achieved at a minimum cost of $1,328 

per hectare per year (Figure 4-2d), which is the most cost-effective combination 

compared to single BMP implementation. Although no total phosphorus reduction 

objective has been set for the Grand River watershed, according to our analysis, none 

of the single BMPs for cover crops, NMP, and buffer strips could achieve a total 

phosphorus reduction of greater than 20%. Therefore, implementing a combination of 

BMPs is a good option for the GRCA. Figure 4-3 depicts the proposed distribution of 

BMPs generated by NSGA-II with a total phosphorus reduction of 32%. The 

combination of cover crops and NMP is the most selected BMPs throughout the Grand 

River watershed and are highly concentrated in areas of agricultural concentration in 

the upper and central regions due to their outstanding cost-effectiveness ratios. 

Additionally, BMPs are implemented in nearly every subwatershed to achieve the 

greatest total phosphorus reduction amount. However, this research simplifies the 

process by selecting 90 subwatersheds as variables in NSGA-II rather than the hundreds 

of hydrologic response unit (HRU) in SWAT, which does not subject BMPs 

distribution to land use types and may cause uncertainties and inaccuracy. 
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Figure 4-3 Types and distribution of BMPs selection for 32% total phosphorus reduction 
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5 Conclusions 
This research sets out a NSGA-II to evaluate cost-effectiveness of BMPs 

implemented in the Grand River watershed and finally provides a suggestion for BMPs 

distribution. Data of BMPs total costs is provided by the GRCA, and two types of total 

phosphorus data—total phosphorus retention and total phosphorus load—are separately 

calculated by the GRCA and generated by SWAT. Based on the selected data, two types 

of NSGA-II are operated according to two combinations of objective functions—that 

is, minimization of total costs and maximization of total phosphorus retention, or 

minimization of total costs and minimization of total phosphorus loading. Six types of 

BMPs—cover crops, NMP, buffer strips, livestock access restriction, manure storage, 

milkhouse waste management—are selected for maximizing total phosphorus retention. 

Three BMPs—cover crops, NMP, buffer strips, and their combinations—are selected 

to minimize total phosphorus loading. Before the optimization procedure, a sensitivity 

analysis is carried out to ensure the efficiency and accuracy of the optimization. 

According to the sensitivity analysis, 500 solutions are selected in order to give 

decision-makers more efficient options to achieve the reduction target.  

Regarding the evaluation of the existing BMPs in the Grand River watershed, with 

maximum retention of total phosphorus, the results indicate that NMP is the most cost-

effective BMP and manure storage is the least cost-effective BMP. Livestock access 

restrictions is another cost-effective BMP, while the cost of retaining 1 kg/ha of total 

phosphorus is a little higher than NMP. Cover crops are not as cost-effective as the 

previous studies have shown. This is mainly because the co-benefits of cover crops are 

not accounted for in the analysis. For minimizing total phosphorus load, cover crops 

can achieve the greatest reduction in total phosphorus load compared to NMP and 

buffer strips. However, no single BMP can reduce total phosphorus as much as the 

BMPs combinations. Based on the optimization of BMPs combinations, a maximum 

32% reduction in total phosphorus load can be achieved at a minimum unit cost of 

$1,328. In order to improve water quality based on existing BMPs, the spatial 

distribution of the BMPs combinations is given in NSGA-II subject to the cost 

minimization and total phosphorus load minimization. The combination of cover crops 

and NMP is the most recommended BMPs for the entire Grand River watershed.  

The results analyzed in this research are practical for farmers, conservation 

authorities, and policymakers to help establish BMPs schemes, adaptively allocate 
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available funds, and help governments achieve the nutrients reduction objectives. As 

more research is conducted providing new insights, new polices and phosphorus 

reduction targets are expected for the eastern basin of Lake Erie in the near future. 

However, due to the limitation of data collection, assumptions in BMPs 

characterization, model setup, and financial instead of broader economic cost 

estimation, a more extensive economic welfare analysis including also the benefits of 

BMP implementation was not possible in this research. Additionally, the various 

assumptions reflect substantial uncertainties with respect to the actual cost-

effectiveness of BMP implementation. Therefore, more monitoring and additional 

studies are required to improve the BMPs scenarios in NSGA-II to achieve more 

reliable optimization results. 
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