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Abstract

This thesis improves the accuracy and run-time of two selected machine learning algo-
rithms, the first in software and the second on a field-programmable gate array (FPGA)
device. We first implement triplet loss and triplet mining methods on large margin metric
learning, inspired by Siamese networks, and we analyze the proposed methods. In addition,
we propose a new hierarchical approach to accelerate the optimization, where triplets are
selected by stratified sampling in hierarchical hyperspheres. The method results in faster
optimization time and in almost all cases, and shows improved accuracy. This method is
further studied for high-dimensional feature spaces with the goal of finding a projection
subspace to increase and decrease the inter- and intra class variances, respectively.

We also studied hardware acceleration of random forests (RFs) to improve the classi-
fication run-time for large datasets. RFs are a widely used classification and regression
algorithm, typically implemented in software. Hardware implementations can be used to
accelerate RF especially on FPGA platforms due to concurrent memory access and parallel
computational abilities. This thesis proposes a method to decrease the training time by
expanding on memory usage on an Intel Arria 10 (10AX115N 3F 45I2SG) FPGA, while
keeping high accuracy comparable with CPU implementations.
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Chapter 1

Introduction

1.1 Thesis Objectives

This thesis focuses on the acceleration of machine learning algorithms, presenting two
different approaches, one in software and one in hardware. The software implementation
focuses on triplet loss and triplet mining methods for large margin metric learning. A new
hierarchical approach is presented and analyzed for both large margin metric learning and
subspace learning methods. The thesis then transitions to the hardware implementation
of an accelerator for random forests using field programmable gate arrays (FPGA).

1.2 Contributions

Distance metric learning is a fundamental and widely used technique in machine and
manifold learning [68]. The general idea is to find a metric to discriminate classes by
increasing and decreasing the inter- and intra- class variances, respectively [47, 49]. This
goal was first applied to Fisher Discriminant Analysis (FDA) [39, 49] and to Principal
Component Analysis (PCA) [90] as the fundamental metrics of feature extraction and
metric learning.

Most metric learning methods can be defined as anchor-positive-negative triplets, where
anchor and positive are defined as same class label instances while negative is defined as
an instance with a different class label as anchor. Large Margin Metric Learning for
Nearest Neighbor Classification is defined based on the concept of triplets [109, 110]. This
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method uses Semi-Definite Programming (SDP) optimization, which can be iterative and
slow for complex datasets [107]. Later, Siamese Networks introduced triplet cost functions
[54, 61, 96] in two forms of Hinge loss [96, 109, 110] and Softmax [50, 83, 113, 115].

Triplet mining methods [96] were used to speed up the SDP optimization by selecting
the most important data points, rather than to use them all. However, the triplet mining
methods for Siamese networks were not explored for previously developed large margin
metric learning for nearest-neighbor classification. In this thesis, inspired by the mining
techniques for Siamese networks, different triplet mining methods are proposed for large-
margin metric learning in order to speed up SDP optimization. In addition to triplet mining
techniques, this thesis discusses a hierarchical approach to further increase the optimization
speed by using iterative selection of most important data instances with stratified sampling
[44].

The complexity of a dataset is not contained only to its number of instances but also the
size of its feature space. High numbers of instances are definitely beneficial for classification
or function estimation. However, high dimensional observation spaces are non-intuitive and
therefore, visualization and exploration of such data requires dimensionality reduction in
order to simplify the data. Having a high number of features compared to samples in a
dataset is referred by a phenomenon called the ”curse of dimensionality”, which raises a
need for applying a dimensionality-reduction method to remove redundant and irrelevant
features. There are two main approaches for reducing the size of a dataset: feature selection
[18] and feature extraction [98]. Feature selection chooses a subset of features with respect
to their correlation with labels. It does not change the feature space and it is most effective
when intrinsic complexity of data is lower than the complexity of its feature space. Feature
extraction, however, can reduce the dimensionality of data by changing the data space
and creating new feature set that best represents the data in a lower-dimension data space
with the hope of discovering more correlated features with respect to classification outcome.
Some of the well-known approaches are principal component analysis (PCA) [63] and linear
discriminant analysis [33].

Dimensionality reduction allows a more interpretable representation of data. However,
it does not necessarily result in higher accuracy due to potentially losing some informa-
tive features during the reduction. But it is a trade-off to gain better explorability and
visualization of data. In this thesis, the hierarchical approach for large margin metric
learning using stratified sampling [92], is expanded to a hierarchical approach for manifold
learning dimensionality-reduction that improves accuracy. This approach includes iterative
selection of features by hierarchical sampling, feature selection, and feature extraction.

In addition to the proposed method to reduce run-time on software, the other main
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topic of this thesis focuses on acceleration of random forest classifiers through hardware
implementation.

A random forest (RF) is a well-known ensemble-learning method [28] for classification
and regression [14] problems. RFs use a collection of many independently trained decision
trees where each tree is created by sampling the entire training set. Test instances pass
through a forest (collection) of trees and a final decision is made based on a majority vote
[28] [74]. Generally, RFs use both random sub-sampling and feature selection to create trees
with low inter-correlation, hence achieving high accuracy and robustness to overfitting.

Software implementations of machine learning algorithms such as RFs are widely used
for multiple applications, and can have performance that is comparable to that of some deep
neural networks [118]. However, RFs can take a long time to run, especially when using
large datasets, which makes them an interesting subject for hardware developers, where
certain architectures can lead to significant speed-ups. Many studies have investigated the
implementation and acceleration of both the training and testing phase of RFs. The high
level of available parallelism in the RF algorithm lends itself to hardware implementation.

Implementing machine learning algorithms such as random forests in software using
a high-level language, is a balance between run time and accuracy. However, hardware
implementations of these algorithms focus mainly on run-time vs. memory issues and
do not address the classification accuracy. The hardware calculated accuracy is low or
it is out-resourced to software implementation. In this thesis, we propose a hardware
architecture to decrease the training time, while maintaining a comparable accuracy with
existing software implementations.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In chapter 2, we review the foun-
dations of large margin metric learning, triplet loss, Siamese networks, feature selection,
feature extraction, the foundation of a decision tree and a general hardware approach to
random forest implementation. The triplet mining methods that have already been pro-
posed for Siamese triplet training, batch all [30], batch hard [58], batch semi-hard [96],
easiest/hardest positives and easiest/hardest negatives, negative sampling [111] are dis-
cussed as well as the classifiers that were used to compare the accuracies of the methods
under study followed by related studies on hardware implementations of random forests.
In chapter 3, the proposed triplet mining techniques in the SDP optimization of large
margin metric learning, the hierarchical approach for large margin metric learning and
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the hierarchical approach for subspace learning methods for dimensionality reduction are
explained in details. Chapter 4 is dedicated to the proposed hardware architecture for
random forest acceleration. The experiments and results are also explained and compared
to the literature. Finally, chapter 5 concludes the thesis by summarizing the work and
discusses possible future directions.

1.4 Publications

Poorheravi, P. A., Ghojogh, B., Gaudet, V., Karray, F., & Crowley, M. (2021). Acceler-
ation of Large Margin Metric Learning for Nearest Neighbor Classification Using Triplet
Mining and Stratified Sampling. Journal of Computational Vision and Imaging Systems,
6(1), 1–5.

Poorheravi, P. A., & Gaudet, V. (2021, May). Hierarchical Subspace Learning for
Dimensionality Reduction to Improve Classification Accuracy in Large Data Sets. In 2021
IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) (pp. 136-141).
IEEE.

Poorheravi, P. A., & Gaudet, V. (2022, Augest). FPGA-Based Architectures for Ran-
dom Forest Acceleration. In 2022 IEEE 65th International Midwest Symposium on Circuits
and Systems (MWSCAS) (pp. to appear). IEEE.
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Chapter 2

Background And Related Works

In this chapter, we first summarize several dimensionality-reduction methods, including
feature selection and feature extraction, Siamese Network including triplet loss plus triplet
mining methods, and large margin metric learning for nearest-neighbor classification. Af-
terwards, we focus on Random Forest (RF) classifiers. Moreover, we discuss the literature
around hardware implementations of RF classifiers and discuss some state-of-the-art im-
plementations.

2.1 Dimensionality Reduction

In data classification, either with discrete finite labels for classification or continuous labels
for regression, a model needs to be trained to identify patterns in data with regards to
its associated labels. In real-world complex datasets, and high-dimensional observation
spaces are not intuitive, and hence it is hard for the model to identify useful information.
In order to help the model, we add a pre-processing stage to better discriminate the data
in terms of its classes, or to find a better representation (visualization) of data. The goal
of dimensionality reduction is to either find a better discrimination of data [15] or a more
intuitive visualization of data [34, 77]. The pre-processing stage should either highlight the
useful features or remove redundant and irrelevant features. There are two main approaches
to achieve this goal, i.e., feature selection and feature extraction [65].

Both of these methods are common for reducing the dimensionality of data by mapping
x 7→ y, where x ∈ Rd and y ∈ Rp are column vectors and p ≤ d. the goal is to achieve
a better data visualization in p dimensions. In feature selection, the selected features are
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a subset of the original feature space, while feature extraction will result in a completely
new set of features created from the original feature space from the patterns of data [98].

2.1.1 Feature Selection

Feature selection [16, 18, 80] is a pre-processing feature-reduction method that selects a
subset of the original feature space to map a complex raw feature space x ∈ Rd to y ∈ Rp

where p ≤ d. The feature space’s subset is chosen based on some criterion. The hope is to
better represent the dataset and simplifying it while maintaining its classification accuracy.
One criterion to choose a subset of features is Filter Methods.

In filter methods, the features are ranked based on their redundancy and their Relevance.
Redundancy factors shows how much of redundant information a feature carries and rele-
vancy represents the correlation of feature with the classification label. After ranking, the
features are removed and filtered based on a threshold before the model is trained [46, 53].

Correlation Based Feature Selection

As the name suggests, this criterion is based on the correlation of each feature, x j, with
the target label vector t where x j represents the j-th feature. The higher the correlation
value, the more relevant the feature is for class determination, hence the more important
the feature is for classifying the data and therefore is ranked higher in the hierarchy of
selected features [46, 55].

The most common correlation criterion is Pearson Correlation Coefficient (PCC) de-
fined as [7, 53]:

ρx j ,t :=
Cov(x j, t)√

V ar(x j)V ar(t)
, (2.1)

where Cov(., .) represents co-variance and V ar(.) represents variance.

Fast Correlation Based Filter Feature Selection

Fast Correlation-Based Filter (FCBF) [116] is another correlation-based feature-selection
criterion adopted for high-dimensional data to find predominant correlation in order to find
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the subset of features that reduces dimensionality while increasing classification accuracy.
FCBF uses an entropy-based measurement known as Symmetrical Uncertainty (SU) to
find the relevancy and redundancy of features. The SU is defined as:

SU(X,Y) := 2(
IG(X,Y)

H(X) +H(Y)
), (2.2)

where X is a random feature and Y is the label. The IG(X,Y) is the information gain
defined as:

IG(X,Y) := H(X)−H(X|Y). (2.3)

H(X) is the Shannon’s definition of entropy defined as [46]:

H(X) := −
∑
x

p(x)log(p(x)), (2.4)

which calculates the uncertainty of the random variable X.

The symmetrical uncertainty between a feature xi and the target label vector t is
measured for each feature of i = 1, 2, ..., d. The feature with the largest value of SU(xi, t)
is considered the predominant feature. A threshhold is later applied to filter the features
and predominant features are used to eliminate other features. The redundancy among
features can also be calculated using SU(xi, xj) between the i-th and j-th feature.

2.1.2 Feature Extraction

Feature extraction is based on the manifold hypothesis stating that a high-dimensional
data point lies on a low-dimensional sub-manifold or sub-space that is embedded within the
original high-dimensional data space [36]. Feature extraction is a dimensionality-reduction
method involving around creating an entirely new set of features y ∈ Rp different from
the original dimensions of x ∈ Rd where p ≤ d. The change of the feature space allows a
better representation and visualization of dataset [17, 98]. The new smaller feature space
y is called the embedded feature space and p is the intrinsic dimension of data.

There are two main categories of supervised and unsupervised feature extraction meth-
ods. The former takes the label vector, t , into use during the training process while the
latter discovers the patterns in the data.
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Unsupervised Feature Extraction

Unsupervised feature-extraction methods do not use labels for feature extraction. Instead
they look for patterns in data [56, 93].

• Principle Component Analysis (PCA): PCA was originally proposed in [90] as a
linear unsupervised method meaning that the data lies on a linear sub-manifold and
the classes can be distinguished linearly. The goal of PCA is to find an orthogonal
direction in the space of data that best captures its variations [41]. The maximum
variation of data is called the first principal component and is denoted by u . Then
the dataset is projected onto that direction, considered as rotating the coordinate
system such that the main coordinate is in the direction of u [42].

The data projected onto the direction of u is presented as u⊺X where X is the data
matrix. The variance of this projection is then u⊺Su where S is the d×d co-variance
matrix of the dataset. PCA tries to maximize this variance, which leads to eigenvalue
problem of Su = λu meaning that the principal directions are the eigenvectors of
the co-variance matrix of data. The first p terms of U are chosen for dimensionality
reduction, where U is the principal component matrix [41, 56].

The data can be reconstructed back using X̂ = UY , but with distortion error due
to reducing the feature space to p sub-manifolds.

Figure 2.1: PCA with two main projection directions

• Independent Component Analysis (ICA): Originally defined by Jutten and Hérault
in 1991 [64] and Comon in 1994 [23], is an extension of PCA that helps with non-
Gaussian data. This method is best for a mixed set of independent sources to linearly
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transform the data with the hope of separating those sources [10]. Despite PCA with
orthogonal projection axes, ICA finds a linear non-orthogonal coordinate system by
finding the independent component vector u and the weight vector w . By linear,
we mean that ICA assumes the observation xi is a linear mixture of the independent
components of u . Hence we can define u = w .x and it tries to minimize the mutual
information among the axial projection of the input data [71].

Figure 2.2: ICA with two main projection directions

Supervised Feature Extraction

Supervised feature extraction uses the labeled dataset to train its model. Using the label
vector, the model can measure its accuracy during training, reduce the redundancy of the
data and improved its classification accuracy [82, 94].

• Fisher Linear Discriminant Analysis (FLDA): Also known as FDA or LDA in litera-
ture, is a supervised feature-extraction method that projects data onto a new space
with lower dimension based on an eigenvalue resolution. It was originally proposed
by Fisher in [38]. Similar to PCA and IDA, FDA finds the projection direction of
data as well but unlike the previous cases, it does not try to maximize the variation
of data. FDA uses the Fisher criterion to find the optimum variation of data that
increases intra-class variance while decreasing the inter-class variance [46].

If we denote the intra-class scatter as Sb, inter-class scatter as Sw and the projection
direction by u, we can formulate the FDA as [45, 112]:
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J(u) :=
u⊤SBu

u⊤SWu
, (2.5)

The goal of FDA is to maximize this ratio, which is J(u) which leads to an eigenvalue
problem of SBu = λSWu [40, 117]. Solving this optimization problem results in a
projection matrixU , where the projection directions are the column vectors of matrix
U and the eigenvectors of S−1

W SB sorted in descending order [84].

• Generalized Discriminant Analysis (GDA): This is a non-linear version of FDA in
which the input space is mapped into a convenient higher-dimensional feature space,
where the variables within this new feature space are non-linearly related to the
original input space. Similar to FDA, the goal of GDA is to maximize the ratio of
intra- and inter- class scatter in the new feature space using kernel functions. GDA
solves the same eigenvalue problem [8, 114].

2.2 Large Margin Metric Learning

Measuring distance is a main part of pattern recognition in classification and regression.
Normally, this is Euclidean distance defined as:

∥xi − xj∥2 := (xi − xj)
⊤(xi − xj), (2.6)

Euclidean distance, however, is not the best metric for high-dimensional datasets due to
the geometry of the high dimensional spaces in those datasets. Hence, in high dimensional
data, euclidean distance is not very effective. Metric learning suggests finding a new
distance metric for the data based on the properties of the data itself, which means finding
a new definition of similarity and dissimilarity between points in a dataset in a different
way [88, 110]. Learning a metric for a model is equivalent to transforming the data into a
new space and then computing the Euclidean distance in that new space. In this way, we
might be able to represent some intrinsic structure of the data [3].

Fig. 2.3 shows that the Euclidean distance, which is the same in different directions
for different data points, does not represent the true structure of the data. By choosing
another metric and transforming the dataset into a discriminative subspace, we can see
class 2 and 3 are above and below the separation line for class 1.
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Figure 2.3: Metric learning transformation from euclidean metric

2.2.1 Large Margin Metric Learning for Nearest-Neighbor Clas-
sification

K-Nearest Neighbor (K-NN) is a supervised machine learning classifier based on feature
similarity of a point’s neighbors. It includes the known neighbors from the training dataset,
in the majority vote to determine the class of an unknown instance. As was mentioned
before, Euclidean distance does not weight the points and values all of them equally.
However, K-NN highly depends on the metric by which the distance between data points
is calculated.

In K-NN, Mahalanobis distance [79] is used to replace Euclidean distance. Mahalanobis
metric can be viewed as a linear transformation with a projection matrix denoted by L
[108]. Mahalanobis distance can be formulated as a general version of Euclidean distance
with the formula below [48, 67, 110]:

D := ∥xi − xj∥2M := ∥L⊤(xi − xj)∥22 = (xi − xj)
⊤M(xi − xj), (2.7)

The matrix M should be positive semi-definite, i.e., M ⪰ 0, to meet the convexity and
the triangle inequality criterion and to be considered as a metric. Due to its positive semi-
definite nature, it can be decomposed to M := LL⊤. It can be seen that the Euclidean
distance is in fact a special case of Mahalanobis distance, where M is the identity matrix
i [11].
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Since distances are a crucial part of the metric-learning methods, we can improve these
methods by trying to increase the intra-class variances while decreasing the inter-class
variances by pulling the points from the same class towards each other and pushing points
from other classes further [47]. Fig. 2.4 represents the push and pull method to improve
K-NN.

Figure 2.4: Metric learning for decreasing and increasing the intra- and inter-class vari-
ances, respectively, by pulling the positives (same class instances) toward the anchor but
pushing the negatives (other class instances) away.

Let yil denote whether two points xi and xl are from the same class or not by having
value of one or zero respectively. Also, let ηij denote if a point xj is among the K-nearest
neighbors of the point xi or not by having the value of one and zero respectively. In the
push and pull method, the optimization problem of increasing and decreasing the intra-
and inter-class scatter, can be defined as below and it should be minimized [109]:

∑
i,j

ηij∥L⊤(xi − xj)∥22 + c
∑
i,j,l

ηij(1− yil)
[
1 + ∥L⊤(xi − xj)∥22 − ∥L⊤(xi − xl)∥22

]
+
,

(2.8)

where [.]+ := max(., 0) is the standard Hinge loss, xi, xj, and xl are anchor, positive,
and negative instances, respectively. The first half of the cost function in Equation 2.8 is
for pushing the same-labeled classes towards each other and the second half of this equation
represent a triplet loss [96]. Triplet loss considers a triumvirate of anchor, neighbor and
distant, where anchor and neighbor belong to the same class and distant is a different-
class point, with the purpose to reduce the distance between anchor and neighbors while
increasing the distance between anchor and distant.
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The cost function in Equation 2.8 can be re-stated as an SDP optimization problem
below:

minimize
M , ξijl

L :=
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j

ηij (1− yil) ξijl, ∀l

subject to ∥xi − xl∥2M − ∥xi − xj∥2M ≥ 1− ξijl,

ξijl ≥ 0,

M ⪰ 0,

(2.9)

The first half of the equation is not changed because of Equation 2.7. The hinge loss is
represented in the second half of the equation above and is denoted by slack variable ξijl.

2.2.2 Triplet loss and Siamese Network

As was mentioned before, triplet loss is a combination of anchor, neighbor and distant. It
tries to pull the anchor and neighbor (positive) with the same class towards each other
and push the distant (negative) away from them by minimizing the general loss function
below [96]:

ℓt =
b∑

i=1

[∥f(xi
a)− f(xi

n)∥22 − ∥f(xi
a)− f(xi

d)∥22 + α]+, (2.10)

The goal is for the anchor-distant distance, to be larger than the anchor-neighbor
distance by a margin of α ≥ 0. In this formulation, f(x) represents the embedding (output)
of input x, xi is the ith instant, b is the batch size or the number of triplets, [.]+ := max(., 0)
is the standard Hinge loss, and ∥.∥ is the ℓ2 norm. The anchor, neighbor and distant are
denoted by xa, xn and xd respectively. Fig. 2.4 also represents triplet loss’s concept in
which the anchor and positive, in this case, would be class 1 and the negative can be any
of the class 2 or 3.

A Siamese network is a neural network method to train multiple sub-networks that
share weights with each other [96]. The sub-networks can be trained using a triplet loss
function, meaning that the anchor, neighbor and distant will be fed into these sub-networks
and their weights are tuned using formula 2.10.
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2.2.3 Triplet Mining Methods

the triplets can be sampled from the dataset using triplet mining methods such as Batch
All (BA) [30], Batch Hard (BH) [58], Batch Semi-Hard (BSH) [96], Extreme Distances [97]
and Negative Sampling [111]. These sampling methods work very well for datasets with
large numbers of instances; however, their long training time compared to other triplet
mining methods, is a disadvantage.

• Batch All (BA): This is a triplet mining method that considers all the positives and
negative combination from the dataset, for each anchor [30].

• Batch Hard (BH): This is another hard triplet mining method meaning that it takes
the farthest positive and the nearest negative with respect to the anchor into account
for a Siamese neural network. The farthest positive and the nearest negative are the
hardest to push and pull [58].

• Batch Semi-Hard (BSH): A triplet mining method that takes into account the nearest
neighbor to the anchor that are farther from the positive [96].

• Extreme Distances: Distance plays an important role on choosing triplets in large
margin metric learning. Neighbors, positive or negative, can be chosen as positive
and negative based on their distances to the anchor (being near or far). This results
in four different cases of Easy Positive Easy Negative (EPEN), Easy Positive Hard
Negative (EPHN), Hard Positive Easy Negative (HPEN) and Hard Positive Hard
Negative (HPHN). Easy and hard positives are the nearest and farthest positives to
the anchor respectively while easy and hard negatives are the farthest and nearest
negatives to the anchor respectively [97].

• Negative Sampling: In this mining method, for every positive to the anchor, negatives
are chosen based on an occurrence probability that is calculated using stochastic
probability of occurrence. The distribution of pairwise distances, denoted by q(D),
of two points can be estimated as [111]:

q(D) ∝ Dd−2(1− 0.25D2)
d−3
2 , (2.11)

Here d is the dimensionality of data and D is defined by Eq. (2.7). If anchor is
represented as xi, and the negative is represented as xl, the probability of negative
sample with distance D from the anchor can be presented using [102, 111]:
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P(xl |xi) ∝ min(λ, q−1(D)), (2.12)

Here, λ (e.g., 1.4) is for giving all the negatives a minimum chance of selection.

2.3 Classifiers

Classification is the task of assigning a label yj to an unknown input test instant xi, where
i ∈ Rn based on the test instance attributes and the previously obtained machine learning
model from training procedure. The algorithm mainly calculates a probability function
of a test instance belonging to a class with respect to its features and attributes. Many
machine learning classifiers exist and can be named such as K - Nearest Neighbor (K-
NN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and
Random Forest (RF).

2.3.1 K - Nearest Neighbor (K-NN)

K − NN is a well-known Euclidean-based classifier for discriminant analysis that don’t
have a prior knowledge of data distribution. In K − NN , a test instance’s probability of
belonging to a class is determined by taking a majority vote of K number of its nearest
neighbors in the model training set [25].

If the training set is denoted by T = (xi, yi) for i = 0, ..., N where xi is the training
vector and yi is the corresponding label vector. To classify a test instance x′, N nearest
neighbor is identified based on the euclidean distance to the instance, as a vector set of
T ′ = (xNN

k , yNN
k ) where k = 0, ..., K, using the formula in equation 2.6 [91]. The majority

vote of these neighbours, determine the predicted class of test instance x′ using the formula
below [52]:

y′ = argmaxy

∑
(xNN

i ,yNN
i )∈T ′

δ(y = yNn
i ) (2.13)

where yNN
i is the label of the ith instance from the nearest neighbor vector T ′ and δ

takes the value of one if y = yNN
i and zero otherwise.
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2.3.2 Quadratic Discriminant Analysis (QDA)

QDA is a supervised classification method [69] that assumes a Gaussian distribution of
classes. The co-variance matrices of classes are not assumed to be necessary equal. Hence
the decision boundaries between classes are quadratic. The probability of a point belonging
to a class is based on Bayes posterior using the formula below [57, 69]:

P (x ∈ C1|X = x) =
P (X = x|x ∈ C1)P (x ∈ C1)

P (X = x)
=

f1(x)π1∑|c|
k=1 P (X = x|x ∈ Ck)πk

, (2.14)

where x represents an instance, |C| is the number of classes, f1(x) is the likelihood and
π1 is the prior probability. k is chosen so the posterior probability is maximized.

2.3.3 Linear Discriminant Analysis (LDA)

As was mentioned in section 2.1.2, LDA is a supervised feature extraction and classification
method [69] that is a special case of QDA. In LDA, the classes have equal co-variance
matrices and data distribution is considered to be Gaussian. Hence, the decision boundary
between classes is a linear line in this method [43, 101, 103]. The probability of a point
belonging to a class is based on Bayes classification in equation 2.14.

2.3.4 Random Forest (RF)

RF is a classifier that uses an ensemble of decision trees to train a model to predict the
labels of unknown instances. The decision trees are created by sampling instances and
features with replacement from the training set. The test instance traverses the created
trees and a majority vote among the results determines the final class of data point [26, 74].

2.4 Random Forest (RF)

Random Decision Forests were first introduced by Ho in [59, 60] and were further developed
to their current format by Breiman in [13]. An RF is an ensemble of uncorrelated decision
trees that are created using bagging from a training dataset, for classification and regression
purposes. This classifier predicts a label for the unknown input instance by taking a
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majority vote among traversed trees. The training model is created using a subset of
data called the training dataset Xtrain = {(xd

m, ym)|m, d ∈ R}, where d is the number
of attributed or features of dataset, m is the number of instances in Xtrain and y is the
associated label. An RF classifier creates a forest of trees by sampling m and d randomly
from Xtrain to create a forest of uncorrelated trees [74].

Fig. 2.5 shows the general structure of random forest in which the training subset of
dataset is partitioned recursively starting at a root node, until it reaches the leaf node,
based on an objective function. The leaf node can not be split further due to reaching
either purity or a certain criteria. A label is assigned to every leaf node by majority vote
as well [14].

Figure 2.5: Random Forest

A test instance should traverse all trees, starting from the root node, passed through
non-leaf node to reach a leaf node. The next destination is determined via a sensitivity
function at every non-leaf node. The label of the final leaf node, in which the xtest lands,
is the predicted label for that particular tree. An RF classifier takes a majority vote over
all trees in the ensemble, to determine the actual class of the unknown instance.
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2.4.1 Decision Tree Algorithm

A subset of the training dataset, Xtrain, is chosen randomly in the sense of both feature and
instance using sampling with replacement technique [13]. This subset is then partitioned
recursively from root to leaf nodes, where no further split is possible due to purity or
meeting a stopping criterion, as shown in Fig. 2.6. A non-leaf node divides based on a
split criterion also referred to as a weak learner. Fig. 2.6 is a 2-dimensional feature space
example with two labels. Finally, a label will be associated to leaf nodes by taking majority
vote among its instances.

Figure 2.6: Decision Tree Algorithm

2.4.2 Split Criteria

A non-leaf node splits based on a split criterion, also known as a weak learner, which is
defined as an optimization problem in which we optimize function I [21]:

θi = argmax I(Si, θ), (2.15)
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where θi represents the weak learner that is chosen among a list of potential criteria θ
for splitting a node. Si the subset of instances under split belonging to the node i. The
list of potential split criteria θ is defined as [21]:

θ = (ϕ(v), τ) v ∈ Si, (2.16)

where v is the feature vector of instances belonging to Si, ϕ(v) is simply the value of
chosen attribute v, τ is the threshold by taking median of two non-identical adjacent nodes,
and the relation of ϕ(v) ≥ τ in order to split the Si to two branches at node i.

In summary, θ is created by selecting an attribute and extracting all the values of that
attribute from instances in Si. A list of thresholds τ is then defined by taking median of
two non-identical adjacent values.

As was mentioned, I is the objective function that determines the optimal weak learner
θi in equation 2.15 from the list of θ and it is defined as [21]:

I = i(N)− PLi(NL)− PRi(NR), (2.17)

where i is the impurity measurement function, N is the node under study, L and R
substances refer to the left and right partitions to be constructed from the possible split
respectively, and PL and PR are the proportions of the node instances to be in left and
right branches, respectively.

The impurity measurement function is method-dependant and can be either Gini im-
purity based defined in equation 2.18, or Entropy impurity based defined in equation 2.19
[1].

Gini i =
∑
(i ̸=j)

PiPj =
1− ΣjP

2
j

2
, (2.18)

Entropy i =
∑
i=1

Pi.(− log2 Pi), (2.19)

where Pi and Pj are the proportion of instances in classes i and j, respectively.
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2.4.3 Related Work on Random Forest Implementation in Hard-
ware

This section is dedicated to the previous works on the implementation of random forests or
on decision trees as the building unit of an RF classifier, on various platforms, with a focus
mostly on the training phase of the algorithm. Hardware implementation of random forests,
especially on Field Programming Gate Array (FPGA) FPGA, is an interesting subject for
scientists due to FPGAs’ on-chip memory bandwidth, flexible logic and memory access,
and possibility to exploit parallelism, which can result in faster execution time.

Narayanan, et al. [86] implemented a gini calculation unit for FPGA implementation
that accelerates the search for optimal split point by using only dividers and adders. In
this implementation, the run time of a single decision tree was accelerated by 5.58×. The
sorting module, however, was done in the host computer. Their method is based on vertical
data parallelism in which the data of different attributes are distributed to different nodes
to be processed and a global comparison among all, will find the optimal split point.

With the importance of decision trees in the random forest algorithm, Saqib, et al.,
implemented a pipelined decision tree to achieve a faster execution time of a single tree due
to concurrent execution, with a reasonable resource efficiency. Their method was capable
of independently processing the data from a streaming source for parallel processing nodes
by incorporating concurrent engine for parallel operations on a dataset. Their design is
highly scalable but is limited to binary trees [95].

Essen, et al. proposed a novel hardware architecture to handle the memory utilization
problem in FPGA in previous works by using a compact random forest (CRF) with shallow-
depth trees (with a maximum depth of six) [106]. Using compact decision trees made the
FPGA implementation more VLSI-friendly. They also compared a high-utilization FPGA
implementation against a single-instruction multi-thread (SIMT) algorithm on GP-GPU
and multi-core implementation. In this comparison, the FPGA showed higher classification
performance with lower power consumption.

Rastislav, et al. [100] proposed an FPGA architecture with an oblique/non-linear
weak learner, parallel calculations for weak learners, and assimilate a new algorithm called
HereBoy [73] to explore large search spaces.

An architecture was proposed in [20] to accelerate not just a single decision tree, but
a complete training phase for a random forest classifier. This method incorporates par-
allel computation of trees to improve the execution speed but it also used batch-learning
method in which the dataset is presented to the algorithm batch-by-batch from off-chip
memory. The number of rounds of transmission from off-chip memory to FPGA (for input
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data) and from FPGA back to double-data-rate (DDR) SDRAM memory (to write the
predictions back) is not very efficient for large datasets. They also had memory issues for
having parallel computations. A FIFO-based merge sorter was also developed for its fast
output throughput and low resource utilization. The memory utilization problem was later
improved by suggesting data compression and decompression scheme to facilitate sorting in
[21]. Different methods and solutions were later proposed in [19] to address small problems
or improve upon previous works.

Oberg, et al. [87] use the decision tree classifier for body part and gesture recognition
in a Microsoft Kinect image sensor. They propose an optimized FPGA implementation
of a Forest Fire pixel classification algorithm. Their design communicates with external
DDR memory and the paper discussed the opportunity of expanding bandwidth to external
DDR memory.

Lin and Zhang [76] explore a quantile-based online approach to train a random for-
est using Hoefding trees and compares their result with batch learning method in [19].
This work optimizes the quantile parameters and incorporates pipelining and incorporates
dynamic memory, which results in higher accuracy comparing to batch learning method.

Nakahara, et al., uses fixed-point representation of data instead of a floating point in
[85] for a pipelined multi-valued decision diagram random forest. Parallel pipelined decision
trees are used in other works as well such as [66]. However, they have a common issue of
how many trees can be fitted in the design and how deep each tree can be. Other methods,
such as sub-sampling, are presented in works such as [72] to accelerate the training process,
in comparison to the online training and batch learning method. This approach eases the
training process on large datasets but the result is not comparable with previous methods.

2.5 Conclusion

This chapter was dedicated to defining concepts in details that are used in the proposed
methods in the next chapters. The topics discussed were dimensionality reduction and
methods to achieve it, large margin metric learning approaches to classification and re-
gression, followed by classifiers, and finally random forest classifiers. Decision trees, as
the building blocks of RF ensembles, were also discussed and the previous works in the
literature regarding hardware implementation of RF classifiers was introduced as well. The
purpose of this section was to achieve an understanding of topics discussed in order to real-
ize the importance of an optimized hardware architecture for machine learning algorithms.
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Chapter 3

Hierarchical Approach for Large
Margin Metric Learning and
Subspace Learning in Software

In this chapter, we evaluate the run-time and accuracy improvements of triplet mining
methods, originally introduced for Siamese networks, for Large Margin Metric Learning.
We study a new hierarchical approach as well that shows improvement in run-time com-
pared to other explored methods in literature.

As was mentioned in section 2.2.1, the general optimization problem to be solved is
bringing the anchor and positive closer together by decreasing the inter-class variances and
distancing the negative by increasing the intra-class variances. The optimization problem
in equation 2.9 is the mathematical representation of this goal. However, this equation
is taking all the negative instances into consideration. This will make the Semidefinite
Programming (SDP) problem time-consuming for large datasets [107]. Inspired by metric
learning definitions in [109, 110], we proposed triplet mining methods based on the objective
functions of equation 2.9, to speed up the SDP for solving the optimization problem. The
methods described in this chapter areK−Batch All,K−Batch Hard,K−Batch Semi-Hard,
Extreme Distances, and Negative Sampling, for large margin metric learning.
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3.1 K-Batch All

Batch All triplet mining takes all the possible combinations of positive-negatives into ac-
count, which is very time-consuming for SDP due to the huge number of permutations.
The method in [109, 110] isK− Batch All version, which only considersK nearest positives
and all negatives. The objective function in equation 2.9 can be re-phrased as:

minimize
M , ξijl

L =
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j

ηij (1− yil) ξijl, ∀l

subject to ∥xi − xl∥2M − ∥xi − xj∥2M ≥ 1− ξijl,

ξijl ≥ 0,

M ⪰ 0,

(3.1)

where ηij is one if xj is among the K nearest neighbors of xi and zero otherwise, ∥.∥M
denotes the Mahalanobis distance, c is a constant, yil is one if xi and xj belong to the same
class and zero otherwise, ξijl is the non-negative slack variable.

3.2 K-Batch Hard

Inspired by the Batch Hard method, which considers the nearest negatives and farthest
positives to the anchor [58], K− Batch Hard considers K farthest positives and K nearest
negatives. The objective function of equation 2.9 now becomes:

minimize
M , ξijl

L =
∑
i,j

γ+
ij ∥xi − xj∥2M + c

∑
i,j,l

γ+
ij η

−
il (1− yil) ξijl,

subject to ∥xi − xl∥2M − ∥xi − xj∥2M ≥ 1− ξijl,

ξijl ≥ 0,

M ⪰ 0,

(3.2)

where γ+
ij is one if xj is among theK farthest positive neighbors of xi and zero otherwise.

The positive sign is for same class neighbors. Here, η−il is one if xl is among the K nearest
negative neighbors of xi and the negative sign is for distant classes.
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3.3 K-Batch Semi-Hard

Batch Semi-Hard is a Siamese network mining method that considers the closest negatives
to the anchor that are farther from the positives [96]. Inspired by this method, we consider
K positive instances and for each positive, we have K nearest negatives that are farther
from the chosen positive. The cost in function 2.9 accordingly will be:

minimize
M , ξijl

L =
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j

ηij
∑
l

η∓il (1− yil) ξijl,

subject to ∥xi − xl∥2M − ∥xi − xj∥2M ≥ 1− ξijl,

ξijl ≥ 0,

M ⪰ 0,

(3.3)

where ηij is one if xj is among the K nearest neighbors of xi that are positive and zero
otherwise, η∓il is one if xl is among the K negative neighbors of xi that are farther from xj

to xi and zero otherwise.

3.4 K-Extreme Distances

Based on the four cases introduced in section 2.2.3, four new cases of EPEN, EPHN, HPEN,
HPHN can be introduced in which only K positive and negative instances are chosen.
K−HPHN is equivalent to the Batch Hard method previously explained in section 2.2.3.
The hard cases are interesting due to the opposition learning [104] and also because they
are the more difficult cases and solving them increases the value of the solution. However,
it does not decrease the importance of easy cases in literature [113]. The objective of the
cost function in equation 2.9 to be implemented will change accordingly:

k-EPEN: L =
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j,l

ηij γ
−
il (1− yil) ξijl, (3.4)

k-EPHN: L =
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j,l

ηij η
−
il (1− yil) ξijl, (3.5)

k-HPEN: L =
∑
i,j

γ+
ij ∥xi − xj∥2M + c

∑
i,j,l

γ+
ij γ

−
il (1− yil) ξijl, (3.6)
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where η indicates the nearest neighbors, γ is for farthest neighbors, the positive sign is
for same class points and the negative sign is for distant classes. ηij is one if xj is among
the K nearest neighbors of xi and is zero otherwise. η−il is one if xl is among the K nearest
negatives of xi. γ

+
ij is one if xj is among the K farthest positive neighbors of xi and is zero

otherwise. γil− is one if xl is among the K farthest negative neighbors of xi. yilis one if xl

is a positive to anchor xi. Finally ξijl is the non-negative slack variable.

3.5 K-Negative Sampling

Based on the negative sampling method explained in section 2.2.3, K-Negative Sampling
(K-NS) is introduced in which K positives and K negatives for every anchor-positive pair
are chosen. The cost function in equation 2.9 becomes:

minimize
M , ξijl

L =
∑
i,j

ηij ∥xi − xj∥2M + c
∑
i,j,l

ηij ρ
−
il (1− yil) ξijl,

subject to ∥xi − xl∥2M − ∥xi − xj∥2M ≥ 1− ξijl,

ξijl ≥ 0,

M ⪰ 0,

(3.7)

where ηij is one if xj is among the K nearest neighbors of xi and is zero otherwise. ρ−il
is one if xl is among the negatives for the anchor-positive pair of (xi, xj).

3.6 Proposed Hierarchical Large Margin Metric Learn-

ing with Stratified Sampling

Even though the previous methods increase the speed of the SDP for solving the opti-
mization problem, we propose a new hierarchical method to speed up SDP. The main idea
relies on the previous concept of training only on portions of data. However, SDP needs
the whole dataset in order to solve the optimization problem in equation 2.9. Hence the
data is introduced in hierarchical portions. It is similar to a divide-and-conquer method
to accelerate SDP [24].

This method is a hierarchical approach with stratified sampling [6, 44] and model
averaging [12, 22]. It is an iterative method that uses several hyper-spheres to solve the
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SDP at every iteration. The triplets are sampled from the points within each hyper-sphere
in the data space by stratified sampling [6] where every class of data is homogeneous sub-
groups or strata. The sampled data points will be used to solve the optimization problem
in equation 2.9 rather than using the whole dataset. In this way, the pace of the SDP
improves.

Algorithm 1 can be used to follow the text explaining the algorithm in details in this
chapter. This approach, in general, trains using portions of data iteratively in order to use
the whole dataset while improving the speed of training.

At every iteration, several hyper-spheres, denoted by ns, are applied on the data space
and then triplets are sampled from the data points within each hyper-sphere using stratified
sampling (see Line 10 in Algorithm 1). At every iteration, the optimization equation 2.9 is
solved using the sampled triplets rather than the whole dataset (see Line 11 in Algorithm
1). Matrix M in equation 2.7 is positive semi-definite M ⪰ 0 to meet the convexity
criteria and hence can be factorized to LL⊤ using eigenvalue decomposition:

M = ΨΣΨ⊤ = ΨΣ(1/2)Σ(1/2)Ψ⊤ = LL⊤, (3.8)

The column space of L is used in algorithm 1 to project the whole dataset, similar
to the principles of PCA (see Line 13 in Algorithm 1) [62]. In order to not collapse into
low-rank subspaces, the diagonal of matrix M can be strengthened. This results in larger
eigenvalues but it does not affect the projection direction [81].

Fig. 3.1 indicates the procedure in algorithm 1. At every iteration, the radius of hyper-
spheres denoted by r, is increased with respect to the iteration index, denoted by τ , because
as we progress through the algorithm in data space, we want to see more data and cover
more of the data space, hence we need to have larger hyper-spheres. Contradictory to the
radius, the number of hyper-spheres, ns, is decreasing, in order for the hyper-spheres not to
overlap the sampling area. As the iteration index enlarges, the more data has already been
seen, so there is no need to consider all data points to sample from in each hyper-sphere.
In addition to this, the more data is in each hyper-sphere to sample from, and this can
slow the SDP optimization. For these reasons, at every iteration, the size of the stratified
sampling, denoted by nτ is decreasing. The sampling portion, denoted by pτ , is a function
of iteration index.

The initial radius, number of hyper-spheres, and the portion of sampling are r := 0.1σ,
ns := ⌊0.01 × n⌋ (clipped to 10 ≤ ns ≤ 20), and pτ := 1. At every iteration, the function
is updated as r := r + ∆r, ns := max(ns − ⌈0.2 × ns⌉, 1), and pτ := max(pτ − 0.05, 0.2),
where ∆r := 0.3σ where σ is the average standard deviation along features.
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Figure 3.1: Hierarchical large margin metric learning with stratified sampling
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1 Procedure: Hierarchical Metric Learning(X, k)
2 Input: X: dataset, k: number of neighbors
3 Initialize r, ns, and pτ
4 for τ from 1 to T do
5 r := increasing function of τ
6 ns := decreasing function of τ
7 pτ := decreasing function of τ
8 for s from 1 to ns do
9 cs ∼ range(X)

10 {xi,a,xi,p,xi,n}nτ
i=1 ← draw a stratified triplet sample with sampling

portion pτ within the s-th hypersphere
11 Solve optimization (2.9)
12 Decompose M = LL⊤ using Eq. (3.8)
13 Project X onto Col(L): X ← L⊤X

Algorithm 1: Hierarchical Large Margin Metric Learning

3.7 Experimental Results and Analysis

3.7.1 Datasets and Setup

The proposed metric algorithms were tested on three publicly available datasets of Fisher
Iris [31, 38] with 150 data points in three classes and feature space of four. The second
dataset is ORL faces [4] with 40 classes. Each class has 10 subjects, each with the size of
112× 92 pixels. Lastly, the MNIST digit dataset [70] with 28× 28 pixel images.

In the pre-processing step, Fisher Iris and MNIST datasets were split to train-validation-
test subsets with portions of 70%−15%−15% respectively. The MNIST dataset was further
projected on principal component analysis subspace with dimensionality of 30 [62]. For the
ORL faces, the first 6 images were chosen for training and the rest were equally divided
for validation and test. The ORL faces were also projected on their 15 leading eigenfaces
[105]. The validation determines the optimal value of k and c.
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3.7.2 Comparing Large Margin Metric Learning Methods in Non-
Hierarchical and Hierarchical Approaches

Table 3.1 represents the accuracy and the run time of tested datasets for all the non-
hierarchical approaches and proposed hierarchical one using Mahalanobis distance. High
and compatible accuracies can be observed in non-hierarchical methods in the Iris dataset.
However, the hierarchical approach shows perfect accuracies in this dataset. This is because
of the small size and the simplicity of Fisher Iris.

Among non-hierarchical approaches, k−BH reports the highest accuracy in all datasets.
In the hierarchical method, k−BSH reports top accuracies especially in ORL faces and
MNIST. This is due to both methods using hard negatives (negatives closer to anchor) for
training. This helps with avoiding over-fitting the training data. The same logic is applied
on ORL faces with k−BH and k−EPHN reporting top accuracies. This logic can also
be validated by observing k−BSH having the second top accuracy in ORL dataset. The
k−NS has acceptable performance due to the effectiveness of the probability distribution
used for sampling from the negative instances [111].

It can be seen from table 3.1 that the hierarchical approach is reporting either better
accuracies or comparable results with lower run-times than non-hierarchical approaches
due to model averaging. There are some cases in which the non-hierarchical approach is
reporting better accuracies such as k−BH and k−EPHN in ORL faces and MNIST. This
can be explained with random sampling from hyper-spheres rather than using the whole
data. The sampling makes the hierarchical approach faster and more scalable.

The time consumed by hierarchical approach is less than non-hierarchical approaches
in most cases. This is highlighted, especially in k−BA for ORL faces and MNIST datasets.
While these datasets are too large for the non-hierarchical k−BA and they can take forever,
they can easily be run on the hierarchical approach. k−BA obtains the longest run-time
due to considering all the negative instances. k−BSH and k−HPEN also show long run-
times due to handling the hard cases.

3.7.3 Comparing Triplet Mining Methods by Ghost Faces

Motivated by using eigenfaces for face recognition [105] and fisherfaces [9], we can illustrate
the large margin metric learning methods, using the eignevalue decomposition in equation
3.8. The top ten columns of L (projection matrix), sorted in descending order, are chosen
to display the ghost faces. Fig. 3.2 represents ghost faces for different triplet mining
methods described in this chapter. As can be seen in Fig. 3.2, the projection directions
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Table 3.1: Comparing accuracies and run-time of the proposed triplet mining methods in
both non-hierarchical and hierarchical metric learning for nearest-neighbor classification.

Dataset k-BA k-BH k-BSH k-HPEN k-EPEN k-EPHN k-NS

Iris
Non-Hierarchical

Accuracy (%) 72.73 100 86.36 95.45 81.82 95.45 72.73
Time (sec) 832.85 5.51 6.62 4.77 5.34 5.11 5.06

Hierarchical
Accuracy (%) 100 100 100 100 100 100 100
Time (sec) 23.73 9.72 4.54 7.25 4.73 5.05 4.64

ORL Faces
Non-Hierarchical

Accuracy (%) – 85.00 78.75 72.50 75.00 85.00 77.50
Time (sec) – 16.13 18.61 19.59 19.19 16.31 19.05

Hierarchical
Accuracy 76.25 76.25 81.25 78.75 78.75 81.25 63.75
Time (sec) 0.39 0.93 0.79 4.36 1.07 0.95 0.39

MNIST
Non-Hierarchical

Accuracy (%) – 82.00 79.00 82.00 78.00 82.00 78.00
Time (sec) – 122.21 182.13 152.89 173.18 135.64 170.33

Hierarchical
Accuracy (%) 71.00 77.00 79.00 81.00 75.00 78.00 79.00
Time (sec) 27.17 1.56 1.55 0.49 1.02 1.70 1.55

of ORL facial dataset are some facial features which are like ghost faces. Each face vary
within a range of gray where some facial feature differ in color among the set of training
sets. This figure captures different facial features that are discriminative to the dataset
under study.

All triplet mining methods extracted discrimination features by finding facial features
such as eye, eyebrow, cheeks for glasses, chin, hair, and nose. Since there are cases of
faces with eye glasses in the dataset, many features related to eyes and cheeks have been
extracted. k−NS shows more distinguished features. After k−NS, k−BSH, k−HPEN, and
k−EPEN also show diverse features of eyes, cheeks, nose and hair. Eyes and eyebrows are
mostly chosen for discriminating classes especially in k−BH and k−EPHN, due to faces
with eye glasses in the dataset.

3.7.4 Comparison of Triplet Mining Methods by Subspaces

The projection of training and test data, in the wine dataset, onto the column space of L
is shown in Fig. 3.3 for the different triplet mining methods. This figure shows acceptable
discrimination of classes after projection onto the metric subspaces for all different triplet
mining techniques. As can be seen, separation is better for k-BH, k-EPHN, and k-HPEN
where in k-HPEN, the view is from the top and separation in the third dimension is not
visible. The reason for better discrimination of classes in these cases is considering the hard
instances which helps the metric subspace to learn the worst-case scenarios. Interestingly,
these results correlate with the timing measured in Table 3.1. As we can see, the cases
considering the hard instances also take longer to run.
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k-BH

k-BSH

k-HPEN

k-EPEN

k-EPHN

k-NS

Figure 3.2: The top ten ghost faces in different triplet mining methods.

3.8 Proposed Hierarchical Approach for Subspace Learn-

ing Methods

As was seen in section 3.7, the hierarchical approach improves the accuracy and run-time
for datasets with large number of instances. However, most large datasets not only have a
high number of instances, but also a large feature space. Visualization, representation, and
exploration of complex datasets with high number of features is hard and non-intuitive. The
hierarchical approach in section 3.6 can further be improved to reduce the dimensionality
of data as well to better discriminate the classes.

The procedure is shown in algorithm 2 and it is very similiar to the original algorithm
introduced in section 3.6. At every iteration, several hyper-spheres are applied on the
feature space. The feature space of every hyper-sphere is either untouched, which is the
same as the original feature space of 1 × d, reduced to a random subset of 1 × p where
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: The top two leading dimensions of the metric subspace for wine dataset: (a)
k-BH, (b) k-BSH, (c) k-HPEN, (d) k-EPEN, (e) k-EPHN, (f) k-NS.

p < d, or reduced to a subset of 1× p where p < d using correlated feature selection where
features are correlated in descending order in respect to their correlation with labels (see
line 11 in Algorithm 2).

The instances are then sampled from within hyper-spheres using stratified sampling
similar to the previous hierarchical method (see line 12 in Algorithm 2). Feature extraction
methods described in section 2.1.2, are then applied to the resulting features and instances
at that iteration. The resulting weights from the feature extraction method are used to
transform the whole data on to the new subspace at the end of the iteration. The same
weights are used to transform the test set later as well due to the fact that feature extraction
creates a new feature space (see line 14 and 15 in Algorithm 2).

Note that the diagonal of the coefficient matrix, denoted by W , in LDA method, is
slightly strengthened to avoid collapsing into subspace due to low ranks. However, it does
not affect the projection directions. Similar to the hierarchical large margin metric learning
approach, the number of hyper-spheres, denoted by ns, decreases with respect to iteration
index while the radius of hyper-spheres, denoted by r, increases. This is because, as we
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1 Procedure: Hierarchical Subspace Learning(X)
2 Input: X: dataset
3 Initialize r, ns, and pτ
4 for τ from 1 to T do
5 r := increasing function of τ
6 ns := decreasing function of τ
7 pτ := decreasing function of τ
8 nf := decreasing function of τ
9 for s from 1 to ns do

10 cs ∼ range(X)
11 Feature selection : Correlation based feature selection with portion size

nf within the s-th hypersphere
12 Instance Sampling: Draw a stratified sample with sampling portion pτ

within the s-th hypersphere

13 Apply desired subspace learning method
14 Store the weight matrix
15 Project X onto Col(W ): X ←XW

Algorithm 2: Hierarchical Subspace Learning

proceed through the algorithm, we want to explore more of the data and feature space while
avoiding the overlap area among sampling spaces. In cases of feature selection application,
the portions of features, denoted by nf , is altered with respect to iteration index as well
since new features are being created by feature extraction at every iteration.

The initial radius, number of hyper-spheres, instance sampling portion, feature selection
subset portion, and feature extraction subset portion are r = 0.1σ, ns = ⌊0.01×n⌋ (clipped
to 10 ≤ ns ≤ 20), and pτ = 1, nf = 90%, and FE = 90%. At every iteration, the functions
are updated as r = r +∆r, ns = max(ns − ⌈0.2× ns⌉, 1), pτ = max(pτ − 0.05, 0.2), where
∆r = 0.3σ and σ is the average standard deviation along features, ns = max(nf − ⌈0.95×
nf⌉, 50), and FE = max(FE − ⌈0.95× FE⌉, 50).
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Table 3.2: Dataset specifications

Datasets Size No Classes Type Task

Iris 150× 4 3 Digit Pattern Recognition
Breast Cancer 569× 32 2 Digitized Image Diognostic
Isolet 7797× 617 26 Digitized Voice Voice Recognition
MNIST 3000× 784 10 Image, Pixel Digit recognition
ORL 400× 1178 10 Image, Pixel Face Recognition

3.9 Experimental Results and Analysis

3.9.1 Dataset and Setup

Five publicly available datasets of Fisher Iris [31, 38], MNIST [70], ORL faces [4] (all
described in section 3.7), Breast Cancer Wisconsin [78, 99] with 569 instances plus 32
features and Isolet [29, 35] with 617 attributes were tested. Datasets cover a range of
Diagnostic, voice, pattern, digit and face recognition with different range of features. The
specification of datasets are provided in table 3.2. Datasets are split to 70%− 15%− 15%
training, validation, and test subsets. The ORL faces were further projected to their 38
leading eigenfaces.

3.9.2 Comparing Manifold Learning Methods in Hierarchical and
Non-Hierarchical Approaches

As was described before, there are three cases of no feature selection, random feature
selection and correlation based feature selection. For each cases, the algorithm performs
the previously described manifold learning methods. To see and compare the performance
of the methods, different classifiers were applied as well. The algorithm is also compared
to the raw original data going through classifiers as well as commonly applying feature
extraction method once. Table 3.3 illustrates the result for comparison.

As table 3.3 presents, the hierarchical approach shows higher accuracy results in overall.
Iris and Breast Cancer Wisconsin show similar accuracies in different methods due to the
small feature space and the simplicity of datasets. However, the larger the number of
features get, the gap between the hierarchical and other methods is highlighted more. It is
more obvious in cases such as Breast Cancer Wisconsin with LDA on K−NN classifier and
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Table 3.3: Comparing accuracies of the proposed manifold learning methods in raw, non-
hierarchical and hierarchical subspace learning for classification.

Classifiers
Datasets Feature Extraction No Feature Selection Random Feature Selection Feature Selection

LDA KNN RF QDA LDA KNN RF QDA LDA KNN RF QDA

Iris

Raw 81.80 72.70 81.80 76.30 81.80 72.70 81.80 76.30 81.80 72.70 81.80 76.30

Original

LDA 81.81 72.70 81.80 77.70 81.81 72.70 81.80 77.70 81.81 72.70 81.80 77.70
PCA 72.27 71.00 81.81 72.72 77.27 72.71 81.81 77.80 77.27 73.63 82.30 75.20
GDA 81.80 72.00 80.76 77.65 81.80 80.80 86.30 86.30 81.80 83.50 91.90 86.30
RICA 81.81 69.09 65.45 61.81 81.81 69.09 65.45 61.81 81.81 69.09 65.45 61.81

Hierarchical

LDA 86.36 77.27 86.36 77.00 81.81 77.27 86.36 86.36 81.81 77.27 86.36 86.36
PCA 81.81 72.45 82.34 77.00 81.81 72.45 82.34 77.00 81.81 77.60 82.34 77.27
GDA 81.80 72.00 80.76 77.65 81.80 80.80 86.30 86.30 81.80 83.50 91.90 86.30
RICA 81.81 72.72 65.45 61.81 81.81 72.72 65.45 61.81 81.81 72.72 65.45 61.81

Breast Cancer

Raw 97.14 97.14 98.09 99.04 97.14 97.14 98.09 99.04 97.14 97.14 98.09 99.04

Original

LDA 96.19 96.19 96.19 96.19 94.28 93.33 94.28 98.95 96.19 96.19 94.28 94.28
PCA 95.23 97.14 94.28 95.23 96.19 93.33 92.38 93.33 95.23 96.19 96.19 98.09
GDA 96.19 96.19 96.19 97.14 97.14 96.19 96.19 100 93.33 94.28 92.38 94.28
RICA 96.19 95.23 94.28 95.23 98.09 98.09 99.04 99.04 94.28 95.23 94.28 96.19

Hierarchical

LDA 96.19 98.09 97.14 97.14 94.28 95.23 96.19 93.33 96.19 96.19 97.14 97.14
PCA 95.23 98.09 96.19 95.28 95.23 96.19 93.33 94.28 98.09 97.14 99.04 96.19
GDA 96.19 96.19 96.19 97.14 99.04 98.09 97.14 98.09 93.33 94.28 92.38 94.28
RICA 96.19 96.19 96.19 95.23 98.09 98.09 99.04 99.04 94.28 96.19 96.19 96.19

Isolet

Raw 99.87 92.05 93.58 95.71 99.87 92.05 93.58 95.71 99.87 92.05 93.58 95.71

Original

LDA 84.35 82.30 82.05 81.53 81.7 81.53 78.97 79.23 83.58 82.82 78.46 81.02
PCA 80.51 71.53 75.20 81.02 81.02 74.10 81.02 81.02 81.53 74.00 79.74 80.00
GDA 79.23 77.14 77.14 78.40 76.41 73.84 71.79 73.58 76.12 72.84 71.02 73.30
RICA 77.94 71.28 73.07 80.00 71.53 73.07 77.69 81.53 73.07 74.35 72.85 72.30

Hierarchical

LDA 91.28 88.46 88.46 81.53 80.00 74.35 76.92 75.89 89.48 88.17 89.48 88.17
PCA 91.02 80.51 86.15 94.87 78.00 70.60 75.21 75.00 86.64 88.36 83.33 82.80
GDA 85.41 90.00 90.00 92.10 63.07 67.17 57.69 63.39 88.71 88.46 88.46 84.10
RICA 77.43 77.69 79.74 80.51 80.00 77.69 79.48 80.00 73.07 79.23 70.00 73.58

MNIST

Raw 75.00 80.00 88.00 61.00 75.00 80.00 88.00 61.00 75.00 80.00 88.00 61.00

Original

LDA 74.00 72.00 62.00 69.00 74.00 72.00 63.00 69.00 73.00 73.00 65.00 67.00
PCA 75.00 81.00 84.00 68.00 75.00 80.00 82.00 68.00 75.00 81.00 84.00 68.00
GDA 70.00 79.90 65.00 58.90 70.00 79.90 65.00 58.90 70.00 79.90 65.00 58.90
RICA 71.00 70.00 73.00 64.00 71.00 67.00 68.00 57.00 71.00 62.00 66.00 64.00

Hierarchical

LDA 74.00 74.00 70.00 69.00 74.00 72.50 65.00 68.00 73.00 74.00 69.00 68.00
PCA 80.00 87.00 82.00 60.00 79.00 80.00 84.00 69.00 80.00 84.00 86.00 70.00
GDA 74.00 79.00 68.00 60.00 58.00 45.00 58.00 47.00 80.00 79.00 70.00 76.00
RICA 71.00 74.00 75.00 75.00 68.00 60.00 62.00 72.00 71.00 74.00 764.00 64.00

ORL Faces

Raw 92.50 87.50 92.50 89.90 92.50 87.50 92.50 89.90 92.50 87.50 92.50 89.90

Original

LDA 85.00 88.75 67.5 82.20 85.00 88.75 70.00 75.00 85.00 88.7 71.2 80.2
PCA 92.50 83.75 83.75 87.5 92.50 83.40 83.75 86.00 92.50 84.00 81.25 88.67
GDA 74.00 72.13 63.00 52.22 73.50 66.32 63.00 52.22 73.70 68.23 63.00 52.22
RICA 73.75 75.00 83.75 81.25 73.75 75.00 82.50 81.25 73.00 75.00 85.00 81.25

Hierarchical

LDA 85.60 88.75 70.86 84.00 83.50 85.00 65.30 69.00 88.00 89.7 81.45 82.43
PCA 92.50 84.50 84.50 90.12 58.50 76.45 73.50 67.90 82.50 85.30 85.42 89.00
GDA 78.54 72.13 66.60 60.00 67.50 66.25 56.73 57.00 80.00 76.25 67.50 60.50
RICA 73.75 75.00 83.75 81.25 70.86 70.86 80.00 79.40 76.07 79.92 85.00 83.12

MNIST with PCA on LDA classifier where the hierarchical accuracy exceeds the raw data
classification accuracy. This presents the curse of lower dimensionality and how having
higher dimensions does not guarantee better exploration of data and higher accuracy. This
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is more common on datasets with a larger feature space than the data space.

Random selection of features does not provide higher accuracies consistently due to its
random nature in which it does not consider any correlation among features or between
features and label. Hence, it is expected to perform better in cases when features with more
correlation with label were chosen and perform worse otherwise. However, the iteration
nature of the algorithm makes up the random selection of features to a considerable degree
where the results are comparable with raw data classification.

As can be seen in the table, feature extraction alone, without any feature selection,
outperforms other cases due to keeping more of the feature space by eliminations feature
selection while staying true to the goal of dimensionality reduction in a slower pace by
feature extraction. As expected, this method is more time consuming due to the projection
direction matrix which is highly dependable on the feature space.

Table 3.3 shows comparable results among LDA, PCA and GDA, outperforming other
approaches with LDA leading. This is due to both methods being linear manifold learning
methods and are expected to be more compatible with linear datasets. However, LDA
is a supervised method while PCA is unsupervised and hence it is expected for LDA to
have higher accuracy results. Moreover, GDA as an extension of LDA should provide
comparable results.

Moreover, among classification methods used, Random forest performs better due to
minimizing the probability of error by creating an ensemble of trees and taking a majority
vote among all. LDA classifier, when paired with LDA feature extraction, is presenting
high accuracies as well due to linear dataset.

Even though the run-time was an advantage in hierarchical large margin metric learning
with coplec data space, the time consumption increases to 297.12, 154.56 and 145.31 sec-
onds for Isolet, MNIST, and ORL faces respectively in hierarchical approach for subspace
learning methods. This is due to the large feature space of the datasets. As the number
of features increases, due to hierarchically exploring the feature space, it will take longer.
For smaller datasets such as Iris and Breast Cancer, the time consumption is comparable
due to the size and simplicity of datasets. The run-time is specially highlighted among
hierarchical approach and raw dataset classification, again due to the feature space com-
plexity of input matrix. Even though the sub-manifold learning methods are decreasing the
dimensionality of data in overall, the hierarchical nature of the method is time consuming
specially during early iterations.
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3.10 Conclusion

In this chapter, inspired by triplet mining methods for Siamese network, we proposed sev-
eral triplet mining methods for large margin metric learning. The methods were based on
making the data space smaller by sampling the most important instances. This method in-
creased the accuracy while speeding up the SDP optimization. In addition to the proposed
methods, a new hierarchical approach was proposed to reduce the SDP timing further in
combination with triplet mining methods. With considerable results of hierarchical ap-
proach on data space, it was further improved to perform on feature space as well. The
methods were tested on five publicly available datasets combined. A possible future direc-
tion would be implementing the hierarchical approach for non-linear kernel sub-manifold
learning methods.
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Chapter 4

FPGA-Based Architectures for
Random Forest Acceleration

Random forest is a very popular algorithm for both classification and regression due to
it’s flexibility among real-life datasets to be used on different variety of datasets regardless
of their dimensions. It is an intriguing topic for the cross-section of machine learning on
hardware. Upon approaching with different solutions to the problem of complex datasets
with huge dimensions in chapter 3, the familiarity and popularity of random forest classifier,
in addition to the previous works on the topic in literature, the random forest algorithm
is chosen for hardware implementation.

In this Chapter, we explore the efficient hardware implementation of random forest
classifiers. In section 2.4.3, we showed that there is a trade-off between accuracy, memory,
and run-time with a greater focus on the latter two. In this Chapter, by bringing accuracy
into consideration alongside run-time, we propose a method to achieve a comparable ac-
curacy to the CPU models of random forests while reducing the run-time and optimizing
memory use. We describe our approach for training on an Intel FPGA - Arria 10 device
that also results in higher accuracy than previous models. The Arria FPGA is programmed
using Quartus Prime Pro.

The chapter is structured as follows. It starts with explaining the logical framework of
the implemented architect followed by the hardware design in detail. Finally, an evaluation
of the design is performed to assess the architecture.
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4.1 Algorithm Overview

The dataset is originally stored in an external memory and will be transferred to the FPGA
embedded memory in batches when the training process starts. The instances are randomly
selected for creating a decision tree using sampling with replacement method. The training
process is presented in Fig. 4.1. The training process starts with training partition, sampled
with replacement in instances and attribute, entering the sorting module. In this example,
instances 1 to 5 and attribute 1 are randomly selected from the data partition in the
memory. The data will be sorted with respect to the selected attribute in the sorting
module and the sorted data will then be checked for purity criteria.

If the purity check is met, the data will be stored in memory as a branch; otherwise,
it will enter the split module where the data will be searched for the optimal weak learner
and will be split to two branches. Here, the optimal weak learner is chosen to be gini
impurity. The branches will be stored in a queue and the split information will be stored
in memory as well. The branches in the queue will be checked for purity criteria again and
follow the cycle. In the example of Fig. 4.1, the first branch includes instances 3, 4, 1, and
the second branch includes instance 5, 2 with respect to attribute 1 and the split point of
11. A flag based on whether the queue branches are empty, indicates the termination of
cycles and the tree information will be saved on FPGA.

4.2 Top Level Architecture

Fig. 4.2 below represent the hardware presentation of Fig. 4.1. The top level architec-
ture includes Memory, Forest Control System, PEs and Tree Storage. The data will be
transferred from external memory to FPGA internal memory. From memory, the data will
travel to a FIFO controlled by the Forest Control Module, to enter to a proper processing
element(PE). The PE includes the sort module, the purity criteria check, split module and
the queue memory to store branches. The data will iterate through PE and the complete
tree will exit the PE entering the FPGA Tree Memory module.

The Memory module stores the batch of data under study. Each PE includes the Sorting
module, a PE Control module, purity check and Split modules which will be explained in
details further in this chapter. The workflow of the top level will be managed by the Forest
Control System and the final results are collected in Tree Memory.
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Figure 4.1: Training Process Top-Level Architecture
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Figure 4.2: Training Process Top-Level Architecture

4.3 Memory

To map the external memory to the internal memory, Quartus internal IPs are used with
soft memory controller to ensure maximum bandwidth for control and data communication.
The latency varies with the IP setting such as frequency, data width, the type and etc.
However, Quartus uses Ping Pong FIFO buffers to ensure its fullness. Hence, the latency
of data transfer is hidden under the process latency.

The DDR Controller is responsible for read and write requests from external memory
and for moving the appropriate batch to internal memory. In this way, while the trees are
being processed, we can replace the contents of the Internal memory with new batches of
data. The internal memory communicates with the DDR Controller through read requests
and a counter to enable the controller to load the appropriate batch of data and navigate
it through the Write Address Generator to appropriate blocks. The write address consists
of two parts. The MSB part is the block number based on the features and the LSB part
is the memory address in which the value is stored in. The read address is created from
two parts. The MSB part is the selected attribute and the LSB part is the random index.
Only the LSB part is used for loading the appropriate label.

The final step is to load the read instances and the labels in two temporary storage
areas for each tree. The instances are stored in a BRAM FIFO while the labels are stored
in an appropriately sized register as one element. Bear in mind that a combination of
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parallel and series tree processing is implemented. To have parallel trees, we need a FIFO
for storage at the beginning of the training of every tree. In order to have parallel tree
computation without data loss, FIFOs are implemented at the beginning of each tree as
well in order to have data available for processing at all times, so when the first tree is
being processed, the second tree can be loaded in the queue. The top level architecture of
the training process is presented in Fig. 4.2.

4.4 Processing Element

At the beginning of the training process, the unsorted tree data enters the Processing
element. The processing element (PE) consist of four major sub-modules, Sort, Split Zero,
Right Split and Left Split modules. Fig. 4.3 represents the top-level architecture of one
PE.

Figure 4.3: PE internal architecture

The process starts with the unsorted data entering the sorting module where the tree
instances and labels are sorted in ascending order with respect to the attribute value.
The sorted label array is stored in one register in a bit-serial manner for internal PE
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process. Working with sorted labels require less hardware utilization for processing. A
pool of potential splits are created by taking the median of two non-identical adjacent data
instances. The possible split indices are stored to be later used by PE control module. It
is recommended for the subset of training dataset for a single tree to be multiplication of
16 for optimized memory utilization.

Sorted labels originally enter the Split Zero module, in which we divide a root into two
branches of right and left. The Split Zero module is responsible for the first split of a tree
for which no parent node information is provided. Both the right and left partitions are
fixed sized zero arrays shifted with the actual branches and hence emulate zero-padding
for a fixed size of the original partition. The new branches from split zero are stored in
first element of right-branch queue and left-branch queue while split point index will be
stored in Split Indices in memory.

In the following iterations, the input to the Right Split and Left Split are provided by
the Right and Left queues. The Right(Left) Split module is responsible for finding the best
split for all the right(left) branches only. At the beginning of every split module, the data
is checked for purity and leaf node criteria. In case of meeting either criteria, a leaf node
flag is raised preventing further process. Every split module creates two new right and
left branches. The parent node split information also enters the right/left-split modules to
indicate the size of the actual instances contained within that partition. The Right Split
module stores its new branches in 2i addresses of both queues, and the Left Split module
stores its new branches in 2i + 1 addresses of the queues. Hence, during the PE process,
at every iteration, two branches are read and four new ones are created.

The PE contains an internal PE Control System, responsible for determining if the
process is at split zero, synchronizing the internal PE processes, tracking the iterations,
tracking read/write addresses for queues as well as split modules entries and departures.
It is also responsible for split indices to be loaded in the split modules and to be stored
from the split modules.

The quality of a split point is assessed with a gini impurity assessment. The gini
impurity formula for two classes is represented below with two main part of gini left and
gini right:

S(.) =
n(L, i)× n(L, j)

n(L, i) + n(L, j)
+

n(R, i)× n(R, j)

n(R, i) + n(R, j)
, (4.1)

where L/R stands for left/right and i/j stands for class one and two respectively. n(., .)
is the number of entries of that particular branch belonging to a specific class. The formula,
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however, can be reorganized and expanded for categorical data with more than two classes
as:

S(.) =
1

nL

[n2
(L,1) + n2

(L,2) + ...+ n2
(L,m)] +

1

nR

[n2
(R,1) + n2

(R,2) + ...+ n2
(R,m)] (4.2)

As mentioned before, the assessment of the best split is done in a parallel manner
since the labels enter the split module all at once. For every possible split point, gini
left, gini right, and gini total are calculated and possible branches are stored in a label
histogram register-based memory. The histogram contains all the possible future split
points. The depth of the histogram is 2 × (tree instances − 1) and the width should be
tree instances × label width. After assessment, the best threshold index and split point
are stored in a split point information module, and the new branches are chosen from the
label histogram in an index-based manner and are sent to appropriate Right branch RAM
and Left branch RAM.

The tree information that is saved to be traveresed later by test dataset, is minimal.
Every tree has two static fixed size array dedicated to it where the information is stored.
One is for the split information and one is for the label. Both arrays are sorted in ascending
order. The label array contains one extra element because whit k split points, k+1 possible
labels are expected. The only information that is stored is the split point happening at
every node. The label array takes majority vote among left and right branches and stores
them accordingly. For instance, if we have a tree with 16 instances and the depth of 4,
we will have 15 split nodes and hence we will have an array of 15 elements for the split
information sorted in ascending order and an array of 16 elements for the labels. Eventually,
outside of every PE, we will have two matrices of n×m dimension where n is the number
of trees and m is either an array of 16 or 15.

The parallel processing is achieved by not only having parallel tree computations but
also by having parallel processes for left and right branches to decrease the tree processing
time approximately in half number of cycles than what originally anticipated.

4.5 Serialization and Parallelization Within PE

Every entry to the split module has a package of information to inform the module about
the specification of that data partition that is to be processed. The sort or split module
should know what data it should collect from the memory arrays and other components
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Figure 4.4: Tree with 16 instances and depth of 4

in order to perform the split. Each entry hence, carries information such as the length
indicating the size or the number of actual instances contained within each partition. It
also carries information about the parent split module such as it being a left branch or
right originally. It also includes addresses to the appropriate data.

The general idea for this thesis is to add parallel processing within each PE. One way
in which this is accomplished is by having two separate internal split process within PEs
for right and left branches. In this way, the process for one tree is approximately half of
what is originally anticipated.

A tree with n instances can have a maximum depth of ⌈logn2⌉ and a maximum of n− 1
split points with one being the split zero. Hence, in total, we have n−2 splits to be processed
by left and right branches of split modules. Accordingly, we have (n − 2)/2 iterations in
total since the right split module and left split module work in parallel. For example, for
16 instances with depth of 4, we have a tree represented in Fig. 4.4 with maximum of 15
split points. This example results in 7 iterations for left and right branches to process.
Every iteration includes many clock cycles for internal processes but the unit of measure
in this section is the number of iterations.

With a correct and accurately designed control system, in addition to using pipelines,
we can replace the first half of the Right and Left branch memory after the half-point of
the iterations. This is because whenever an address is read from the branch memory and
produces the resulting split point information, that information is no longer useful and
can be replaced with new information and values queued to be processed later. The same
strategy can be applied to the split information unit, albeit with slight changes since the
resulting tree information should be stored for one tree as a unit. The split information
module needs to be pipelined and buffered in order to avoid re-writing the split information
of one tree half-way through iterating the branches. Also, the processing element unit needs
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to process the remaining half of the right and left branch memories. In the example of
16 instances with 7 parallel iterations, we can start importing a new tree in the PE, sort
and start the split zero for the next tree after passing the 4th iteration. Upon starting the
new tree, the remaining half of the current tree is processed. This is indicated by a flag.
during this time, the new processes are directed to the split zero module. The speed of the
process is halved due to one module processing both right and left branch in RAM, but in
this way, resources are used more efficiently.

In our example, we can save three iterations out of eight. The pipeline process of a tree
within a PE is shown in Fig. 4.5.The process in in each PE is a combination of serial, data
passing through split zero and move forward until the end of the tree serially) and parallel
(having right and left branches processing in parallel fashion). Note that the bigger the
desired tree, the greater the number of instances, and the higher the number of iterations.
The greater the number of instances, the the fewer the number of iterations that can be
optimized. The complication of this process is due to re-using the split zero module besides
its original purpose. A control system needs to be implemented for this purpose so the
order of instances entering and result collection is preserved. The bigger the tree size, the
bigger the FIFO, and then, the longer the training time.

Figure 4.5: Example tree serialization of PE process for 16 instances

4.6 Testing

The resulting trees from the training phase are stored on FPGA memory, making it less
complicated for testing. It also makes the testing dependant on the training phase being
concluded. The latency and the throughput of testing depends on the number of parallel
PEs that are processed, due to accessing the trees in memory, the number of trees being
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traversed, and the number of instances in the testing partition of the dataset. There are
also accuracy calculations, but the bottleneck of the testing latency is the former two
reasons related to memory read access.

4.7 Experimental Results and Analysis

4.7.1 Datasets and Setup

To validate our approach, we used six publicly available datasets to cover a variety of
applications with a range of features and instances. A summary of the datasets is given
in Table 4.1; datasets are available in [32]. The first dataset is the Fisher Iris data first
introduced by Ronald Fisher in [37] with 150 records under four features. The second
dataset is Sonar, which is a multivariate dataset with binary classes by Terry Sejnowski.
It was first used in [51] with 60 attributes and 208 instances in total. This dataset uses
floating-point numbers, and is useful to demonstrate the effectiveness of the proposed
hardware approach. The third dataset is Breast Cancer Coimbra with 116 instances, 10
attributes. It is a binary class dataset indicating the presence or absence of breast cancer
[27, 89]. The next dataset is Heart Failure, first introduced in [2], is a multivariate dataset
with binary classification including 299 patients with heart failure. This dataset includes
13 features of both continuous and categorical kinds. The sixth dataset is Contraceptive
Method Choice data [75] with 1473 instances, nine features and three classes. The final
dataset is Cardiography data with 2126 instances, 23 features and three classes [5].

Table 4.1: Datasets specifications

Datasets Size No Classes Type Task

Fisher Iris 150× 4 3 Real Pattern Recognition
Sonar 208× 60 2 Real Pattern Recognition
Breast Cancer Coimbra 116× 10 2 Integer Diognastic
Heart Failure 299× 13 2 Integer Diognastic
Contraceptive 1473× 9 3 Integer Pattern Recognition
Cardiography 2126× 23 3 Real Diognastic

All datasets are divided to approximately 70% training and 30% testing subsets. The
best result is achieved by having the test subset a multiple of 16 since the RAMs are
designed in this manner. The architecture is implemented on an Intel Arria 10 family
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(10AX115N3F45I2SG) FPGA, using Quartus Prime Pro 20.0 and simulated using Mod-
elsim. The FPGA is clocked at 100 MHz.

4.8 Data Pre-Processing

Each dataset is pre-processed in Python, and is divided into training and testing subsets.
For best hardware utilization, in the testing subsets, the number of instances is a multi-
ple of 16. In smaller datasets such as Iris [32], we can store the dataset completely on
FPGA memory as only one partition. For such datasets, the algorithm can process as a
conventional random forest training algorithm with access to the whole training dataset.
However, the FPGA on-chip memory space is an important constraint when it comes to
large datasets. Due to memory issues, we utilize the batch-learning model similar to [19]
by transferring datasets from external memory to FPGA batch by batch.

In addition to the usual bootstrap bagging algorithm, an N × d array of uniformly
distributed random numbers is generated from 1 to d, where N is the number of trees and
d is the number of features in order to create a tree based on random attribute selection.

4.8.1 Comparison of Training Accuracy and Run-Time

The training accuracy of the proposed method is compared with a CPU implementation
of RF on Python, as well as the results presented in [19, 20]. It is known that the accuracy
is, to some extent, dependent on the random train-test division of dataset. Hence, to avoid
the effect of the random selection of points, we reported an a 5× cross validation for both
the hardware and the software implementations. Table 4.2 summarises the comparison
results between our proposed method on hardware and the established software method.
The software implementation is on Intel Core−i7 CPU @3.00GHz and the propose method
results are based on 250 trees with depth of 4.

As can be seen in table 3.1, the accuracies in proposed hardware implementation cases
are lower but compatible with software version of a random forest. However, both the
proposed method and software accuracies, are far from the average accuracy reported for
the Sonar dataset in [19] of 48% with 200 trees and up to 300 batches. This is due to the
fact that, the tree results in [19, 20] are not stored on the FPGA and are transferred to
the external memory while in this proposed method, the tree results are stored on FPGA
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Table 4.2: Comparing accuracies and run time of the proposed hardware implementation
and Scikit-learn random forest

Dataset Proposed Method Scikit-learn

Fisher Iris
Accuracy (%) 86 96.25
Time (msec) 29.64 1710.24

Sonar
Accuracy (%) 53 71.25
Time (msec) 37.23 2099.39

Breast Cancer Coimbra
Accuracy (%) 59 76.25
Time (msec) 37.7 1732.03

Heart Failure
Accuracy (%) 75 86.25
Time (msec) 38.56 1846.68

Contraceptive
Accuracy (%) 49 51.25
Time (msec) 37.91 2192.42

Cardiography
Accuracy (%) 74 98.75
Time (msec) 38.08 3336.08

resulting in more accurate classification. However, the number of trees that can be stored
on FPGA is limited and depends on both the tree instances and depth of each tree. The
accuracy of iris dataset is closest to the software implementation due to the simplicity and
the size of dataset while more complex datasets such as Sonar need more number of trees
for more accurate results.

Another reason for the difference in accuracies between the proposed implementation
and the software implementation, is due to the transformation of double value format to
fixed-point format. The fixed-point format affects finding the best split point since it is
found by taking the median of two consecutive numbers. This gap is more obvious in the
case of sonar since this dataset has the precision of four decimal points in real values so
the effect of data format is more clear in this case. Also standard deviation of a feature,
though small, has a strong affect on transferring the feature’s trace on label on the software
implementation in contradictory to hardware. If the standard deviation is too small, the
effect of that feature will not fully be represented in tree forest which can cause the small
difference in accuracies.

Cheng et al. provides the run-time of 43.7 millisecond for only the sonar dataset in
[19]. As can be seen in table 4.2, the proposed architecture is proven to be faster due to
parallel processing of right and left branches. The variation between the run time of the
proposed method on different datasets is due to the number of instances, the width of the
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data, number of attributes, etc. The run time of the proposed method is on average 50×
faster than the software implementation of random forest on python.

4.8.2 Comparison of Hardware Utilization and Latency

The hardware resource utilization of our proposed method, depends on the dataset under
study to some extent. The width, and depth of most registers, memory blocks, the number
of attributes plus entries are user specified. In addition to these, the depth of the tree is
also an important factor for how many trees and PEs can be fitted in the FPGA internal
memory. Other important factors can be name such as the length of the entries and
how many labels the dataset inquires. Table 4.3 summarizes a comparison of hardware
utilization for one PE among the proposed method and [20].

Table 4.3: Single PE hardware utilization

Datasets No Registers Block Mem Bits No DSP Blocks

Proposed Method 3420 9152k 497
Task Parallelism 4596 4102k 9

As can be seen, the number of memory bits is increased drastically due to having a
memory centric approach in which most mid-stages result are stored on FPGA embedded
memory.

The total time of the training process depends on many factors such as the processing
time of the task defined in previous section and the time it takes to move from external
memory to internal embedded memory. For loading the data from the off-chip DDR4
memory to on-chip embedded memory, we are using Intel Quartus Prime IPs for control
and communication. The latency varies with the setting of IP such as data width, the
frequency used. The data accessing patterns such as how many agents attempt to read or
write data, the frequency, etc., also affect the performance. Intel built in IP is optimized
to use a type of ping-pong buffer FIFO to consistently buffer data from DDR until it is
full. In this case, the latency of data reading stage overlaps with the data processing stage,
making the latency not influential.

Hence, the main part of latency will be the training process itself which is heavily
pipelined. From the training process also, the first batch will be the most influential one
as the starting point. The working frequency after resolving the timing violations are 120
MHz. With dissolving the first batch of training through the whole training process, having
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2 PEs, the resulting throughput will be (2×16×120)/30 equal to 128 bps. One framework
of data is 16 bits and hence it takes about 30 cycles to process 32 frameworks using two
PEs.

4.9 Conclusion and Future Direction

Software implementations of RFs can be very slow on large datasets. To accelerate the pro-
cess, different hardware implementations are proposed in the literature on batch learning,
sub-sampling and online training for FPGA or GP-GPU. However, FPGA implementa-
tion,seems to be more promising due to their parallel computation power and its concurrent
memory access.

In this thesis, inspired by prior work by Cheng et al. [20], we proposed an architecture to
fasten the training part of the classification process by an average of 50 times compared to
software implementation. The proposed method also shows better run-time and accuracy
result compared to the reference papers in literature.

The proposed method incorporates separate processing for creating right and left branches
within every PE, while having parallel PE processes compared to previous works in liter-
ature [20, 21]. By sacrificing memory utilization in addition to storing tree information
regarding on FPGA memory for faster investigation on test data, we achieve more accu-
rate classification results. The method also incorporates a control system and final state
machine to fully utilize its resources.

A possible future direction is to optimize the split zero module by improving the control
unit for better hardware utilization. We can also implement this logic for online training
of RFs for future work. The testing phase is also an unexplored area for this thesis, which
can be a possible future contribution.
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Chapter 5

Conclusions and Future Directions

Large margin metric learning for nearest-neighbor classification is a metric learning method
that finds a metric to better discriminate classes by using SDP optimization and the anchor-
positive-negative triplet concept. The SDP optimization is very slow and computationally
expensive, due to the use of interior point optimization method. In this thesis, inspired by
triplet mining techniques for Siamese network training, by considering the most important
triplets rather than all, we proposed several triplet mining methods for large margin metric
learning for nearest-neighbor classification. The analysis of the proposed methods show a
speed-up in the optimization and presents a more computationally efficient method. The
proposed triplet mining techniques were k-BA, k-BH, k-BSH, k-HPEN, k-EPEN, k-EPHN,
and k-NS. Moreover, we proposed a new hierarchical approach, in combination with the
triplet mining methods, to further increase the pace of optimization and reduce the training
time. Our experiments on three public available datasets verified the effectiveness of the
proposed approaches.

However, the bottleneck of the dataset is not always the number of instances but also
the number of features in a dataset. Dimensionality reduction techniques are used for map
the dataset onto lower sub-manifolds in order to aid in visualization and explorability. It
is commonly used as a pre-processing method in machine learning and statistics. Inspired
by the hierarchical approach for large margin metric learning using stratified sampling, we
introduced a hierarchically iterative approach as a pre-processing method. Analysis of the
proposed method shows an increase in classification accuracy. A possible future direction
can be testing non-linear manifold learning methods such as kernel PCA or kernel LDA
using the hierarchical approach or to try the proposed hierarchical approach using stratified
sampling on other subspace learning methods.
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Software implementations of some machine learning algorithms such as random forest
classifiers on CPU can be very slow, especially on huge datasets. To accelerate the process,
different hardware implementations are proposed in literature on FPGA due to its parallel
computation power and its concurrent memory access. In this thesis, we proposed an archi-
tecture to speed up the training part of the classification process by an average of 50 times
compared to software implementation. The proposed method also shows better run-time
and accuracy compared to the state of the art. The proposed method incorporates separate
processing for creating right and left branches by sacrificing memory utilization and also
stores some information regarding the trees in FPGA memory for more accurate classifi-
cation results. The method also incorporates a control system and finite state machine to
fully utilize its resources. A possible future direction is to optimize the split-zero module
by improving the control unit for better hardware utilization. We can also implement this
logic for online, rather than offline training. The testing phase is also an unexplored area
for this thesis, which can be a possible future contribution.
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